123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486 |
- /**
- * llama.cpp - commit 6eeaeba126ff701f3e8f79f246805b7023709972 - do not edit this file
- *
- * MIT License
- *
- * Copyright (c) 2023-2024 The ggml authors
- *
- * Permission is hereby granted, free of charge, to any person obtaining a copy
- * of this software and associated documentation files (the "Software"), to deal
- * in the Software without restriction, including without limitation the rights
- * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
- * copies of the Software, and to permit persons to whom the Software is
- * furnished to do so, subject to the following conditions:
- *
- * The above copyright notice and this permission notice shall be included in all
- * copies or substantial portions of the Software.
- *
- * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
- * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
- * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
- * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
- * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
- * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
- * SOFTWARE.
- */
- #define LLAMA_API_INTERNAL
- #include "sampling.h"
- #include <random>
- struct llama_sampling_context * llama_sampling_init(const struct llama_sampling_params & params) {
- struct llama_sampling_context * result = new llama_sampling_context();
- result->params = params;
- result->grammar = nullptr;
- // if there is a grammar, parse it
- if (!params.grammar.empty()) {
- result->parsed_grammar = grammar_parser::parse(params.grammar.c_str());
- // will be empty (default) if there are parse errors
- if (result->parsed_grammar.rules.empty()) {
- fprintf(stderr, "%s: failed to parse grammar\n", __func__);
- delete result;
- return nullptr;
- }
- // Ensure that there is a "root" node.
- if (result->parsed_grammar.symbol_ids.find("root") == result->parsed_grammar.symbol_ids.end()) {
- fprintf(stderr, "%s: grammar does not contain a 'root' symbol\n", __func__);
- delete result;
- return nullptr;
- }
- std::vector<const llama_grammar_element *> grammar_rules(result->parsed_grammar.c_rules());
- struct llama_grammar * grammar = llama_grammar_init(
- grammar_rules.data(),
- grammar_rules.size(), result->parsed_grammar.symbol_ids.at("root"));
- if (grammar == nullptr) {
- throw std::runtime_error("Failed to initialize llama_grammar");
- }
- result->grammar = grammar;
- }
- result->prev.resize(params.n_prev);
- result->n_valid = 0;
- llama_sampling_set_rng_seed(result, params.seed);
- return result;
- }
- void llama_sampling_free(struct llama_sampling_context * ctx) {
- if (ctx->grammar != NULL) {
- llama_grammar_free(ctx->grammar);
- }
- delete ctx;
- }
- void llama_sampling_reset(llama_sampling_context * ctx) {
- if (ctx->grammar != NULL) {
- llama_grammar_free(ctx->grammar);
- ctx->grammar = NULL;
- }
- if (!ctx->parsed_grammar.rules.empty()) {
- std::vector<const llama_grammar_element *> grammar_rules(ctx->parsed_grammar.c_rules());
- struct llama_grammar * grammar = llama_grammar_init(
- grammar_rules.data(),
- grammar_rules.size(), ctx->parsed_grammar.symbol_ids.at("root"));
- if (grammar == nullptr) {
- throw std::runtime_error("Failed to initialize llama_grammar");
- }
- ctx->grammar = grammar;
- }
- std::fill(ctx->prev.begin(), ctx->prev.end(), 0);
- ctx->cur.clear();
- ctx->n_valid = 0;
- }
- void llama_sampling_set_rng_seed(struct llama_sampling_context * ctx, uint32_t seed) {
- if (seed == LLAMA_DEFAULT_SEED) {
- seed = std::random_device{}();
- }
- ctx->rng.seed(seed);
- }
- void llama_sampling_cp(llama_sampling_context * src, llama_sampling_context * dst) {
- if (dst->grammar) {
- llama_grammar_free(dst->grammar);
- dst->grammar = nullptr;
- }
- if (src->grammar) {
- dst->grammar = llama_grammar_copy(src->grammar);
- }
- dst->prev = src->prev;
- }
- llama_token llama_sampling_last(llama_sampling_context * ctx) {
- return ctx->prev.back();
- }
- std::string llama_sampling_prev_str(llama_sampling_context * ctx_sampling, llama_context * ctx_main, int n) {
- const int size = ctx_sampling->prev.size();
- n = std::min(n, size);
- std::string result;
- for (int i = size - n; i < size; i++) {
- result += llama_token_to_piece(ctx_main, ctx_sampling->prev[i]);
- }
- return result;
- }
- std::string llama_sampling_print(const llama_sampling_params & params) {
- char result[1024];
- snprintf(result, sizeof(result),
- "\trepeat_last_n = %d, repeat_penalty = %.3f, frequency_penalty = %.3f, presence_penalty = %.3f\n"
- "\ttop_k = %d, tfs_z = %.3f, top_p = %.3f, min_p = %.3f, typical_p = %.3f, temp = %.3f\n"
- "\tmirostat = %d, mirostat_lr = %.3f, mirostat_ent = %.3f",
- params.penalty_last_n, params.penalty_repeat, params.penalty_freq, params.penalty_present,
- params.top_k, params.tfs_z, params.top_p, params.min_p, params.typical_p, params.temp,
- params.mirostat, params.mirostat_eta, params.mirostat_tau);
- return std::string(result);
- }
- std::string llama_sampling_order_print(const llama_sampling_params & params) {
- std::string result = "CFG -> Penalties ";
- if (params.mirostat == 0) {
- for (auto sampler_type : params.samplers_sequence) {
- const auto sampler_type_name = llama_sampling_type_to_str(sampler_type);
- if (!sampler_type_name.empty()) {
- result += "-> " + sampler_type_name + " ";
- }
- }
- } else {
- result += "-> mirostat ";
- }
- return result;
- }
- std::string llama_sampling_type_to_str(llama_sampler_type sampler_type) {
- switch (sampler_type) {
- case llama_sampler_type::TOP_K: return "top_k";
- case llama_sampler_type::TFS_Z: return "tfs_z";
- case llama_sampler_type::TYPICAL_P: return "typical_p";
- case llama_sampler_type::TOP_P: return "top_p";
- case llama_sampler_type::MIN_P: return "min_p";
- case llama_sampler_type::TEMPERATURE: return "temperature";
- default : return "";
- }
- }
- std::vector<llama_sampler_type> llama_sampling_types_from_names(const std::vector<std::string> & names, bool allow_alt_names) {
- std::unordered_map<std::string, llama_sampler_type> sampler_canonical_name_map {
- {"top_k", llama_sampler_type::TOP_K},
- {"top_p", llama_sampler_type::TOP_P},
- {"typical_p", llama_sampler_type::TYPICAL_P},
- {"min_p", llama_sampler_type::MIN_P},
- {"tfs_z", llama_sampler_type::TFS_Z},
- {"temperature", llama_sampler_type::TEMPERATURE}
- };
- // since samplers names are written multiple ways
- // make it ready for both system names and input names
- std::unordered_map<std::string, llama_sampler_type> sampler_alt_name_map {
- {"top-k", llama_sampler_type::TOP_K},
- {"top-p", llama_sampler_type::TOP_P},
- {"nucleus", llama_sampler_type::TOP_P},
- {"typical-p", llama_sampler_type::TYPICAL_P},
- {"typical", llama_sampler_type::TYPICAL_P},
- {"min-p", llama_sampler_type::MIN_P},
- {"tfs-z", llama_sampler_type::TFS_Z},
- {"tfs", llama_sampler_type::TFS_Z},
- {"temp", llama_sampler_type::TEMPERATURE}
- };
- std::vector<llama_sampler_type> sampler_types;
- sampler_types.reserve(names.size());
- for (const auto & name : names)
- {
- auto sampler_item = sampler_canonical_name_map.find(name);
- if (sampler_item != sampler_canonical_name_map.end())
- {
- sampler_types.push_back(sampler_item->second);
- }
- else
- {
- if (allow_alt_names)
- {
- sampler_item = sampler_alt_name_map.find(name);
- if (sampler_item != sampler_alt_name_map.end())
- {
- sampler_types.push_back(sampler_item->second);
- }
- }
- }
- }
- return sampler_types;
- }
- std::vector<llama_sampler_type> llama_sampling_types_from_chars(const std::string & names_string) {
- std::unordered_map<char, llama_sampler_type> sampler_name_map {
- {'k', llama_sampler_type::TOP_K},
- {'p', llama_sampler_type::TOP_P},
- {'y', llama_sampler_type::TYPICAL_P},
- {'m', llama_sampler_type::MIN_P},
- {'f', llama_sampler_type::TFS_Z},
- {'t', llama_sampler_type::TEMPERATURE}
- };
- std::vector<llama_sampler_type> sampler_types;
- sampler_types.reserve(names_string.size());
- for (const auto & c : names_string) {
- const auto sampler_item = sampler_name_map.find(c);
- if (sampler_item != sampler_name_map.end()) {
- sampler_types.push_back(sampler_item->second);
- }
- }
- return sampler_types;
- }
- // no reasons to expose this function in header
- static void sampler_queue(
- struct llama_context * ctx_main,
- const llama_sampling_params & params,
- llama_token_data_array & cur_p,
- size_t min_keep) {
- const float temp = params.temp;
- const float dynatemp_range = params.dynatemp_range;
- const float dynatemp_exponent = params.dynatemp_exponent;
- const int32_t top_k = params.top_k;
- const float top_p = params.top_p;
- const float min_p = params.min_p;
- const float tfs_z = params.tfs_z;
- const float typical_p = params.typical_p;
- const std::vector<llama_sampler_type> & samplers_sequence = params.samplers_sequence;
- for (auto sampler_type : samplers_sequence) {
- switch (sampler_type) {
- case llama_sampler_type::TOP_K : llama_sample_top_k (ctx_main, &cur_p, top_k, min_keep); break;
- case llama_sampler_type::TFS_Z : llama_sample_tail_free(ctx_main, &cur_p, tfs_z, min_keep); break;
- case llama_sampler_type::TYPICAL_P: llama_sample_typical (ctx_main, &cur_p, typical_p, min_keep); break;
- case llama_sampler_type::TOP_P : llama_sample_top_p (ctx_main, &cur_p, top_p, min_keep); break;
- case llama_sampler_type::MIN_P : llama_sample_min_p (ctx_main, &cur_p, min_p, min_keep); break;
- case llama_sampler_type::TEMPERATURE:
- if (dynatemp_range > 0) {
- float dynatemp_min = std::max(0.0f, temp - dynatemp_range);
- float dynatemp_max = std::max(0.0f, temp + dynatemp_range);
- llama_sample_entropy(ctx_main, &cur_p, dynatemp_min, dynatemp_max, dynatemp_exponent);
- } else {
- llama_sample_temp(ctx_main, &cur_p, temp);
- }
- break;
- default : break;
- }
- }
- }
- static llama_token llama_sampling_sample_impl(
- struct llama_sampling_context * ctx_sampling,
- struct llama_context * ctx_main,
- struct llama_context * ctx_cfg,
- const int idx,
- bool is_resampling) {
- const llama_sampling_params & params = ctx_sampling->params;
- const float temp = params.temp;
- const int mirostat = params.mirostat;
- const float mirostat_tau = params.mirostat_tau;
- const float mirostat_eta = params.mirostat_eta;
- std::vector<float> original_logits;
- auto cur_p = llama_sampling_prepare(ctx_sampling, ctx_main, ctx_cfg, idx, /* apply_grammar= */ is_resampling, &original_logits);
- if (ctx_sampling->grammar != NULL && !is_resampling) {
- GGML_ASSERT(!original_logits.empty());
- }
- llama_token id = 0;
- if (temp < 0.0) {
- // greedy sampling, with probs
- llama_sample_softmax(ctx_main, &cur_p);
- id = cur_p.data[0].id;
- } else if (temp == 0.0) {
- // greedy sampling, no probs
- id = llama_sample_token_greedy(ctx_main, &cur_p);
- } else {
- if (mirostat == 1) {
- const int mirostat_m = 100;
- llama_sample_temp(ctx_main, &cur_p, temp);
- id = llama_sample_token_mirostat(ctx_main, &cur_p, mirostat_tau, mirostat_eta, mirostat_m, &ctx_sampling->mirostat_mu);
- } else if (mirostat == 2) {
- llama_sample_temp(ctx_main, &cur_p, temp);
- id = llama_sample_token_mirostat_v2(ctx_main, &cur_p, mirostat_tau, mirostat_eta, &ctx_sampling->mirostat_mu);
- } else {
- // temperature sampling
- size_t min_keep = std::max(1, params.min_keep);
- sampler_queue(ctx_main, params, cur_p, min_keep);
- id = llama_sample_token_with_rng(ctx_main, &cur_p, ctx_sampling->rng);
- //{
- // const int n_top = 10;
- // LOG("top %d candidates:\n", n_top);
- // for (int i = 0; i < n_top; i++) {
- // const llama_token id = cur_p.data[i].id;
- // (void)id; // To avoid a warning that id is unused when logging is disabled.
- // LOG(" - %5d: '%12s' (%.3f)\n", id, llama_token_to_piece(ctx_main, id).c_str(), cur_p.data[i].p);
- // }
- //}
- //LOG("sampled token: %5d: '%s'\n", id, llama_token_to_piece(ctx_main, id).c_str());
- }
- }
- if (ctx_sampling->grammar != NULL && !is_resampling) {
- // Get a pointer to the logits
- float * logits = llama_get_logits_ith(ctx_main, idx);
- // Create an array with a single token data element for the sampled id
- llama_token_data single_token_data = {id, logits[id], 0.0f};
- llama_token_data_array single_token_data_array = { &single_token_data, 1, false };
- // Apply grammar constraints to the single token
- llama_grammar_sample(ctx_sampling->grammar, ctx_main, &single_token_data_array);
- // Check if the token is valid according to the grammar by seeing if its logit has been set to -INFINITY
- bool is_valid = single_token_data_array.data[0].logit != -INFINITY;
- // If the token is not valid according to the grammar, perform resampling
- if (!is_valid) {
- LOG("Resampling because token %d: '%s' does not meet grammar rules\n", id, llama_token_to_piece(ctx_main, id).c_str());
- // Restore logits from the copy
- std::copy(original_logits.begin(), original_logits.end(), logits);
- return llama_sampling_sample_impl(ctx_sampling, ctx_main, ctx_cfg, idx, /* is_resampling= */ true);
- }
- }
- ctx_sampling->n_valid = temp == 0.0f ? 0 : cur_p.size;
- return id;
- }
- static llama_token_data_array llama_sampling_prepare_impl(
- struct llama_sampling_context * ctx_sampling,
- struct llama_context * ctx_main,
- struct llama_context * ctx_cfg,
- const int idx,
- bool apply_grammar,
- std::vector<float> * original_logits) {
- const llama_sampling_params & params = ctx_sampling->params;
- const int n_vocab = llama_n_vocab(llama_get_model(ctx_main));
- const int32_t penalty_last_n = params.penalty_last_n < 0 ? params.n_prev : params.penalty_last_n;
- const float penalty_repeat = params.penalty_repeat;
- const float penalty_freq = params.penalty_freq;
- const float penalty_present = params.penalty_present;
- const bool penalize_nl = params.penalize_nl;
- auto & prev = ctx_sampling->prev;
- auto & cur = ctx_sampling->cur;
- // Get a pointer to the logits
- float * logits = llama_get_logits_ith(ctx_main, idx);
- if (ctx_sampling->grammar != NULL && !apply_grammar) {
- GGML_ASSERT(original_logits != NULL);
- // Only make a copy of the original logits if we are not applying grammar checks, not sure if I actually have to do this.
- *original_logits = {logits, logits + n_vocab};
- }
- // apply params.logit_bias map
- for (auto it = params.logit_bias.begin(); it != params.logit_bias.end(); it++) {
- logits[it->first] += it->second;
- }
- if (ctx_cfg) {
- float * logits_guidance = llama_get_logits_ith(ctx_cfg, idx);
- llama_sample_apply_guidance(ctx_main, logits, logits_guidance, params.cfg_scale);
- }
- cur.resize(n_vocab);
- for (llama_token token_id = 0; token_id < n_vocab; token_id++) {
- cur[token_id] = llama_token_data{token_id, logits[token_id], 0.0f};
- }
- llama_token_data_array cur_p = { cur.data(), cur.size(), false };
- // apply penalties
- const auto& penalty_tokens = params.use_penalty_prompt_tokens ? params.penalty_prompt_tokens : prev;
- const int penalty_tokens_used_size = std::min((int)penalty_tokens.size(), penalty_last_n);
- if (penalty_tokens_used_size) {
- const float nl_logit = logits[llama_token_nl(llama_get_model(ctx_main))];
- llama_sample_repetition_penalties(ctx_main, &cur_p,
- penalty_tokens.data() + penalty_tokens.size() - penalty_tokens_used_size,
- penalty_tokens_used_size, penalty_repeat, penalty_freq, penalty_present);
- if (!penalize_nl) {
- for (size_t idx = 0; idx < cur_p.size; idx++) {
- if (cur_p.data[idx].id == llama_token_nl(llama_get_model(ctx_main))) {
- cur_p.data[idx].logit = nl_logit;
- break;
- }
- }
- }
- }
- // apply grammar checks before sampling logic
- if (apply_grammar && ctx_sampling->grammar != NULL) {
- llama_grammar_sample(ctx_sampling->grammar, ctx_main, &cur_p);
- }
- return cur_p;
- }
- llama_token llama_sampling_sample(
- struct llama_sampling_context * ctx_sampling,
- struct llama_context * ctx_main,
- struct llama_context * ctx_cfg,
- const int idx) {
- // Call the implementation function with is_resampling set to false by default
- return llama_sampling_sample_impl(ctx_sampling, ctx_main, ctx_cfg, idx, /* is_resampling= */ false);
- }
- llama_token_data_array llama_sampling_prepare(
- struct llama_sampling_context * ctx_sampling,
- struct llama_context * ctx_main,
- struct llama_context * ctx_cfg,
- const int idx,
- bool apply_grammar,
- std::vector<float> * original_logits) {
- return llama_sampling_prepare_impl(ctx_sampling,ctx_main, ctx_cfg, idx, apply_grammar, original_logits);
- }
- void llama_sampling_accept(
- struct llama_sampling_context * ctx_sampling,
- struct llama_context * ctx_main,
- llama_token id,
- bool apply_grammar) {
- ctx_sampling->prev.erase(ctx_sampling->prev.begin());
- ctx_sampling->prev.push_back(id);
- if (ctx_sampling->grammar != NULL && apply_grammar) {
- llama_grammar_accept_token(ctx_sampling->grammar, ctx_main, id);
- }
- }
|