Нема описа

Jeffrey Morgan a859f037da replace `reflect` usage in option parsing пре 1 година
.github a8c5413d06 only generate gpu libs пре 1 година
api a859f037da replace `reflect` usage in option parsing пре 1 година
app cbfff4f868 update dependencies in `app/` пре 1 година
cmd 09a6f76f4c fix error on `ollama run` with a non-existent model пре 1 година
docs b9f91a0b36 Update import instructions to use convert and quantize tooling from llama.cpp submodule (#2247) пре 1 година
examples c5f21f73a4 follow best practices by adding resp.Body.Close() (#1708) пре 1 година
format 424d53ac70 progress: fix bar rate пре 1 година
gpu 4072b5879b Merge pull request #2246 from dhiltgen/reject_cuda_without_avx пре 1 година
llm 27aa2d4a19 Merge pull request #1849 from mraiser/main пре 1 година
parser 7c40a67841 Save and load sessions (#2063) пре 1 година
progress 2bb2bdd5d4 fix lint пре 1 година
readline 069184562b readline: drop not use min function (#2134) пре 1 година
scripts 75c44aa319 Add back ROCm container support пре 1 година
server a859f037da replace `reflect` usage in option parsing пре 1 година
version 2c7f956b38 add version пре 1 година
.dockerignore 77d96da94b Code shuffle to clean up the llm dir пре 1 година
.gitignore d4cd695759 Add cgo implementation for llama.cpp пре 1 година
.gitmodules fac9060da5 Init submodule with new path пре 1 година
.golangci.yaml acfc376efd add .golangci.yaml пре 1 година
.prettierrc.json 8685a5ad18 move .prettierrc.json to root пре 1 година
Dockerfile 75c44aa319 Add back ROCm container support пре 1 година
LICENSE df5fdd6647 `proto` -> `ollama` пре 1 година
README.md b538dc3858 Add llm-ollama plugin for Datasette's LLM CLI to README (#2340) пре 1 година
go.mod ecbfc0182f Go bump to v1.21 to pick up slog пре 1 година
go.sum d4cd695759 Add cgo implementation for llama.cpp пре 1 година
main.go 76b85bc0e9 set non-zero error code on error пре 1 година

README.md

ollama

Ollama

Discord

Get up and running with large language models locally.

macOS

Download

Windows

Coming soon! For now, you can install Ollama on Windows via WSL2.

Linux & WSL2

curl https://ollama.ai/install.sh | sh

Manual install instructions

Docker

The official Ollama Docker image ollama/ollama is available on Docker Hub.

Libraries

Quickstart

To run and chat with Llama 2:

ollama run llama2

Model library

Ollama supports a list of open-source models available on ollama.ai/library

Here are some example open-source models that can be downloaded:

Model Parameters Size Download
Llama 2 7B 3.8GB ollama run llama2
Mistral 7B 4.1GB ollama run mistral
Dolphin Phi 2.7B 1.6GB ollama run dolphin-phi
Phi-2 2.7B 1.7GB ollama run phi
Neural Chat 7B 4.1GB ollama run neural-chat
Starling 7B 4.1GB ollama run starling-lm
Code Llama 7B 3.8GB ollama run codellama
Llama 2 Uncensored 7B 3.8GB ollama run llama2-uncensored
Llama 2 13B 13B 7.3GB ollama run llama2:13b
Llama 2 70B 70B 39GB ollama run llama2:70b
Orca Mini 3B 1.9GB ollama run orca-mini
Vicuna 7B 3.8GB ollama run vicuna
LLaVA 7B 4.5GB ollama run llava

Note: You should have at least 8 GB of RAM available to run the 7B models, 16 GB to run the 13B models, and 32 GB to run the 33B models.

Customize a model

Import from GGUF

Ollama supports importing GGUF models in the Modelfile:

  1. Create a file named Modelfile, with a FROM instruction with the local filepath to the model you want to import.

    FROM ./vicuna-33b.Q4_0.gguf
    
  2. Create the model in Ollama

    ollama create example -f Modelfile
    
  3. Run the model

    ollama run example
    

Import from PyTorch or Safetensors

See the guide on importing models for more information.

Customize a prompt

Models from the Ollama library can be customized with a prompt. For example, to customize the llama2 model:

ollama pull llama2

Create a Modelfile:

FROM llama2

# set the temperature to 1 [higher is more creative, lower is more coherent]
PARAMETER temperature 1

# set the system message
SYSTEM """
You are Mario from Super Mario Bros. Answer as Mario, the assistant, only.
"""

Next, create and run the model:

ollama create mario -f ./Modelfile
ollama run mario
>>> hi
Hello! It's your friend Mario.

For more examples, see the examples directory. For more information on working with a Modelfile, see the Modelfile documentation.

CLI Reference

Create a model

ollama create is used to create a model from a Modelfile.

ollama create mymodel -f ./Modelfile

Pull a model

ollama pull llama2

This command can also be used to update a local model. Only the diff will be pulled.

Remove a model

ollama rm llama2

Copy a model

ollama cp llama2 my-llama2

Multiline input

For multiline input, you can wrap text with """:

>>> """Hello,
... world!
... """
I'm a basic program that prints the famous "Hello, world!" message to the console.

Multimodal models

>>> What's in this image? /Users/jmorgan/Desktop/smile.png
The image features a yellow smiley face, which is likely the central focus of the picture.

Pass in prompt as arguments

$ ollama run llama2 "Summarize this file: $(cat README.md)"
 Ollama is a lightweight, extensible framework for building and running language models on the local machine. It provides a simple API for creating, running, and managing models, as well as a library of pre-built models that can be easily used in a variety of applications.

List models on your computer

ollama list

Start Ollama

ollama serve is used when you want to start ollama without running the desktop application.

Building

Install cmake and go:

brew install cmake go

Then generate dependencies:

go generate ./...

Then build the binary:

go build .

More detailed instructions can be found in the developer guide

Running local builds

Next, start the server:

./ollama serve

Finally, in a separate shell, run a model:

./ollama run llama2

REST API

Ollama has a REST API for running and managing models.

Generate a response

curl http://localhost:11434/api/generate -d '{
  "model": "llama2",
  "prompt":"Why is the sky blue?"
}'

Chat with a model

curl http://localhost:11434/api/chat -d '{
  "model": "mistral",
  "messages": [
    { "role": "user", "content": "why is the sky blue?" }
  ]
}'

See the API documentation for all endpoints.

Community Integrations

Web & Desktop

Terminal

Database

Package managers

Libraries

Mobile

Extensions & Plugins