ggml-backend.c 84 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235223622372238223922402241224222432244224522462247224822492250225122522253225422552256225722582259226022612262226322642265226622672268226922702271
  1. /**
  2. * llama.cpp - commit 6eeaeba126ff701f3e8f79f246805b7023709972 - do not edit this file
  3. *
  4. * MIT License
  5. *
  6. * Copyright (c) 2023-2024 The ggml authors
  7. *
  8. * Permission is hereby granted, free of charge, to any person obtaining a copy
  9. * of this software and associated documentation files (the "Software"), to deal
  10. * in the Software without restriction, including without limitation the rights
  11. * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
  12. * copies of the Software, and to permit persons to whom the Software is
  13. * furnished to do so, subject to the following conditions:
  14. *
  15. * The above copyright notice and this permission notice shall be included in all
  16. * copies or substantial portions of the Software.
  17. *
  18. * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
  19. * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
  20. * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
  21. * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
  22. * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
  23. * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
  24. * SOFTWARE.
  25. */
  26. #include "ggml-backend-impl.h"
  27. #include "ggml-alloc.h"
  28. #include "ggml-impl.h"
  29. #include <assert.h>
  30. #include <limits.h>
  31. #include <stdarg.h>
  32. #include <stdio.h>
  33. #include <stdlib.h>
  34. #include <string.h>
  35. #define MAX(a, b) ((a) > (b) ? (a) : (b))
  36. // backend buffer type
  37. const char * ggml_backend_buft_name(ggml_backend_buffer_type_t buft) {
  38. return buft->iface.get_name(buft);
  39. }
  40. GGML_CALL ggml_backend_buffer_t ggml_backend_buft_alloc_buffer(ggml_backend_buffer_type_t buft, size_t size) {
  41. return buft->iface.alloc_buffer(buft, size);
  42. }
  43. size_t ggml_backend_buft_get_alignment(ggml_backend_buffer_type_t buft) {
  44. return buft->iface.get_alignment(buft);
  45. }
  46. size_t ggml_backend_buft_get_max_size(ggml_backend_buffer_type_t buft) {
  47. // get_max_size is optional, defaults to SIZE_MAX
  48. if (buft->iface.get_max_size) {
  49. return buft->iface.get_max_size(buft);
  50. }
  51. return SIZE_MAX;
  52. }
  53. GGML_CALL size_t ggml_backend_buft_get_alloc_size(ggml_backend_buffer_type_t buft, struct ggml_tensor * tensor) {
  54. // get_alloc_size is optional, defaults to ggml_nbytes
  55. if (buft->iface.get_alloc_size) {
  56. size_t size = buft->iface.get_alloc_size(buft, tensor);
  57. assert(size >= ggml_nbytes(tensor));
  58. return size;
  59. }
  60. return ggml_nbytes(tensor);
  61. }
  62. bool ggml_backend_buft_is_host(ggml_backend_buffer_type_t buft) {
  63. if (buft->iface.is_host) {
  64. return buft->iface.is_host(buft);
  65. }
  66. return false;
  67. }
  68. // backend buffer
  69. GGML_CALL ggml_backend_buffer_t ggml_backend_buffer_init(
  70. ggml_backend_buffer_type_t buft,
  71. struct ggml_backend_buffer_i iface,
  72. ggml_backend_buffer_context_t context,
  73. size_t size) {
  74. ggml_backend_buffer_t buffer = malloc(sizeof(struct ggml_backend_buffer));
  75. (*buffer) = (struct ggml_backend_buffer) {
  76. /* .interface = */ iface,
  77. /* .buft = */ buft,
  78. /* .context = */ context,
  79. /* .size = */ size,
  80. /* .usage = */ GGML_BACKEND_BUFFER_USAGE_ANY
  81. };
  82. return buffer;
  83. }
  84. const char * ggml_backend_buffer_name(ggml_backend_buffer_t buffer) {
  85. return buffer->iface.get_name(buffer);
  86. }
  87. void ggml_backend_buffer_free(ggml_backend_buffer_t buffer) {
  88. if (buffer == NULL) {
  89. return;
  90. }
  91. if (buffer->iface.free_buffer != NULL) {
  92. buffer->iface.free_buffer(buffer);
  93. }
  94. // TODO: this needs to be freed in cuda and hipblas backends because
  95. // the cuda backend implementation compiled with msvc
  96. #if !defined(GGML_USE_CUDA) && !defined(GGML_USE_HIPBLAS)
  97. free(buffer);
  98. #endif
  99. }
  100. size_t ggml_backend_buffer_get_size(ggml_backend_buffer_t buffer) {
  101. return buffer->size;
  102. }
  103. void * ggml_backend_buffer_get_base(ggml_backend_buffer_t buffer) {
  104. void * base = buffer->iface.get_base(buffer);
  105. GGML_ASSERT(base != NULL && "backend buffer base cannot be NULL");
  106. return base;
  107. }
  108. GGML_CALL void ggml_backend_buffer_init_tensor(ggml_backend_buffer_t buffer, struct ggml_tensor * tensor) {
  109. // init_tensor is optional
  110. if (buffer->iface.init_tensor) {
  111. buffer->iface.init_tensor(buffer, tensor);
  112. }
  113. }
  114. size_t ggml_backend_buffer_get_alignment (ggml_backend_buffer_t buffer) {
  115. return ggml_backend_buft_get_alignment(ggml_backend_buffer_get_type(buffer));
  116. }
  117. size_t ggml_backend_buffer_get_max_size(ggml_backend_buffer_t buffer) {
  118. return ggml_backend_buft_get_max_size(ggml_backend_buffer_get_type(buffer));
  119. }
  120. size_t ggml_backend_buffer_get_alloc_size(ggml_backend_buffer_t buffer, struct ggml_tensor * tensor) {
  121. return ggml_backend_buft_get_alloc_size(ggml_backend_buffer_get_type(buffer), tensor);
  122. }
  123. void ggml_backend_buffer_clear(ggml_backend_buffer_t buffer, uint8_t value) {
  124. buffer->iface.clear(buffer, value);
  125. }
  126. bool ggml_backend_buffer_is_host(ggml_backend_buffer_t buffer) {
  127. return ggml_backend_buft_is_host(ggml_backend_buffer_get_type(buffer));
  128. }
  129. void ggml_backend_buffer_set_usage(ggml_backend_buffer_t buffer, enum ggml_backend_buffer_usage usage) {
  130. buffer->usage = usage;
  131. // FIXME: add a generic callback to the buffer interface
  132. if (ggml_backend_buffer_is_multi_buffer(buffer)) {
  133. ggml_backend_multi_buffer_set_usage(buffer, usage);
  134. }
  135. }
  136. enum ggml_backend_buffer_usage ggml_backend_buffer_get_usage(ggml_backend_buffer_t buffer) {
  137. return buffer->usage;
  138. }
  139. ggml_backend_buffer_type_t ggml_backend_buffer_get_type(ggml_backend_buffer_t buffer) {
  140. return buffer->buft;
  141. }
  142. void ggml_backend_buffer_reset(ggml_backend_buffer_t buffer) {
  143. if (buffer->iface.reset) {
  144. buffer->iface.reset(buffer);
  145. }
  146. }
  147. bool ggml_backend_buffer_copy_tensor(const struct ggml_tensor * src, struct ggml_tensor * dst) {
  148. ggml_backend_buffer_t dst_buf = dst->view_src ? dst->view_src->buffer : dst->buffer;
  149. if (dst_buf->iface.cpy_tensor) {
  150. return dst_buf->iface.cpy_tensor(dst_buf, src, dst);
  151. }
  152. return false;
  153. }
  154. // backend
  155. ggml_guid_t ggml_backend_guid(ggml_backend_t backend) {
  156. if (backend == NULL) {
  157. return NULL;
  158. }
  159. return backend->guid;
  160. }
  161. const char * ggml_backend_name(ggml_backend_t backend) {
  162. if (backend == NULL) {
  163. return "NULL";
  164. }
  165. return backend->iface.get_name(backend);
  166. }
  167. void ggml_backend_free(ggml_backend_t backend) {
  168. if (backend == NULL) {
  169. return;
  170. }
  171. backend->iface.free(backend);
  172. }
  173. ggml_backend_buffer_type_t ggml_backend_get_default_buffer_type(ggml_backend_t backend) {
  174. return backend->iface.get_default_buffer_type(backend);
  175. }
  176. ggml_backend_buffer_t ggml_backend_alloc_buffer(ggml_backend_t backend, size_t size) {
  177. return ggml_backend_buft_alloc_buffer(ggml_backend_get_default_buffer_type(backend), size);
  178. }
  179. size_t ggml_backend_get_alignment(ggml_backend_t backend) {
  180. return ggml_backend_buft_get_alignment(ggml_backend_get_default_buffer_type(backend));
  181. }
  182. size_t ggml_backend_get_max_size(ggml_backend_t backend) {
  183. return ggml_backend_buft_get_max_size(ggml_backend_get_default_buffer_type(backend));
  184. }
  185. void ggml_backend_tensor_set_async(ggml_backend_t backend, struct ggml_tensor * tensor, const void * data, size_t offset, size_t size) {
  186. GGML_ASSERT(tensor->data != NULL && "tensor not allocated");
  187. GGML_ASSERT(offset + size <= ggml_nbytes(tensor) && "tensor write out of bounds");
  188. if (backend->iface.set_tensor_async == NULL) {
  189. ggml_backend_tensor_set(tensor, data, offset, size);
  190. } else {
  191. backend->iface.set_tensor_async(backend, tensor, data, offset, size);
  192. }
  193. }
  194. void ggml_backend_tensor_get_async(ggml_backend_t backend, const struct ggml_tensor * tensor, void * data, size_t offset, size_t size) {
  195. GGML_ASSERT(tensor->data != NULL && "tensor not allocated");
  196. GGML_ASSERT(offset + size <= ggml_nbytes(tensor) && "tensor read out of bounds");
  197. if (backend->iface.get_tensor_async == NULL) {
  198. ggml_backend_tensor_get(tensor, data, offset, size);
  199. } else {
  200. backend->iface.get_tensor_async(backend, tensor, data, offset, size);
  201. }
  202. }
  203. GGML_CALL void ggml_backend_tensor_set(struct ggml_tensor * tensor, const void * data, size_t offset, size_t size) {
  204. ggml_backend_buffer_t buf = tensor->view_src ? tensor->view_src->buffer : tensor->buffer;
  205. GGML_ASSERT(buf != NULL && "tensor buffer not set");
  206. GGML_ASSERT(tensor->data != NULL && "tensor not allocated");
  207. GGML_ASSERT(offset + size <= ggml_nbytes(tensor) && "tensor write out of bounds");
  208. if (!size) {
  209. return;
  210. }
  211. buf->iface.set_tensor(buf, tensor, data, offset, size);
  212. }
  213. GGML_CALL void ggml_backend_tensor_get(const struct ggml_tensor * tensor, void * data, size_t offset, size_t size) {
  214. ggml_backend_buffer_t buf = tensor->view_src ? tensor->view_src->buffer : tensor->buffer;
  215. GGML_ASSERT(buf != NULL && "tensor buffer not set");
  216. GGML_ASSERT(tensor->data != NULL && "tensor not allocated");
  217. GGML_ASSERT(offset + size <= ggml_nbytes(tensor) && "tensor read out of bounds");
  218. if (!size) {
  219. return;
  220. }
  221. buf->iface.get_tensor(buf, tensor, data, offset, size);
  222. }
  223. void ggml_backend_synchronize(ggml_backend_t backend) {
  224. if (backend->iface.synchronize == NULL) {
  225. return;
  226. }
  227. backend->iface.synchronize(backend);
  228. }
  229. ggml_backend_graph_plan_t ggml_backend_graph_plan_create(ggml_backend_t backend, struct ggml_cgraph * cgraph) {
  230. GGML_ASSERT(backend->iface.graph_plan_create != NULL);
  231. return backend->iface.graph_plan_create(backend, cgraph);
  232. }
  233. void ggml_backend_graph_plan_free(ggml_backend_t backend, ggml_backend_graph_plan_t plan) {
  234. GGML_ASSERT(backend->iface.graph_plan_free != NULL);
  235. backend->iface.graph_plan_free(backend, plan);
  236. }
  237. enum ggml_status ggml_backend_graph_plan_compute(ggml_backend_t backend, ggml_backend_graph_plan_t plan) {
  238. GGML_ASSERT(backend->iface.graph_plan_compute != NULL);
  239. return backend->iface.graph_plan_compute(backend, plan);
  240. }
  241. enum ggml_status ggml_backend_graph_compute(ggml_backend_t backend, struct ggml_cgraph * cgraph) {
  242. enum ggml_status err = ggml_backend_graph_compute_async(backend, cgraph);
  243. ggml_backend_synchronize(backend);
  244. return err;
  245. }
  246. enum ggml_status ggml_backend_graph_compute_async(ggml_backend_t backend, struct ggml_cgraph * cgraph) {
  247. return backend->iface.graph_compute(backend, cgraph);
  248. }
  249. bool ggml_backend_supports_op(ggml_backend_t backend, const struct ggml_tensor * op) {
  250. return backend->iface.supports_op(backend, op);
  251. }
  252. bool ggml_backend_supports_buft(ggml_backend_t backend, ggml_backend_buffer_type_t buft) {
  253. return backend->iface.supports_buft(backend, buft);
  254. }
  255. bool ggml_backend_offload_op(ggml_backend_t backend, const struct ggml_tensor * op) {
  256. if (backend->iface.offload_op != NULL) {
  257. return backend->iface.offload_op(backend, op);
  258. }
  259. return false;
  260. }
  261. // backend copy
  262. static bool ggml_are_same_layout(const struct ggml_tensor * a, const struct ggml_tensor * b) {
  263. if (a->type != b->type) {
  264. return false;
  265. }
  266. for (int i = 0; i < GGML_MAX_DIMS; i++) {
  267. if (a->ne[i] != b->ne[i]) {
  268. return false;
  269. }
  270. if (a->nb[i] != b->nb[i]) {
  271. return false;
  272. }
  273. }
  274. return true;
  275. }
  276. void ggml_backend_tensor_copy(struct ggml_tensor * src, struct ggml_tensor * dst) {
  277. GGML_ASSERT(ggml_are_same_layout(src, dst) && "cannot copy tensors with different layouts");
  278. if (src == dst) {
  279. return;
  280. }
  281. if (ggml_backend_buffer_is_host(src->buffer)) {
  282. ggml_backend_tensor_set(dst, src->data, 0, ggml_nbytes(src));
  283. } else if (ggml_backend_buffer_is_host(dst->buffer)) {
  284. ggml_backend_tensor_get(src, dst->data, 0, ggml_nbytes(src));
  285. } else if (!ggml_backend_buffer_copy_tensor(src, dst)) {
  286. #ifndef NDEBUG
  287. fprintf(stderr, "%s: warning: slow copy from %s to %s\n", __func__, ggml_backend_buffer_name(src->buffer), ggml_backend_buffer_name(dst->buffer));
  288. #endif
  289. size_t nbytes = ggml_nbytes(src);
  290. void * data = malloc(nbytes);
  291. ggml_backend_tensor_get(src, data, 0, nbytes);
  292. ggml_backend_tensor_set(dst, data, 0, nbytes);
  293. free(data);
  294. }
  295. }
  296. void ggml_backend_tensor_copy_async(ggml_backend_t backend_src, ggml_backend_t backend_dst, struct ggml_tensor * src, struct ggml_tensor * dst) {
  297. GGML_ASSERT(ggml_are_same_layout(src, dst) && "cannot copy tensors with different layouts");
  298. if (src == dst) {
  299. return;
  300. }
  301. if (backend_dst->iface.cpy_tensor_async != NULL) {
  302. if (backend_dst->iface.cpy_tensor_async(backend_src, backend_dst, src, dst)) {
  303. return;
  304. }
  305. }
  306. // an async copy would normally happen after all the queued operations on both backends are completed
  307. // sync src, set_async dst
  308. if (ggml_backend_buffer_is_host(src->buffer)) {
  309. ggml_backend_synchronize(backend_src);
  310. ggml_backend_tensor_set_async(backend_dst, dst, src->data, 0, ggml_nbytes(src));
  311. } else {
  312. ggml_backend_synchronize(backend_src);
  313. ggml_backend_tensor_copy(src, dst);
  314. ggml_backend_synchronize(backend_dst);
  315. }
  316. }
  317. // events
  318. ggml_backend_event_t ggml_backend_event_new(ggml_backend_t backend) {
  319. if (backend->iface.event_new == NULL) {
  320. return NULL;
  321. }
  322. return backend->iface.event_new(backend);
  323. }
  324. void ggml_backend_event_free(ggml_backend_event_t event) {
  325. if (event == NULL) {
  326. return;
  327. }
  328. event->backend->iface.event_free(event);
  329. }
  330. void ggml_backend_event_record(ggml_backend_event_t event) {
  331. GGML_ASSERT(event->backend->iface.event_record != NULL);
  332. event->backend->iface.event_record(event);
  333. }
  334. void ggml_backend_event_synchronize(ggml_backend_event_t event) {
  335. GGML_ASSERT(event->backend->iface.event_synchronize != NULL);
  336. event->backend->iface.event_synchronize(event);
  337. }
  338. void ggml_backend_event_wait(ggml_backend_t backend, ggml_backend_event_t event) {
  339. GGML_ASSERT(backend->iface.event_wait != NULL);
  340. backend->iface.event_wait(backend, event);
  341. }
  342. // backend registry
  343. #define GGML_REG_MAX_BACKENDS 64
  344. struct ggml_backend_reg {
  345. char name[128];
  346. ggml_backend_init_fn init_fn;
  347. ggml_backend_buffer_type_t default_buffer_type;
  348. void * user_data;
  349. };
  350. static struct ggml_backend_reg ggml_backend_registry[GGML_REG_MAX_BACKENDS];
  351. static size_t ggml_backend_registry_count = 0;
  352. GGML_CALL static ggml_backend_t ggml_backend_reg_cpu_init(const char * params, void * user_data);
  353. GGML_CALL static void ggml_backend_registry_init(void) {
  354. static bool initialized = false;
  355. if (initialized) {
  356. return;
  357. }
  358. initialized = true;
  359. ggml_backend_register("CPU", ggml_backend_reg_cpu_init, ggml_backend_cpu_buffer_type(), NULL);
  360. // add forward decls here to avoid including the backend headers
  361. #ifdef GGML_USE_CUDA
  362. extern GGML_CALL void ggml_backend_cuda_reg_devices(void);
  363. ggml_backend_cuda_reg_devices();
  364. #endif
  365. #ifdef GGML_USE_SYCL
  366. extern void ggml_backend_sycl_reg_devices(void);
  367. ggml_backend_sycl_reg_devices();
  368. #endif
  369. #ifdef GGML_USE_METAL
  370. extern GGML_CALL ggml_backend_t ggml_backend_reg_metal_init(const char * params, void * user_data);
  371. extern GGML_CALL ggml_backend_buffer_type_t ggml_backend_metal_buffer_type(void);
  372. ggml_backend_register("Metal", ggml_backend_reg_metal_init, ggml_backend_metal_buffer_type(), NULL);
  373. #endif
  374. #ifdef GGML_USE_VULKAN
  375. extern GGML_CALL int ggml_backend_vk_reg_devices(void);
  376. ggml_backend_vk_reg_devices();
  377. #endif
  378. #ifdef GGML_USE_KOMPUTE
  379. extern GGML_CALL void ggml_backend_kompute_reg_devices(void);
  380. ggml_backend_kompute_reg_devices();
  381. #endif
  382. #ifdef GGML_USE_CANN
  383. extern GGML_CALL int ggml_backend_cann_reg_devices(void);
  384. ggml_backend_cann_reg_devices();
  385. #endif
  386. }
  387. GGML_CALL void ggml_backend_register(const char * name, ggml_backend_init_fn init_fn, ggml_backend_buffer_type_t default_buffer_type, void * user_data) {
  388. GGML_ASSERT(ggml_backend_registry_count < GGML_REG_MAX_BACKENDS);
  389. size_t id = ggml_backend_registry_count;
  390. ggml_backend_registry[id] = (struct ggml_backend_reg) {
  391. /* .name = */ {0},
  392. /* .fn = */ init_fn,
  393. /* .default_buffer_type = */ default_buffer_type,
  394. /* .user_data = */ user_data,
  395. };
  396. snprintf(ggml_backend_registry[id].name, sizeof(ggml_backend_registry[id].name), "%s", name);
  397. #ifndef NDEBUG
  398. fprintf(stderr, "%s: registered backend %s\n", __func__, name);
  399. #endif
  400. ggml_backend_registry_count++;
  401. }
  402. size_t ggml_backend_reg_get_count(void) {
  403. ggml_backend_registry_init();
  404. return ggml_backend_registry_count;
  405. }
  406. size_t ggml_backend_reg_find_by_name(const char * name) {
  407. ggml_backend_registry_init();
  408. for (size_t i = 0; i < ggml_backend_registry_count; i++) {
  409. // TODO: case insensitive in a portable way
  410. if (strcmp(ggml_backend_registry[i].name, name) == 0) {
  411. return i;
  412. }
  413. }
  414. // not found
  415. return SIZE_MAX;
  416. }
  417. // init from backend:params string
  418. ggml_backend_t ggml_backend_reg_init_backend_from_str(const char * backend_str) {
  419. ggml_backend_registry_init();
  420. const char * params = strchr(backend_str, ':');
  421. char backend_name[128];
  422. if (params == NULL) {
  423. snprintf(backend_name, sizeof(backend_name), "%s", backend_str);
  424. params = "";
  425. } else {
  426. snprintf(backend_name, sizeof(backend_name), "%.*s", (int)(params - backend_str), backend_str);
  427. params++;
  428. }
  429. size_t backend_i = ggml_backend_reg_find_by_name(backend_name);
  430. if (backend_i == SIZE_MAX) {
  431. fprintf(stderr, "%s: backend %s not found\n", __func__, backend_name);
  432. return NULL;
  433. }
  434. return ggml_backend_reg_init_backend(backend_i, params);
  435. }
  436. const char * ggml_backend_reg_get_name(size_t i) {
  437. ggml_backend_registry_init();
  438. GGML_ASSERT(i < ggml_backend_registry_count);
  439. return ggml_backend_registry[i].name;
  440. }
  441. ggml_backend_t ggml_backend_reg_init_backend(size_t i, const char * params) {
  442. ggml_backend_registry_init();
  443. GGML_ASSERT(i < ggml_backend_registry_count);
  444. return ggml_backend_registry[i].init_fn(params, ggml_backend_registry[i].user_data);
  445. }
  446. ggml_backend_buffer_type_t ggml_backend_reg_get_default_buffer_type(size_t i) {
  447. ggml_backend_registry_init();
  448. GGML_ASSERT(i < ggml_backend_registry_count);
  449. return ggml_backend_registry[i].default_buffer_type;
  450. }
  451. ggml_backend_buffer_t ggml_backend_reg_alloc_buffer(size_t i, size_t size) {
  452. ggml_backend_registry_init();
  453. GGML_ASSERT(i < ggml_backend_registry_count);
  454. return ggml_backend_buft_alloc_buffer(ggml_backend_registry[i].default_buffer_type, size);
  455. }
  456. // backend CPU
  457. static const size_t TENSOR_ALIGNMENT = 32; // required for mmap as gguf only guarantees 32-byte alignment
  458. GGML_CALL static const char * ggml_backend_cpu_buffer_name(ggml_backend_buffer_t buffer) {
  459. return "CPU";
  460. GGML_UNUSED(buffer);
  461. }
  462. GGML_CALL static void * ggml_backend_cpu_buffer_get_base(ggml_backend_buffer_t buffer) {
  463. uintptr_t data = (uintptr_t)buffer->context;
  464. // align the buffer
  465. if (data % TENSOR_ALIGNMENT != 0) {
  466. data = GGML_PAD(data, TENSOR_ALIGNMENT);
  467. }
  468. return (void *)data;
  469. }
  470. GGML_CALL static void ggml_backend_cpu_buffer_free_buffer(ggml_backend_buffer_t buffer) {
  471. free(buffer->context);
  472. }
  473. GGML_CALL static void ggml_backend_cpu_buffer_set_tensor(ggml_backend_buffer_t buffer, struct ggml_tensor * tensor, const void * data, size_t offset, size_t size) {
  474. memcpy((char *)tensor->data + offset, data, size);
  475. GGML_UNUSED(buffer);
  476. }
  477. GGML_CALL static void ggml_backend_cpu_buffer_get_tensor(ggml_backend_buffer_t buffer, const struct ggml_tensor * tensor, void * data, size_t offset, size_t size) {
  478. memcpy(data, (const char *)tensor->data + offset, size);
  479. GGML_UNUSED(buffer);
  480. }
  481. GGML_CALL static bool ggml_backend_cpu_buffer_cpy_tensor(ggml_backend_buffer_t buffer, const struct ggml_tensor * src, struct ggml_tensor * dst) {
  482. if (ggml_backend_buffer_is_host(src->buffer)) {
  483. memcpy(dst->data, src->data, ggml_nbytes(src));
  484. return true;
  485. }
  486. return false;
  487. GGML_UNUSED(buffer);
  488. }
  489. GGML_CALL static void ggml_backend_cpu_buffer_clear(ggml_backend_buffer_t buffer, uint8_t value) {
  490. memset(buffer->context, value, buffer->size);
  491. }
  492. static struct ggml_backend_buffer_i cpu_backend_buffer_i = {
  493. /* .get_name = */ ggml_backend_cpu_buffer_name,
  494. /* .free_buffer = */ ggml_backend_cpu_buffer_free_buffer,
  495. /* .get_base = */ ggml_backend_cpu_buffer_get_base,
  496. /* .init_tensor = */ NULL, // no initialization required
  497. /* .set_tensor = */ ggml_backend_cpu_buffer_set_tensor,
  498. /* .get_tensor = */ ggml_backend_cpu_buffer_get_tensor,
  499. /* .cpy_tensor = */ ggml_backend_cpu_buffer_cpy_tensor,
  500. /* .clear = */ ggml_backend_cpu_buffer_clear,
  501. /* .reset = */ NULL,
  502. };
  503. // for buffers from ptr, free is not called
  504. static struct ggml_backend_buffer_i cpu_backend_buffer_i_from_ptr = {
  505. /* .get_name = */ ggml_backend_cpu_buffer_name,
  506. /* .free_buffer = */ NULL, // ptr is not owned by the buffer, so it does not need to be freed
  507. /* .get_base = */ ggml_backend_cpu_buffer_get_base,
  508. /* .init_tensor = */ NULL, // no initialization required
  509. /* .set_tensor = */ ggml_backend_cpu_buffer_set_tensor,
  510. /* .get_tensor = */ ggml_backend_cpu_buffer_get_tensor,
  511. /* .cpy_tensor = */ ggml_backend_cpu_buffer_cpy_tensor,
  512. /* .clear = */ ggml_backend_cpu_buffer_clear,
  513. /* .reset = */ NULL,
  514. };
  515. GGML_CALL static const char * ggml_backend_cpu_buffer_type_get_name(ggml_backend_buffer_type_t buft) {
  516. return "CPU";
  517. GGML_UNUSED(buft);
  518. }
  519. GGML_CALL static ggml_backend_buffer_t ggml_backend_cpu_buffer_type_alloc_buffer(ggml_backend_buffer_type_t buft, size_t size) {
  520. size += TENSOR_ALIGNMENT; // malloc may return an address that is not aligned
  521. void * data = malloc(size); // TODO: use GGML_ALIGNED_MALLOC (move to ggml-impl.h)
  522. if (data == NULL) {
  523. fprintf(stderr, "%s: failed to allocate buffer of size %zu\n", __func__, size);
  524. return NULL;
  525. }
  526. return ggml_backend_buffer_init(buft, cpu_backend_buffer_i, data, size);
  527. }
  528. GGML_CALL static size_t ggml_backend_cpu_buffer_type_get_alignment(ggml_backend_buffer_type_t buft) {
  529. return TENSOR_ALIGNMENT;
  530. GGML_UNUSED(buft);
  531. }
  532. GGML_CALL static bool ggml_backend_cpu_buffer_type_is_host(ggml_backend_buffer_type_t buft) {
  533. return true;
  534. GGML_UNUSED(buft);
  535. }
  536. GGML_CALL ggml_backend_buffer_type_t ggml_backend_cpu_buffer_type(void) {
  537. static struct ggml_backend_buffer_type ggml_backend_cpu_buffer_type = {
  538. /* .iface = */ {
  539. /* .get_name = */ ggml_backend_cpu_buffer_type_get_name,
  540. /* .alloc_buffer = */ ggml_backend_cpu_buffer_type_alloc_buffer,
  541. /* .get_alignment = */ ggml_backend_cpu_buffer_type_get_alignment,
  542. /* .get_max_size = */ NULL, // defaults to SIZE_MAX
  543. /* .get_alloc_size = */ NULL, // defaults to ggml_nbytes
  544. /* .is_host = */ ggml_backend_cpu_buffer_type_is_host,
  545. },
  546. /* .context = */ NULL,
  547. };
  548. return &ggml_backend_cpu_buffer_type;
  549. }
  550. #ifdef GGML_USE_CPU_HBM
  551. // buffer type HBM
  552. #include <hbwmalloc.h>
  553. GGML_CALL static const char * ggml_backend_cpu_hbm_buffer_type_get_name(ggml_backend_buffer_type_t buft) {
  554. return "CPU_HBM";
  555. GGML_UNUSED(buft);
  556. }
  557. GGML_CALL static const char * ggml_backend_cpu_hbm_buffer_get_name(ggml_backend_buffer_t buf) {
  558. return "CPU_HBM";
  559. GGML_UNUSED(buf);
  560. }
  561. GGML_CALL static void ggml_backend_cpu_hbm_buffer_free_buffer(ggml_backend_buffer_t buffer) {
  562. hbw_free(buffer->context);
  563. }
  564. GGML_CALL static ggml_backend_buffer_t ggml_backend_cpu_hbm_buffer_type_alloc_buffer(ggml_backend_buffer_type_t buft, size_t size) {
  565. //void * ptr = hbw_malloc(size);
  566. void * ptr;
  567. int result = hbw_posix_memalign(&ptr, ggml_backend_cpu_buffer_type_get_alignment(buft), size);
  568. if (result != 0) {
  569. fprintf(stderr, "failed to allocate HBM buffer of size %zu\n", size);
  570. return NULL;
  571. }
  572. ggml_backend_buffer_t buffer = ggml_backend_cpu_buffer_from_ptr(ptr, size);
  573. buffer->buft = buft;
  574. buffer->iface.get_name = ggml_backend_cpu_hbm_buffer_get_name;
  575. buffer->iface.free_buffer = ggml_backend_cpu_hbm_buffer_free_buffer;
  576. return buffer;
  577. }
  578. ggml_backend_buffer_type_t ggml_backend_cpu_hbm_buffer_type(void) {
  579. static struct ggml_backend_buffer_type ggml_backend_cpu_buffer_type_hbm = {
  580. /* .iface = */ {
  581. /* .get_name = */ ggml_backend_cpu_hbm_buffer_type_get_name,
  582. /* .alloc_buffer = */ ggml_backend_cpu_hbm_buffer_type_alloc_buffer,
  583. /* .get_alignment = */ ggml_backend_cpu_buffer_type_get_alignment,
  584. /* .get_max_size = */ NULL, // defaults to SIZE_MAX
  585. /* .get_alloc_size = */ NULL, // defaults to ggml_nbytes
  586. /* .is_host = */ ggml_backend_cpu_buffer_type_is_host,
  587. },
  588. /* .context = */ NULL,
  589. };
  590. return &ggml_backend_cpu_buffer_type_hbm;
  591. }
  592. #endif
  593. struct ggml_backend_cpu_context {
  594. int n_threads;
  595. void * work_data;
  596. size_t work_size;
  597. ggml_abort_callback abort_callback;
  598. void * abort_callback_data;
  599. };
  600. GGML_CALL static const char * ggml_backend_cpu_name(ggml_backend_t backend) {
  601. return "CPU";
  602. GGML_UNUSED(backend);
  603. }
  604. GGML_CALL static void ggml_backend_cpu_free(ggml_backend_t backend) {
  605. struct ggml_backend_cpu_context * cpu_ctx = (struct ggml_backend_cpu_context *)backend->context;
  606. free(cpu_ctx->work_data);
  607. free(cpu_ctx);
  608. free(backend);
  609. }
  610. GGML_CALL static ggml_backend_buffer_type_t ggml_backend_cpu_get_default_buffer_type(ggml_backend_t backend) {
  611. return ggml_backend_cpu_buffer_type();
  612. GGML_UNUSED(backend);
  613. }
  614. struct ggml_backend_plan_cpu {
  615. struct ggml_cplan cplan;
  616. struct ggml_cgraph cgraph;
  617. };
  618. GGML_CALL static ggml_backend_graph_plan_t ggml_backend_cpu_graph_plan_create(ggml_backend_t backend, const struct ggml_cgraph * cgraph) {
  619. struct ggml_backend_cpu_context * cpu_ctx = (struct ggml_backend_cpu_context *)backend->context;
  620. struct ggml_backend_plan_cpu * cpu_plan = malloc(sizeof(struct ggml_backend_plan_cpu));
  621. cpu_plan->cplan = ggml_graph_plan(cgraph, cpu_ctx->n_threads);
  622. cpu_plan->cgraph = *cgraph; // FIXME: deep copy
  623. if (cpu_plan->cplan.work_size > 0) {
  624. cpu_plan->cplan.work_data = malloc(cpu_plan->cplan.work_size);
  625. if (cpu_plan->cplan.work_data == NULL) {
  626. free(cpu_plan);
  627. return NULL;
  628. }
  629. }
  630. cpu_plan->cplan.abort_callback = cpu_ctx->abort_callback;
  631. cpu_plan->cplan.abort_callback_data = cpu_ctx->abort_callback_data;
  632. return cpu_plan;
  633. }
  634. GGML_CALL static void ggml_backend_cpu_graph_plan_free(ggml_backend_t backend, ggml_backend_graph_plan_t plan) {
  635. struct ggml_backend_plan_cpu * cpu_plan = (struct ggml_backend_plan_cpu *)plan;
  636. free(cpu_plan->cplan.work_data);
  637. free(cpu_plan);
  638. GGML_UNUSED(backend);
  639. }
  640. GGML_CALL static enum ggml_status ggml_backend_cpu_graph_plan_compute(ggml_backend_t backend, ggml_backend_graph_plan_t plan) {
  641. struct ggml_backend_plan_cpu * cpu_plan = (struct ggml_backend_plan_cpu *)plan;
  642. return ggml_graph_compute(&cpu_plan->cgraph, &cpu_plan->cplan);
  643. GGML_UNUSED(backend);
  644. }
  645. GGML_CALL static enum ggml_status ggml_backend_cpu_graph_compute(ggml_backend_t backend, struct ggml_cgraph * cgraph) {
  646. struct ggml_backend_cpu_context * cpu_ctx = (struct ggml_backend_cpu_context *)backend->context;
  647. struct ggml_cplan cplan = ggml_graph_plan(cgraph, cpu_ctx->n_threads);
  648. if (cpu_ctx->work_size < cplan.work_size) {
  649. free(cpu_ctx->work_data);
  650. cpu_ctx->work_data = malloc(cplan.work_size);
  651. if (cpu_ctx->work_data == NULL) {
  652. cpu_ctx->work_size = 0;
  653. return GGML_STATUS_ALLOC_FAILED;
  654. }
  655. cpu_ctx->work_size = cplan.work_size;
  656. }
  657. cplan.work_data = cpu_ctx->work_data;
  658. cplan.abort_callback = cpu_ctx->abort_callback;
  659. cplan.abort_callback_data = cpu_ctx->abort_callback_data;
  660. return ggml_graph_compute(cgraph, &cplan);
  661. }
  662. GGML_CALL static bool ggml_backend_cpu_supports_op(ggml_backend_t backend, const struct ggml_tensor * op) {
  663. switch (op->op) {
  664. case GGML_OP_CPY:
  665. return
  666. op->type != GGML_TYPE_IQ2_XXS &&
  667. op->type != GGML_TYPE_IQ2_XS &&
  668. op->type != GGML_TYPE_IQ1_S &&
  669. op->type != GGML_TYPE_IQ1_M; // missing type_traits.from_float
  670. case GGML_OP_MUL_MAT:
  671. return op->src[1]->type == GGML_TYPE_F32 || op->src[1]->type == ggml_internal_get_type_traits(op->src[0]->type).vec_dot_type;
  672. default:
  673. return true;
  674. }
  675. GGML_UNUSED(backend);
  676. }
  677. GGML_CALL static bool ggml_backend_cpu_supports_buft(ggml_backend_t backend, ggml_backend_buffer_type_t buft) {
  678. return ggml_backend_buft_is_host(buft);
  679. GGML_UNUSED(backend);
  680. }
  681. static struct ggml_backend_i cpu_backend_i = {
  682. /* .get_name = */ ggml_backend_cpu_name,
  683. /* .free = */ ggml_backend_cpu_free,
  684. /* .get_default_buffer_type = */ ggml_backend_cpu_get_default_buffer_type,
  685. /* .set_tensor_async = */ NULL,
  686. /* .get_tensor_async = */ NULL,
  687. /* .cpy_tensor_async = */ NULL,
  688. /* .synchronize = */ NULL,
  689. /* .graph_plan_create = */ ggml_backend_cpu_graph_plan_create,
  690. /* .graph_plan_free = */ ggml_backend_cpu_graph_plan_free,
  691. /* .graph_plan_update = */ NULL,
  692. /* .graph_plan_compute = */ ggml_backend_cpu_graph_plan_compute,
  693. /* .graph_compute = */ ggml_backend_cpu_graph_compute,
  694. /* .supports_op = */ ggml_backend_cpu_supports_op,
  695. /* .supports_buft = */ ggml_backend_cpu_supports_buft,
  696. /* .offload_op = */ NULL,
  697. /* .event_new = */ NULL,
  698. /* .event_free = */ NULL,
  699. /* .event_record = */ NULL,
  700. /* .event_wait = */ NULL,
  701. /* .event_synchronize = */ NULL,
  702. };
  703. static ggml_guid_t ggml_backend_cpu_guid(void) {
  704. static ggml_guid guid = { 0xaa, 0x67, 0xc7, 0x43, 0x96, 0xe6, 0xa3, 0x8a, 0xe3, 0xaf, 0xea, 0x92, 0x36, 0xbc, 0xfc, 0x89 };
  705. return &guid;
  706. }
  707. ggml_backend_t ggml_backend_cpu_init(void) {
  708. struct ggml_backend_cpu_context * ctx = malloc(sizeof(struct ggml_backend_cpu_context));
  709. if (ctx == NULL) {
  710. return NULL;
  711. }
  712. ctx->n_threads = GGML_DEFAULT_N_THREADS;
  713. ctx->work_data = NULL;
  714. ctx->work_size = 0;
  715. ctx->abort_callback = NULL;
  716. ctx->abort_callback_data = NULL;
  717. ggml_backend_t cpu_backend = malloc(sizeof(struct ggml_backend));
  718. if (cpu_backend == NULL) {
  719. free(ctx);
  720. return NULL;
  721. }
  722. *cpu_backend = (struct ggml_backend) {
  723. /* .guid = */ ggml_backend_cpu_guid(),
  724. /* .interface = */ cpu_backend_i,
  725. /* .context = */ ctx
  726. };
  727. return cpu_backend;
  728. }
  729. GGML_CALL bool ggml_backend_is_cpu(ggml_backend_t backend) {
  730. return backend != NULL && ggml_guid_matches(backend->guid, ggml_backend_cpu_guid());
  731. }
  732. void ggml_backend_cpu_set_n_threads(ggml_backend_t backend_cpu, int n_threads) {
  733. GGML_ASSERT(ggml_backend_is_cpu(backend_cpu));
  734. struct ggml_backend_cpu_context * ctx = (struct ggml_backend_cpu_context *)backend_cpu->context;
  735. ctx->n_threads = n_threads;
  736. }
  737. void ggml_backend_cpu_set_abort_callback(ggml_backend_t backend_cpu, ggml_abort_callback abort_callback, void * abort_callback_data) {
  738. GGML_ASSERT(ggml_backend_is_cpu(backend_cpu));
  739. struct ggml_backend_cpu_context * ctx = (struct ggml_backend_cpu_context *)backend_cpu->context;
  740. ctx->abort_callback = abort_callback;
  741. ctx->abort_callback_data = abort_callback_data;
  742. }
  743. GGML_CALL ggml_backend_buffer_t ggml_backend_cpu_buffer_from_ptr(void * ptr, size_t size) {
  744. GGML_ASSERT((uintptr_t)ptr % TENSOR_ALIGNMENT == 0 && "buffer pointer must be aligned");
  745. return ggml_backend_buffer_init(ggml_backend_cpu_buffer_type(), cpu_backend_buffer_i_from_ptr, ptr, size);
  746. }
  747. GGML_CALL static ggml_backend_t ggml_backend_reg_cpu_init(const char * params, void * user_data) {
  748. return ggml_backend_cpu_init();
  749. GGML_UNUSED(params);
  750. GGML_UNUSED(user_data);
  751. }
  752. // multi-buffer buffer
  753. struct ggml_backend_multi_buffer_context {
  754. ggml_backend_buffer_t * buffers;
  755. size_t n_buffers;
  756. };
  757. typedef struct ggml_backend_multi_buffer_context * ggml_backend_multi_buffer_context_t;
  758. GGML_CALL static const char * ggml_backend_multi_buffer_get_name(ggml_backend_buffer_t buffer) {
  759. ggml_backend_multi_buffer_context_t ctx = (ggml_backend_multi_buffer_context_t) buffer->context;
  760. return ctx->buffers[0]->iface.get_name(ctx->buffers[0]);
  761. }
  762. GGML_CALL static void ggml_backend_multi_buffer_free_buffer(ggml_backend_buffer_t buffer) {
  763. ggml_backend_multi_buffer_context_t ctx = (ggml_backend_multi_buffer_context_t) buffer->context;
  764. for (size_t i = 0; i < ctx->n_buffers; i++) {
  765. ggml_backend_buffer_free(ctx->buffers[i]);
  766. }
  767. free(ctx->buffers);
  768. free(ctx);
  769. }
  770. GGML_CALL static void ggml_backend_multi_buffer_clear(ggml_backend_buffer_t buffer, uint8_t value) {
  771. ggml_backend_multi_buffer_context_t ctx = (ggml_backend_multi_buffer_context_t) buffer->context;
  772. for (size_t i = 0; i < ctx->n_buffers; i++) {
  773. ggml_backend_buffer_clear(ctx->buffers[i], value);
  774. }
  775. }
  776. static struct ggml_backend_buffer_i ggml_backend_multi_buffer_context_interface(void) {
  777. static struct ggml_backend_buffer_i multi_backend_buffer_i = {
  778. /* .get_name = */ ggml_backend_multi_buffer_get_name,
  779. /* .free_buffer = */ ggml_backend_multi_buffer_free_buffer,
  780. /* .get_base = */ NULL,
  781. /* .init_tensor = */ NULL,
  782. /* .set_tensor = */ NULL,
  783. /* .get_tensor = */ NULL,
  784. /* .cpy_tensor = */ NULL,
  785. /* .clear = */ ggml_backend_multi_buffer_clear,
  786. /* .reset = */ NULL,
  787. };
  788. return multi_backend_buffer_i;
  789. }
  790. GGML_CALL ggml_backend_buffer_t ggml_backend_multi_buffer_alloc_buffer(ggml_backend_buffer_t * buffers, size_t n_buffers) {
  791. ggml_backend_multi_buffer_context_t ctx = (ggml_backend_multi_buffer_context_t) malloc(sizeof(struct ggml_backend_multi_buffer_context));
  792. ctx->n_buffers = n_buffers;
  793. ctx->buffers = (ggml_backend_buffer_t *) malloc(n_buffers * sizeof(ggml_backend_buffer_t));
  794. GGML_ASSERT(ctx->buffers != NULL);
  795. size_t total_size = 0;
  796. for (size_t i = 0; i < n_buffers; i++) {
  797. ctx->buffers[i] = buffers[i];
  798. total_size += ggml_backend_buffer_get_size(buffers[i]);
  799. }
  800. return ggml_backend_buffer_init(buffers[0]->buft, ggml_backend_multi_buffer_context_interface(), ctx, total_size);
  801. }
  802. GGML_CALL bool ggml_backend_buffer_is_multi_buffer(ggml_backend_buffer_t buffer) {
  803. return buffer->iface.get_name == ggml_backend_multi_buffer_get_name;
  804. }
  805. GGML_CALL void ggml_backend_multi_buffer_set_usage(ggml_backend_buffer_t buffer, enum ggml_backend_buffer_usage usage) {
  806. GGML_ASSERT(ggml_backend_buffer_is_multi_buffer(buffer));
  807. ggml_backend_multi_buffer_context_t ctx = (ggml_backend_multi_buffer_context_t) buffer->context;
  808. for (size_t i = 0; i < ctx->n_buffers; i++) {
  809. ggml_backend_buffer_set_usage(ctx->buffers[i], usage);
  810. }
  811. }
  812. // creates a copy of the tensor with the same memory layout
  813. static struct ggml_tensor * ggml_dup_tensor_layout(struct ggml_context * ctx, const struct ggml_tensor * tensor) {
  814. struct ggml_tensor * dup = ggml_dup_tensor(ctx, tensor);
  815. for (int i = 0; i < GGML_MAX_DIMS; i++) {
  816. dup->nb[i] = tensor->nb[i];
  817. }
  818. return dup;
  819. }
  820. static bool ggml_is_view_op(enum ggml_op op) {
  821. return op == GGML_OP_VIEW || op == GGML_OP_RESHAPE || op == GGML_OP_PERMUTE || op == GGML_OP_TRANSPOSE;
  822. }
  823. // scheduler
  824. #ifndef GGML_SCHED_MAX_BACKENDS
  825. #define GGML_SCHED_MAX_BACKENDS 16
  826. #endif
  827. #ifndef GGML_SCHED_MAX_SPLITS
  828. #define GGML_SCHED_MAX_SPLITS 2048
  829. #endif
  830. #ifndef GGML_SCHED_MAX_SPLIT_INPUTS
  831. #define GGML_SCHED_MAX_SPLIT_INPUTS GGML_MAX_SRC
  832. #endif
  833. #ifndef GGML_SCHED_MAX_COPIES
  834. #define GGML_SCHED_MAX_COPIES 4
  835. #endif
  836. struct ggml_backend_sched_split {
  837. int backend_id;
  838. int i_start;
  839. int i_end;
  840. struct ggml_tensor * inputs[GGML_SCHED_MAX_SPLIT_INPUTS];
  841. int n_inputs;
  842. // graph view of this split
  843. struct ggml_cgraph graph;
  844. };
  845. struct ggml_backend_sched {
  846. bool is_reset; // true if the scheduler has been reset since the last graph split
  847. bool is_alloc;
  848. int n_backends;
  849. ggml_backend_t backends[GGML_SCHED_MAX_BACKENDS];
  850. ggml_backend_buffer_type_t bufts[GGML_SCHED_MAX_BACKENDS];
  851. ggml_gallocr_t galloc;
  852. // hash map of the nodes in the graph
  853. struct ggml_hash_set hash_set;
  854. int * hv_tensor_backend_ids; // [hash_set.size]
  855. struct ggml_tensor ** hv_tensor_copies; // [hash_set.size][n_backends][n_copies]
  856. int * node_backend_ids; // [graph_size]
  857. int * leaf_backend_ids; // [graph_size]
  858. int * prev_node_backend_ids; // [graph_size]
  859. int * prev_leaf_backend_ids; // [graph_size]
  860. // copy of the graph with modified inputs
  861. struct ggml_cgraph graph;
  862. // graph splits
  863. struct ggml_backend_sched_split * splits;
  864. int n_splits;
  865. int splits_capacity;
  866. // pipeline parallelism support
  867. int n_copies;
  868. int cur_copy;
  869. ggml_backend_event_t events[GGML_SCHED_MAX_BACKENDS][GGML_SCHED_MAX_COPIES];
  870. struct ggml_tensor * graph_inputs[GGML_SCHED_MAX_SPLIT_INPUTS];
  871. int n_graph_inputs;
  872. struct ggml_context * ctx;
  873. ggml_backend_sched_eval_callback callback_eval;
  874. void * callback_eval_user_data;
  875. char * context_buffer;
  876. size_t context_buffer_size;
  877. bool debug;
  878. };
  879. #define hash_id(tensor) ggml_hash_find_or_insert(&sched->hash_set, tensor)
  880. #define tensor_backend_id(tensor) sched->hv_tensor_backend_ids[hash_id(tensor)]
  881. #define tensor_id_copy(id, backend_id, copy_id) sched->hv_tensor_copies[(id) * sched->n_backends * sched->n_copies + (backend_id) * sched->n_copies + (copy_id)]
  882. #define tensor_copy(tensor, backend_id, copy_id) tensor_id_copy(hash_id(tensor), backend_id, copy_id)
  883. // returns the priority of the backend, lower id is higher priority
  884. static int ggml_backend_sched_backend_id(ggml_backend_sched_t sched, ggml_backend_t backend) {
  885. for (int i = 0; i < sched->n_backends; i++) {
  886. if (sched->backends[i] == backend) {
  887. return i;
  888. }
  889. }
  890. return -1;
  891. }
  892. static int ggml_backend_sched_backend_from_buffer(ggml_backend_sched_t sched, const struct ggml_tensor * tensor, const struct ggml_tensor * op) {
  893. ggml_backend_buffer_t buffer = tensor->buffer;
  894. if (buffer == NULL) {
  895. return -1;
  896. }
  897. // find highest prio backend that supports the buffer type and the op
  898. for (int i = 0; i < sched->n_backends; i++) {
  899. if (ggml_backend_supports_buft(sched->backends[i], buffer->buft) &&
  900. ggml_backend_supports_op(sched->backends[i], op)) {
  901. return i;
  902. }
  903. }
  904. #ifndef NDEBUG
  905. fprintf(stderr, "%s: warning: no backend supports op %s with a weight with buffer type %s used in tensor %s, the weight will need to be copied\n",
  906. __func__, ggml_op_desc(tensor), ggml_backend_buffer_name(buffer), tensor->name);
  907. #endif
  908. return -1;
  909. }
  910. #if 0
  911. static char causes[GGML_DEFAULT_GRAPH_SIZE*16 + GGML_SCHED_MAX_SPLITS*GGML_SCHED_MAX_SPLIT_INPUTS][128]; // debug only
  912. #define SET_CAUSE(node, ...) sprintf(causes[hash_id(node)], __VA_ARGS__)
  913. #define GET_CAUSE(node) causes[hash_id(node)]
  914. #else
  915. #define SET_CAUSE(node, ...)
  916. #define GET_CAUSE(node) ""
  917. #endif
  918. // returns the backend that should be used for the node based on the current locations
  919. static int ggml_backend_sched_backend_id_from_cur(ggml_backend_sched_t sched, struct ggml_tensor * tensor) {
  920. // TODO: use supports_op to check if the backend supports the op
  921. // assign pre-allocated nodes to their backend
  922. int cur_backend_id = ggml_backend_sched_backend_from_buffer(sched, tensor, tensor);
  923. if (cur_backend_id != -1) {
  924. SET_CAUSE(tensor, "1.dst");
  925. return cur_backend_id;
  926. }
  927. // view_src
  928. if (tensor->view_src != NULL) {
  929. cur_backend_id = ggml_backend_sched_backend_from_buffer(sched, tensor->view_src, tensor);
  930. if (cur_backend_id != -1) {
  931. SET_CAUSE(tensor, "1.vsrc");
  932. return cur_backend_id;
  933. }
  934. }
  935. // graph input
  936. if (tensor->flags & GGML_TENSOR_FLAG_INPUT) {
  937. cur_backend_id = sched->n_backends - 1; // last backend (assumed CPU)
  938. SET_CAUSE(tensor, "1.inp");
  939. return cur_backend_id;
  940. }
  941. // operations with weights are preferably run on the same backend as the weights
  942. for (int i = 0; i < GGML_MAX_SRC; i++) {
  943. const struct ggml_tensor * src = tensor->src[i];
  944. if (src == NULL) {
  945. continue;
  946. }
  947. if (src->buffer != NULL && src->buffer->usage == GGML_BACKEND_BUFFER_USAGE_WEIGHTS) {
  948. int src_backend_id = ggml_backend_sched_backend_from_buffer(sched, src, tensor);
  949. // check if a backend with higher prio wants to offload the op
  950. if (src_backend_id == sched->n_backends - 1) {
  951. for (int b = 0; b < src_backend_id; b++) {
  952. if (ggml_backend_supports_op(sched->backends[b], tensor) && ggml_backend_offload_op(sched->backends[b], tensor)) {
  953. SET_CAUSE(tensor, "1.off");
  954. return b;
  955. }
  956. }
  957. }
  958. SET_CAUSE(tensor, "1.wgt%d", i);
  959. return src_backend_id;
  960. }
  961. }
  962. return -1;
  963. }
  964. static char * fmt_size(size_t size) {
  965. static char buffer[128];
  966. if (size >= 1024*1024) {
  967. snprintf(buffer, sizeof(buffer), "%zuM", size/1024/1024);
  968. } else {
  969. snprintf(buffer, sizeof(buffer), "%zuK", size/1024);
  970. }
  971. return buffer;
  972. }
  973. static void ggml_backend_sched_print_assignments(ggml_backend_sched_t sched, struct ggml_cgraph * graph) {
  974. int cur_split = 0;
  975. for (int i = 0; i < graph->n_nodes; i++) {
  976. if (cur_split < sched->n_splits && i == sched->splits[cur_split].i_start) {
  977. ggml_backend_t split_backend = sched->backends[sched->splits[cur_split].backend_id];
  978. fprintf(stderr, "\n## SPLIT #%d: %s # %d inputs: ", cur_split, ggml_backend_name(split_backend),
  979. sched->splits[cur_split].n_inputs);
  980. for (int j = 0; j < sched->splits[cur_split].n_inputs; j++) {
  981. fprintf(stderr, "[%s (%5.5s)] ", sched->splits[cur_split].inputs[j]->name,
  982. fmt_size(ggml_nbytes(sched->splits[cur_split].inputs[j])));
  983. }
  984. fprintf(stderr, "\n");
  985. cur_split++;
  986. }
  987. struct ggml_tensor * node = graph->nodes[i];
  988. if (ggml_is_view_op(node->op)) {
  989. continue;
  990. }
  991. ggml_backend_t tensor_backend = ggml_backend_sched_get_tensor_backend(sched, node);
  992. fprintf(stderr, "node #%3d (%10.10s): %20.20s (%5.5s) [%5.5s %8.8s]:", i, ggml_op_name(node->op), node->name,
  993. fmt_size(ggml_nbytes(node)), tensor_backend ? ggml_backend_name(tensor_backend) : "NULL", GET_CAUSE(node));
  994. for (int j = 0; j < GGML_MAX_SRC; j++) {
  995. struct ggml_tensor * src = node->src[j];
  996. if (src == NULL) {
  997. continue;
  998. }
  999. ggml_backend_t src_backend = ggml_backend_sched_get_tensor_backend(sched, src);
  1000. fprintf(stderr, " %20.20s (%5.5s) [%5.5s %8.8s]", src->name,
  1001. fmt_size(ggml_nbytes(src)), src_backend ? ggml_backend_name(src_backend) : "NULL", GET_CAUSE(src));
  1002. }
  1003. fprintf(stderr, "\n");
  1004. }
  1005. }
  1006. static bool ggml_backend_sched_buffer_supported(ggml_backend_sched_t sched, struct ggml_tensor * t, int backend_id) {
  1007. ggml_backend_buffer_t buf = t->view_src ? t->view_src->buffer : t->buffer;
  1008. ggml_backend_buffer_type_t buft = NULL;
  1009. if (buf) {
  1010. // the tensor is already allocated
  1011. buft = buf->buft;
  1012. } else {
  1013. // see if the tensor already has a backend assigned, and use the buffer type of that backend
  1014. int tensor_backend_id = tensor_backend_id(t);
  1015. if (tensor_backend_id == -1 && t->view_src) {
  1016. tensor_backend_id = tensor_backend_id(t->view_src);
  1017. }
  1018. if (tensor_backend_id != -1) {
  1019. buft = sched->bufts[tensor_backend_id];
  1020. }
  1021. }
  1022. return buft != NULL && ggml_backend_supports_buft(sched->backends[backend_id], buft);
  1023. }
  1024. static void ggml_backend_sched_set_if_supported(ggml_backend_sched_t sched, struct ggml_tensor * node, int cur_backend_id, int * node_backend_id) {
  1025. if (ggml_backend_supports_op(sched->backends[cur_backend_id], node)) {
  1026. *node_backend_id = cur_backend_id;
  1027. SET_CAUSE(node, "2.sup");
  1028. }
  1029. }
  1030. // assigns backends to ops and splits the graph into subgraphs that can be computed on the same backend
  1031. static void ggml_backend_sched_split_graph(ggml_backend_sched_t sched, struct ggml_cgraph * graph) {
  1032. // reset splits
  1033. sched->n_splits = 0;
  1034. sched->n_graph_inputs = 0;
  1035. sched->is_reset = false;
  1036. struct ggml_init_params params = {
  1037. /* .mem_size = */ sched->context_buffer_size,
  1038. /* .mem_buffer = */ sched->context_buffer,
  1039. /* .no_alloc = */ true
  1040. };
  1041. ggml_free(sched->ctx);
  1042. sched->ctx = ggml_init(params);
  1043. if (sched->ctx == NULL) {
  1044. GGML_ABORT("%s: failed to initialize context\n", __func__);
  1045. }
  1046. // pass 1: assign backends to ops with pre-allocated inputs
  1047. for (int i = 0; i < graph->n_leafs; i++) {
  1048. struct ggml_tensor * leaf = graph->leafs[i];
  1049. int * leaf_backend_id = &tensor_backend_id(leaf);
  1050. // do not overwrite user assignments
  1051. if (*leaf_backend_id == -1) {
  1052. *leaf_backend_id = ggml_backend_sched_backend_id_from_cur(sched, leaf);
  1053. }
  1054. }
  1055. for (int i = 0; i < graph->n_nodes; i++) {
  1056. struct ggml_tensor * node = graph->nodes[i];
  1057. int * node_backend_id = &tensor_backend_id(node);
  1058. // do not overwrite user assignments
  1059. if (*node_backend_id == -1) {
  1060. *node_backend_id = ggml_backend_sched_backend_id_from_cur(sched, node);
  1061. #if 0
  1062. // src
  1063. if (node->op == GGML_OP_NONE) {
  1064. continue;
  1065. }
  1066. for (int j = 0; j < GGML_MAX_SRC; j++) {
  1067. struct ggml_tensor * src = node->src[j];
  1068. if (src == NULL) {
  1069. continue;
  1070. }
  1071. int * src_backend_id = &tensor_backend_id(src);
  1072. if (*src_backend_id == -1) {
  1073. *src_backend_id = ggml_backend_sched_backend_id_from_cur(sched, src);
  1074. }
  1075. }
  1076. #endif
  1077. }
  1078. }
  1079. // pass 2: expand current backend assignments
  1080. // assign the same backend to adjacent nodes
  1081. // expand gpu backends (i.e. non last prio) up and down, ignoring cpu (the lowest priority backend)
  1082. // thus, cpu will never be used unless weights are on cpu, or there are no gpu ops between cpu ops
  1083. // ops unsupported by the backend being expanded will be left unassigned so that they can be assigned later when the locations of its inputs are known
  1084. // expand gpu down
  1085. {
  1086. int cur_backend_id = -1;
  1087. for (int i = 0; i < graph->n_nodes; i++) {
  1088. struct ggml_tensor * node = graph->nodes[i];
  1089. if (ggml_is_view_op(node->op)) {
  1090. continue;
  1091. }
  1092. int * node_backend_id = &tensor_backend_id(node);
  1093. if (*node_backend_id != -1) {
  1094. if (*node_backend_id == sched->n_backends - 1) {
  1095. // skip cpu (lowest prio backend)
  1096. cur_backend_id = -1;
  1097. } else {
  1098. cur_backend_id = *node_backend_id;
  1099. }
  1100. } else if (cur_backend_id != -1) {
  1101. ggml_backend_sched_set_if_supported(sched, node, cur_backend_id, node_backend_id);
  1102. }
  1103. }
  1104. }
  1105. // expand gpu up
  1106. {
  1107. int cur_backend_id = -1;
  1108. for (int i = graph->n_nodes - 1; i >= 0; i--) {
  1109. struct ggml_tensor * node = graph->nodes[i];
  1110. if (ggml_is_view_op(node->op)) {
  1111. continue;
  1112. }
  1113. int * node_backend_id = &tensor_backend_id(node);
  1114. if (*node_backend_id != -1) {
  1115. if (*node_backend_id == sched->n_backends - 1) {
  1116. // skip cpu (lowest prio backend)
  1117. cur_backend_id = -1;
  1118. } else {
  1119. cur_backend_id = *node_backend_id;
  1120. }
  1121. } else if (cur_backend_id != -1) {
  1122. ggml_backend_sched_set_if_supported(sched, node, cur_backend_id, node_backend_id);
  1123. }
  1124. }
  1125. }
  1126. // expand rest down
  1127. {
  1128. int cur_backend_id = -1;
  1129. for (int i = 0; i < graph->n_nodes; i++) {
  1130. struct ggml_tensor * node = graph->nodes[i];
  1131. if (ggml_is_view_op(node->op)) {
  1132. continue;
  1133. }
  1134. int * node_backend_id = &tensor_backend_id(node);
  1135. if (*node_backend_id != -1) {
  1136. cur_backend_id = *node_backend_id;
  1137. } else if (cur_backend_id != -1) {
  1138. ggml_backend_sched_set_if_supported(sched, node, cur_backend_id, node_backend_id);
  1139. }
  1140. }
  1141. }
  1142. // expand rest up
  1143. {
  1144. int cur_backend_id = -1;
  1145. for (int i = graph->n_nodes - 1; i >= 0; i--) {
  1146. struct ggml_tensor * node = graph->nodes[i];
  1147. if (ggml_is_view_op(node->op)) {
  1148. continue;
  1149. }
  1150. int * node_backend_id = &tensor_backend_id(node);
  1151. if (*node_backend_id != -1) {
  1152. cur_backend_id = *node_backend_id;
  1153. } else if (cur_backend_id != -1) {
  1154. ggml_backend_sched_set_if_supported(sched, node, cur_backend_id, node_backend_id);
  1155. }
  1156. }
  1157. }
  1158. // pass 3: upgrade nodes to higher prio backends with compatible buffer types
  1159. // if the tensor is already in the same buffer type (*) as another higher priority backend, we should move it there
  1160. // however, we also need to verify that the sources are in compatible buffer types
  1161. // (*) the actual requirement is more relaxed, the buffer type of the backend should be supported by all the users of this tensor further down the graph
  1162. // however, this is slow to verify, so we have a more strict requirement that the buffer type is the same
  1163. // this is not uncommon since multiple backends can use host memory, with the same buffer type (eg. BLAS and CPU)
  1164. // additionally, set remaining unassigned nodes to the backend with the most supported inputs
  1165. // only nodes that could not be assigned during expansion due to the backend not supporting the op should be unassigned at this point
  1166. for (int i = 0; i < graph->n_nodes; i++) {
  1167. struct ggml_tensor * node = graph->nodes[i];
  1168. if (ggml_is_view_op(node->op)) {
  1169. continue;
  1170. }
  1171. int * node_backend_id = &tensor_backend_id(node);
  1172. if (*node_backend_id == -1) {
  1173. // unassigned node: find the backend with the most supported inputs
  1174. int n_supported_best = -1;
  1175. for (int b = 0; b < sched->n_backends; b++) {
  1176. if (ggml_backend_supports_op(sched->backends[b], node)) {
  1177. int n_supported = 0;
  1178. for (int j = 0; j < GGML_MAX_SRC; j++) {
  1179. struct ggml_tensor * src = node->src[j];
  1180. if (src == NULL) {
  1181. continue;
  1182. }
  1183. if ((tensor_backend_id(src) != -1 || tensor_backend_id(src->view_src) != -1) && ggml_backend_sched_buffer_supported(sched, src, b)) {
  1184. n_supported++;
  1185. }
  1186. }
  1187. if (n_supported > n_supported_best) {
  1188. n_supported_best = n_supported;
  1189. *node_backend_id = b;
  1190. SET_CAUSE(node, "3.best");
  1191. }
  1192. }
  1193. }
  1194. } else {
  1195. // assigned node: upgrade to higher prio backend if possible
  1196. for (int b = 0; b < *node_backend_id; b++) {
  1197. if (sched->bufts[b] == sched->bufts[*node_backend_id] && ggml_backend_supports_op(sched->backends[b], node)) {
  1198. bool supported = true;
  1199. for (int j = 0; j < GGML_MAX_SRC; j++) {
  1200. struct ggml_tensor * src = node->src[j];
  1201. if (src == NULL) {
  1202. continue;
  1203. }
  1204. if (!ggml_backend_sched_buffer_supported(sched, src, b)) {
  1205. supported = false;
  1206. break;
  1207. }
  1208. }
  1209. if (supported) {
  1210. *node_backend_id = b;
  1211. SET_CAUSE(node, "3.upg");
  1212. break;
  1213. }
  1214. }
  1215. }
  1216. }
  1217. }
  1218. // pass 4: assign backends to remaining src from dst and view_src
  1219. for (int i = 0; i < graph->n_nodes; i++) {
  1220. struct ggml_tensor * node = graph->nodes[i];
  1221. int * cur_backend_id = &tensor_backend_id(node);
  1222. if (node->view_src != NULL && *cur_backend_id == -1) {
  1223. *cur_backend_id = tensor_backend_id(node->view_src);
  1224. SET_CAUSE(node, "4.vsrc");
  1225. }
  1226. for (int j = 0; j < GGML_MAX_SRC; j++) {
  1227. struct ggml_tensor * src = node->src[j];
  1228. if (src == NULL) {
  1229. continue;
  1230. }
  1231. int * src_backend_id = &tensor_backend_id(src);
  1232. if (*src_backend_id == -1) {
  1233. if (src->view_src != NULL) {
  1234. // views are always on the same backend as the source
  1235. *src_backend_id = tensor_backend_id(src->view_src);
  1236. SET_CAUSE(src, "4.vsrc");
  1237. } else {
  1238. *src_backend_id = *cur_backend_id;
  1239. SET_CAUSE(src, "4.cur");
  1240. }
  1241. }
  1242. }
  1243. }
  1244. // pass 5: split graph, find tensors that need to be copied
  1245. {
  1246. int i_split = 0;
  1247. struct ggml_backend_sched_split * split = &sched->splits[0];
  1248. // find the backend of the first split, skipping view ops
  1249. int i = 0;
  1250. for (; i < graph->n_nodes; i++) {
  1251. struct ggml_tensor * node = graph->nodes[i];
  1252. if (!ggml_is_view_op(node->op)) {
  1253. split->backend_id = tensor_backend_id(node);
  1254. break;
  1255. }
  1256. }
  1257. split->i_start = 0;
  1258. split->n_inputs = 0;
  1259. int cur_backend_id = split->backend_id;
  1260. for (; i < graph->n_nodes; i++) {
  1261. struct ggml_tensor * node = graph->nodes[i];
  1262. if (ggml_is_view_op(node->op)) {
  1263. continue;
  1264. }
  1265. const int node_backend_id = tensor_backend_id(node);
  1266. assert(node_backend_id != -1); // all nodes should be assigned by now
  1267. // check if we should start a new split based on the sources of the current node
  1268. bool need_new_split = false;
  1269. if (node_backend_id == cur_backend_id && split->n_inputs > 0) {
  1270. for (int j = 0; j < GGML_MAX_SRC; j++) {
  1271. struct ggml_tensor * src = node->src[j];
  1272. if (src == NULL) {
  1273. continue;
  1274. }
  1275. // check if a weight is on a different backend
  1276. // by starting a new split, the memory of the previously offloaded weights can be reused
  1277. if (src->buffer != NULL && src->buffer->usage == GGML_BACKEND_BUFFER_USAGE_WEIGHTS) {
  1278. int src_backend_id = tensor_backend_id(src);
  1279. if (src_backend_id != cur_backend_id) {
  1280. need_new_split = true;
  1281. break;
  1282. }
  1283. }
  1284. // check if the split has too many inputs
  1285. // FIXME: count the number of inputs instead of only checking when full
  1286. if (split->n_inputs == GGML_SCHED_MAX_SPLIT_INPUTS) {
  1287. const size_t id = hash_id(src);
  1288. int src_backend_id = sched->hv_tensor_backend_ids[id];
  1289. bool supported = ggml_backend_sched_buffer_supported(sched, src, cur_backend_id);
  1290. if (src_backend_id != cur_backend_id && tensor_id_copy(id, cur_backend_id, 0) == NULL && !supported) {
  1291. //printf("starting new split because of too many inputs: node %s, input %s\n", node->name, src->name);
  1292. need_new_split = true;
  1293. break;
  1294. }
  1295. }
  1296. }
  1297. }
  1298. if (node_backend_id != cur_backend_id || need_new_split) {
  1299. split->i_end = i;
  1300. i_split++;
  1301. if (i_split >= sched->splits_capacity) {
  1302. sched->splits_capacity *= 2;
  1303. sched->splits = realloc(sched->splits, sched->splits_capacity * sizeof(struct ggml_backend_sched_split));
  1304. GGML_ASSERT(sched->splits != NULL);
  1305. }
  1306. GGML_ASSERT(i_split < GGML_SCHED_MAX_SPLITS);
  1307. split = &sched->splits[i_split];
  1308. split->backend_id = node_backend_id;
  1309. split->i_start = i;
  1310. split->n_inputs = 0;
  1311. cur_backend_id = node_backend_id;
  1312. }
  1313. // find inputs that are not on the same backend
  1314. for (int j = 0; j < GGML_MAX_SRC; j++) {
  1315. struct ggml_tensor * src = node->src[j];
  1316. if (src == NULL) {
  1317. continue;
  1318. }
  1319. size_t src_id = hash_id(src);
  1320. const int src_backend_id = sched->hv_tensor_backend_ids[src_id];
  1321. assert(src_backend_id != -1); // all inputs should be assigned by now
  1322. if (src->flags & GGML_TENSOR_FLAG_INPUT && sched->n_copies > 1) {
  1323. if (tensor_id_copy(src_id, src_backend_id, 0) == NULL) {
  1324. ggml_backend_t backend = sched->backends[src_backend_id];
  1325. for (int c = 0; c < sched->n_copies; c++) {
  1326. struct ggml_tensor * tensor_copy;
  1327. if (c == sched->cur_copy) {
  1328. tensor_copy = src; // use the original tensor as the current copy
  1329. } else {
  1330. tensor_copy = ggml_dup_tensor_layout(sched->ctx, src);
  1331. ggml_format_name(tensor_copy, "%s#%s#%d", ggml_backend_name(backend), src->name, c);
  1332. }
  1333. if (sched->n_copies > 1) {
  1334. ggml_set_input(tensor_copy);
  1335. ggml_set_output(tensor_copy); // prevent ggml-alloc from overwriting the tensor
  1336. }
  1337. tensor_id_copy(src_id, src_backend_id, c) = tensor_copy;
  1338. SET_CAUSE(tensor_copy, "4.cpy");
  1339. }
  1340. int n_graph_inputs = sched->n_graph_inputs++;
  1341. GGML_ASSERT(n_graph_inputs < GGML_SCHED_MAX_SPLIT_INPUTS);
  1342. sched->graph_inputs[n_graph_inputs] = src;
  1343. }
  1344. }
  1345. if (src_backend_id != cur_backend_id && !ggml_backend_sched_buffer_supported(sched, src, cur_backend_id)) {
  1346. // create a copy of the input in the split's backend
  1347. if (tensor_id_copy(src_id, cur_backend_id, 0) == NULL) {
  1348. ggml_backend_t backend = sched->backends[cur_backend_id];
  1349. for (int c = 0; c < sched->n_copies; c++) {
  1350. struct ggml_tensor * tensor_copy = ggml_dup_tensor_layout(sched->ctx, src);
  1351. ggml_format_name(tensor_copy, "%s#%s#%d", ggml_backend_name(backend), src->name, c);
  1352. if (sched->n_copies > 1) {
  1353. ggml_set_input(tensor_copy);
  1354. ggml_set_output(tensor_copy); // prevent ggml-alloc from overwriting the tensor
  1355. }
  1356. tensor_id_copy(src_id, cur_backend_id, c) = tensor_copy;
  1357. SET_CAUSE(tensor_copy, "4.cpy");
  1358. }
  1359. int n_inputs = split->n_inputs++;
  1360. GGML_ASSERT(n_inputs < GGML_SCHED_MAX_SPLIT_INPUTS);
  1361. split->inputs[n_inputs] = src;
  1362. }
  1363. node->src[j] = tensor_id_copy(src_id, cur_backend_id, sched->cur_copy);
  1364. }
  1365. }
  1366. }
  1367. split->i_end = graph->n_nodes;
  1368. sched->n_splits = i_split + 1;
  1369. }
  1370. if (sched->debug) {
  1371. ggml_backend_sched_print_assignments(sched, graph);
  1372. }
  1373. // swap node_backend_ids and leaf _backend_ids with prevs
  1374. {
  1375. int * tmp = sched->node_backend_ids;
  1376. sched->node_backend_ids = sched->prev_node_backend_ids;
  1377. sched->prev_node_backend_ids = tmp;
  1378. tmp = sched->leaf_backend_ids;
  1379. sched->leaf_backend_ids = sched->prev_leaf_backend_ids;
  1380. sched->prev_leaf_backend_ids = tmp;
  1381. }
  1382. int graph_size = graph->n_nodes + sched->n_splits*GGML_SCHED_MAX_SPLIT_INPUTS*2;
  1383. if (sched->graph.size < graph_size) {
  1384. sched->graph.size = graph_size;
  1385. sched->graph.nodes = realloc(sched->graph.nodes, graph_size * sizeof(struct ggml_tensor *));
  1386. sched->graph.leafs = realloc(sched->graph.leafs, graph_size * sizeof(struct ggml_tensor *));
  1387. GGML_ASSERT(sched->graph.nodes != NULL);
  1388. GGML_ASSERT(sched->graph.leafs != NULL);
  1389. }
  1390. sched->graph.n_nodes = 0;
  1391. sched->graph.n_leafs = 0;
  1392. struct ggml_cgraph * graph_copy = &sched->graph;
  1393. for (int i = 0; i < sched->n_splits; i++) {
  1394. struct ggml_backend_sched_split * split = &sched->splits[i];
  1395. split->graph = ggml_graph_view(graph, split->i_start, split->i_end);
  1396. // add inputs to the graph copy so that they are allocated by ggml-alloc at the start of the split
  1397. for (int j = 0; j < split->n_inputs; j++) {
  1398. assert(graph_copy->size > (graph_copy->n_nodes + 1));
  1399. struct ggml_tensor * input = split->inputs[j];
  1400. const size_t input_id = hash_id(input);
  1401. struct ggml_tensor * input_cpy = tensor_id_copy(input_id, split->backend_id, sched->cur_copy);
  1402. // add a dependency to the input source so that it is not freed before the copy is done
  1403. struct ggml_tensor * input_dep = ggml_view_tensor(sched->ctx, input);
  1404. input_dep->src[0] = input;
  1405. sched->node_backend_ids[graph_copy->n_nodes] = sched->hv_tensor_backend_ids[input_id];
  1406. graph_copy->nodes[graph_copy->n_nodes++] = input_dep;
  1407. // add a dependency to the input copy so that it is allocated at the start of the split
  1408. sched->node_backend_ids[graph_copy->n_nodes] = split->backend_id;
  1409. graph_copy->nodes[graph_copy->n_nodes++] = input_cpy;
  1410. }
  1411. for (int j = split->i_start; j < split->i_end; j++) {
  1412. assert(graph_copy->size > graph_copy->n_nodes);
  1413. sched->node_backend_ids[graph_copy->n_nodes] = tensor_backend_id(graph->nodes[j]);
  1414. graph_copy->nodes[graph_copy->n_nodes++] = graph->nodes[j];
  1415. }
  1416. }
  1417. if (sched->n_copies > 1) {
  1418. // add input copies as leafs so that they are allocated first
  1419. for (int i = 0; i < sched->n_graph_inputs; i++) {
  1420. struct ggml_tensor * input = sched->graph_inputs[i];
  1421. size_t id = hash_id(input);
  1422. int backend_id = tensor_backend_id(input);
  1423. for (int c = 0; c < sched->n_copies; c++) {
  1424. struct ggml_tensor * input_cpy = tensor_id_copy(id, backend_id, c);
  1425. sched->leaf_backend_ids[graph_copy->n_leafs] = backend_id;
  1426. graph_copy->leafs[graph_copy->n_leafs++] = input_cpy;
  1427. }
  1428. }
  1429. for (int i = 0; i < sched->n_splits; i++) {
  1430. struct ggml_backend_sched_split * split = &sched->splits[i];
  1431. int backend_id = split->backend_id;
  1432. for (int j = 0; j < split->n_inputs; j++) {
  1433. struct ggml_tensor * input = split->inputs[j];
  1434. size_t id = hash_id(input);
  1435. for (int c = 0; c < sched->n_copies; c++) {
  1436. struct ggml_tensor * input_cpy = tensor_id_copy(id, backend_id, c);
  1437. sched->leaf_backend_ids[graph_copy->n_leafs] = backend_id;
  1438. graph_copy->leafs[graph_copy->n_leafs++] = input_cpy;
  1439. }
  1440. }
  1441. }
  1442. }
  1443. // add leafs from the original graph
  1444. for (int i = 0; i < graph->n_leafs; i++) {
  1445. struct ggml_tensor * leaf = graph->leafs[i];
  1446. sched->leaf_backend_ids[graph_copy->n_leafs] = tensor_backend_id(leaf);
  1447. graph_copy->leafs[graph_copy->n_leafs++] = leaf;
  1448. }
  1449. }
  1450. static bool ggml_backend_sched_alloc_splits(ggml_backend_sched_t sched) {
  1451. bool backend_ids_changed = false;
  1452. for (int i = 0; i < sched->graph.n_nodes; i++) {
  1453. if (sched->node_backend_ids[i] != sched->prev_node_backend_ids[i] &&
  1454. sched->bufts[sched->node_backend_ids[i]] != sched->bufts[sched->prev_node_backend_ids[i]]) {
  1455. backend_ids_changed = true;
  1456. break;
  1457. }
  1458. }
  1459. if (!backend_ids_changed) {
  1460. for (int i = 0; i < sched->graph.n_leafs; i++) {
  1461. if (sched->leaf_backend_ids[i] != sched->prev_leaf_backend_ids[i] &&
  1462. sched->bufts[sched->leaf_backend_ids[i]] != sched->bufts[sched->prev_leaf_backend_ids[i]]) {
  1463. backend_ids_changed = true;
  1464. break;
  1465. }
  1466. }
  1467. }
  1468. // allocate graph
  1469. if (backend_ids_changed || !ggml_gallocr_alloc_graph(sched->galloc, &sched->graph)) {
  1470. // the re-allocation may cause the split inputs to be moved to a different address
  1471. ggml_backend_sched_synchronize(sched);
  1472. #ifndef NDEBUG
  1473. fprintf(stderr, "%s: failed to allocate graph, reserving (backend_ids_changed = %d)\n", __func__, backend_ids_changed);
  1474. #endif
  1475. ggml_gallocr_reserve_n(sched->galloc, &sched->graph, sched->node_backend_ids, sched->leaf_backend_ids);
  1476. if (!ggml_gallocr_alloc_graph(sched->galloc, &sched->graph)) {
  1477. fprintf(stderr, "%s: failed to allocate graph\n", __func__);
  1478. return false;
  1479. }
  1480. }
  1481. return true;
  1482. }
  1483. static enum ggml_status ggml_backend_sched_compute_splits(ggml_backend_sched_t sched) {
  1484. struct ggml_backend_sched_split * splits = sched->splits;
  1485. for (int i = 0; i < sched->n_splits; i++) {
  1486. struct ggml_backend_sched_split * split = &splits[i];
  1487. int split_backend_id = split->backend_id;
  1488. ggml_backend_t split_backend = sched->backends[split_backend_id];
  1489. // copy the input tensors to the split backend
  1490. for (int j = 0; j < split->n_inputs; j++) {
  1491. ggml_backend_t input_backend = ggml_backend_sched_get_tensor_backend(sched, split->inputs[j]);
  1492. struct ggml_tensor * input = split->inputs[j];
  1493. struct ggml_tensor * input_cpy = tensor_copy(input, split_backend_id, sched->cur_copy);
  1494. if (input->flags & GGML_TENSOR_FLAG_INPUT) {
  1495. // inputs from the user must be copied immediately to prevent the user overwriting the data before the copy is done
  1496. if (sched->events[split_backend_id][sched->cur_copy] != NULL) {
  1497. ggml_backend_event_synchronize(sched->events[split_backend_id][sched->cur_copy]);
  1498. } else {
  1499. ggml_backend_synchronize(split_backend);
  1500. }
  1501. ggml_backend_tensor_copy(input, input_cpy);
  1502. } else {
  1503. // wait for the split backend to finish using the input before overwriting it
  1504. if (sched->events[split_backend_id][sched->cur_copy] != NULL) {
  1505. ggml_backend_event_wait(split_backend, sched->events[split_backend_id][sched->cur_copy]);
  1506. } else {
  1507. ggml_backend_synchronize(split_backend);
  1508. }
  1509. ggml_backend_tensor_copy_async(input_backend, split_backend, input, input_cpy);
  1510. }
  1511. }
  1512. if (!sched->callback_eval) {
  1513. enum ggml_status ec = ggml_backend_graph_compute_async(split_backend, &split->graph);
  1514. if (ec != GGML_STATUS_SUCCESS) {
  1515. return ec;
  1516. }
  1517. } else {
  1518. // similar to ggml_backend_compare_graph_backend
  1519. for (int j0 = 0; j0 < split->graph.n_nodes; j0++) {
  1520. struct ggml_tensor * t = split->graph.nodes[j0];
  1521. // check if the user needs data from this node
  1522. bool need = sched->callback_eval(t, true, sched->callback_eval_user_data);
  1523. int j1 = j0;
  1524. // determine the range [j0, j1] of nodes that can be computed together
  1525. while (!need && j1 < split->graph.n_nodes - 1) {
  1526. t = split->graph.nodes[++j1];
  1527. need = sched->callback_eval(t, true, sched->callback_eval_user_data);
  1528. }
  1529. struct ggml_cgraph gv = ggml_graph_view(&split->graph, j0, j1 + 1);
  1530. enum ggml_status ec = ggml_backend_graph_compute_async(split_backend, &gv);
  1531. if (ec != GGML_STATUS_SUCCESS) {
  1532. return ec;
  1533. }
  1534. // TODO: pass backend to the callback, then the user can decide if they want to synchronize
  1535. ggml_backend_synchronize(split_backend);
  1536. if (need && !sched->callback_eval(t, false, sched->callback_eval_user_data)) {
  1537. break;
  1538. }
  1539. j0 = j1;
  1540. }
  1541. }
  1542. // record the event of this copy
  1543. if (split->n_inputs > 0) {
  1544. if (sched->events[split_backend_id][sched->cur_copy] != NULL) {
  1545. ggml_backend_event_record(sched->events[split_backend_id][sched->cur_copy]);
  1546. }
  1547. }
  1548. }
  1549. sched->cur_copy = (sched->cur_copy + 1) % sched->n_copies;
  1550. return GGML_STATUS_SUCCESS;
  1551. }
  1552. ggml_backend_sched_t ggml_backend_sched_new(
  1553. ggml_backend_t * backends,
  1554. ggml_backend_buffer_type_t * bufts,
  1555. int n_backends,
  1556. size_t graph_size,
  1557. bool parallel) {
  1558. GGML_ASSERT(n_backends > 0);
  1559. GGML_ASSERT(n_backends <= GGML_SCHED_MAX_BACKENDS);
  1560. GGML_ASSERT(ggml_backend_is_cpu(backends[n_backends - 1])); // last backend must be CPU
  1561. struct ggml_backend_sched * sched = calloc(1, sizeof(struct ggml_backend_sched));
  1562. sched->debug = getenv("GGML_SCHED_DEBUG") != NULL;
  1563. sched->n_backends = n_backends;
  1564. sched->n_copies = parallel ? GGML_SCHED_MAX_COPIES : 1;
  1565. // initialize hash table
  1566. // FIXME: needs to be size*2 to account for leafs (do it in graph_split instead)
  1567. sched->hash_set = ggml_hash_set_new(graph_size);
  1568. sched->hv_tensor_backend_ids = malloc(sched->hash_set.size * sizeof(sched->hv_tensor_backend_ids[0]));
  1569. sched->hv_tensor_copies = malloc(sched->hash_set.size * sched->n_backends * sched->n_copies * sizeof(struct ggml_tensor *));
  1570. const size_t nodes_size = graph_size + GGML_SCHED_MAX_SPLITS*GGML_SCHED_MAX_SPLIT_INPUTS*2;
  1571. sched->node_backend_ids = calloc(nodes_size, sizeof(sched->node_backend_ids[0]));
  1572. sched->leaf_backend_ids = calloc(nodes_size, sizeof(sched->leaf_backend_ids[0]));
  1573. sched->prev_node_backend_ids = calloc(nodes_size, sizeof(sched->prev_node_backend_ids[0]));
  1574. sched->prev_leaf_backend_ids = calloc(nodes_size, sizeof(sched->prev_leaf_backend_ids[0]));
  1575. sched->context_buffer_size = GGML_SCHED_MAX_SPLITS*GGML_SCHED_MAX_SPLIT_INPUTS*2*sizeof(struct ggml_tensor) + ggml_graph_overhead_custom(graph_size, false);
  1576. sched->context_buffer = malloc(sched->context_buffer_size);
  1577. const int initial_splits_capacity = 16;
  1578. sched->splits = calloc(initial_splits_capacity, sizeof(sched->splits[0]));
  1579. sched->splits_capacity = initial_splits_capacity;
  1580. for (int b = 0; b < n_backends; b++) {
  1581. sched->backends[b] = backends[b];
  1582. sched->bufts[b] = bufts ? bufts[b] : ggml_backend_get_default_buffer_type(backends[b]);
  1583. GGML_ASSERT(ggml_backend_supports_buft(backends[b], sched->bufts[b]));
  1584. if (sched->n_copies > 1) {
  1585. for (int c = 0; c < sched->n_copies; c++) {
  1586. sched->events[b][c] = ggml_backend_event_new(backends[b]);
  1587. }
  1588. }
  1589. }
  1590. sched->galloc = ggml_gallocr_new_n(sched->bufts, n_backends);
  1591. ggml_backend_sched_reset(sched);
  1592. return sched;
  1593. }
  1594. void ggml_backend_sched_free(ggml_backend_sched_t sched) {
  1595. if (sched == NULL) {
  1596. return;
  1597. }
  1598. for (int b = 0; b < sched->n_backends; b++) {
  1599. for (int c = 0; c < sched->n_copies; c++) {
  1600. ggml_backend_event_free(sched->events[b][c]);
  1601. }
  1602. }
  1603. ggml_gallocr_free(sched->galloc);
  1604. ggml_free(sched->ctx);
  1605. ggml_hash_set_free(&sched->hash_set);
  1606. free(sched->splits);
  1607. free(sched->hv_tensor_backend_ids);
  1608. free(sched->hv_tensor_copies);
  1609. free(sched->node_backend_ids);
  1610. free(sched->leaf_backend_ids);
  1611. free(sched->prev_node_backend_ids);
  1612. free(sched->prev_leaf_backend_ids);
  1613. free(sched->context_buffer);
  1614. free(sched->graph.nodes);
  1615. free(sched->graph.leafs);
  1616. free(sched);
  1617. }
  1618. void ggml_backend_sched_reset(ggml_backend_sched_t sched) {
  1619. // reset state for the next run
  1620. if (!sched->is_reset) {
  1621. ggml_hash_set_reset(&sched->hash_set);
  1622. memset(sched->hv_tensor_backend_ids, -1, sched->hash_set.size * sizeof(sched->hv_tensor_backend_ids[0]));
  1623. memset(sched->hv_tensor_copies, 0, sched->hash_set.size * sched->n_backends * sched->n_copies * sizeof(struct ggml_tensor *));
  1624. sched->is_reset = true;
  1625. }
  1626. sched->is_alloc = false;
  1627. }
  1628. bool ggml_backend_sched_reserve(ggml_backend_sched_t sched, struct ggml_cgraph * measure_graph) {
  1629. GGML_ASSERT((int)sched->hash_set.size >= measure_graph->n_nodes + measure_graph->n_leafs);
  1630. ggml_backend_sched_split_graph(sched, measure_graph);
  1631. if (!ggml_gallocr_reserve_n(sched->galloc, &sched->graph, sched->node_backend_ids, sched->leaf_backend_ids)) {
  1632. return false;
  1633. }
  1634. ggml_backend_sched_reset(sched);
  1635. ggml_backend_sched_synchronize(sched);
  1636. return true;
  1637. }
  1638. bool ggml_backend_sched_alloc_graph(ggml_backend_sched_t sched, struct ggml_cgraph * graph) {
  1639. GGML_ASSERT((int)sched->hash_set.size >= graph->n_nodes + graph->n_leafs);
  1640. ggml_backend_sched_split_graph(sched, graph);
  1641. if (!ggml_backend_sched_alloc_splits(sched)) {
  1642. return false;
  1643. }
  1644. sched->is_alloc = true;
  1645. return true;
  1646. }
  1647. enum ggml_status ggml_backend_sched_graph_compute(ggml_backend_sched_t sched, struct ggml_cgraph * graph) {
  1648. enum ggml_status err = ggml_backend_sched_graph_compute_async(sched, graph);
  1649. ggml_backend_sched_synchronize(sched);
  1650. return err;
  1651. }
  1652. enum ggml_status ggml_backend_sched_graph_compute_async(ggml_backend_sched_t sched, struct ggml_cgraph * graph) {
  1653. if (!sched->is_reset && !sched->is_alloc) {
  1654. ggml_backend_sched_reset(sched);
  1655. }
  1656. if (!sched->is_alloc) {
  1657. if (!ggml_backend_sched_alloc_graph(sched, graph)) {
  1658. return GGML_STATUS_ALLOC_FAILED;
  1659. }
  1660. }
  1661. return ggml_backend_sched_compute_splits(sched);
  1662. }
  1663. void ggml_backend_sched_synchronize(ggml_backend_sched_t sched) {
  1664. for (int i = 0; i < sched->n_backends; i++) {
  1665. ggml_backend_synchronize(sched->backends[i]);
  1666. }
  1667. }
  1668. void ggml_backend_sched_set_eval_callback(ggml_backend_sched_t sched, ggml_backend_sched_eval_callback callback, void * user_data) {
  1669. sched->callback_eval = callback;
  1670. sched->callback_eval_user_data = user_data;
  1671. }
  1672. int ggml_backend_sched_get_n_splits(ggml_backend_sched_t sched) {
  1673. return sched->n_splits;
  1674. }
  1675. int ggml_backend_sched_get_n_copies(ggml_backend_sched_t sched) {
  1676. return sched->n_copies;
  1677. }
  1678. int ggml_backend_sched_get_n_backends(ggml_backend_sched_t sched) {
  1679. return sched->n_backends;
  1680. }
  1681. ggml_backend_t ggml_backend_sched_get_backend(ggml_backend_sched_t sched, int i) {
  1682. GGML_ASSERT(i >= 0 && i < sched->n_backends);
  1683. return sched->backends[i];
  1684. }
  1685. size_t ggml_backend_sched_get_buffer_size(ggml_backend_sched_t sched, ggml_backend_t backend) {
  1686. int backend_index = ggml_backend_sched_backend_id(sched, backend);
  1687. GGML_ASSERT(backend_index >= 0 && backend_index < sched->n_backends);
  1688. return ggml_gallocr_get_buffer_size(sched->galloc, backend_index);
  1689. }
  1690. void ggml_backend_sched_set_tensor_backend(ggml_backend_sched_t sched, struct ggml_tensor * node, ggml_backend_t backend) {
  1691. int backend_index = ggml_backend_sched_backend_id(sched, backend);
  1692. GGML_ASSERT(backend_index >= 0 && backend_index < sched->n_backends);
  1693. tensor_backend_id(node) = backend_index;
  1694. SET_CAUSE(node, "usr");
  1695. sched->is_reset = false;
  1696. }
  1697. ggml_backend_t ggml_backend_sched_get_tensor_backend(ggml_backend_sched_t sched, struct ggml_tensor * node) {
  1698. int backend_index = tensor_backend_id(node);
  1699. if (backend_index == -1) {
  1700. return NULL;
  1701. }
  1702. return sched->backends[backend_index];
  1703. }
  1704. // utils
  1705. void ggml_backend_view_init(struct ggml_tensor * tensor) {
  1706. GGML_ASSERT(tensor->buffer == NULL);
  1707. GGML_ASSERT(tensor->view_src != NULL);
  1708. GGML_ASSERT(tensor->view_src->buffer != NULL);
  1709. GGML_ASSERT(tensor->view_src->data != NULL);
  1710. tensor->buffer = tensor->view_src->buffer;
  1711. tensor->data = (char *)tensor->view_src->data + tensor->view_offs;
  1712. ggml_backend_buffer_init_tensor(tensor->buffer, tensor);
  1713. }
  1714. void ggml_backend_tensor_alloc(ggml_backend_buffer_t buffer, struct ggml_tensor * tensor, void * addr) {
  1715. GGML_ASSERT(tensor->buffer == NULL);
  1716. GGML_ASSERT(tensor->data == NULL);
  1717. GGML_ASSERT(tensor->view_src == NULL);
  1718. GGML_ASSERT(addr >= ggml_backend_buffer_get_base(buffer));
  1719. GGML_ASSERT((char *)addr + ggml_backend_buffer_get_alloc_size(buffer, tensor) <=
  1720. (char *)ggml_backend_buffer_get_base(buffer) + ggml_backend_buffer_get_size(buffer));
  1721. tensor->buffer = buffer;
  1722. tensor->data = addr;
  1723. ggml_backend_buffer_init_tensor(buffer, tensor);
  1724. }
  1725. static struct ggml_tensor * graph_copy_dup_tensor(struct ggml_hash_set hash_set, struct ggml_tensor ** node_copies,
  1726. struct ggml_context * ctx_allocated, struct ggml_context * ctx_unallocated, struct ggml_tensor * src) {
  1727. GGML_ASSERT(src != NULL);
  1728. GGML_ASSERT(src->data && "graph must be allocated");
  1729. size_t id = ggml_hash_insert(&hash_set, src);
  1730. if (id == GGML_HASHSET_ALREADY_EXISTS) {
  1731. return node_copies[ggml_hash_find(&hash_set, src)];
  1732. }
  1733. struct ggml_tensor * dst = ggml_dup_tensor_layout(src->data && !src->view_src ? ctx_allocated : ctx_unallocated, src);
  1734. if (src->view_src != NULL) {
  1735. dst->view_src = graph_copy_dup_tensor(hash_set, node_copies, ctx_allocated, ctx_unallocated, src->view_src);
  1736. dst->view_offs = src->view_offs;
  1737. }
  1738. dst->op = src->op;
  1739. memcpy(dst->op_params, src->op_params, sizeof(dst->op_params));
  1740. ggml_set_name(dst, src->name);
  1741. // copy src
  1742. for (int i = 0; i < GGML_MAX_SRC; i++) {
  1743. struct ggml_tensor * s = src->src[i];
  1744. if (s == NULL) {
  1745. continue;
  1746. }
  1747. dst->src[i] = graph_copy_dup_tensor(hash_set, node_copies, ctx_allocated, ctx_unallocated, s);
  1748. }
  1749. node_copies[id] = dst;
  1750. return dst;
  1751. }
  1752. static void graph_copy_init_tensor(struct ggml_hash_set * hash_set, struct ggml_tensor ** node_copies, bool * node_init, struct ggml_tensor * src) {
  1753. size_t id = ggml_hash_find(hash_set, src);
  1754. if (node_init[id]) {
  1755. return;
  1756. }
  1757. node_init[id] = true;
  1758. struct ggml_tensor * dst = node_copies[id];
  1759. if (dst->view_src != NULL) {
  1760. graph_copy_init_tensor(hash_set, node_copies, node_init, src->view_src);
  1761. ggml_backend_view_init(dst);
  1762. }
  1763. else {
  1764. ggml_backend_tensor_copy(src, dst);
  1765. }
  1766. // init src
  1767. for (int i = 0; i < GGML_MAX_SRC; i++) {
  1768. struct ggml_tensor * s = src->src[i];
  1769. if (s == NULL) {
  1770. continue;
  1771. }
  1772. graph_copy_init_tensor(hash_set, node_copies, node_init, s);
  1773. }
  1774. }
  1775. struct ggml_backend_graph_copy ggml_backend_graph_copy(ggml_backend_t backend, struct ggml_cgraph * graph) {
  1776. struct ggml_hash_set hash_set = ggml_hash_set_new(graph->visited_hash_set.size);
  1777. struct ggml_tensor ** node_copies = calloc(hash_set.size, sizeof(node_copies[0])); // NOLINT
  1778. bool * node_init = calloc(hash_set.size, sizeof(node_init[0]));
  1779. struct ggml_init_params params = {
  1780. /* .mem_size = */ ggml_tensor_overhead()*hash_set.size + ggml_graph_overhead_custom(graph->size, false),
  1781. /* .mem_buffer = */ NULL,
  1782. /* .no_alloc = */ true
  1783. };
  1784. struct ggml_context * ctx_allocated = ggml_init(params);
  1785. struct ggml_context * ctx_unallocated = ggml_init(params);
  1786. if (ctx_allocated == NULL || ctx_unallocated == NULL) {
  1787. fprintf(stderr, "failed to allocate context for graph copy\n");
  1788. ggml_hash_set_free(&hash_set);
  1789. free(node_copies);
  1790. free(node_init);
  1791. ggml_free(ctx_allocated);
  1792. ggml_free(ctx_unallocated);
  1793. return (struct ggml_backend_graph_copy) {
  1794. /* .buffer = */ NULL,
  1795. /* .ctx_allocated = */ NULL,
  1796. /* .ctx_unallocated = */ NULL,
  1797. /* .graph = */ NULL,
  1798. };
  1799. }
  1800. // dup nodes
  1801. for (int i = 0; i < graph->n_nodes; i++) {
  1802. struct ggml_tensor * node = graph->nodes[i];
  1803. graph_copy_dup_tensor(hash_set, node_copies, ctx_allocated, ctx_unallocated, node);
  1804. }
  1805. // allocate nodes
  1806. ggml_backend_buffer_t buffer = ggml_backend_alloc_ctx_tensors(ctx_allocated, backend);
  1807. if (buffer == NULL) {
  1808. fprintf(stderr, "failed to allocate buffer for graph copy\n");
  1809. ggml_hash_set_free(&hash_set);
  1810. free(node_copies);
  1811. free(node_init);
  1812. ggml_free(ctx_allocated);
  1813. ggml_free(ctx_unallocated);
  1814. return (struct ggml_backend_graph_copy) {
  1815. /* .buffer = */ NULL,
  1816. /* .ctx_allocated = */ NULL,
  1817. /* .ctx_unallocated = */ NULL,
  1818. /* .graph = */ NULL,
  1819. };
  1820. }
  1821. //printf("copy buffer size: %zu MB\n", ggml_backend_buffer_get_size(buffer) / 1024 / 1024);
  1822. // copy data and init views
  1823. for (int i = 0; i < graph->n_nodes; i++) {
  1824. struct ggml_tensor * node = graph->nodes[i];
  1825. graph_copy_init_tensor(&hash_set, node_copies, node_init, node);
  1826. }
  1827. // build graph copy
  1828. struct ggml_cgraph * graph_copy = ggml_new_graph_custom(ctx_allocated, graph->size, false);
  1829. for (int i = 0; i < graph->n_nodes; i++) {
  1830. struct ggml_tensor * node = graph->nodes[i];
  1831. struct ggml_tensor * node_copy = node_copies[ggml_hash_find(&hash_set, node)];
  1832. graph_copy->nodes[i] = node_copy;
  1833. }
  1834. graph_copy->n_nodes = graph->n_nodes;
  1835. ggml_hash_set_free(&hash_set);
  1836. free(node_copies);
  1837. free(node_init);
  1838. return (struct ggml_backend_graph_copy) {
  1839. /* .buffer = */ buffer,
  1840. /* .ctx_allocated = */ ctx_allocated,
  1841. /* .ctx_unallocated = */ ctx_unallocated,
  1842. /* .graph = */ graph_copy,
  1843. };
  1844. }
  1845. void ggml_backend_graph_copy_free(struct ggml_backend_graph_copy copy) {
  1846. ggml_backend_buffer_free(copy.buffer);
  1847. ggml_free(copy.ctx_allocated);
  1848. ggml_free(copy.ctx_unallocated);
  1849. }
  1850. bool ggml_backend_compare_graph_backend(ggml_backend_t backend1, ggml_backend_t backend2, struct ggml_cgraph * graph, ggml_backend_eval_callback callback, void * user_data) {
  1851. struct ggml_backend_graph_copy copy = ggml_backend_graph_copy(backend2, graph);
  1852. if (copy.buffer == NULL) {
  1853. return false;
  1854. }
  1855. struct ggml_cgraph * g1 = graph;
  1856. struct ggml_cgraph * g2 = copy.graph;
  1857. assert(g1->n_nodes == g2->n_nodes);
  1858. for (int i = 0; i < g1->n_nodes; i++) {
  1859. //printf("eval %d/%d\n", i, g1->n_nodes);
  1860. struct ggml_tensor * t1 = g1->nodes[i];
  1861. struct ggml_tensor * t2 = g2->nodes[i];
  1862. assert(t1->op == t2->op && ggml_are_same_layout(t1, t2));
  1863. struct ggml_cgraph g1v = ggml_graph_view(g1, i, i + 1);
  1864. struct ggml_cgraph g2v = ggml_graph_view(g2, i, i + 1);
  1865. ggml_backend_graph_compute(backend1, &g1v);
  1866. ggml_backend_graph_compute(backend2, &g2v);
  1867. if (ggml_is_view_op(t1->op)) {
  1868. continue;
  1869. }
  1870. // compare results, calculate rms etc
  1871. if (!callback(i, t1, t2, user_data)) {
  1872. break;
  1873. }
  1874. }
  1875. ggml_backend_graph_copy_free(copy);
  1876. return true;
  1877. }