123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661 |
- /**
- * llama.cpp - commit 6eeaeba126ff701f3e8f79f246805b7023709972 - do not edit this file
- *
- * MIT License
- *
- * Copyright (c) 2023-2024 The ggml authors
- *
- * Permission is hereby granted, free of charge, to any person obtaining a copy
- * of this software and associated documentation files (the "Software"), to deal
- * in the Software without restriction, including without limitation the rights
- * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
- * copies of the Software, and to permit persons to whom the Software is
- * furnished to do so, subject to the following conditions:
- *
- * The above copyright notice and this permission notice shall be included in all
- * copies or substantial portions of the Software.
- *
- * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
- * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
- * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
- * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
- * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
- * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
- * SOFTWARE.
- */
- #include "llama-sampling.h"
- #include <algorithm>
- #include <cstring>
- #include <ctime>
- #include <cfloat>
- #include <numeric>
- #include <unordered_map>
- static void llama_log_softmax(float * array, size_t size) {
- float max_l = *std::max_element(array, array + size);
- float sum = 0.f;
- for (size_t i = 0; i < size; ++i) {
- float p = expf(array[i] - max_l);
- sum += p;
- array[i] = p;
- }
- for (size_t i = 0; i < size; ++i) {
- array[i] = logf(array[i] / sum);
- }
- }
- void llama_set_rng_seed_impl(struct llama_sampling * smpl, uint32_t seed) {
- if (seed == LLAMA_DEFAULT_SEED) {
- seed = time(NULL);
- }
- smpl->rng.seed(seed);
- }
- void llama_sample_softmax_impl(struct llama_sampling * smpl, llama_token_data_array * candidates) {
- GGML_ASSERT(candidates->size > 0);
- const int64_t t_start_sample_us = ggml_time_us();
- // Sort the logits in descending order
- if (!candidates->sorted) {
- std::sort(candidates->data, candidates->data + candidates->size, [](const llama_token_data & a, const llama_token_data & b) {
- return a.logit > b.logit;
- });
- candidates->sorted = true;
- }
- float max_l = candidates->data[0].logit;
- float cum_sum = 0.0f;
- for (size_t i = 0; i < candidates->size; ++i) {
- float p = expf(candidates->data[i].logit - max_l);
- candidates->data[i].p = p;
- cum_sum += p;
- }
- for (size_t i = 0; i < candidates->size; ++i) {
- candidates->data[i].p /= cum_sum;
- }
- if (smpl) {
- smpl->t_sample_us += ggml_time_us() - t_start_sample_us;
- }
- }
- void llama_sample_top_k_impl(struct llama_sampling * smpl, llama_token_data_array * candidates, int32_t k, size_t min_keep) {
- // TODO: move bucket sort to separate function so that top_p/tail_free/typical/softmax first is equally fast
- // if (k >= (int32_t)candidates->size) {
- // return;
- // }
- const int64_t t_start_sample_us = ggml_time_us();
- if (k <= 0) {
- k = candidates->size;
- }
- k = std::max(k, (int) min_keep);
- k = std::min(k, (int) candidates->size);
- // Sort scores in descending order
- if (!candidates->sorted) {
- auto comp = [](const llama_token_data & a, const llama_token_data & b) {
- return a.logit > b.logit;
- };
- if (k <= 128) {
- std::partial_sort(candidates->data, candidates->data + k, candidates->data + candidates->size, comp);
- } else {
- constexpr int nbuckets = 128;
- constexpr float bucket_low = -10.0f;
- constexpr float bucket_high = 10.0f;
- constexpr float bucket_scale = nbuckets/(bucket_high - bucket_low);
- constexpr float bucker_inter = -bucket_low * bucket_scale;
- std::vector<int> bucket_idx(candidates->size);
- std::vector<int> histo(nbuckets, 0);
- for (int i = 0; i < (int)candidates->size; ++i) {
- const float val = candidates->data[i].logit;
- int ib = int(bucket_scale * val + bucker_inter); //nbuckets * (val - bucket_low) / (bucket_high - bucket_low);
- ib = std::max(0, std::min(nbuckets-1, ib));
- bucket_idx[i] = ib;
- ++histo[ib];
- }
- int nhave = 0;
- int ib = nbuckets - 1;
- for ( ; ib >= 0; --ib) {
- nhave += histo[ib];
- if (nhave >= k) break;
- }
- std::vector<llama_token_data> tmp_tokens(nhave);
- auto ptr = tmp_tokens.data();
- std::vector<llama_token_data*> bucket_ptrs;
- bucket_ptrs.reserve(nbuckets - ib);
- for (int j = nbuckets - 1; j >= ib; --j) {
- bucket_ptrs.push_back(ptr);
- ptr += histo[j];
- }
- for (int i = 0; i < (int)candidates->size; ++i) {
- int j = bucket_idx[i];
- if (j >= ib) {
- *bucket_ptrs[nbuckets-1-j]++ = candidates->data[i];
- }
- }
- ptr = tmp_tokens.data();
- int ndone = 0;
- for (int j = nbuckets-1; j > ib; --j) {
- std::sort(ptr, ptr + histo[j], comp);
- ptr += histo[j];
- ndone += histo[j];
- }
- std::partial_sort(ptr, ptr + k - ndone, ptr + histo[ib], comp);
- std::memcpy(candidates->data, tmp_tokens.data(), k*sizeof(llama_token_data));
- }
- candidates->sorted = true;
- }
- candidates->size = k;
- if (smpl) {
- smpl->t_sample_us += ggml_time_us() - t_start_sample_us;
- }
- }
- void llama_sample_top_p_impl(struct llama_sampling * smpl, llama_token_data_array * candidates, float p, size_t min_keep) {
- if (p >= 1.0f) {
- return;
- }
- llama_sample_softmax_impl(smpl, candidates);
- const int64_t t_start_sample_us = ggml_time_us();
- // Compute the cumulative probabilities
- float cum_sum = 0.0f;
- size_t last_idx = candidates->size;
- for (size_t i = 0; i < candidates->size; ++i) {
- cum_sum += candidates->data[i].p;
- // Check if the running sum is at least p or if we have kept at least min_keep tokens
- // we set the last index to i+1 to indicate that the current iterate should be included in the set
- if (cum_sum >= p && i + 1 >= min_keep) {
- last_idx = i + 1;
- break;
- }
- }
- // Resize the output vector to keep only the top-p tokens
- candidates->size = last_idx;
- if (smpl) {
- smpl->t_sample_us += ggml_time_us() - t_start_sample_us;
- }
- }
- void llama_sample_min_p_impl(struct llama_sampling * smpl, llama_token_data_array * candidates, float p, size_t min_keep) {
- if (p <= 0.0f || !candidates->size) {
- return;
- }
- const int64_t t_start_sample_us = ggml_time_us();
- bool min_p_applied = false;
- // if the candidates aren't sorted, try the unsorted implementation first
- if (!candidates->sorted) {
- std::vector<llama_token_data> filtered_tokens;
- float max_logit = -FLT_MAX;
- for (size_t i = 0; i < candidates->size; ++i) {
- max_logit = std::max(max_logit, candidates->data[i].logit);
- }
- const float min_logit = max_logit + logf(p); // min logit for p_i >= p * p_max
- for (size_t i = 0; i < candidates->size; ++i) {
- if (candidates->data[i].logit >= min_logit) {
- filtered_tokens.push_back(candidates->data[i]);
- }
- }
- // if we have enough values the operation was a success
- if (filtered_tokens.size() >= min_keep) {
- memcpy(candidates->data, filtered_tokens.data(), filtered_tokens.size()*sizeof(llama_token_data));
- candidates->size = filtered_tokens.size();
- min_p_applied = true;
- }
- }
- // if the candidates are sorted or the unsorted implementation failed, use this implementation
- if (!min_p_applied) {
- // Sort the logits in descending order
- if (!candidates->sorted) {
- std::sort(candidates->data, candidates->data + candidates->size, [](const llama_token_data & a, const llama_token_data & b) {
- return a.logit > b.logit;
- });
- candidates->sorted = true;
- }
- const float min_logit = candidates->data[0].logit + logf(p); // min logit for p_i >= p * p_max
- size_t i = 1; // first token always matches
- for (; i < candidates->size; ++i) {
- if (candidates->data[i].logit < min_logit && i >= min_keep) {
- break; // prob too small
- }
- }
- // Resize the output vector to keep only the matching tokens
- candidates->size = i;
- }
- if (smpl) {
- smpl->t_sample_us += ggml_time_us() - t_start_sample_us;
- }
- }
- void llama_sample_tail_free_impl(struct llama_sampling * smpl, llama_token_data_array * candidates, float z, size_t min_keep) {
- if (z >= 1.0f || candidates->size <= 2) {
- return;
- }
- llama_sample_softmax_impl((struct llama_sampling *) nullptr, candidates);
- const int64_t t_start_sample_us = ggml_time_us();
- // Compute the first and second derivatives
- std::vector<float> first_derivatives(candidates->size - 1);
- std::vector<float> second_derivatives(candidates->size - 2);
- for (size_t i = 0; i < first_derivatives.size(); ++i) {
- first_derivatives[i] = candidates->data[i].p - candidates->data[i + 1].p;
- }
- for (size_t i = 0; i < second_derivatives.size(); ++i) {
- second_derivatives[i] = first_derivatives[i] - first_derivatives[i + 1];
- }
- // Calculate absolute value of second derivatives
- for (size_t i = 0; i < second_derivatives.size(); ++i) {
- second_derivatives[i] = std::abs(second_derivatives[i]);
- }
- // Normalize the second derivatives
- {
- const float second_derivatives_sum = std::accumulate(second_derivatives.begin(), second_derivatives.end(), 0.0f);
- if (second_derivatives_sum > 1e-6f) {
- for (float & value : second_derivatives) {
- value /= second_derivatives_sum;
- }
- } else {
- for (float & value : second_derivatives) {
- value = 1.0f / second_derivatives.size();
- }
- }
- }
- float cum_sum = 0.0f;
- size_t last_idx = candidates->size;
- for (size_t i = 0; i < second_derivatives.size(); ++i) {
- cum_sum += second_derivatives[i];
- // Check if the running sum is greater than z or if we have kept at least min_keep tokens
- if (cum_sum > z && i >= min_keep) {
- last_idx = i;
- break;
- }
- }
- // Resize the output vector to keep only the tokens above the tail location
- candidates->size = last_idx;
- if (smpl) {
- smpl->t_sample_us += ggml_time_us() - t_start_sample_us;
- }
- }
- void llama_sample_typical_impl(struct llama_sampling * smpl, llama_token_data_array * candidates, float p, size_t min_keep) {
- // Reference implementation:
- // https://github.com/huggingface/transformers/compare/main...cimeister:typical-sampling:typical-pr
- if (p >= 1.0f) {
- return;
- }
- // Compute the softmax of logits and calculate entropy
- llama_sample_softmax_impl((struct llama_sampling *) nullptr, candidates);
- const int64_t t_start_sample_us = ggml_time_us();
- float entropy = 0.0f;
- for (size_t i = 0; i < candidates->size; ++i) {
- entropy += -candidates->data[i].p * logf(candidates->data[i].p);
- }
- // Compute the absolute difference between negative log probability and entropy for each candidate
- std::vector<float> shifted_scores;
- for (size_t i = 0; i < candidates->size; ++i) {
- float shifted_score = fabsf(-logf(candidates->data[i].p) - entropy);
- shifted_scores.push_back(shifted_score);
- }
- // Sort tokens based on the shifted_scores and their corresponding indices
- std::vector<size_t> indices(candidates->size);
- std::iota(indices.begin(), indices.end(), 0);
- std::sort(indices.begin(), indices.end(), [&](size_t a, size_t b) {
- return shifted_scores[a] < shifted_scores[b];
- });
- // Compute the cumulative probabilities
- float cum_sum = 0.0f;
- size_t last_idx = indices.size();
- for (size_t i = 0; i < indices.size(); ++i) {
- size_t idx = indices[i];
- cum_sum += candidates->data[idx].p;
- // Check if the running sum is greater than typical or if we have kept at least min_keep tokens
- if (cum_sum > p && i >= min_keep - 1) {
- last_idx = i + 1;
- break;
- }
- }
- // Resize the output vector to keep only the locally typical tokens
- std::vector<llama_token_data> new_candidates;
- for (size_t i = 0; i < last_idx; ++i) {
- size_t idx = indices[i];
- new_candidates.push_back(candidates->data[idx]);
- }
- // Replace the data in candidates with the new_candidates data
- std::copy(new_candidates.begin(), new_candidates.end(), candidates->data);
- candidates->size = new_candidates.size();
- candidates->sorted = false;
- if (smpl) {
- smpl->t_sample_us += ggml_time_us() - t_start_sample_us;
- }
- }
- void llama_sample_entropy_impl(struct llama_sampling * smpl, llama_token_data_array * candidates, float min_temp, float max_temp, float exponent_val) {
- const int64_t t_start_sample_us = ggml_time_us();
- // no need to do anything if there is only one (or zero) candidates
- if(candidates->size <= 1) {
- return;
- }
- // Calculate maximum possible entropy
- float max_entropy = -logf(1.0f / candidates->size);
- llama_sample_softmax_impl((struct llama_sampling *) nullptr, candidates);
- // Calculate entropy of the softmax probabilities
- float entropy = 0.0f;
- for (size_t i = 0; i < candidates->size; ++i) {
- float prob = candidates->data[i].p;
- if (prob > 0.0f) { // Ensure no log(0)
- entropy -= prob * logf(prob);
- }
- }
- // Normalize the entropy (max_entropy cannot be 0 here because we checked candidates->size != 1 above)
- float normalized_entropy = entropy / max_entropy;
- // Map the normalized entropy to the desired temperature range using the power function
- float dyn_temp = min_temp + (max_temp - min_temp) * powf(normalized_entropy, exponent_val);
- #ifdef DEBUG
- LLAMA_LOG_INFO("Your text maxtemp value is: %f\n", max_temp);
- LLAMA_LOG_INFO("Entropy: %f\n", entropy);
- LLAMA_LOG_INFO("Max Possible Entropy: %f\n", max_entropy);
- LLAMA_LOG_INFO("Normalized Entropy: %f\n", normalized_entropy);
- LLAMA_LOG_INFO("Exponent: %f\n", exponent_val);
- LLAMA_LOG_INFO("Dynamic Temperature (dyn_temp): %f\n", dyn_temp);
- #endif
- // Apply the dynamically calculated temperature scaling
- for (size_t i = 0; i < candidates->size; ++i) {
- candidates->data[i].logit /= dyn_temp;
- }
- // Re-compute softmax probabilities after scaling logits with dynamic temperature
- double max_l_double = candidates->data[0].logit;
- double cum_sum_double = 0.0;
- for (size_t i = 0; i < candidates->size; ++i) {
- double p = exp(candidates->data[i].logit - max_l_double);
- candidates->data[i].p = p; // Store the scaled probability
- cum_sum_double += p;
- }
- for (size_t i = 0; i < candidates->size; ++i) {
- candidates->data[i].p /= cum_sum_double; // Re-normalize the probabilities
- }
- #ifdef DEBUG
- // Print the updated top 25 probabilities after temperature scaling
- LLAMA_LOG_INFO("\nUpdated Top 25 Probabilities After Dynamic Temperature Scaling (in percentages):\n");
- for (size_t i = 0; i < 25 && i < candidates->size; ++i) {
- LLAMA_LOG_INFO("Token %zu: %f%%\n", i + 1, candidates->data[i].p * 100.0f);
- }
- #endif
- if (smpl) {
- smpl->t_sample_us += ggml_time_us() - t_start_sample_us;
- }
- }
- void llama_sample_temp_impl(struct llama_sampling * smpl, llama_token_data_array * candidates, float temp) {
- const int64_t t_start_sample_us = ggml_time_us();
- for (size_t i = 0; i < candidates->size; ++i) {
- candidates->data[i].logit /= temp;
- }
- if (smpl) {
- smpl->t_sample_us += ggml_time_us() - t_start_sample_us;
- }
- }
- void llama_sample_repetition_penalties_impl(
- struct llama_sampling * smpl,
- llama_token_data_array * candidates,
- const llama_token * last_tokens,
- size_t penalty_last_n,
- float penalty_repeat,
- float penalty_freq,
- float penalty_present) {
- if (penalty_last_n == 0 || (penalty_repeat == 1.0f && penalty_freq == 0.0f && penalty_present == 0.0f)) {
- return;
- }
- const int64_t t_start_sample_us = ggml_time_us();
- // Create a frequency map to count occurrences of each token in last_tokens
- std::unordered_map<llama_token, int> token_count;
- for (size_t i = 0; i < penalty_last_n; ++i) {
- token_count[last_tokens[i]]++;
- }
- // Apply frequency and presence penalties to the candidates
- for (size_t i = 0; i < candidates->size; ++i) {
- const auto token_iter = token_count.find(candidates->data[i].id);
- if (token_iter == token_count.end()) {
- continue;
- }
- const int count = token_iter->second;
- // The academic publication that described this technique actually just only divided, but that would cause tokens with negative logits to become more likely, which is obviously wrong.
- // This is common fix for this problem, which is to multiply by the penalty instead of dividing.
- if (candidates->data[i].logit <= 0) {
- candidates->data[i].logit *= penalty_repeat;
- } else {
- candidates->data[i].logit /= penalty_repeat;
- }
- candidates->data[i].logit -= float(count) * penalty_freq + float(count > 0) * penalty_present;
- }
- candidates->sorted = false;
- if (smpl) {
- smpl->t_sample_us += ggml_time_us() - t_start_sample_us;
- }
- }
- void llama_sample_apply_guidance_impl(
- struct llama_sampling * smpl,
- float * logits,
- float * logits_guidance,
- float scale) {
- GGML_ASSERT(smpl);
- const auto t_start_sample_us = ggml_time_us();
- const auto n_vocab = smpl->n_vocab;
- llama_log_softmax(logits, n_vocab);
- llama_log_softmax(logits_guidance, n_vocab);
- for (int i = 0; i < n_vocab; ++i) {
- auto & l = logits[i];
- const auto & g = logits_guidance[i];
- l = scale * (l - g) + g;
- }
- smpl->t_sample_us += ggml_time_us() - t_start_sample_us;
- }
- llama_token llama_sample_token_mirostat_impl(struct llama_sampling * smpl, llama_token_data_array * candidates, float tau, float eta, int32_t m, float * mu) {
- GGML_ASSERT(smpl);
- const int32_t n_vocab = float(smpl->n_vocab);
- int64_t t_start_sample_us = ggml_time_us();
- llama_sample_softmax_impl((struct llama_sampling *) nullptr, candidates);
- // Estimate s_hat using the most probable m tokens
- float s_hat = 0.0;
- float sum_ti_bi = 0.0;
- float sum_ti_sq = 0.0;
- for (size_t i = 0; i < size_t(m - 1) && i < candidates->size - 1; ++i) {
- float t_i = logf(float(i + 2) / float(i + 1));
- float b_i = logf(candidates->data[i].p / candidates->data[i + 1].p);
- sum_ti_bi += t_i * b_i;
- sum_ti_sq += t_i * t_i;
- }
- s_hat = sum_ti_bi / sum_ti_sq;
- // Compute k from the estimated s_hat and target surprise value
- float epsilon_hat = s_hat - 1;
- float k = powf((epsilon_hat * powf(2, *mu)) / (1 - powf(n_vocab, -epsilon_hat)), 1 / s_hat);
- // Sample the next word X using top-k sampling
- llama_sample_top_k_impl((struct llama_sampling *) nullptr, candidates, int(k), 1);
- smpl->t_sample_us += ggml_time_us() - t_start_sample_us;
- llama_token X = llama_sample_token_impl(smpl, candidates);
- t_start_sample_us = ggml_time_us();
- // Compute error as the difference between observed surprise and target surprise value
- size_t X_idx = std::distance(candidates->data, std::find_if(candidates->data, candidates->data + candidates->size, [&](const llama_token_data & candidate) {
- return candidate.id == X;
- }));
- float observed_surprise = -log2f(candidates->data[X_idx].p);
- float e = observed_surprise - tau;
- // Update mu using the learning rate and error
- *mu = *mu - eta * e;
- smpl->t_sample_us += ggml_time_us() - t_start_sample_us;
- return X;
- }
- llama_token llama_sample_token_mirostat_v2_impl(struct llama_sampling * smpl, llama_token_data_array * candidates, float tau, float eta, float * mu) {
- int64_t t_start_sample_us;
- t_start_sample_us = ggml_time_us();
- llama_sample_softmax_impl(smpl, candidates);
- // Truncate the words with surprise values greater than mu
- candidates->size = std::distance(candidates->data, std::find_if(candidates->data, candidates->data + candidates->size, [&](const llama_token_data & candidate) {
- return -log2f(candidate.p) > *mu;
- }));
- if (candidates->size == 0) {
- candidates->size = 1;
- }
- if (smpl) {
- smpl->t_sample_us += ggml_time_us() - t_start_sample_us;
- }
- // Normalize the probabilities of the remaining words
- llama_sample_softmax_impl(smpl, candidates);
- // Sample the next word X from the remaining words
- llama_token X = llama_sample_token_impl(smpl, candidates);
- t_start_sample_us = ggml_time_us();
- // Compute error as the difference between observed surprise and target surprise value
- size_t X_idx = std::distance(candidates->data, std::find_if(candidates->data, candidates->data + candidates->size, [&](const llama_token_data & candidate) {
- return candidate.id == X;
- }));
- float observed_surprise = -log2f(candidates->data[X_idx].p);
- float e = observed_surprise - tau;
- // Update mu using the learning rate and error
- *mu = *mu - eta * e;
- if (smpl) {
- smpl->t_sample_us += ggml_time_us() - t_start_sample_us;
- }
- return X;
- }
- llama_token llama_sample_token_greedy_impl(struct llama_sampling * smpl, llama_token_data_array * candidates) {
- const int64_t t_start_sample_us = ggml_time_us();
- // Find max element
- auto * max_iter = std::max_element(candidates->data, candidates->data + candidates->size, [](const llama_token_data & a, const llama_token_data & b) {
- return a.logit < b.logit;
- });
- llama_token result = max_iter->id;
- if (smpl) {
- smpl->t_sample_us += ggml_time_us() - t_start_sample_us;
- smpl->n_sample++;
- }
- return result;
- }
- llama_token llama_sample_token_with_rng_impl(struct llama_sampling * smpl, llama_token_data_array * candidates, std::mt19937 & rng) {
- GGML_ASSERT(smpl);
- const int64_t t_start_sample_us = ggml_time_us();
- llama_sample_softmax_impl((struct llama_sampling *) nullptr, candidates);
- std::vector<float> probs;
- probs.reserve(candidates->size);
- for (size_t i = 0; i < candidates->size; ++i) {
- probs.push_back(candidates->data[i].p);
- }
- std::discrete_distribution<> dist(probs.begin(), probs.end());
- int idx = dist(rng);
- llama_token result = candidates->data[idx].id;
- smpl->t_sample_us += ggml_time_us() - t_start_sample_us;
- smpl->n_sample++;
- return result;
- }
- llama_token llama_sample_token_impl(struct llama_sampling * smpl, llama_token_data_array * candidates) {
- return llama_sample_token_with_rng_impl(smpl, candidates, smpl->rng);
- }
|