Sin descripción

jmorganca 48de4b56c8 cleanup hace 8 meses
.github 5d604eec5b Bump Go patch version hace 9 meses
api 46e6327e0f api: add stringifier for `Tool` (#5891) hace 9 meses
app 0e4d653687 upate to `llama3.1` elsewhere in repo (#6032) hace 9 meses
auth 0a7fdbe533 prompt to display and add local ollama keys to account (#3717) hace 1 año
cmd 1a83581a8e Merge pull request #5895 from dhiltgen/sched_faq hace 9 meses
convert d835368eb8 convert: capture `head_dim` for mistral (#5818) hace 9 meses
docs 1a83581a8e Merge pull request #5895 from dhiltgen/sched_faq hace 9 meses
envconfig 46c5f5fd9e Runtime selection of new or old runners hace 9 meses
examples 94d37fdcae fix: examples/langchain-python-rag-privategpt/requirements.txt (#3382) hace 10 meses
format e40145a39d lint hace 11 meses
gpu 7c2a157ca4 Ensure amd gpu nodes are numerically sorted hace 9 meses
integration 343aba9fca harden integration tests hace 9 meses
llama 48de4b56c8 cleanup hace 8 meses
llm 46c5f5fd9e Runtime selection of new or old runners hace 9 meses
macapp 0e4d653687 upate to `llama3.1` elsewhere in repo (#6032) hace 9 meses
openai 365431d406 return tool calls finish reason for openai (#5995) hace 9 meses
parser f3d7a481b7 feat: add support for min_p (resolve #1142) (#1825) hace 9 meses
progress e40145a39d lint hace 11 meses
readline 8ce4032e72 more lint hace 11 meses
scripts a48179c340 remove unused script hace 9 meses
server b9db5ab5d0 revert llm changes hace 9 meses
template ec4c35fe99 Merge pull request #5512 from ollama/mxyng/detect-stop hace 9 meses
types 631cfd9e62 types/model: remove knowledge of digest (#5500) hace 10 meses
util cb42e607c5 llm: speed up gguf decoding by a lot (#5246) hace 10 meses
version 2c7f956b38 add version hace 1 año
.dockerignore 5017a15bcb add `macapp` to `.dockerignore` hace 1 año
.gitattributes a2f44f0af5 update `.gitattributes` hace 9 meses
.gitignore 82214396b5 replace static build in `llm` hace 9 meses
.gitmodules fac9060da5 Init submodule with new path hace 1 año
.golangci.yaml 6297f85606 gofmt, goimports hace 11 meses
.prettierrc.json 8685a5ad18 move .prettierrc.json to root hace 1 año
Dockerfile f02f83660c bump go version to 1.22.5 to fix security vulnerabilities hace 9 meses
LICENSE df5fdd6647 `proto` -> `ollama` hace 1 año
README.md f26aef9a8b docs: update README.md (#6059) hace 9 meses
go.mod fb6cbc02fb update named templates hace 10 meses
go.sum 9b6c2e6eb6 detect chat template from KV hace 10 meses
main.go 1b272d5bcd change `github.com/jmorganca/ollama` to `github.com/ollama/ollama` (#3347) hace 1 año

README.md

 ollama

Ollama

Discord

Get up and running with large language models.

macOS

Download

Windows preview

Download

Linux

curl -fsSL https://ollama.com/install.sh | sh

Manual install instructions

Docker

The official Ollama Docker image ollama/ollama is available on Docker Hub.

Libraries

Quickstart

To run and chat with Llama 3.1:

ollama run llama3.1

Model library

Ollama supports a list of models available on ollama.com/library

Here are some example models that can be downloaded:

Model Parameters Size Download
Llama 3.1 8B 4.7GB ollama run llama3.1
Llama 3.1 70B 40GB ollama run llama3.1:70b
Llama 3.1 405B 231GB ollama run llama3.1:405b
Phi 3 Mini 3.8B 2.3GB ollama run phi3
Phi 3 Medium 14B 7.9GB ollama run phi3:medium
Gemma 2 9B 5.5GB ollama run gemma2
Gemma 2 27B 16GB ollama run gemma2:27b
Mistral 7B 4.1GB ollama run mistral
Moondream 2 1.4B 829MB ollama run moondream
Neural Chat 7B 4.1GB ollama run neural-chat
Starling 7B 4.1GB ollama run starling-lm
Code Llama 7B 3.8GB ollama run codellama
Llama 2 Uncensored 7B 3.8GB ollama run llama2-uncensored
LLaVA 7B 4.5GB ollama run llava
Solar 10.7B 6.1GB ollama run solar

[!NOTE] You should have at least 8 GB of RAM available to run the 7B models, 16 GB to run the 13B models, and 32 GB to run the 33B models.

Customize a model

Import from GGUF

Ollama supports importing GGUF models in the Modelfile:

  1. Create a file named Modelfile, with a FROM instruction with the local filepath to the model you want to import.

    FROM ./vicuna-33b.Q4_0.gguf
    
  2. Create the model in Ollama

    ollama create example -f Modelfile
    
  3. Run the model

    ollama run example
    

Import from PyTorch or Safetensors

See the guide on importing models for more information.

Customize a prompt

Models from the Ollama library can be customized with a prompt. For example, to customize the llama3.1 model:

ollama pull llama3.1

Create a Modelfile:

FROM llama3.1

# set the temperature to 1 [higher is more creative, lower is more coherent]
PARAMETER temperature 1

# set the system message
SYSTEM """
You are Mario from Super Mario Bros. Answer as Mario, the assistant, only.
"""

Next, create and run the model:

ollama create mario -f ./Modelfile
ollama run mario
>>> hi
Hello! It's your friend Mario.

For more examples, see the examples directory. For more information on working with a Modelfile, see the Modelfile documentation.

CLI Reference

Create a model

ollama create is used to create a model from a Modelfile.

ollama create mymodel -f ./Modelfile

Pull a model

ollama pull llama3.1

This command can also be used to update a local model. Only the diff will be pulled.

Remove a model

ollama rm llama3.1

Copy a model

ollama cp llama3.1 my-model

Multiline input

For multiline input, you can wrap text with """:

>>> """Hello,
... world!
... """
I'm a basic program that prints the famous "Hello, world!" message to the console.

Multimodal models

>>> What's in this image? /Users/jmorgan/Desktop/smile.png
The image features a yellow smiley face, which is likely the central focus of the picture.

Pass the prompt as an argument

$ ollama run llama3.1 "Summarize this file: $(cat README.md)"
 Ollama is a lightweight, extensible framework for building and running language models on the local machine. It provides a simple API for creating, running, and managing models, as well as a library of pre-built models that can be easily used in a variety of applications.

Show model information

ollama show llama3.1

List models on your computer

ollama list

Start Ollama

ollama serve is used when you want to start ollama without running the desktop application.

Building

See the developer guide

Running local builds

Next, start the server:

./ollama serve

Finally, in a separate shell, run a model:

./ollama run llama3.1

REST API

Ollama has a REST API for running and managing models.

Generate a response

curl http://localhost:11434/api/generate -d '{
  "model": "llama3.1",
  "prompt":"Why is the sky blue?"
}'

Chat with a model

curl http://localhost:11434/api/chat -d '{
  "model": "llama3.1",
  "messages": [
    { "role": "user", "content": "why is the sky blue?" }
  ]
}'

See the API documentation for all endpoints.

Community Integrations

Web & Desktop

Terminal

Database

Package managers

Libraries

Mobile

Extensions & Plugins

Supported backends

  • llama.cpp project founded by Georgi Gerganov.