ggml-backend.c 87 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235223622372238223922402241224222432244224522462247224822492250225122522253225422552256225722582259226022612262226322642265226622672268226922702271227222732274227522762277227822792280228122822283228422852286228722882289229022912292229322942295229622972298229923002301230223032304230523062307230823092310231123122313231423152316231723182319232023212322232323242325
  1. /**
  2. * llama.cpp - commit 3f1ae2e32cde00c39b96be6d01c2997c29bae555 - do not edit this file
  3. *
  4. * MIT License
  5. *
  6. * Copyright (c) 2023-2024 The ggml authors
  7. *
  8. * Permission is hereby granted, free of charge, to any person obtaining a copy
  9. * of this software and associated documentation files (the "Software"), to deal
  10. * in the Software without restriction, including without limitation the rights
  11. * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
  12. * copies of the Software, and to permit persons to whom the Software is
  13. * furnished to do so, subject to the following conditions:
  14. *
  15. * The above copyright notice and this permission notice shall be included in all
  16. * copies or substantial portions of the Software.
  17. *
  18. * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
  19. * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
  20. * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
  21. * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
  22. * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
  23. * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
  24. * SOFTWARE.
  25. */
  26. #include "ggml-backend-impl.h"
  27. #include "ggml-alloc.h"
  28. #include "ggml-impl.h"
  29. #include <assert.h>
  30. #include <limits.h>
  31. #include <stdarg.h>
  32. #include <stdio.h>
  33. #include <stdlib.h>
  34. #include <string.h>
  35. #define MAX(a, b) ((a) > (b) ? (a) : (b))
  36. // backend buffer type
  37. const char * ggml_backend_buft_name(ggml_backend_buffer_type_t buft) {
  38. return buft->iface.get_name(buft);
  39. }
  40. GGML_CALL ggml_backend_buffer_t ggml_backend_buft_alloc_buffer(ggml_backend_buffer_type_t buft, size_t size) {
  41. return buft->iface.alloc_buffer(buft, size);
  42. }
  43. size_t ggml_backend_buft_get_alignment(ggml_backend_buffer_type_t buft) {
  44. return buft->iface.get_alignment(buft);
  45. }
  46. size_t ggml_backend_buft_get_max_size(ggml_backend_buffer_type_t buft) {
  47. // get_max_size is optional, defaults to SIZE_MAX
  48. if (buft->iface.get_max_size) {
  49. return buft->iface.get_max_size(buft);
  50. }
  51. return SIZE_MAX;
  52. }
  53. GGML_CALL size_t ggml_backend_buft_get_alloc_size(ggml_backend_buffer_type_t buft, struct ggml_tensor * tensor) {
  54. // get_alloc_size is optional, defaults to ggml_nbytes
  55. if (buft->iface.get_alloc_size) {
  56. size_t size = buft->iface.get_alloc_size(buft, tensor);
  57. assert(size >= ggml_nbytes(tensor));
  58. return size;
  59. }
  60. return ggml_nbytes(tensor);
  61. }
  62. bool ggml_backend_buft_is_host(ggml_backend_buffer_type_t buft) {
  63. if (buft->iface.is_host) {
  64. return buft->iface.is_host(buft);
  65. }
  66. return false;
  67. }
  68. // backend buffer
  69. GGML_CALL ggml_backend_buffer_t ggml_backend_buffer_init(
  70. ggml_backend_buffer_type_t buft,
  71. struct ggml_backend_buffer_i iface,
  72. ggml_backend_buffer_context_t context,
  73. size_t size) {
  74. ggml_backend_buffer_t buffer = malloc(sizeof(struct ggml_backend_buffer));
  75. (*buffer) = (struct ggml_backend_buffer) {
  76. /* .interface = */ iface,
  77. /* .buft = */ buft,
  78. /* .context = */ context,
  79. /* .size = */ size,
  80. /* .usage = */ GGML_BACKEND_BUFFER_USAGE_ANY
  81. };
  82. return buffer;
  83. }
  84. const char * ggml_backend_buffer_name(ggml_backend_buffer_t buffer) {
  85. return buffer->iface.get_name(buffer);
  86. }
  87. void ggml_backend_buffer_free(ggml_backend_buffer_t buffer) {
  88. if (buffer == NULL) {
  89. return;
  90. }
  91. if (buffer->iface.free_buffer != NULL) {
  92. buffer->iface.free_buffer(buffer);
  93. }
  94. // TODO: this needs to be freed in cuda and hipblas backends because
  95. // the cuda backend implementation compiled with msvc
  96. #if !defined(GGML_USE_CUDA) && !defined(GGML_USE_HIPBLAS)
  97. free(buffer);
  98. #endif
  99. }
  100. size_t ggml_backend_buffer_get_size(ggml_backend_buffer_t buffer) {
  101. return buffer->size;
  102. }
  103. void * ggml_backend_buffer_get_base(ggml_backend_buffer_t buffer) {
  104. void * base = buffer->iface.get_base(buffer);
  105. GGML_ASSERT(base != NULL && "backend buffer base cannot be NULL");
  106. return base;
  107. }
  108. GGML_CALL void ggml_backend_buffer_init_tensor(ggml_backend_buffer_t buffer, struct ggml_tensor * tensor) {
  109. // init_tensor is optional
  110. if (buffer->iface.init_tensor) {
  111. buffer->iface.init_tensor(buffer, tensor);
  112. }
  113. }
  114. size_t ggml_backend_buffer_get_alignment (ggml_backend_buffer_t buffer) {
  115. return ggml_backend_buft_get_alignment(ggml_backend_buffer_get_type(buffer));
  116. }
  117. size_t ggml_backend_buffer_get_max_size(ggml_backend_buffer_t buffer) {
  118. return ggml_backend_buft_get_max_size(ggml_backend_buffer_get_type(buffer));
  119. }
  120. size_t ggml_backend_buffer_get_alloc_size(ggml_backend_buffer_t buffer, struct ggml_tensor * tensor) {
  121. return ggml_backend_buft_get_alloc_size(ggml_backend_buffer_get_type(buffer), tensor);
  122. }
  123. void ggml_backend_buffer_clear(ggml_backend_buffer_t buffer, uint8_t value) {
  124. buffer->iface.clear(buffer, value);
  125. }
  126. bool ggml_backend_buffer_is_host(ggml_backend_buffer_t buffer) {
  127. return ggml_backend_buft_is_host(ggml_backend_buffer_get_type(buffer));
  128. }
  129. void ggml_backend_buffer_set_usage(ggml_backend_buffer_t buffer, enum ggml_backend_buffer_usage usage) {
  130. buffer->usage = usage;
  131. // FIXME: add a generic callback to the buffer interface
  132. if (ggml_backend_buffer_is_multi_buffer(buffer)) {
  133. ggml_backend_multi_buffer_set_usage(buffer, usage);
  134. }
  135. }
  136. enum ggml_backend_buffer_usage ggml_backend_buffer_get_usage(ggml_backend_buffer_t buffer) {
  137. return buffer->usage;
  138. }
  139. ggml_backend_buffer_type_t ggml_backend_buffer_get_type(ggml_backend_buffer_t buffer) {
  140. return buffer->buft;
  141. }
  142. void ggml_backend_buffer_reset(ggml_backend_buffer_t buffer) {
  143. if (buffer->iface.reset) {
  144. buffer->iface.reset(buffer);
  145. }
  146. }
  147. bool ggml_backend_buffer_copy_tensor(const struct ggml_tensor * src, struct ggml_tensor * dst) {
  148. ggml_backend_buffer_t dst_buf = dst->view_src ? dst->view_src->buffer : dst->buffer;
  149. if (dst_buf->iface.cpy_tensor) {
  150. return dst_buf->iface.cpy_tensor(dst_buf, src, dst);
  151. }
  152. return false;
  153. }
  154. // backend
  155. ggml_guid_t ggml_backend_guid(ggml_backend_t backend) {
  156. if (backend == NULL) {
  157. return NULL;
  158. }
  159. return backend->guid;
  160. }
  161. const char * ggml_backend_name(ggml_backend_t backend) {
  162. if (backend == NULL) {
  163. return "NULL";
  164. }
  165. return backend->iface.get_name(backend);
  166. }
  167. void ggml_backend_free(ggml_backend_t backend) {
  168. if (backend == NULL) {
  169. return;
  170. }
  171. backend->iface.free(backend);
  172. }
  173. ggml_backend_buffer_type_t ggml_backend_get_default_buffer_type(ggml_backend_t backend) {
  174. return backend->iface.get_default_buffer_type(backend);
  175. }
  176. ggml_backend_buffer_t ggml_backend_alloc_buffer(ggml_backend_t backend, size_t size) {
  177. return ggml_backend_buft_alloc_buffer(ggml_backend_get_default_buffer_type(backend), size);
  178. }
  179. size_t ggml_backend_get_alignment(ggml_backend_t backend) {
  180. return ggml_backend_buft_get_alignment(ggml_backend_get_default_buffer_type(backend));
  181. }
  182. size_t ggml_backend_get_max_size(ggml_backend_t backend) {
  183. return ggml_backend_buft_get_max_size(ggml_backend_get_default_buffer_type(backend));
  184. }
  185. void ggml_backend_tensor_set_async(ggml_backend_t backend, struct ggml_tensor * tensor, const void * data, size_t offset, size_t size) {
  186. GGML_ASSERT(tensor->data != NULL && "tensor not allocated");
  187. GGML_ASSERT(offset + size <= ggml_nbytes(tensor) && "tensor write out of bounds");
  188. if (backend->iface.set_tensor_async == NULL) {
  189. ggml_backend_tensor_set(tensor, data, offset, size);
  190. } else {
  191. backend->iface.set_tensor_async(backend, tensor, data, offset, size);
  192. }
  193. }
  194. void ggml_backend_tensor_get_async(ggml_backend_t backend, const struct ggml_tensor * tensor, void * data, size_t offset, size_t size) {
  195. GGML_ASSERT(tensor->data != NULL && "tensor not allocated");
  196. GGML_ASSERT(offset + size <= ggml_nbytes(tensor) && "tensor read out of bounds");
  197. if (backend->iface.get_tensor_async == NULL) {
  198. ggml_backend_tensor_get(tensor, data, offset, size);
  199. } else {
  200. backend->iface.get_tensor_async(backend, tensor, data, offset, size);
  201. }
  202. }
  203. GGML_CALL void ggml_backend_tensor_set(struct ggml_tensor * tensor, const void * data, size_t offset, size_t size) {
  204. ggml_backend_buffer_t buf = tensor->view_src ? tensor->view_src->buffer : tensor->buffer;
  205. GGML_ASSERT(buf != NULL && "tensor buffer not set");
  206. GGML_ASSERT(tensor->data != NULL && "tensor not allocated");
  207. GGML_ASSERT(offset + size <= ggml_nbytes(tensor) && "tensor write out of bounds");
  208. if (!size) {
  209. return;
  210. }
  211. buf->iface.set_tensor(buf, tensor, data, offset, size);
  212. }
  213. GGML_CALL void ggml_backend_tensor_get(const struct ggml_tensor * tensor, void * data, size_t offset, size_t size) {
  214. ggml_backend_buffer_t buf = tensor->view_src ? tensor->view_src->buffer : tensor->buffer;
  215. GGML_ASSERT(buf != NULL && "tensor buffer not set");
  216. GGML_ASSERT(tensor->data != NULL && "tensor not allocated");
  217. GGML_ASSERT(offset + size <= ggml_nbytes(tensor) && "tensor read out of bounds");
  218. if (!size) {
  219. return;
  220. }
  221. buf->iface.get_tensor(buf, tensor, data, offset, size);
  222. }
  223. GGML_API GGML_CALL void ggml_backend_tensor_memset(struct ggml_tensor * tensor, uint8_t value, size_t offset, size_t size) {
  224. ggml_backend_buffer_t buf = tensor->view_src ? tensor->view_src->buffer : tensor->buffer;
  225. GGML_ASSERT(buf != NULL && "tensor buffer not set");
  226. GGML_ASSERT(tensor->data != NULL && "tensor not allocated");
  227. GGML_ASSERT(offset + size <= ggml_nbytes(tensor) && "tensor write out of bounds");
  228. if (!size) {
  229. return;
  230. }
  231. GGML_ASSERT(buf->iface.memset_tensor != NULL && "memset not supported by backend buffer");
  232. buf->iface.memset_tensor(buf, tensor, value, offset, size);
  233. }
  234. void ggml_backend_synchronize(ggml_backend_t backend) {
  235. if (backend->iface.synchronize == NULL) {
  236. return;
  237. }
  238. backend->iface.synchronize(backend);
  239. }
  240. ggml_backend_graph_plan_t ggml_backend_graph_plan_create(ggml_backend_t backend, struct ggml_cgraph * cgraph) {
  241. GGML_ASSERT(backend->iface.graph_plan_create != NULL);
  242. return backend->iface.graph_plan_create(backend, cgraph);
  243. }
  244. void ggml_backend_graph_plan_free(ggml_backend_t backend, ggml_backend_graph_plan_t plan) {
  245. GGML_ASSERT(backend->iface.graph_plan_free != NULL);
  246. backend->iface.graph_plan_free(backend, plan);
  247. }
  248. enum ggml_status ggml_backend_graph_plan_compute(ggml_backend_t backend, ggml_backend_graph_plan_t plan) {
  249. GGML_ASSERT(backend->iface.graph_plan_compute != NULL);
  250. return backend->iface.graph_plan_compute(backend, plan);
  251. }
  252. enum ggml_status ggml_backend_graph_compute(ggml_backend_t backend, struct ggml_cgraph * cgraph) {
  253. enum ggml_status err = ggml_backend_graph_compute_async(backend, cgraph);
  254. ggml_backend_synchronize(backend);
  255. return err;
  256. }
  257. enum ggml_status ggml_backend_graph_compute_async(ggml_backend_t backend, struct ggml_cgraph * cgraph) {
  258. return backend->iface.graph_compute(backend, cgraph);
  259. }
  260. bool ggml_backend_supports_op(ggml_backend_t backend, const struct ggml_tensor * op) {
  261. return backend->iface.supports_op(backend, op);
  262. }
  263. bool ggml_backend_supports_buft(ggml_backend_t backend, ggml_backend_buffer_type_t buft) {
  264. return backend->iface.supports_buft(backend, buft);
  265. }
  266. bool ggml_backend_offload_op(ggml_backend_t backend, const struct ggml_tensor * op) {
  267. if (backend->iface.offload_op != NULL) {
  268. return backend->iface.offload_op(backend, op);
  269. }
  270. return false;
  271. }
  272. // backend copy
  273. static bool ggml_are_same_layout(const struct ggml_tensor * a, const struct ggml_tensor * b) {
  274. if (a->type != b->type) {
  275. return false;
  276. }
  277. for (int i = 0; i < GGML_MAX_DIMS; i++) {
  278. if (a->ne[i] != b->ne[i]) {
  279. return false;
  280. }
  281. if (a->nb[i] != b->nb[i]) {
  282. return false;
  283. }
  284. }
  285. return true;
  286. }
  287. void ggml_backend_tensor_copy(struct ggml_tensor * src, struct ggml_tensor * dst) {
  288. GGML_ASSERT(ggml_are_same_layout(src, dst) && "cannot copy tensors with different layouts");
  289. if (src == dst) {
  290. return;
  291. }
  292. if (ggml_backend_buffer_is_host(src->buffer)) {
  293. ggml_backend_tensor_set(dst, src->data, 0, ggml_nbytes(src));
  294. } else if (ggml_backend_buffer_is_host(dst->buffer)) {
  295. ggml_backend_tensor_get(src, dst->data, 0, ggml_nbytes(src));
  296. } else if (!ggml_backend_buffer_copy_tensor(src, dst)) {
  297. #ifndef NDEBUG
  298. fprintf(stderr, "%s: warning: slow copy from %s to %s\n", __func__, ggml_backend_buffer_name(src->buffer), ggml_backend_buffer_name(dst->buffer));
  299. #endif
  300. size_t nbytes = ggml_nbytes(src);
  301. void * data = malloc(nbytes);
  302. ggml_backend_tensor_get(src, data, 0, nbytes);
  303. ggml_backend_tensor_set(dst, data, 0, nbytes);
  304. free(data);
  305. }
  306. }
  307. void ggml_backend_tensor_copy_async(ggml_backend_t backend_src, ggml_backend_t backend_dst, struct ggml_tensor * src, struct ggml_tensor * dst) {
  308. GGML_ASSERT(ggml_are_same_layout(src, dst) && "cannot copy tensors with different layouts");
  309. if (src == dst) {
  310. return;
  311. }
  312. if (backend_dst->iface.cpy_tensor_async != NULL) {
  313. if (backend_dst->iface.cpy_tensor_async(backend_src, backend_dst, src, dst)) {
  314. return;
  315. }
  316. }
  317. // an async copy would normally happen after all the queued operations on both backends are completed
  318. // to simulate the same behavior, we need to synchronize both backends first, and do a blocking copy
  319. ggml_backend_synchronize(backend_src);
  320. ggml_backend_synchronize(backend_dst);
  321. ggml_backend_tensor_copy(src, dst);
  322. }
  323. // events
  324. ggml_backend_event_t ggml_backend_event_new(ggml_backend_t backend) {
  325. if (backend->iface.event_new == NULL) {
  326. return NULL;
  327. }
  328. return backend->iface.event_new(backend);
  329. }
  330. void ggml_backend_event_free(ggml_backend_event_t event) {
  331. if (event == NULL) {
  332. return;
  333. }
  334. event->backend->iface.event_free(event);
  335. }
  336. void ggml_backend_event_record(ggml_backend_event_t event) {
  337. GGML_ASSERT(event->backend->iface.event_record != NULL);
  338. event->backend->iface.event_record(event);
  339. }
  340. void ggml_backend_event_synchronize(ggml_backend_event_t event) {
  341. GGML_ASSERT(event->backend->iface.event_synchronize != NULL);
  342. event->backend->iface.event_synchronize(event);
  343. }
  344. void ggml_backend_event_wait(ggml_backend_t backend, ggml_backend_event_t event) {
  345. GGML_ASSERT(backend->iface.event_wait != NULL);
  346. backend->iface.event_wait(backend, event);
  347. }
  348. // backend registry
  349. #define GGML_REG_MAX_BACKENDS 64
  350. struct ggml_backend_reg {
  351. char name[128];
  352. ggml_backend_init_fn init_fn;
  353. ggml_backend_buffer_type_t default_buffer_type;
  354. void * user_data;
  355. };
  356. static struct ggml_backend_reg ggml_backend_registry[GGML_REG_MAX_BACKENDS];
  357. static size_t ggml_backend_registry_count = 0;
  358. GGML_CALL static ggml_backend_t ggml_backend_reg_cpu_init(const char * params, void * user_data);
  359. GGML_CALL static void ggml_backend_registry_init(void) {
  360. static bool initialized = false;
  361. if (initialized) {
  362. return;
  363. }
  364. initialized = true;
  365. ggml_backend_register("CPU", ggml_backend_reg_cpu_init, ggml_backend_cpu_buffer_type(), NULL);
  366. // add forward decls here to avoid including the backend headers
  367. #ifdef GGML_USE_CUDA
  368. extern GGML_CALL void ggml_backend_cuda_reg_devices(void);
  369. ggml_backend_cuda_reg_devices();
  370. #endif
  371. #ifdef GGML_USE_SYCL
  372. extern void ggml_backend_sycl_reg_devices(void);
  373. ggml_backend_sycl_reg_devices();
  374. #endif
  375. #ifdef GGML_USE_METAL
  376. extern GGML_CALL ggml_backend_t ggml_backend_reg_metal_init(const char * params, void * user_data);
  377. extern GGML_CALL ggml_backend_buffer_type_t ggml_backend_metal_buffer_type(void);
  378. ggml_backend_register("Metal", ggml_backend_reg_metal_init, ggml_backend_metal_buffer_type(), NULL);
  379. #endif
  380. #ifdef GGML_USE_VULKAN
  381. extern GGML_CALL int ggml_backend_vk_reg_devices(void);
  382. ggml_backend_vk_reg_devices();
  383. #endif
  384. #ifdef GGML_USE_KOMPUTE
  385. extern GGML_CALL void ggml_backend_kompute_reg_devices(void);
  386. ggml_backend_kompute_reg_devices();
  387. #endif
  388. #ifdef GGML_USE_CANN
  389. extern GGML_CALL int ggml_backend_cann_reg_devices(void);
  390. ggml_backend_cann_reg_devices();
  391. #endif
  392. }
  393. GGML_CALL void ggml_backend_register(const char * name, ggml_backend_init_fn init_fn, ggml_backend_buffer_type_t default_buffer_type, void * user_data) {
  394. GGML_ASSERT(ggml_backend_registry_count < GGML_REG_MAX_BACKENDS);
  395. size_t id = ggml_backend_registry_count;
  396. ggml_backend_registry[id] = (struct ggml_backend_reg) {
  397. /* .name = */ {0},
  398. /* .fn = */ init_fn,
  399. /* .default_buffer_type = */ default_buffer_type,
  400. /* .user_data = */ user_data,
  401. };
  402. snprintf(ggml_backend_registry[id].name, sizeof(ggml_backend_registry[id].name), "%s", name);
  403. #ifndef NDEBUG
  404. fprintf(stderr, "%s: registered backend %s\n", __func__, name);
  405. #endif
  406. ggml_backend_registry_count++;
  407. }
  408. size_t ggml_backend_reg_get_count(void) {
  409. ggml_backend_registry_init();
  410. return ggml_backend_registry_count;
  411. }
  412. size_t ggml_backend_reg_find_by_name(const char * name) {
  413. ggml_backend_registry_init();
  414. for (size_t i = 0; i < ggml_backend_registry_count; i++) {
  415. // TODO: case insensitive in a portable way
  416. if (strcmp(ggml_backend_registry[i].name, name) == 0) {
  417. return i;
  418. }
  419. }
  420. // not found
  421. return SIZE_MAX;
  422. }
  423. // init from backend:params string
  424. ggml_backend_t ggml_backend_reg_init_backend_from_str(const char * backend_str) {
  425. ggml_backend_registry_init();
  426. const char * params = strchr(backend_str, ':');
  427. char backend_name[128];
  428. if (params == NULL) {
  429. snprintf(backend_name, sizeof(backend_name), "%s", backend_str);
  430. params = "";
  431. } else {
  432. snprintf(backend_name, sizeof(backend_name), "%.*s", (int)(params - backend_str), backend_str);
  433. params++;
  434. }
  435. size_t backend_i = ggml_backend_reg_find_by_name(backend_name);
  436. if (backend_i == SIZE_MAX) {
  437. fprintf(stderr, "%s: backend %s not found\n", __func__, backend_name);
  438. return NULL;
  439. }
  440. return ggml_backend_reg_init_backend(backend_i, params);
  441. }
  442. const char * ggml_backend_reg_get_name(size_t i) {
  443. ggml_backend_registry_init();
  444. GGML_ASSERT(i < ggml_backend_registry_count);
  445. return ggml_backend_registry[i].name;
  446. }
  447. ggml_backend_t ggml_backend_reg_init_backend(size_t i, const char * params) {
  448. ggml_backend_registry_init();
  449. GGML_ASSERT(i < ggml_backend_registry_count);
  450. return ggml_backend_registry[i].init_fn(params, ggml_backend_registry[i].user_data);
  451. }
  452. ggml_backend_buffer_type_t ggml_backend_reg_get_default_buffer_type(size_t i) {
  453. ggml_backend_registry_init();
  454. GGML_ASSERT(i < ggml_backend_registry_count);
  455. return ggml_backend_registry[i].default_buffer_type;
  456. }
  457. ggml_backend_buffer_t ggml_backend_reg_alloc_buffer(size_t i, size_t size) {
  458. ggml_backend_registry_init();
  459. GGML_ASSERT(i < ggml_backend_registry_count);
  460. return ggml_backend_buft_alloc_buffer(ggml_backend_registry[i].default_buffer_type, size);
  461. }
  462. // backend CPU
  463. static const size_t TENSOR_ALIGNMENT = 32; // required for mmap as gguf only guarantees 32-byte alignment
  464. GGML_CALL static const char * ggml_backend_cpu_buffer_name(ggml_backend_buffer_t buffer) {
  465. return "CPU";
  466. GGML_UNUSED(buffer);
  467. }
  468. GGML_CALL static void * ggml_backend_cpu_buffer_get_base(ggml_backend_buffer_t buffer) {
  469. uintptr_t data = (uintptr_t)buffer->context;
  470. // align the buffer
  471. if (data % TENSOR_ALIGNMENT != 0) {
  472. data = GGML_PAD(data, TENSOR_ALIGNMENT);
  473. }
  474. return (void *)data;
  475. }
  476. GGML_CALL static void ggml_backend_cpu_buffer_free_buffer(ggml_backend_buffer_t buffer) {
  477. free(buffer->context);
  478. }
  479. GGML_CALL static void ggml_backend_cpu_buffer_memset_tensor(ggml_backend_buffer_t buffer, struct ggml_tensor * tensor, uint8_t value, size_t offset, size_t size) {
  480. memset((char *)tensor->data + offset, value, size);
  481. GGML_UNUSED(buffer);
  482. }
  483. GGML_CALL static void ggml_backend_cpu_buffer_set_tensor(ggml_backend_buffer_t buffer, struct ggml_tensor * tensor, const void * data, size_t offset, size_t size) {
  484. memcpy((char *)tensor->data + offset, data, size);
  485. GGML_UNUSED(buffer);
  486. }
  487. GGML_CALL static void ggml_backend_cpu_buffer_get_tensor(ggml_backend_buffer_t buffer, const struct ggml_tensor * tensor, void * data, size_t offset, size_t size) {
  488. memcpy(data, (const char *)tensor->data + offset, size);
  489. GGML_UNUSED(buffer);
  490. }
  491. GGML_CALL static bool ggml_backend_cpu_buffer_cpy_tensor(ggml_backend_buffer_t buffer, const struct ggml_tensor * src, struct ggml_tensor * dst) {
  492. if (ggml_backend_buffer_is_host(src->buffer)) {
  493. memcpy(dst->data, src->data, ggml_nbytes(src));
  494. return true;
  495. }
  496. return false;
  497. GGML_UNUSED(buffer);
  498. }
  499. GGML_CALL static void ggml_backend_cpu_buffer_clear(ggml_backend_buffer_t buffer, uint8_t value) {
  500. memset(buffer->context, value, buffer->size);
  501. }
  502. static struct ggml_backend_buffer_i cpu_backend_buffer_i = {
  503. /* .get_name = */ ggml_backend_cpu_buffer_name,
  504. /* .free_buffer = */ ggml_backend_cpu_buffer_free_buffer,
  505. /* .get_base = */ ggml_backend_cpu_buffer_get_base,
  506. /* .init_tensor = */ NULL, // no initialization required
  507. /* .memset_tensor = */ ggml_backend_cpu_buffer_memset_tensor,
  508. /* .set_tensor = */ ggml_backend_cpu_buffer_set_tensor,
  509. /* .get_tensor = */ ggml_backend_cpu_buffer_get_tensor,
  510. /* .cpy_tensor = */ ggml_backend_cpu_buffer_cpy_tensor,
  511. /* .clear = */ ggml_backend_cpu_buffer_clear,
  512. /* .reset = */ NULL,
  513. };
  514. // for buffers from ptr, free is not called
  515. static struct ggml_backend_buffer_i cpu_backend_buffer_i_from_ptr = {
  516. /* .get_name = */ ggml_backend_cpu_buffer_name,
  517. /* .free_buffer = */ NULL, // ptr is not owned by the buffer, so it does not need to be freed
  518. /* .get_base = */ ggml_backend_cpu_buffer_get_base,
  519. /* .init_tensor = */ NULL, // no initialization required
  520. /* .memset_tensor = */ ggml_backend_cpu_buffer_memset_tensor,
  521. /* .set_tensor = */ ggml_backend_cpu_buffer_set_tensor,
  522. /* .get_tensor = */ ggml_backend_cpu_buffer_get_tensor,
  523. /* .cpy_tensor = */ ggml_backend_cpu_buffer_cpy_tensor,
  524. /* .clear = */ ggml_backend_cpu_buffer_clear,
  525. /* .reset = */ NULL,
  526. };
  527. GGML_CALL static const char * ggml_backend_cpu_buffer_type_get_name(ggml_backend_buffer_type_t buft) {
  528. return "CPU";
  529. GGML_UNUSED(buft);
  530. }
  531. GGML_CALL static ggml_backend_buffer_t ggml_backend_cpu_buffer_type_alloc_buffer(ggml_backend_buffer_type_t buft, size_t size) {
  532. size += TENSOR_ALIGNMENT; // malloc may return an address that is not aligned
  533. void * data = malloc(size); // TODO: use GGML_ALIGNED_MALLOC (move to ggml-impl.h)
  534. if (data == NULL) {
  535. fprintf(stderr, "%s: failed to allocate buffer of size %zu\n", __func__, size);
  536. return NULL;
  537. }
  538. return ggml_backend_buffer_init(buft, cpu_backend_buffer_i, data, size);
  539. }
  540. GGML_CALL static size_t ggml_backend_cpu_buffer_type_get_alignment(ggml_backend_buffer_type_t buft) {
  541. return TENSOR_ALIGNMENT;
  542. GGML_UNUSED(buft);
  543. }
  544. GGML_CALL static bool ggml_backend_cpu_buffer_type_is_host(ggml_backend_buffer_type_t buft) {
  545. return true;
  546. GGML_UNUSED(buft);
  547. }
  548. GGML_CALL ggml_backend_buffer_type_t ggml_backend_cpu_buffer_type(void) {
  549. static struct ggml_backend_buffer_type ggml_backend_cpu_buffer_type = {
  550. /* .iface = */ {
  551. /* .get_name = */ ggml_backend_cpu_buffer_type_get_name,
  552. /* .alloc_buffer = */ ggml_backend_cpu_buffer_type_alloc_buffer,
  553. /* .get_alignment = */ ggml_backend_cpu_buffer_type_get_alignment,
  554. /* .get_max_size = */ NULL, // defaults to SIZE_MAX
  555. /* .get_alloc_size = */ NULL, // defaults to ggml_nbytes
  556. /* .is_host = */ ggml_backend_cpu_buffer_type_is_host,
  557. },
  558. /* .context = */ NULL,
  559. };
  560. return &ggml_backend_cpu_buffer_type;
  561. }
  562. #ifdef GGML_USE_CPU_HBM
  563. // buffer type HBM
  564. #include <hbwmalloc.h>
  565. GGML_CALL static const char * ggml_backend_cpu_hbm_buffer_type_get_name(ggml_backend_buffer_type_t buft) {
  566. return "CPU_HBM";
  567. GGML_UNUSED(buft);
  568. }
  569. GGML_CALL static const char * ggml_backend_cpu_hbm_buffer_get_name(ggml_backend_buffer_t buf) {
  570. return "CPU_HBM";
  571. GGML_UNUSED(buf);
  572. }
  573. GGML_CALL static void ggml_backend_cpu_hbm_buffer_free_buffer(ggml_backend_buffer_t buffer) {
  574. hbw_free(buffer->context);
  575. }
  576. GGML_CALL static ggml_backend_buffer_t ggml_backend_cpu_hbm_buffer_type_alloc_buffer(ggml_backend_buffer_type_t buft, size_t size) {
  577. //void * ptr = hbw_malloc(size);
  578. void * ptr;
  579. int result = hbw_posix_memalign(&ptr, ggml_backend_cpu_buffer_type_get_alignment(buft), size);
  580. if (result != 0) {
  581. fprintf(stderr, "failed to allocate HBM buffer of size %zu\n", size);
  582. return NULL;
  583. }
  584. ggml_backend_buffer_t buffer = ggml_backend_cpu_buffer_from_ptr(ptr, size);
  585. buffer->buft = buft;
  586. buffer->iface.get_name = ggml_backend_cpu_hbm_buffer_get_name;
  587. buffer->iface.free_buffer = ggml_backend_cpu_hbm_buffer_free_buffer;
  588. return buffer;
  589. }
  590. ggml_backend_buffer_type_t ggml_backend_cpu_hbm_buffer_type(void) {
  591. static struct ggml_backend_buffer_type ggml_backend_cpu_buffer_type_hbm = {
  592. /* .iface = */ {
  593. /* .get_name = */ ggml_backend_cpu_hbm_buffer_type_get_name,
  594. /* .alloc_buffer = */ ggml_backend_cpu_hbm_buffer_type_alloc_buffer,
  595. /* .get_alignment = */ ggml_backend_cpu_buffer_type_get_alignment,
  596. /* .get_max_size = */ NULL, // defaults to SIZE_MAX
  597. /* .get_alloc_size = */ NULL, // defaults to ggml_nbytes
  598. /* .is_host = */ ggml_backend_cpu_buffer_type_is_host,
  599. },
  600. /* .context = */ NULL,
  601. };
  602. return &ggml_backend_cpu_buffer_type_hbm;
  603. }
  604. #endif
  605. struct ggml_backend_cpu_context {
  606. int n_threads;
  607. ggml_threadpool_t threadpool;
  608. void * work_data;
  609. size_t work_size;
  610. ggml_abort_callback abort_callback;
  611. void * abort_callback_data;
  612. };
  613. GGML_CALL static const char * ggml_backend_cpu_name(ggml_backend_t backend) {
  614. return "CPU";
  615. GGML_UNUSED(backend);
  616. }
  617. GGML_CALL static void ggml_backend_cpu_free(ggml_backend_t backend) {
  618. struct ggml_backend_cpu_context * cpu_ctx = (struct ggml_backend_cpu_context *)backend->context;
  619. free(cpu_ctx->work_data);
  620. free(cpu_ctx);
  621. free(backend);
  622. }
  623. GGML_CALL static ggml_backend_buffer_type_t ggml_backend_cpu_get_default_buffer_type(ggml_backend_t backend) {
  624. return ggml_backend_cpu_buffer_type();
  625. GGML_UNUSED(backend);
  626. }
  627. struct ggml_backend_plan_cpu {
  628. struct ggml_cplan cplan;
  629. struct ggml_cgraph cgraph;
  630. };
  631. GGML_CALL static ggml_backend_graph_plan_t ggml_backend_cpu_graph_plan_create(ggml_backend_t backend, const struct ggml_cgraph * cgraph) {
  632. struct ggml_backend_cpu_context * cpu_ctx = (struct ggml_backend_cpu_context *)backend->context;
  633. struct ggml_backend_plan_cpu * cpu_plan = malloc(sizeof(struct ggml_backend_plan_cpu));
  634. cpu_plan->cplan = ggml_graph_plan(cgraph, cpu_ctx->n_threads, cpu_ctx->threadpool);
  635. cpu_plan->cgraph = *cgraph; // FIXME: deep copy
  636. if (cpu_plan->cplan.work_size > 0) {
  637. cpu_plan->cplan.work_data = malloc(cpu_plan->cplan.work_size);
  638. if (cpu_plan->cplan.work_data == NULL) {
  639. free(cpu_plan);
  640. return NULL;
  641. }
  642. }
  643. cpu_plan->cplan.abort_callback = cpu_ctx->abort_callback;
  644. cpu_plan->cplan.abort_callback_data = cpu_ctx->abort_callback_data;
  645. return cpu_plan;
  646. }
  647. GGML_CALL static void ggml_backend_cpu_graph_plan_free(ggml_backend_t backend, ggml_backend_graph_plan_t plan) {
  648. struct ggml_backend_plan_cpu * cpu_plan = (struct ggml_backend_plan_cpu *)plan;
  649. free(cpu_plan->cplan.work_data);
  650. free(cpu_plan);
  651. GGML_UNUSED(backend);
  652. }
  653. GGML_CALL static enum ggml_status ggml_backend_cpu_graph_plan_compute(ggml_backend_t backend, ggml_backend_graph_plan_t plan) {
  654. struct ggml_backend_plan_cpu * cpu_plan = (struct ggml_backend_plan_cpu *)plan;
  655. return ggml_graph_compute(&cpu_plan->cgraph, &cpu_plan->cplan);
  656. GGML_UNUSED(backend);
  657. }
  658. GGML_CALL static enum ggml_status ggml_backend_cpu_graph_compute(ggml_backend_t backend, struct ggml_cgraph * cgraph) {
  659. struct ggml_backend_cpu_context * cpu_ctx = (struct ggml_backend_cpu_context *)backend->context;
  660. struct ggml_cplan cplan = ggml_graph_plan(cgraph, cpu_ctx->n_threads, cpu_ctx->threadpool);
  661. if (cpu_ctx->work_size < cplan.work_size) {
  662. free(cpu_ctx->work_data);
  663. cpu_ctx->work_data = malloc(cplan.work_size);
  664. if (cpu_ctx->work_data == NULL) {
  665. cpu_ctx->work_size = 0;
  666. return GGML_STATUS_ALLOC_FAILED;
  667. }
  668. cpu_ctx->work_size = cplan.work_size;
  669. }
  670. cplan.work_data = cpu_ctx->work_data;
  671. cplan.abort_callback = cpu_ctx->abort_callback;
  672. cplan.abort_callback_data = cpu_ctx->abort_callback_data;
  673. return ggml_graph_compute(cgraph, &cplan);
  674. }
  675. GGML_CALL static bool ggml_backend_cpu_supports_op(ggml_backend_t backend, const struct ggml_tensor * op) {
  676. switch (op->op) {
  677. case GGML_OP_CPY:
  678. return
  679. op->type != GGML_TYPE_IQ2_XXS &&
  680. op->type != GGML_TYPE_IQ2_XS &&
  681. op->type != GGML_TYPE_IQ1_S &&
  682. op->type != GGML_TYPE_IQ1_M; // missing type_traits.from_float
  683. case GGML_OP_MUL_MAT:
  684. return op->src[1]->type == GGML_TYPE_F32 || op->src[1]->type == ggml_internal_get_type_traits(op->src[0]->type).vec_dot_type;
  685. case GGML_OP_ROPE_BACK:
  686. return op->src[2] == NULL && (op->op_params[2] & 4) == 0;
  687. case GGML_OP_IM2COL_BACK:
  688. return op->src[0]->type == GGML_TYPE_F32 && op->src[1]->type == GGML_TYPE_F32;
  689. default:
  690. return true;
  691. }
  692. GGML_UNUSED(backend);
  693. }
  694. GGML_CALL static bool ggml_backend_cpu_supports_buft(ggml_backend_t backend, ggml_backend_buffer_type_t buft) {
  695. return ggml_backend_buft_is_host(buft);
  696. GGML_UNUSED(backend);
  697. }
  698. static struct ggml_backend_i cpu_backend_i = {
  699. /* .get_name = */ ggml_backend_cpu_name,
  700. /* .free = */ ggml_backend_cpu_free,
  701. /* .get_default_buffer_type = */ ggml_backend_cpu_get_default_buffer_type,
  702. /* .set_tensor_async = */ NULL,
  703. /* .get_tensor_async = */ NULL,
  704. /* .cpy_tensor_async = */ NULL,
  705. /* .synchronize = */ NULL,
  706. /* .graph_plan_create = */ ggml_backend_cpu_graph_plan_create,
  707. /* .graph_plan_free = */ ggml_backend_cpu_graph_plan_free,
  708. /* .graph_plan_update = */ NULL,
  709. /* .graph_plan_compute = */ ggml_backend_cpu_graph_plan_compute,
  710. /* .graph_compute = */ ggml_backend_cpu_graph_compute,
  711. /* .supports_op = */ ggml_backend_cpu_supports_op,
  712. /* .supports_buft = */ ggml_backend_cpu_supports_buft,
  713. /* .offload_op = */ NULL,
  714. /* .event_new = */ NULL,
  715. /* .event_free = */ NULL,
  716. /* .event_record = */ NULL,
  717. /* .event_wait = */ NULL,
  718. /* .event_synchronize = */ NULL,
  719. };
  720. static ggml_guid_t ggml_backend_cpu_guid(void) {
  721. static ggml_guid guid = { 0xaa, 0x67, 0xc7, 0x43, 0x96, 0xe6, 0xa3, 0x8a, 0xe3, 0xaf, 0xea, 0x92, 0x36, 0xbc, 0xfc, 0x89 };
  722. return &guid;
  723. }
  724. ggml_backend_t ggml_backend_cpu_init(void) {
  725. struct ggml_backend_cpu_context * ctx = malloc(sizeof(struct ggml_backend_cpu_context));
  726. if (ctx == NULL) {
  727. return NULL;
  728. }
  729. ctx->n_threads = GGML_DEFAULT_N_THREADS;
  730. ctx->threadpool = NULL;
  731. ctx->work_data = NULL;
  732. ctx->work_size = 0;
  733. ctx->abort_callback = NULL;
  734. ctx->abort_callback_data = NULL;
  735. ggml_backend_t cpu_backend = malloc(sizeof(struct ggml_backend));
  736. if (cpu_backend == NULL) {
  737. free(ctx);
  738. return NULL;
  739. }
  740. *cpu_backend = (struct ggml_backend) {
  741. /* .guid = */ ggml_backend_cpu_guid(),
  742. /* .interface = */ cpu_backend_i,
  743. /* .context = */ ctx
  744. };
  745. return cpu_backend;
  746. }
  747. GGML_CALL bool ggml_backend_is_cpu(ggml_backend_t backend) {
  748. return backend != NULL && ggml_guid_matches(backend->guid, ggml_backend_cpu_guid());
  749. }
  750. void ggml_backend_cpu_set_n_threads(ggml_backend_t backend_cpu, int n_threads) {
  751. GGML_ASSERT(ggml_backend_is_cpu(backend_cpu));
  752. struct ggml_backend_cpu_context * ctx = (struct ggml_backend_cpu_context *)backend_cpu->context;
  753. ctx->n_threads = n_threads;
  754. }
  755. void ggml_backend_cpu_set_threadpool(ggml_backend_t backend_cpu, ggml_threadpool_t threadpool) {
  756. GGML_ASSERT(ggml_backend_is_cpu(backend_cpu));
  757. struct ggml_backend_cpu_context * ctx = (struct ggml_backend_cpu_context *)backend_cpu->context;
  758. if (ctx->threadpool && ctx->threadpool != threadpool) {
  759. // already had a different threadpool, pause/suspend it before switching
  760. ggml_threadpool_pause(ctx->threadpool);
  761. }
  762. ctx->threadpool = threadpool;
  763. }
  764. void ggml_backend_cpu_set_abort_callback(ggml_backend_t backend_cpu, ggml_abort_callback abort_callback, void * abort_callback_data) {
  765. GGML_ASSERT(ggml_backend_is_cpu(backend_cpu));
  766. struct ggml_backend_cpu_context * ctx = (struct ggml_backend_cpu_context *)backend_cpu->context;
  767. ctx->abort_callback = abort_callback;
  768. ctx->abort_callback_data = abort_callback_data;
  769. }
  770. GGML_CALL ggml_backend_buffer_t ggml_backend_cpu_buffer_from_ptr(void * ptr, size_t size) {
  771. GGML_ASSERT((uintptr_t)ptr % TENSOR_ALIGNMENT == 0 && "buffer pointer must be aligned");
  772. return ggml_backend_buffer_init(ggml_backend_cpu_buffer_type(), cpu_backend_buffer_i_from_ptr, ptr, size);
  773. }
  774. GGML_CALL static ggml_backend_t ggml_backend_reg_cpu_init(const char * params, void * user_data) {
  775. return ggml_backend_cpu_init();
  776. GGML_UNUSED(params);
  777. GGML_UNUSED(user_data);
  778. }
  779. // multi-buffer buffer
  780. struct ggml_backend_multi_buffer_context {
  781. ggml_backend_buffer_t * buffers;
  782. size_t n_buffers;
  783. };
  784. typedef struct ggml_backend_multi_buffer_context * ggml_backend_multi_buffer_context_t;
  785. GGML_CALL static const char * ggml_backend_multi_buffer_get_name(ggml_backend_buffer_t buffer) {
  786. ggml_backend_multi_buffer_context_t ctx = (ggml_backend_multi_buffer_context_t) buffer->context;
  787. return ctx->buffers[0]->iface.get_name(ctx->buffers[0]);
  788. }
  789. GGML_CALL static void ggml_backend_multi_buffer_free_buffer(ggml_backend_buffer_t buffer) {
  790. ggml_backend_multi_buffer_context_t ctx = (ggml_backend_multi_buffer_context_t) buffer->context;
  791. for (size_t i = 0; i < ctx->n_buffers; i++) {
  792. ggml_backend_buffer_free(ctx->buffers[i]);
  793. }
  794. free(ctx->buffers);
  795. free(ctx);
  796. }
  797. GGML_CALL static void ggml_backend_multi_buffer_clear(ggml_backend_buffer_t buffer, uint8_t value) {
  798. ggml_backend_multi_buffer_context_t ctx = (ggml_backend_multi_buffer_context_t) buffer->context;
  799. for (size_t i = 0; i < ctx->n_buffers; i++) {
  800. ggml_backend_buffer_clear(ctx->buffers[i], value);
  801. }
  802. }
  803. static struct ggml_backend_buffer_i ggml_backend_multi_buffer_context_interface(void) {
  804. static struct ggml_backend_buffer_i multi_backend_buffer_i = {
  805. /* .get_name = */ ggml_backend_multi_buffer_get_name,
  806. /* .free_buffer = */ ggml_backend_multi_buffer_free_buffer,
  807. /* .get_base = */ NULL,
  808. /* .init_tensor = */ NULL,
  809. /* .memset_tensor = */ NULL,
  810. /* .set_tensor = */ NULL,
  811. /* .get_tensor = */ NULL,
  812. /* .cpy_tensor = */ NULL,
  813. /* .clear = */ ggml_backend_multi_buffer_clear,
  814. /* .reset = */ NULL,
  815. };
  816. return multi_backend_buffer_i;
  817. }
  818. GGML_CALL ggml_backend_buffer_t ggml_backend_multi_buffer_alloc_buffer(ggml_backend_buffer_t * buffers, size_t n_buffers) {
  819. ggml_backend_multi_buffer_context_t ctx = (ggml_backend_multi_buffer_context_t) malloc(sizeof(struct ggml_backend_multi_buffer_context));
  820. ctx->n_buffers = n_buffers;
  821. ctx->buffers = (ggml_backend_buffer_t *) malloc(n_buffers * sizeof(ggml_backend_buffer_t));
  822. GGML_ASSERT(ctx->buffers != NULL);
  823. size_t total_size = 0;
  824. for (size_t i = 0; i < n_buffers; i++) {
  825. ctx->buffers[i] = buffers[i];
  826. total_size += ggml_backend_buffer_get_size(buffers[i]);
  827. }
  828. return ggml_backend_buffer_init(buffers[0]->buft, ggml_backend_multi_buffer_context_interface(), ctx, total_size);
  829. }
  830. GGML_CALL bool ggml_backend_buffer_is_multi_buffer(ggml_backend_buffer_t buffer) {
  831. return buffer->iface.get_name == ggml_backend_multi_buffer_get_name;
  832. }
  833. GGML_CALL void ggml_backend_multi_buffer_set_usage(ggml_backend_buffer_t buffer, enum ggml_backend_buffer_usage usage) {
  834. GGML_ASSERT(ggml_backend_buffer_is_multi_buffer(buffer));
  835. ggml_backend_multi_buffer_context_t ctx = (ggml_backend_multi_buffer_context_t) buffer->context;
  836. for (size_t i = 0; i < ctx->n_buffers; i++) {
  837. ggml_backend_buffer_set_usage(ctx->buffers[i], usage);
  838. }
  839. }
  840. // creates a copy of the tensor with the same memory layout
  841. static struct ggml_tensor * ggml_dup_tensor_layout(struct ggml_context * ctx, const struct ggml_tensor * tensor) {
  842. struct ggml_tensor * dup = ggml_dup_tensor(ctx, tensor);
  843. for (int i = 0; i < GGML_MAX_DIMS; i++) {
  844. dup->nb[i] = tensor->nb[i];
  845. }
  846. return dup;
  847. }
  848. static bool ggml_is_view_op(enum ggml_op op) {
  849. return op == GGML_OP_VIEW || op == GGML_OP_RESHAPE || op == GGML_OP_PERMUTE || op == GGML_OP_TRANSPOSE;
  850. }
  851. // scheduler
  852. #ifndef GGML_SCHED_MAX_BACKENDS
  853. #define GGML_SCHED_MAX_BACKENDS 16
  854. #endif
  855. #ifndef GGML_SCHED_MAX_SPLIT_INPUTS
  856. #define GGML_SCHED_MAX_SPLIT_INPUTS GGML_MAX_SRC
  857. #endif
  858. #ifndef GGML_SCHED_MAX_COPIES
  859. #define GGML_SCHED_MAX_COPIES 4
  860. #endif
  861. struct ggml_backend_sched_split {
  862. int backend_id;
  863. int i_start;
  864. int i_end;
  865. struct ggml_tensor * inputs[GGML_SCHED_MAX_SPLIT_INPUTS];
  866. int n_inputs;
  867. // graph view of this split
  868. struct ggml_cgraph graph;
  869. };
  870. struct ggml_backend_sched {
  871. bool is_reset; // true if the scheduler has been reset since the last graph split
  872. bool is_alloc;
  873. int n_backends;
  874. ggml_backend_t backends[GGML_SCHED_MAX_BACKENDS];
  875. ggml_backend_buffer_type_t bufts[GGML_SCHED_MAX_BACKENDS];
  876. ggml_gallocr_t galloc;
  877. // hash map of the nodes in the graph
  878. struct ggml_hash_set hash_set;
  879. int * hv_tensor_backend_ids; // [hash_set.size]
  880. struct ggml_tensor ** hv_tensor_copies; // [hash_set.size][n_backends][n_copies]
  881. int * node_backend_ids; // [graph_size]
  882. int * leaf_backend_ids; // [graph_size]
  883. int * prev_node_backend_ids; // [graph_size]
  884. int * prev_leaf_backend_ids; // [graph_size]
  885. // copy of the graph with modified inputs
  886. struct ggml_cgraph graph;
  887. // graph splits
  888. struct ggml_backend_sched_split * splits;
  889. int n_splits;
  890. int splits_capacity;
  891. // pipeline parallelism support
  892. int n_copies;
  893. int cur_copy;
  894. ggml_backend_event_t events[GGML_SCHED_MAX_BACKENDS][GGML_SCHED_MAX_COPIES];
  895. struct ggml_tensor * graph_inputs[GGML_SCHED_MAX_SPLIT_INPUTS];
  896. int n_graph_inputs;
  897. struct ggml_context * ctx;
  898. ggml_backend_sched_eval_callback callback_eval;
  899. void * callback_eval_user_data;
  900. char * context_buffer;
  901. size_t context_buffer_size;
  902. bool debug;
  903. };
  904. #define hash_id(tensor) ggml_hash_find_or_insert(&sched->hash_set, tensor)
  905. #define tensor_backend_id(tensor) sched->hv_tensor_backend_ids[hash_id(tensor)]
  906. #define tensor_id_copy(id, backend_id, copy_id) sched->hv_tensor_copies[(id) * sched->n_backends * sched->n_copies + (backend_id) * sched->n_copies + (copy_id)]
  907. #define tensor_copy(tensor, backend_id, copy_id) tensor_id_copy(hash_id(tensor), backend_id, copy_id)
  908. // returns the priority of the backend, lower id is higher priority
  909. static int ggml_backend_sched_backend_id(ggml_backend_sched_t sched, ggml_backend_t backend) {
  910. for (int i = 0; i < sched->n_backends; i++) {
  911. if (sched->backends[i] == backend) {
  912. return i;
  913. }
  914. }
  915. return -1;
  916. }
  917. static int ggml_backend_sched_backend_from_buffer(ggml_backend_sched_t sched, const struct ggml_tensor * tensor, const struct ggml_tensor * op) {
  918. ggml_backend_buffer_t buffer = tensor->buffer;
  919. if (buffer == NULL) {
  920. return -1;
  921. }
  922. // find highest prio backend that supports the buffer type and the op
  923. for (int i = 0; i < sched->n_backends; i++) {
  924. if (ggml_backend_supports_buft(sched->backends[i], buffer->buft) &&
  925. ggml_backend_supports_op(sched->backends[i], op)) {
  926. return i;
  927. }
  928. }
  929. #ifndef NDEBUG
  930. fprintf(stderr, "%s: warning: no backend supports op %s with a weight with buffer type %s used in tensor %s, the weight will need to be copied\n",
  931. __func__, ggml_op_desc(tensor), ggml_backend_buffer_name(buffer), tensor->name);
  932. #endif
  933. return -1;
  934. }
  935. #if 0
  936. #define GGML_SCHED_MAX_SPLITS_DEBUG 4096
  937. static char causes[GGML_DEFAULT_GRAPH_SIZE*16 + GGML_SCHED_MAX_SPLITS_DEBUG*GGML_SCHED_MAX_SPLIT_INPUTS][128]; // debug only
  938. #define SET_CAUSE(node, ...) sprintf(causes[hash_id(node)], __VA_ARGS__)
  939. #define GET_CAUSE(node) causes[hash_id(node)]
  940. #else
  941. #define SET_CAUSE(node, ...)
  942. #define GET_CAUSE(node) ""
  943. #endif
  944. // returns the backend that should be used for the node based on the current locations
  945. static int ggml_backend_sched_backend_id_from_cur(ggml_backend_sched_t sched, struct ggml_tensor * tensor) {
  946. // TODO: use supports_op to check if the backend supports the op
  947. // assign pre-allocated nodes to their backend
  948. int cur_backend_id = ggml_backend_sched_backend_from_buffer(sched, tensor, tensor);
  949. if (cur_backend_id != -1) {
  950. SET_CAUSE(tensor, "1.dst");
  951. return cur_backend_id;
  952. }
  953. // view_src
  954. if (tensor->view_src != NULL) {
  955. cur_backend_id = ggml_backend_sched_backend_from_buffer(sched, tensor->view_src, tensor);
  956. if (cur_backend_id != -1) {
  957. SET_CAUSE(tensor, "1.vsrc");
  958. return cur_backend_id;
  959. }
  960. }
  961. if (tensor->buffer || (tensor->view_src && tensor->view_src->buffer)) {
  962. // since the tensor is pre-allocated, it cannot be moved to another backend
  963. GGML_ABORT("pre-allocated tensor in a backend that cannot run the operation");
  964. }
  965. // graph input
  966. if (tensor->flags & GGML_TENSOR_FLAG_INPUT) {
  967. cur_backend_id = sched->n_backends - 1; // last backend (assumed CPU)
  968. SET_CAUSE(tensor, "1.inp");
  969. return cur_backend_id;
  970. }
  971. // operations with weights are preferably run on the same backend as the weights
  972. for (int i = 0; i < GGML_MAX_SRC; i++) {
  973. const struct ggml_tensor * src = tensor->src[i];
  974. if (src == NULL) {
  975. continue;
  976. }
  977. if (src->buffer != NULL && src->buffer->usage == GGML_BACKEND_BUFFER_USAGE_WEIGHTS) {
  978. int src_backend_id = ggml_backend_sched_backend_from_buffer(sched, src, tensor);
  979. // check if a backend with higher prio wants to offload the op
  980. if (src_backend_id == sched->n_backends - 1) {
  981. for (int b = 0; b < src_backend_id; b++) {
  982. if (ggml_backend_supports_op(sched->backends[b], tensor) && ggml_backend_offload_op(sched->backends[b], tensor)) {
  983. SET_CAUSE(tensor, "1.off");
  984. return b;
  985. }
  986. }
  987. }
  988. SET_CAUSE(tensor, "1.wgt%d", i);
  989. return src_backend_id;
  990. }
  991. }
  992. return -1;
  993. }
  994. static char * fmt_size(size_t size) {
  995. static char buffer[128];
  996. if (size >= 1024*1024) {
  997. snprintf(buffer, sizeof(buffer), "%zuM", size/1024/1024);
  998. } else {
  999. snprintf(buffer, sizeof(buffer), "%zuK", size/1024);
  1000. }
  1001. return buffer;
  1002. }
  1003. static void ggml_backend_sched_print_assignments(ggml_backend_sched_t sched, struct ggml_cgraph * graph) {
  1004. int cur_split = 0;
  1005. for (int i = 0; i < graph->n_nodes; i++) {
  1006. if (cur_split < sched->n_splits && i == sched->splits[cur_split].i_start) {
  1007. ggml_backend_t split_backend = sched->backends[sched->splits[cur_split].backend_id];
  1008. fprintf(stderr, "\n## SPLIT #%d: %s # %d inputs: ", cur_split, ggml_backend_name(split_backend),
  1009. sched->splits[cur_split].n_inputs);
  1010. for (int j = 0; j < sched->splits[cur_split].n_inputs; j++) {
  1011. fprintf(stderr, "[%s (%5.5s)] ", sched->splits[cur_split].inputs[j]->name,
  1012. fmt_size(ggml_nbytes(sched->splits[cur_split].inputs[j])));
  1013. }
  1014. fprintf(stderr, "\n");
  1015. cur_split++;
  1016. }
  1017. struct ggml_tensor * node = graph->nodes[i];
  1018. if (ggml_is_view_op(node->op)) {
  1019. continue;
  1020. }
  1021. ggml_backend_t tensor_backend = ggml_backend_sched_get_tensor_backend(sched, node);
  1022. fprintf(stderr, "node #%3d (%10.10s): %20.20s (%5.5s) [%5.5s %8.8s]:", i, ggml_op_name(node->op), node->name,
  1023. fmt_size(ggml_nbytes(node)), tensor_backend ? ggml_backend_name(tensor_backend) : "NULL", GET_CAUSE(node));
  1024. for (int j = 0; j < GGML_MAX_SRC; j++) {
  1025. struct ggml_tensor * src = node->src[j];
  1026. if (src == NULL) {
  1027. continue;
  1028. }
  1029. ggml_backend_t src_backend = ggml_backend_sched_get_tensor_backend(sched, src);
  1030. fprintf(stderr, " %20.20s (%5.5s) [%5.5s %8.8s]", src->name,
  1031. fmt_size(ggml_nbytes(src)), src_backend ? ggml_backend_name(src_backend) : "NULL", GET_CAUSE(src));
  1032. }
  1033. fprintf(stderr, "\n");
  1034. }
  1035. }
  1036. static bool ggml_backend_sched_buffer_supported(ggml_backend_sched_t sched, struct ggml_tensor * t, int backend_id) {
  1037. ggml_backend_buffer_t buf = t->view_src ? t->view_src->buffer : t->buffer;
  1038. ggml_backend_buffer_type_t buft = NULL;
  1039. if (buf) {
  1040. // the tensor is already allocated
  1041. buft = buf->buft;
  1042. } else {
  1043. // see if the tensor already has a backend assigned, and use the buffer type of that backend
  1044. int tensor_backend_id = tensor_backend_id(t);
  1045. if (tensor_backend_id == -1 && t->view_src) {
  1046. tensor_backend_id = tensor_backend_id(t->view_src);
  1047. }
  1048. if (tensor_backend_id != -1) {
  1049. buft = sched->bufts[tensor_backend_id];
  1050. }
  1051. }
  1052. return buft != NULL && ggml_backend_supports_buft(sched->backends[backend_id], buft);
  1053. }
  1054. static void ggml_backend_sched_set_if_supported(ggml_backend_sched_t sched, struct ggml_tensor * node, int cur_backend_id, int * node_backend_id) {
  1055. if (ggml_backend_supports_op(sched->backends[cur_backend_id], node)) {
  1056. *node_backend_id = cur_backend_id;
  1057. SET_CAUSE(node, "2.sup");
  1058. }
  1059. }
  1060. // assigns backends to ops and splits the graph into subgraphs that can be computed on the same backend
  1061. static void ggml_backend_sched_split_graph(ggml_backend_sched_t sched, struct ggml_cgraph * graph) {
  1062. // reset splits
  1063. sched->n_splits = 0;
  1064. sched->n_graph_inputs = 0;
  1065. sched->is_reset = false;
  1066. struct ggml_init_params params = {
  1067. /* .mem_size = */ sched->context_buffer_size,
  1068. /* .mem_buffer = */ sched->context_buffer,
  1069. /* .no_alloc = */ true
  1070. };
  1071. ggml_free(sched->ctx);
  1072. sched->ctx = ggml_init(params);
  1073. if (sched->ctx == NULL) {
  1074. GGML_ABORT("%s: failed to initialize context\n", __func__);
  1075. }
  1076. // pass 1: assign backends to ops with pre-allocated inputs
  1077. for (int i = 0; i < graph->n_leafs; i++) {
  1078. struct ggml_tensor * leaf = graph->leafs[i];
  1079. int * leaf_backend_id = &tensor_backend_id(leaf);
  1080. // do not overwrite user assignments
  1081. if (*leaf_backend_id == -1) {
  1082. *leaf_backend_id = ggml_backend_sched_backend_id_from_cur(sched, leaf);
  1083. }
  1084. }
  1085. for (int i = 0; i < graph->n_nodes; i++) {
  1086. struct ggml_tensor * node = graph->nodes[i];
  1087. int * node_backend_id = &tensor_backend_id(node);
  1088. // do not overwrite user assignments
  1089. if (*node_backend_id == -1) {
  1090. *node_backend_id = ggml_backend_sched_backend_id_from_cur(sched, node);
  1091. #if 0
  1092. // src
  1093. if (node->op == GGML_OP_NONE) {
  1094. continue;
  1095. }
  1096. for (int j = 0; j < GGML_MAX_SRC; j++) {
  1097. struct ggml_tensor * src = node->src[j];
  1098. if (src == NULL) {
  1099. continue;
  1100. }
  1101. int * src_backend_id = &tensor_backend_id(src);
  1102. if (*src_backend_id == -1) {
  1103. *src_backend_id = ggml_backend_sched_backend_id_from_cur(sched, src);
  1104. }
  1105. }
  1106. #endif
  1107. }
  1108. }
  1109. // pass 2: expand current backend assignments
  1110. // assign the same backend to adjacent nodes
  1111. // expand gpu backends (i.e. non last prio) up and down, ignoring cpu (the lowest priority backend)
  1112. // thus, cpu will never be used unless weights are on cpu, or there are no gpu ops between cpu ops
  1113. // ops unsupported by the backend being expanded will be left unassigned so that they can be assigned later when the locations of its inputs are known
  1114. // expand gpu down
  1115. {
  1116. int cur_backend_id = -1;
  1117. for (int i = 0; i < graph->n_nodes; i++) {
  1118. struct ggml_tensor * node = graph->nodes[i];
  1119. if (ggml_is_view_op(node->op)) {
  1120. continue;
  1121. }
  1122. int * node_backend_id = &tensor_backend_id(node);
  1123. if (*node_backend_id != -1) {
  1124. if (*node_backend_id == sched->n_backends - 1) {
  1125. // skip cpu (lowest prio backend)
  1126. cur_backend_id = -1;
  1127. } else {
  1128. cur_backend_id = *node_backend_id;
  1129. }
  1130. } else if (cur_backend_id != -1) {
  1131. ggml_backend_sched_set_if_supported(sched, node, cur_backend_id, node_backend_id);
  1132. }
  1133. }
  1134. }
  1135. // expand gpu up
  1136. {
  1137. int cur_backend_id = -1;
  1138. for (int i = graph->n_nodes - 1; i >= 0; i--) {
  1139. struct ggml_tensor * node = graph->nodes[i];
  1140. if (ggml_is_view_op(node->op)) {
  1141. continue;
  1142. }
  1143. int * node_backend_id = &tensor_backend_id(node);
  1144. if (*node_backend_id != -1) {
  1145. if (*node_backend_id == sched->n_backends - 1) {
  1146. // skip cpu (lowest prio backend)
  1147. cur_backend_id = -1;
  1148. } else {
  1149. cur_backend_id = *node_backend_id;
  1150. }
  1151. } else if (cur_backend_id != -1) {
  1152. ggml_backend_sched_set_if_supported(sched, node, cur_backend_id, node_backend_id);
  1153. }
  1154. }
  1155. }
  1156. // expand rest down
  1157. {
  1158. int cur_backend_id = -1;
  1159. for (int i = 0; i < graph->n_nodes; i++) {
  1160. struct ggml_tensor * node = graph->nodes[i];
  1161. if (ggml_is_view_op(node->op)) {
  1162. continue;
  1163. }
  1164. int * node_backend_id = &tensor_backend_id(node);
  1165. if (*node_backend_id != -1) {
  1166. cur_backend_id = *node_backend_id;
  1167. } else if (cur_backend_id != -1) {
  1168. ggml_backend_sched_set_if_supported(sched, node, cur_backend_id, node_backend_id);
  1169. }
  1170. }
  1171. }
  1172. // expand rest up
  1173. {
  1174. int cur_backend_id = -1;
  1175. for (int i = graph->n_nodes - 1; i >= 0; i--) {
  1176. struct ggml_tensor * node = graph->nodes[i];
  1177. if (ggml_is_view_op(node->op)) {
  1178. continue;
  1179. }
  1180. int * node_backend_id = &tensor_backend_id(node);
  1181. if (*node_backend_id != -1) {
  1182. cur_backend_id = *node_backend_id;
  1183. } else if (cur_backend_id != -1) {
  1184. ggml_backend_sched_set_if_supported(sched, node, cur_backend_id, node_backend_id);
  1185. }
  1186. }
  1187. }
  1188. // pass 3: upgrade nodes to higher prio backends with compatible buffer types
  1189. // if the tensor is already in the same buffer type (*) as another higher priority backend, we should move it there
  1190. // however, we also need to verify that the sources are in compatible buffer types
  1191. // (*) the actual requirement is more relaxed, the buffer type of the backend should be supported by all the users of this tensor further down the graph
  1192. // however, this is slow to verify, so we have a more strict requirement that the buffer type is the same
  1193. // this is not uncommon since multiple backends can use host memory, with the same buffer type (eg. BLAS and CPU)
  1194. // additionally, set remaining unassigned nodes to the backend with the most supported inputs
  1195. // only nodes that could not be assigned during expansion due to the backend not supporting the op should be unassigned at this point
  1196. for (int i = 0; i < graph->n_nodes; i++) {
  1197. struct ggml_tensor * node = graph->nodes[i];
  1198. if (ggml_is_view_op(node->op)) {
  1199. continue;
  1200. }
  1201. int * node_backend_id = &tensor_backend_id(node);
  1202. if (*node_backend_id == -1) {
  1203. // unassigned node: find the backend with the most supported inputs
  1204. int n_supported_best = -1;
  1205. for (int b = 0; b < sched->n_backends; b++) {
  1206. if (ggml_backend_supports_op(sched->backends[b], node)) {
  1207. int n_supported = 0;
  1208. for (int j = 0; j < GGML_MAX_SRC; j++) {
  1209. struct ggml_tensor * src = node->src[j];
  1210. if (src == NULL) {
  1211. continue;
  1212. }
  1213. if ((tensor_backend_id(src) != -1 || tensor_backend_id(src->view_src) != -1) && ggml_backend_sched_buffer_supported(sched, src, b)) {
  1214. n_supported++;
  1215. }
  1216. }
  1217. if (n_supported > n_supported_best) {
  1218. n_supported_best = n_supported;
  1219. *node_backend_id = b;
  1220. SET_CAUSE(node, "3.best");
  1221. }
  1222. }
  1223. }
  1224. } else {
  1225. // assigned node: upgrade to higher prio backend if possible
  1226. for (int b = 0; b < *node_backend_id; b++) {
  1227. if (sched->bufts[b] == sched->bufts[*node_backend_id] && ggml_backend_supports_op(sched->backends[b], node)) {
  1228. bool supported = true;
  1229. for (int j = 0; j < GGML_MAX_SRC; j++) {
  1230. struct ggml_tensor * src = node->src[j];
  1231. if (src == NULL) {
  1232. continue;
  1233. }
  1234. if (!ggml_backend_sched_buffer_supported(sched, src, b)) {
  1235. supported = false;
  1236. break;
  1237. }
  1238. }
  1239. if (supported) {
  1240. *node_backend_id = b;
  1241. SET_CAUSE(node, "3.upg");
  1242. break;
  1243. }
  1244. }
  1245. }
  1246. }
  1247. }
  1248. // pass 4: assign backends to remaining src from dst and view_src
  1249. for (int i = 0; i < graph->n_nodes; i++) {
  1250. struct ggml_tensor * node = graph->nodes[i];
  1251. int * cur_backend_id = &tensor_backend_id(node);
  1252. if (node->view_src != NULL && *cur_backend_id == -1) {
  1253. *cur_backend_id = tensor_backend_id(node->view_src);
  1254. SET_CAUSE(node, "4.vsrc");
  1255. }
  1256. for (int j = 0; j < GGML_MAX_SRC; j++) {
  1257. struct ggml_tensor * src = node->src[j];
  1258. if (src == NULL) {
  1259. continue;
  1260. }
  1261. int * src_backend_id = &tensor_backend_id(src);
  1262. if (*src_backend_id == -1) {
  1263. if (src->view_src != NULL) {
  1264. // views are always on the same backend as the source
  1265. *src_backend_id = tensor_backend_id(src->view_src);
  1266. SET_CAUSE(src, "4.vsrc");
  1267. } else {
  1268. *src_backend_id = *cur_backend_id;
  1269. SET_CAUSE(src, "4.cur");
  1270. }
  1271. }
  1272. }
  1273. }
  1274. // pass 5: split graph, find tensors that need to be copied
  1275. {
  1276. int i_split = 0;
  1277. struct ggml_backend_sched_split * split = &sched->splits[0];
  1278. // find the backend of the first split, skipping view ops
  1279. int i = 0;
  1280. for (; i < graph->n_nodes; i++) {
  1281. struct ggml_tensor * node = graph->nodes[i];
  1282. if (!ggml_is_view_op(node->op)) {
  1283. split->backend_id = tensor_backend_id(node);
  1284. break;
  1285. }
  1286. }
  1287. split->i_start = 0;
  1288. split->n_inputs = 0;
  1289. int cur_backend_id = split->backend_id;
  1290. for (; i < graph->n_nodes; i++) {
  1291. struct ggml_tensor * node = graph->nodes[i];
  1292. if (ggml_is_view_op(node->op)) {
  1293. continue;
  1294. }
  1295. const int node_backend_id = tensor_backend_id(node);
  1296. assert(node_backend_id != -1); // all nodes should be assigned by now
  1297. // check if we should start a new split based on the sources of the current node
  1298. bool need_new_split = false;
  1299. if (node_backend_id == cur_backend_id && split->n_inputs > 0) {
  1300. for (int j = 0; j < GGML_MAX_SRC; j++) {
  1301. struct ggml_tensor * src = node->src[j];
  1302. if (src == NULL) {
  1303. continue;
  1304. }
  1305. // check if a weight is on a different backend
  1306. // by starting a new split, the memory of the previously offloaded weights can be reused
  1307. if (src->buffer != NULL && src->buffer->usage == GGML_BACKEND_BUFFER_USAGE_WEIGHTS) {
  1308. int src_backend_id = tensor_backend_id(src);
  1309. if (src_backend_id != cur_backend_id) {
  1310. need_new_split = true;
  1311. break;
  1312. }
  1313. }
  1314. // check if the split has too many inputs
  1315. // FIXME: count the number of inputs instead of only checking when full
  1316. if (split->n_inputs == GGML_SCHED_MAX_SPLIT_INPUTS) {
  1317. const size_t id = hash_id(src);
  1318. int src_backend_id = sched->hv_tensor_backend_ids[id];
  1319. bool supported = ggml_backend_sched_buffer_supported(sched, src, cur_backend_id);
  1320. if (src_backend_id != cur_backend_id && tensor_id_copy(id, cur_backend_id, 0) == NULL && !supported) {
  1321. //printf("starting new split because of too many inputs: node %s, input %s\n", node->name, src->name);
  1322. need_new_split = true;
  1323. break;
  1324. }
  1325. }
  1326. }
  1327. }
  1328. if (node_backend_id != cur_backend_id || need_new_split) {
  1329. split->i_end = i;
  1330. i_split++;
  1331. if (i_split >= sched->splits_capacity) {
  1332. sched->splits_capacity *= 2;
  1333. sched->splits = realloc(sched->splits, sched->splits_capacity * sizeof(struct ggml_backend_sched_split));
  1334. GGML_ASSERT(sched->splits != NULL);
  1335. }
  1336. split = &sched->splits[i_split];
  1337. split->backend_id = node_backend_id;
  1338. split->i_start = i;
  1339. split->n_inputs = 0;
  1340. cur_backend_id = node_backend_id;
  1341. }
  1342. // find inputs that are not on the same backend
  1343. for (int j = 0; j < GGML_MAX_SRC; j++) {
  1344. struct ggml_tensor * src = node->src[j];
  1345. if (src == NULL) {
  1346. continue;
  1347. }
  1348. size_t src_id = hash_id(src);
  1349. const int src_backend_id = sched->hv_tensor_backend_ids[src_id];
  1350. assert(src_backend_id != -1); // all inputs should be assigned by now
  1351. if (src->flags & GGML_TENSOR_FLAG_INPUT && sched->n_copies > 1) {
  1352. if (tensor_id_copy(src_id, src_backend_id, 0) == NULL) {
  1353. ggml_backend_t backend = sched->backends[src_backend_id];
  1354. for (int c = 0; c < sched->n_copies; c++) {
  1355. struct ggml_tensor * tensor_copy;
  1356. if (c == sched->cur_copy) {
  1357. tensor_copy = src; // use the original tensor as the current copy
  1358. } else {
  1359. tensor_copy = ggml_dup_tensor_layout(sched->ctx, src);
  1360. ggml_format_name(tensor_copy, "%s#%s#%d", ggml_backend_name(backend), src->name, c);
  1361. }
  1362. if (sched->n_copies > 1) {
  1363. ggml_set_input(tensor_copy);
  1364. ggml_set_output(tensor_copy); // prevent ggml-alloc from overwriting the tensor
  1365. }
  1366. tensor_id_copy(src_id, src_backend_id, c) = tensor_copy;
  1367. SET_CAUSE(tensor_copy, "4.cpy");
  1368. }
  1369. int n_graph_inputs = sched->n_graph_inputs++;
  1370. GGML_ASSERT(n_graph_inputs < GGML_SCHED_MAX_SPLIT_INPUTS);
  1371. sched->graph_inputs[n_graph_inputs] = src;
  1372. }
  1373. }
  1374. if (src_backend_id != cur_backend_id && !ggml_backend_sched_buffer_supported(sched, src, cur_backend_id)) {
  1375. // create a copy of the input in the split's backend
  1376. if (tensor_id_copy(src_id, cur_backend_id, 0) == NULL) {
  1377. ggml_backend_t backend = sched->backends[cur_backend_id];
  1378. for (int c = 0; c < sched->n_copies; c++) {
  1379. struct ggml_tensor * tensor_copy = ggml_dup_tensor_layout(sched->ctx, src);
  1380. ggml_format_name(tensor_copy, "%s#%s#%d", ggml_backend_name(backend), src->name, c);
  1381. if (sched->n_copies > 1) {
  1382. ggml_set_input(tensor_copy);
  1383. ggml_set_output(tensor_copy); // prevent ggml-alloc from overwriting the tensor
  1384. }
  1385. tensor_id_copy(src_id, cur_backend_id, c) = tensor_copy;
  1386. SET_CAUSE(tensor_copy, "4.cpy");
  1387. }
  1388. int n_inputs = split->n_inputs++;
  1389. GGML_ASSERT(n_inputs < GGML_SCHED_MAX_SPLIT_INPUTS);
  1390. split->inputs[n_inputs] = src;
  1391. }
  1392. node->src[j] = tensor_id_copy(src_id, cur_backend_id, sched->cur_copy);
  1393. }
  1394. }
  1395. }
  1396. split->i_end = graph->n_nodes;
  1397. sched->n_splits = i_split + 1;
  1398. }
  1399. if (sched->debug) {
  1400. ggml_backend_sched_print_assignments(sched, graph);
  1401. }
  1402. // swap node_backend_ids and leaf _backend_ids with prevs
  1403. {
  1404. int * tmp = sched->node_backend_ids;
  1405. sched->node_backend_ids = sched->prev_node_backend_ids;
  1406. sched->prev_node_backend_ids = tmp;
  1407. tmp = sched->leaf_backend_ids;
  1408. sched->leaf_backend_ids = sched->prev_leaf_backend_ids;
  1409. sched->prev_leaf_backend_ids = tmp;
  1410. }
  1411. int graph_size = MAX(graph->n_nodes, graph->n_leafs) + sched->n_splits*GGML_SCHED_MAX_SPLIT_INPUTS*2*sched->n_copies;
  1412. if (sched->graph.size < graph_size) {
  1413. sched->graph.size = graph_size;
  1414. sched->graph.nodes = realloc(sched->graph.nodes, graph_size * sizeof(struct ggml_tensor *));
  1415. sched->graph.leafs = realloc(sched->graph.leafs, graph_size * sizeof(struct ggml_tensor *));
  1416. GGML_ASSERT(sched->graph.nodes != NULL);
  1417. GGML_ASSERT(sched->graph.leafs != NULL);
  1418. }
  1419. sched->graph.n_nodes = 0;
  1420. sched->graph.n_leafs = 0;
  1421. struct ggml_cgraph * graph_copy = &sched->graph;
  1422. for (int i = 0; i < sched->n_splits; i++) {
  1423. struct ggml_backend_sched_split * split = &sched->splits[i];
  1424. split->graph = ggml_graph_view(graph, split->i_start, split->i_end);
  1425. // add inputs to the graph copy so that they are allocated by ggml-alloc at the start of the split
  1426. for (int j = 0; j < split->n_inputs; j++) {
  1427. assert(graph_copy->size > (graph_copy->n_nodes + 1));
  1428. struct ggml_tensor * input = split->inputs[j];
  1429. const size_t input_id = hash_id(input);
  1430. struct ggml_tensor * input_cpy = tensor_id_copy(input_id, split->backend_id, sched->cur_copy);
  1431. // add a dependency to the input source so that it is not freed before the copy is done
  1432. struct ggml_tensor * input_dep = ggml_view_tensor(sched->ctx, input);
  1433. input_dep->src[0] = input;
  1434. sched->node_backend_ids[graph_copy->n_nodes] = sched->hv_tensor_backend_ids[input_id];
  1435. graph_copy->nodes[graph_copy->n_nodes++] = input_dep;
  1436. // add a dependency to the input copy so that it is allocated at the start of the split
  1437. sched->node_backend_ids[graph_copy->n_nodes] = split->backend_id;
  1438. graph_copy->nodes[graph_copy->n_nodes++] = input_cpy;
  1439. }
  1440. for (int j = split->i_start; j < split->i_end; j++) {
  1441. assert(graph_copy->size > graph_copy->n_nodes);
  1442. sched->node_backend_ids[graph_copy->n_nodes] = tensor_backend_id(graph->nodes[j]);
  1443. graph_copy->nodes[graph_copy->n_nodes++] = graph->nodes[j];
  1444. }
  1445. }
  1446. if (sched->n_copies > 1) {
  1447. // add input copies as leafs so that they are allocated first
  1448. for (int i = 0; i < sched->n_graph_inputs; i++) {
  1449. struct ggml_tensor * input = sched->graph_inputs[i];
  1450. size_t id = hash_id(input);
  1451. int backend_id = tensor_backend_id(input);
  1452. for (int c = 0; c < sched->n_copies; c++) {
  1453. struct ggml_tensor * input_cpy = tensor_id_copy(id, backend_id, c);
  1454. sched->leaf_backend_ids[graph_copy->n_leafs] = backend_id;
  1455. assert(graph_copy->size > graph_copy->n_leafs);
  1456. graph_copy->leafs[graph_copy->n_leafs++] = input_cpy;
  1457. }
  1458. }
  1459. for (int i = 0; i < sched->n_splits; i++) {
  1460. struct ggml_backend_sched_split * split = &sched->splits[i];
  1461. int backend_id = split->backend_id;
  1462. for (int j = 0; j < split->n_inputs; j++) {
  1463. struct ggml_tensor * input = split->inputs[j];
  1464. size_t id = hash_id(input);
  1465. for (int c = 0; c < sched->n_copies; c++) {
  1466. struct ggml_tensor * input_cpy = tensor_id_copy(id, backend_id, c);
  1467. sched->leaf_backend_ids[graph_copy->n_leafs] = backend_id;
  1468. assert(graph_copy->size > graph_copy->n_leafs);
  1469. graph_copy->leafs[graph_copy->n_leafs++] = input_cpy;
  1470. }
  1471. }
  1472. }
  1473. }
  1474. // add leafs from the original graph
  1475. for (int i = 0; i < graph->n_leafs; i++) {
  1476. struct ggml_tensor * leaf = graph->leafs[i];
  1477. sched->leaf_backend_ids[graph_copy->n_leafs] = tensor_backend_id(leaf);
  1478. assert(graph_copy->size > graph_copy->n_leafs);
  1479. graph_copy->leafs[graph_copy->n_leafs++] = leaf;
  1480. }
  1481. }
  1482. static bool ggml_backend_sched_alloc_splits(ggml_backend_sched_t sched) {
  1483. bool backend_ids_changed = false;
  1484. for (int i = 0; i < sched->graph.n_nodes; i++) {
  1485. if (sched->node_backend_ids[i] != sched->prev_node_backend_ids[i] &&
  1486. sched->bufts[sched->node_backend_ids[i]] != sched->bufts[sched->prev_node_backend_ids[i]]) {
  1487. backend_ids_changed = true;
  1488. break;
  1489. }
  1490. }
  1491. if (!backend_ids_changed) {
  1492. for (int i = 0; i < sched->graph.n_leafs; i++) {
  1493. if (sched->leaf_backend_ids[i] != sched->prev_leaf_backend_ids[i] &&
  1494. sched->bufts[sched->leaf_backend_ids[i]] != sched->bufts[sched->prev_leaf_backend_ids[i]]) {
  1495. backend_ids_changed = true;
  1496. break;
  1497. }
  1498. }
  1499. }
  1500. // allocate graph
  1501. if (backend_ids_changed || !ggml_gallocr_alloc_graph(sched->galloc, &sched->graph)) {
  1502. // the re-allocation may cause the split inputs to be moved to a different address
  1503. ggml_backend_sched_synchronize(sched);
  1504. #ifndef NDEBUG
  1505. fprintf(stderr, "%s: failed to allocate graph, reserving (backend_ids_changed = %d)\n", __func__, backend_ids_changed);
  1506. #endif
  1507. ggml_gallocr_reserve_n(sched->galloc, &sched->graph, sched->node_backend_ids, sched->leaf_backend_ids);
  1508. if (!ggml_gallocr_alloc_graph(sched->galloc, &sched->graph)) {
  1509. fprintf(stderr, "%s: failed to allocate graph\n", __func__);
  1510. return false;
  1511. }
  1512. }
  1513. return true;
  1514. }
  1515. static enum ggml_status ggml_backend_sched_compute_splits(ggml_backend_sched_t sched) {
  1516. struct ggml_backend_sched_split * splits = sched->splits;
  1517. for (int i = 0; i < sched->n_splits; i++) {
  1518. struct ggml_backend_sched_split * split = &splits[i];
  1519. int split_backend_id = split->backend_id;
  1520. ggml_backend_t split_backend = sched->backends[split_backend_id];
  1521. // copy the input tensors to the split backend
  1522. for (int j = 0; j < split->n_inputs; j++) {
  1523. ggml_backend_t input_backend = ggml_backend_sched_get_tensor_backend(sched, split->inputs[j]);
  1524. struct ggml_tensor * input = split->inputs[j];
  1525. struct ggml_tensor * input_cpy = tensor_copy(input, split_backend_id, sched->cur_copy);
  1526. if (input->flags & GGML_TENSOR_FLAG_INPUT) {
  1527. // inputs from the user must be copied immediately to prevent the user overwriting the data before the copy is done
  1528. if (sched->events[split_backend_id][sched->cur_copy] != NULL) {
  1529. ggml_backend_event_synchronize(sched->events[split_backend_id][sched->cur_copy]);
  1530. } else {
  1531. ggml_backend_synchronize(split_backend);
  1532. }
  1533. ggml_backend_tensor_copy(input, input_cpy);
  1534. } else {
  1535. // wait for the split backend to finish using the input before overwriting it
  1536. if (sched->events[split_backend_id][sched->cur_copy] != NULL) {
  1537. ggml_backend_event_wait(split_backend, sched->events[split_backend_id][sched->cur_copy]);
  1538. } else {
  1539. ggml_backend_synchronize(split_backend);
  1540. }
  1541. // try async copy, but if not possible, we can still use a sync copy without synchronizing the dst backend, since we handle the synchronization here with multiple copies and events
  1542. // TODO: add public function to facilitate this, since applications do not have direct access to the backend interface
  1543. if (!split_backend->iface.cpy_tensor_async || !split_backend->iface.cpy_tensor_async(input_backend, split_backend, input, input_cpy)) {
  1544. ggml_backend_synchronize(input_backend);
  1545. if (sched->events[split_backend_id][sched->cur_copy] != NULL) {
  1546. ggml_backend_event_synchronize(sched->events[split_backend_id][sched->cur_copy]);
  1547. } else {
  1548. ggml_backend_synchronize(split_backend);
  1549. }
  1550. ggml_backend_tensor_copy(input, input_cpy);
  1551. }
  1552. }
  1553. }
  1554. if (!sched->callback_eval) {
  1555. enum ggml_status ec = ggml_backend_graph_compute_async(split_backend, &split->graph);
  1556. if (ec != GGML_STATUS_SUCCESS) {
  1557. return ec;
  1558. }
  1559. } else {
  1560. // similar to ggml_backend_compare_graph_backend
  1561. for (int j0 = 0; j0 < split->graph.n_nodes; j0++) {
  1562. struct ggml_tensor * t = split->graph.nodes[j0];
  1563. // check if the user needs data from this node
  1564. bool need = sched->callback_eval(t, true, sched->callback_eval_user_data);
  1565. int j1 = j0;
  1566. // determine the range [j0, j1] of nodes that can be computed together
  1567. while (!need && j1 < split->graph.n_nodes - 1) {
  1568. t = split->graph.nodes[++j1];
  1569. need = sched->callback_eval(t, true, sched->callback_eval_user_data);
  1570. }
  1571. struct ggml_cgraph gv = ggml_graph_view(&split->graph, j0, j1 + 1);
  1572. enum ggml_status ec = ggml_backend_graph_compute_async(split_backend, &gv);
  1573. if (ec != GGML_STATUS_SUCCESS) {
  1574. return ec;
  1575. }
  1576. // TODO: pass backend to the callback, then the user can decide if they want to synchronize
  1577. ggml_backend_synchronize(split_backend);
  1578. if (need && !sched->callback_eval(t, false, sched->callback_eval_user_data)) {
  1579. break;
  1580. }
  1581. j0 = j1;
  1582. }
  1583. }
  1584. // record the event of this copy
  1585. if (split->n_inputs > 0) {
  1586. if (sched->events[split_backend_id][sched->cur_copy] != NULL) {
  1587. ggml_backend_event_record(sched->events[split_backend_id][sched->cur_copy]);
  1588. }
  1589. }
  1590. }
  1591. sched->cur_copy = (sched->cur_copy + 1) % sched->n_copies;
  1592. return GGML_STATUS_SUCCESS;
  1593. }
  1594. ggml_backend_sched_t ggml_backend_sched_new(
  1595. ggml_backend_t * backends,
  1596. ggml_backend_buffer_type_t * bufts,
  1597. int n_backends,
  1598. size_t graph_size,
  1599. bool parallel) {
  1600. GGML_ASSERT(n_backends > 0);
  1601. GGML_ASSERT(n_backends <= GGML_SCHED_MAX_BACKENDS);
  1602. GGML_ASSERT(ggml_backend_is_cpu(backends[n_backends - 1])); // last backend must be CPU
  1603. struct ggml_backend_sched * sched = calloc(1, sizeof(struct ggml_backend_sched));
  1604. sched->debug = getenv("GGML_SCHED_DEBUG") != NULL;
  1605. sched->n_backends = n_backends;
  1606. sched->n_copies = parallel ? GGML_SCHED_MAX_COPIES : 1;
  1607. // initialize hash table
  1608. // FIXME: needs to be size*2 to account for leafs (do it in graph_split instead)
  1609. sched->hash_set = ggml_hash_set_new(graph_size);
  1610. sched->hv_tensor_backend_ids = malloc(sched->hash_set.size * sizeof(sched->hv_tensor_backend_ids[0]));
  1611. sched->hv_tensor_copies = malloc(sched->hash_set.size * sched->n_backends * sched->n_copies * sizeof(struct ggml_tensor *));
  1612. const size_t ggml_sched_max_splits = graph_size; // at most there is one split for each node in the graph
  1613. const size_t nodes_size = graph_size + ggml_sched_max_splits*GGML_SCHED_MAX_SPLIT_INPUTS*2;
  1614. sched->node_backend_ids = calloc(nodes_size, sizeof(sched->node_backend_ids[0]));
  1615. sched->leaf_backend_ids = calloc(nodes_size, sizeof(sched->leaf_backend_ids[0]));
  1616. sched->prev_node_backend_ids = calloc(nodes_size, sizeof(sched->prev_node_backend_ids[0]));
  1617. sched->prev_leaf_backend_ids = calloc(nodes_size, sizeof(sched->prev_leaf_backend_ids[0]));
  1618. sched->context_buffer_size = ggml_sched_max_splits*GGML_SCHED_MAX_SPLIT_INPUTS*2*sizeof(struct ggml_tensor) + ggml_graph_overhead_custom(graph_size, false);
  1619. sched->context_buffer = malloc(sched->context_buffer_size);
  1620. const int initial_splits_capacity = 16;
  1621. sched->splits = calloc(initial_splits_capacity, sizeof(sched->splits[0]));
  1622. sched->splits_capacity = initial_splits_capacity;
  1623. for (int b = 0; b < n_backends; b++) {
  1624. sched->backends[b] = backends[b];
  1625. sched->bufts[b] = bufts ? bufts[b] : ggml_backend_get_default_buffer_type(backends[b]);
  1626. GGML_ASSERT(ggml_backend_supports_buft(backends[b], sched->bufts[b]));
  1627. if (sched->n_copies > 1) {
  1628. for (int c = 0; c < sched->n_copies; c++) {
  1629. sched->events[b][c] = ggml_backend_event_new(backends[b]);
  1630. }
  1631. }
  1632. }
  1633. sched->galloc = ggml_gallocr_new_n(sched->bufts, n_backends);
  1634. ggml_backend_sched_reset(sched);
  1635. return sched;
  1636. }
  1637. void ggml_backend_sched_free(ggml_backend_sched_t sched) {
  1638. if (sched == NULL) {
  1639. return;
  1640. }
  1641. for (int b = 0; b < sched->n_backends; b++) {
  1642. for (int c = 0; c < sched->n_copies; c++) {
  1643. ggml_backend_event_free(sched->events[b][c]);
  1644. }
  1645. }
  1646. ggml_gallocr_free(sched->galloc);
  1647. ggml_free(sched->ctx);
  1648. ggml_hash_set_free(&sched->hash_set);
  1649. free(sched->splits);
  1650. free(sched->hv_tensor_backend_ids);
  1651. free(sched->hv_tensor_copies);
  1652. free(sched->node_backend_ids);
  1653. free(sched->leaf_backend_ids);
  1654. free(sched->prev_node_backend_ids);
  1655. free(sched->prev_leaf_backend_ids);
  1656. free(sched->context_buffer);
  1657. free(sched->graph.nodes);
  1658. free(sched->graph.leafs);
  1659. free(sched);
  1660. }
  1661. void ggml_backend_sched_reset(ggml_backend_sched_t sched) {
  1662. // reset state for the next run
  1663. if (!sched->is_reset) {
  1664. ggml_hash_set_reset(&sched->hash_set);
  1665. memset(sched->hv_tensor_backend_ids, -1, sched->hash_set.size * sizeof(sched->hv_tensor_backend_ids[0]));
  1666. memset(sched->hv_tensor_copies, 0, sched->hash_set.size * sched->n_backends * sched->n_copies * sizeof(struct ggml_tensor *));
  1667. sched->is_reset = true;
  1668. }
  1669. sched->is_alloc = false;
  1670. }
  1671. bool ggml_backend_sched_reserve(ggml_backend_sched_t sched, struct ggml_cgraph * measure_graph) {
  1672. GGML_ASSERT((int)sched->hash_set.size >= measure_graph->n_nodes + measure_graph->n_leafs);
  1673. ggml_backend_sched_split_graph(sched, measure_graph);
  1674. if (!ggml_gallocr_reserve_n(sched->galloc, &sched->graph, sched->node_backend_ids, sched->leaf_backend_ids)) {
  1675. return false;
  1676. }
  1677. ggml_backend_sched_reset(sched);
  1678. ggml_backend_sched_synchronize(sched);
  1679. return true;
  1680. }
  1681. bool ggml_backend_sched_alloc_graph(ggml_backend_sched_t sched, struct ggml_cgraph * graph) {
  1682. GGML_ASSERT((int)sched->hash_set.size >= graph->n_nodes + graph->n_leafs);
  1683. ggml_backend_sched_split_graph(sched, graph);
  1684. if (!ggml_backend_sched_alloc_splits(sched)) {
  1685. return false;
  1686. }
  1687. sched->is_alloc = true;
  1688. return true;
  1689. }
  1690. enum ggml_status ggml_backend_sched_graph_compute(ggml_backend_sched_t sched, struct ggml_cgraph * graph) {
  1691. enum ggml_status err = ggml_backend_sched_graph_compute_async(sched, graph);
  1692. ggml_backend_sched_synchronize(sched);
  1693. return err;
  1694. }
  1695. enum ggml_status ggml_backend_sched_graph_compute_async(ggml_backend_sched_t sched, struct ggml_cgraph * graph) {
  1696. if (!sched->is_reset && !sched->is_alloc) {
  1697. ggml_backend_sched_reset(sched);
  1698. }
  1699. if (!sched->is_alloc) {
  1700. if (!ggml_backend_sched_alloc_graph(sched, graph)) {
  1701. return GGML_STATUS_ALLOC_FAILED;
  1702. }
  1703. }
  1704. return ggml_backend_sched_compute_splits(sched);
  1705. }
  1706. void ggml_backend_sched_synchronize(ggml_backend_sched_t sched) {
  1707. for (int i = 0; i < sched->n_backends; i++) {
  1708. ggml_backend_synchronize(sched->backends[i]);
  1709. }
  1710. }
  1711. void ggml_backend_sched_set_eval_callback(ggml_backend_sched_t sched, ggml_backend_sched_eval_callback callback, void * user_data) {
  1712. sched->callback_eval = callback;
  1713. sched->callback_eval_user_data = user_data;
  1714. }
  1715. int ggml_backend_sched_get_n_splits(ggml_backend_sched_t sched) {
  1716. return sched->n_splits;
  1717. }
  1718. int ggml_backend_sched_get_n_copies(ggml_backend_sched_t sched) {
  1719. return sched->n_copies;
  1720. }
  1721. int ggml_backend_sched_get_n_backends(ggml_backend_sched_t sched) {
  1722. return sched->n_backends;
  1723. }
  1724. ggml_backend_t ggml_backend_sched_get_backend(ggml_backend_sched_t sched, int i) {
  1725. GGML_ASSERT(i >= 0 && i < sched->n_backends);
  1726. return sched->backends[i];
  1727. }
  1728. size_t ggml_backend_sched_get_buffer_size(ggml_backend_sched_t sched, ggml_backend_t backend) {
  1729. int backend_index = ggml_backend_sched_backend_id(sched, backend);
  1730. GGML_ASSERT(backend_index >= 0 && backend_index < sched->n_backends);
  1731. return ggml_gallocr_get_buffer_size(sched->galloc, backend_index);
  1732. }
  1733. void ggml_backend_sched_set_tensor_backend(ggml_backend_sched_t sched, struct ggml_tensor * node, ggml_backend_t backend) {
  1734. int backend_index = ggml_backend_sched_backend_id(sched, backend);
  1735. GGML_ASSERT(backend_index >= 0 && backend_index < sched->n_backends);
  1736. tensor_backend_id(node) = backend_index;
  1737. SET_CAUSE(node, "usr");
  1738. sched->is_reset = false;
  1739. }
  1740. ggml_backend_t ggml_backend_sched_get_tensor_backend(ggml_backend_sched_t sched, struct ggml_tensor * node) {
  1741. int backend_index = tensor_backend_id(node);
  1742. if (backend_index == -1) {
  1743. return NULL;
  1744. }
  1745. return sched->backends[backend_index];
  1746. }
  1747. // utils
  1748. void ggml_backend_view_init(struct ggml_tensor * tensor) {
  1749. GGML_ASSERT(tensor->buffer == NULL);
  1750. GGML_ASSERT(tensor->view_src != NULL);
  1751. GGML_ASSERT(tensor->view_src->buffer != NULL);
  1752. GGML_ASSERT(tensor->view_src->data != NULL);
  1753. tensor->buffer = tensor->view_src->buffer;
  1754. tensor->data = (char *)tensor->view_src->data + tensor->view_offs;
  1755. ggml_backend_buffer_init_tensor(tensor->buffer, tensor);
  1756. }
  1757. void ggml_backend_tensor_alloc(ggml_backend_buffer_t buffer, struct ggml_tensor * tensor, void * addr) {
  1758. GGML_ASSERT(tensor->buffer == NULL);
  1759. GGML_ASSERT(tensor->data == NULL);
  1760. GGML_ASSERT(tensor->view_src == NULL);
  1761. GGML_ASSERT(addr >= ggml_backend_buffer_get_base(buffer));
  1762. GGML_ASSERT((char *)addr + ggml_backend_buffer_get_alloc_size(buffer, tensor) <=
  1763. (char *)ggml_backend_buffer_get_base(buffer) + ggml_backend_buffer_get_size(buffer));
  1764. tensor->buffer = buffer;
  1765. tensor->data = addr;
  1766. ggml_backend_buffer_init_tensor(buffer, tensor);
  1767. }
  1768. static struct ggml_tensor * graph_copy_dup_tensor(struct ggml_hash_set hash_set, struct ggml_tensor ** node_copies,
  1769. struct ggml_context * ctx_allocated, struct ggml_context * ctx_unallocated, struct ggml_tensor * src) {
  1770. GGML_ASSERT(src != NULL);
  1771. GGML_ASSERT(src->data && "graph must be allocated");
  1772. size_t id = ggml_hash_insert(&hash_set, src);
  1773. if (id == GGML_HASHSET_ALREADY_EXISTS) {
  1774. return node_copies[ggml_hash_find(&hash_set, src)];
  1775. }
  1776. struct ggml_tensor * dst = ggml_dup_tensor_layout(src->data && !src->view_src ? ctx_allocated : ctx_unallocated, src);
  1777. if (src->view_src != NULL) {
  1778. dst->view_src = graph_copy_dup_tensor(hash_set, node_copies, ctx_allocated, ctx_unallocated, src->view_src);
  1779. dst->view_offs = src->view_offs;
  1780. }
  1781. dst->op = src->op;
  1782. memcpy(dst->op_params, src->op_params, sizeof(dst->op_params));
  1783. ggml_set_name(dst, src->name);
  1784. // copy src
  1785. for (int i = 0; i < GGML_MAX_SRC; i++) {
  1786. struct ggml_tensor * s = src->src[i];
  1787. if (s == NULL) {
  1788. continue;
  1789. }
  1790. dst->src[i] = graph_copy_dup_tensor(hash_set, node_copies, ctx_allocated, ctx_unallocated, s);
  1791. }
  1792. node_copies[id] = dst;
  1793. return dst;
  1794. }
  1795. static void graph_copy_init_tensor(struct ggml_hash_set * hash_set, struct ggml_tensor ** node_copies, bool * node_init, struct ggml_tensor * src) {
  1796. size_t id = ggml_hash_find(hash_set, src);
  1797. if (node_init[id]) {
  1798. return;
  1799. }
  1800. node_init[id] = true;
  1801. struct ggml_tensor * dst = node_copies[id];
  1802. if (dst->view_src != NULL) {
  1803. graph_copy_init_tensor(hash_set, node_copies, node_init, src->view_src);
  1804. ggml_backend_view_init(dst);
  1805. }
  1806. else {
  1807. ggml_backend_tensor_copy(src, dst);
  1808. }
  1809. // init src
  1810. for (int i = 0; i < GGML_MAX_SRC; i++) {
  1811. struct ggml_tensor * s = src->src[i];
  1812. if (s == NULL) {
  1813. continue;
  1814. }
  1815. graph_copy_init_tensor(hash_set, node_copies, node_init, s);
  1816. }
  1817. }
  1818. struct ggml_backend_graph_copy ggml_backend_graph_copy(ggml_backend_t backend, struct ggml_cgraph * graph) {
  1819. struct ggml_hash_set hash_set = ggml_hash_set_new(graph->visited_hash_set.size);
  1820. struct ggml_tensor ** node_copies = calloc(hash_set.size, sizeof(node_copies[0])); // NOLINT
  1821. bool * node_init = calloc(hash_set.size, sizeof(node_init[0]));
  1822. struct ggml_init_params params = {
  1823. /* .mem_size = */ ggml_tensor_overhead()*hash_set.size + ggml_graph_overhead_custom(graph->size, false),
  1824. /* .mem_buffer = */ NULL,
  1825. /* .no_alloc = */ true
  1826. };
  1827. struct ggml_context * ctx_allocated = ggml_init(params);
  1828. struct ggml_context * ctx_unallocated = ggml_init(params);
  1829. if (ctx_allocated == NULL || ctx_unallocated == NULL) {
  1830. fprintf(stderr, "failed to allocate context for graph copy\n");
  1831. ggml_hash_set_free(&hash_set);
  1832. free(node_copies);
  1833. free(node_init);
  1834. ggml_free(ctx_allocated);
  1835. ggml_free(ctx_unallocated);
  1836. return (struct ggml_backend_graph_copy) {
  1837. /* .buffer = */ NULL,
  1838. /* .ctx_allocated = */ NULL,
  1839. /* .ctx_unallocated = */ NULL,
  1840. /* .graph = */ NULL,
  1841. };
  1842. }
  1843. // dup nodes
  1844. for (int i = 0; i < graph->n_nodes; i++) {
  1845. struct ggml_tensor * node = graph->nodes[i];
  1846. graph_copy_dup_tensor(hash_set, node_copies, ctx_allocated, ctx_unallocated, node);
  1847. }
  1848. // allocate nodes
  1849. ggml_backend_buffer_t buffer = ggml_backend_alloc_ctx_tensors(ctx_allocated, backend);
  1850. if (buffer == NULL) {
  1851. fprintf(stderr, "failed to allocate buffer for graph copy\n");
  1852. ggml_hash_set_free(&hash_set);
  1853. free(node_copies);
  1854. free(node_init);
  1855. ggml_free(ctx_allocated);
  1856. ggml_free(ctx_unallocated);
  1857. return (struct ggml_backend_graph_copy) {
  1858. /* .buffer = */ NULL,
  1859. /* .ctx_allocated = */ NULL,
  1860. /* .ctx_unallocated = */ NULL,
  1861. /* .graph = */ NULL,
  1862. };
  1863. }
  1864. //printf("copy buffer size: %zu MB\n", ggml_backend_buffer_get_size(buffer) / 1024 / 1024);
  1865. // copy data and init views
  1866. for (int i = 0; i < graph->n_nodes; i++) {
  1867. struct ggml_tensor * node = graph->nodes[i];
  1868. graph_copy_init_tensor(&hash_set, node_copies, node_init, node);
  1869. }
  1870. // build graph copy
  1871. struct ggml_cgraph * graph_copy = ggml_new_graph_custom(ctx_allocated, graph->size, false);
  1872. for (int i = 0; i < graph->n_nodes; i++) {
  1873. struct ggml_tensor * node = graph->nodes[i];
  1874. struct ggml_tensor * node_copy = node_copies[ggml_hash_find(&hash_set, node)];
  1875. graph_copy->nodes[i] = node_copy;
  1876. }
  1877. graph_copy->n_nodes = graph->n_nodes;
  1878. ggml_hash_set_free(&hash_set);
  1879. free(node_copies);
  1880. free(node_init);
  1881. return (struct ggml_backend_graph_copy) {
  1882. /* .buffer = */ buffer,
  1883. /* .ctx_allocated = */ ctx_allocated,
  1884. /* .ctx_unallocated = */ ctx_unallocated,
  1885. /* .graph = */ graph_copy,
  1886. };
  1887. }
  1888. void ggml_backend_graph_copy_free(struct ggml_backend_graph_copy copy) {
  1889. ggml_backend_buffer_free(copy.buffer);
  1890. ggml_free(copy.ctx_allocated);
  1891. ggml_free(copy.ctx_unallocated);
  1892. }
  1893. bool ggml_backend_compare_graph_backend(ggml_backend_t backend1, ggml_backend_t backend2, struct ggml_cgraph * graph, ggml_backend_eval_callback callback, void * user_data) {
  1894. struct ggml_backend_graph_copy copy = ggml_backend_graph_copy(backend2, graph);
  1895. if (copy.buffer == NULL) {
  1896. return false;
  1897. }
  1898. struct ggml_cgraph * g1 = graph;
  1899. struct ggml_cgraph * g2 = copy.graph;
  1900. assert(g1->n_nodes == g2->n_nodes);
  1901. for (int i = 0; i < g1->n_nodes; i++) {
  1902. //printf("eval %d/%d\n", i, g1->n_nodes);
  1903. struct ggml_tensor * t1 = g1->nodes[i];
  1904. struct ggml_tensor * t2 = g2->nodes[i];
  1905. assert(t1->op == t2->op && ggml_are_same_layout(t1, t2));
  1906. struct ggml_cgraph g1v = ggml_graph_view(g1, i, i + 1);
  1907. struct ggml_cgraph g2v = ggml_graph_view(g2, i, i + 1);
  1908. ggml_backend_graph_compute(backend1, &g1v);
  1909. ggml_backend_graph_compute(backend2, &g2v);
  1910. if (ggml_is_view_op(t1->op)) {
  1911. continue;
  1912. }
  1913. // compare results, calculate rms etc
  1914. if (!callback(i, t1, t2, user_data)) {
  1915. break;
  1916. }
  1917. }
  1918. ggml_backend_graph_copy_free(copy);
  1919. return true;
  1920. }