ggml-cpu-quants.c 479 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450245124522453245424552456245724582459246024612462246324642465246624672468246924702471247224732474247524762477247824792480248124822483248424852486248724882489249024912492249324942495249624972498249925002501250225032504250525062507250825092510251125122513251425152516251725182519252025212522252325242525252625272528252925302531253225332534253525362537253825392540254125422543254425452546254725482549255025512552255325542555255625572558255925602561256225632564256525662567256825692570257125722573257425752576257725782579258025812582258325842585258625872588258925902591259225932594259525962597259825992600260126022603260426052606260726082609261026112612261326142615261626172618261926202621262226232624262526262627262826292630263126322633263426352636263726382639264026412642264326442645264626472648264926502651265226532654265526562657265826592660266126622663266426652666266726682669267026712672267326742675267626772678267926802681268226832684268526862687268826892690269126922693269426952696269726982699270027012702270327042705270627072708270927102711271227132714271527162717271827192720272127222723272427252726272727282729273027312732273327342735273627372738273927402741274227432744274527462747274827492750275127522753275427552756275727582759276027612762276327642765276627672768276927702771277227732774277527762777277827792780278127822783278427852786278727882789279027912792279327942795279627972798279928002801280228032804280528062807280828092810281128122813281428152816281728182819282028212822282328242825282628272828282928302831283228332834283528362837283828392840284128422843284428452846284728482849285028512852285328542855285628572858285928602861286228632864286528662867286828692870287128722873287428752876287728782879288028812882288328842885288628872888288928902891289228932894289528962897289828992900290129022903290429052906290729082909291029112912291329142915291629172918291929202921292229232924292529262927292829292930293129322933293429352936293729382939294029412942294329442945294629472948294929502951295229532954295529562957295829592960296129622963296429652966296729682969297029712972297329742975297629772978297929802981298229832984298529862987298829892990299129922993299429952996299729982999300030013002300330043005300630073008300930103011301230133014301530163017301830193020302130223023302430253026302730283029303030313032303330343035303630373038303930403041304230433044304530463047304830493050305130523053305430553056305730583059306030613062306330643065306630673068306930703071307230733074307530763077307830793080308130823083308430853086308730883089309030913092309330943095309630973098309931003101310231033104310531063107310831093110311131123113311431153116311731183119312031213122312331243125312631273128312931303131313231333134313531363137313831393140314131423143314431453146314731483149315031513152315331543155315631573158315931603161316231633164316531663167316831693170317131723173317431753176317731783179318031813182318331843185318631873188318931903191319231933194319531963197319831993200320132023203320432053206320732083209321032113212321332143215321632173218321932203221322232233224322532263227322832293230323132323233323432353236323732383239324032413242324332443245324632473248324932503251325232533254325532563257325832593260326132623263326432653266326732683269327032713272327332743275327632773278327932803281328232833284328532863287328832893290329132923293329432953296329732983299330033013302330333043305330633073308330933103311331233133314331533163317331833193320332133223323332433253326332733283329333033313332333333343335333633373338333933403341334233433344334533463347334833493350335133523353335433553356335733583359336033613362336333643365336633673368336933703371337233733374337533763377337833793380338133823383338433853386338733883389339033913392339333943395339633973398339934003401340234033404340534063407340834093410341134123413341434153416341734183419342034213422342334243425342634273428342934303431343234333434343534363437343834393440344134423443344434453446344734483449345034513452345334543455345634573458345934603461346234633464346534663467346834693470347134723473347434753476347734783479348034813482348334843485348634873488348934903491349234933494349534963497349834993500350135023503350435053506350735083509351035113512351335143515351635173518351935203521352235233524352535263527352835293530353135323533353435353536353735383539354035413542354335443545354635473548354935503551355235533554355535563557355835593560356135623563356435653566356735683569357035713572357335743575357635773578357935803581358235833584358535863587358835893590359135923593359435953596359735983599360036013602360336043605360636073608360936103611361236133614361536163617361836193620362136223623362436253626362736283629363036313632363336343635363636373638363936403641364236433644364536463647364836493650365136523653365436553656365736583659366036613662366336643665366636673668366936703671367236733674367536763677367836793680368136823683368436853686368736883689369036913692369336943695369636973698369937003701370237033704370537063707370837093710371137123713371437153716371737183719372037213722372337243725372637273728372937303731373237333734373537363737373837393740374137423743374437453746374737483749375037513752375337543755375637573758375937603761376237633764376537663767376837693770377137723773377437753776377737783779378037813782378337843785378637873788378937903791379237933794379537963797379837993800380138023803380438053806380738083809381038113812381338143815381638173818381938203821382238233824382538263827382838293830383138323833383438353836383738383839384038413842384338443845384638473848384938503851385238533854385538563857385838593860386138623863386438653866386738683869387038713872387338743875387638773878387938803881388238833884388538863887388838893890389138923893389438953896389738983899390039013902390339043905390639073908390939103911391239133914391539163917391839193920392139223923392439253926392739283929393039313932393339343935393639373938393939403941394239433944394539463947394839493950395139523953395439553956395739583959396039613962396339643965396639673968396939703971397239733974397539763977397839793980398139823983398439853986398739883989399039913992399339943995399639973998399940004001400240034004400540064007400840094010401140124013401440154016401740184019402040214022402340244025402640274028402940304031403240334034403540364037403840394040404140424043404440454046404740484049405040514052405340544055405640574058405940604061406240634064406540664067406840694070407140724073407440754076407740784079408040814082408340844085408640874088408940904091409240934094409540964097409840994100410141024103410441054106410741084109411041114112411341144115411641174118411941204121412241234124412541264127412841294130413141324133413441354136413741384139414041414142414341444145414641474148414941504151415241534154415541564157415841594160416141624163416441654166416741684169417041714172417341744175417641774178417941804181418241834184418541864187418841894190419141924193419441954196419741984199420042014202420342044205420642074208420942104211421242134214421542164217421842194220422142224223422442254226422742284229423042314232423342344235423642374238423942404241424242434244424542464247424842494250425142524253425442554256425742584259426042614262426342644265426642674268426942704271427242734274427542764277427842794280428142824283428442854286428742884289429042914292429342944295429642974298429943004301430243034304430543064307430843094310431143124313431443154316431743184319432043214322432343244325432643274328432943304331433243334334433543364337433843394340434143424343434443454346434743484349435043514352435343544355435643574358435943604361436243634364436543664367436843694370437143724373437443754376437743784379438043814382438343844385438643874388438943904391439243934394439543964397439843994400440144024403440444054406440744084409441044114412441344144415441644174418441944204421442244234424442544264427442844294430443144324433443444354436443744384439444044414442444344444445444644474448444944504451445244534454445544564457445844594460446144624463446444654466446744684469447044714472447344744475447644774478447944804481448244834484448544864487448844894490449144924493449444954496449744984499450045014502450345044505450645074508450945104511451245134514451545164517451845194520452145224523452445254526452745284529453045314532453345344535453645374538453945404541454245434544454545464547454845494550455145524553455445554556455745584559456045614562456345644565456645674568456945704571457245734574457545764577457845794580458145824583458445854586458745884589459045914592459345944595459645974598459946004601460246034604460546064607460846094610461146124613461446154616461746184619462046214622462346244625462646274628462946304631463246334634463546364637463846394640464146424643464446454646464746484649465046514652465346544655465646574658465946604661466246634664466546664667466846694670467146724673467446754676467746784679468046814682468346844685468646874688468946904691469246934694469546964697469846994700470147024703470447054706470747084709471047114712471347144715471647174718471947204721472247234724472547264727472847294730473147324733473447354736473747384739474047414742474347444745474647474748474947504751475247534754475547564757475847594760476147624763476447654766476747684769477047714772477347744775477647774778477947804781478247834784478547864787478847894790479147924793479447954796479747984799480048014802480348044805480648074808480948104811481248134814481548164817481848194820482148224823482448254826482748284829483048314832483348344835483648374838483948404841484248434844484548464847484848494850485148524853485448554856485748584859486048614862486348644865486648674868486948704871487248734874487548764877487848794880488148824883488448854886488748884889489048914892489348944895489648974898489949004901490249034904490549064907490849094910491149124913491449154916491749184919492049214922492349244925492649274928492949304931493249334934493549364937493849394940494149424943494449454946494749484949495049514952495349544955495649574958495949604961496249634964496549664967496849694970497149724973497449754976497749784979498049814982498349844985498649874988498949904991499249934994499549964997499849995000500150025003500450055006500750085009501050115012501350145015501650175018501950205021502250235024502550265027502850295030503150325033503450355036503750385039504050415042504350445045504650475048504950505051505250535054505550565057505850595060506150625063506450655066506750685069507050715072507350745075507650775078507950805081508250835084508550865087508850895090509150925093509450955096509750985099510051015102510351045105510651075108510951105111511251135114511551165117511851195120512151225123512451255126512751285129513051315132513351345135513651375138513951405141514251435144514551465147514851495150515151525153515451555156515751585159516051615162516351645165516651675168516951705171517251735174517551765177517851795180518151825183518451855186518751885189519051915192519351945195519651975198519952005201520252035204520552065207520852095210521152125213521452155216521752185219522052215222522352245225522652275228522952305231523252335234523552365237523852395240524152425243524452455246524752485249525052515252525352545255525652575258525952605261526252635264526552665267526852695270527152725273527452755276527752785279528052815282528352845285528652875288528952905291529252935294529552965297529852995300530153025303530453055306530753085309531053115312531353145315531653175318531953205321532253235324532553265327532853295330533153325333533453355336533753385339534053415342534353445345534653475348534953505351535253535354535553565357535853595360536153625363536453655366536753685369537053715372537353745375537653775378537953805381538253835384538553865387538853895390539153925393539453955396539753985399540054015402540354045405540654075408540954105411541254135414541554165417541854195420542154225423542454255426542754285429543054315432543354345435543654375438543954405441544254435444544554465447544854495450545154525453545454555456545754585459546054615462546354645465546654675468546954705471547254735474547554765477547854795480548154825483548454855486548754885489549054915492549354945495549654975498549955005501550255035504550555065507550855095510551155125513551455155516551755185519552055215522552355245525552655275528552955305531553255335534553555365537553855395540554155425543554455455546554755485549555055515552555355545555555655575558555955605561556255635564556555665567556855695570557155725573557455755576557755785579558055815582558355845585558655875588558955905591559255935594559555965597559855995600560156025603560456055606560756085609561056115612561356145615561656175618561956205621562256235624562556265627562856295630563156325633563456355636563756385639564056415642564356445645564656475648564956505651565256535654565556565657565856595660566156625663566456655666566756685669567056715672567356745675567656775678567956805681568256835684568556865687568856895690569156925693569456955696569756985699570057015702570357045705570657075708570957105711571257135714571557165717571857195720572157225723572457255726572757285729573057315732573357345735573657375738573957405741574257435744574557465747574857495750575157525753575457555756575757585759576057615762576357645765576657675768576957705771577257735774577557765777577857795780578157825783578457855786578757885789579057915792579357945795579657975798579958005801580258035804580558065807580858095810581158125813581458155816581758185819582058215822582358245825582658275828582958305831583258335834583558365837583858395840584158425843584458455846584758485849585058515852585358545855585658575858585958605861586258635864586558665867586858695870587158725873587458755876587758785879588058815882588358845885588658875888588958905891589258935894589558965897589858995900590159025903590459055906590759085909591059115912591359145915591659175918591959205921592259235924592559265927592859295930593159325933593459355936593759385939594059415942594359445945594659475948594959505951595259535954595559565957595859595960596159625963596459655966596759685969597059715972597359745975597659775978597959805981598259835984598559865987598859895990599159925993599459955996599759985999600060016002600360046005600660076008600960106011601260136014601560166017601860196020602160226023602460256026602760286029603060316032603360346035603660376038603960406041604260436044604560466047604860496050605160526053605460556056605760586059606060616062606360646065606660676068606960706071607260736074607560766077607860796080608160826083608460856086608760886089609060916092609360946095609660976098609961006101610261036104610561066107610861096110611161126113611461156116611761186119612061216122612361246125612661276128612961306131613261336134613561366137613861396140614161426143614461456146614761486149615061516152615361546155615661576158615961606161616261636164616561666167616861696170617161726173617461756176617761786179618061816182618361846185618661876188618961906191619261936194619561966197619861996200620162026203620462056206620762086209621062116212621362146215621662176218621962206221622262236224622562266227622862296230623162326233623462356236623762386239624062416242624362446245624662476248624962506251625262536254625562566257625862596260626162626263626462656266626762686269627062716272627362746275627662776278627962806281628262836284628562866287628862896290629162926293629462956296629762986299630063016302630363046305630663076308630963106311631263136314631563166317631863196320632163226323632463256326632763286329633063316332633363346335633663376338633963406341634263436344634563466347634863496350635163526353635463556356635763586359636063616362636363646365636663676368636963706371637263736374637563766377637863796380638163826383638463856386638763886389639063916392639363946395639663976398639964006401640264036404640564066407640864096410641164126413641464156416641764186419642064216422642364246425642664276428642964306431643264336434643564366437643864396440644164426443644464456446644764486449645064516452645364546455645664576458645964606461646264636464646564666467646864696470647164726473647464756476647764786479648064816482648364846485648664876488648964906491649264936494649564966497649864996500650165026503650465056506650765086509651065116512651365146515651665176518651965206521652265236524652565266527652865296530653165326533653465356536653765386539654065416542654365446545654665476548654965506551655265536554655565566557655865596560656165626563656465656566656765686569657065716572657365746575657665776578657965806581658265836584658565866587658865896590659165926593659465956596659765986599660066016602660366046605660666076608660966106611661266136614661566166617661866196620662166226623662466256626662766286629663066316632663366346635663666376638663966406641664266436644664566466647664866496650665166526653665466556656665766586659666066616662666366646665666666676668666966706671667266736674667566766677667866796680668166826683668466856686668766886689669066916692669366946695669666976698669967006701670267036704670567066707670867096710671167126713671467156716671767186719672067216722672367246725672667276728672967306731673267336734673567366737673867396740674167426743674467456746674767486749675067516752675367546755675667576758675967606761676267636764676567666767676867696770677167726773677467756776677767786779678067816782678367846785678667876788678967906791679267936794679567966797679867996800680168026803680468056806680768086809681068116812681368146815681668176818681968206821682268236824682568266827682868296830683168326833683468356836683768386839684068416842684368446845684668476848684968506851685268536854685568566857685868596860686168626863686468656866686768686869687068716872687368746875687668776878687968806881688268836884688568866887688868896890689168926893689468956896689768986899690069016902690369046905690669076908690969106911691269136914691569166917691869196920692169226923692469256926692769286929693069316932693369346935693669376938693969406941694269436944694569466947694869496950695169526953695469556956695769586959696069616962696369646965696669676968696969706971697269736974697569766977697869796980698169826983698469856986698769886989699069916992699369946995699669976998699970007001700270037004700570067007700870097010701170127013701470157016701770187019702070217022702370247025702670277028702970307031703270337034703570367037703870397040704170427043704470457046704770487049705070517052705370547055705670577058705970607061706270637064706570667067706870697070707170727073707470757076707770787079708070817082708370847085708670877088708970907091709270937094709570967097709870997100710171027103710471057106710771087109711071117112711371147115711671177118711971207121712271237124712571267127712871297130713171327133713471357136713771387139714071417142714371447145714671477148714971507151715271537154715571567157715871597160716171627163716471657166716771687169717071717172717371747175717671777178717971807181718271837184718571867187718871897190719171927193719471957196719771987199720072017202720372047205720672077208720972107211721272137214721572167217721872197220722172227223722472257226722772287229723072317232723372347235723672377238723972407241724272437244724572467247724872497250725172527253725472557256725772587259726072617262726372647265726672677268726972707271727272737274727572767277727872797280728172827283728472857286728772887289729072917292729372947295729672977298729973007301730273037304730573067307730873097310731173127313731473157316731773187319732073217322732373247325732673277328732973307331733273337334733573367337733873397340734173427343734473457346734773487349735073517352735373547355735673577358735973607361736273637364736573667367736873697370737173727373737473757376737773787379738073817382738373847385738673877388738973907391739273937394739573967397739873997400740174027403740474057406740774087409741074117412741374147415741674177418741974207421742274237424742574267427742874297430743174327433743474357436743774387439744074417442744374447445744674477448744974507451745274537454745574567457745874597460746174627463746474657466746774687469747074717472747374747475747674777478747974807481748274837484748574867487748874897490749174927493749474957496749774987499750075017502750375047505750675077508750975107511751275137514751575167517751875197520752175227523752475257526752775287529753075317532753375347535753675377538753975407541754275437544754575467547754875497550755175527553755475557556755775587559756075617562756375647565756675677568756975707571757275737574757575767577757875797580758175827583758475857586758775887589759075917592759375947595759675977598759976007601760276037604760576067607760876097610761176127613761476157616761776187619762076217622762376247625762676277628762976307631763276337634763576367637763876397640764176427643764476457646764776487649765076517652765376547655765676577658765976607661766276637664766576667667766876697670767176727673767476757676767776787679768076817682768376847685768676877688768976907691769276937694769576967697769876997700770177027703770477057706770777087709771077117712771377147715771677177718771977207721772277237724772577267727772877297730773177327733773477357736773777387739774077417742774377447745774677477748774977507751775277537754775577567757775877597760776177627763776477657766776777687769777077717772777377747775777677777778777977807781778277837784778577867787778877897790779177927793779477957796779777987799780078017802780378047805780678077808780978107811781278137814781578167817781878197820782178227823782478257826782778287829783078317832783378347835783678377838783978407841784278437844784578467847784878497850785178527853785478557856785778587859786078617862786378647865786678677868786978707871787278737874787578767877787878797880788178827883788478857886788778887889789078917892789378947895789678977898789979007901790279037904790579067907790879097910791179127913791479157916791779187919792079217922792379247925792679277928792979307931793279337934793579367937793879397940794179427943794479457946794779487949795079517952795379547955795679577958795979607961796279637964796579667967796879697970797179727973797479757976797779787979798079817982798379847985798679877988798979907991799279937994799579967997799879998000800180028003800480058006800780088009801080118012801380148015801680178018801980208021802280238024802580268027802880298030803180328033803480358036803780388039804080418042804380448045804680478048804980508051805280538054805580568057805880598060806180628063806480658066806780688069807080718072807380748075807680778078807980808081808280838084808580868087808880898090809180928093809480958096809780988099810081018102810381048105810681078108810981108111811281138114811581168117811881198120812181228123812481258126812781288129813081318132813381348135813681378138813981408141814281438144814581468147814881498150815181528153815481558156815781588159816081618162816381648165816681678168816981708171817281738174817581768177817881798180818181828183818481858186818781888189819081918192819381948195819681978198819982008201820282038204820582068207820882098210821182128213821482158216821782188219822082218222822382248225822682278228822982308231823282338234823582368237823882398240824182428243824482458246824782488249825082518252825382548255825682578258825982608261826282638264826582668267826882698270827182728273827482758276827782788279828082818282828382848285828682878288828982908291829282938294829582968297829882998300830183028303830483058306830783088309831083118312831383148315831683178318831983208321832283238324832583268327832883298330833183328333833483358336833783388339834083418342834383448345834683478348834983508351835283538354835583568357835883598360836183628363836483658366836783688369837083718372837383748375837683778378837983808381838283838384838583868387838883898390839183928393839483958396839783988399840084018402840384048405840684078408840984108411841284138414841584168417841884198420842184228423842484258426842784288429843084318432843384348435843684378438843984408441844284438444844584468447844884498450845184528453845484558456845784588459846084618462846384648465846684678468846984708471847284738474847584768477847884798480848184828483848484858486848784888489849084918492849384948495849684978498849985008501850285038504850585068507850885098510851185128513851485158516851785188519852085218522852385248525852685278528852985308531853285338534853585368537853885398540854185428543854485458546854785488549855085518552855385548555855685578558855985608561856285638564856585668567856885698570857185728573857485758576857785788579858085818582858385848585858685878588858985908591859285938594859585968597859885998600860186028603860486058606860786088609861086118612861386148615861686178618861986208621862286238624862586268627862886298630863186328633863486358636863786388639864086418642864386448645864686478648864986508651865286538654865586568657865886598660866186628663866486658666866786688669867086718672867386748675867686778678867986808681868286838684868586868687868886898690869186928693869486958696869786988699870087018702870387048705870687078708870987108711871287138714871587168717871887198720872187228723872487258726872787288729873087318732873387348735873687378738873987408741874287438744874587468747874887498750875187528753875487558756875787588759876087618762876387648765876687678768876987708771877287738774877587768777877887798780878187828783878487858786878787888789879087918792879387948795879687978798879988008801880288038804880588068807880888098810881188128813881488158816881788188819882088218822882388248825882688278828882988308831883288338834883588368837883888398840884188428843884488458846884788488849885088518852885388548855885688578858885988608861886288638864886588668867886888698870887188728873887488758876887788788879888088818882888388848885888688878888888988908891889288938894889588968897889888998900890189028903890489058906890789088909891089118912891389148915891689178918891989208921892289238924892589268927892889298930893189328933893489358936893789388939894089418942894389448945894689478948894989508951895289538954895589568957895889598960896189628963896489658966896789688969897089718972897389748975897689778978897989808981898289838984898589868987898889898990899189928993899489958996899789988999900090019002900390049005900690079008900990109011901290139014901590169017901890199020902190229023902490259026902790289029903090319032903390349035903690379038903990409041904290439044904590469047904890499050905190529053905490559056905790589059906090619062906390649065906690679068906990709071907290739074907590769077907890799080908190829083908490859086908790889089909090919092909390949095909690979098909991009101910291039104910591069107910891099110911191129113911491159116911791189119912091219122912391249125912691279128912991309131913291339134913591369137913891399140914191429143914491459146914791489149915091519152915391549155915691579158915991609161916291639164916591669167916891699170917191729173917491759176917791789179918091819182918391849185918691879188918991909191919291939194919591969197919891999200920192029203920492059206920792089209921092119212921392149215921692179218921992209221922292239224922592269227922892299230923192329233923492359236923792389239924092419242924392449245924692479248924992509251925292539254925592569257925892599260926192629263926492659266926792689269927092719272927392749275927692779278927992809281928292839284928592869287928892899290929192929293929492959296929792989299930093019302930393049305930693079308930993109311931293139314931593169317931893199320932193229323932493259326932793289329933093319332933393349335933693379338933993409341934293439344934593469347934893499350935193529353935493559356935793589359936093619362936393649365936693679368936993709371937293739374937593769377937893799380938193829383938493859386938793889389939093919392939393949395939693979398939994009401940294039404940594069407940894099410941194129413941494159416941794189419942094219422942394249425942694279428942994309431943294339434943594369437943894399440944194429443944494459446944794489449945094519452945394549455945694579458945994609461946294639464946594669467946894699470947194729473947494759476947794789479948094819482948394849485948694879488948994909491949294939494949594969497949894999500950195029503950495059506950795089509951095119512951395149515951695179518951995209521952295239524952595269527952895299530953195329533953495359536953795389539954095419542954395449545954695479548954995509551955295539554955595569557955895599560956195629563956495659566956795689569957095719572957395749575957695779578957995809581958295839584958595869587958895899590959195929593959495959596959795989599960096019602960396049605960696079608960996109611961296139614961596169617961896199620962196229623962496259626962796289629963096319632963396349635963696379638963996409641964296439644964596469647964896499650965196529653965496559656965796589659966096619662966396649665966696679668966996709671967296739674967596769677967896799680968196829683968496859686968796889689969096919692969396949695969696979698969997009701970297039704970597069707970897099710971197129713971497159716971797189719972097219722972397249725972697279728972997309731973297339734973597369737973897399740974197429743974497459746974797489749975097519752975397549755975697579758975997609761976297639764976597669767976897699770977197729773977497759776977797789779978097819782978397849785978697879788978997909791979297939794979597969797979897999800980198029803980498059806980798089809981098119812981398149815981698179818981998209821982298239824982598269827982898299830983198329833983498359836983798389839984098419842984398449845984698479848984998509851985298539854985598569857985898599860986198629863986498659866986798689869987098719872987398749875987698779878987998809881988298839884988598869887988898899890989198929893989498959896989798989899990099019902990399049905990699079908990999109911991299139914991599169917991899199920992199229923992499259926992799289929993099319932993399349935993699379938993999409941994299439944994599469947994899499950995199529953995499559956995799589959996099619962996399649965996699679968996999709971997299739974997599769977997899799980998199829983998499859986998799889989999099919992999399949995999699979998999910000100011000210003100041000510006100071000810009100101001110012100131001410015100161001710018100191002010021100221002310024100251002610027100281002910030100311003210033100341003510036100371003810039100401004110042100431004410045100461004710048100491005010051100521005310054100551005610057100581005910060100611006210063100641006510066100671006810069100701007110072100731007410075100761007710078100791008010081100821008310084100851008610087100881008910090100911009210093100941009510096100971009810099101001010110102101031010410105101061010710108101091011010111101121011310114101151011610117101181011910120101211012210123101241012510126101271012810129101301013110132101331013410135101361013710138101391014010141101421014310144101451014610147101481014910150101511015210153101541015510156101571015810159101601016110162101631016410165101661016710168101691017010171101721017310174101751017610177101781017910180101811018210183101841018510186101871018810189101901019110192101931019410195101961019710198101991020010201102021020310204102051020610207102081020910210102111021210213102141021510216102171021810219102201022110222102231022410225102261022710228102291023010231102321023310234102351023610237102381023910240102411024210243102441024510246102471024810249102501025110252102531025410255102561025710258102591026010261102621026310264102651026610267102681026910270102711027210273102741027510276102771027810279102801028110282102831028410285102861028710288102891029010291102921029310294102951029610297102981029910300103011030210303103041030510306103071030810309103101031110312103131031410315103161031710318103191032010321103221032310324103251032610327103281032910330103311033210333103341033510336103371033810339103401034110342103431034410345103461034710348103491035010351103521035310354103551035610357103581035910360103611036210363103641036510366103671036810369103701037110372103731037410375103761037710378103791038010381103821038310384103851038610387103881038910390103911039210393103941039510396103971039810399104001040110402104031040410405104061040710408104091041010411104121041310414104151041610417104181041910420104211042210423104241042510426104271042810429104301043110432104331043410435104361043710438104391044010441104421044310444104451044610447104481044910450104511045210453104541045510456104571045810459104601046110462104631046410465104661046710468104691047010471104721047310474104751047610477104781047910480104811048210483104841048510486104871048810489104901049110492104931049410495104961049710498104991050010501105021050310504105051050610507105081050910510105111051210513105141051510516105171051810519105201052110522105231052410525105261052710528105291053010531105321053310534105351053610537105381053910540105411054210543105441054510546105471054810549105501055110552105531055410555105561055710558105591056010561105621056310564105651056610567105681056910570105711057210573105741057510576105771057810579105801058110582105831058410585105861058710588105891059010591105921059310594105951059610597105981059910600106011060210603106041060510606106071060810609106101061110612106131061410615106161061710618106191062010621106221062310624106251062610627106281062910630106311063210633106341063510636106371063810639106401064110642106431064410645106461064710648106491065010651106521065310654106551065610657106581065910660106611066210663106641066510666106671066810669106701067110672106731067410675106761067710678106791068010681106821068310684106851068610687106881068910690106911069210693106941069510696106971069810699107001070110702107031070410705107061070710708107091071010711107121071310714107151071610717107181071910720107211072210723107241072510726107271072810729107301073110732107331073410735107361073710738107391074010741107421074310744107451074610747107481074910750107511075210753107541075510756107571075810759107601076110762107631076410765107661076710768107691077010771107721077310774107751077610777107781077910780107811078210783107841078510786107871078810789107901079110792107931079410795107961079710798107991080010801108021080310804108051080610807108081080910810108111081210813108141081510816108171081810819108201082110822108231082410825108261082710828108291083010831108321083310834108351083610837108381083910840108411084210843108441084510846108471084810849108501085110852108531085410855108561085710858108591086010861
  1. /**
  2. * llama.cpp - commit 081b29bd2a3d91e7772e3910ce223dd63b8d7d26 - do not edit this file
  3. *
  4. * MIT License
  5. *
  6. * Copyright (c) 2023-2024 The ggml authors
  7. *
  8. * Permission is hereby granted, free of charge, to any person obtaining a copy
  9. * of this software and associated documentation files (the "Software"), to deal
  10. * in the Software without restriction, including without limitation the rights
  11. * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
  12. * copies of the Software, and to permit persons to whom the Software is
  13. * furnished to do so, subject to the following conditions:
  14. *
  15. * The above copyright notice and this permission notice shall be included in all
  16. * copies or substantial portions of the Software.
  17. *
  18. * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
  19. * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
  20. * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
  21. * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
  22. * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
  23. * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
  24. * SOFTWARE.
  25. */
  26. #define GGML_COMMON_IMPL_C
  27. #include "ggml-common.h"
  28. #include "ggml-quants.h"
  29. #include "ggml-cpu-quants.h"
  30. #include "ggml-impl.h"
  31. #include "ggml-cpu-impl.h"
  32. #include "ggml-cpu.h"
  33. #include <math.h>
  34. #include <string.h>
  35. #include <assert.h>
  36. #include <float.h>
  37. #include <stdlib.h> // for qsort
  38. #include <stdio.h> // for GGML_ASSERT
  39. #define GROUP_MAX_EPS 1e-15f
  40. #define GROUP_MAX_EPS_IQ3_XXS 1e-8f
  41. #define GROUP_MAX_EPS_IQ2_S 1e-8f
  42. #define GROUP_MAX_EPS_IQ1_M 1e-7f
  43. #define GROUP_MAX_EPS_IQ1_S 1e-12f
  44. #if defined(_MSC_VER)
  45. // disable "possible loss of data" to avoid warnings for hundreds of casts
  46. // we should just be careful :)
  47. #pragma warning(disable: 4244 4267)
  48. #endif
  49. #define UNUSED GGML_UNUSED
  50. // some compilers don't provide _mm256_set_m128i, e.g. gcc 7
  51. #define MM256_SET_M128I(a, b) _mm256_insertf128_si256(_mm256_castsi128_si256(b), (a), 1)
  52. #if defined(__AVX__) || defined(__AVX2__) || defined(__AVX512F__) || defined(__SSSE3__)
  53. // multiply int8_t, add results pairwise twice
  54. static inline __m128i mul_sum_i8_pairs(const __m128i x, const __m128i y) {
  55. // Get absolute values of x vectors
  56. const __m128i ax = _mm_sign_epi8(x, x);
  57. // Sign the values of the y vectors
  58. const __m128i sy = _mm_sign_epi8(y, x);
  59. // Perform multiplication and create 16-bit values
  60. const __m128i dot = _mm_maddubs_epi16(ax, sy);
  61. const __m128i ones = _mm_set1_epi16(1);
  62. return _mm_madd_epi16(ones, dot);
  63. }
  64. #if __AVX__ || __AVX2__ || __AVX512F__
  65. // horizontally add 8 floats
  66. static inline float hsum_float_8(const __m256 x) {
  67. __m128 res = _mm256_extractf128_ps(x, 1);
  68. res = _mm_add_ps(res, _mm256_castps256_ps128(x));
  69. res = _mm_add_ps(res, _mm_movehl_ps(res, res));
  70. res = _mm_add_ss(res, _mm_movehdup_ps(res));
  71. return _mm_cvtss_f32(res);
  72. }
  73. // horizontally add 8 int32_t
  74. static inline int hsum_i32_8(const __m256i a) {
  75. const __m128i sum128 = _mm_add_epi32(_mm256_castsi256_si128(a), _mm256_extractf128_si256(a, 1));
  76. const __m128i hi64 = _mm_unpackhi_epi64(sum128, sum128);
  77. const __m128i sum64 = _mm_add_epi32(hi64, sum128);
  78. const __m128i hi32 = _mm_shuffle_epi32(sum64, _MM_SHUFFLE(2, 3, 0, 1));
  79. return _mm_cvtsi128_si32(_mm_add_epi32(sum64, hi32));
  80. }
  81. // horizontally add 4 int32_t
  82. static inline int hsum_i32_4(const __m128i a) {
  83. const __m128i hi64 = _mm_unpackhi_epi64(a, a);
  84. const __m128i sum64 = _mm_add_epi32(hi64, a);
  85. const __m128i hi32 = _mm_shuffle_epi32(sum64, _MM_SHUFFLE(2, 3, 0, 1));
  86. return _mm_cvtsi128_si32(_mm_add_epi32(sum64, hi32));
  87. }
  88. #if defined(__AVX2__) || defined(__AVX512F__)
  89. // spread 32 bits to 32 bytes { 0x00, 0xFF }
  90. static inline __m256i bytes_from_bits_32(const uint8_t * x) {
  91. uint32_t x32;
  92. memcpy(&x32, x, sizeof(uint32_t));
  93. const __m256i shuf_mask = _mm256_set_epi64x(
  94. 0x0303030303030303, 0x0202020202020202,
  95. 0x0101010101010101, 0x0000000000000000);
  96. __m256i bytes = _mm256_shuffle_epi8(_mm256_set1_epi32(x32), shuf_mask);
  97. const __m256i bit_mask = _mm256_set1_epi64x(0x7fbfdfeff7fbfdfe);
  98. bytes = _mm256_or_si256(bytes, bit_mask);
  99. return _mm256_cmpeq_epi8(bytes, _mm256_set1_epi64x(-1));
  100. }
  101. // Unpack 32 4-bit fields into 32 bytes
  102. // The output vector contains 32 bytes, each one in [ 0 .. 15 ] interval
  103. static inline __m256i bytes_from_nibbles_32(const uint8_t * rsi)
  104. {
  105. const __m128i tmp = _mm_loadu_si128((const __m128i *)rsi);
  106. const __m256i bytes = MM256_SET_M128I(_mm_srli_epi16(tmp, 4), tmp);
  107. const __m256i lowMask = _mm256_set1_epi8( 0xF );
  108. return _mm256_and_si256(lowMask, bytes);
  109. }
  110. // add int16_t pairwise and return as float vector
  111. static inline __m256 sum_i16_pairs_float(const __m256i x) {
  112. const __m256i ones = _mm256_set1_epi16(1);
  113. const __m256i summed_pairs = _mm256_madd_epi16(ones, x);
  114. return _mm256_cvtepi32_ps(summed_pairs);
  115. }
  116. static inline __m256 mul_sum_us8_pairs_float(const __m256i ax, const __m256i sy) {
  117. #if defined(__AVXVNNI__) || (defined(__AVX512VNNI__) && defined(__AVX512VL__))
  118. const __m256i zero = _mm256_setzero_si256();
  119. const __m256i summed_pairs = _mm256_dpbusd_epi32(zero, ax, sy);
  120. return _mm256_cvtepi32_ps(summed_pairs);
  121. #else
  122. // Perform multiplication and create 16-bit values
  123. const __m256i dot = _mm256_maddubs_epi16(ax, sy);
  124. return sum_i16_pairs_float(dot);
  125. #endif
  126. }
  127. // multiply int8_t, add results pairwise twice and return as float vector
  128. static inline __m256 mul_sum_i8_pairs_float(const __m256i x, const __m256i y) {
  129. #if __AVXVNNIINT8__
  130. const __m256i zero = _mm256_setzero_si256();
  131. const __m256i summed_pairs = _mm256_dpbssd_epi32(zero, x, y);
  132. return _mm256_cvtepi32_ps(summed_pairs);
  133. #else
  134. // Get absolute values of x vectors
  135. const __m256i ax = _mm256_sign_epi8(x, x);
  136. // Sign the values of the y vectors
  137. const __m256i sy = _mm256_sign_epi8(y, x);
  138. return mul_sum_us8_pairs_float(ax, sy);
  139. #endif
  140. }
  141. static inline __m128i packNibbles( __m256i bytes )
  142. {
  143. // Move bits within 16-bit lanes from 0000_abcd_0000_efgh into 0000_0000_abcd_efgh
  144. #if __AVX512F__
  145. const __m256i bytes_srli_4 = _mm256_srli_epi16(bytes, 4); // 0000_0000_abcd_0000
  146. bytes = _mm256_or_si256(bytes, bytes_srli_4); // 0000_abcd_abcd_efgh
  147. return _mm256_cvtepi16_epi8(bytes); // abcd_efgh
  148. #else
  149. const __m256i lowByte = _mm256_set1_epi16( 0xFF );
  150. __m256i high = _mm256_andnot_si256( lowByte, bytes );
  151. __m256i low = _mm256_and_si256( lowByte, bytes );
  152. high = _mm256_srli_epi16( high, 4 );
  153. bytes = _mm256_or_si256( low, high );
  154. // Compress uint16_t lanes into bytes
  155. __m128i r0 = _mm256_castsi256_si128( bytes );
  156. __m128i r1 = _mm256_extracti128_si256( bytes, 1 );
  157. return _mm_packus_epi16( r0, r1 );
  158. #endif
  159. }
  160. #elif defined(__AVX__)
  161. static inline __m128i packNibbles( __m128i bytes1, __m128i bytes2 )
  162. {
  163. // Move bits within 16-bit lanes from 0000_abcd_0000_efgh into 0000_0000_abcd_efgh
  164. const __m128i lowByte = _mm_set1_epi16( 0xFF );
  165. __m128i high = _mm_andnot_si128( lowByte, bytes1 );
  166. __m128i low = _mm_and_si128( lowByte, bytes1 );
  167. high = _mm_srli_epi16( high, 4 );
  168. bytes1 = _mm_or_si128( low, high );
  169. high = _mm_andnot_si128( lowByte, bytes2 );
  170. low = _mm_and_si128( lowByte, bytes2 );
  171. high = _mm_srli_epi16( high, 4 );
  172. bytes2 = _mm_or_si128( low, high );
  173. return _mm_packus_epi16( bytes1, bytes2);
  174. }
  175. static inline __m128i mul_add_epi8_sse(const __m128i x, const __m128i y) {
  176. const __m128i ax = _mm_sign_epi8(x, x);
  177. const __m128i sy = _mm_sign_epi8(y, x);
  178. return _mm_maddubs_epi16(ax, sy);
  179. }
  180. // spread 32 bits to 32 bytes { 0x00, 0xFF }
  181. static inline __m256i bytes_from_bits_32(const uint8_t * x) {
  182. uint32_t x32;
  183. memcpy(&x32, x, sizeof(uint32_t));
  184. const __m128i shuf_maskl = _mm_set_epi64x(0x0101010101010101, 0x0000000000000000);
  185. const __m128i shuf_maskh = _mm_set_epi64x(0x0303030303030303, 0x0202020202020202);
  186. __m128i bytesl = _mm_shuffle_epi8(_mm_set1_epi32(x32), shuf_maskl);
  187. __m128i bytesh = _mm_shuffle_epi8(_mm_set1_epi32(x32), shuf_maskh);
  188. const __m128i bit_mask = _mm_set1_epi64x(0x7fbfdfeff7fbfdfe);
  189. bytesl = _mm_or_si128(bytesl, bit_mask);
  190. bytesh = _mm_or_si128(bytesh, bit_mask);
  191. bytesl = _mm_cmpeq_epi8(bytesl, _mm_set1_epi64x(-1));
  192. bytesh = _mm_cmpeq_epi8(bytesh, _mm_set1_epi64x(-1));
  193. return MM256_SET_M128I(bytesh, bytesl);
  194. }
  195. // Unpack 32 4-bit fields into 32 bytes
  196. // The output vector contains 32 bytes, each one in [ 0 .. 15 ] interval
  197. static inline __m256i bytes_from_nibbles_32(const uint8_t * rsi)
  198. {
  199. // Load 16 bytes from memory
  200. __m128i tmpl = _mm_loadu_si128((const __m128i *)rsi);
  201. __m128i tmph = _mm_srli_epi16(tmpl, 4);
  202. const __m128i lowMask = _mm_set1_epi8(0xF);
  203. tmpl = _mm_and_si128(lowMask, tmpl);
  204. tmph = _mm_and_si128(lowMask, tmph);
  205. return MM256_SET_M128I(tmph, tmpl);
  206. }
  207. // add int16_t pairwise and return as float vector
  208. static inline __m256 sum_i16_pairs_float(const __m128i xh, const __m128i xl) {
  209. const __m128i ones = _mm_set1_epi16(1);
  210. const __m128i summed_pairsl = _mm_madd_epi16(ones, xl);
  211. const __m128i summed_pairsh = _mm_madd_epi16(ones, xh);
  212. const __m256i summed_pairs = MM256_SET_M128I(summed_pairsh, summed_pairsl);
  213. return _mm256_cvtepi32_ps(summed_pairs);
  214. }
  215. static inline __m256 mul_sum_us8_pairs_float(const __m256i ax, const __m256i sy) {
  216. const __m128i axl = _mm256_castsi256_si128(ax);
  217. const __m128i axh = _mm256_extractf128_si256(ax, 1);
  218. const __m128i syl = _mm256_castsi256_si128(sy);
  219. const __m128i syh = _mm256_extractf128_si256(sy, 1);
  220. // Perform multiplication and create 16-bit values
  221. const __m128i dotl = _mm_maddubs_epi16(axl, syl);
  222. const __m128i doth = _mm_maddubs_epi16(axh, syh);
  223. return sum_i16_pairs_float(doth, dotl);
  224. }
  225. // multiply int8_t, add results pairwise twice and return as float vector
  226. static inline __m256 mul_sum_i8_pairs_float(const __m256i x, const __m256i y) {
  227. const __m128i xl = _mm256_castsi256_si128(x);
  228. const __m128i xh = _mm256_extractf128_si256(x, 1);
  229. const __m128i yl = _mm256_castsi256_si128(y);
  230. const __m128i yh = _mm256_extractf128_si256(y, 1);
  231. // Get absolute values of x vectors
  232. const __m128i axl = _mm_sign_epi8(xl, xl);
  233. const __m128i axh = _mm_sign_epi8(xh, xh);
  234. // Sign the values of the y vectors
  235. const __m128i syl = _mm_sign_epi8(yl, xl);
  236. const __m128i syh = _mm_sign_epi8(yh, xh);
  237. // Perform multiplication and create 16-bit values
  238. const __m128i dotl = _mm_maddubs_epi16(axl, syl);
  239. const __m128i doth = _mm_maddubs_epi16(axh, syh);
  240. return sum_i16_pairs_float(doth, dotl);
  241. }
  242. // larger version of mul_sum_i8_pairs_float where x and y are each represented by four 128-bit vectors
  243. static inline __m256 mul_sum_i8_quad_float(const __m128i x_1_0, const __m128i x_1_1, const __m128i x_2_0, const __m128i x_2_1,
  244. const __m128i y_1_0, const __m128i y_1_1, const __m128i y_2_0, const __m128i y_2_1) {
  245. const __m128i mone = _mm_set1_epi16(1);
  246. const __m128i p16_1_0 = mul_add_epi8_sse(x_1_0, y_1_0);
  247. const __m128i p16_1_1 = mul_add_epi8_sse(x_1_1, y_1_1);
  248. const __m128i p16_2_0 = mul_add_epi8_sse(x_2_0, y_2_0);
  249. const __m128i p16_2_1 = mul_add_epi8_sse(x_2_1, y_2_1);
  250. const __m128i p_1_0 = _mm_madd_epi16(p16_1_0, mone);
  251. const __m128i p_1_1 = _mm_madd_epi16(p16_1_1, mone);
  252. const __m128i p_2_0 = _mm_madd_epi16(p16_2_0, mone);
  253. const __m128i p_2_1 = _mm_madd_epi16(p16_2_1, mone);
  254. const __m128i p_1 = _mm_add_epi32(p_1_0, p_1_1);
  255. const __m128i p_2 = _mm_add_epi32(p_2_0, p_2_1);
  256. return _mm256_cvtepi32_ps(MM256_SET_M128I(p_2, p_1));
  257. }
  258. // quad fp16 delta calculation
  259. static inline __m256 quad_fp16_delta_float(const float x0, const float y0, const float x1, const float y1) {
  260. // GGML_FP16_TO_FP32 is faster than Intel F16C
  261. return _mm256_set_m128(_mm_set1_ps(GGML_FP16_TO_FP32(x1) * GGML_FP16_TO_FP32(y1)),
  262. _mm_set1_ps(GGML_FP16_TO_FP32(x0) * GGML_FP16_TO_FP32(y0)));
  263. }
  264. #endif
  265. #elif defined(__SSSE3__)
  266. // horizontally add 4x4 floats
  267. static inline float hsum_float_4x4(const __m128 a, const __m128 b, const __m128 c, const __m128 d) {
  268. __m128 res_0 =_mm_hadd_ps(a, b);
  269. __m128 res_1 =_mm_hadd_ps(c, d);
  270. __m128 res =_mm_hadd_ps(res_0, res_1);
  271. res =_mm_hadd_ps(res, res);
  272. res =_mm_hadd_ps(res, res);
  273. return _mm_cvtss_f32(res);
  274. }
  275. #endif // __AVX__ || __AVX2__ || __AVX512F__
  276. #endif // defined(__AVX__) || defined(__AVX2__) || defined(__AVX512F__) || defined(__SSSE3__)
  277. #if defined(__ARM_NEON) || defined(__wasm_simd128__) || defined(__POWER9_VECTOR__)
  278. #define B1(c,s,n) 0x ## n ## c , 0x ## n ## s
  279. #define B2(c,s,n) B1(c,s,n ## c), B1(c,s,n ## s)
  280. #define B3(c,s,n) B2(c,s,n ## c), B2(c,s,n ## s)
  281. #define B4(c,s,n) B3(c,s,n ## c), B3(c,s,n ## s)
  282. #define B5(c,s,n) B4(c,s,n ## c), B4(c,s,n ## s)
  283. #define B6(c,s,n) B5(c,s,n ## c), B5(c,s,n ## s)
  284. #define B7(c,s,n) B6(c,s,n ## c), B6(c,s,n ## s)
  285. #define B8(c,s ) B7(c,s, c), B7(c,s, s)
  286. // precomputed tables for expanding 8bits to 8 bytes:
  287. static const uint64_t table_b2b_0[1 << 8] = { B8(00, 10) }; // ( b) << 4
  288. static const uint64_t table_b2b_1[1 << 8] = { B8(10, 00) }; // (!b) << 4
  289. #endif
  290. #if defined(__loongarch_asx)
  291. #ifdef __clang__
  292. #define VREGS_PREFIX "$vr"
  293. #define XREGS_PREFIX "$xr"
  294. #else // GCC
  295. #define VREGS_PREFIX "$f"
  296. #define XREGS_PREFIX "$f"
  297. #endif
  298. #define __ALL_REGS "0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31"
  299. // Convert __m128i to __m256i
  300. static inline __m256i ____m256i(__m128i in) {
  301. __m256i out = __lasx_xvldi(0);
  302. __asm__ volatile (
  303. ".irp i," __ALL_REGS "\n\t"
  304. " .ifc %[out], " XREGS_PREFIX"\\i \n\t"
  305. " .irp j," __ALL_REGS "\n\t"
  306. " .ifc %[in], " VREGS_PREFIX "\\j \n\t"
  307. " xvpermi.q $xr\\i, $xr\\j, 0x20 \n\t"
  308. " .endif \n\t"
  309. " .endr \n\t"
  310. " .endif \n\t"
  311. ".endr \n\t"
  312. : [out] "+f" (out) : [in] "f" (in)
  313. );
  314. return out;
  315. }
  316. // Convert two __m128i to __m256i
  317. static inline __m256i lasx_set_q(__m128i inhi, __m128i inlo) {
  318. __m256i out;
  319. __asm__ volatile (
  320. ".irp i," __ALL_REGS "\n\t"
  321. " .ifc %[hi], " VREGS_PREFIX "\\i \n\t"
  322. " .irp j," __ALL_REGS "\n\t"
  323. " .ifc %[lo], " VREGS_PREFIX "\\j \n\t"
  324. " xvpermi.q $xr\\i, $xr\\j, 0x20 \n\t"
  325. " .endif \n\t"
  326. " .endr \n\t"
  327. " .endif \n\t"
  328. ".endr \n\t"
  329. ".ifnc %[out], %[hi] \n\t"
  330. ".irp i," __ALL_REGS "\n\t"
  331. " .ifc %[out], " XREGS_PREFIX "\\i \n\t"
  332. " .irp j," __ALL_REGS "\n\t"
  333. " .ifc %[hi], " VREGS_PREFIX "\\j \n\t"
  334. " xvori.b $xr\\i, $xr\\j, 0 \n\t"
  335. " .endif \n\t"
  336. " .endr \n\t"
  337. " .endif \n\t"
  338. ".endr \n\t"
  339. ".endif \n\t"
  340. : [out] "=f" (out), [hi] "+f" (inhi)
  341. : [lo] "f" (inlo)
  342. );
  343. return out;
  344. }
  345. // Convert __m256i low part to __m128i
  346. static inline __m128i lasx_extracti128_lo(__m256i in) {
  347. __m128i out;
  348. __asm__ volatile (
  349. ".ifnc %[out], %[in] \n\t"
  350. ".irp i," __ALL_REGS "\n\t"
  351. " .ifc %[out], " VREGS_PREFIX "\\i \n\t"
  352. " .irp j," __ALL_REGS "\n\t"
  353. " .ifc %[in], " XREGS_PREFIX "\\j \n\t"
  354. " vori.b $vr\\i, $vr\\j, 0 \n\t"
  355. " .endif \n\t"
  356. " .endr \n\t"
  357. " .endif \n\t"
  358. ".endr \n\t"
  359. ".endif \n\t"
  360. : [out] "=f" (out) : [in] "f" (in)
  361. );
  362. return out;
  363. }
  364. // Convert __m256i high part to __m128i
  365. static inline __m128i lasx_extracti128_hi(__m256i in) {
  366. __m128i out;
  367. __asm__ volatile (
  368. ".irp i," __ALL_REGS "\n\t"
  369. " .ifc %[out], " VREGS_PREFIX "\\i \n\t"
  370. " .irp j," __ALL_REGS "\n\t"
  371. " .ifc %[in], " XREGS_PREFIX "\\j \n\t"
  372. " xvpermi.q $xr\\i, $xr\\j, 0x11 \n\t"
  373. " .endif \n\t"
  374. " .endr \n\t"
  375. " .endif \n\t"
  376. ".endr \n\t"
  377. : [out] "=f" (out) : [in] "f" (in)
  378. );
  379. return out;
  380. }
  381. static __m256i lasx_set_w(int e7, int e6, int e5, int e4, int e3, int e2, int e1, int e0) {
  382. v8i32 __ret = {e0, e1, e2, e3, e4, e5, e6, e7};
  383. return (__m256i)__ret;
  384. }
  385. static __m128i lsx_set_w(int32_t a, int32_t b, int32_t c, int32_t d) {
  386. v4i32 __ret = {d, c, b, a};
  387. return (__m128i)__ret;
  388. }
  389. static __m256i lasx_set_d(int64_t a, int64_t b, int64_t c, int64_t d) {
  390. v4i64 __ret = {d, c, b, a};
  391. return (__m256i)__ret;
  392. }
  393. static __m256i lasx_insertf128( __m128i x, __m128i y) {
  394. return lasx_set_q(x, y);
  395. }
  396. static __m128i lsx_shuffle_b(__m128i a, __m128i b) {
  397. __m128i mask_f, zero, tmp0, tmp2, mask;
  398. int f = 0x8f;
  399. mask_f = __lsx_vreplgr2vr_b(f);
  400. zero = __lsx_vldi(0);
  401. tmp0 = __lsx_vand_v(b, mask_f); // get mask with low 4 bit and sign bits
  402. tmp0 = __lsx_vori_b(tmp0, 0x10); // make each mask or with 0x10 prepare for positive
  403. mask = __lsx_vsle_b(zero, tmp0); // if mask >= 0, set mask
  404. tmp2 = __lsx_vand_v(tmp0, mask); // maskout the in2 < ones
  405. return __lsx_vshuf_b(a, zero, tmp2);
  406. }
  407. static __m256i lasx_shuffle_b(__m256i a, __m256i b) {
  408. __m256i mask_f, zero, tmp0, tmp2, mask;
  409. int f = 0x8f;
  410. mask_f = __lasx_xvreplgr2vr_b(f);
  411. zero = __lasx_xvldi(0);
  412. tmp0 = __lasx_xvand_v(b, mask_f); // get mask with low 4 bit and sign bits
  413. tmp0 = __lasx_xvori_b(tmp0, 0x10); // make each mask or with 0x10 prepare for positive
  414. mask = __lasx_xvsle_b(zero, tmp0); // if mask >= 0, set mask
  415. tmp2 = __lasx_xvand_v(tmp0, mask); // maskout the in2 < ones
  416. return __lasx_xvshuf_b(a, zero, tmp2);
  417. }
  418. static __m256i lasx_extu8_16(__m128i a) {
  419. __m128i zero = __lsx_vldi(0);
  420. __m128i vlo = __lsx_vilvl_b(zero, a);
  421. __m128i vhi = __lsx_vilvh_b(zero, a);
  422. return lasx_set_q(vhi, vlo);
  423. }
  424. static __m256i lasx_ext8_16(__m128i a) {
  425. __m128i sign = __lsx_vslti_b(a, 0);
  426. __m128i vlo = __lsx_vilvl_b(sign, a);
  427. __m128i vhi = __lsx_vilvh_b(sign, a);
  428. return lasx_set_q(vhi, vlo);
  429. }
  430. static __m256i lasx_ext16_32(__m128i a) {
  431. __m256i tmp1;
  432. tmp1 = __lasx_xvinsgr2vr_w(tmp1, __lsx_vpickve2gr_h(a, 0), 0);
  433. tmp1 = __lasx_xvinsgr2vr_w(tmp1, __lsx_vpickve2gr_h(a, 1), 1);
  434. tmp1 = __lasx_xvinsgr2vr_w(tmp1, __lsx_vpickve2gr_h(a, 2), 2);
  435. tmp1 = __lasx_xvinsgr2vr_w(tmp1, __lsx_vpickve2gr_h(a, 3), 3);
  436. tmp1 = __lasx_xvinsgr2vr_w(tmp1, __lsx_vpickve2gr_h(a, 4), 4);
  437. tmp1 = __lasx_xvinsgr2vr_w(tmp1, __lsx_vpickve2gr_h(a, 5), 5);
  438. tmp1 = __lasx_xvinsgr2vr_w(tmp1, __lsx_vpickve2gr_h(a, 6), 6);
  439. tmp1 = __lasx_xvinsgr2vr_w(tmp1, __lsx_vpickve2gr_h(a, 7), 7);
  440. return tmp1;
  441. }
  442. static __m128i lasx_extracti128( __m256i a, int pos) {
  443. __m128i ret;
  444. if( pos == 0)
  445. {
  446. ret = lasx_extracti128_lo(a);
  447. } else {
  448. ret = lasx_extracti128_hi(a);
  449. }
  450. return ret;
  451. }
  452. static __m128 lasx_extractf128( __m256 a, int pos) {
  453. __m128 ret;
  454. if( pos == 0)
  455. {
  456. ret = (__m128)lasx_extracti128_lo((__m256i)a);
  457. } else {
  458. ret = (__m128)lasx_extracti128_hi((__m256i)a);
  459. }
  460. return ret;
  461. }
  462. static __m128i lsx_hadd_h(__m128i a, __m128i b) {
  463. __m128i tmp1 = __lsx_vpickev_h(b, a);
  464. __m128i tmp2 = __lsx_vpickod_h(b, a);
  465. return __lsx_vadd_h(tmp1, tmp2);
  466. }
  467. static __m128i lsx_hadd_w(__m128i a, __m128i b) {
  468. __m128i tmp1 = __lsx_vpickev_w(b, a);
  469. __m128i tmp2 = __lsx_vpickod_w(b, a);
  470. return __lsx_vadd_w(tmp1, tmp2);
  471. }
  472. static __m128 lsx_hadd_s(__m128 a, __m128 b) {
  473. __m128 tmp1 = (__m128)__lsx_vpickev_w((__m128i)b, (__m128i)a);
  474. __m128 tmp2 = (__m128)__lsx_vpickod_w((__m128i)b, (__m128i)a);
  475. return __lsx_vfadd_s(tmp1, tmp2);
  476. }
  477. static __m256i lasx_maddubs_h(__m256i a, __m256i b) {
  478. __m256i tmp1, tmp2;
  479. tmp1 = __lasx_xvmulwev_h_b(a, b);
  480. tmp2 = __lasx_xvmulwod_h_b(a, b);
  481. return __lasx_xvsadd_h(tmp1, tmp2);
  482. }
  483. static __m256i lasx_madd_h(__m256i a, __m256i b) {
  484. __m256i tmp1, tmp2;
  485. tmp1 = __lasx_xvmulwev_w_h(a, b);
  486. tmp2 = __lasx_xvmulwod_w_h(a, b);
  487. return __lasx_xvadd_w(tmp1, tmp2);
  488. }
  489. static __m256i lasx_packs_w(__m256i a, __m256i b) {
  490. __m256i tmp, tmp1;
  491. tmp = __lasx_xvsat_w(a, 15);
  492. tmp1 = __lasx_xvsat_w(b, 15);
  493. return __lasx_xvpickev_h(tmp1, tmp);
  494. }
  495. static __m256i lasx_packs_h(__m256i a, __m256i b) {
  496. __m256i tmp, tmp1;
  497. tmp = __lasx_xvsat_h(a, 7);
  498. tmp1 = __lasx_xvsat_h(b, 7);
  499. return __lasx_xvpickev_b(tmp1, tmp);
  500. }
  501. static __m128i lsx_packs_w(__m128i a, __m128i b) {
  502. __m128i tmp, tmp1;
  503. tmp = __lsx_vsat_w(a, 15);
  504. tmp1 = __lsx_vsat_w(b, 15);
  505. return __lsx_vpickev_h(tmp1, tmp);
  506. }
  507. static __m128i lsx_packs_h(__m128i a, __m128i b) {
  508. __m128i tmp, tmp1;
  509. tmp = __lsx_vsat_h(a, 7);
  510. tmp1 = __lsx_vsat_h(b, 7);
  511. return __lsx_vpickev_b(tmp1, tmp);
  512. }
  513. static __m128i lsx_packus_h(__m128i a, __m128i b) {
  514. __m128i tmp, tmp1;
  515. tmp = __lsx_vsat_hu(a, 7);
  516. tmp1 = __lsx_vsat_hu(b, 7);
  517. return __lsx_vpickev_b(tmp1, tmp);
  518. }
  519. static __m128i lsx_maddubs_h(__m128i a, __m128i b) {
  520. __m128i tmp1, tmp2;
  521. tmp1 = __lsx_vmulwev_h_b(a, b);
  522. tmp2 = __lsx_vmulwod_h_b(a, b);
  523. return __lsx_vsadd_h(tmp1, tmp2);
  524. }
  525. static __m128i lsx_madd_h(__m128i a, __m128i b) {
  526. __m128i tmp1, tmp2;
  527. tmp1 = __lsx_vmulwev_w_h(a, b);
  528. tmp2 = __lsx_vmulwod_w_h(a, b);
  529. return __lsx_vadd_w(tmp1, tmp2);
  530. }
  531. // multiply int8_t, add results pairwise twice
  532. static inline __m128i mul_sum_i8_pairs(const __m128i x, const __m128i y) {
  533. // Get absolute values of x vectors
  534. const __m128i ax = __lsx_vsigncov_b(x, x);
  535. // Sign the values of the y vectors
  536. const __m128i sy = __lsx_vsigncov_b(x, y);
  537. // Perform multiplication and create 16-bit values
  538. const __m128i dot = lsx_maddubs_h(ax, sy);
  539. const __m128i ones = __lsx_vreplgr2vr_h(1);
  540. return lsx_madd_h(ones, dot);
  541. }
  542. // horizontally add 8 floats
  543. static inline float hsum_float_8(const __m256 x) {
  544. __m128 res = lasx_extractf128(x, 1);
  545. ft_union tmp;
  546. res = __lsx_vfadd_s(res, lasx_extractf128(x, 0));
  547. res = __lsx_vfadd_s(res, (__m128)__lsx_vpickod_d((__m128i)res, (__m128i)res));
  548. res = __lsx_vfadd_s(res, (__m128)__lsx_vinsgr2vr_w(__lsx_vldi(0), __lsx_vpickve2gr_w(res, 1), 0));
  549. tmp.i = __lsx_vpickve2gr_w(res, 0);
  550. return tmp.f;
  551. }
  552. // horizontally add 8 int32_t
  553. static inline int hsum_i32_8(const __m256i a) {
  554. __m256i tmp1 = __lasx_xvpermi_q(a, a, 0x11);
  555. __m256i tmp2 = __lasx_xvpermi_q(a, a, 0x00);
  556. __m128i tmp1_128 = lasx_extracti128_lo(tmp1);
  557. __m128i tmp2_128 = lasx_extracti128_lo(tmp2);
  558. __m128i sum128 = __lsx_vadd_w(tmp1_128, tmp2_128);
  559. __m128i ev = __lsx_vpickev_w(sum128, sum128);
  560. __m128i od = __lsx_vpickod_w(sum128, sum128);
  561. __m128i sum64 = __lsx_vadd_w(ev, od);
  562. int sum64_1, sum64_2;
  563. sum64_1 = __lsx_vpickve2gr_w(sum64, 0);
  564. sum64_2 = __lsx_vpickve2gr_w(sum64, 1);
  565. return sum64_1 + sum64_2;
  566. }
  567. // horizontally add 4 int32_t
  568. static inline int hsum_i32_4(const __m128i a) {
  569. __m128i ev = __lsx_vpickev_w(a, a);
  570. __m128i od = __lsx_vpickod_w(a, a);
  571. __m128i sum64 = __lsx_vadd_w(ev, od);
  572. int sum64_1, sum64_2;
  573. sum64_1 = __lsx_vpickve2gr_w(sum64, 0);
  574. sum64_2 = __lsx_vpickve2gr_w(sum64, 1);
  575. return sum64_1 + sum64_2;
  576. }
  577. // spread 32 bits to 32 bytes { 0x00, 0xFF }
  578. static inline __m256i bytes_from_bits_32(const uint8_t * x) {
  579. uint32_t x32;
  580. memcpy(&x32, x, sizeof(uint32_t));
  581. const __m256i shuf_mask = lasx_set_d(
  582. 0x0303030303030303, 0x0202020202020202,
  583. 0x0101010101010101, 0x0000000000000000);
  584. __m256i bytes = lasx_shuffle_b(__lasx_xvreplgr2vr_w(x32), shuf_mask);
  585. const __m256i bit_mask = __lasx_xvreplgr2vr_d(0x7fbfdfeff7fbfdfe);
  586. bytes = __lasx_xvor_v(bytes, bit_mask);
  587. return __lasx_xvseq_b(bytes, __lasx_xvreplgr2vr_d(-1));
  588. }
  589. // Unpack 32 4-bit fields into 32 bytes
  590. // The output vector contains 32 bytes, each one in [ 0 .. 15 ] interval
  591. static inline __m256i bytes_from_nibbles_32(const uint8_t * rsi) {
  592. const __m128i lo = __lsx_vld((const __m128i *)rsi, 0);
  593. __m128i hi = __lsx_vsrli_h(lo, 4);
  594. return __lasx_xvandi_b(lasx_insertf128(hi, lo), 0xf);
  595. }
  596. // add int16_t pairwise and return as float vector
  597. static inline __m256 sum_i16_pairs_float(const __m256i x) {
  598. __m256i v = __lasx_xvpackod_h(x, x);
  599. __m256i summed_pairs = __lasx_xvaddwev_w_h(x, v);
  600. return __lasx_xvffint_s_w(summed_pairs);
  601. }
  602. static inline __m256 mul_sum_us8_pairs_float(const __m256i ax, const __m256i sy) {
  603. // Perform multiplication and create 16-bit values
  604. const __m256i dot = lasx_maddubs_h(ax, sy);
  605. return sum_i16_pairs_float(dot);
  606. }
  607. // multiply int8_t, add results pairwise twice and return as float vector
  608. static inline __m256 mul_sum_i8_pairs_float(const __m256i x, const __m256i y) {
  609. // Get absolute values of x vectors
  610. const __m256i ax = __lasx_xvsigncov_b(x, x);
  611. // Sign the values of the y vectors
  612. const __m256i sy = __lasx_xvsigncov_b(x, y);
  613. return mul_sum_us8_pairs_float(ax, sy);
  614. }
  615. static inline __m128i packNibbles( __m256i bytes ) {
  616. // Move bits within 16-bit lanes from 0000_abcd_0000_efgh into 0000_0000_abcd_efgh
  617. const __m256i lowByte = __lasx_xvreplgr2vr_h(0xFF);
  618. __m256i high = __lasx_xvandn_v(lowByte, bytes);
  619. __m256i low = __lasx_xvand_v(lowByte, bytes);
  620. high = __lasx_xvsrli_h(high, 4);
  621. bytes = __lasx_xvor_v(low, high);
  622. // Compress uint16_t lanes into bytes
  623. __m128i *r0 = (__m128i *)&bytes;
  624. __m256i tmp_h128 = __lasx_xvpermi_q(bytes, bytes, 0x11);
  625. __m128i *r1 = (__m128i *)&tmp_h128;
  626. __m128i zero = __lsx_vldi(0);
  627. __m128i tmp, tmp2, tmp3;
  628. tmp = __lsx_vmax_h(zero, *r0);
  629. tmp2 = __lsx_vsat_hu(tmp, 7);
  630. tmp = __lsx_vmax_h(zero, *r1);
  631. tmp3 = __lsx_vsat_hu(tmp, 7);
  632. return __lsx_vpickev_b(tmp3, tmp2);
  633. }
  634. #endif //__loongarch_asx
  635. void quantize_row_q4_0(const float * restrict x, void * restrict y, int64_t k) {
  636. quantize_row_q4_0_ref(x, y, k);
  637. }
  638. void quantize_row_q4_1(const float * restrict x, void * restrict y, int64_t k) {
  639. quantize_row_q4_1_ref(x, y, k);
  640. }
  641. void quantize_row_q5_0(const float * restrict x, void * restrict y, int64_t k) {
  642. quantize_row_q5_0_ref(x, y, k);
  643. }
  644. void quantize_row_q5_1(const float * restrict x, void * restrict y, int64_t k) {
  645. quantize_row_q5_1_ref(x, y, k);
  646. }
  647. void quantize_row_q8_0(const float * restrict x, void * restrict vy, int64_t k) {
  648. assert(QK8_0 == 32);
  649. assert(k % QK8_0 == 0);
  650. const int nb = k / QK8_0;
  651. block_q8_0 * restrict y = vy;
  652. #if defined(__ARM_NEON)
  653. for (int i = 0; i < nb; i++) {
  654. float32x4_t srcv [8];
  655. float32x4_t asrcv[8];
  656. float32x4_t amaxv[8];
  657. for (int j = 0; j < 8; j++) srcv[j] = vld1q_f32(x + i*32 + 4*j);
  658. for (int j = 0; j < 8; j++) asrcv[j] = vabsq_f32(srcv[j]);
  659. for (int j = 0; j < 4; j++) amaxv[2*j] = vmaxq_f32(asrcv[2*j], asrcv[2*j+1]);
  660. for (int j = 0; j < 2; j++) amaxv[4*j] = vmaxq_f32(amaxv[4*j], amaxv[4*j+2]);
  661. for (int j = 0; j < 1; j++) amaxv[8*j] = vmaxq_f32(amaxv[8*j], amaxv[8*j+4]);
  662. const float amax = vmaxvq_f32(amaxv[0]);
  663. const float d = amax / ((1 << 7) - 1);
  664. const float id = d ? 1.0f/d : 0.0f;
  665. y[i].d = GGML_FP32_TO_FP16(d);
  666. for (int j = 0; j < 8; j++) {
  667. const float32x4_t v = vmulq_n_f32(srcv[j], id);
  668. const int32x4_t vi = vcvtnq_s32_f32(v);
  669. y[i].qs[4*j + 0] = vgetq_lane_s32(vi, 0);
  670. y[i].qs[4*j + 1] = vgetq_lane_s32(vi, 1);
  671. y[i].qs[4*j + 2] = vgetq_lane_s32(vi, 2);
  672. y[i].qs[4*j + 3] = vgetq_lane_s32(vi, 3);
  673. }
  674. }
  675. #elif defined(__wasm_simd128__)
  676. for (int i = 0; i < nb; i++) {
  677. v128_t srcv [8];
  678. v128_t asrcv[8];
  679. v128_t amaxv[8];
  680. for (int j = 0; j < 8; j++) srcv[j] = wasm_v128_load(x + i*32 + 4*j);
  681. for (int j = 0; j < 8; j++) asrcv[j] = wasm_f32x4_abs(srcv[j]);
  682. for (int j = 0; j < 4; j++) amaxv[2*j] = wasm_f32x4_max(asrcv[2*j], asrcv[2*j+1]);
  683. for (int j = 0; j < 2; j++) amaxv[4*j] = wasm_f32x4_max(amaxv[4*j], amaxv[4*j+2]);
  684. for (int j = 0; j < 1; j++) amaxv[8*j] = wasm_f32x4_max(amaxv[8*j], amaxv[8*j+4]);
  685. const float amax = MAX(MAX(wasm_f32x4_extract_lane(amaxv[0], 0),
  686. wasm_f32x4_extract_lane(amaxv[0], 1)),
  687. MAX(wasm_f32x4_extract_lane(amaxv[0], 2),
  688. wasm_f32x4_extract_lane(amaxv[0], 3)));
  689. const float d = amax / ((1 << 7) - 1);
  690. const float id = d ? 1.0f/d : 0.0f;
  691. y[i].d = GGML_FP32_TO_FP16(d);
  692. for (int j = 0; j < 8; j++) {
  693. const v128_t v = wasm_f32x4_mul(srcv[j], wasm_f32x4_splat(id));
  694. const v128_t vi = wasm_i32x4_trunc_sat_f32x4(v);
  695. y[i].qs[4*j + 0] = wasm_i32x4_extract_lane(vi, 0);
  696. y[i].qs[4*j + 1] = wasm_i32x4_extract_lane(vi, 1);
  697. y[i].qs[4*j + 2] = wasm_i32x4_extract_lane(vi, 2);
  698. y[i].qs[4*j + 3] = wasm_i32x4_extract_lane(vi, 3);
  699. }
  700. }
  701. #elif defined(__AVX2__) || defined(__AVX__)
  702. for (int i = 0; i < nb; i++) {
  703. // Load elements into 4 AVX vectors
  704. __m256 v0 = _mm256_loadu_ps( x );
  705. __m256 v1 = _mm256_loadu_ps( x + 8 );
  706. __m256 v2 = _mm256_loadu_ps( x + 16 );
  707. __m256 v3 = _mm256_loadu_ps( x + 24 );
  708. x += 32;
  709. // Compute max(abs(e)) for the block
  710. const __m256 signBit = _mm256_set1_ps( -0.0f );
  711. __m256 maxAbs = _mm256_andnot_ps( signBit, v0 );
  712. maxAbs = _mm256_max_ps( maxAbs, _mm256_andnot_ps( signBit, v1 ) );
  713. maxAbs = _mm256_max_ps( maxAbs, _mm256_andnot_ps( signBit, v2 ) );
  714. maxAbs = _mm256_max_ps( maxAbs, _mm256_andnot_ps( signBit, v3 ) );
  715. __m128 max4 = _mm_max_ps( _mm256_extractf128_ps( maxAbs, 1 ), _mm256_castps256_ps128( maxAbs ) );
  716. max4 = _mm_max_ps( max4, _mm_movehl_ps( max4, max4 ) );
  717. max4 = _mm_max_ss( max4, _mm_movehdup_ps( max4 ) );
  718. const float maxScalar = _mm_cvtss_f32( max4 );
  719. // Quantize these floats
  720. const float d = maxScalar / 127.f;
  721. y[i].d = GGML_FP32_TO_FP16(d);
  722. const float id = ( maxScalar != 0.0f ) ? 127.f / maxScalar : 0.0f;
  723. const __m256 mul = _mm256_set1_ps( id );
  724. // Apply the multiplier
  725. v0 = _mm256_mul_ps( v0, mul );
  726. v1 = _mm256_mul_ps( v1, mul );
  727. v2 = _mm256_mul_ps( v2, mul );
  728. v3 = _mm256_mul_ps( v3, mul );
  729. // Round to nearest integer
  730. v0 = _mm256_round_ps( v0, _MM_ROUND_NEAREST );
  731. v1 = _mm256_round_ps( v1, _MM_ROUND_NEAREST );
  732. v2 = _mm256_round_ps( v2, _MM_ROUND_NEAREST );
  733. v3 = _mm256_round_ps( v3, _MM_ROUND_NEAREST );
  734. // Convert floats to integers
  735. __m256i i0 = _mm256_cvtps_epi32( v0 );
  736. __m256i i1 = _mm256_cvtps_epi32( v1 );
  737. __m256i i2 = _mm256_cvtps_epi32( v2 );
  738. __m256i i3 = _mm256_cvtps_epi32( v3 );
  739. #if defined(__AVX2__)
  740. // Convert int32 to int16
  741. i0 = _mm256_packs_epi32( i0, i1 ); // 0, 1, 2, 3, 8, 9, 10, 11, 4, 5, 6, 7, 12, 13, 14, 15
  742. i2 = _mm256_packs_epi32( i2, i3 ); // 16, 17, 18, 19, 24, 25, 26, 27, 20, 21, 22, 23, 28, 29, 30, 31
  743. // Convert int16 to int8
  744. i0 = _mm256_packs_epi16( i0, i2 ); // 0, 1, 2, 3, 8, 9, 10, 11, 16, 17, 18, 19, 24, 25, 26, 27, 4, 5, 6, 7, 12, 13, 14, 15, 20, 21, 22, 23, 28, 29, 30, 31
  745. // We got our precious signed bytes, but the order is now wrong
  746. // These AVX2 pack instructions process 16-byte pieces independently
  747. // The following instruction is fixing the order
  748. const __m256i perm = _mm256_setr_epi32( 0, 4, 1, 5, 2, 6, 3, 7 );
  749. i0 = _mm256_permutevar8x32_epi32( i0, perm );
  750. _mm256_storeu_si256((__m256i *)y[i].qs, i0);
  751. #else
  752. // Since we don't have in AVX some necessary functions,
  753. // we split the registers in half and call AVX2 analogs from SSE
  754. __m128i ni0 = _mm256_castsi256_si128( i0 );
  755. __m128i ni1 = _mm256_extractf128_si256( i0, 1);
  756. __m128i ni2 = _mm256_castsi256_si128( i1 );
  757. __m128i ni3 = _mm256_extractf128_si256( i1, 1);
  758. __m128i ni4 = _mm256_castsi256_si128( i2 );
  759. __m128i ni5 = _mm256_extractf128_si256( i2, 1);
  760. __m128i ni6 = _mm256_castsi256_si128( i3 );
  761. __m128i ni7 = _mm256_extractf128_si256( i3, 1);
  762. // Convert int32 to int16
  763. ni0 = _mm_packs_epi32( ni0, ni1 );
  764. ni2 = _mm_packs_epi32( ni2, ni3 );
  765. ni4 = _mm_packs_epi32( ni4, ni5 );
  766. ni6 = _mm_packs_epi32( ni6, ni7 );
  767. // Convert int16 to int8
  768. ni0 = _mm_packs_epi16( ni0, ni2 );
  769. ni4 = _mm_packs_epi16( ni4, ni6 );
  770. _mm_storeu_si128((__m128i *)(y[i].qs + 0), ni0);
  771. _mm_storeu_si128((__m128i *)(y[i].qs + 16), ni4);
  772. #endif
  773. }
  774. #elif defined(__riscv_v_intrinsic)
  775. size_t vl = __riscv_vsetvl_e32m4(QK8_0);
  776. for (int i = 0; i < nb; i++) {
  777. // load elements
  778. vfloat32m4_t v_x = __riscv_vle32_v_f32m4(x+i*QK8_0, vl);
  779. vfloat32m4_t vfabs = __riscv_vfabs_v_f32m4(v_x, vl);
  780. vfloat32m1_t tmp = __riscv_vfmv_v_f_f32m1(0.0f, vl);
  781. vfloat32m1_t vmax = __riscv_vfredmax_vs_f32m4_f32m1(vfabs, tmp, vl);
  782. float amax = __riscv_vfmv_f_s_f32m1_f32(vmax);
  783. const float d = amax / ((1 << 7) - 1);
  784. const float id = d ? 1.0f/d : 0.0f;
  785. y[i].d = GGML_FP32_TO_FP16(d);
  786. vfloat32m4_t x0 = __riscv_vfmul_vf_f32m4(v_x, id, vl);
  787. // convert to integer
  788. vint16m2_t vi = __riscv_vfncvt_x_f_w_i16m2(x0, vl);
  789. vint8m1_t vs = __riscv_vncvt_x_x_w_i8m1(vi, vl);
  790. // store result
  791. __riscv_vse8_v_i8m1(y[i].qs , vs, vl);
  792. }
  793. #elif defined(__POWER9_VECTOR__)
  794. for (int i = 0; i < nb; i++) {
  795. vector float srcv [8];
  796. vector float asrcv[8];
  797. vector float amaxv[8];
  798. vector signed int vi[8];
  799. for (int j = 0; j < 8; j++) srcv[j] = vec_xl(0, x + i*32 + 4*j);
  800. for (int j = 0; j < 8; j++) asrcv[j] = vec_abs(srcv[j]);
  801. for (int j = 0; j < 4; j++) amaxv[2*j] = vec_max(asrcv[2*j], asrcv[2*j+1]);
  802. for (int j = 0; j < 2; j++) amaxv[4*j] = vec_max(amaxv[4*j], amaxv[4*j+2]);
  803. for (int j = 0; j < 1; j++) amaxv[8*j] = vec_max(amaxv[8*j], amaxv[8*j+4]);
  804. const float amax = MAX(MAX(vec_extract(amaxv[0], 0),
  805. vec_extract(amaxv[0], 1)),
  806. MAX(vec_extract(amaxv[0], 2),
  807. vec_extract(amaxv[0], 3)));
  808. const float d = amax / ((1 << 7) - 1);
  809. const float id = d ? 1.0f/d : 0.0f;
  810. const vector float vid = vec_splats(id);
  811. y[i].d = GGML_FP32_TO_FP16(d);
  812. for (int j = 0; j < 8; j++) {
  813. const vector float v = vec_round(vec_mul(srcv[j], vid));
  814. vi[j] = vec_cts(v, 0);
  815. }
  816. vec_xst(vec_pack(vec_pack(vi[0], vi[1]), vec_pack(vi[2], vi[3])), 0, &y[i].qs[0]);
  817. vec_xst(vec_pack(vec_pack(vi[4], vi[5]), vec_pack(vi[6], vi[7])), 16, &y[i].qs[0]);
  818. }
  819. #elif defined(__loongarch_asx)
  820. for (int i = 0; i < nb; i++) {
  821. ft_union fi;
  822. __m256 v0 = (__m256)__lasx_xvld( x , 0);
  823. __m256 v1 = (__m256)__lasx_xvld( x , 32);
  824. __m256 v2 = (__m256)__lasx_xvld( x , 64);
  825. __m256 v3 = (__m256)__lasx_xvld( x , 96);
  826. x += 32;
  827. // Compute max(abs(e)) for the block
  828. const __m256 sign_bit = __lasx_xvreplfr2vr_s( -0.0f );
  829. __m256 max_abs = (__m256)__lasx_xvandn_v( (__m256i)sign_bit, (__m256i)v0 );
  830. max_abs = __lasx_xvfmax_s( max_abs, (__m256)__lasx_xvandn_v( (__m256i)sign_bit, (__m256i)v1 ) );
  831. max_abs = __lasx_xvfmax_s( max_abs, (__m256)__lasx_xvandn_v( (__m256i)sign_bit, (__m256i)v2 ) );
  832. max_abs = __lasx_xvfmax_s( max_abs, (__m256)__lasx_xvandn_v( (__m256i)sign_bit, (__m256i)v3 ) );
  833. __m128 max4 = __lsx_vfmax_s( lasx_extractf128( max_abs, 1 ), lasx_extractf128( max_abs , 0) );
  834. max4 = __lsx_vfmax_s( max4, (__m128)__lsx_vpickod_d((__m128i) max4, (__m128i)max4 ) );
  835. __m128 tmp = max4;
  836. max4 = __lsx_vfmax_s( max4, (__m128)__lsx_vinsgr2vr_w(tmp, __lsx_vpickve2gr_w( max4, 1 ), 0 ));
  837. fi.i = __lsx_vpickve2gr_w( (__m128i)max4, 0 );
  838. const float max_scalar = fi.f;
  839. // Quantize these floats
  840. const float d = max_scalar / 127.f;
  841. y[i].d = GGML_FP32_TO_FP16(d);
  842. const float id = ( max_scalar != 0.0f ) ? 127.f / max_scalar : 0.0f;
  843. const __m256 mul = (__m256)__lasx_xvreplfr2vr_s( id );
  844. // Apply the multiplier
  845. v0 = __lasx_xvfmul_s( v0, mul );
  846. v1 = __lasx_xvfmul_s( v1, mul );
  847. v2 = __lasx_xvfmul_s( v2, mul );
  848. v3 = __lasx_xvfmul_s( v3, mul );
  849. // Round to nearest integer
  850. __m256i i0 = __lasx_xvftintrne_w_s( v0 );
  851. __m256i i1 = __lasx_xvftintrne_w_s( v1 );
  852. __m256i i2 = __lasx_xvftintrne_w_s( v2 );
  853. __m256i i3 = __lasx_xvftintrne_w_s( v3 );
  854. __m128i ni0 = lasx_extracti128( i0, 0 );
  855. __m128i ni1 = lasx_extracti128( i0, 1);
  856. __m128i ni2 = lasx_extracti128( i1, 0);
  857. __m128i ni3 = lasx_extracti128( i1, 1);
  858. __m128i ni4 = lasx_extracti128( i2, 0);
  859. __m128i ni5 = lasx_extracti128( i2, 1);
  860. __m128i ni6 = lasx_extracti128( i3, 0);
  861. __m128i ni7 = lasx_extracti128( i3, 1);
  862. // Convert int32 to int16
  863. ni0 = lsx_packs_w( ni0, ni1 );
  864. ni2 = lsx_packs_w( ni2, ni3 );
  865. ni4 = lsx_packs_w( ni4, ni5 );
  866. ni6 = lsx_packs_w( ni6, ni7 );
  867. // Convert int16 to int8
  868. ni0 = lsx_packs_h( ni0, ni2 );
  869. ni4 = lsx_packs_h( ni4, ni6 );
  870. __lsx_vst(ni0, (__m128i *)(y[i].qs + 0), 0);
  871. __lsx_vst(ni4, (__m128i *)(y[i].qs + 16), 0);
  872. }
  873. #else
  874. GGML_UNUSED(nb);
  875. // scalar
  876. quantize_row_q8_0_ref(x, y, k);
  877. #endif
  878. }
  879. void quantize_row_q8_1(const float * restrict x, void * restrict vy, int64_t k) {
  880. assert(k % QK8_1 == 0);
  881. const int nb = k / QK8_1;
  882. block_q8_1 * restrict y = vy;
  883. #if defined(__ARM_NEON)
  884. for (int i = 0; i < nb; i++) {
  885. float32x4_t srcv [8];
  886. float32x4_t asrcv[8];
  887. float32x4_t amaxv[8];
  888. for (int j = 0; j < 8; j++) srcv[j] = vld1q_f32(x + i*32 + 4*j);
  889. for (int j = 0; j < 8; j++) asrcv[j] = vabsq_f32(srcv[j]);
  890. for (int j = 0; j < 4; j++) amaxv[2*j] = vmaxq_f32(asrcv[2*j], asrcv[2*j+1]);
  891. for (int j = 0; j < 2; j++) amaxv[4*j] = vmaxq_f32(amaxv[4*j], amaxv[4*j+2]);
  892. for (int j = 0; j < 1; j++) amaxv[8*j] = vmaxq_f32(amaxv[8*j], amaxv[8*j+4]);
  893. const float amax = vmaxvq_f32(amaxv[0]);
  894. const float d = amax / ((1 << 7) - 1);
  895. const float id = d ? 1.0f/d : 0.0f;
  896. y[i].d = GGML_FP32_TO_FP16(d);
  897. int32x4_t accv = vdupq_n_s32(0);
  898. for (int j = 0; j < 8; j++) {
  899. const float32x4_t v = vmulq_n_f32(srcv[j], id);
  900. const int32x4_t vi = vcvtnq_s32_f32(v);
  901. y[i].qs[4*j + 0] = vgetq_lane_s32(vi, 0);
  902. y[i].qs[4*j + 1] = vgetq_lane_s32(vi, 1);
  903. y[i].qs[4*j + 2] = vgetq_lane_s32(vi, 2);
  904. y[i].qs[4*j + 3] = vgetq_lane_s32(vi, 3);
  905. accv = vaddq_s32(accv, vi);
  906. }
  907. y[i].s = GGML_FP32_TO_FP16(d * vaddvq_s32(accv));
  908. }
  909. #elif defined(__wasm_simd128__)
  910. for (int i = 0; i < nb; i++) {
  911. v128_t srcv [8];
  912. v128_t asrcv[8];
  913. v128_t amaxv[8];
  914. for (int j = 0; j < 8; j++) srcv[j] = wasm_v128_load(x + i*32 + 4*j);
  915. for (int j = 0; j < 8; j++) asrcv[j] = wasm_f32x4_abs(srcv[j]);
  916. for (int j = 0; j < 4; j++) amaxv[2*j] = wasm_f32x4_max(asrcv[2*j], asrcv[2*j+1]);
  917. for (int j = 0; j < 2; j++) amaxv[4*j] = wasm_f32x4_max(amaxv[4*j], amaxv[4*j+2]);
  918. for (int j = 0; j < 1; j++) amaxv[8*j] = wasm_f32x4_max(amaxv[8*j], amaxv[8*j+4]);
  919. const float amax = MAX(MAX(wasm_f32x4_extract_lane(amaxv[0], 0),
  920. wasm_f32x4_extract_lane(amaxv[0], 1)),
  921. MAX(wasm_f32x4_extract_lane(amaxv[0], 2),
  922. wasm_f32x4_extract_lane(amaxv[0], 3)));
  923. const float d = amax / ((1 << 7) - 1);
  924. const float id = d ? 1.0f/d : 0.0f;
  925. y[i].d = GGML_FP32_TO_FP16(d);
  926. v128_t accv = wasm_i32x4_splat(0);
  927. for (int j = 0; j < 8; j++) {
  928. const v128_t v = wasm_f32x4_mul(srcv[j], wasm_f32x4_splat(id));
  929. const v128_t vi = wasm_i32x4_trunc_sat_f32x4(v);
  930. y[i].qs[4*j + 0] = wasm_i32x4_extract_lane(vi, 0);
  931. y[i].qs[4*j + 1] = wasm_i32x4_extract_lane(vi, 1);
  932. y[i].qs[4*j + 2] = wasm_i32x4_extract_lane(vi, 2);
  933. y[i].qs[4*j + 3] = wasm_i32x4_extract_lane(vi, 3);
  934. accv = wasm_i32x4_add(accv, vi);
  935. }
  936. y[i].s = GGML_FP32_TO_FP16(
  937. d * (wasm_i32x4_extract_lane(accv, 0) +
  938. wasm_i32x4_extract_lane(accv, 1) +
  939. wasm_i32x4_extract_lane(accv, 2) +
  940. wasm_i32x4_extract_lane(accv, 3)));
  941. }
  942. #elif defined(__AVX2__) || defined(__AVX__)
  943. for (int i = 0; i < nb; i++) {
  944. // Load elements into 4 AVX vectors
  945. __m256 v0 = _mm256_loadu_ps( x );
  946. __m256 v1 = _mm256_loadu_ps( x + 8 );
  947. __m256 v2 = _mm256_loadu_ps( x + 16 );
  948. __m256 v3 = _mm256_loadu_ps( x + 24 );
  949. x += 32;
  950. // Compute max(abs(e)) for the block
  951. const __m256 signBit = _mm256_set1_ps( -0.0f );
  952. __m256 maxAbs = _mm256_andnot_ps( signBit, v0 );
  953. maxAbs = _mm256_max_ps( maxAbs, _mm256_andnot_ps( signBit, v1 ) );
  954. maxAbs = _mm256_max_ps( maxAbs, _mm256_andnot_ps( signBit, v2 ) );
  955. maxAbs = _mm256_max_ps( maxAbs, _mm256_andnot_ps( signBit, v3 ) );
  956. __m128 max4 = _mm_max_ps( _mm256_extractf128_ps( maxAbs, 1 ), _mm256_castps256_ps128( maxAbs ) );
  957. max4 = _mm_max_ps( max4, _mm_movehl_ps( max4, max4 ) );
  958. max4 = _mm_max_ss( max4, _mm_movehdup_ps( max4 ) );
  959. const float max_scalar = _mm_cvtss_f32( max4 );
  960. // Quantize these floats
  961. const float d = max_scalar / 127.f;
  962. y[i].d = GGML_FP32_TO_FP16(d);
  963. const float id = ( max_scalar != 0.0f ) ? 127.f / max_scalar : 0.0f;
  964. const __m256 mul = _mm256_set1_ps( id );
  965. // Apply the multiplier
  966. v0 = _mm256_mul_ps( v0, mul );
  967. v1 = _mm256_mul_ps( v1, mul );
  968. v2 = _mm256_mul_ps( v2, mul );
  969. v3 = _mm256_mul_ps( v3, mul );
  970. // Round to nearest integer
  971. v0 = _mm256_round_ps( v0, _MM_ROUND_NEAREST );
  972. v1 = _mm256_round_ps( v1, _MM_ROUND_NEAREST );
  973. v2 = _mm256_round_ps( v2, _MM_ROUND_NEAREST );
  974. v3 = _mm256_round_ps( v3, _MM_ROUND_NEAREST );
  975. // Convert floats to integers
  976. __m256i i0 = _mm256_cvtps_epi32( v0 );
  977. __m256i i1 = _mm256_cvtps_epi32( v1 );
  978. __m256i i2 = _mm256_cvtps_epi32( v2 );
  979. __m256i i3 = _mm256_cvtps_epi32( v3 );
  980. #if defined(__AVX2__)
  981. // Compute the sum of the quants and set y[i].s
  982. y[i].s = GGML_FP32_TO_FP16(d * hsum_i32_8(_mm256_add_epi32(_mm256_add_epi32(i0, i1), _mm256_add_epi32(i2, i3))));
  983. // Convert int32 to int16
  984. i0 = _mm256_packs_epi32( i0, i1 ); // 0, 1, 2, 3, 8, 9, 10, 11, 4, 5, 6, 7, 12, 13, 14, 15
  985. i2 = _mm256_packs_epi32( i2, i3 ); // 16, 17, 18, 19, 24, 25, 26, 27, 20, 21, 22, 23, 28, 29, 30, 31
  986. // Convert int16 to int8
  987. i0 = _mm256_packs_epi16( i0, i2 ); // 0, 1, 2, 3, 8, 9, 10, 11, 16, 17, 18, 19, 24, 25, 26, 27, 4, 5, 6, 7, 12, 13, 14, 15, 20, 21, 22, 23, 28, 29, 30, 31
  988. // We got our precious signed bytes, but the order is now wrong
  989. // These AVX2 pack instructions process 16-byte pieces independently
  990. // The following instruction is fixing the order
  991. const __m256i perm = _mm256_setr_epi32( 0, 4, 1, 5, 2, 6, 3, 7 );
  992. i0 = _mm256_permutevar8x32_epi32( i0, perm );
  993. _mm256_storeu_si256((__m256i *)y[i].qs, i0);
  994. #else
  995. // Since we don't have in AVX some necessary functions,
  996. // we split the registers in half and call AVX2 analogs from SSE
  997. __m128i ni0 = _mm256_castsi256_si128( i0 );
  998. __m128i ni1 = _mm256_extractf128_si256( i0, 1);
  999. __m128i ni2 = _mm256_castsi256_si128( i1 );
  1000. __m128i ni3 = _mm256_extractf128_si256( i1, 1);
  1001. __m128i ni4 = _mm256_castsi256_si128( i2 );
  1002. __m128i ni5 = _mm256_extractf128_si256( i2, 1);
  1003. __m128i ni6 = _mm256_castsi256_si128( i3 );
  1004. __m128i ni7 = _mm256_extractf128_si256( i3, 1);
  1005. // Compute the sum of the quants and set y[i].s
  1006. const __m128i s0 = _mm_add_epi32(_mm_add_epi32(ni0, ni1), _mm_add_epi32(ni2, ni3));
  1007. const __m128i s1 = _mm_add_epi32(_mm_add_epi32(ni4, ni5), _mm_add_epi32(ni6, ni7));
  1008. y[i].s = GGML_FP32_TO_FP16(d * hsum_i32_4(_mm_add_epi32(s0, s1)));
  1009. // Convert int32 to int16
  1010. ni0 = _mm_packs_epi32( ni0, ni1 );
  1011. ni2 = _mm_packs_epi32( ni2, ni3 );
  1012. ni4 = _mm_packs_epi32( ni4, ni5 );
  1013. ni6 = _mm_packs_epi32( ni6, ni7 );
  1014. // Convert int16 to int8
  1015. ni0 = _mm_packs_epi16( ni0, ni2 );
  1016. ni4 = _mm_packs_epi16( ni4, ni6 );
  1017. _mm_storeu_si128((__m128i *)(y[i].qs + 0), ni0);
  1018. _mm_storeu_si128((__m128i *)(y[i].qs + 16), ni4);
  1019. #endif
  1020. }
  1021. #elif defined(__riscv_v_intrinsic)
  1022. size_t vl = __riscv_vsetvl_e32m4(QK8_1);
  1023. for (int i = 0; i < nb; i++) {
  1024. // load elements
  1025. vfloat32m4_t v_x = __riscv_vle32_v_f32m4(x+i*QK8_1, vl);
  1026. vfloat32m4_t vfabs = __riscv_vfabs_v_f32m4(v_x, vl);
  1027. vfloat32m1_t tmp = __riscv_vfmv_v_f_f32m1(0.0, vl);
  1028. vfloat32m1_t vmax = __riscv_vfredmax_vs_f32m4_f32m1(vfabs, tmp, vl);
  1029. float amax = __riscv_vfmv_f_s_f32m1_f32(vmax);
  1030. const float d = amax / ((1 << 7) - 1);
  1031. const float id = d ? 1.0f/d : 0.0f;
  1032. y[i].d = GGML_FP32_TO_FP16(d);
  1033. vfloat32m4_t x0 = __riscv_vfmul_vf_f32m4(v_x, id, vl);
  1034. // convert to integer
  1035. vint16m2_t vi = __riscv_vfncvt_x_f_w_i16m2(x0, vl);
  1036. vint8m1_t vs = __riscv_vncvt_x_x_w_i8m1(vi, vl);
  1037. // store result
  1038. __riscv_vse8_v_i8m1(y[i].qs , vs, vl);
  1039. // compute sum for y[i].s
  1040. vint16m1_t tmp2 = __riscv_vmv_v_x_i16m1(0, vl);
  1041. vint16m1_t vwrs = __riscv_vwredsum_vs_i8m1_i16m1(vs, tmp2, vl);
  1042. // set y[i].s
  1043. int sum = __riscv_vmv_x_s_i16m1_i16(vwrs);
  1044. y[i].s = GGML_FP32_TO_FP16(sum*d);
  1045. }
  1046. #elif defined(__POWER9_VECTOR__)
  1047. for (int i = 0; i < nb; i++) {
  1048. vector float srcv [8];
  1049. vector float asrcv[8];
  1050. vector float amaxv[8];
  1051. vector signed int vi[8];
  1052. for (int j = 0; j < 8; j++) srcv[j] = vec_xl(0, x + i*32 + 4*j);
  1053. for (int j = 0; j < 8; j++) asrcv[j] = vec_abs(srcv[j]);
  1054. for (int j = 0; j < 4; j++) amaxv[2*j] = vec_max(asrcv[2*j], asrcv[2*j+1]);
  1055. for (int j = 0; j < 2; j++) amaxv[4*j] = vec_max(amaxv[4*j], amaxv[4*j+2]);
  1056. for (int j = 0; j < 1; j++) amaxv[8*j] = vec_max(amaxv[8*j], amaxv[8*j+4]);
  1057. const float amax = MAX(MAX(vec_extract(amaxv[0], 0),
  1058. vec_extract(amaxv[0], 1)),
  1059. MAX(vec_extract(amaxv[0], 2),
  1060. vec_extract(amaxv[0], 3)));
  1061. const float d = amax / ((1 << 7) - 1);
  1062. const float id = d ? 1.0f/d : 0.0f;
  1063. const vector float vid = vec_splats(id);
  1064. y[i].d = GGML_FP32_TO_FP16(d);
  1065. vector int accv = vec_splats(0);
  1066. for (int j = 0; j < 8; j++) {
  1067. const vector float v = vec_round(vec_mul(srcv[j], vid));
  1068. vi[j] = vec_cts(v, 0);
  1069. accv = vec_add(accv, vi[j]);
  1070. }
  1071. vec_xst(vec_pack(vec_pack(vi[0], vi[1]), vec_pack(vi[2], vi[3])), 0, &y[i].qs[0]);
  1072. vec_xst(vec_pack(vec_pack(vi[4], vi[5]), vec_pack(vi[6], vi[7])), 16, &y[i].qs[0]);
  1073. accv = vec_add(accv, vec_sld(accv, accv, 4));
  1074. accv = vec_add(accv, vec_sld(accv, accv, 8));
  1075. y[i].s = GGML_FP32_TO_FP16(d * vec_extract(accv, 0));
  1076. }
  1077. #elif defined(__loongarch_asx)
  1078. for (int i = 0; i < nb; i++) {
  1079. ft_union ft;
  1080. __m256 v0 = (__m256)__lasx_xvld( x , 0 );
  1081. __m256 v1 = (__m256)__lasx_xvld( x , 32 );
  1082. __m256 v2 = (__m256)__lasx_xvld( x , 64 );
  1083. __m256 v3 = (__m256)__lasx_xvld( x , 96 );
  1084. x += 32;
  1085. // Compute max(abs(e)) for the block
  1086. const __m256 sign_bit = __lasx_xvreplfr2vr_s( -0.0f );
  1087. __m256 max_abs = (__m256)__lasx_xvandn_v( (__m256i)sign_bit, (__m256i)v0 );
  1088. max_abs = __lasx_xvfmax_s( max_abs, (__m256)__lasx_xvandn_v( (__m256i)sign_bit, (__m256i)v1 ) );
  1089. max_abs = __lasx_xvfmax_s( max_abs, (__m256)__lasx_xvandn_v( (__m256i)sign_bit, (__m256i)v2 ) );
  1090. max_abs = __lasx_xvfmax_s( max_abs, (__m256)__lasx_xvandn_v( (__m256i)sign_bit, (__m256i)v3 ) );
  1091. __m128 max4 = __lsx_vfmax_s( lasx_extractf128( max_abs, 1 ), lasx_extractf128( max_abs, 0) );
  1092. max4 = __lsx_vfmax_s( max4, (__m128)__lsx_vpickod_d((__m128i) max4, (__m128i)max4 ) );
  1093. __m128 tmp = max4;
  1094. max4 = __lsx_vfmax_s( max4, (__m128)__lsx_vextrins_w((__m128i)tmp, (__m128i)max4, 0x10 ));
  1095. ft.i = __lsx_vpickve2gr_w( (__m128i)max4, 0 );
  1096. const float max_scalar = ft.f;
  1097. // Quantize these floats
  1098. const float d = max_scalar / 127.f;
  1099. y[i].d = GGML_FP32_TO_FP16(d);
  1100. const float id = ( max_scalar != 0.0f ) ? 127.f / max_scalar : 0.0f;
  1101. const __m256 mul = __lasx_xvreplfr2vr_s( id );
  1102. // Apply the multiplier
  1103. v0 = __lasx_xvfmul_s( v0, mul );
  1104. v1 = __lasx_xvfmul_s( v1, mul );
  1105. v2 = __lasx_xvfmul_s( v2, mul );
  1106. v3 = __lasx_xvfmul_s( v3, mul );
  1107. // Round to nearest integer
  1108. __m256i i0 = __lasx_xvftintrne_w_s( v0 );
  1109. __m256i i1 = __lasx_xvftintrne_w_s( v1 );
  1110. __m256i i2 = __lasx_xvftintrne_w_s( v2 );
  1111. __m256i i3 = __lasx_xvftintrne_w_s( v3 );
  1112. __m128i ni0 = lasx_extracti128(i0, 0);
  1113. __m128i ni1 = lasx_extracti128( i0, 1);
  1114. __m128i ni2 = lasx_extracti128( i1, 0);
  1115. __m128i ni3 = lasx_extracti128( i1, 1);
  1116. __m128i ni4 = lasx_extracti128( i2, 0 );
  1117. __m128i ni5 = lasx_extracti128( i2, 1);
  1118. __m128i ni6 = lasx_extracti128( i3, 0);
  1119. __m128i ni7 = lasx_extracti128( i3, 1);
  1120. // Compute the sum of the quants and set y[i].s
  1121. const __m128i s0 = __lsx_vadd_w(__lsx_vadd_w(ni0, ni1), __lsx_vadd_w(ni2, ni3));
  1122. const __m128i s1 = __lsx_vadd_w(__lsx_vadd_w(ni4, ni5), __lsx_vadd_w(ni6, ni7));
  1123. y[i].s = GGML_FP32_TO_FP16(d * hsum_i32_4(__lsx_vadd_w(s0, s1)));
  1124. // Convert int32 to int16
  1125. ni0 = lsx_packs_w( ni0, ni1 );
  1126. ni2 = lsx_packs_w( ni2, ni3 );
  1127. ni4 = lsx_packs_w( ni4, ni5 );
  1128. ni6 = lsx_packs_w( ni6, ni7 );
  1129. // Convert int16 to int8
  1130. ni0 = lsx_packs_h( ni0, ni2 );
  1131. ni4 = lsx_packs_h( ni4, ni6 );
  1132. __lsx_vst(ni0, (__m128i *)(y[i].qs + 0), 0);
  1133. __lsx_vst(ni4, (__m128i *)(y[i].qs + 16), 0);
  1134. }
  1135. #else
  1136. GGML_UNUSED(nb);
  1137. // scalar
  1138. quantize_row_q8_1_ref(x, y, k);
  1139. #endif
  1140. }
  1141. //
  1142. // 2-6 bit quantization in super-blocks
  1143. //
  1144. //
  1145. // ===================== Helper functions
  1146. //
  1147. static inline int nearest_int(float fval) {
  1148. assert(fabsf(fval) <= 4194303.f);
  1149. float val = fval + 12582912.f;
  1150. int i; memcpy(&i, &val, sizeof(int));
  1151. return (i & 0x007fffff) - 0x00400000;
  1152. }
  1153. static float make_qx_quants(int n, int nmax, const float * restrict x, int8_t * restrict L, int rmse_type,
  1154. const float * restrict qw) {
  1155. float max = 0;
  1156. float amax = 0;
  1157. for (int i = 0; i < n; ++i) {
  1158. float ax = fabsf(x[i]);
  1159. if (ax > amax) { amax = ax; max = x[i]; }
  1160. }
  1161. if (amax < GROUP_MAX_EPS) { // all zero
  1162. for (int i = 0; i < n; ++i) {
  1163. L[i] = 0;
  1164. }
  1165. return 0.f;
  1166. }
  1167. float iscale = -nmax / max;
  1168. if (rmse_type == 0) {
  1169. for (int i = 0; i < n; ++i) {
  1170. int l = nearest_int(iscale * x[i]);
  1171. L[i] = nmax + MAX(-nmax, MIN(nmax-1, l));
  1172. }
  1173. return 1/iscale;
  1174. }
  1175. bool return_early = false;
  1176. if (rmse_type < 0) {
  1177. rmse_type = -rmse_type;
  1178. return_early = true;
  1179. }
  1180. float sumlx = 0;
  1181. float suml2 = 0;
  1182. #ifdef HAVE_BUGGY_APPLE_LINKER
  1183. // use 'volatile' to prevent unroll and work around a bug in Apple ld64 1015.7
  1184. for (volatile int i = 0; i < n; ++i) {
  1185. #else
  1186. for (int i = 0; i < n; ++i) {
  1187. #endif
  1188. int l = nearest_int(iscale * x[i]);
  1189. l = MAX(-nmax, MIN(nmax-1, l));
  1190. L[i] = l + nmax;
  1191. float w = qw ? qw[i] : rmse_type == 1 ? x[i] * x[i] : rmse_type == 2 ? 1 : rmse_type == 3 ? fabsf(x[i]) : sqrtf(fabsf(x[i]));
  1192. sumlx += w*x[i]*l;
  1193. suml2 += w*l*l;
  1194. }
  1195. float scale = suml2 ? sumlx/suml2 : 0.0f;
  1196. if (return_early) return suml2 > 0 ? 0.5f*(scale + 1/iscale) : 1/iscale;
  1197. float best = scale * sumlx;
  1198. for (int is = -9; is <= 9; ++is) {
  1199. if (is == 0) {
  1200. continue;
  1201. }
  1202. iscale = -(nmax + 0.1f*is) / max;
  1203. sumlx = suml2 = 0;
  1204. for (int i = 0; i < n; ++i) {
  1205. int l = nearest_int(iscale * x[i]);
  1206. l = MAX(-nmax, MIN(nmax-1, l));
  1207. float w = qw ? qw[i] : rmse_type == 1 ? x[i] * x[i] : rmse_type == 2 ? 1 : rmse_type == 3 ? fabsf(x[i]) : sqrtf(fabsf(x[i]));
  1208. sumlx += w*x[i]*l;
  1209. suml2 += w*l*l;
  1210. }
  1211. if (suml2 > 0 && sumlx*sumlx > best*suml2) {
  1212. for (int i = 0; i < n; ++i) {
  1213. int l = nearest_int(iscale * x[i]);
  1214. L[i] = nmax + MAX(-nmax, MIN(nmax-1, l));
  1215. }
  1216. scale = sumlx/suml2; best = scale*sumlx;
  1217. }
  1218. }
  1219. return scale;
  1220. }
  1221. static float make_q3_quants(int n, int nmax, const float * restrict x, int8_t * restrict L, bool do_rmse) {
  1222. float max = 0;
  1223. float amax = 0;
  1224. for (int i = 0; i < n; ++i) {
  1225. float ax = fabsf(x[i]);
  1226. if (ax > amax) { amax = ax; max = x[i]; }
  1227. }
  1228. if (amax < GROUP_MAX_EPS) { // all zero
  1229. for (int i = 0; i < n; ++i) { L[i] = 0; }
  1230. return 0.f;
  1231. }
  1232. float iscale = -nmax / max;
  1233. if (do_rmse) {
  1234. float sumlx = 0;
  1235. float suml2 = 0;
  1236. for (int i = 0; i < n; ++i) {
  1237. int l = nearest_int(iscale * x[i]);
  1238. l = MAX(-nmax, MIN(nmax-1, l));
  1239. L[i] = l;
  1240. float w = x[i]*x[i];
  1241. sumlx += w*x[i]*l;
  1242. suml2 += w*l*l;
  1243. }
  1244. for (int itry = 0; itry < 5; ++itry) {
  1245. int n_changed = 0;
  1246. for (int i = 0; i < n; ++i) {
  1247. float w = x[i]*x[i];
  1248. float slx = sumlx - w*x[i]*L[i];
  1249. if (slx > 0) {
  1250. float sl2 = suml2 - w*L[i]*L[i];
  1251. int new_l = nearest_int(x[i] * sl2 / slx);
  1252. new_l = MAX(-nmax, MIN(nmax-1, new_l));
  1253. if (new_l != L[i]) {
  1254. slx += w*x[i]*new_l;
  1255. sl2 += w*new_l*new_l;
  1256. if (sl2 > 0 && slx*slx*suml2 > sumlx*sumlx*sl2) {
  1257. L[i] = new_l; sumlx = slx; suml2 = sl2;
  1258. ++n_changed;
  1259. }
  1260. }
  1261. }
  1262. }
  1263. if (!n_changed) {
  1264. break;
  1265. }
  1266. }
  1267. for (int i = 0; i < n; ++i) {
  1268. L[i] += nmax;
  1269. }
  1270. return sumlx / suml2;
  1271. }
  1272. for (int i = 0; i < n; ++i) {
  1273. int l = nearest_int(iscale * x[i]);
  1274. l = MAX(-nmax, MIN(nmax-1, l));
  1275. L[i] = l + nmax;
  1276. }
  1277. return 1/iscale;
  1278. }
  1279. static float make_qkx1_quants(int n, int nmax, const float * restrict x, uint8_t * restrict L, float * restrict the_min,
  1280. int ntry, float alpha) {
  1281. float min = x[0];
  1282. float max = x[0];
  1283. for (int i = 1; i < n; ++i) {
  1284. if (x[i] < min) min = x[i];
  1285. if (x[i] > max) max = x[i];
  1286. }
  1287. if (max == min) {
  1288. for (int i = 0; i < n; ++i) L[i] = 0;
  1289. *the_min = 0;
  1290. return 0.f;
  1291. }
  1292. if (min > 0) min = 0;
  1293. float iscale = nmax/(max - min);
  1294. float scale = 1/iscale;
  1295. for (int itry = 0; itry < ntry; ++itry) {
  1296. float sumlx = 0; int suml2 = 0;
  1297. bool did_change = false;
  1298. for (int i = 0; i < n; ++i) {
  1299. int l = nearest_int(iscale*(x[i] - min));
  1300. l = MAX(0, MIN(nmax, l));
  1301. if (l != L[i]) {
  1302. L[i] = l;
  1303. did_change = true;
  1304. }
  1305. sumlx += (x[i] - min)*l;
  1306. suml2 += l*l;
  1307. }
  1308. scale = sumlx/suml2;
  1309. float sum = 0;
  1310. for (int i = 0; i < n; ++i) {
  1311. sum += x[i] - scale*L[i];
  1312. }
  1313. min = alpha*min + (1 - alpha)*sum/n;
  1314. if (min > 0) min = 0;
  1315. iscale = 1/scale;
  1316. if (!did_change) break;
  1317. }
  1318. *the_min = -min;
  1319. return scale;
  1320. }
  1321. static float make_qkx2_quants(int n, int nmax, const float * restrict x, const float * restrict weights,
  1322. uint8_t * restrict L, float * restrict the_min, uint8_t * restrict Laux,
  1323. float rmin, float rdelta, int nstep, bool use_mad) {
  1324. float min = x[0];
  1325. float max = x[0];
  1326. float sum_w = weights[0];
  1327. float sum_x = sum_w * x[0];
  1328. #ifdef HAVE_BUGGY_APPLE_LINKER
  1329. // use 'volatile' to prevent unroll and work around a bug in Apple ld64 1015.7
  1330. for (volatile int i = 1; i < n; ++i) {
  1331. #else
  1332. for (int i = 1; i < n; ++i) {
  1333. #endif
  1334. if (x[i] < min) min = x[i];
  1335. if (x[i] > max) max = x[i];
  1336. float w = weights[i];
  1337. sum_w += w;
  1338. sum_x += w * x[i];
  1339. }
  1340. if (min > 0) min = 0;
  1341. if (max == min) {
  1342. for (int i = 0; i < n; ++i) L[i] = 0;
  1343. *the_min = -min;
  1344. return 0.f;
  1345. }
  1346. float iscale = nmax/(max - min);
  1347. float scale = 1/iscale;
  1348. float best_mad = 0;
  1349. for (int i = 0; i < n; ++i) {
  1350. int l = nearest_int(iscale*(x[i] - min));
  1351. L[i] = MAX(0, MIN(nmax, l));
  1352. float diff = scale * L[i] + min - x[i];
  1353. diff = use_mad ? fabsf(diff) : diff * diff;
  1354. float w = weights[i];
  1355. best_mad += w * diff;
  1356. }
  1357. if (nstep < 1) {
  1358. *the_min = -min;
  1359. return scale;
  1360. }
  1361. for (int is = 0; is <= nstep; ++is) {
  1362. iscale = (rmin + rdelta*is + nmax)/(max - min);
  1363. float sum_l = 0, sum_l2 = 0, sum_xl = 0;
  1364. for (int i = 0; i < n; ++i) {
  1365. int l = nearest_int(iscale*(x[i] - min));
  1366. l = MAX(0, MIN(nmax, l));
  1367. Laux[i] = l;
  1368. float w = weights[i];
  1369. sum_l += w*l;
  1370. sum_l2 += w*l*l;
  1371. sum_xl += w*l*x[i];
  1372. }
  1373. float D = sum_w * sum_l2 - sum_l * sum_l;
  1374. if (D > 0) {
  1375. float this_scale = (sum_w * sum_xl - sum_x * sum_l)/D;
  1376. float this_min = (sum_l2 * sum_x - sum_l * sum_xl)/D;
  1377. if (this_min > 0) {
  1378. this_min = 0;
  1379. this_scale = sum_xl / sum_l2;
  1380. }
  1381. float mad = 0;
  1382. for (int i = 0; i < n; ++i) {
  1383. float diff = this_scale * Laux[i] + this_min - x[i];
  1384. diff = use_mad ? fabsf(diff) : diff * diff;
  1385. float w = weights[i];
  1386. mad += w * diff;
  1387. }
  1388. if (mad < best_mad) {
  1389. for (int i = 0; i < n; ++i) {
  1390. L[i] = Laux[i];
  1391. }
  1392. best_mad = mad;
  1393. scale = this_scale;
  1394. min = this_min;
  1395. }
  1396. }
  1397. }
  1398. *the_min = -min;
  1399. return scale;
  1400. }
  1401. static inline void get_scale_min_k4(int j, const uint8_t * restrict q, uint8_t * restrict d, uint8_t * restrict m) {
  1402. if (j < 4) {
  1403. *d = q[j] & 63; *m = q[j + 4] & 63;
  1404. } else {
  1405. *d = (q[j+4] & 0xF) | ((q[j-4] >> 6) << 4);
  1406. *m = (q[j+4] >> 4) | ((q[j-0] >> 6) << 4);
  1407. }
  1408. }
  1409. //========================- 2-bit (de)-quantization
  1410. void quantize_row_q2_K(const float * restrict x, void * restrict vy, int64_t k) {
  1411. quantize_row_q2_K_ref(x, vy, k);
  1412. }
  1413. //========================= 3-bit (de)-quantization
  1414. void quantize_row_q3_K(const float * restrict x, void * restrict vy, int64_t k) {
  1415. quantize_row_q3_K_ref(x, vy, k);
  1416. }
  1417. // ====================== 4-bit (de)-quantization
  1418. void quantize_row_q4_K(const float * restrict x, void * restrict vy, int64_t k) {
  1419. assert(k % QK_K == 0);
  1420. block_q4_K * restrict y = vy;
  1421. quantize_row_q4_K_ref(x, y, k);
  1422. }
  1423. // ====================== 5-bit (de)-quantization
  1424. void quantize_row_q5_K(const float * restrict x, void * restrict vy, int64_t k) {
  1425. assert(k % QK_K == 0);
  1426. block_q5_K * restrict y = vy;
  1427. quantize_row_q5_K_ref(x, y, k);
  1428. }
  1429. // ====================== 6-bit (de)-quantization
  1430. void quantize_row_q6_K(const float * restrict x, void * restrict vy, int64_t k) {
  1431. assert(k % QK_K == 0);
  1432. block_q6_K * restrict y = vy;
  1433. quantize_row_q6_K_ref(x, y, k);
  1434. }
  1435. // ====================== Ternary (de)-quantization (BitNet b1.58 and TriLMs)
  1436. void quantize_row_tq1_0(const float * restrict x, void * restrict vy, int64_t k) {
  1437. assert(k % QK_K == 0);
  1438. block_tq1_0 * restrict y = vy;
  1439. quantize_row_tq1_0_ref(x, y, k);
  1440. }
  1441. void quantize_row_tq2_0(const float * restrict x, void * restrict vy, int64_t k) {
  1442. assert(k % QK_K == 0);
  1443. block_tq2_0 * restrict y = vy;
  1444. quantize_row_tq2_0_ref(x, y, k);
  1445. }
  1446. static const int8_t kvalues_iq4nl[16] = {-127, -104, -83, -65, -49, -35, -22, -10, 1, 13, 25, 38, 53, 69, 89, 113};
  1447. //===================================== Q8_K ==============================================
  1448. void quantize_row_q8_K(const float * restrict x, void * restrict y, int64_t k) {
  1449. quantize_row_q8_K_ref(x, y, k);
  1450. }
  1451. //===================================== Dot products =================================
  1452. //
  1453. // Helper functions
  1454. //
  1455. #if __AVX__ || __AVX2__ || __AVX512F__
  1456. // shuffles to pick the required scales in dot products
  1457. static inline __m256i get_scale_shuffle_q3k(int i) {
  1458. static const uint8_t k_shuffle[128] = {
  1459. 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3,
  1460. 4, 5, 4, 5, 4, 5, 4, 5, 4, 5, 4, 5, 4, 5, 4, 5, 6, 7, 6, 7, 6, 7, 6, 7, 6, 7, 6, 7, 6, 7, 6, 7,
  1461. 8, 9, 8, 9, 8, 9, 8, 9, 8, 9, 8, 9, 8, 9, 8, 9, 10,11,10,11,10,11,10,11,10,11,10,11,10,11,10,11,
  1462. 12,13,12,13,12,13,12,13,12,13,12,13,12,13,12,13, 14,15,14,15,14,15,14,15,14,15,14,15,14,15,14,15,
  1463. };
  1464. return _mm256_loadu_si256((const __m256i*)k_shuffle + i);
  1465. }
  1466. static inline __m256i get_scale_shuffle_k4(int i) {
  1467. static const uint8_t k_shuffle[256] = {
  1468. 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1,
  1469. 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3,
  1470. 4, 5, 4, 5, 4, 5, 4, 5, 4, 5, 4, 5, 4, 5, 4, 5, 4, 5, 4, 5, 4, 5, 4, 5, 4, 5, 4, 5, 4, 5, 4, 5,
  1471. 6, 7, 6, 7, 6, 7, 6, 7, 6, 7, 6, 7, 6, 7, 6, 7, 6, 7, 6, 7, 6, 7, 6, 7, 6, 7, 6, 7, 6, 7, 6, 7,
  1472. 8, 9, 8, 9, 8, 9, 8, 9, 8, 9, 8, 9, 8, 9, 8, 9, 8, 9, 8, 9, 8, 9, 8, 9, 8, 9, 8, 9, 8, 9, 8, 9,
  1473. 10,11,10,11,10,11,10,11,10,11,10,11,10,11,10,11,10,11,10,11,10,11,10,11,10,11,10,11,10,11,10,11,
  1474. 12,13,12,13,12,13,12,13,12,13,12,13,12,13,12,13,12,13,12,13,12,13,12,13,12,13,12,13,12,13,12,13,
  1475. 14,15,14,15,14,15,14,15,14,15,14,15,14,15,14,15,14,15,14,15,14,15,14,15,14,15,14,15,14,15,14,15
  1476. };
  1477. return _mm256_loadu_si256((const __m256i*)k_shuffle + i);
  1478. }
  1479. static inline __m128i get_scale_shuffle(int i) {
  1480. static const uint8_t k_shuffle[128] = {
  1481. 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1,
  1482. 2, 2, 2, 2, 2, 2, 2, 2, 3, 3, 3, 3, 3, 3, 3, 3,
  1483. 4, 4, 4, 4, 4, 4, 4, 4, 5, 5, 5, 5, 5, 5, 5, 5,
  1484. 6, 6, 6, 6, 6, 6, 6, 6, 7, 7, 7, 7, 7, 7, 7, 7,
  1485. 8, 8, 8, 8, 8, 8, 8, 8, 9, 9, 9, 9, 9, 9, 9, 9,
  1486. 10,10,10,10,10,10,10,10, 11,11,11,11,11,11,11,11,
  1487. 12,12,12,12,12,12,12,12, 13,13,13,13,13,13,13,13,
  1488. 14,14,14,14,14,14,14,14, 15,15,15,15,15,15,15,15
  1489. };
  1490. return _mm_loadu_si128((const __m128i*)k_shuffle + i);
  1491. }
  1492. #elif defined(__loongarch_asx)
  1493. // shuffles to pick the required scales in dot products
  1494. static inline __m256i get_scale_shuffle_q3k(int i) {
  1495. static const uint8_t k_shuffle[128] = {
  1496. 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3,
  1497. 4, 5, 4, 5, 4, 5, 4, 5, 4, 5, 4, 5, 4, 5, 4, 5, 6, 7, 6, 7, 6, 7, 6, 7, 6, 7, 6, 7, 6, 7, 6, 7,
  1498. 8, 9, 8, 9, 8, 9, 8, 9, 8, 9, 8, 9, 8, 9, 8, 9, 10,11,10,11,10,11,10,11,10,11,10,11,10,11,10,11,
  1499. 12,13,12,13,12,13,12,13,12,13,12,13,12,13,12,13, 14,15,14,15,14,15,14,15,14,15,14,15,14,15,14,15,
  1500. };
  1501. return __lasx_xvld((const __m256i*)k_shuffle + i, 0);
  1502. }
  1503. static inline __m256i get_scale_shuffle_k4(int i) {
  1504. static const uint8_t k_shuffle[256] = {
  1505. 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1,
  1506. 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3,
  1507. 4, 5, 4, 5, 4, 5, 4, 5, 4, 5, 4, 5, 4, 5, 4, 5, 4, 5, 4, 5, 4, 5, 4, 5, 4, 5, 4, 5, 4, 5, 4, 5,
  1508. 6, 7, 6, 7, 6, 7, 6, 7, 6, 7, 6, 7, 6, 7, 6, 7, 6, 7, 6, 7, 6, 7, 6, 7, 6, 7, 6, 7, 6, 7, 6, 7,
  1509. 8, 9, 8, 9, 8, 9, 8, 9, 8, 9, 8, 9, 8, 9, 8, 9, 8, 9, 8, 9, 8, 9, 8, 9, 8, 9, 8, 9, 8, 9, 8, 9,
  1510. 10,11,10,11,10,11,10,11,10,11,10,11,10,11,10,11,10,11,10,11,10,11,10,11,10,11,10,11,10,11,10,11,
  1511. 12,13,12,13,12,13,12,13,12,13,12,13,12,13,12,13,12,13,12,13,12,13,12,13,12,13,12,13,12,13,12,13,
  1512. 14,15,14,15,14,15,14,15,14,15,14,15,14,15,14,15,14,15,14,15,14,15,14,15,14,15,14,15,14,15,14,15
  1513. };
  1514. return __lasx_xvld((const __m256i*)k_shuffle + i, 0);
  1515. }
  1516. static inline __m128i get_scale_shuffle(int i) {
  1517. static const uint8_t k_shuffle[128] = {
  1518. 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1,
  1519. 2, 2, 2, 2, 2, 2, 2, 2, 3, 3, 3, 3, 3, 3, 3, 3,
  1520. 4, 4, 4, 4, 4, 4, 4, 4, 5, 5, 5, 5, 5, 5, 5, 5,
  1521. 6, 6, 6, 6, 6, 6, 6, 6, 7, 7, 7, 7, 7, 7, 7, 7,
  1522. 8, 8, 8, 8, 8, 8, 8, 8, 9, 9, 9, 9, 9, 9, 9, 9,
  1523. 10,10,10,10,10,10,10,10, 11,11,11,11,11,11,11,11,
  1524. 12,12,12,12,12,12,12,12, 13,13,13,13,13,13,13,13,
  1525. 14,14,14,14,14,14,14,14, 15,15,15,15,15,15,15,15
  1526. };
  1527. return __lsx_vld((const __m128i*)k_shuffle + i, 0);
  1528. }
  1529. #endif
  1530. void ggml_vec_dot_q4_0_q8_0(int n, float * restrict s, size_t bs, const void * restrict vx, size_t bx, const void * restrict vy, size_t by, int nrc) {
  1531. const int qk = QK8_0;
  1532. const int nb = n / qk;
  1533. assert(n % qk == 0);
  1534. #if defined(__ARM_FEATURE_MATMUL_INT8)
  1535. assert((nrc == 2) || (nrc == 1));
  1536. #else
  1537. assert(nrc == 1);
  1538. #endif
  1539. UNUSED(nrc);
  1540. UNUSED(bx);
  1541. UNUSED(by);
  1542. UNUSED(bs);
  1543. const block_q4_0 * restrict x = vx;
  1544. const block_q8_0 * restrict y = vy;
  1545. #if defined(__ARM_FEATURE_MATMUL_INT8)
  1546. if (nrc == 2) {
  1547. const block_q4_0 * restrict vx0 = vx;
  1548. const block_q4_0 * restrict vx1 = (const block_q4_0 *) ((const uint8_t*)vx + bx);
  1549. const block_q8_0 * restrict vy0 = vy;
  1550. const block_q8_0 * restrict vy1 = (const block_q8_0 *) ((const uint8_t*)vy + by);
  1551. float32x4_t sumv0 = vdupq_n_f32(0.0f);
  1552. for (int i = 0; i < nb; i++) {
  1553. const block_q4_0 * restrict b_x0 = &vx0[i];
  1554. const block_q4_0 * restrict b_x1 = &vx1[i];
  1555. const block_q8_0 * restrict b_y0 = &vy0[i];
  1556. const block_q8_0 * restrict b_y1 = &vy1[i];
  1557. const uint8x16_t m4b = vdupq_n_u8(0x0F);
  1558. const int8x16_t s8b = vdupq_n_s8(0x8);
  1559. const uint8x16_t v0_0 = vld1q_u8(b_x0->qs);
  1560. const uint8x16_t v0_1 = vld1q_u8(b_x1->qs);
  1561. // 4-bit -> 8-bit
  1562. const int8x16_t v0_0l = vreinterpretq_s8_u8(vandq_u8 (v0_0, m4b));
  1563. const int8x16_t v0_0h = vreinterpretq_s8_u8(vshrq_n_u8(v0_0, 4));
  1564. const int8x16_t v0_1l = vreinterpretq_s8_u8(vandq_u8 (v0_1, m4b));
  1565. const int8x16_t v0_1h = vreinterpretq_s8_u8(vshrq_n_u8(v0_1, 4));
  1566. // sub 8
  1567. const int8x16_t x0_l = vsubq_s8(v0_0l, s8b);
  1568. const int8x16_t x0_h = vsubq_s8(v0_0h, s8b);
  1569. const int8x16_t x1_l = vsubq_s8(v0_1l, s8b);
  1570. const int8x16_t x1_h = vsubq_s8(v0_1h, s8b);
  1571. // load y
  1572. const int8x16_t y0_l = vld1q_s8(b_y0->qs);
  1573. const int8x16_t y0_h = vld1q_s8(b_y0->qs + 16);
  1574. const int8x16_t y1_l = vld1q_s8(b_y1->qs);
  1575. const int8x16_t y1_h = vld1q_s8(b_y1->qs + 16);
  1576. float32_t _scale[4] = {
  1577. GGML_FP16_TO_FP32(b_x0->d)*GGML_FP16_TO_FP32(b_y0->d),
  1578. GGML_FP16_TO_FP32(b_x0->d)*GGML_FP16_TO_FP32(b_y1->d),
  1579. GGML_FP16_TO_FP32(b_x1->d)*GGML_FP16_TO_FP32(b_y0->d),
  1580. GGML_FP16_TO_FP32(b_x1->d)*GGML_FP16_TO_FP32(b_y1->d)
  1581. };
  1582. float32x4_t scale = vld1q_f32(_scale);
  1583. int8x16_t l0 = vreinterpretq_s8_s64(vzip1q_s64(vreinterpretq_s64_s8(x0_l), vreinterpretq_s64_s8(x1_l)));
  1584. int8x16_t l1 = vreinterpretq_s8_s64(vzip2q_s64(vreinterpretq_s64_s8(x0_l), vreinterpretq_s64_s8(x1_l)));
  1585. int8x16_t l2 = vreinterpretq_s8_s64(vzip1q_s64(vreinterpretq_s64_s8(x0_h), vreinterpretq_s64_s8(x1_h)));
  1586. int8x16_t l3 = vreinterpretq_s8_s64(vzip2q_s64(vreinterpretq_s64_s8(x0_h), vreinterpretq_s64_s8(x1_h)));
  1587. int8x16_t r0 = vreinterpretq_s8_s64(vzip1q_s64(vreinterpretq_s64_s8(y0_l), vreinterpretq_s64_s8(y1_l)));
  1588. int8x16_t r1 = vreinterpretq_s8_s64(vzip2q_s64(vreinterpretq_s64_s8(y0_l), vreinterpretq_s64_s8(y1_l)));
  1589. int8x16_t r2 = vreinterpretq_s8_s64(vzip1q_s64(vreinterpretq_s64_s8(y0_h), vreinterpretq_s64_s8(y1_h)));
  1590. int8x16_t r3 = vreinterpretq_s8_s64(vzip2q_s64(vreinterpretq_s64_s8(y0_h), vreinterpretq_s64_s8(y1_h)));
  1591. sumv0 = vmlaq_f32(sumv0,(vcvtq_f32_s32(vmmlaq_s32((vmmlaq_s32((vmmlaq_s32((vmmlaq_s32(vdupq_n_s32(0), l0, r0)),
  1592. l1, r1)), l2, r2)), l3, r3))), scale);
  1593. }
  1594. float32x4_t sumv1 = vextq_f32 (sumv0, sumv0, 2);
  1595. float32x4_t sumv2 = vzip1q_f32(sumv0, sumv1);
  1596. vst1_f32(s, vget_low_f32 (sumv2));
  1597. vst1_f32(s + bs, vget_high_f32(sumv2));
  1598. return;
  1599. }
  1600. #endif
  1601. int ib = 0;
  1602. float sumf = 0;
  1603. #if defined(__ARM_FEATURE_SVE)
  1604. svfloat32_t sumv0 = svdup_n_f32(0.0f);
  1605. svfloat32_t sumv1 = svdup_n_f32(0.0f);
  1606. const int vector_length = ggml_cpu_get_sve_cnt()*8;
  1607. // VLA Implementation using switch case
  1608. switch (vector_length) {
  1609. case 128:
  1610. {
  1611. // predicate for activating higher lanes for 4 float32 elements
  1612. const svbool_t ph4 = svptrue_pat_b32(SV_VL4);
  1613. for (; ib + 1 < nb; ib += 2) {
  1614. const block_q4_0 * restrict x0 = &x[ib + 0];
  1615. const block_q4_0 * restrict x1 = &x[ib + 1];
  1616. const block_q8_0 * restrict y0 = &y[ib + 0];
  1617. const block_q8_0 * restrict y1 = &y[ib + 1];
  1618. // load x
  1619. const svuint8_t qx0r = svld1rq_u8(svptrue_b8(), x0->qs);
  1620. const svuint8_t qx1r = svld1rq_u8(svptrue_b8(), x1->qs);
  1621. // 4-bit -> 8-bit
  1622. const svint8_t qx0l = svreinterpret_s8_u8(svand_n_u8_m(svptrue_b8(), qx0r, 0x0F));
  1623. const svint8_t qx0h = svreinterpret_s8_u8(svlsr_n_u8_m(svptrue_b8(), qx0r, 0x04));
  1624. const svint8_t qx1l = svreinterpret_s8_u8(svand_n_u8_m(svptrue_b8(), qx1r, 0x0F));
  1625. const svint8_t qx1h = svreinterpret_s8_u8(svlsr_n_u8_m(svptrue_b8(), qx1r, 0x04));
  1626. // sub 8
  1627. const svint8_t qx0ls = svsub_n_s8_x(svptrue_b8(), qx0h, 8);
  1628. const svint8_t qx0hs = svsub_n_s8_x(svptrue_b8(), qx0l, 8);
  1629. const svint8_t qx1ls = svsub_n_s8_x(svptrue_b8(), qx1h, 8);
  1630. const svint8_t qx1hs = svsub_n_s8_x(svptrue_b8(), qx1l, 8);
  1631. // load y
  1632. const svint8_t qy0h = svld1_s8(svptrue_b8(), y0->qs);
  1633. const svint8_t qy0l = svld1_s8(svptrue_b8(), y0->qs + 16);
  1634. const svint8_t qy1h = svld1_s8(svptrue_b8(), y1->qs);
  1635. const svint8_t qy1l = svld1_s8(svptrue_b8(), y1->qs + 16);
  1636. // dot product
  1637. sumv0 = svmla_n_f32_x(ph4, sumv0, svcvt_f32_s32_x(ph4, svadd_x(ph4,
  1638. svdot_s32(svdup_n_s32(0), qx0ls, qy0l),
  1639. svdot_s32(svdup_n_s32(0), qx0hs, qy0h))), GGML_FP16_TO_FP32(x0->d)*GGML_FP16_TO_FP32(y0->d));
  1640. sumv1 = svmla_n_f32_x(ph4, sumv1, svcvt_f32_s32_x(ph4, svadd_x(ph4,
  1641. svdot_s32(svdup_n_s32(0), qx1ls, qy1l),
  1642. svdot_s32(svdup_n_s32(0), qx1hs, qy1h))), GGML_FP16_TO_FP32(x1->d)*GGML_FP16_TO_FP32(y1->d));
  1643. }
  1644. sumf = svaddv_f32(svptrue_b32(), svadd_f32_x(svptrue_b32(), sumv0, sumv1));
  1645. } break;
  1646. case 256:
  1647. {
  1648. // predicate for activating higher lanes for 16 int8 elements
  1649. const svbool_t ph16 = svptrue_pat_b8(SV_VL16);
  1650. // predicate for activating lower lanes for 16 int8 elements
  1651. const svbool_t pl16 = svnot_b_z(svptrue_b8(), ph16);
  1652. for (; ib + 1 < nb; ib += 2) {
  1653. const block_q4_0 * restrict x0 = &x[ib + 0];
  1654. const block_q4_0 * restrict x1 = &x[ib + 1];
  1655. const block_q8_0 * restrict y0 = &y[ib + 0];
  1656. const block_q8_0 * restrict y1 = &y[ib + 1];
  1657. // load x
  1658. const svuint8_t qx0r = svld1rq_u8(svptrue_b8(), x0->qs);
  1659. const svuint8_t qx1r = svld1rq_u8(svptrue_b8(), x1->qs);
  1660. // 4-bit -> 8-bit
  1661. const svint8_t qx0 = svreinterpret_s8_u8(svlsr_n_u8_m(pl16, svand_n_u8_m(ph16, qx0r, 0x0F), 0x04));
  1662. const svint8_t qx1 = svreinterpret_s8_u8(svlsr_n_u8_m(pl16, svand_n_u8_m(ph16, qx1r, 0x0F), 0x04));
  1663. // sub 8
  1664. const svint8_t qx0s = svsub_n_s8_x(svptrue_b8(), qx0, 8);
  1665. const svint8_t qx1s = svsub_n_s8_x(svptrue_b8(), qx1, 8);
  1666. // load y
  1667. const svint8_t qy0 = svld1_s8(svptrue_b8(), y0->qs);
  1668. const svint8_t qy1 = svld1_s8(svptrue_b8(), y1->qs);
  1669. // dot product
  1670. sumv0 = svmla_n_f32_x(svptrue_b32(), sumv0, svcvt_f32_s32_x(svptrue_b32(),
  1671. svdot_s32(svdup_n_s32(0), qx0s, qy0)), GGML_FP16_TO_FP32(x0->d)*GGML_FP16_TO_FP32(y0->d));
  1672. sumv1 = svmla_n_f32_x(svptrue_b32(), sumv1, svcvt_f32_s32_x(svptrue_b32(),
  1673. svdot_s32(svdup_n_s32(0), qx1s, qy1)), GGML_FP16_TO_FP32(x1->d)*GGML_FP16_TO_FP32(y1->d));
  1674. }
  1675. sumf = svaddv_f32(svptrue_b32(), svadd_f32_x(svptrue_b32(), sumv0, sumv1));
  1676. } break;
  1677. case 512:
  1678. {
  1679. // predicate for activating higher lanes for 32 int8 elements
  1680. const svbool_t ph32 = svptrue_pat_b8(SV_VL32);
  1681. // predicate for activating higher lanes for 16 int8 elements
  1682. const svbool_t ph16 = svptrue_pat_b8(SV_VL16);
  1683. // predicate for activating lower lanes for 16 int8 elements from first 32 int8 activated lanes
  1684. const svbool_t pl16 = svnot_b_z(ph32, ph16);
  1685. for (; ib + 1 < nb; ib += 2) {
  1686. const block_q4_0 * restrict x0 = &x[ib + 0];
  1687. const block_q4_0 * restrict x1 = &x[ib + 1];
  1688. const block_q8_0 * restrict y0 = &y[ib + 0];
  1689. const block_q8_0 * restrict y1 = &y[ib + 1];
  1690. // load x
  1691. const svuint8_t qx0r = svld1rq_u8(ph32, x0->qs);
  1692. const svuint8_t qx1r = svld1rq_u8(ph32, x1->qs);
  1693. // 4-bit -> 8-bit
  1694. const svint8_t qx0 = svreinterpret_s8_u8(svlsr_n_u8_m(pl16, svand_n_u8_m(ph16, qx0r, 0x0F), 0x04));
  1695. const svint8_t qx1 = svreinterpret_s8_u8(svlsr_n_u8_m(pl16, svand_n_u8_m(ph16, qx1r, 0x0F), 0x04));
  1696. // sub 8
  1697. const svint8_t qx0s = svsub_n_s8_x(ph32, qx0, 8);
  1698. const svint8_t qx1s = svsub_n_s8_x(ph32, qx1, 8);
  1699. // load y
  1700. const svint8_t qy0 = svld1_s8(ph32, y0->qs);
  1701. const svint8_t qy1 = svld1_s8(ph32, y1->qs);
  1702. // dot product
  1703. sumv0 = svmla_n_f32_x(ph32, sumv0, svcvt_f32_s32_x(ph32,
  1704. svdot_s32(svdup_n_s32(0), qx0s, qy0)), GGML_FP16_TO_FP32(x0->d)*GGML_FP16_TO_FP32(y0->d));
  1705. sumv1 = svmla_n_f32_x(ph32, sumv1, svcvt_f32_s32_x(ph32,
  1706. svdot_s32(svdup_n_s32(0), qx1s, qy1)), GGML_FP16_TO_FP32(x1->d)*GGML_FP16_TO_FP32(y1->d));
  1707. }
  1708. sumf = svaddv_f32(ph32, svadd_f32_x(ph32, sumv0, sumv1));
  1709. } break;
  1710. default:
  1711. assert(false && "Unsupported vector length");
  1712. break;
  1713. }
  1714. #elif defined(__ARM_NEON)
  1715. float32x4_t sumv0 = vdupq_n_f32(0.0f);
  1716. float32x4_t sumv1 = vdupq_n_f32(0.0f);
  1717. for (; ib + 1 < nb; ib += 2) {
  1718. const block_q4_0 * restrict x0 = &x[ib + 0];
  1719. const block_q4_0 * restrict x1 = &x[ib + 1];
  1720. const block_q8_0 * restrict y0 = &y[ib + 0];
  1721. const block_q8_0 * restrict y1 = &y[ib + 1];
  1722. const uint8x16_t m4b = vdupq_n_u8(0x0F);
  1723. const int8x16_t s8b = vdupq_n_s8(0x8);
  1724. const uint8x16_t v0_0 = vld1q_u8(x0->qs);
  1725. const uint8x16_t v0_1 = vld1q_u8(x1->qs);
  1726. // 4-bit -> 8-bit
  1727. const int8x16_t v0_0l = vreinterpretq_s8_u8(vandq_u8 (v0_0, m4b));
  1728. const int8x16_t v0_0h = vreinterpretq_s8_u8(vshrq_n_u8(v0_0, 4));
  1729. const int8x16_t v0_1l = vreinterpretq_s8_u8(vandq_u8 (v0_1, m4b));
  1730. const int8x16_t v0_1h = vreinterpretq_s8_u8(vshrq_n_u8(v0_1, 4));
  1731. // sub 8
  1732. const int8x16_t v0_0ls = vsubq_s8(v0_0l, s8b);
  1733. const int8x16_t v0_0hs = vsubq_s8(v0_0h, s8b);
  1734. const int8x16_t v0_1ls = vsubq_s8(v0_1l, s8b);
  1735. const int8x16_t v0_1hs = vsubq_s8(v0_1h, s8b);
  1736. // load y
  1737. const int8x16_t v1_0l = vld1q_s8(y0->qs);
  1738. const int8x16_t v1_0h = vld1q_s8(y0->qs + 16);
  1739. const int8x16_t v1_1l = vld1q_s8(y1->qs);
  1740. const int8x16_t v1_1h = vld1q_s8(y1->qs + 16);
  1741. // dot product into int32x4_t
  1742. const int32x4_t p_0 = ggml_vdotq_s32(ggml_vdotq_s32(vdupq_n_s32(0), v0_0ls, v1_0l), v0_0hs, v1_0h);
  1743. const int32x4_t p_1 = ggml_vdotq_s32(ggml_vdotq_s32(vdupq_n_s32(0), v0_1ls, v1_1l), v0_1hs, v1_1h);
  1744. sumv0 = vmlaq_n_f32(sumv0, vcvtq_f32_s32(p_0), GGML_FP16_TO_FP32(x0->d)*GGML_FP16_TO_FP32(y0->d));
  1745. sumv1 = vmlaq_n_f32(sumv1, vcvtq_f32_s32(p_1), GGML_FP16_TO_FP32(x1->d)*GGML_FP16_TO_FP32(y1->d));
  1746. }
  1747. sumf = vaddvq_f32(sumv0) + vaddvq_f32(sumv1);
  1748. #elif defined(__AVX2__)
  1749. // Initialize accumulator with zeros
  1750. __m256 acc = _mm256_setzero_ps();
  1751. // Main loop
  1752. for (; ib < nb; ++ib) {
  1753. /* Compute combined scale for the block */
  1754. const __m256 d = _mm256_set1_ps( GGML_FP16_TO_FP32(x[ib].d) * GGML_FP16_TO_FP32(y[ib].d) );
  1755. __m256i qx = bytes_from_nibbles_32(x[ib].qs);
  1756. // Now we have a vector with bytes in [ 0 .. 15 ] interval. Offset them into [ -8 .. +7 ] interval.
  1757. const __m256i off = _mm256_set1_epi8( 8 );
  1758. qx = _mm256_sub_epi8( qx, off );
  1759. __m256i qy = _mm256_loadu_si256((const __m256i *)y[ib].qs);
  1760. const __m256 q = mul_sum_i8_pairs_float(qx, qy);
  1761. /* Multiply q with scale and accumulate */
  1762. acc = _mm256_fmadd_ps( d, q, acc );
  1763. }
  1764. sumf = hsum_float_8(acc);
  1765. #elif defined(__AVX__)
  1766. __m256 accum = _mm256_setzero_ps();
  1767. for (; ib + 1 < nb; ib += 2) {
  1768. const __m128i q4bits_1 = _mm_loadu_si128((const __m128i *)x[ib + 0].qs);
  1769. const __m128i q4bits_2 = _mm_loadu_si128((const __m128i *)x[ib + 1].qs);
  1770. const __m128i q8b_1_0 = _mm_loadu_si128((const __m128i *)y[ib + 0].qs);
  1771. const __m128i q8b_1_1 = _mm_loadu_si128((const __m128i *)y[ib + 0].qs + 1);
  1772. const __m128i q8b_2_0 = _mm_loadu_si128((const __m128i *)y[ib + 1].qs);
  1773. const __m128i q8b_2_1 = _mm_loadu_si128((const __m128i *)y[ib + 1].qs + 1);
  1774. const __m128i q4b_1_0 = _mm_sub_epi8(_mm_and_si128(_mm_set1_epi8(15), q4bits_1), _mm_set1_epi8(8));
  1775. const __m128i q4b_1_1 = _mm_sub_epi8(_mm_and_si128(_mm_set1_epi8(15), _mm_srli_epi16(q4bits_1, 4)), _mm_set1_epi8(8));
  1776. const __m128i q4b_2_0 = _mm_sub_epi8(_mm_and_si128(_mm_set1_epi8(15), q4bits_2), _mm_set1_epi8(8));
  1777. const __m128i q4b_2_1 = _mm_sub_epi8(_mm_and_si128(_mm_set1_epi8(15), _mm_srli_epi16(q4bits_2, 4)), _mm_set1_epi8(8));
  1778. const __m128i p16_1_0 = mul_add_epi8_sse(q4b_1_0, q8b_1_0);
  1779. const __m128i p16_1_1 = mul_add_epi8_sse(q4b_1_1, q8b_1_1);
  1780. const __m128i p16_2_0 = mul_add_epi8_sse(q4b_2_0, q8b_2_0);
  1781. const __m128i p16_2_1 = mul_add_epi8_sse(q4b_2_1, q8b_2_1);
  1782. const __m128i p_1 = _mm_add_epi16(p16_1_0, p16_1_1);
  1783. const __m128i p_2 = _mm_add_epi16(p16_2_0, p16_2_1);
  1784. const __m256 p = sum_i16_pairs_float(p_2, p_1);
  1785. const __m256 deltas = quad_fp16_delta_float(x[ib].d, y[ib].d, x[ib + 1].d, y[ib + 1].d);
  1786. accum = _mm256_add_ps(_mm256_mul_ps(deltas, p), accum);
  1787. }
  1788. sumf = hsum_float_8(accum);
  1789. #elif defined(__SSSE3__)
  1790. // set constants
  1791. const __m128i lowMask = _mm_set1_epi8(0xF);
  1792. const __m128i off = _mm_set1_epi8(8);
  1793. // Initialize accumulator with zeros
  1794. __m128 acc_0 = _mm_setzero_ps();
  1795. __m128 acc_1 = _mm_setzero_ps();
  1796. __m128 acc_2 = _mm_setzero_ps();
  1797. __m128 acc_3 = _mm_setzero_ps();
  1798. for (; ib + 1 < nb; ib += 2) {
  1799. _mm_prefetch(&x[ib] + sizeof(block_q4_0), _MM_HINT_T0);
  1800. _mm_prefetch(&y[ib] + sizeof(block_q8_0), _MM_HINT_T0);
  1801. // Compute combined scale for the block 0 and 1
  1802. const __m128 d_0_1 = _mm_set1_ps( GGML_FP16_TO_FP32(x[ib].d) * GGML_FP16_TO_FP32(y[ib].d) );
  1803. const __m128i tmp_0_1 = _mm_loadu_si128((const __m128i *)x[ib].qs);
  1804. __m128i bx_0 = _mm_and_si128(lowMask, tmp_0_1);
  1805. __m128i by_0 = _mm_loadu_si128((const __m128i *)y[ib].qs);
  1806. bx_0 = _mm_sub_epi8(bx_0, off);
  1807. const __m128i i32_0 = mul_sum_i8_pairs(bx_0, by_0);
  1808. __m128i bx_1 = _mm_and_si128(lowMask, _mm_srli_epi64(tmp_0_1, 4));
  1809. __m128i by_1 = _mm_loadu_si128((const __m128i *)(y[ib].qs + 16));
  1810. bx_1 = _mm_sub_epi8(bx_1, off);
  1811. const __m128i i32_1 = mul_sum_i8_pairs(bx_1, by_1);
  1812. _mm_prefetch(&x[ib] + 2 * sizeof(block_q4_0), _MM_HINT_T0);
  1813. _mm_prefetch(&y[ib] + 2 * sizeof(block_q8_0), _MM_HINT_T0);
  1814. // Compute combined scale for the block 2 and 3
  1815. const __m128 d_2_3 = _mm_set1_ps( GGML_FP16_TO_FP32(x[ib + 1].d) * GGML_FP16_TO_FP32(y[ib + 1].d) );
  1816. const __m128i tmp_2_3 = _mm_loadu_si128((const __m128i *)x[ib + 1].qs);
  1817. __m128i bx_2 = _mm_and_si128(lowMask, tmp_2_3);
  1818. __m128i by_2 = _mm_loadu_si128((const __m128i *)y[ib + 1].qs);
  1819. bx_2 = _mm_sub_epi8(bx_2, off);
  1820. const __m128i i32_2 = mul_sum_i8_pairs(bx_2, by_2);
  1821. __m128i bx_3 = _mm_and_si128(lowMask, _mm_srli_epi64(tmp_2_3, 4));
  1822. __m128i by_3 = _mm_loadu_si128((const __m128i *)(y[ib + 1].qs + 16));
  1823. bx_3 = _mm_sub_epi8(bx_3, off);
  1824. const __m128i i32_3 = mul_sum_i8_pairs(bx_3, by_3);
  1825. // Convert int32_t to float
  1826. __m128 p0 = _mm_cvtepi32_ps(i32_0);
  1827. __m128 p1 = _mm_cvtepi32_ps(i32_1);
  1828. __m128 p2 = _mm_cvtepi32_ps(i32_2);
  1829. __m128 p3 = _mm_cvtepi32_ps(i32_3);
  1830. // Apply the scale
  1831. __m128 p0_d = _mm_mul_ps( d_0_1, p0 );
  1832. __m128 p1_d = _mm_mul_ps( d_0_1, p1 );
  1833. __m128 p2_d = _mm_mul_ps( d_2_3, p2 );
  1834. __m128 p3_d = _mm_mul_ps( d_2_3, p3 );
  1835. // Acummulate
  1836. acc_0 = _mm_add_ps(p0_d, acc_0);
  1837. acc_1 = _mm_add_ps(p1_d, acc_1);
  1838. acc_2 = _mm_add_ps(p2_d, acc_2);
  1839. acc_3 = _mm_add_ps(p3_d, acc_3);
  1840. }
  1841. sumf = hsum_float_4x4(acc_0, acc_1, acc_2, acc_3);
  1842. #elif defined(__riscv_v_intrinsic)
  1843. size_t vl = __riscv_vsetvl_e8m1(qk/2);
  1844. for (; ib < nb; ++ib) {
  1845. // load elements
  1846. vuint8mf2_t tx = __riscv_vle8_v_u8mf2(x[ib].qs, vl);
  1847. vint8mf2_t y0 = __riscv_vle8_v_i8mf2(y[ib].qs, vl);
  1848. vint8mf2_t y1 = __riscv_vle8_v_i8mf2(y[ib].qs+16, vl);
  1849. // mask and store lower part of x, and then upper part
  1850. vuint8mf2_t x_a = __riscv_vand_vx_u8mf2(tx, 0x0F, vl);
  1851. vuint8mf2_t x_l = __riscv_vsrl_vx_u8mf2(tx, 0x04, vl);
  1852. vint8mf2_t x_ai = __riscv_vreinterpret_v_u8mf2_i8mf2(x_a);
  1853. vint8mf2_t x_li = __riscv_vreinterpret_v_u8mf2_i8mf2(x_l);
  1854. // subtract offset
  1855. vint8mf2_t v0 = __riscv_vsub_vx_i8mf2(x_ai, 8, vl);
  1856. vint8mf2_t v1 = __riscv_vsub_vx_i8mf2(x_li, 8, vl);
  1857. vint16m1_t vec_mul1 = __riscv_vwmul_vv_i16m1(v0, y0, vl);
  1858. vint16m1_t vec_mul2 = __riscv_vwmul_vv_i16m1(v1, y1, vl);
  1859. vint32m1_t vec_zero = __riscv_vmv_v_x_i32m1(0, vl);
  1860. vint32m1_t vs1 = __riscv_vwredsum_vs_i16m1_i32m1(vec_mul1, vec_zero, vl);
  1861. vint32m1_t vs2 = __riscv_vwredsum_vs_i16m1_i32m1(vec_mul2, vs1, vl);
  1862. int sumi = __riscv_vmv_x_s_i32m1_i32(vs2);
  1863. sumf += sumi*GGML_FP16_TO_FP32(x[ib].d)*GGML_FP16_TO_FP32(y[ib].d);
  1864. }
  1865. #elif defined(__POWER9_VECTOR__)
  1866. const vector signed char lowMask = vec_splats((signed char)0xF);
  1867. const vector signed int v0 = vec_splats((int32_t)0);
  1868. const vector unsigned char v4 = vec_splats((unsigned char)0x4);
  1869. const vector signed char v8 = vec_splats((signed char)0x8);
  1870. vector float vsumf0 = vec_splats(0.0f);
  1871. #pragma GCC unroll 8
  1872. for (; ib < nb; ++ib) {
  1873. __builtin_prefetch(x[ib].qs, 0, 1);
  1874. __builtin_prefetch(y[ib].qs, 0, 1);
  1875. vector float vxd = vec_splats(GGML_FP16_TO_FP32(x[ib].d));
  1876. vector float vyd = vec_splats(GGML_FP16_TO_FP32(y[ib].d));
  1877. vector float vd = vec_mul(vxd, vyd);
  1878. vector signed char qxs = (vector signed char)vec_xl( 0, x[ib].qs);
  1879. vector signed char q8y0 = vec_xl( 0, y[ib].qs);
  1880. vector signed char q8y1 = vec_xl(16, y[ib].qs);
  1881. vector signed char q4x0 = vec_and(qxs, lowMask);
  1882. vector signed char q4x1 = vec_sr(qxs, v4);
  1883. q4x0 = vec_sub(q4x0, v8);
  1884. q4x1 = vec_sub(q4x1, v8);
  1885. vector signed short qv0 = vec_add(vec_mule(q4x0, q8y0), vec_mulo(q4x0, q8y0));
  1886. vector signed short qv1 = vec_add(vec_mule(q4x1, q8y1), vec_mulo(q4x1, q8y1));
  1887. vector signed int vsumi0 = v0;
  1888. vsumi0 = vec_sum4s(qv0, vsumi0);
  1889. vsumi0 = vec_sum4s(qv1, vsumi0);
  1890. vsumf0 = vec_madd(vec_ctf(vsumi0, 0), vd, vsumf0);
  1891. }
  1892. vsumf0 = vec_add(vsumf0, vec_sld(vsumf0, vsumf0, 4));
  1893. vsumf0 = vec_add(vsumf0, vec_sld(vsumf0, vsumf0, 8));
  1894. sumf = vec_extract(vsumf0, 0);
  1895. #elif defined(__loongarch_asx)
  1896. // Initialize accumulator with zeros
  1897. __m256 acc = (__m256)__lasx_xvldi(0);
  1898. // Main loop
  1899. for (; ib < nb; ++ib) {
  1900. /* Compute combined scale for the block */
  1901. const __m256 d = __lasx_xvreplfr2vr_s( GGML_FP16_TO_FP32(x[ib].d) * GGML_FP16_TO_FP32(y[ib].d) );
  1902. __m256i qx = bytes_from_nibbles_32(x[ib].qs);
  1903. // Now we have a vector with bytes in [ 0 .. 15 ] interval. Offset them into [ -8 .. +7 ] interval.
  1904. const __m256i off = __lasx_xvreplgr2vr_b( 8 );
  1905. qx = __lasx_xvsub_b( qx, off );
  1906. __m256i qy = __lasx_xvld((const __m256i *)y[ib].qs, 0);
  1907. const __m256 q = mul_sum_i8_pairs_float(qx, qy);
  1908. /* Multiply q with scale and accumulate */
  1909. acc = __lasx_xvfmadd_s( d, q, acc );
  1910. }
  1911. sumf = hsum_float_8(acc);
  1912. #elif defined(__loongarch_sx)
  1913. // set constants
  1914. const __m128i low_mask = __lsx_vreplgr2vr_b(0xF);
  1915. const __m128i off = __lsx_vreplgr2vr_b(8);
  1916. // Initialize accumulator with zeros
  1917. __m128 acc_0 = __lsx_vldi(0);
  1918. __m128 acc_1 = __lsx_vldi(0);
  1919. __m128 acc_2 = __lsx_vldi(0);
  1920. __m128 acc_3 = __lsx_vldi(0);
  1921. for (; ib + 1 < nb; ib += 2) {
  1922. // Compute combined scale for the block 0 and 1
  1923. const __m128 d_0_1 = __lsx_vreplgr2vr_w( GGML_FP16_TO_FP32(x[ib].d) * GGML_FP16_TO_FP32(y[ib].d) );
  1924. const __m128i tmp_0_1 = __lsx_vld((const __m128i *)x[ib].qs, 0);
  1925. __m128i bx_0 = __lsx_vand_v(low_mask, tmp_0_1);
  1926. __m128i by_0 = __lsx_vld((const __m128i *)y[ib].qs, 0);
  1927. bx_0 = __lsx_vsub_b(bx_0, off);
  1928. const __m128i i32_0 = mul_sum_i8_pairs(bx_0, by_0);
  1929. __m128i bx_1 = __lsx_vand_v(low_mask, __lsx_vsrli_d(tmp_0_1, 4));
  1930. __m128i by_1 = __lsx_vld((const __m128i *)(y[ib].qs + 16), 0);
  1931. bx_1 = __lsx_vsub_b(bx_1, off);
  1932. const __m128i i32_1 = mul_sum_i8_pairs(bx_1, by_1);
  1933. //_mm_prefetch(&x[ib] + 2 * sizeof(block_q4_0), _MM_HINT_T0);
  1934. //_mm_prefetch(&y[ib] + 2 * sizeof(block_q8_0), _MM_HINT_T0);
  1935. // Compute combined scale for the block 2 and 3
  1936. const __m128 d_2_3 = __lsx_vreplgr2vr_w( GGML_FP16_TO_FP32(x[ib + 1].d) * GGML_FP16_TO_FP32(y[ib + 1].d) );
  1937. const __m128i tmp_2_3 = __lsx_vld((const __m128i *)x[ib + 1].qs, 0);
  1938. __m128i bx_2 = __lsx_vand_v(low_mask, tmp_2_3);
  1939. __m128i by_2 = __lsx_vld((const __m128i *)y[ib + 1].qs, 0);
  1940. bx_2 = __lsx_vsub_b(bx_2, off);
  1941. const __m128i i32_2 = mul_sum_i8_pairs(bx_2, by_2);
  1942. __m128i bx_3 = __lsx_vand_v(low_mask, __lsx_vsrli_d(tmp_2_3, 4));
  1943. __m128i by_3 = __lsx_vld((const __m128i *)(y[ib + 1].qs + 16), 0);
  1944. bx_3 = __lsx_vsub_b(bx_3, off);
  1945. const __m128i i32_3 = mul_sum_i8_pairs(bx_3, by_3);
  1946. // Convert int32_t to float
  1947. __m128 p0 = __lsx_vffint_s_w(i32_0);
  1948. __m128 p1 = __lsx_vffint_s_w(i32_1);
  1949. __m128 p2 = __lsx_vffint_s_w(i32_2);
  1950. __m128 p3 = __lsx_vffint_s_w(i32_3);
  1951. // Apply the scale
  1952. __m128 p0_d = __lsx_vfmul_s( d_0_1, p0 );
  1953. __m128 p1_d = __lsx_vfmul_s( d_0_1, p1 );
  1954. __m128 p2_d = __lsx_vfmul_s( d_2_3, p2 );
  1955. __m128 p3_d = __lsx_vfmul_s( d_2_3, p3 );
  1956. // Acummulate
  1957. acc_0 = __lsx_vfadd_s(p0_d, acc_0);
  1958. acc_1 = __lsx_vfadd_s(p1_d, acc_1);
  1959. acc_2 = __lsx_vfadd_s(p2_d, acc_2);
  1960. acc_3 = __lsx_vfadd_s(p3_d, acc_3);
  1961. }
  1962. sumf = hsum_float_4x4(acc_0, acc_1, acc_2, acc_3);
  1963. #endif
  1964. for (; ib < nb; ++ib) {
  1965. int sumi0 = 0;
  1966. int sumi1 = 0;
  1967. for (int j = 0; j < qk/2; ++j) {
  1968. const int v0 = (x[ib].qs[j] & 0x0F) - 8;
  1969. const int v1 = (x[ib].qs[j] >> 4) - 8;
  1970. sumi0 += (v0 * y[ib].qs[j]);
  1971. sumi1 += (v1 * y[ib].qs[j + qk/2]);
  1972. }
  1973. int sumi = sumi0 + sumi1;
  1974. sumf += sumi*GGML_FP16_TO_FP32(x[ib].d)*GGML_FP16_TO_FP32(y[ib].d);
  1975. }
  1976. *s = sumf;
  1977. }
  1978. void ggml_vec_dot_q4_1_q8_1(int n, float * restrict s, size_t bs, const void * restrict vx, size_t bx, const void * restrict vy, size_t by, int nrc) {
  1979. const int qk = QK8_1;
  1980. const int nb = n / qk;
  1981. assert(n % qk == 0);
  1982. #if defined(__ARM_FEATURE_MATMUL_INT8)
  1983. assert((nrc == 2) || (nrc == 1));
  1984. #else
  1985. assert(nrc == 1);
  1986. #endif
  1987. UNUSED(nrc);
  1988. UNUSED(bx);
  1989. UNUSED(by);
  1990. UNUSED(bs);
  1991. const block_q4_1 * restrict x = vx;
  1992. const block_q8_1 * restrict y = vy;
  1993. #if defined(__ARM_FEATURE_MATMUL_INT8)
  1994. if (nrc == 2) {
  1995. const block_q4_1 * restrict vx0 = vx;
  1996. const block_q4_1 * restrict vx1 = (const block_q4_1 *) ((const uint8_t*)vx + bx);
  1997. const block_q8_1 * restrict vy0 = vy;
  1998. const block_q8_1 * restrict vy1 = (const block_q8_1 *) ((const uint8_t*)vy + by);
  1999. float32x4_t sumv0 = vdupq_n_f32(0.0f);
  2000. float32x4_t summs0 = vdupq_n_f32(0.0f);
  2001. for (int i = 0; i < nb; i++) {
  2002. const block_q4_1 * restrict b_x0 = &vx0[i];
  2003. const block_q4_1 * restrict b_x1 = &vx1[i];
  2004. const block_q8_1 * restrict b_y0 = &vy0[i];
  2005. const block_q8_1 * restrict b_y1 = &vy1[i];
  2006. float32_t summs_t[4] = {
  2007. GGML_FP16_TO_FP32(b_x0->m) * GGML_FP16_TO_FP32(b_y0->s),
  2008. GGML_FP16_TO_FP32(b_x1->m) * GGML_FP16_TO_FP32(b_y0->s),
  2009. GGML_FP16_TO_FP32(b_x0->m) * GGML_FP16_TO_FP32(b_y1->s),
  2010. GGML_FP16_TO_FP32(b_x1->m) * GGML_FP16_TO_FP32(b_y1->s)
  2011. };
  2012. summs0 = vaddq_f32(summs0, vld1q_f32(summs_t));
  2013. const uint8x16_t m4b = vdupq_n_u8(0x0F);
  2014. const uint8x16_t v0_0 = vld1q_u8(b_x0->qs);
  2015. const uint8x16_t v0_1 = vld1q_u8(b_x1->qs);
  2016. // 4-bit -> 8-bit
  2017. const int8x16_t x0_l = vreinterpretq_s8_u8(vandq_u8 (v0_0, m4b));
  2018. const int8x16_t x0_h = vreinterpretq_s8_u8(vshrq_n_u8(v0_0, 4));
  2019. const int8x16_t x1_l = vreinterpretq_s8_u8(vandq_u8 (v0_1, m4b));
  2020. const int8x16_t x1_h = vreinterpretq_s8_u8(vshrq_n_u8(v0_1, 4));
  2021. // load y
  2022. const int8x16_t y0_l = vld1q_s8(b_y0->qs);
  2023. const int8x16_t y0_h = vld1q_s8(b_y0->qs + 16);
  2024. const int8x16_t y1_l = vld1q_s8(b_y1->qs);
  2025. const int8x16_t y1_h = vld1q_s8(b_y1->qs + 16);
  2026. // mmla into int32x4_t
  2027. float32_t _scale[4] = {
  2028. GGML_FP16_TO_FP32(b_x0->d)*GGML_FP16_TO_FP32(b_y0->d),
  2029. GGML_FP16_TO_FP32(b_x0->d)*GGML_FP16_TO_FP32(b_y1->d),
  2030. GGML_FP16_TO_FP32(b_x1->d)*GGML_FP16_TO_FP32(b_y0->d),
  2031. GGML_FP16_TO_FP32(b_x1->d)*GGML_FP16_TO_FP32(b_y1->d)
  2032. };
  2033. float32x4_t scale = vld1q_f32(_scale);
  2034. int8x16_t l0 = vreinterpretq_s8_s64(vzip1q_s64(vreinterpretq_s64_s8(x0_l), vreinterpretq_s64_s8(x1_l)));
  2035. int8x16_t l1 = vreinterpretq_s8_s64(vzip2q_s64(vreinterpretq_s64_s8(x0_l), vreinterpretq_s64_s8(x1_l)));
  2036. int8x16_t l2 = vreinterpretq_s8_s64(vzip1q_s64(vreinterpretq_s64_s8(x0_h), vreinterpretq_s64_s8(x1_h)));
  2037. int8x16_t l3 = vreinterpretq_s8_s64(vzip2q_s64(vreinterpretq_s64_s8(x0_h), vreinterpretq_s64_s8(x1_h)));
  2038. int8x16_t r0 = vreinterpretq_s8_s64(vzip1q_s64(vreinterpretq_s64_s8(y0_l), vreinterpretq_s64_s8(y1_l)));
  2039. int8x16_t r1 = vreinterpretq_s8_s64(vzip2q_s64(vreinterpretq_s64_s8(y0_l), vreinterpretq_s64_s8(y1_l)));
  2040. int8x16_t r2 = vreinterpretq_s8_s64(vzip1q_s64(vreinterpretq_s64_s8(y0_h), vreinterpretq_s64_s8(y1_h)));
  2041. int8x16_t r3 = vreinterpretq_s8_s64(vzip2q_s64(vreinterpretq_s64_s8(y0_h), vreinterpretq_s64_s8(y1_h)));
  2042. sumv0 = vmlaq_f32(sumv0,(vcvtq_f32_s32(vmmlaq_s32((vmmlaq_s32((vmmlaq_s32((vmmlaq_s32(vdupq_n_s32(0), l0, r0)),
  2043. l1, r1)), l2, r2)), l3, r3))), scale);
  2044. }
  2045. float32x4_t sumv1 = vextq_f32 (sumv0, sumv0, 2);
  2046. float32x4_t sumv2 = vzip1q_f32(sumv0, sumv1);
  2047. sumv2 = vaddq_f32(sumv2, summs0);
  2048. vst1_f32(s, vget_low_f32 (sumv2));
  2049. vst1_f32(s + bs, vget_high_f32(sumv2));
  2050. return;
  2051. }
  2052. #endif
  2053. int ib = 0;
  2054. float sumf = 0;
  2055. // TODO: add WASM SIMD
  2056. #if defined(__ARM_NEON)
  2057. float32x4_t sumv0 = vdupq_n_f32(0.0f);
  2058. float32x4_t sumv1 = vdupq_n_f32(0.0f);
  2059. float summs = 0;
  2060. for (; ib + 1 < nb; ib += 2) {
  2061. const block_q4_1 * restrict x0 = &x[ib + 0];
  2062. const block_q4_1 * restrict x1 = &x[ib + 1];
  2063. const block_q8_1 * restrict y0 = &y[ib + 0];
  2064. const block_q8_1 * restrict y1 = &y[ib + 1];
  2065. summs += GGML_FP16_TO_FP32(x0->m) * GGML_FP16_TO_FP32(y0->s) + GGML_FP16_TO_FP32(x1->m) * GGML_FP16_TO_FP32(y1->s);
  2066. const uint8x16_t m4b = vdupq_n_u8(0x0F);
  2067. const uint8x16_t v0_0 = vld1q_u8(x0->qs);
  2068. const uint8x16_t v0_1 = vld1q_u8(x1->qs);
  2069. // 4-bit -> 8-bit
  2070. const int8x16_t v0_0l = vreinterpretq_s8_u8(vandq_u8 (v0_0, m4b));
  2071. const int8x16_t v0_0h = vreinterpretq_s8_u8(vshrq_n_u8(v0_0, 4));
  2072. const int8x16_t v0_1l = vreinterpretq_s8_u8(vandq_u8 (v0_1, m4b));
  2073. const int8x16_t v0_1h = vreinterpretq_s8_u8(vshrq_n_u8(v0_1, 4));
  2074. // load y
  2075. const int8x16_t v1_0l = vld1q_s8(y0->qs);
  2076. const int8x16_t v1_0h = vld1q_s8(y0->qs + 16);
  2077. const int8x16_t v1_1l = vld1q_s8(y1->qs);
  2078. const int8x16_t v1_1h = vld1q_s8(y1->qs + 16);
  2079. // dot product into int32x4_t
  2080. const int32x4_t p_0 = ggml_vdotq_s32(ggml_vdotq_s32(vdupq_n_s32(0), v0_0l, v1_0l), v0_0h, v1_0h);
  2081. const int32x4_t p_1 = ggml_vdotq_s32(ggml_vdotq_s32(vdupq_n_s32(0), v0_1l, v1_1l), v0_1h, v1_1h);
  2082. sumv0 = vmlaq_n_f32(sumv0, vcvtq_f32_s32(p_0), GGML_FP16_TO_FP32(x0->d)*GGML_FP16_TO_FP32(y0->d));
  2083. sumv1 = vmlaq_n_f32(sumv1, vcvtq_f32_s32(p_1), GGML_FP16_TO_FP32(x1->d)*GGML_FP16_TO_FP32(y1->d));
  2084. }
  2085. sumf = vaddvq_f32(sumv0) + vaddvq_f32(sumv1) + summs;
  2086. #elif defined(__AVX2__) || defined(__AVX__)
  2087. // Initialize accumulator with zeros
  2088. __m256 acc = _mm256_setzero_ps();
  2089. float summs = 0;
  2090. // Main loop
  2091. for (; ib < nb; ++ib) {
  2092. const float d0 = GGML_FP16_TO_FP32(x[ib].d);
  2093. const float d1 = GGML_FP16_TO_FP32(y[ib].d);
  2094. summs += GGML_FP16_TO_FP32(x[ib].m) * GGML_FP16_TO_FP32(y[ib].s);
  2095. const __m256 d0v = _mm256_set1_ps( d0 );
  2096. const __m256 d1v = _mm256_set1_ps( d1 );
  2097. // Compute combined scales
  2098. const __m256 d0d1 = _mm256_mul_ps( d0v, d1v );
  2099. // Load 16 bytes, and unpack 4 bit fields into bytes, making 32 bytes
  2100. const __m256i qx = bytes_from_nibbles_32(x[ib].qs);
  2101. const __m256i qy = _mm256_loadu_si256( (const __m256i *)y[ib].qs );
  2102. const __m256 xy = mul_sum_us8_pairs_float(qx, qy);
  2103. // Accumulate d0*d1*x*y
  2104. #if defined(__AVX2__)
  2105. acc = _mm256_fmadd_ps( d0d1, xy, acc );
  2106. #else
  2107. acc = _mm256_add_ps( _mm256_mul_ps( d0d1, xy ), acc );
  2108. #endif
  2109. }
  2110. sumf = hsum_float_8(acc) + summs;
  2111. #elif defined(__riscv_v_intrinsic)
  2112. size_t vl = __riscv_vsetvl_e8m1(qk/2);
  2113. for (; ib < nb; ++ib) {
  2114. // load elements
  2115. vuint8mf2_t tx = __riscv_vle8_v_u8mf2(x[ib].qs, vl);
  2116. vint8mf2_t y0 = __riscv_vle8_v_i8mf2(y[ib].qs, vl);
  2117. vint8mf2_t y1 = __riscv_vle8_v_i8mf2(y[ib].qs+16, vl);
  2118. // mask and store lower part of x, and then upper part
  2119. vuint8mf2_t x_a = __riscv_vand_vx_u8mf2(tx, 0x0F, vl);
  2120. vuint8mf2_t x_l = __riscv_vsrl_vx_u8mf2(tx, 0x04, vl);
  2121. vint8mf2_t v0 = __riscv_vreinterpret_v_u8mf2_i8mf2(x_a);
  2122. vint8mf2_t v1 = __riscv_vreinterpret_v_u8mf2_i8mf2(x_l);
  2123. vint16m1_t vec_mul1 = __riscv_vwmul_vv_i16m1(v0, y0, vl);
  2124. vint16m1_t vec_mul2 = __riscv_vwmul_vv_i16m1(v1, y1, vl);
  2125. vint32m1_t vec_zero = __riscv_vmv_v_x_i32m1(0, vl);
  2126. vint32m1_t vs1 = __riscv_vwredsum_vs_i16m1_i32m1(vec_mul1, vec_zero, vl);
  2127. vint32m1_t vs2 = __riscv_vwredsum_vs_i16m1_i32m1(vec_mul2, vs1, vl);
  2128. int sumi = __riscv_vmv_x_s_i32m1_i32(vs2);
  2129. sumf += (GGML_FP16_TO_FP32(x[ib].d)*GGML_FP16_TO_FP32(y[ib].d))*sumi + GGML_FP16_TO_FP32(x[ib].m)*GGML_FP16_TO_FP32(y[ib].s);
  2130. }
  2131. #elif defined(__POWER9_VECTOR__)
  2132. const vector signed char lowMask = vec_splats((signed char)0xF);
  2133. const vector signed int v0 = vec_splats((int32_t)0);
  2134. const vector unsigned char v4 = vec_splats((unsigned char)0x4);
  2135. vector float vsumf0 = vec_splats(0.0f);
  2136. #pragma GCC unroll 4
  2137. for (; ib < nb; ++ib) {
  2138. __builtin_prefetch(x[ib].qs, 0, 1);
  2139. __builtin_prefetch(y[ib].qs, 0, 1);
  2140. vector float vxd = vec_splats(GGML_FP16_TO_FP32(x[ib].d));
  2141. vector float vyd = vec_splats(GGML_FP16_TO_FP32(y[ib].d));
  2142. vector float vd = vec_mul(vxd, vyd);
  2143. vector float vxmin = vec_splats(GGML_FP16_TO_FP32(x[ib].m));
  2144. vector float vys = {GGML_FP16_TO_FP32(y[ib].s), 0.0f, 0.0f, 0.0f};
  2145. vsumf0 = vec_madd(vxmin, vys, vsumf0);
  2146. vector signed char qxs = (vector signed char)vec_xl( 0, x[ib].qs);
  2147. vector signed char q8y0 = vec_xl( 0, y[ib].qs);
  2148. vector signed char q8y1 = vec_xl(16, y[ib].qs);
  2149. vector unsigned char q4x0 = (vector unsigned char)vec_and(qxs, lowMask);
  2150. vector unsigned char q4x1 = (vector unsigned char)vec_sr(qxs, v4);
  2151. vector signed int vsumi0 = v0;
  2152. vsumi0 = vec_msum(q8y0, q4x0, vsumi0);
  2153. vsumi0 = vec_msum(q8y1, q4x1, vsumi0);
  2154. vsumf0 = vec_madd(vec_ctf(vsumi0, 0), vd, vsumf0);
  2155. }
  2156. vsumf0 = vec_add(vsumf0, vec_sld(vsumf0, vsumf0, 4));
  2157. vsumf0 = vec_add(vsumf0, vec_sld(vsumf0, vsumf0, 8));
  2158. sumf = vec_extract(vsumf0, 0);
  2159. #elif defined(__loongarch_asx)
  2160. // Initialize accumulator with zeros
  2161. __m256 acc = (__m256)__lasx_xvldi(0);
  2162. float summs = 0;
  2163. // Main loop
  2164. for (; ib < nb; ++ib) {
  2165. const float d0 = GGML_FP16_TO_FP32(x[ib].d);
  2166. const float d1 = GGML_FP16_TO_FP32(y[ib].d);
  2167. summs += GGML_FP16_TO_FP32(x[ib].m) * GGML_FP16_TO_FP32(y[ib].s);
  2168. const __m256 d0v = __lasx_xvreplfr2vr_s( d0 );
  2169. const __m256 d1v = __lasx_xvreplfr2vr_s( d1 );
  2170. // Compute combined scales
  2171. const __m256 d0d1 = __lasx_xvfmul_s( d0v, d1v );
  2172. // Load 16 bytes, and unpack 4 bit fields into bytes, making 32 bytes
  2173. const __m256i qx = bytes_from_nibbles_32(x[ib].qs);
  2174. const __m256i qy = __lasx_xvld( (const __m256i *)y[ib].qs, 0);
  2175. const __m256 xy = mul_sum_us8_pairs_float(qx, qy);
  2176. // Accumulate d0*d1*x*y
  2177. acc = __lasx_xvfmadd_s( d0d1, xy, acc );
  2178. }
  2179. sumf = hsum_float_8(acc) + summs;
  2180. #endif
  2181. for (; ib < nb; ++ib) {
  2182. int sumi0 = 0;
  2183. int sumi1 = 0;
  2184. for (int j = 0; j < qk/2; ++j) {
  2185. const int v0 = (x[ib].qs[j] & 0x0F);
  2186. const int v1 = (x[ib].qs[j] >> 4);
  2187. sumi0 += (v0 * y[ib].qs[j]);
  2188. sumi1 += (v1 * y[ib].qs[j + qk/2]);
  2189. }
  2190. int sumi = sumi0 + sumi1;
  2191. sumf += (GGML_FP16_TO_FP32(x[ib].d)*GGML_FP16_TO_FP32(y[ib].d))*sumi + GGML_FP16_TO_FP32(x[ib].m)*GGML_FP16_TO_FP32(y[ib].s);
  2192. }
  2193. *s = sumf;
  2194. }
  2195. void ggml_vec_dot_q5_0_q8_0(int n, float * restrict s, size_t bs, const void * restrict vx, size_t bx, const void * restrict vy, size_t by, int nrc) {
  2196. const int qk = QK8_0;
  2197. const int nb = n / qk;
  2198. int ib = 0;
  2199. float sumf = 0;
  2200. assert(n % qk == 0);
  2201. assert(qk == QK5_0);
  2202. assert(nrc == 1);
  2203. UNUSED(nrc);
  2204. UNUSED(bx);
  2205. UNUSED(by);
  2206. UNUSED(bs);
  2207. const block_q5_0 * restrict x = vx;
  2208. const block_q8_0 * restrict y = vy;
  2209. #if defined(__ARM_NEON)
  2210. float32x4_t sumv0 = vdupq_n_f32(0.0f);
  2211. float32x4_t sumv1 = vdupq_n_f32(0.0f);
  2212. uint32_t qh0;
  2213. uint32_t qh1;
  2214. uint64_t tmp0[4];
  2215. uint64_t tmp1[4];
  2216. for (; ib + 1 < nb; ib += 2) {
  2217. const block_q5_0 * restrict x0 = &x[ib];
  2218. const block_q5_0 * restrict x1 = &x[ib + 1];
  2219. const block_q8_0 * restrict y0 = &y[ib];
  2220. const block_q8_0 * restrict y1 = &y[ib + 1];
  2221. const uint8x16_t m4b = vdupq_n_u8(0x0F);
  2222. // extract the 5th bit via lookup table ((!b) << 4)
  2223. memcpy(&qh0, x0->qh, sizeof(qh0));
  2224. memcpy(&qh1, x1->qh, sizeof(qh1));
  2225. tmp0[0] = table_b2b_1[(qh0 >> 0) & 0xFF];
  2226. tmp0[1] = table_b2b_1[(qh0 >> 8) & 0xFF];
  2227. tmp0[2] = table_b2b_1[(qh0 >> 16) & 0xFF];
  2228. tmp0[3] = table_b2b_1[(qh0 >> 24) ];
  2229. tmp1[0] = table_b2b_1[(qh1 >> 0) & 0xFF];
  2230. tmp1[1] = table_b2b_1[(qh1 >> 8) & 0xFF];
  2231. tmp1[2] = table_b2b_1[(qh1 >> 16) & 0xFF];
  2232. tmp1[3] = table_b2b_1[(qh1 >> 24) ];
  2233. const int8x16_t qhl0 = vld1q_s8((const int8_t *)(tmp0 + 0));
  2234. const int8x16_t qhh0 = vld1q_s8((const int8_t *)(tmp0 + 2));
  2235. const int8x16_t qhl1 = vld1q_s8((const int8_t *)(tmp1 + 0));
  2236. const int8x16_t qhh1 = vld1q_s8((const int8_t *)(tmp1 + 2));
  2237. const uint8x16_t v0_0 = vld1q_u8(x0->qs);
  2238. const uint8x16_t v0_1 = vld1q_u8(x1->qs);
  2239. // 4-bit -> 8-bit
  2240. int8x16_t v0_0l = vreinterpretq_s8_u8(vandq_u8 (v0_0, m4b));
  2241. int8x16_t v0_0h = vreinterpretq_s8_u8(vshrq_n_u8(v0_0, 4));
  2242. int8x16_t v0_1l = vreinterpretq_s8_u8(vandq_u8 (v0_1, m4b));
  2243. int8x16_t v0_1h = vreinterpretq_s8_u8(vshrq_n_u8(v0_1, 4));
  2244. // add high bit and sub 16 (equivalent to sub 0x10 when bit is zero)
  2245. const int8x16_t v0_0lf = vsubq_s8(v0_0l, qhl0);
  2246. const int8x16_t v0_0hf = vsubq_s8(v0_0h, qhh0);
  2247. const int8x16_t v0_1lf = vsubq_s8(v0_1l, qhl1);
  2248. const int8x16_t v0_1hf = vsubq_s8(v0_1h, qhh1);
  2249. // load y
  2250. const int8x16_t v1_0l = vld1q_s8(y0->qs);
  2251. const int8x16_t v1_0h = vld1q_s8(y0->qs + 16);
  2252. const int8x16_t v1_1l = vld1q_s8(y1->qs);
  2253. const int8x16_t v1_1h = vld1q_s8(y1->qs + 16);
  2254. sumv0 = vmlaq_n_f32(sumv0, vcvtq_f32_s32(vaddq_s32(
  2255. ggml_vdotq_s32(vdupq_n_s32(0), v0_0lf, v1_0l),
  2256. ggml_vdotq_s32(vdupq_n_s32(0), v0_0hf, v1_0h))), GGML_FP16_TO_FP32(x0->d)*GGML_FP16_TO_FP32(y0->d));
  2257. sumv1 = vmlaq_n_f32(sumv1, vcvtq_f32_s32(vaddq_s32(
  2258. ggml_vdotq_s32(vdupq_n_s32(0), v0_1lf, v1_1l),
  2259. ggml_vdotq_s32(vdupq_n_s32(0), v0_1hf, v1_1h))), GGML_FP16_TO_FP32(x1->d)*GGML_FP16_TO_FP32(y1->d));
  2260. }
  2261. sumf = vaddvq_f32(sumv0) + vaddvq_f32(sumv1);
  2262. #elif defined(__wasm_simd128__)
  2263. v128_t sumv = wasm_f32x4_splat(0.0f);
  2264. uint32_t qh;
  2265. uint64_t tmp[4];
  2266. // TODO: check if unrolling this is better
  2267. for (; ib < nb; ++ib) {
  2268. const block_q5_0 * restrict x0 = &x[ib];
  2269. const block_q8_0 * restrict y0 = &y[ib];
  2270. const v128_t m4b = wasm_i8x16_splat(0x0F);
  2271. // extract the 5th bit
  2272. memcpy(&qh, x0->qh, sizeof(qh));
  2273. tmp[0] = table_b2b_1[(qh >> 0) & 0xFF];
  2274. tmp[1] = table_b2b_1[(qh >> 8) & 0xFF];
  2275. tmp[2] = table_b2b_1[(qh >> 16) & 0xFF];
  2276. tmp[3] = table_b2b_1[(qh >> 24) ];
  2277. const v128_t qhl = wasm_v128_load(tmp + 0);
  2278. const v128_t qhh = wasm_v128_load(tmp + 2);
  2279. const v128_t v0 = wasm_v128_load(x0->qs);
  2280. // 4-bit -> 8-bit
  2281. const v128_t v0l = wasm_v128_and (v0, m4b);
  2282. const v128_t v0h = wasm_u8x16_shr(v0, 4);
  2283. // add high bit and sub 16 (equivalent to sub 0x10 when bit is zero)
  2284. const v128_t v0lf = wasm_i8x16_sub(v0l, qhl);
  2285. const v128_t v0hf = wasm_i8x16_sub(v0h, qhh);
  2286. // load y
  2287. const v128_t v1l = wasm_v128_load(y0->qs);
  2288. const v128_t v1h = wasm_v128_load(y0->qs + 16);
  2289. // int8x16 -> int16x8
  2290. const v128_t v0lfl = wasm_i16x8_extend_low_i8x16 (v0lf);
  2291. const v128_t v0lfh = wasm_i16x8_extend_high_i8x16(v0lf);
  2292. const v128_t v0hfl = wasm_i16x8_extend_low_i8x16 (v0hf);
  2293. const v128_t v0hfh = wasm_i16x8_extend_high_i8x16(v0hf);
  2294. const v128_t v1ll = wasm_i16x8_extend_low_i8x16 (v1l);
  2295. const v128_t v1lh = wasm_i16x8_extend_high_i8x16(v1l);
  2296. const v128_t v1hl = wasm_i16x8_extend_low_i8x16 (v1h);
  2297. const v128_t v1hh = wasm_i16x8_extend_high_i8x16(v1h);
  2298. // dot product
  2299. sumv = wasm_f32x4_add(sumv, wasm_f32x4_mul(wasm_f32x4_convert_i32x4(
  2300. wasm_i32x4_add(
  2301. wasm_i32x4_add(wasm_i32x4_dot_i16x8(v0lfl, v1ll),
  2302. wasm_i32x4_dot_i16x8(v0lfh, v1lh)),
  2303. wasm_i32x4_add(wasm_i32x4_dot_i16x8(v0hfl, v1hl),
  2304. wasm_i32x4_dot_i16x8(v0hfh, v1hh)))),
  2305. wasm_f32x4_splat(GGML_FP16_TO_FP32(x0->d) * GGML_FP16_TO_FP32(y0->d))));
  2306. }
  2307. sumf = wasm_f32x4_extract_lane(sumv, 0) + wasm_f32x4_extract_lane(sumv, 1) +
  2308. wasm_f32x4_extract_lane(sumv, 2) + wasm_f32x4_extract_lane(sumv, 3);
  2309. #elif defined(__AVX2__)
  2310. // Initialize accumulator with zeros
  2311. __m256 acc = _mm256_setzero_ps();
  2312. // Main loop
  2313. for (; ib < nb; ++ib) {
  2314. /* Compute combined scale for the block */
  2315. const __m256 d = _mm256_set1_ps(GGML_FP16_TO_FP32(x[ib].d) * GGML_FP16_TO_FP32(y[ib].d));
  2316. __m256i qx = bytes_from_nibbles_32(x[ib].qs);
  2317. __m256i bxhi = bytes_from_bits_32(x[ib].qh);
  2318. bxhi = _mm256_andnot_si256(bxhi, _mm256_set1_epi8((char)0xF0));
  2319. qx = _mm256_or_si256(qx, bxhi);
  2320. __m256i qy = _mm256_loadu_si256((const __m256i *)y[ib].qs);
  2321. const __m256 q = mul_sum_i8_pairs_float(qx, qy);
  2322. /* Multiply q with scale and accumulate */
  2323. acc = _mm256_fmadd_ps(d, q, acc);
  2324. }
  2325. sumf = hsum_float_8(acc);
  2326. #elif defined(__AVX__)
  2327. // Initialize accumulator with zeros
  2328. __m256 acc = _mm256_setzero_ps();
  2329. __m128i mask = _mm_set1_epi8((char)0xF0);
  2330. // Main loop
  2331. for (; ib < nb; ++ib) {
  2332. /* Compute combined scale for the block */
  2333. const __m256 d = _mm256_set1_ps(GGML_FP16_TO_FP32(x[ib].d) * GGML_FP16_TO_FP32(y[ib].d));
  2334. __m256i bx_0 = bytes_from_nibbles_32(x[ib].qs);
  2335. const __m256i bxhi = bytes_from_bits_32(x[ib].qh);
  2336. __m128i bxhil = _mm256_castsi256_si128(bxhi);
  2337. __m128i bxhih = _mm256_extractf128_si256(bxhi, 1);
  2338. bxhil = _mm_andnot_si128(bxhil, mask);
  2339. bxhih = _mm_andnot_si128(bxhih, mask);
  2340. __m128i bxl = _mm256_castsi256_si128(bx_0);
  2341. __m128i bxh = _mm256_extractf128_si256(bx_0, 1);
  2342. bxl = _mm_or_si128(bxl, bxhil);
  2343. bxh = _mm_or_si128(bxh, bxhih);
  2344. bx_0 = MM256_SET_M128I(bxh, bxl);
  2345. const __m256i by_0 = _mm256_loadu_si256((const __m256i *)y[ib].qs);
  2346. const __m256 q = mul_sum_i8_pairs_float(bx_0, by_0);
  2347. /* Multiply q with scale and accumulate */
  2348. acc = _mm256_add_ps(_mm256_mul_ps(d, q), acc);
  2349. }
  2350. sumf = hsum_float_8(acc);
  2351. #elif defined(__riscv_v_intrinsic)
  2352. uint32_t qh;
  2353. size_t vl = __riscv_vsetvl_e8m1(qk/2);
  2354. // These temporary registers are for masking and shift operations
  2355. vuint32m2_t vt_1 = __riscv_vid_v_u32m2(vl);
  2356. vuint32m2_t vt_2 = __riscv_vsll_vv_u32m2(__riscv_vmv_v_x_u32m2(1, vl), vt_1, vl);
  2357. vuint32m2_t vt_3 = __riscv_vsll_vx_u32m2(vt_2, 16, vl);
  2358. vuint32m2_t vt_4 = __riscv_vadd_vx_u32m2(vt_1, 12, vl);
  2359. for (; ib < nb; ++ib) {
  2360. memcpy(&qh, x[ib].qh, sizeof(uint32_t));
  2361. // ((qh & (1u << (j + 0 ))) >> (j + 0 )) << 4;
  2362. vuint32m2_t xha_0 = __riscv_vand_vx_u32m2(vt_2, qh, vl);
  2363. vuint32m2_t xhr_0 = __riscv_vsrl_vv_u32m2(xha_0, vt_1, vl);
  2364. vuint32m2_t xhl_0 = __riscv_vsll_vx_u32m2(xhr_0, 4, vl);
  2365. // ((qh & (1u << (j + 16))) >> (j + 12));
  2366. vuint32m2_t xha_1 = __riscv_vand_vx_u32m2(vt_3, qh, vl);
  2367. vuint32m2_t xhl_1 = __riscv_vsrl_vv_u32m2(xha_1, vt_4, vl);
  2368. // narrowing
  2369. vuint16m1_t xhc_0 = __riscv_vncvt_x_x_w_u16m1(xhl_0, vl);
  2370. vuint8mf2_t xh_0 = __riscv_vncvt_x_x_w_u8mf2(xhc_0, vl);
  2371. vuint16m1_t xhc_1 = __riscv_vncvt_x_x_w_u16m1(xhl_1, vl);
  2372. vuint8mf2_t xh_1 = __riscv_vncvt_x_x_w_u8mf2(xhc_1, vl);
  2373. // load
  2374. vuint8mf2_t tx = __riscv_vle8_v_u8mf2(x[ib].qs, vl);
  2375. vint8mf2_t y0 = __riscv_vle8_v_i8mf2(y[ib].qs, vl);
  2376. vint8mf2_t y1 = __riscv_vle8_v_i8mf2(y[ib].qs+16, vl);
  2377. vuint8mf2_t x_at = __riscv_vand_vx_u8mf2(tx, 0x0F, vl);
  2378. vuint8mf2_t x_lt = __riscv_vsrl_vx_u8mf2(tx, 0x04, vl);
  2379. vuint8mf2_t x_a = __riscv_vor_vv_u8mf2(x_at, xh_0, vl);
  2380. vuint8mf2_t x_l = __riscv_vor_vv_u8mf2(x_lt, xh_1, vl);
  2381. vint8mf2_t x_ai = __riscv_vreinterpret_v_u8mf2_i8mf2(x_a);
  2382. vint8mf2_t x_li = __riscv_vreinterpret_v_u8mf2_i8mf2(x_l);
  2383. vint8mf2_t v0 = __riscv_vsub_vx_i8mf2(x_ai, 16, vl);
  2384. vint8mf2_t v1 = __riscv_vsub_vx_i8mf2(x_li, 16, vl);
  2385. vint16m1_t vec_mul1 = __riscv_vwmul_vv_i16m1(v0, y0, vl);
  2386. vint16m1_t vec_mul2 = __riscv_vwmul_vv_i16m1(v1, y1, vl);
  2387. vint32m1_t vec_zero = __riscv_vmv_v_x_i32m1(0, vl);
  2388. vint32m1_t vs1 = __riscv_vwredsum_vs_i16m1_i32m1(vec_mul1, vec_zero, vl);
  2389. vint32m1_t vs2 = __riscv_vwredsum_vs_i16m1_i32m1(vec_mul2, vs1, vl);
  2390. int sumi = __riscv_vmv_x_s_i32m1_i32(vs2);
  2391. sumf += (GGML_FP16_TO_FP32(x[ib].d)*GGML_FP16_TO_FP32(y[ib].d)) * sumi;
  2392. }
  2393. #elif defined(__POWER9_VECTOR__)
  2394. const vector signed char lowMask = vec_splats((signed char)0xF);
  2395. const vector unsigned char v4 = vec_splats((unsigned char)4);
  2396. vector float vsumf0 = vec_splats(0.0f);
  2397. #pragma GCC unroll 4
  2398. for (; ib < nb; ++ib) {
  2399. __builtin_prefetch(x[ib].qs, 0, 1);
  2400. __builtin_prefetch(y[ib].qs, 0, 1);
  2401. vector float vxd = vec_splats(GGML_FP16_TO_FP32(x[ib].d));
  2402. vector float vyd = vec_splats(GGML_FP16_TO_FP32(y[ib].d));
  2403. vector float vd = vec_mul(vxd, vyd);
  2404. vector signed long long aux64x2_0 = {(uint64_t)(table_b2b_1[x[ib].qh[0]]), (uint64_t)(table_b2b_1[x[ib].qh[1]])};
  2405. vector signed long long aux64x2_1 = {(uint64_t)(table_b2b_1[x[ib].qh[2]]), (uint64_t)(table_b2b_1[x[ib].qh[3]])};
  2406. vector signed char qh0 = (vector signed char)aux64x2_0;
  2407. vector signed char qh1 = (vector signed char)aux64x2_1;
  2408. vector signed char qxs = (vector signed char)vec_xl( 0, x[ib].qs);
  2409. vector signed char q5x0 = vec_sub(vec_and (qxs, lowMask), qh0);
  2410. vector signed char q5x1 = vec_sub(vec_sr(qxs, v4), qh1);
  2411. vector signed char q8y0 = vec_xl( 0, y[ib].qs);
  2412. vector signed char q8y1 = vec_xl( 16, y[ib].qs);
  2413. vector signed short qv0 = vec_add(vec_mule(q5x0, q8y0), vec_mulo(q5x0, q8y0));
  2414. vector signed short qv1 = vec_add(vec_mule(q5x1, q8y1), vec_mulo(q5x1, q8y1));
  2415. qv0 = vec_add(qv0, qv1);
  2416. vector signed int vsumi0 = vec_add(vec_unpackh(qv0), vec_unpackl(qv0));
  2417. vsumf0 = vec_madd(vec_ctf(vsumi0, 0), vd, vsumf0);
  2418. }
  2419. vsumf0 = vec_add(vsumf0, vec_sld(vsumf0, vsumf0, 4));
  2420. vsumf0 = vec_add(vsumf0, vec_sld(vsumf0, vsumf0, 8));
  2421. sumf = vec_extract(vsumf0, 0);
  2422. #elif defined(__loongarch_asx)
  2423. // Initialize accumulator with zeros
  2424. __m256 acc = (__m256)__lasx_xvldi(0);
  2425. // Main loop
  2426. for (; ib < nb; ++ib) {
  2427. /* Compute combined scale for the block */
  2428. const __m256 d = __lasx_xvreplfr2vr_s(GGML_FP16_TO_FP32(x[ib].d) * GGML_FP16_TO_FP32(y[ib].d)); //FIXME
  2429. __m256i qx = bytes_from_nibbles_32(x[ib].qs);
  2430. __m256i bxhi = bytes_from_bits_32(x[ib].qh);
  2431. bxhi = __lasx_xvandn_v(bxhi, __lasx_xvreplgr2vr_b((char)0xF0));
  2432. qx = __lasx_xvor_v(qx, bxhi);
  2433. __m256i qy = __lasx_xvld((const __m256i *)y[ib].qs, 0);
  2434. const __m256 q = mul_sum_i8_pairs_float(qx, qy);
  2435. /* Multiply q with scale and accumulate */
  2436. acc = __lasx_xvfmadd_s(d, q, acc);
  2437. }
  2438. sumf = hsum_float_8(acc);
  2439. #endif
  2440. for (; ib < nb; ++ib) {
  2441. uint32_t qh;
  2442. memcpy(&qh, x[ib].qh, sizeof(qh));
  2443. int sumi0 = 0;
  2444. int sumi1 = 0;
  2445. for (int j = 0; j < qk/2; ++j) {
  2446. const uint8_t xh_0 = ((qh & (1u << (j + 0 ))) >> (j + 0 )) << 4;
  2447. const uint8_t xh_1 = ((qh & (1u << (j + 16))) >> (j + 12));
  2448. const int32_t x0 = (int8_t)(((x[ib].qs[j] & 0x0F) | xh_0) - 16);
  2449. const int32_t x1 = (int8_t)(((x[ib].qs[j] >> 4) | xh_1) - 16);
  2450. sumi0 += (x0 * y[ib].qs[j]);
  2451. sumi1 += (x1 * y[ib].qs[j + qk/2]);
  2452. }
  2453. int sumi = sumi0 + sumi1;
  2454. sumf += (GGML_FP16_TO_FP32(x[ib].d)*GGML_FP16_TO_FP32(y[ib].d)) * sumi;
  2455. }
  2456. *s = sumf;
  2457. }
  2458. void ggml_vec_dot_q5_1_q8_1(int n, float * restrict s, size_t bs, const void * restrict vx, size_t bx, const void * restrict vy, size_t by, int nrc) {
  2459. const int qk = QK8_1;
  2460. const int nb = n / qk;
  2461. int ib = 0;
  2462. float sumf = 0;
  2463. assert(n % qk == 0);
  2464. assert(qk == QK5_1);
  2465. assert(nrc == 1);
  2466. UNUSED(nrc);
  2467. UNUSED(bx);
  2468. UNUSED(by);
  2469. UNUSED(bs);
  2470. const block_q5_1 * restrict x = vx;
  2471. const block_q8_1 * restrict y = vy;
  2472. #if defined(__ARM_NEON)
  2473. float32x4_t sumv0 = vdupq_n_f32(0.0f);
  2474. float32x4_t sumv1 = vdupq_n_f32(0.0f);
  2475. float summs0 = 0.0f;
  2476. float summs1 = 0.0f;
  2477. uint32_t qh0;
  2478. uint32_t qh1;
  2479. uint64_t tmp0[4];
  2480. uint64_t tmp1[4];
  2481. for (; ib + 1 < nb; ib += 2) {
  2482. const block_q5_1 * restrict x0 = &x[ib];
  2483. const block_q5_1 * restrict x1 = &x[ib + 1];
  2484. const block_q8_1 * restrict y0 = &y[ib];
  2485. const block_q8_1 * restrict y1 = &y[ib + 1];
  2486. const uint8x16_t m4b = vdupq_n_u8(0x0F);
  2487. summs0 += GGML_FP16_TO_FP32(x0->m) * GGML_FP16_TO_FP32(y0->s);
  2488. summs1 += GGML_FP16_TO_FP32(x1->m) * GGML_FP16_TO_FP32(y1->s);
  2489. // extract the 5th bit via lookup table ((b) << 4)
  2490. memcpy(&qh0, x0->qh, sizeof(qh0));
  2491. memcpy(&qh1, x1->qh, sizeof(qh1));
  2492. tmp0[0] = table_b2b_0[(qh0 >> 0) & 0xFF];
  2493. tmp0[1] = table_b2b_0[(qh0 >> 8) & 0xFF];
  2494. tmp0[2] = table_b2b_0[(qh0 >> 16) & 0xFF];
  2495. tmp0[3] = table_b2b_0[(qh0 >> 24) ];
  2496. tmp1[0] = table_b2b_0[(qh1 >> 0) & 0xFF];
  2497. tmp1[1] = table_b2b_0[(qh1 >> 8) & 0xFF];
  2498. tmp1[2] = table_b2b_0[(qh1 >> 16) & 0xFF];
  2499. tmp1[3] = table_b2b_0[(qh1 >> 24) ];
  2500. const int8x16_t qhl0 = vld1q_s8((const int8_t *)(tmp0 + 0));
  2501. const int8x16_t qhh0 = vld1q_s8((const int8_t *)(tmp0 + 2));
  2502. const int8x16_t qhl1 = vld1q_s8((const int8_t *)(tmp1 + 0));
  2503. const int8x16_t qhh1 = vld1q_s8((const int8_t *)(tmp1 + 2));
  2504. const uint8x16_t v0_0 = vld1q_u8(x0->qs);
  2505. const uint8x16_t v0_1 = vld1q_u8(x1->qs);
  2506. // 4-bit -> 8-bit
  2507. const int8x16_t v0_0l = vreinterpretq_s8_u8(vandq_u8 (v0_0, m4b));
  2508. const int8x16_t v0_0h = vreinterpretq_s8_u8(vshrq_n_u8(v0_0, 4));
  2509. const int8x16_t v0_1l = vreinterpretq_s8_u8(vandq_u8 (v0_1, m4b));
  2510. const int8x16_t v0_1h = vreinterpretq_s8_u8(vshrq_n_u8(v0_1, 4));
  2511. // add high bit
  2512. const int8x16_t v0_0lf = vorrq_s8(v0_0l, qhl0);
  2513. const int8x16_t v0_0hf = vorrq_s8(v0_0h, qhh0);
  2514. const int8x16_t v0_1lf = vorrq_s8(v0_1l, qhl1);
  2515. const int8x16_t v0_1hf = vorrq_s8(v0_1h, qhh1);
  2516. // load y
  2517. const int8x16_t v1_0l = vld1q_s8(y0->qs);
  2518. const int8x16_t v1_0h = vld1q_s8(y0->qs + 16);
  2519. const int8x16_t v1_1l = vld1q_s8(y1->qs);
  2520. const int8x16_t v1_1h = vld1q_s8(y1->qs + 16);
  2521. sumv0 = vmlaq_n_f32(sumv0, vcvtq_f32_s32(vaddq_s32(
  2522. ggml_vdotq_s32(vdupq_n_s32(0), v0_0lf, v1_0l),
  2523. ggml_vdotq_s32(vdupq_n_s32(0), v0_0hf, v1_0h))), GGML_FP16_TO_FP32(x0->d)*GGML_FP16_TO_FP32(y0->d));
  2524. sumv1 = vmlaq_n_f32(sumv1, vcvtq_f32_s32(vaddq_s32(
  2525. ggml_vdotq_s32(vdupq_n_s32(0), v0_1lf, v1_1l),
  2526. ggml_vdotq_s32(vdupq_n_s32(0), v0_1hf, v1_1h))), GGML_FP16_TO_FP32(x1->d)*GGML_FP16_TO_FP32(y1->d));
  2527. }
  2528. sumf = vaddvq_f32(sumv0) + vaddvq_f32(sumv1) + summs0 + summs1;
  2529. #elif defined(__wasm_simd128__)
  2530. v128_t sumv = wasm_f32x4_splat(0.0f);
  2531. float summs = 0.0f;
  2532. uint32_t qh;
  2533. uint64_t tmp[4];
  2534. // TODO: check if unrolling this is better
  2535. for (; ib < nb; ++ib) {
  2536. const block_q5_1 * restrict x0 = &x[ib];
  2537. const block_q8_1 * restrict y0 = &y[ib];
  2538. summs += GGML_FP16_TO_FP32(x0->m) * GGML_FP16_TO_FP32(y0->s);
  2539. const v128_t m4b = wasm_i8x16_splat(0x0F);
  2540. // extract the 5th bit
  2541. memcpy(&qh, x0->qh, sizeof(qh));
  2542. tmp[0] = table_b2b_0[(qh >> 0) & 0xFF];
  2543. tmp[1] = table_b2b_0[(qh >> 8) & 0xFF];
  2544. tmp[2] = table_b2b_0[(qh >> 16) & 0xFF];
  2545. tmp[3] = table_b2b_0[(qh >> 24) ];
  2546. const v128_t qhl = wasm_v128_load(tmp + 0);
  2547. const v128_t qhh = wasm_v128_load(tmp + 2);
  2548. const v128_t v0 = wasm_v128_load(x0->qs);
  2549. // 4-bit -> 8-bit
  2550. const v128_t v0l = wasm_v128_and (v0, m4b);
  2551. const v128_t v0h = wasm_u8x16_shr(v0, 4);
  2552. // add high bit
  2553. const v128_t v0lf = wasm_v128_or(v0l, qhl);
  2554. const v128_t v0hf = wasm_v128_or(v0h, qhh);
  2555. // load y
  2556. const v128_t v1l = wasm_v128_load(y0->qs);
  2557. const v128_t v1h = wasm_v128_load(y0->qs + 16);
  2558. // int8x16 -> int16x8
  2559. const v128_t v0lfl = wasm_i16x8_extend_low_i8x16 (v0lf);
  2560. const v128_t v0lfh = wasm_i16x8_extend_high_i8x16(v0lf);
  2561. const v128_t v0hfl = wasm_i16x8_extend_low_i8x16 (v0hf);
  2562. const v128_t v0hfh = wasm_i16x8_extend_high_i8x16(v0hf);
  2563. const v128_t v1ll = wasm_i16x8_extend_low_i8x16 (v1l);
  2564. const v128_t v1lh = wasm_i16x8_extend_high_i8x16(v1l);
  2565. const v128_t v1hl = wasm_i16x8_extend_low_i8x16 (v1h);
  2566. const v128_t v1hh = wasm_i16x8_extend_high_i8x16(v1h);
  2567. // dot product
  2568. sumv = wasm_f32x4_add(sumv,
  2569. wasm_f32x4_mul(wasm_f32x4_convert_i32x4(wasm_i32x4_add(
  2570. wasm_i32x4_add(wasm_i32x4_dot_i16x8(v0lfl, v1ll),
  2571. wasm_i32x4_dot_i16x8(v0lfh, v1lh)),
  2572. wasm_i32x4_add(wasm_i32x4_dot_i16x8(v0hfl, v1hl),
  2573. wasm_i32x4_dot_i16x8(v0hfh, v1hh)))),
  2574. wasm_f32x4_splat(GGML_FP16_TO_FP32(x0->d) * GGML_FP16_TO_FP32(y0->d))));
  2575. }
  2576. sumf = wasm_f32x4_extract_lane(sumv, 0) + wasm_f32x4_extract_lane(sumv, 1) +
  2577. wasm_f32x4_extract_lane(sumv, 2) + wasm_f32x4_extract_lane(sumv, 3) + summs;
  2578. #elif defined(__AVX2__)
  2579. // Initialize accumulator with zeros
  2580. __m256 acc = _mm256_setzero_ps();
  2581. float summs = 0.0f;
  2582. // Main loop
  2583. for (; ib < nb; ++ib) {
  2584. const __m256 dx = _mm256_set1_ps(GGML_FP16_TO_FP32(x[ib].d));
  2585. summs += GGML_FP16_TO_FP32(x[ib].m) * GGML_FP16_TO_FP32(y[ib].s);
  2586. __m256i qx = bytes_from_nibbles_32(x[ib].qs);
  2587. __m256i bxhi = bytes_from_bits_32(x[ib].qh);
  2588. bxhi = _mm256_and_si256(bxhi, _mm256_set1_epi8(0x10));
  2589. qx = _mm256_or_si256(qx, bxhi);
  2590. const __m256 dy = _mm256_set1_ps(GGML_FP16_TO_FP32(y[ib].d));
  2591. const __m256i qy = _mm256_loadu_si256((const __m256i *)y[ib].qs);
  2592. const __m256 q = mul_sum_us8_pairs_float(qx, qy);
  2593. acc = _mm256_fmadd_ps(q, _mm256_mul_ps(dx, dy), acc);
  2594. }
  2595. sumf = hsum_float_8(acc) + summs;
  2596. #elif defined(__AVX__)
  2597. // Initialize accumulator with zeros
  2598. __m256 acc = _mm256_setzero_ps();
  2599. __m128i mask = _mm_set1_epi8(0x10);
  2600. float summs = 0.0f;
  2601. // Main loop
  2602. for (; ib < nb; ++ib) {
  2603. const __m256 dx = _mm256_set1_ps(GGML_FP16_TO_FP32(x[ib].d));
  2604. summs += GGML_FP16_TO_FP32(x[ib].m) * GGML_FP16_TO_FP32(y[ib].s);
  2605. __m256i bx_0 = bytes_from_nibbles_32(x[ib].qs);
  2606. const __m256i bxhi = bytes_from_bits_32(x[ib].qh);
  2607. __m128i bxhil = _mm256_castsi256_si128(bxhi);
  2608. __m128i bxhih = _mm256_extractf128_si256(bxhi, 1);
  2609. bxhil = _mm_and_si128(bxhil, mask);
  2610. bxhih = _mm_and_si128(bxhih, mask);
  2611. __m128i bxl = _mm256_castsi256_si128(bx_0);
  2612. __m128i bxh = _mm256_extractf128_si256(bx_0, 1);
  2613. bxl = _mm_or_si128(bxl, bxhil);
  2614. bxh = _mm_or_si128(bxh, bxhih);
  2615. bx_0 = MM256_SET_M128I(bxh, bxl);
  2616. const __m256 dy = _mm256_set1_ps(GGML_FP16_TO_FP32(y[ib].d));
  2617. const __m256i by_0 = _mm256_loadu_si256((const __m256i *)y[ib].qs);
  2618. const __m256 q = mul_sum_us8_pairs_float(bx_0, by_0);
  2619. acc = _mm256_add_ps(_mm256_mul_ps(q, _mm256_mul_ps(dx, dy)), acc);
  2620. }
  2621. sumf = hsum_float_8(acc) + summs;
  2622. #elif defined(__riscv_v_intrinsic)
  2623. uint32_t qh;
  2624. size_t vl = __riscv_vsetvl_e8m1(qk/2);
  2625. // temporary registers for shift operations
  2626. vuint32m2_t vt_1 = __riscv_vid_v_u32m2(vl);
  2627. vuint32m2_t vt_2 = __riscv_vadd_vx_u32m2(vt_1, 12, vl);
  2628. for (; ib < nb; ++ib) {
  2629. memcpy(&qh, x[ib].qh, sizeof(uint32_t));
  2630. // load qh
  2631. vuint32m2_t vqh = __riscv_vmv_v_x_u32m2(qh, vl);
  2632. // ((qh >> (j + 0)) << 4) & 0x10;
  2633. vuint32m2_t xhr_0 = __riscv_vsrl_vv_u32m2(vqh, vt_1, vl);
  2634. vuint32m2_t xhl_0 = __riscv_vsll_vx_u32m2(xhr_0, 4, vl);
  2635. vuint32m2_t xha_0 = __riscv_vand_vx_u32m2(xhl_0, 0x10, vl);
  2636. // ((qh >> (j + 12)) ) & 0x10;
  2637. vuint32m2_t xhr_1 = __riscv_vsrl_vv_u32m2(vqh, vt_2, vl);
  2638. vuint32m2_t xha_1 = __riscv_vand_vx_u32m2(xhr_1, 0x10, vl);
  2639. // narrowing
  2640. vuint16m1_t xhc_0 = __riscv_vncvt_x_x_w_u16m1(xha_0, vl);
  2641. vuint8mf2_t xh_0 = __riscv_vncvt_x_x_w_u8mf2(xhc_0, vl);
  2642. vuint16m1_t xhc_1 = __riscv_vncvt_x_x_w_u16m1(xha_1, vl);
  2643. vuint8mf2_t xh_1 = __riscv_vncvt_x_x_w_u8mf2(xhc_1, vl);
  2644. // load
  2645. vuint8mf2_t tx = __riscv_vle8_v_u8mf2(x[ib].qs, vl);
  2646. vint8mf2_t y0 = __riscv_vle8_v_i8mf2(y[ib].qs, vl);
  2647. vint8mf2_t y1 = __riscv_vle8_v_i8mf2(y[ib].qs+16, vl);
  2648. vuint8mf2_t x_at = __riscv_vand_vx_u8mf2(tx, 0x0F, vl);
  2649. vuint8mf2_t x_lt = __riscv_vsrl_vx_u8mf2(tx, 0x04, vl);
  2650. vuint8mf2_t x_a = __riscv_vor_vv_u8mf2(x_at, xh_0, vl);
  2651. vuint8mf2_t x_l = __riscv_vor_vv_u8mf2(x_lt, xh_1, vl);
  2652. vint8mf2_t v0 = __riscv_vreinterpret_v_u8mf2_i8mf2(x_a);
  2653. vint8mf2_t v1 = __riscv_vreinterpret_v_u8mf2_i8mf2(x_l);
  2654. vint16m1_t vec_mul1 = __riscv_vwmul_vv_i16m1(v0, y0, vl);
  2655. vint16m1_t vec_mul2 = __riscv_vwmul_vv_i16m1(v1, y1, vl);
  2656. vint32m1_t vec_zero = __riscv_vmv_v_x_i32m1(0, vl);
  2657. vint32m1_t vs1 = __riscv_vwredsum_vs_i16m1_i32m1(vec_mul1, vec_zero, vl);
  2658. vint32m1_t vs2 = __riscv_vwredsum_vs_i16m1_i32m1(vec_mul2, vs1, vl);
  2659. int sumi = __riscv_vmv_x_s_i32m1_i32(vs2);
  2660. sumf += (GGML_FP16_TO_FP32(x[ib].d)*GGML_FP16_TO_FP32(y[ib].d))*sumi + GGML_FP16_TO_FP32(x[ib].m)*GGML_FP16_TO_FP32(y[ib].s);
  2661. }
  2662. #elif defined(__POWER9_VECTOR__)
  2663. const vector signed char lowMask = vec_splats((signed char)0xF);
  2664. const vector signed int v0 = vec_splats((int32_t)0);
  2665. const vector unsigned char v4 = vec_splats((unsigned char)0x4);
  2666. vector float vsumf0 = vec_splats(0.0f);
  2667. #pragma GCC unroll 4
  2668. for (; ib < nb; ++ib) {
  2669. __builtin_prefetch(x[ib].qs, 0, 1);
  2670. __builtin_prefetch(y[ib].qs, 0, 1);
  2671. vector float vxd = vec_splats(GGML_FP16_TO_FP32(x[ib].d));
  2672. vector float vyd = vec_splats(GGML_FP16_TO_FP32(y[ib].d));
  2673. vector float vd = vec_mul(vxd, vyd);
  2674. vector float vxmin = vec_splats(GGML_FP16_TO_FP32(x[ib].m));
  2675. vector float vys = {GGML_FP16_TO_FP32(y[ib].s), 0.f, 0.f, 0.f};
  2676. vsumf0 = vec_madd(vxmin, vys, vsumf0);
  2677. vector unsigned long long aux64x2_0 = {(uint64_t)(table_b2b_0[x[ib].qh[0]]), (uint64_t)(table_b2b_0[x[ib].qh[1]])};
  2678. vector unsigned long long aux64x2_1 = {(uint64_t)(table_b2b_0[x[ib].qh[2]]), (uint64_t)(table_b2b_0[x[ib].qh[3]])};
  2679. vector signed char qh0 = (vector signed char)aux64x2_0;
  2680. vector signed char qh1 = (vector signed char)aux64x2_1;
  2681. vector signed char qxs = (vector signed char)vec_xl( 0, x[ib].qs);
  2682. vector unsigned char q5x0 = (vector unsigned char)vec_or(vec_and(qxs, lowMask), qh0);
  2683. vector unsigned char q5x1 = (vector unsigned char)vec_or(vec_sr(qxs, v4), qh1);
  2684. vector signed char q8y0 = vec_xl( 0, y[ib].qs);
  2685. vector signed char q8y1 = vec_xl( 16, y[ib].qs);
  2686. vector signed int vsumi0 = v0;
  2687. vsumi0 = vec_msum(q8y0, q5x0, vsumi0);
  2688. vsumi0 = vec_msum(q8y1, q5x1, vsumi0);
  2689. vsumf0 = vec_madd(vec_ctf(vsumi0, 0), vd, vsumf0);
  2690. }
  2691. vsumf0 = vec_add(vsumf0, vec_sld(vsumf0, vsumf0, 4));
  2692. vsumf0 = vec_add(vsumf0, vec_sld(vsumf0, vsumf0, 8));
  2693. sumf = vec_extract(vsumf0, 0);
  2694. #elif defined(__loongarch_asx)
  2695. // Initialize accumulator with zeros
  2696. __m256 acc = (__m256)__lasx_xvldi(0);
  2697. float summs = 0.0f;
  2698. // Main loop
  2699. for (; ib < nb; ++ib) {
  2700. const __m256 dx = __lasx_xvreplfr2vr_s(GGML_FP16_TO_FP32(x[ib].d));
  2701. summs += GGML_FP16_TO_FP32(x[ib].m) * GGML_FP16_TO_FP32(y[ib].s);
  2702. __m256i qx = bytes_from_nibbles_32(x[ib].qs);
  2703. __m256i bxhi = bytes_from_bits_32(x[ib].qh);
  2704. bxhi = __lasx_xvand_v(bxhi, __lasx_xvreplgr2vr_b(0x10));
  2705. qx = __lasx_xvor_v(qx, bxhi);
  2706. const __m256 dy = __lasx_xvreplfr2vr_s(GGML_FP16_TO_FP32(y[ib].d));
  2707. const __m256i qy = __lasx_xvld((const __m256i *)y[ib].qs, 0);
  2708. const __m256 q = mul_sum_us8_pairs_float(qx, qy);
  2709. acc = __lasx_xvfmadd_s(q, __lasx_xvfmul_s(dx, dy), acc);
  2710. }
  2711. sumf = hsum_float_8(acc) + summs;
  2712. #endif
  2713. for (; ib < nb; ++ib) {
  2714. uint32_t qh;
  2715. memcpy(&qh, x[ib].qh, sizeof(qh));
  2716. int sumi0 = 0;
  2717. int sumi1 = 0;
  2718. for (int j = 0; j < qk/2; ++j) {
  2719. const uint8_t xh_0 = ((qh >> (j + 0)) << 4) & 0x10;
  2720. const uint8_t xh_1 = ((qh >> (j + 12)) ) & 0x10;
  2721. const int32_t x0 = (x[ib].qs[j] & 0xF) | xh_0;
  2722. const int32_t x1 = (x[ib].qs[j] >> 4) | xh_1;
  2723. sumi0 += (x0 * y[ib].qs[j]);
  2724. sumi1 += (x1 * y[ib].qs[j + qk/2]);
  2725. }
  2726. int sumi = sumi0 + sumi1;
  2727. sumf += (GGML_FP16_TO_FP32(x[ib].d)*GGML_FP16_TO_FP32(y[ib].d))*sumi + GGML_FP16_TO_FP32(x[ib].m)*GGML_FP16_TO_FP32(y[ib].s);
  2728. }
  2729. *s = sumf;
  2730. }
  2731. void ggml_vec_dot_q8_0_q8_0(int n, float * restrict s, size_t bs, const void * restrict vx, size_t bx, const void * restrict vy, size_t by, int nrc) {
  2732. const int qk = QK8_0;
  2733. const int nb = n / qk;
  2734. assert(n % qk == 0);
  2735. #if defined(__ARM_FEATURE_MATMUL_INT8)
  2736. assert((nrc == 2) || (nrc == 1));
  2737. #else
  2738. assert(nrc == 1);
  2739. #endif
  2740. UNUSED(nrc);
  2741. UNUSED(bx);
  2742. UNUSED(by);
  2743. UNUSED(bs);
  2744. const block_q8_0 * restrict x = vx;
  2745. const block_q8_0 * restrict y = vy;
  2746. #if defined(__ARM_FEATURE_MATMUL_INT8)
  2747. if (nrc == 2) {
  2748. const block_q8_0 * restrict vx0 = vx;
  2749. const block_q8_0 * restrict vx1 = (const block_q8_0 *) ((const uint8_t*)vx + bx);
  2750. const block_q8_0 * restrict vy0 = vy;
  2751. const block_q8_0 * restrict vy1 = (const block_q8_0 *) ((const uint8_t*)vy + by);
  2752. float32x4_t sumv0 = vdupq_n_f32(0.0f);
  2753. for (int i = 0; i < nb; i++) {
  2754. const block_q8_0 * restrict b_x0 = &vx0[i];
  2755. const block_q8_0 * restrict b_y0 = &vy0[i];
  2756. const block_q8_0 * restrict b_x1 = &vx1[i];
  2757. const block_q8_0 * restrict b_y1 = &vy1[i];
  2758. const int8x16_t x0_l = vld1q_s8(b_x0->qs);
  2759. const int8x16_t x0_h = vld1q_s8(b_x0->qs + 16);
  2760. const int8x16_t x1_l = vld1q_s8(b_x1->qs);
  2761. const int8x16_t x1_h = vld1q_s8(b_x1->qs + 16);
  2762. // load y
  2763. const int8x16_t y0_l = vld1q_s8(b_y0->qs);
  2764. const int8x16_t y0_h = vld1q_s8(b_y0->qs + 16);
  2765. const int8x16_t y1_l = vld1q_s8(b_y1->qs);
  2766. const int8x16_t y1_h = vld1q_s8(b_y1->qs + 16);
  2767. float32_t _scale[4] = {
  2768. GGML_FP16_TO_FP32(b_x0->d)*GGML_FP16_TO_FP32(b_y0->d),
  2769. GGML_FP16_TO_FP32(b_x0->d)*GGML_FP16_TO_FP32(b_y1->d),
  2770. GGML_FP16_TO_FP32(b_x1->d)*GGML_FP16_TO_FP32(b_y0->d),
  2771. GGML_FP16_TO_FP32(b_x1->d)*GGML_FP16_TO_FP32(b_y1->d)
  2772. };
  2773. float32x4_t scale = vld1q_f32(_scale);
  2774. int8x16_t l0 = vreinterpretq_s8_s64(vzip1q_s64(vreinterpretq_s64_s8(x0_l), vreinterpretq_s64_s8(x1_l)));
  2775. int8x16_t l1 = vreinterpretq_s8_s64(vzip2q_s64(vreinterpretq_s64_s8(x0_l), vreinterpretq_s64_s8(x1_l)));
  2776. int8x16_t l2 = vreinterpretq_s8_s64(vzip1q_s64(vreinterpretq_s64_s8(x0_h), vreinterpretq_s64_s8(x1_h)));
  2777. int8x16_t l3 = vreinterpretq_s8_s64(vzip2q_s64(vreinterpretq_s64_s8(x0_h), vreinterpretq_s64_s8(x1_h)));
  2778. int8x16_t r0 = vreinterpretq_s8_s64(vzip1q_s64(vreinterpretq_s64_s8(y0_l), vreinterpretq_s64_s8(y1_l)));
  2779. int8x16_t r1 = vreinterpretq_s8_s64(vzip2q_s64(vreinterpretq_s64_s8(y0_l), vreinterpretq_s64_s8(y1_l)));
  2780. int8x16_t r2 = vreinterpretq_s8_s64(vzip1q_s64(vreinterpretq_s64_s8(y0_h), vreinterpretq_s64_s8(y1_h)));
  2781. int8x16_t r3 = vreinterpretq_s8_s64(vzip2q_s64(vreinterpretq_s64_s8(y0_h), vreinterpretq_s64_s8(y1_h)));
  2782. sumv0 = vmlaq_f32(sumv0,(vcvtq_f32_s32(vmmlaq_s32((vmmlaq_s32((vmmlaq_s32((vmmlaq_s32(vdupq_n_s32(0), l0, r0)),
  2783. l1, r1)), l2, r2)), l3, r3))), scale);
  2784. }
  2785. float32x4_t sumv1 = vextq_f32 (sumv0, sumv0, 2);
  2786. float32x4_t sumv2 = vzip1q_f32(sumv0, sumv1);
  2787. vst1_f32(s, vget_low_f32 (sumv2));
  2788. vst1_f32(s + bs, vget_high_f32(sumv2));
  2789. return;
  2790. }
  2791. #endif
  2792. int ib = 0;
  2793. float sumf = 0;
  2794. #if defined(__ARM_FEATURE_SVE)
  2795. svfloat32_t sumv0 = svdup_n_f32(0.0f);
  2796. svfloat32_t sumv1 = svdup_n_f32(0.0f);
  2797. const int vector_length = ggml_cpu_get_sve_cnt()*8;
  2798. //VLA Implemenation for SVE
  2799. switch (vector_length) {
  2800. case 128:
  2801. {
  2802. // predicate for activating lanes for 16 Int8 elements
  2803. const svbool_t ph16 = svptrue_pat_b8 (SV_VL16);
  2804. const svbool_t pl16 = svptrue_pat_b32(SV_VL4);
  2805. for (; ib + 1 < nb; ib += 2) {
  2806. const block_q8_0 * restrict x0 = &x[ib + 0];
  2807. const block_q8_0 * restrict x1 = &x[ib + 1];
  2808. const block_q8_0 * restrict y0 = &y[ib + 0];
  2809. const block_q8_0 * restrict y1 = &y[ib + 1];
  2810. // load x
  2811. const svint8_t qx0_0 = svld1_s8(ph16, x0->qs);
  2812. const svint8_t qx0_1 = svld1_s8(ph16, x0->qs+16);
  2813. const svint8_t qx1_0 = svld1_s8(ph16, x1->qs);
  2814. const svint8_t qx1_1 = svld1_s8(ph16, x1->qs+16);
  2815. // load y
  2816. const svint8_t qy0_0 = svld1_s8(ph16, y0->qs);
  2817. const svint8_t qy0_1 = svld1_s8(ph16, y0->qs+16);
  2818. const svint8_t qy1_0 = svld1_s8(ph16, y1->qs);
  2819. const svint8_t qy1_1 = svld1_s8(ph16, y1->qs+16);
  2820. sumv0 = svmla_n_f32_x(pl16, sumv0, svcvt_f32_s32_x(pl16, svadd_x(pl16,
  2821. svdot_s32(svdup_n_s32(0), qx0_0, qy0_0),
  2822. svdot_s32(svdup_n_s32(0), qx0_1, qy0_1))), GGML_FP16_TO_FP32(x0->d)*GGML_FP16_TO_FP32(y0->d));
  2823. sumv1 = svmla_n_f32_x(pl16, sumv1, svcvt_f32_s32_x(pl16, svadd_x(pl16,
  2824. svdot_s32(svdup_n_s32(0), qx1_0, qy1_0),
  2825. svdot_s32(svdup_n_s32(0), qx1_1, qy1_1))), GGML_FP16_TO_FP32(x1->d)*GGML_FP16_TO_FP32(y1->d));
  2826. }
  2827. sumf = svaddv_f32(pl16, svadd_f32_x(pl16, sumv0, sumv1));
  2828. } break;
  2829. case 256:
  2830. {
  2831. //printf("sve256");
  2832. for (; ib + 1 < nb; ib += 2) {
  2833. const block_q8_0 * restrict x0 = &x[ib + 0];
  2834. const block_q8_0 * restrict x1 = &x[ib + 1];
  2835. const block_q8_0 * restrict y0 = &y[ib + 0];
  2836. const block_q8_0 * restrict y1 = &y[ib + 1];
  2837. // load x
  2838. const svint8_t qx0 = svld1_s8(svptrue_b8(), x0->qs);
  2839. const svint8_t qx1 = svld1_s8(svptrue_b8(), x1->qs);
  2840. // load y
  2841. const svint8_t qy0 = svld1_s8(svptrue_b8(), y0->qs);
  2842. const svint8_t qy1 = svld1_s8(svptrue_b8(), y1->qs);
  2843. sumv0 = svmla_n_f32_x(svptrue_b32(), sumv0, svcvt_f32_s32_x(svptrue_b32(),
  2844. svdot_s32(svdup_n_s32(0), qx0, qy0)), GGML_FP16_TO_FP32(x0->d)*GGML_FP16_TO_FP32(y0->d));
  2845. sumv1 = svmla_n_f32_x(svptrue_b32(), sumv1, svcvt_f32_s32_x(svptrue_b32(),
  2846. svdot_s32(svdup_n_s32(0), qx1, qy1)), GGML_FP16_TO_FP32(x1->d)*GGML_FP16_TO_FP32(y1->d));
  2847. }
  2848. sumf = svaddv_f32(svptrue_b32(), svadd_f32_x(svptrue_b32(), sumv0, sumv1));
  2849. } break;
  2850. case 512:
  2851. {
  2852. // predicate for activating high 256 bit
  2853. const svbool_t ph32 = svptrue_pat_b8(SV_VL32);
  2854. // predicate for activating low 256 bit
  2855. const svbool_t pl32 = svnot_b_z(svptrue_b8(), ph32);
  2856. // predicate for activating high lanes for 8 float32 elements
  2857. const svbool_t ph8 = svptrue_pat_b32(SV_VL8);
  2858. // predicate for activating low lanes for 8 float32 elements
  2859. const svbool_t pl8 = svnot_b_z(svptrue_b32(), ph8);
  2860. svfloat32_t sumv00 = svdup_n_f32(0.0f);
  2861. for (; ib + 1 < nb; ib += 2) {
  2862. const block_q8_0 * restrict x0 = &x[ib + 0];
  2863. const block_q8_0 * restrict x1 = &x[ib + 1];
  2864. const block_q8_0 * restrict y0 = &y[ib + 0];
  2865. const block_q8_0 * restrict y1 = &y[ib + 1];
  2866. //load 32 int8_t in first half of vector and put another 32 int8_t in second vector lower bits
  2867. // and add them to make one 64 element vector
  2868. // load x
  2869. const svint8_t qx_32 = svld1_s8(ph32, x0->qs);
  2870. svint8_t qx_64 = svld1_s8(pl32, x0->qs + 2);
  2871. qx_64 = svadd_s8_x(svptrue_b8(), qx_32, qx_64);
  2872. // load y
  2873. const svint8_t qy_32 = svld1_s8(ph32, y0->qs);
  2874. svint8_t qy_64 = svld1_s8(pl32, y0->qs + 2);
  2875. qy_64 = svadd_s8_x(svptrue_b8(), qy_32, qy_64);
  2876. // scale creation
  2877. const float32_t deq1 = GGML_FP16_TO_FP32(x0->d)*GGML_FP16_TO_FP32(y0->d);
  2878. const float32_t deq2 = GGML_FP16_TO_FP32(x1->d)*GGML_FP16_TO_FP32(y1->d);
  2879. // duplicate deq1 in first half of vector and deq2 in second half of vector
  2880. const svfloat32_t temp = svdup_f32_m(svdup_f32_z(ph8, deq1), pl8, deq2);
  2881. const svfloat32_t sumvt = svcvt_f32_s32_x(svptrue_b32(), svdot_s32(svdup_n_s32(0), qx_64, qy_64));
  2882. sumv00 = svmla_f32_m(svptrue_b32(), sumv00, sumvt, temp);
  2883. }
  2884. sumf = svaddv_f32(svptrue_b32(), sumv00);
  2885. break;
  2886. }
  2887. default:
  2888. assert(false && "Unsupported vector length");
  2889. break;
  2890. }
  2891. #elif defined(__ARM_NEON)
  2892. float32x4_t sumv0 = vdupq_n_f32(0.0f);
  2893. float32x4_t sumv1 = vdupq_n_f32(0.0f);
  2894. for (; ib + 1 < nb; ib += 2) {
  2895. const block_q8_0 * restrict x0 = &x[ib + 0];
  2896. const block_q8_0 * restrict x1 = &x[ib + 1];
  2897. const block_q8_0 * restrict y0 = &y[ib + 0];
  2898. const block_q8_0 * restrict y1 = &y[ib + 1];
  2899. const int8x16_t x0_0 = vld1q_s8(x0->qs);
  2900. const int8x16_t x0_1 = vld1q_s8(x0->qs + 16);
  2901. const int8x16_t x1_0 = vld1q_s8(x1->qs);
  2902. const int8x16_t x1_1 = vld1q_s8(x1->qs + 16);
  2903. // load y
  2904. const int8x16_t y0_0 = vld1q_s8(y0->qs);
  2905. const int8x16_t y0_1 = vld1q_s8(y0->qs + 16);
  2906. const int8x16_t y1_0 = vld1q_s8(y1->qs);
  2907. const int8x16_t y1_1 = vld1q_s8(y1->qs + 16);
  2908. sumv0 = vmlaq_n_f32(sumv0, vcvtq_f32_s32(vaddq_s32(
  2909. ggml_vdotq_s32(vdupq_n_s32(0), x0_0, y0_0),
  2910. ggml_vdotq_s32(vdupq_n_s32(0), x0_1, y0_1))), GGML_FP16_TO_FP32(x0->d)*GGML_FP16_TO_FP32(y0->d));
  2911. sumv1 = vmlaq_n_f32(sumv1, vcvtq_f32_s32(vaddq_s32(
  2912. ggml_vdotq_s32(vdupq_n_s32(0), x1_0, y1_0),
  2913. ggml_vdotq_s32(vdupq_n_s32(0), x1_1, y1_1))), GGML_FP16_TO_FP32(x1->d)*GGML_FP16_TO_FP32(y1->d));
  2914. }
  2915. sumf = vaddvq_f32(sumv0) + vaddvq_f32(sumv1);
  2916. #elif defined(__AVX2__)
  2917. // Initialize accumulator with zeros
  2918. __m256 acc = _mm256_setzero_ps();
  2919. // Main loop
  2920. for (; ib < nb; ++ib) {
  2921. // Compute combined scale for the block
  2922. const __m256 d = _mm256_set1_ps(GGML_FP16_TO_FP32(x[ib].d) * GGML_FP16_TO_FP32(y[ib].d));
  2923. __m256i qx = _mm256_loadu_si256((const __m256i *)x[ib].qs);
  2924. __m256i qy = _mm256_loadu_si256((const __m256i *)y[ib].qs);
  2925. const __m256 q = mul_sum_i8_pairs_float(qx, qy);
  2926. // Multiply q with scale and accumulate
  2927. acc = _mm256_fmadd_ps( d, q, acc );
  2928. }
  2929. sumf = hsum_float_8(acc);
  2930. #elif defined(__AVX__)
  2931. __m256 accum = _mm256_setzero_ps();
  2932. for (; ib + 1 < nb; ib += 2) {
  2933. const __m128i qx_1_0 = _mm_loadu_si128((const __m128i *)x[ib].qs);
  2934. const __m128i qx_1_1 = _mm_loadu_si128((const __m128i *)x[ib].qs + 1);
  2935. const __m128i qx_2_0 = _mm_loadu_si128((const __m128i *)x[ib + 1].qs);
  2936. const __m128i qx_2_1 = _mm_loadu_si128((const __m128i *)x[ib + 1].qs + 1);
  2937. const __m128i qy_1_0 = _mm_loadu_si128((const __m128i *)y[ib].qs);
  2938. const __m128i qy_1_1 = _mm_loadu_si128((const __m128i *)y[ib].qs + 1);
  2939. const __m128i qy_2_0 = _mm_loadu_si128((const __m128i *)y[ib + 1].qs);
  2940. const __m128i qy_2_1 = _mm_loadu_si128((const __m128i *)y[ib + 1].qs + 1);
  2941. const __m256 p = mul_sum_i8_quad_float(qx_1_0, qx_1_1, qx_2_0, qx_2_1, qy_1_0, qy_1_1, qy_2_0, qy_2_1);
  2942. const __m256 deltas = quad_fp16_delta_float(x[ib].d, y[ib].d, x[ib + 1].d, y[ib + 1].d);
  2943. accum = _mm256_add_ps(_mm256_mul_ps(deltas, p), accum);
  2944. }
  2945. sumf = hsum_float_8(accum);
  2946. #elif defined(__riscv_v_intrinsic)
  2947. size_t vl = __riscv_vsetvl_e8m1(qk);
  2948. for (; ib < nb; ++ib) {
  2949. // load elements
  2950. vint8m1_t bx_0 = __riscv_vle8_v_i8m1(x[ib].qs, vl);
  2951. vint8m1_t by_0 = __riscv_vle8_v_i8m1(y[ib].qs, vl);
  2952. vint16m2_t vw_mul = __riscv_vwmul_vv_i16m2(bx_0, by_0, vl);
  2953. vint32m1_t v_zero = __riscv_vmv_v_x_i32m1(0, vl);
  2954. vint32m1_t v_sum = __riscv_vwredsum_vs_i16m2_i32m1(vw_mul, v_zero, vl);
  2955. int sumi = __riscv_vmv_x_s_i32m1_i32(v_sum);
  2956. sumf += sumi*(GGML_FP16_TO_FP32(x[ib].d)*GGML_FP16_TO_FP32(y[ib].d));
  2957. }
  2958. #elif defined(__POWER9_VECTOR__)
  2959. const vector signed int v0 = vec_splats((int32_t)0);
  2960. vector float vsumf0 = vec_splats(0.0f);
  2961. #pragma GCC unroll 8
  2962. for (; ib < nb; ++ib) {
  2963. __builtin_prefetch(x[ib].qs, 0, 1);
  2964. __builtin_prefetch(y[ib].qs, 0, 1);
  2965. vector float vxd = vec_splats(GGML_FP16_TO_FP32(x[ib].d));
  2966. vector float vyd = vec_splats(GGML_FP16_TO_FP32(y[ib].d));
  2967. vector float vd = vec_mul(vxd, vyd);
  2968. vector signed char q8x0 = vec_xl( 0, x[ib].qs);
  2969. vector signed char q8x1 = vec_xl(16, x[ib].qs);
  2970. vector signed char q8y0 = vec_xl( 0, y[ib].qs);
  2971. vector signed char q8y1 = vec_xl(16, y[ib].qs);
  2972. vector signed short qv0 = vec_mule(q8x0, q8y0);
  2973. vector signed short qv1 = vec_mulo(q8x0, q8y0);
  2974. vector signed short qv2 = vec_mule(q8x1, q8y1);
  2975. vector signed short qv3 = vec_mulo(q8x1, q8y1);
  2976. vector signed int vsumi0 = v0;
  2977. vector signed int vsumi1 = v0;
  2978. vsumi0 = vec_sum4s(qv0, vsumi0);
  2979. vsumi1 = vec_sum4s(qv1, vsumi1);
  2980. vsumi0 = vec_sum4s(qv2, vsumi0);
  2981. vsumi1 = vec_sum4s(qv3, vsumi1);
  2982. vsumi0 = vec_add(vsumi0, vsumi1);
  2983. vsumf0 = vec_madd(vec_ctf(vsumi0, 0), vd, vsumf0);
  2984. }
  2985. vsumf0 = vec_add(vsumf0, vec_sld(vsumf0, vsumf0, 4));
  2986. vsumf0 = vec_add(vsumf0, vec_sld(vsumf0, vsumf0, 8));
  2987. sumf = vec_extract(vsumf0, 0);
  2988. #elif defined(__loongarch_asx)
  2989. // Initialize accumulator with zeros
  2990. __m256 acc = (__m256)__lasx_xvldi(0);
  2991. // Main loop
  2992. for (; ib < nb; ++ib) {
  2993. // Compute combined scale for the block
  2994. const __m256 d = __lasx_xvreplfr2vr_s(GGML_FP16_TO_FP32(x[ib].d) * GGML_FP16_TO_FP32(y[ib].d));
  2995. __m256i qx = __lasx_xvld((const __m256i *)x[ib].qs, 0);
  2996. __m256i qy = __lasx_xvld((const __m256i *)y[ib].qs, 0);
  2997. const __m256 q = mul_sum_i8_pairs_float(qx, qy);
  2998. // Multiply q with scale and accumulate
  2999. acc = __lasx_xvfmadd_s( d, q, acc );
  3000. }
  3001. sumf = hsum_float_8(acc);
  3002. #endif
  3003. for (; ib < nb; ++ib) {
  3004. int sumi = 0;
  3005. for (int j = 0; j < qk; j++) {
  3006. sumi += x[ib].qs[j]*y[ib].qs[j];
  3007. }
  3008. sumf += sumi*(GGML_FP16_TO_FP32(x[ib].d)*GGML_FP16_TO_FP32(y[ib].d));
  3009. }
  3010. *s = sumf;
  3011. }
  3012. void ggml_vec_dot_tq1_0_q8_K(int n, float * restrict s, size_t bs, const void * restrict vx, size_t bx, const void * restrict vy, size_t by, int nrc) {
  3013. assert(nrc == 1);
  3014. UNUSED(nrc);
  3015. UNUSED(bx);
  3016. UNUSED(by);
  3017. UNUSED(bs);
  3018. const block_tq1_0 * restrict x = vx;
  3019. const block_q8_K * restrict y = vy;
  3020. const int nb = n / QK_K;
  3021. #if defined(__ARM_NEON)
  3022. float sumf = 0.0f;
  3023. uint8_t k_shift[16] = {1, 1, 1, 1, 3, 3, 3, 3, 9, 9, 9, 9, 27, 27, 27, 27};
  3024. const uint8x16_t shift = vld1q_u8(k_shift);
  3025. for (int i = 0; i < nb; ++i) {
  3026. #if defined(__ARM_FEATURE_DOTPROD)
  3027. int32x4_t sumi0 = vdupq_n_s32(0);
  3028. int32x4_t sumi1 = vdupq_n_s32(0);
  3029. #else
  3030. int16x8_t sumi0 = vdupq_n_s16(0);
  3031. int16x8_t sumi1 = vdupq_n_s16(0);
  3032. #endif
  3033. // first 32 bytes of 5 elements
  3034. {
  3035. uint8x16_t qx0 = vld1q_u8(x[i].qs + 0);
  3036. uint8x16_t qx1 = vld1q_u8(x[i].qs + 16);
  3037. uint8x16_t qx2 = vmulq_u8(qx0, vdupq_n_u8(3));
  3038. uint8x16_t qx3 = vmulq_u8(qx1, vdupq_n_u8(3));
  3039. uint8x16_t qx4 = vmulq_u8(qx0, vdupq_n_u8(9));
  3040. uint8x16_t qx5 = vmulq_u8(qx1, vdupq_n_u8(9));
  3041. uint8x16_t qx6 = vmulq_u8(qx0, vdupq_n_u8(27));
  3042. uint8x16_t qx7 = vmulq_u8(qx1, vdupq_n_u8(27));
  3043. uint8x16_t qx8 = vmulq_u8(qx0, vdupq_n_u8(81));
  3044. uint8x16_t qx9 = vmulq_u8(qx1, vdupq_n_u8(81));
  3045. // multiply by 3 and keep the 2 bits above 8 bits
  3046. int8x16_t sqx0 = vreinterpretq_s8_u8(vshrq_n_u8(vhaddq_u8(qx0, vshrq_n_u8(qx0, 1)), 6));
  3047. int8x16_t sqx1 = vreinterpretq_s8_u8(vshrq_n_u8(vhaddq_u8(qx1, vshrq_n_u8(qx1, 1)), 6));
  3048. int8x16_t sqx2 = vreinterpretq_s8_u8(vshrq_n_u8(vhaddq_u8(qx2, vshrq_n_u8(qx2, 1)), 6));
  3049. int8x16_t sqx3 = vreinterpretq_s8_u8(vshrq_n_u8(vhaddq_u8(qx3, vshrq_n_u8(qx3, 1)), 6));
  3050. int8x16_t sqx4 = vreinterpretq_s8_u8(vshrq_n_u8(vhaddq_u8(qx4, vshrq_n_u8(qx4, 1)), 6));
  3051. int8x16_t sqx5 = vreinterpretq_s8_u8(vshrq_n_u8(vhaddq_u8(qx5, vshrq_n_u8(qx5, 1)), 6));
  3052. int8x16_t sqx6 = vreinterpretq_s8_u8(vshrq_n_u8(vhaddq_u8(qx6, vshrq_n_u8(qx6, 1)), 6));
  3053. int8x16_t sqx7 = vreinterpretq_s8_u8(vshrq_n_u8(vhaddq_u8(qx7, vshrq_n_u8(qx7, 1)), 6));
  3054. int8x16_t sqx8 = vreinterpretq_s8_u8(vshrq_n_u8(vhaddq_u8(qx8, vshrq_n_u8(qx8, 1)), 6));
  3055. int8x16_t sqx9 = vreinterpretq_s8_u8(vshrq_n_u8(vhaddq_u8(qx9, vshrq_n_u8(qx9, 1)), 6));
  3056. const int8x16_t qy0 = vld1q_s8(y[i].qs + 0);
  3057. const int8x16_t qy1 = vld1q_s8(y[i].qs + 16);
  3058. const int8x16_t qy2 = vld1q_s8(y[i].qs + 32);
  3059. const int8x16_t qy3 = vld1q_s8(y[i].qs + 48);
  3060. const int8x16_t qy4 = vld1q_s8(y[i].qs + 64);
  3061. const int8x16_t qy5 = vld1q_s8(y[i].qs + 80);
  3062. const int8x16_t qy6 = vld1q_s8(y[i].qs + 96);
  3063. const int8x16_t qy7 = vld1q_s8(y[i].qs + 112);
  3064. const int8x16_t qy8 = vld1q_s8(y[i].qs + 128);
  3065. const int8x16_t qy9 = vld1q_s8(y[i].qs + 144);
  3066. #if defined(__ARM_FEATURE_DOTPROD)
  3067. sumi0 = vdotq_s32(sumi0, sqx0, qy0);
  3068. sumi1 = vdotq_s32(sumi1, sqx1, qy1);
  3069. sumi0 = vdotq_s32(sumi0, sqx2, qy2);
  3070. sumi1 = vdotq_s32(sumi1, sqx3, qy3);
  3071. sumi0 = vdotq_s32(sumi0, sqx4, qy4);
  3072. sumi1 = vdotq_s32(sumi1, sqx5, qy5);
  3073. sumi0 = vdotq_s32(sumi0, sqx6, qy6);
  3074. sumi1 = vdotq_s32(sumi1, sqx7, qy7);
  3075. sumi0 = vdotq_s32(sumi0, sqx8, qy8);
  3076. sumi1 = vdotq_s32(sumi1, sqx9, qy9);
  3077. #else
  3078. sumi0 = vmlal_s8(sumi0, vget_low_s8(sqx0), vget_low_s8(qy0));
  3079. sumi1 = vmlal_s8(sumi1, vget_high_s8(sqx0), vget_high_s8(qy0));
  3080. sumi0 = vmlal_s8(sumi0, vget_low_s8(sqx1), vget_low_s8(qy1));
  3081. sumi1 = vmlal_s8(sumi1, vget_high_s8(sqx1), vget_high_s8(qy1));
  3082. sumi0 = vmlal_s8(sumi0, vget_low_s8(sqx2), vget_low_s8(qy2));
  3083. sumi1 = vmlal_s8(sumi1, vget_high_s8(sqx2), vget_high_s8(qy2));
  3084. sumi0 = vmlal_s8(sumi0, vget_low_s8(sqx3), vget_low_s8(qy3));
  3085. sumi1 = vmlal_s8(sumi1, vget_high_s8(sqx3), vget_high_s8(qy3));
  3086. sumi0 = vmlal_s8(sumi0, vget_low_s8(sqx4), vget_low_s8(qy4));
  3087. sumi1 = vmlal_s8(sumi1, vget_high_s8(sqx4), vget_high_s8(qy4));
  3088. sumi0 = vmlal_s8(sumi0, vget_low_s8(sqx5), vget_low_s8(qy5));
  3089. sumi1 = vmlal_s8(sumi1, vget_high_s8(sqx5), vget_high_s8(qy5));
  3090. sumi0 = vmlal_s8(sumi0, vget_low_s8(sqx6), vget_low_s8(qy6));
  3091. sumi1 = vmlal_s8(sumi1, vget_high_s8(sqx6), vget_high_s8(qy6));
  3092. sumi0 = vmlal_s8(sumi0, vget_low_s8(sqx7), vget_low_s8(qy7));
  3093. sumi1 = vmlal_s8(sumi1, vget_high_s8(sqx7), vget_high_s8(qy7));
  3094. sumi0 = vmlal_s8(sumi0, vget_low_s8(sqx8), vget_low_s8(qy8));
  3095. sumi1 = vmlal_s8(sumi1, vget_high_s8(sqx8), vget_high_s8(qy8));
  3096. sumi0 = vmlal_s8(sumi0, vget_low_s8(sqx9), vget_low_s8(qy9));
  3097. sumi1 = vmlal_s8(sumi1, vget_high_s8(sqx9), vget_high_s8(qy9));
  3098. #endif
  3099. }
  3100. // last 16 bytes of 5-element, along with the 4 bytes of 4 elements
  3101. {
  3102. uint8x16_t qx0 = vld1q_u8(x[i].qs + 32);
  3103. uint8x16_t qx1 = vmulq_u8(qx0, vdupq_n_u8(3));
  3104. uint8x16_t qx2 = vmulq_u8(qx0, vdupq_n_u8(9));
  3105. uint8x16_t qx3 = vmulq_u8(qx0, vdupq_n_u8(27));
  3106. uint8x16_t qx4 = vmulq_u8(qx0, vdupq_n_u8(81));
  3107. uint32_t qh;
  3108. memcpy(&qh, x[i].qh, sizeof(qh)); // potentially unaligned
  3109. uint8x16_t qx5 = vreinterpretq_u8_u32(vdupq_n_u32(qh));
  3110. qx5 = vmulq_u8(qx5, shift);
  3111. // multiply by 3 and keep the 2 bits above 8 bits
  3112. int8x16_t sqx0 = vreinterpretq_s8_u8(vshrq_n_u8(vhaddq_u8(qx0, vshrq_n_u8(qx0, 1)), 6));
  3113. int8x16_t sqx1 = vreinterpretq_s8_u8(vshrq_n_u8(vhaddq_u8(qx1, vshrq_n_u8(qx1, 1)), 6));
  3114. int8x16_t sqx2 = vreinterpretq_s8_u8(vshrq_n_u8(vhaddq_u8(qx2, vshrq_n_u8(qx2, 1)), 6));
  3115. int8x16_t sqx3 = vreinterpretq_s8_u8(vshrq_n_u8(vhaddq_u8(qx3, vshrq_n_u8(qx3, 1)), 6));
  3116. int8x16_t sqx4 = vreinterpretq_s8_u8(vshrq_n_u8(vhaddq_u8(qx4, vshrq_n_u8(qx4, 1)), 6));
  3117. int8x16_t sqx5 = vreinterpretq_s8_u8(vshrq_n_u8(vhaddq_u8(qx5, vshrq_n_u8(qx5, 1)), 6));
  3118. const int8x16_t qy0 = vld1q_s8(y[i].qs + 160);
  3119. const int8x16_t qy1 = vld1q_s8(y[i].qs + 176);
  3120. const int8x16_t qy2 = vld1q_s8(y[i].qs + 192);
  3121. const int8x16_t qy3 = vld1q_s8(y[i].qs + 208);
  3122. const int8x16_t qy4 = vld1q_s8(y[i].qs + 224);
  3123. const int8x16_t qy5 = vld1q_s8(y[i].qs + 240);
  3124. #if defined(__ARM_FEATURE_DOTPROD)
  3125. sumi0 = vdotq_s32(sumi0, sqx0, qy0);
  3126. sumi1 = vdotq_s32(sumi1, sqx1, qy1);
  3127. sumi0 = vdotq_s32(sumi0, sqx2, qy2);
  3128. sumi1 = vdotq_s32(sumi1, sqx3, qy3);
  3129. sumi0 = vdotq_s32(sumi0, sqx4, qy4);
  3130. sumi1 = vdotq_s32(sumi1, sqx5, qy5);
  3131. #else
  3132. sumi0 = vmlal_s8(sumi0, vget_low_s8(sqx0), vget_low_s8(qy0));
  3133. sumi1 = vmlal_s8(sumi1, vget_high_s8(sqx0), vget_high_s8(qy0));
  3134. sumi0 = vmlal_s8(sumi0, vget_low_s8(sqx1), vget_low_s8(qy1));
  3135. sumi1 = vmlal_s8(sumi1, vget_high_s8(sqx1), vget_high_s8(qy1));
  3136. sumi0 = vmlal_s8(sumi0, vget_low_s8(sqx2), vget_low_s8(qy2));
  3137. sumi1 = vmlal_s8(sumi1, vget_high_s8(sqx2), vget_high_s8(qy2));
  3138. sumi0 = vmlal_s8(sumi0, vget_low_s8(sqx3), vget_low_s8(qy3));
  3139. sumi1 = vmlal_s8(sumi1, vget_high_s8(sqx3), vget_high_s8(qy3));
  3140. sumi0 = vmlal_s8(sumi0, vget_low_s8(sqx4), vget_low_s8(qy4));
  3141. sumi1 = vmlal_s8(sumi1, vget_high_s8(sqx4), vget_high_s8(qy4));
  3142. sumi0 = vmlal_s8(sumi0, vget_low_s8(sqx5), vget_low_s8(qy5));
  3143. sumi1 = vmlal_s8(sumi1, vget_high_s8(sqx5), vget_high_s8(qy5));
  3144. #endif
  3145. }
  3146. const int16x8_t ysum0 = vld1q_s16(y[i].bsums);
  3147. const int16x8_t ysum1 = vld1q_s16(y[i].bsums + 8);
  3148. const float d = GGML_FP16_TO_FP32(x[i].d) * y[i].d;
  3149. #if defined(__ARM_FEATURE_DOTPROD)
  3150. sumi0 = vaddq_s32(sumi0, sumi1);
  3151. sumi0 = vsubq_s32(sumi0, vpaddlq_s16(vaddq_s16(ysum0, ysum1)));
  3152. sumf += d * (float) vaddvq_s32(sumi0);
  3153. #else
  3154. sumi0 = vaddq_s16(sumi0, sumi1);
  3155. sumi0 = vsubq_s16(sumi0, vaddq_s16(ysum0, ysum1));
  3156. sumf += d * (float) vaddlvq_s16(sumi0);
  3157. #endif
  3158. }
  3159. *s = sumf;
  3160. #elif defined(__AVX2__)
  3161. __m256 sumf = _mm256_setzero_ps();
  3162. for (int i = 0; i < nb; ++i) {
  3163. // 16-bit sums
  3164. __m256i sumi0 = _mm256_setzero_si256();
  3165. __m256i sumi1 = _mm256_setzero_si256();
  3166. __m256i sumi2 = _mm256_setzero_si256();
  3167. // first 32 bytes of 5 elements
  3168. {
  3169. __m256i qx0 = _mm256_loadu_si256((const __m256i *) (x[i].qs));
  3170. // 8-bit multiplies with shifts, masks and adds
  3171. __m256i qx1 = _mm256_add_epi8(qx0, _mm256_add_epi8(qx0, qx0)); // 1 * 3
  3172. __m256i qx2 = _mm256_add_epi8(_mm256_and_si256(_mm256_slli_epi16(qx0, 3), _mm256_set1_epi8(-8)), qx0); // 1 * 9
  3173. __m256i qx3 = _mm256_add_epi8(_mm256_and_si256(_mm256_slli_epi16(qx1, 3), _mm256_set1_epi8(-8)), qx1); // 3 * 9
  3174. __m256i qx4 = _mm256_add_epi8(_mm256_and_si256(_mm256_slli_epi16(qx2, 3), _mm256_set1_epi8(-8)), qx2); // 9 * 9
  3175. // TODO: can _mm256_mulhi_epu16 be faster even if 16-bits?
  3176. // Cancel the +1 from avg so that it behaves like a halving add
  3177. qx0 = _mm256_subs_epu8(qx0, _mm256_set1_epi8(1));
  3178. qx1 = _mm256_subs_epu8(qx1, _mm256_set1_epi8(1));
  3179. qx2 = _mm256_subs_epu8(qx2, _mm256_set1_epi8(1));
  3180. qx3 = _mm256_subs_epu8(qx3, _mm256_set1_epi8(1));
  3181. qx4 = _mm256_subs_epu8(qx4, _mm256_set1_epi8(1));
  3182. // Multiply by 3 and get the top 2 bits
  3183. qx0 = _mm256_avg_epu8(qx0, _mm256_avg_epu8(qx0, _mm256_setzero_si256()));
  3184. qx1 = _mm256_avg_epu8(qx1, _mm256_avg_epu8(qx1, _mm256_setzero_si256()));
  3185. qx2 = _mm256_avg_epu8(qx2, _mm256_avg_epu8(qx2, _mm256_setzero_si256()));
  3186. qx3 = _mm256_avg_epu8(qx3, _mm256_avg_epu8(qx3, _mm256_setzero_si256()));
  3187. qx4 = _mm256_avg_epu8(qx4, _mm256_avg_epu8(qx4, _mm256_setzero_si256()));
  3188. qx0 = _mm256_and_si256(_mm256_srli_epi16(qx0, 6), _mm256_set1_epi8(3));
  3189. qx1 = _mm256_and_si256(_mm256_srli_epi16(qx1, 6), _mm256_set1_epi8(3));
  3190. qx2 = _mm256_and_si256(_mm256_srli_epi16(qx2, 6), _mm256_set1_epi8(3));
  3191. qx3 = _mm256_and_si256(_mm256_srli_epi16(qx3, 6), _mm256_set1_epi8(3));
  3192. qx4 = _mm256_and_si256(_mm256_srli_epi16(qx4, 6), _mm256_set1_epi8(3));
  3193. const __m256i qy0 = _mm256_loadu_si256((const __m256i *) (y[i].qs + 0));
  3194. const __m256i qy1 = _mm256_loadu_si256((const __m256i *) (y[i].qs + 32));
  3195. const __m256i qy2 = _mm256_loadu_si256((const __m256i *) (y[i].qs + 64));
  3196. const __m256i qy3 = _mm256_loadu_si256((const __m256i *) (y[i].qs + 96));
  3197. const __m256i qy4 = _mm256_loadu_si256((const __m256i *) (y[i].qs + 128));
  3198. qx0 = _mm256_maddubs_epi16(qx0, qy0);
  3199. qx1 = _mm256_maddubs_epi16(qx1, qy1);
  3200. qx2 = _mm256_maddubs_epi16(qx2, qy2);
  3201. qx3 = _mm256_maddubs_epi16(qx3, qy3);
  3202. qx4 = _mm256_maddubs_epi16(qx4, qy4);
  3203. sumi0 = _mm256_add_epi16(sumi0, _mm256_add_epi16(qx0, qx1));
  3204. sumi1 = _mm256_add_epi16(sumi1, _mm256_add_epi16(qx2, qx3));
  3205. sumi2 = _mm256_add_epi16(sumi2, qx4);
  3206. }
  3207. // last 16 bytes of 5-element, along with the 4 bytes of 4 elements
  3208. {
  3209. __m128i qx0 = _mm_loadu_si128((const __m128i *) (x[i].qs + 32));
  3210. uint32_t qh;
  3211. memcpy(&qh, x[i].qh, sizeof(qh)); // potentially unaligned
  3212. __m256i qx5_l = _mm256_cvtepu8_epi16(_mm_set1_epi32(qh));
  3213. __m128i qx1 = _mm_add_epi8(qx0, _mm_add_epi8(qx0, qx0)); // 1 * 3
  3214. __m128i qx2 = _mm_add_epi8(_mm_and_si128(_mm_slli_epi16(qx0, 3), _mm_set1_epi8(-8)), qx0); // 1 * 9
  3215. __m128i qx3 = _mm_add_epi8(_mm_and_si128(_mm_slli_epi16(qx1, 3), _mm_set1_epi8(-8)), qx1); // 3 * 9
  3216. __m128i qx4 = _mm_add_epi8(_mm_and_si128(_mm_slli_epi16(qx2, 3), _mm_set1_epi8(-8)), qx2); // 9 * 9
  3217. __m256i qx01 = MM256_SET_M128I(qx1, qx0);
  3218. __m256i qx23 = MM256_SET_M128I(qx3, qx2);
  3219. // avx2 does not have 8-bit multiplies, so 16-bit it is.
  3220. qx5_l = _mm256_mullo_epi16(qx5_l, _mm256_set_epi16(27, 27, 27, 27, 9, 9, 9, 9, 3, 3, 3, 3, 1, 1, 1, 1));
  3221. qx5_l = _mm256_and_si256(qx5_l, _mm256_set1_epi16(0xFF));
  3222. __m128i qx5 = _mm_packus_epi16(_mm256_castsi256_si128(qx5_l), _mm256_extracti128_si256(qx5_l, 1));
  3223. __m256i qx45 = MM256_SET_M128I(qx5, qx4);
  3224. // Cancel the +1 from avg so that it behaves like a halving add
  3225. qx01 = _mm256_subs_epu8(qx01, _mm256_set1_epi8(1));
  3226. qx23 = _mm256_subs_epu8(qx23, _mm256_set1_epi8(1));
  3227. qx45 = _mm256_subs_epu8(qx45, _mm256_set1_epi8(1));
  3228. // Multiply by 3 and get the top 2 bits
  3229. qx01 = _mm256_avg_epu8(qx01, _mm256_avg_epu8(qx01, _mm256_setzero_si256()));
  3230. qx23 = _mm256_avg_epu8(qx23, _mm256_avg_epu8(qx23, _mm256_setzero_si256()));
  3231. qx45 = _mm256_avg_epu8(qx45, _mm256_avg_epu8(qx45, _mm256_setzero_si256()));
  3232. qx01 = _mm256_and_si256(_mm256_srli_epi16(qx01, 6), _mm256_set1_epi8(3));
  3233. qx23 = _mm256_and_si256(_mm256_srli_epi16(qx23, 6), _mm256_set1_epi8(3));
  3234. qx45 = _mm256_and_si256(_mm256_srli_epi16(qx45, 6), _mm256_set1_epi8(3));
  3235. const __m256i qy01 = _mm256_loadu_si256((const __m256i *) (y[i].qs + 160));
  3236. const __m256i qy23 = _mm256_loadu_si256((const __m256i *) (y[i].qs + 192));
  3237. const __m256i qy45 = _mm256_loadu_si256((const __m256i *) (y[i].qs + 224));
  3238. qx01 = _mm256_maddubs_epi16(qx01, qy01);
  3239. qx23 = _mm256_maddubs_epi16(qx23, qy23);
  3240. qx45 = _mm256_maddubs_epi16(qx45, qy45);
  3241. sumi0 = _mm256_add_epi16(sumi0, qx01);
  3242. sumi1 = _mm256_add_epi16(sumi1, qx23);
  3243. sumi2 = _mm256_add_epi16(sumi2, qx45);
  3244. }
  3245. const __m256i ysum = _mm256_loadu_si256((const __m256i *) y[i].bsums);
  3246. const __m256 d = _mm256_set1_ps(y[i].d * GGML_FP16_TO_FP32(x[i].d));
  3247. sumi0 = _mm256_sub_epi16(sumi0, ysum);
  3248. sumi0 = _mm256_add_epi16(sumi0, _mm256_add_epi16(sumi1, sumi2));
  3249. sumi0 = _mm256_madd_epi16(sumi0, _mm256_set1_epi16(1));
  3250. sumf = _mm256_add_ps(_mm256_mul_ps(_mm256_cvtepi32_ps(sumi0), d), sumf);
  3251. }
  3252. *s = hsum_float_8(sumf);
  3253. #else
  3254. const uint8_t pow3[6] = {1, 3, 9, 27, 81, 243};
  3255. float sumf = 0.0f;
  3256. for (int i = 0; i < nb; ++i) {
  3257. int sum = 0;
  3258. for (size_t j = 0; j < sizeof(x->qs) - sizeof(x->qs) % 32; j += 32) {
  3259. for (size_t l = 0; l < 5; ++l) {
  3260. for (size_t m = 0; m < 32; ++m) {
  3261. uint8_t q = x[i].qs[j + m] * pow3[l];
  3262. uint16_t xi = ((uint16_t) q * 3) >> 8;
  3263. sum += (xi - 1) * y[i].qs[j*5 + l*32 + m];
  3264. }
  3265. }
  3266. }
  3267. for (size_t j = sizeof(x->qs) - sizeof(x->qs) % 32; j < sizeof(x->qs); j += 16) {
  3268. for (size_t l = 0; l < 5; ++l) {
  3269. for (size_t m = 0; m < 16; ++m) {
  3270. uint8_t q = x[i].qs[j + m] * pow3[l];
  3271. uint16_t xi = ((uint16_t) q * 3) >> 8;
  3272. sum += (xi - 1) * y[i].qs[j*5 + l*16 + m];
  3273. }
  3274. }
  3275. }
  3276. for (size_t l = 0; l < 4; ++l) {
  3277. for (size_t j = 0; j < sizeof(x->qh); ++j) {
  3278. uint8_t q = x[i].qh[j] * pow3[l];
  3279. uint16_t xi = ((uint16_t) q * 3) >> 8;
  3280. sum += (xi - 1) * y[i].qs[sizeof(x->qs)*5 + l*sizeof(x->qh) + j];
  3281. }
  3282. }
  3283. sumf += (float) sum * (GGML_FP16_TO_FP32(x[i].d) * y[i].d);
  3284. }
  3285. *s = sumf;
  3286. #endif
  3287. }
  3288. void ggml_vec_dot_tq2_0_q8_K(int n, float * restrict s, size_t bs, const void * restrict vx, size_t bx, const void * restrict vy, size_t by, int nrc) {
  3289. assert(nrc == 1);
  3290. UNUSED(nrc);
  3291. UNUSED(bx);
  3292. UNUSED(by);
  3293. UNUSED(bs);
  3294. const block_tq2_0 * restrict x = vx;
  3295. const block_q8_K * restrict y = vy;
  3296. const int nb = n / QK_K;
  3297. #if defined(__ARM_NEON)
  3298. float sumf = 0.0f;
  3299. const uint8x16_t m3 = vdupq_n_u8(3);
  3300. for (int i = 0; i < nb; ++i) {
  3301. #if defined(__ARM_FEATURE_DOTPROD)
  3302. int32x4_t sumi0 = vdupq_n_s32(0);
  3303. int32x4_t sumi1 = vdupq_n_s32(0);
  3304. #else
  3305. int16x8_t sumi0 = vdupq_n_s16(0);
  3306. int16x8_t sumi1 = vdupq_n_s16(0);
  3307. #endif
  3308. for (size_t j = 0; j < sizeof(x->qs); j += 32) {
  3309. uint8x16_t qx0 = vld1q_u8(x[i].qs + j);
  3310. uint8x16_t qx1 = vld1q_u8(x[i].qs + j + 16);
  3311. uint8x16_t qx2 = vshrq_n_u8(qx0, 2);
  3312. uint8x16_t qx3 = vshrq_n_u8(qx1, 2);
  3313. uint8x16_t qx4 = vshrq_n_u8(qx0, 4);
  3314. uint8x16_t qx5 = vshrq_n_u8(qx1, 4);
  3315. uint8x16_t qx6 = vshrq_n_u8(qx0, 6);
  3316. uint8x16_t qx7 = vshrq_n_u8(qx1, 6);
  3317. int8x16_t sqx0 = vreinterpretq_s8_u8(vandq_u8(qx0, m3));
  3318. int8x16_t sqx1 = vreinterpretq_s8_u8(vandq_u8(qx1, m3));
  3319. int8x16_t sqx2 = vreinterpretq_s8_u8(vandq_u8(qx2, m3));
  3320. int8x16_t sqx3 = vreinterpretq_s8_u8(vandq_u8(qx3, m3));
  3321. int8x16_t sqx4 = vreinterpretq_s8_u8(vandq_u8(qx4, m3));
  3322. int8x16_t sqx5 = vreinterpretq_s8_u8(vandq_u8(qx5, m3));
  3323. int8x16_t sqx6 = vreinterpretq_s8_u8(vandq_u8(qx6, m3));
  3324. int8x16_t sqx7 = vreinterpretq_s8_u8(vandq_u8(qx7, m3));
  3325. const int8x16_t qy0 = vld1q_s8(y[i].qs + j*4 + 0);
  3326. const int8x16_t qy1 = vld1q_s8(y[i].qs + j*4 + 16);
  3327. const int8x16_t qy2 = vld1q_s8(y[i].qs + j*4 + 32);
  3328. const int8x16_t qy3 = vld1q_s8(y[i].qs + j*4 + 48);
  3329. const int8x16_t qy4 = vld1q_s8(y[i].qs + j*4 + 64);
  3330. const int8x16_t qy5 = vld1q_s8(y[i].qs + j*4 + 80);
  3331. const int8x16_t qy6 = vld1q_s8(y[i].qs + j*4 + 96);
  3332. const int8x16_t qy7 = vld1q_s8(y[i].qs + j*4 + 112);
  3333. #if defined(__ARM_FEATURE_DOTPROD)
  3334. sumi0 = vdotq_s32(sumi0, sqx0, qy0);
  3335. sumi1 = vdotq_s32(sumi1, sqx1, qy1);
  3336. sumi0 = vdotq_s32(sumi0, sqx2, qy2);
  3337. sumi1 = vdotq_s32(sumi1, sqx3, qy3);
  3338. sumi0 = vdotq_s32(sumi0, sqx4, qy4);
  3339. sumi1 = vdotq_s32(sumi1, sqx5, qy5);
  3340. sumi0 = vdotq_s32(sumi0, sqx6, qy6);
  3341. sumi1 = vdotq_s32(sumi1, sqx7, qy7);
  3342. #else
  3343. sumi0 = vmlal_s8(sumi0, vget_low_s8(sqx0), vget_low_s8(qy0));
  3344. sumi1 = vmlal_s8(sumi1, vget_high_s8(sqx0), vget_high_s8(qy0));
  3345. sumi0 = vmlal_s8(sumi0, vget_low_s8(sqx1), vget_low_s8(qy1));
  3346. sumi1 = vmlal_s8(sumi1, vget_high_s8(sqx1), vget_high_s8(qy1));
  3347. sumi0 = vmlal_s8(sumi0, vget_low_s8(sqx2), vget_low_s8(qy2));
  3348. sumi1 = vmlal_s8(sumi1, vget_high_s8(sqx2), vget_high_s8(qy2));
  3349. sumi0 = vmlal_s8(sumi0, vget_low_s8(sqx3), vget_low_s8(qy3));
  3350. sumi1 = vmlal_s8(sumi1, vget_high_s8(sqx3), vget_high_s8(qy3));
  3351. sumi0 = vmlal_s8(sumi0, vget_low_s8(sqx4), vget_low_s8(qy4));
  3352. sumi1 = vmlal_s8(sumi1, vget_high_s8(sqx4), vget_high_s8(qy4));
  3353. sumi0 = vmlal_s8(sumi0, vget_low_s8(sqx5), vget_low_s8(qy5));
  3354. sumi1 = vmlal_s8(sumi1, vget_high_s8(sqx5), vget_high_s8(qy5));
  3355. sumi0 = vmlal_s8(sumi0, vget_low_s8(sqx6), vget_low_s8(qy6));
  3356. sumi1 = vmlal_s8(sumi1, vget_high_s8(sqx6), vget_high_s8(qy6));
  3357. sumi0 = vmlal_s8(sumi0, vget_low_s8(sqx7), vget_low_s8(qy7));
  3358. sumi1 = vmlal_s8(sumi1, vget_high_s8(sqx7), vget_high_s8(qy7));
  3359. #endif
  3360. }
  3361. const int16x8_t ysum0 = vld1q_s16(y[i].bsums);
  3362. const int16x8_t ysum1 = vld1q_s16(y[i].bsums + 8);
  3363. const float d = GGML_FP16_TO_FP32(x[i].d) * y[i].d;
  3364. #if defined(__ARM_FEATURE_DOTPROD)
  3365. sumi0 = vaddq_s32(sumi0, sumi1);
  3366. sumi0 = vsubq_s32(sumi0, vpaddlq_s16(vaddq_s16(ysum0, ysum1)));
  3367. sumf += d * (float) vaddvq_s32(sumi0);
  3368. #else
  3369. sumi0 = vaddq_s16(sumi0, sumi1);
  3370. sumi0 = vsubq_s16(sumi0, vaddq_s16(ysum0, ysum1));
  3371. sumf += d * (float) vaddlvq_s16(sumi0);
  3372. #endif
  3373. }
  3374. *s = sumf;
  3375. #elif defined(__AVX2__)
  3376. __m256 sumf = _mm256_setzero_ps();
  3377. for (int i = 0; i < nb; ++i) {
  3378. // 16-bit sums, because 256*127 still fits
  3379. __m256i sumi0 = _mm256_setzero_si256();
  3380. __m256i sumi1 = _mm256_setzero_si256();
  3381. for (size_t j = 0; j < sizeof(x->qs); j += 32) {
  3382. __m256i qx0 = _mm256_loadu_si256((const __m256i *) (x[i].qs + j));
  3383. __m256i qx1 = _mm256_srli_epi16(qx0, 2);
  3384. __m256i qx2 = _mm256_srli_epi16(qx0, 4);
  3385. __m256i qx3 = _mm256_srli_epi16(qx0, 6);
  3386. // 0, 1, 2 (should not be 3)
  3387. qx0 = _mm256_and_si256(qx0, _mm256_set1_epi8(3));
  3388. qx1 = _mm256_and_si256(qx1, _mm256_set1_epi8(3));
  3389. qx2 = _mm256_and_si256(qx2, _mm256_set1_epi8(3));
  3390. qx3 = _mm256_and_si256(qx3, _mm256_set1_epi8(3));
  3391. const __m256i qy0 = _mm256_loadu_si256((const __m256i *) (y[i].qs + j*4 + 0));
  3392. const __m256i qy1 = _mm256_loadu_si256((const __m256i *) (y[i].qs + j*4 + 32));
  3393. const __m256i qy2 = _mm256_loadu_si256((const __m256i *) (y[i].qs + j*4 + 64));
  3394. const __m256i qy3 = _mm256_loadu_si256((const __m256i *) (y[i].qs + j*4 + 96));
  3395. qx0 = _mm256_maddubs_epi16(qx0, qy0);
  3396. qx1 = _mm256_maddubs_epi16(qx1, qy1);
  3397. qx2 = _mm256_maddubs_epi16(qx2, qy2);
  3398. qx3 = _mm256_maddubs_epi16(qx3, qy3);
  3399. sumi0 = _mm256_add_epi16(sumi0, _mm256_add_epi16(qx0, qx1));
  3400. sumi1 = _mm256_add_epi16(sumi1, _mm256_add_epi16(qx2, qx3));
  3401. }
  3402. const __m256i ysum = _mm256_loadu_si256((const __m256i *) y[i].bsums);
  3403. const __m256 d = _mm256_set1_ps(y[i].d * GGML_FP16_TO_FP32(x[i].d));
  3404. sumi0 = _mm256_add_epi16(sumi0, sumi1);
  3405. sumi0 = _mm256_sub_epi16(sumi0, ysum);
  3406. sumi0 = _mm256_madd_epi16(sumi0, _mm256_set1_epi16(1));
  3407. sumf = _mm256_add_ps(_mm256_mul_ps(_mm256_cvtepi32_ps(sumi0), d), sumf);
  3408. }
  3409. *s = hsum_float_8(sumf);
  3410. #else
  3411. float sumf = 0.0f;
  3412. for (int i = 0; i < nb; ++i) {
  3413. int32_t sumi = 0;
  3414. for (size_t j = 0; j < sizeof(x->qs); j += 32) {
  3415. for (size_t l = 0; l < 4; ++l) {
  3416. for (size_t k = 0; k < 32; ++k) {
  3417. sumi += y[i].qs[j*4 + l*32 + k] * (((x[i].qs[j + k] >> (l*2)) & 3) - 1);
  3418. }
  3419. }
  3420. }
  3421. const float d = y[i].d * GGML_FP16_TO_FP32(x[i].d);
  3422. sumf += (float) sumi * d;
  3423. }
  3424. *s = sumf;
  3425. #endif
  3426. }
  3427. void ggml_vec_dot_q2_K_q8_K(int n, float * restrict s, size_t bs, const void * restrict vx, size_t bx, const void * restrict vy, size_t by, int nrc) {
  3428. assert(nrc == 1);
  3429. UNUSED(nrc);
  3430. UNUSED(bx);
  3431. UNUSED(by);
  3432. UNUSED(bs);
  3433. const block_q2_K * restrict x = vx;
  3434. const block_q8_K * restrict y = vy;
  3435. const int nb = n / QK_K;
  3436. #ifdef __ARM_NEON
  3437. const uint8x16_t m3 = vdupq_n_u8(0x3);
  3438. const uint8x16_t m4 = vdupq_n_u8(0xF);
  3439. const int32x4_t vzero = vdupq_n_s32(0);
  3440. ggml_int8x16x2_t q2bytes;
  3441. uint8_t aux[16];
  3442. float sum = 0;
  3443. for (int i = 0; i < nb; ++i) {
  3444. const float d = y[i].d * GGML_FP16_TO_FP32(x[i].d);
  3445. const float dmin = -y[i].d * GGML_FP16_TO_FP32(x[i].dmin);
  3446. const uint8_t * restrict q2 = x[i].qs;
  3447. const int8_t * restrict q8 = y[i].qs;
  3448. const uint8_t * restrict sc = x[i].scales;
  3449. const uint8x16_t mins_and_scales = vld1q_u8(sc);
  3450. const uint8x16_t scales = vandq_u8(mins_and_scales, m4);
  3451. vst1q_u8(aux, scales);
  3452. const uint8x16_t mins = vshrq_n_u8(mins_and_scales, 4);
  3453. const ggml_int16x8x2_t q8sums = ggml_vld1q_s16_x2(y[i].bsums);
  3454. const ggml_int16x8x2_t mins16 = {{vreinterpretq_s16_u16(vmovl_u8(vget_low_u8(mins))), vreinterpretq_s16_u16(vmovl_u8(vget_high_u8(mins)))}};
  3455. const int32x4_t s0 = vaddq_s32(vmull_s16(vget_low_s16 (mins16.val[0]), vget_low_s16 (q8sums.val[0])),
  3456. vmull_s16(vget_high_s16(mins16.val[0]), vget_high_s16(q8sums.val[0])));
  3457. const int32x4_t s1 = vaddq_s32(vmull_s16(vget_low_s16 (mins16.val[1]), vget_low_s16 (q8sums.val[1])),
  3458. vmull_s16(vget_high_s16(mins16.val[1]), vget_high_s16(q8sums.val[1])));
  3459. sum += dmin * vaddvq_s32(vaddq_s32(s0, s1));
  3460. int isum = 0;
  3461. int is = 0;
  3462. // We use this macro instead of a function call because for some reason
  3463. // the code runs 2-3% slower, even if the function is declared inline
  3464. #define MULTIPLY_ACCUM_WITH_SCALE(index)\
  3465. isum += vaddvq_s32(ggml_vdotq_s32(vzero, q2bytes.val[0], q8bytes.val[0])) * aux[is+(index)];\
  3466. isum += vaddvq_s32(ggml_vdotq_s32(vzero, q2bytes.val[1], q8bytes.val[1])) * aux[is+1+(index)];
  3467. #define SHIFT_MULTIPLY_ACCUM_WITH_SCALE(shift, index)\
  3468. q8bytes = ggml_vld1q_s8_x2(q8); q8 += 32;\
  3469. q2bytes.val[0] = vreinterpretq_s8_u8(vandq_u8(vshrq_n_u8(q2bits.val[0], (shift)), m3));\
  3470. q2bytes.val[1] = vreinterpretq_s8_u8(vandq_u8(vshrq_n_u8(q2bits.val[1], (shift)), m3));\
  3471. MULTIPLY_ACCUM_WITH_SCALE((index));
  3472. for (int j = 0; j < QK_K/128; ++j) {
  3473. const ggml_uint8x16x2_t q2bits = ggml_vld1q_u8_x2(q2); q2 += 32;
  3474. ggml_int8x16x2_t q8bytes = ggml_vld1q_s8_x2(q8); q8 += 32;
  3475. q2bytes.val[0] = vreinterpretq_s8_u8(vandq_u8(q2bits.val[0], m3));
  3476. q2bytes.val[1] = vreinterpretq_s8_u8(vandq_u8(q2bits.val[1], m3));
  3477. MULTIPLY_ACCUM_WITH_SCALE(0);
  3478. SHIFT_MULTIPLY_ACCUM_WITH_SCALE(2, 2);
  3479. SHIFT_MULTIPLY_ACCUM_WITH_SCALE(4, 4);
  3480. SHIFT_MULTIPLY_ACCUM_WITH_SCALE(6, 6);
  3481. is += 8;
  3482. }
  3483. sum += d * isum;
  3484. }
  3485. *s = sum;
  3486. #elif defined __AVX2__
  3487. const __m256i m3 = _mm256_set1_epi8(3);
  3488. const __m128i m4 = _mm_set1_epi8(0xF);
  3489. __m256 acc = _mm256_setzero_ps();
  3490. for (int i = 0; i < nb; ++i) {
  3491. const float d = y[i].d * GGML_FP16_TO_FP32(x[i].d);
  3492. const float dmin = -y[i].d * GGML_FP16_TO_FP32(x[i].dmin);
  3493. const uint8_t * restrict q2 = x[i].qs;
  3494. const int8_t * restrict q8 = y[i].qs;
  3495. const __m128i mins_and_scales = _mm_loadu_si128((const __m128i*)x[i].scales);
  3496. const __m128i scales8 = _mm_and_si128(mins_and_scales, m4);
  3497. const __m128i mins8 = _mm_and_si128(_mm_srli_epi16(mins_and_scales, 4), m4);
  3498. const __m256i mins = _mm256_cvtepi8_epi16(mins8);
  3499. const __m256i prod = _mm256_madd_epi16(mins, _mm256_loadu_si256((const __m256i*)y[i].bsums));
  3500. acc = _mm256_fmadd_ps(_mm256_broadcast_ss(&dmin), _mm256_cvtepi32_ps(prod), acc);
  3501. const __m256i all_scales = _mm256_cvtepi8_epi16(scales8);
  3502. const __m128i l_scales = _mm256_extracti128_si256(all_scales, 0);
  3503. const __m128i h_scales = _mm256_extracti128_si256(all_scales, 1);
  3504. const __m256i scales[2] = {MM256_SET_M128I(l_scales, l_scales), MM256_SET_M128I(h_scales, h_scales)};
  3505. __m256i sumi = _mm256_setzero_si256();
  3506. for (int j = 0; j < QK_K/128; ++j) {
  3507. const __m256i q2bits = _mm256_loadu_si256((const __m256i*)q2); q2 += 32;
  3508. const __m256i q8_0 = _mm256_loadu_si256((const __m256i*)q8); q8 += 32;
  3509. const __m256i q8_1 = _mm256_loadu_si256((const __m256i*)q8); q8 += 32;
  3510. const __m256i q8_2 = _mm256_loadu_si256((const __m256i*)q8); q8 += 32;
  3511. const __m256i q8_3 = _mm256_loadu_si256((const __m256i*)q8); q8 += 32;
  3512. const __m256i q2_0 = _mm256_and_si256(q2bits, m3);
  3513. const __m256i q2_1 = _mm256_and_si256(_mm256_srli_epi16(q2bits, 2), m3);
  3514. const __m256i q2_2 = _mm256_and_si256(_mm256_srli_epi16(q2bits, 4), m3);
  3515. const __m256i q2_3 = _mm256_and_si256(_mm256_srli_epi16(q2bits, 6), m3);
  3516. __m256i p0 = _mm256_maddubs_epi16(q2_0, q8_0);
  3517. __m256i p1 = _mm256_maddubs_epi16(q2_1, q8_1);
  3518. __m256i p2 = _mm256_maddubs_epi16(q2_2, q8_2);
  3519. __m256i p3 = _mm256_maddubs_epi16(q2_3, q8_3);
  3520. p0 = _mm256_madd_epi16(_mm256_shuffle_epi8(scales[j], get_scale_shuffle_q3k(0)), p0);
  3521. p1 = _mm256_madd_epi16(_mm256_shuffle_epi8(scales[j], get_scale_shuffle_q3k(1)), p1);
  3522. p2 = _mm256_madd_epi16(_mm256_shuffle_epi8(scales[j], get_scale_shuffle_q3k(2)), p2);
  3523. p3 = _mm256_madd_epi16(_mm256_shuffle_epi8(scales[j], get_scale_shuffle_q3k(3)), p3);
  3524. p0 = _mm256_add_epi32(p0, p1);
  3525. p2 = _mm256_add_epi32(p2, p3);
  3526. sumi = _mm256_add_epi32(sumi, _mm256_add_epi32(p0, p2));
  3527. }
  3528. acc = _mm256_fmadd_ps(_mm256_broadcast_ss(&d), _mm256_cvtepi32_ps(sumi), acc);
  3529. }
  3530. *s = hsum_float_8(acc);
  3531. #elif defined __AVX__
  3532. const __m128i m3 = _mm_set1_epi8(0x3);
  3533. const __m128i m4 = _mm_set1_epi8(0xF);
  3534. const __m128i m2 = _mm_set1_epi8(0x2);
  3535. __m256 acc = _mm256_setzero_ps();
  3536. for (int i = 0; i < nb; ++i) {
  3537. const float dall = y[i].d * GGML_FP16_TO_FP32(x[i].d);
  3538. const float dmin = -y[i].d * GGML_FP16_TO_FP32(x[i].dmin);
  3539. const uint8_t * restrict q2 = x[i].qs;
  3540. const int8_t * restrict q8 = y[i].qs;
  3541. // load mins and scales from block_q2_K.scales[QK_K/16]
  3542. const __m128i mins_and_scales = _mm_loadu_si128((const __m128i*)x[i].scales);
  3543. const __m128i scales16 = _mm_and_si128(mins_and_scales, m4);
  3544. const __m128i mins16 = _mm_and_si128(_mm_srli_epi16(mins_and_scales, 4), m4);
  3545. const __m128i mins_0 = _mm_cvtepi8_epi16(mins16);
  3546. const __m128i mins_1 = _mm_cvtepi8_epi16(_mm_unpackhi_epi64(mins16, mins16));
  3547. // summs = y[i].bsums * (x[i].scales >> 4) in 16bits*8*2 to 32bits*4*2
  3548. const __m128i summs_0 = _mm_madd_epi16(mins_0, _mm_loadu_si128((const __m128i*)&y[i].bsums[0]));
  3549. const __m128i summs_1 = _mm_madd_epi16(mins_1, _mm_loadu_si128((const __m128i*)&y[i].bsums[8]));
  3550. // sumf += -dmin * summs in 32bits*8
  3551. acc = _mm256_add_ps(_mm256_mul_ps(_mm256_broadcast_ss(&dmin), _mm256_cvtepi32_ps(MM256_SET_M128I(summs_1, summs_0))), acc);
  3552. const __m128i scales_0 = _mm_cvtepi8_epi16(scales16);
  3553. const __m128i scales_1 = _mm_cvtepi8_epi16(_mm_unpackhi_epi64(scales16, scales16));
  3554. const __m128i scales[2] = { scales_0, scales_1 };
  3555. __m128i sumi_0 = _mm_setzero_si128();
  3556. __m128i sumi_1 = _mm_setzero_si128();
  3557. for (int j = 0; j < QK_K/128; ++j) {
  3558. // load Q8 quants int8*16*8 from block_q8_K.qs[QK_K]
  3559. const __m128i q8_0 = _mm_loadu_si128((const __m128i*)q8); q8 += 16;
  3560. const __m128i q8_1 = _mm_loadu_si128((const __m128i*)q8); q8 += 16;
  3561. const __m128i q8_2 = _mm_loadu_si128((const __m128i*)q8); q8 += 16;
  3562. const __m128i q8_3 = _mm_loadu_si128((const __m128i*)q8); q8 += 16;
  3563. const __m128i q8_4 = _mm_loadu_si128((const __m128i*)q8); q8 += 16;
  3564. const __m128i q8_5 = _mm_loadu_si128((const __m128i*)q8); q8 += 16;
  3565. const __m128i q8_6 = _mm_loadu_si128((const __m128i*)q8); q8 += 16;
  3566. const __m128i q8_7 = _mm_loadu_si128((const __m128i*)q8); q8 += 16;
  3567. // load 2bits*16*8 from block_q2_K.qs[QK_K/4]
  3568. __m128i q2bits = _mm_loadu_si128((const __m128i*)q2); q2 += 16;
  3569. const __m128i q2_0 = _mm_and_si128(q2bits, m3);
  3570. const __m128i q2_2 = _mm_and_si128(_mm_srli_epi16(q2bits, 2), m3);
  3571. const __m128i q2_4 = _mm_and_si128(_mm_srli_epi16(q2bits, 4), m3);
  3572. const __m128i q2_6 = _mm_and_si128(_mm_srli_epi16(q2bits, 6), m3);
  3573. q2bits = _mm_loadu_si128((const __m128i*)q2); q2 += 16;
  3574. const __m128i q2_1 = _mm_and_si128(q2bits, m3);
  3575. const __m128i q2_3 = _mm_and_si128(_mm_srli_epi16(q2bits, 2), m3);
  3576. const __m128i q2_5 = _mm_and_si128(_mm_srli_epi16(q2bits, 4), m3);
  3577. const __m128i q2_7 = _mm_and_si128(_mm_srli_epi16(q2bits, 6), m3);
  3578. // isuml = q8[l] * ((q2[l] >> shift) & 3) in 8bits*16*8 to 16bits*8*8
  3579. __m128i p0 = _mm_maddubs_epi16(q2_0, q8_0);
  3580. __m128i p1 = _mm_maddubs_epi16(q2_1, q8_1);
  3581. __m128i p2 = _mm_maddubs_epi16(q2_2, q8_2);
  3582. __m128i p3 = _mm_maddubs_epi16(q2_3, q8_3);
  3583. __m128i p4 = _mm_maddubs_epi16(q2_4, q8_4);
  3584. __m128i p5 = _mm_maddubs_epi16(q2_5, q8_5);
  3585. __m128i p6 = _mm_maddubs_epi16(q2_6, q8_6);
  3586. __m128i p7 = _mm_maddubs_epi16(q2_7, q8_7);
  3587. // isum += (x[i].scales[is++] & 0xF) * isuml in 16bits*8*8 to 32bits*4*8
  3588. __m128i shuffle = _mm_set1_epi16(0x0100);
  3589. p0 = _mm_madd_epi16(_mm_shuffle_epi8(scales[j], shuffle), p0);
  3590. shuffle = _mm_add_epi16(shuffle, m2);
  3591. p1 = _mm_madd_epi16(_mm_shuffle_epi8(scales[j], shuffle), p1);
  3592. shuffle = _mm_add_epi16(shuffle, m2);
  3593. p2 = _mm_madd_epi16(_mm_shuffle_epi8(scales[j], shuffle), p2);
  3594. shuffle = _mm_add_epi16(shuffle, m2);
  3595. p3 = _mm_madd_epi16(_mm_shuffle_epi8(scales[j], shuffle), p3);
  3596. shuffle = _mm_add_epi16(shuffle, m2);
  3597. p4 = _mm_madd_epi16(_mm_shuffle_epi8(scales[j], shuffle), p4);
  3598. shuffle = _mm_add_epi16(shuffle, m2);
  3599. p5 = _mm_madd_epi16(_mm_shuffle_epi8(scales[j], shuffle), p5);
  3600. shuffle = _mm_add_epi16(shuffle, m2);
  3601. p6 = _mm_madd_epi16(_mm_shuffle_epi8(scales[j], shuffle), p6);
  3602. shuffle = _mm_add_epi16(shuffle, m2);
  3603. p7 = _mm_madd_epi16(_mm_shuffle_epi8(scales[j], shuffle), p7);
  3604. p0 = _mm_add_epi32(p0, p1);
  3605. p2 = _mm_add_epi32(p2, p3);
  3606. p4 = _mm_add_epi32(p4, p5);
  3607. p6 = _mm_add_epi32(p6, p7);
  3608. // isum in 32bits*4*2
  3609. sumi_0 = _mm_add_epi32(sumi_0, _mm_add_epi32(p0, p2));
  3610. sumi_1 = _mm_add_epi32(sumi_1, _mm_add_epi32(p4, p6));
  3611. }
  3612. // sumf += dall * isum - dmin * summs in 32bits
  3613. __m256i sumi = MM256_SET_M128I(sumi_1, sumi_0);
  3614. acc = _mm256_add_ps(_mm256_mul_ps(_mm256_broadcast_ss(&dall), _mm256_cvtepi32_ps(sumi)), acc);
  3615. }
  3616. *s = hsum_float_8(acc);
  3617. #elif defined __riscv_v_intrinsic
  3618. float sumf = 0;
  3619. uint8_t temp_01[32] = {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
  3620. 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1};
  3621. for (int i = 0; i < nb; ++i) {
  3622. const uint8_t * q2 = x[i].qs;
  3623. const int8_t * q8 = y[i].qs;
  3624. const uint8_t * sc = x[i].scales;
  3625. const float dall = y[i].d * GGML_FP16_TO_FP32(x[i].d);
  3626. const float dmin = -y[i].d * GGML_FP16_TO_FP32(x[i].dmin);
  3627. size_t vl = 16;
  3628. vuint8m1_t scales = __riscv_vle8_v_u8m1(sc, vl);
  3629. vuint8m1_t aux = __riscv_vand_vx_u8m1(scales, 0x0F, vl);
  3630. vint16m1_t q8sums = __riscv_vle16_v_i16m1(y[i].bsums, vl);
  3631. vuint8mf2_t scales_2 = __riscv_vle8_v_u8mf2(sc, vl);
  3632. vuint8mf2_t mins8 = __riscv_vsrl_vx_u8mf2(scales_2, 0x4, vl);
  3633. vint16m1_t mins = __riscv_vreinterpret_v_u16m1_i16m1(__riscv_vzext_vf2_u16m1(mins8, vl));
  3634. vint32m2_t prod = __riscv_vwmul_vv_i32m2(q8sums, mins, vl);
  3635. vint32m1_t vsums = __riscv_vredsum_vs_i32m2_i32m1(prod, __riscv_vmv_v_x_i32m1(0, 1), vl);
  3636. sumf += dmin * __riscv_vmv_x_s_i32m1_i32(vsums);
  3637. vl = 32;
  3638. vint32m1_t vzero = __riscv_vmv_v_x_i32m1(0, 1);
  3639. vuint8m1_t v_b = __riscv_vle8_v_u8m1(temp_01, vl);
  3640. uint8_t is=0;
  3641. int isum=0;
  3642. for (int j = 0; j < QK_K/128; ++j) {
  3643. // load Q2
  3644. vuint8m1_t q2_x = __riscv_vle8_v_u8m1(q2, vl);
  3645. vuint8m1_t q2_0 = __riscv_vand_vx_u8m1(q2_x, 0x03, vl);
  3646. vuint8m1_t q2_1 = __riscv_vand_vx_u8m1(__riscv_vsrl_vx_u8m1(q2_x, 0x2, vl), 0x03 , vl);
  3647. vuint8m1_t q2_2 = __riscv_vand_vx_u8m1(__riscv_vsrl_vx_u8m1(q2_x, 0x4, vl), 0x03 , vl);
  3648. vuint8m1_t q2_3 = __riscv_vand_vx_u8m1(__riscv_vsrl_vx_u8m1(q2_x, 0x6, vl), 0x03 , vl);
  3649. // duplicate scale elements for product
  3650. vuint8m1_t sc0 = __riscv_vrgather_vv_u8m1(aux, __riscv_vadd_vx_u8m1(v_b, 0+is, vl), vl);
  3651. vuint8m1_t sc1 = __riscv_vrgather_vv_u8m1(aux, __riscv_vadd_vx_u8m1(v_b, 2+is, vl), vl);
  3652. vuint8m1_t sc2 = __riscv_vrgather_vv_u8m1(aux, __riscv_vadd_vx_u8m1(v_b, 4+is, vl), vl);
  3653. vuint8m1_t sc3 = __riscv_vrgather_vv_u8m1(aux, __riscv_vadd_vx_u8m1(v_b, 6+is, vl), vl);
  3654. vint16m2_t p0 = __riscv_vreinterpret_v_u16m2_i16m2(__riscv_vwmulu_vv_u16m2(q2_0, sc0, vl));
  3655. vint16m2_t p1 = __riscv_vreinterpret_v_u16m2_i16m2(__riscv_vwmulu_vv_u16m2(q2_1, sc1, vl));
  3656. vint16m2_t p2 = __riscv_vreinterpret_v_u16m2_i16m2(__riscv_vwmulu_vv_u16m2(q2_2, sc2, vl));
  3657. vint16m2_t p3 = __riscv_vreinterpret_v_u16m2_i16m2(__riscv_vwmulu_vv_u16m2(q2_3, sc3, vl));
  3658. // load Q8
  3659. vint8m1_t q8_0 = __riscv_vle8_v_i8m1(q8, vl);
  3660. vint8m1_t q8_1 = __riscv_vle8_v_i8m1(q8+32, vl);
  3661. vint8m1_t q8_2 = __riscv_vle8_v_i8m1(q8+64, vl);
  3662. vint8m1_t q8_3 = __riscv_vle8_v_i8m1(q8+96, vl);
  3663. vint32m4_t s0 = __riscv_vwmul_vv_i32m4(p0, __riscv_vwcvt_x_x_v_i16m2(q8_0, vl), vl);
  3664. vint32m4_t s1 = __riscv_vwmul_vv_i32m4(p1, __riscv_vwcvt_x_x_v_i16m2(q8_1, vl), vl);
  3665. vint32m4_t s2 = __riscv_vwmul_vv_i32m4(p2, __riscv_vwcvt_x_x_v_i16m2(q8_2, vl), vl);
  3666. vint32m4_t s3 = __riscv_vwmul_vv_i32m4(p3, __riscv_vwcvt_x_x_v_i16m2(q8_3, vl), vl);
  3667. vint32m1_t isum0 = __riscv_vredsum_vs_i32m4_i32m1(__riscv_vadd_vv_i32m4(s0, s1, vl), vzero, vl);
  3668. vint32m1_t isum1 = __riscv_vredsum_vs_i32m4_i32m1(__riscv_vadd_vv_i32m4(s2, s3, vl), isum0, vl);
  3669. isum += __riscv_vmv_x_s_i32m1_i32(isum1);
  3670. q2+=32; q8+=128; is=8;
  3671. }
  3672. sumf += dall * isum;
  3673. }
  3674. *s = sumf;
  3675. #elif defined(__POWER9_VECTOR__)
  3676. const vector signed char lowMask = vec_splats((signed char)0x3);
  3677. const vector signed char lowScaleMask = vec_splats((signed char)0xF);
  3678. const vector int v0 = vec_splats((int32_t)0);
  3679. const vector unsigned char v2 = vec_splats((unsigned char)0x2);
  3680. const vector unsigned char v6 = vec_splats((unsigned char)0x6);
  3681. const vector unsigned char v4 = vec_splats((unsigned char)0x4);
  3682. vector float vsumf0 = vec_splats(0.0f);
  3683. vector float vsumf1 = vec_splats(0.0f);
  3684. vector float vsumf2 = vec_splats(0.0f);
  3685. vector float vsumf3 = vec_splats(0.0f);
  3686. for (int i = 0; i < nb; ++i) {
  3687. vector float vxd = vec_splats(GGML_FP16_TO_FP32(x[i].d));
  3688. vector float vyd = vec_splats(y[i].d);
  3689. vector float vd = vec_mul(vxd, vyd);
  3690. vector float vxmin = vec_splats(GGML_FP16_TO_FP32(x[i].dmin));
  3691. vector float vdmin = vec_mul(vxmin, vyd);
  3692. vector signed short q8ysums0 = vec_xl( 0, y[i].bsums);
  3693. vector signed short q8ysums1 = vec_xl(16, y[i].bsums);
  3694. vector signed char q2xmins = (vector signed char)vec_xl( 0, x[i].scales);
  3695. vector signed char vscales = vec_and(q2xmins, lowScaleMask);
  3696. q2xmins = vec_sr(q2xmins, v4);
  3697. vector signed short q2xmins0 = vec_unpackh(q2xmins);
  3698. vector signed short q2xmins1 = vec_unpackl(q2xmins);
  3699. vector signed int prod0 = vec_mule(q2xmins0, q8ysums0);
  3700. vector signed int prod1 = vec_mulo(q2xmins0, q8ysums0);
  3701. vector signed int prod2 = vec_mule(q2xmins1, q8ysums1);
  3702. vector signed int prod3 = vec_mulo(q2xmins1, q8ysums1);
  3703. vsumf0 = vec_nmsub(vec_ctf(prod0, 0), vdmin, vsumf0);
  3704. vsumf1 = vec_nmsub(vec_ctf(prod1, 0), vdmin, vsumf1);
  3705. vsumf2 = vec_nmsub(vec_ctf(prod2, 0), vdmin, vsumf2);
  3706. vsumf3 = vec_nmsub(vec_ctf(prod3, 0), vdmin, vsumf3);
  3707. vector signed int vsumi0 = v0;
  3708. vector signed int vsumi1 = v0;
  3709. vector signed int vsumi2 = v0;
  3710. vector signed int vsumi3 = v0;
  3711. vector signed int vsumi4 = v0;
  3712. vector signed int vsumi5 = v0;
  3713. vector signed int vsumi6 = v0;
  3714. vector signed int vsumi7 = v0;
  3715. const uint8_t * restrict q2 = x[i].qs;
  3716. const int8_t * restrict q8 = y[i].qs;
  3717. for (int j = 0; j < QK_K/128; ++j) {
  3718. __builtin_prefetch(q2, 0, 1);
  3719. __builtin_prefetch(q8, 0, 1);
  3720. vector signed char qxs0 = (vector signed char)vec_xl( 0, q2);
  3721. vector signed char qxs1 = (vector signed char)vec_xl(16, q2);
  3722. q2 += 32;
  3723. vector unsigned char q2x00 = (vector unsigned char)vec_and(qxs0, lowMask);
  3724. vector unsigned char q2x01 = (vector unsigned char)vec_and(vec_sr(qxs0, v2), lowMask);
  3725. vector unsigned char q2x02 = (vector unsigned char)vec_and(vec_sr(qxs0, v4), lowMask);
  3726. vector unsigned char q2x03 = (vector unsigned char)vec_and(vec_sr(qxs0, v6), lowMask);
  3727. vector unsigned char q2x10 = (vector unsigned char)vec_and(qxs1, lowMask);
  3728. vector unsigned char q2x11 = (vector unsigned char)vec_and(vec_sr(qxs1, v2), lowMask);
  3729. vector unsigned char q2x12 = (vector unsigned char)vec_and(vec_sr(qxs1, v4), lowMask);
  3730. vector unsigned char q2x13 = (vector unsigned char)vec_and(vec_sr(qxs1, v6), lowMask);
  3731. vector signed char q8y00 = vec_xl( 0, q8);
  3732. vector signed char q8y10 = vec_xl( 16, q8);
  3733. vector signed char q8y01 = vec_xl( 32, q8);
  3734. vector signed char q8y11 = vec_xl( 48, q8);
  3735. vector signed char q8y02 = vec_xl( 64, q8);
  3736. vector signed char q8y12 = vec_xl( 80, q8);
  3737. vector signed char q8y03 = vec_xl( 96, q8);
  3738. vector signed char q8y13 = vec_xl(112, q8);
  3739. q8 += 128;
  3740. vector signed int qv0 = vec_msum(q8y00, q2x00, v0);
  3741. vector signed int qv1 = vec_msum(q8y01, q2x01, v0);
  3742. vector signed int qv2 = vec_msum(q8y02, q2x02, v0);
  3743. vector signed int qv3 = vec_msum(q8y03, q2x03, v0);
  3744. vector signed int qv4 = vec_msum(q8y10, q2x10, v0);
  3745. vector signed int qv5 = vec_msum(q8y11, q2x11, v0);
  3746. vector signed int qv6 = vec_msum(q8y12, q2x12, v0);
  3747. vector signed int qv7 = vec_msum(q8y13, q2x13, v0);
  3748. vector signed short vscales_07 = vec_unpackh(vscales);
  3749. vector signed int vscales_03 = vec_unpackh(vscales_07);
  3750. vector signed int vscales_47 = vec_unpackl(vscales_07);
  3751. vector signed int vs0 = vec_splat(vscales_03, 0);
  3752. vector signed int vs1 = vec_splat(vscales_03, 1);
  3753. vector signed int vs2 = vec_splat(vscales_03, 2);
  3754. vector signed int vs3 = vec_splat(vscales_03, 3);
  3755. vector signed int vs4 = vec_splat(vscales_47, 0);
  3756. vector signed int vs5 = vec_splat(vscales_47, 1);
  3757. vector signed int vs6 = vec_splat(vscales_47, 2);
  3758. vector signed int vs7 = vec_splat(vscales_47, 3);
  3759. vscales = vec_sld(vscales, vscales, 8);
  3760. vsumi0 = vec_add(vec_mul(qv0, vs0), vsumi0);
  3761. vsumi1 = vec_add(vec_mul(qv1, vs2), vsumi1);
  3762. vsumi2 = vec_add(vec_mul(qv2, vs4), vsumi2);
  3763. vsumi3 = vec_add(vec_mul(qv3, vs6), vsumi3);
  3764. vsumi4 = vec_add(vec_mul(qv4, vs1), vsumi4);
  3765. vsumi5 = vec_add(vec_mul(qv5, vs3), vsumi5);
  3766. vsumi6 = vec_add(vec_mul(qv6, vs5), vsumi6);
  3767. vsumi7 = vec_add(vec_mul(qv7, vs7), vsumi7);
  3768. }
  3769. vsumi0 = vec_add(vsumi0, vsumi4);
  3770. vsumi1 = vec_add(vsumi1, vsumi5);
  3771. vsumi2 = vec_add(vsumi2, vsumi6);
  3772. vsumi3 = vec_add(vsumi3, vsumi7);
  3773. vsumf0 = vec_madd(vec_ctf(vsumi0, 0), vd, vsumf0);
  3774. vsumf1 = vec_madd(vec_ctf(vsumi1, 0), vd, vsumf1);
  3775. vsumf2 = vec_madd(vec_ctf(vsumi2, 0), vd, vsumf2);
  3776. vsumf3 = vec_madd(vec_ctf(vsumi3, 0), vd, vsumf3);
  3777. }
  3778. vsumf0 = vec_add(vsumf0, vsumf2);
  3779. vsumf1 = vec_add(vsumf1, vsumf3);
  3780. vsumf0 = vec_add(vsumf0, vsumf1);
  3781. vsumf0 = vec_add(vsumf0, vec_sld(vsumf0, vsumf0, 4));
  3782. vsumf0 = vec_add(vsumf0, vec_sld(vsumf0, vsumf0, 8));
  3783. *s = vec_extract(vsumf0, 0);
  3784. #elif defined __loongarch_asx
  3785. const __m256i m3 = __lasx_xvreplgr2vr_b(3);
  3786. const __m128i m4 = __lsx_vreplgr2vr_b(0xF);
  3787. __m256 acc = (__m256)__lasx_xvldi(0);
  3788. for (int i = 0; i < nb; ++i) {
  3789. const float d = y[i].d * GGML_FP16_TO_FP32(x[i].d);
  3790. const float dmin = -y[i].d * GGML_FP16_TO_FP32(x[i].dmin);
  3791. const uint8_t * restrict q2 = x[i].qs;
  3792. const int8_t * restrict q8 = y[i].qs;
  3793. const __m128i mins_and_scales = __lsx_vld((const __m128i*)x[i].scales, 0);
  3794. const __m128i scales8 = __lsx_vand_v(mins_and_scales, m4);
  3795. const __m128i mins8 = __lsx_vand_v(__lsx_vsrli_h(mins_and_scales, 4), m4);
  3796. const __m256i mins = lasx_ext8_16(mins8);
  3797. const __m256i prod = lasx_madd_h(mins, __lasx_xvld((const __m256i*)y[i].bsums, 0));
  3798. acc = __lasx_xvfmadd_s(__lasx_xvreplfr2vr_s(dmin), __lasx_xvffint_s_w(prod), acc);
  3799. const __m256i all_scales = lasx_ext8_16(scales8);
  3800. const __m128i l_scales = lasx_extracti128(all_scales, 0);
  3801. const __m128i h_scales = lasx_extracti128(all_scales, 1);
  3802. const __m256i scales[2] = {lasx_insertf128(l_scales, l_scales), lasx_insertf128(h_scales, h_scales)};
  3803. __m256i sumi = __lasx_xvldi(0);
  3804. for (int j = 0; j < QK_K/128; ++j) {
  3805. const __m256i q2bits = __lasx_xvld((const __m256i*)q2, 0); q2 += 32;
  3806. const __m256i q8_0 = __lasx_xvld((const __m256i*)q8, 0); q8 += 32;
  3807. const __m256i q8_1 = __lasx_xvld((const __m256i*)q8, 0); q8 += 32;
  3808. const __m256i q8_2 = __lasx_xvld((const __m256i*)q8, 0); q8 += 32;
  3809. const __m256i q8_3 = __lasx_xvld((const __m256i*)q8, 0); q8 += 32;
  3810. const __m256i q2_0 = __lasx_xvand_v(q2bits, m3);
  3811. const __m256i q2_1 = __lasx_xvand_v(__lasx_xvsrli_h(q2bits, 2), m3);
  3812. const __m256i q2_2 = __lasx_xvand_v(__lasx_xvsrli_h(q2bits, 4), m3);
  3813. const __m256i q2_3 = __lasx_xvand_v(__lasx_xvsrli_h(q2bits, 6), m3);
  3814. __m256i p0 = lasx_maddubs_h(q2_0, q8_0);
  3815. __m256i p1 = lasx_maddubs_h(q2_1, q8_1);
  3816. __m256i p2 = lasx_maddubs_h(q2_2, q8_2);
  3817. __m256i p3 = lasx_maddubs_h(q2_3, q8_3);
  3818. p0 = lasx_madd_h(lasx_shuffle_b(scales[j], get_scale_shuffle_q3k(0)), p0);
  3819. p1 = lasx_madd_h(lasx_shuffle_b(scales[j], get_scale_shuffle_q3k(1)), p1);
  3820. p2 = lasx_madd_h(lasx_shuffle_b(scales[j], get_scale_shuffle_q3k(2)), p2);
  3821. p3 = lasx_madd_h(lasx_shuffle_b(scales[j], get_scale_shuffle_q3k(3)), p3);
  3822. p0 = __lasx_xvadd_w(p0, p1);
  3823. p2 = __lasx_xvadd_w(p2, p3);
  3824. sumi = __lasx_xvadd_w(sumi, __lasx_xvadd_w(p0, p2));
  3825. }
  3826. acc = __lasx_xvfmadd_s(__lasx_xvreplfr2vr_s(d), __lasx_xvffint_s_w(sumi), acc);
  3827. }
  3828. *s = hsum_float_8(acc);
  3829. #else
  3830. float sumf = 0;
  3831. for (int i = 0; i < nb; ++i) {
  3832. const uint8_t * q2 = x[i].qs;
  3833. const int8_t * q8 = y[i].qs;
  3834. const uint8_t * sc = x[i].scales;
  3835. int summs = 0;
  3836. for (int j = 0; j < 16; ++j) {
  3837. summs += y[i].bsums[j] * (sc[j] >> 4);
  3838. }
  3839. const float dall = y[i].d * GGML_FP16_TO_FP32(x[i].d);
  3840. const float dmin = y[i].d * GGML_FP16_TO_FP32(x[i].dmin);
  3841. int isum = 0;
  3842. int is = 0;
  3843. int d;
  3844. for (int k = 0; k < QK_K/128; ++k) {
  3845. int shift = 0;
  3846. for (int j = 0; j < 4; ++j) {
  3847. d = sc[is++] & 0xF;
  3848. int isuml = 0;
  3849. for (int l = 0; l < 16; ++l) isuml += q8[l] * ((q2[l] >> shift) & 3);
  3850. isum += d * isuml;
  3851. d = sc[is++] & 0xF;
  3852. isuml = 0;
  3853. for (int l = 16; l < 32; ++l) isuml += q8[l] * ((q2[l] >> shift) & 3);
  3854. isum += d * isuml;
  3855. shift += 2;
  3856. q8 += 32;
  3857. }
  3858. q2 += 32;
  3859. }
  3860. sumf += dall * isum - dmin * summs;
  3861. }
  3862. *s = sumf;
  3863. #endif
  3864. }
  3865. void ggml_vec_dot_q3_K_q8_K(int n, float * restrict s, size_t bs, const void * restrict vx, size_t bx, const void * restrict vy, size_t by, int nrc) {
  3866. assert(n % QK_K == 0);
  3867. assert(nrc == 1);
  3868. UNUSED(nrc);
  3869. UNUSED(bx);
  3870. UNUSED(by);
  3871. UNUSED(bs);
  3872. const uint32_t kmask1 = 0x03030303;
  3873. const uint32_t kmask2 = 0x0f0f0f0f;
  3874. const block_q3_K * restrict x = vx;
  3875. const block_q8_K * restrict y = vy;
  3876. const int nb = n / QK_K;
  3877. #ifdef __ARM_NEON
  3878. uint32_t aux[3];
  3879. uint32_t utmp[4];
  3880. const uint8x16_t m3b = vdupq_n_u8(0x3);
  3881. const int32x4_t vzero = vdupq_n_s32(0);
  3882. const uint8x16_t m0 = vdupq_n_u8(1);
  3883. const uint8x16_t m1 = vshlq_n_u8(m0, 1);
  3884. const uint8x16_t m2 = vshlq_n_u8(m0, 2);
  3885. const uint8x16_t m3 = vshlq_n_u8(m0, 3);
  3886. const int8_t m32 = 32;
  3887. ggml_int8x16x4_t q3bytes;
  3888. float sum = 0;
  3889. for (int i = 0; i < nb; ++i) {
  3890. const float d = y[i].d * GGML_FP16_TO_FP32(x[i].d);
  3891. const uint8_t * restrict q3 = x[i].qs;
  3892. const uint8_t * restrict qh = x[i].hmask;
  3893. const int8_t * restrict q8 = y[i].qs;
  3894. ggml_uint8x16x2_t qhbits = ggml_vld1q_u8_x2(qh);
  3895. ggml_uint8x16x4_t q3h;
  3896. int32_t isum = 0;
  3897. // Set up scales
  3898. memcpy(aux, x[i].scales, 12);
  3899. utmp[3] = ((aux[1] >> 4) & kmask2) | (((aux[2] >> 6) & kmask1) << 4);
  3900. utmp[2] = ((aux[0] >> 4) & kmask2) | (((aux[2] >> 4) & kmask1) << 4);
  3901. utmp[1] = (aux[1] & kmask2) | (((aux[2] >> 2) & kmask1) << 4);
  3902. utmp[0] = (aux[0] & kmask2) | (((aux[2] >> 0) & kmask1) << 4);
  3903. int8_t * scale = (int8_t *)utmp;
  3904. for (int j = 0; j < 16; ++j) scale[j] -= m32;
  3905. for (int j = 0; j < QK_K/128; ++j) {
  3906. const ggml_uint8x16x2_t q3bits = ggml_vld1q_u8_x2(q3); q3 += 32;
  3907. const ggml_int8x16x4_t q8bytes_1 = ggml_vld1q_s8_x4(q8); q8 += 64;
  3908. const ggml_int8x16x4_t q8bytes_2 = ggml_vld1q_s8_x4(q8); q8 += 64;
  3909. q3h.val[0] = vshlq_n_u8(vbicq_u8(m0, qhbits.val[0]), 2);
  3910. q3h.val[1] = vshlq_n_u8(vbicq_u8(m0, qhbits.val[1]), 2);
  3911. q3h.val[2] = vshlq_n_u8(vbicq_u8(m1, qhbits.val[0]), 1);
  3912. q3h.val[3] = vshlq_n_u8(vbicq_u8(m1, qhbits.val[1]), 1);
  3913. q3bytes.val[0] = vsubq_s8(vreinterpretq_s8_u8(vandq_u8(q3bits.val[0], m3b)), vreinterpretq_s8_u8(q3h.val[0]));
  3914. q3bytes.val[1] = vsubq_s8(vreinterpretq_s8_u8(vandq_u8(q3bits.val[1], m3b)), vreinterpretq_s8_u8(q3h.val[1]));
  3915. q3bytes.val[2] = vsubq_s8(vreinterpretq_s8_u8(vandq_u8(vshrq_n_u8(q3bits.val[0], 2), m3b)), vreinterpretq_s8_u8(q3h.val[2]));
  3916. q3bytes.val[3] = vsubq_s8(vreinterpretq_s8_u8(vandq_u8(vshrq_n_u8(q3bits.val[1], 2), m3b)), vreinterpretq_s8_u8(q3h.val[3]));
  3917. isum += vaddvq_s32(ggml_vdotq_s32(vzero, q3bytes.val[0], q8bytes_1.val[0])) * scale[0];
  3918. isum += vaddvq_s32(ggml_vdotq_s32(vzero, q3bytes.val[1], q8bytes_1.val[1])) * scale[1];
  3919. isum += vaddvq_s32(ggml_vdotq_s32(vzero, q3bytes.val[2], q8bytes_1.val[2])) * scale[2];
  3920. isum += vaddvq_s32(ggml_vdotq_s32(vzero, q3bytes.val[3], q8bytes_1.val[3])) * scale[3];
  3921. scale += 4;
  3922. q3h.val[0] = vbicq_u8(m2, qhbits.val[0]);
  3923. q3h.val[1] = vbicq_u8(m2, qhbits.val[1]);
  3924. q3h.val[2] = vshrq_n_u8(vbicq_u8(m3, qhbits.val[0]), 1);
  3925. q3h.val[3] = vshrq_n_u8(vbicq_u8(m3, qhbits.val[1]), 1);
  3926. q3bytes.val[0] = vsubq_s8(vreinterpretq_s8_u8(vandq_u8(vshrq_n_u8(q3bits.val[0], 4), m3b)), vreinterpretq_s8_u8(q3h.val[0]));
  3927. q3bytes.val[1] = vsubq_s8(vreinterpretq_s8_u8(vandq_u8(vshrq_n_u8(q3bits.val[1], 4), m3b)), vreinterpretq_s8_u8(q3h.val[1]));
  3928. q3bytes.val[2] = vsubq_s8(vreinterpretq_s8_u8(vandq_u8(vshrq_n_u8(q3bits.val[0], 6), m3b)), vreinterpretq_s8_u8(q3h.val[2]));
  3929. q3bytes.val[3] = vsubq_s8(vreinterpretq_s8_u8(vandq_u8(vshrq_n_u8(q3bits.val[1], 6), m3b)), vreinterpretq_s8_u8(q3h.val[3]));
  3930. isum += vaddvq_s32(ggml_vdotq_s32(vzero, q3bytes.val[0], q8bytes_2.val[0])) * scale[0];
  3931. isum += vaddvq_s32(ggml_vdotq_s32(vzero, q3bytes.val[1], q8bytes_2.val[1])) * scale[1];
  3932. isum += vaddvq_s32(ggml_vdotq_s32(vzero, q3bytes.val[2], q8bytes_2.val[2])) * scale[2];
  3933. isum += vaddvq_s32(ggml_vdotq_s32(vzero, q3bytes.val[3], q8bytes_2.val[3])) * scale[3];
  3934. scale += 4;
  3935. if (j == 0) {
  3936. qhbits.val[0] = vshrq_n_u8(qhbits.val[0], 4);
  3937. qhbits.val[1] = vshrq_n_u8(qhbits.val[1], 4);
  3938. }
  3939. }
  3940. sum += d * isum;
  3941. }
  3942. *s = sum;
  3943. #elif defined __AVX2__
  3944. const __m256i m3 = _mm256_set1_epi8(3);
  3945. const __m256i mone = _mm256_set1_epi8(1);
  3946. const __m128i m32 = _mm_set1_epi8(32);
  3947. __m256 acc = _mm256_setzero_ps();
  3948. uint32_t aux[3];
  3949. for (int i = 0; i < nb; ++i) {
  3950. const float d = y[i].d * GGML_FP16_TO_FP32(x[i].d);
  3951. const uint8_t * restrict q3 = x[i].qs;
  3952. const int8_t * restrict q8 = y[i].qs;
  3953. // Set up scales
  3954. memcpy(aux, x[i].scales, 12);
  3955. __m128i scales128 = _mm_set_epi32(
  3956. ((aux[1] >> 4) & kmask2) | (((aux[2] >> 6) & kmask1) << 4),
  3957. ((aux[0] >> 4) & kmask2) | (((aux[2] >> 4) & kmask1) << 4),
  3958. (aux[1] & kmask2) | (((aux[2] >> 2) & kmask1) << 4),
  3959. (aux[0] & kmask2) | (((aux[2] >> 0) & kmask1) << 4));
  3960. scales128 = _mm_sub_epi8(scales128, m32);
  3961. const __m256i all_scales = _mm256_cvtepi8_epi16(scales128);
  3962. const __m128i l_scales = _mm256_extracti128_si256(all_scales, 0);
  3963. const __m128i h_scales = _mm256_extracti128_si256(all_scales, 1);
  3964. const __m256i scales[2] = {MM256_SET_M128I(l_scales, l_scales), MM256_SET_M128I(h_scales, h_scales)};
  3965. // high bit
  3966. const __m256i hbits = _mm256_loadu_si256((const __m256i*)x[i].hmask);
  3967. // integer accumulator
  3968. __m256i sumi = _mm256_setzero_si256();
  3969. int bit = 0;
  3970. int is = 0;
  3971. for (int j = 0; j < QK_K/128; ++j) {
  3972. // load low 2 bits
  3973. const __m256i q3bits = _mm256_loadu_si256((const __m256i*)q3); q3 += 32;
  3974. // prepare low and high bits
  3975. const __m256i q3l_0 = _mm256_and_si256(q3bits, m3);
  3976. const __m256i q3h_0 = _mm256_slli_epi16(_mm256_srli_epi16(_mm256_andnot_si256(hbits, _mm256_slli_epi16(mone, bit)), bit), 2);
  3977. ++bit;
  3978. const __m256i q3l_1 = _mm256_and_si256(_mm256_srli_epi16(q3bits, 2), m3);
  3979. const __m256i q3h_1 = _mm256_slli_epi16(_mm256_srli_epi16(_mm256_andnot_si256(hbits, _mm256_slli_epi16(mone, bit)), bit), 2);
  3980. ++bit;
  3981. const __m256i q3l_2 = _mm256_and_si256(_mm256_srli_epi16(q3bits, 4), m3);
  3982. const __m256i q3h_2 = _mm256_slli_epi16(_mm256_srli_epi16(_mm256_andnot_si256(hbits, _mm256_slli_epi16(mone, bit)), bit), 2);
  3983. ++bit;
  3984. const __m256i q3l_3 = _mm256_and_si256(_mm256_srli_epi16(q3bits, 6), m3);
  3985. const __m256i q3h_3 = _mm256_slli_epi16(_mm256_srli_epi16(_mm256_andnot_si256(hbits, _mm256_slli_epi16(mone, bit)), bit), 2);
  3986. ++bit;
  3987. // load Q8 quants
  3988. const __m256i q8_0 = _mm256_loadu_si256((const __m256i*)q8); q8 += 32;
  3989. const __m256i q8_1 = _mm256_loadu_si256((const __m256i*)q8); q8 += 32;
  3990. const __m256i q8_2 = _mm256_loadu_si256((const __m256i*)q8); q8 += 32;
  3991. const __m256i q8_3 = _mm256_loadu_si256((const __m256i*)q8); q8 += 32;
  3992. // Dot product: we multiply the 2 low bits and 1 high bit part separately, so we can use _mm256_maddubs_epi16,
  3993. // and then subtract. The high bit part has the 2 already subtracted (and so, it is zero if the high bit was not set,
  3994. // and 2 if the high bit was set)
  3995. __m256i q8s_0 = _mm256_maddubs_epi16(q3h_0, q8_0);
  3996. __m256i q8s_1 = _mm256_maddubs_epi16(q3h_1, q8_1);
  3997. __m256i q8s_2 = _mm256_maddubs_epi16(q3h_2, q8_2);
  3998. __m256i q8s_3 = _mm256_maddubs_epi16(q3h_3, q8_3);
  3999. __m256i p16_0 = _mm256_maddubs_epi16(q3l_0, q8_0);
  4000. __m256i p16_1 = _mm256_maddubs_epi16(q3l_1, q8_1);
  4001. __m256i p16_2 = _mm256_maddubs_epi16(q3l_2, q8_2);
  4002. __m256i p16_3 = _mm256_maddubs_epi16(q3l_3, q8_3);
  4003. p16_0 = _mm256_sub_epi16(p16_0, q8s_0);
  4004. p16_1 = _mm256_sub_epi16(p16_1, q8s_1);
  4005. p16_2 = _mm256_sub_epi16(p16_2, q8s_2);
  4006. p16_3 = _mm256_sub_epi16(p16_3, q8s_3);
  4007. // multiply with scales
  4008. p16_0 = _mm256_madd_epi16(_mm256_shuffle_epi8(scales[j], get_scale_shuffle_q3k(is + 0)), p16_0);
  4009. p16_1 = _mm256_madd_epi16(_mm256_shuffle_epi8(scales[j], get_scale_shuffle_q3k(is + 1)), p16_1);
  4010. p16_2 = _mm256_madd_epi16(_mm256_shuffle_epi8(scales[j], get_scale_shuffle_q3k(is + 2)), p16_2);
  4011. p16_3 = _mm256_madd_epi16(_mm256_shuffle_epi8(scales[j], get_scale_shuffle_q3k(is + 3)), p16_3);
  4012. // accumulate
  4013. p16_0 = _mm256_add_epi32(p16_0, p16_1);
  4014. p16_2 = _mm256_add_epi32(p16_2, p16_3);
  4015. sumi = _mm256_add_epi32(sumi, _mm256_add_epi32(p16_0, p16_2));
  4016. }
  4017. // multiply with block scale and accumulate
  4018. acc = _mm256_fmadd_ps(_mm256_broadcast_ss(&d), _mm256_cvtepi32_ps(sumi), acc);
  4019. }
  4020. *s = hsum_float_8(acc);
  4021. #elif defined __AVX__
  4022. const __m128i m3 = _mm_set1_epi8(3);
  4023. const __m128i mone = _mm_set1_epi8(1);
  4024. const __m128i m32 = _mm_set1_epi8(32);
  4025. const __m128i m2 = _mm_set1_epi8(2);
  4026. __m256 acc = _mm256_setzero_ps();
  4027. const uint32_t *aux;
  4028. for (int i = 0; i < nb; ++i) {
  4029. const float d = y[i].d * GGML_FP16_TO_FP32(x[i].d);
  4030. const uint8_t * restrict q3 = x[i].qs;
  4031. const int8_t * restrict q8 = y[i].qs;
  4032. // Set up scales
  4033. aux = (const uint32_t *)x[i].scales;
  4034. __m128i scales128 = _mm_set_epi32(
  4035. ((aux[1] >> 4) & kmask2) | (((aux[2] >> 6) & kmask1) << 4),
  4036. ((aux[0] >> 4) & kmask2) | (((aux[2] >> 4) & kmask1) << 4),
  4037. (aux[1] & kmask2) | (((aux[2] >> 2) & kmask1) << 4),
  4038. (aux[0] & kmask2) | (((aux[2] >> 0) & kmask1) << 4));
  4039. scales128 = _mm_sub_epi8(scales128, m32);
  4040. const __m128i scales_0 = _mm_cvtepi8_epi16(scales128);
  4041. const __m128i scales_1 = _mm_cvtepi8_epi16(_mm_unpackhi_epi64(scales128, scales128));
  4042. const __m128i scales[2] = { scales_0, scales_1 };
  4043. // high bit *128*2 from block_q3_K.hmask[QK_K/8]
  4044. const __m128i hbits_0 = _mm_loadu_si128((const __m128i*)&x[i].hmask[0]);
  4045. const __m128i hbits_1 = _mm_loadu_si128((const __m128i*)&x[i].hmask[16]);
  4046. // integer accumulator
  4047. __m128i sumi_0 = _mm_setzero_si128();
  4048. __m128i sumi_1 = _mm_setzero_si128();
  4049. for (int j = 0; j < QK_K/128; ++j) {
  4050. // load low 2 bits *64*2 from block_q3_K.qs[QK_K/4]
  4051. const __m128i q3bits_0 = _mm_loadu_si128((const __m128i*)q3); q3 += 16;
  4052. const __m128i q3bits_1 = _mm_loadu_si128((const __m128i*)q3); q3 += 16;
  4053. // prepare low and high bits
  4054. const int bit = j << 2;
  4055. const __m128i q3l_0 = _mm_and_si128(q3bits_0, m3);
  4056. const __m128i q3l_1 = _mm_and_si128(q3bits_1, m3);
  4057. const __m128i q3h_0 = _mm_slli_epi16(_mm_srli_epi16(_mm_andnot_si128(hbits_0, _mm_slli_epi16(mone, bit)), bit), 2);
  4058. const __m128i q3h_1 = _mm_slli_epi16(_mm_srli_epi16(_mm_andnot_si128(hbits_1, _mm_slli_epi16(mone, bit)), bit), 2);
  4059. const __m128i q3l_2 = _mm_and_si128(_mm_srli_epi16(q3bits_0, 2), m3);
  4060. const __m128i q3l_3 = _mm_and_si128(_mm_srli_epi16(q3bits_1, 2), m3);
  4061. const __m128i q3h_2 = _mm_slli_epi16(_mm_srli_epi16(_mm_andnot_si128(hbits_0, _mm_slli_epi16(mone, bit+1)), bit+1), 2);
  4062. const __m128i q3h_3 = _mm_slli_epi16(_mm_srli_epi16(_mm_andnot_si128(hbits_1, _mm_slli_epi16(mone, bit+1)), bit+1), 2);
  4063. const __m128i q3l_4 = _mm_and_si128(_mm_srli_epi16(q3bits_0, 4), m3);
  4064. const __m128i q3l_5 = _mm_and_si128(_mm_srli_epi16(q3bits_1, 4), m3);
  4065. const __m128i q3h_4 = _mm_slli_epi16(_mm_srli_epi16(_mm_andnot_si128(hbits_0, _mm_slli_epi16(mone, bit+2)), bit+2), 2);
  4066. const __m128i q3h_5 = _mm_slli_epi16(_mm_srli_epi16(_mm_andnot_si128(hbits_1, _mm_slli_epi16(mone, bit+2)), bit+2), 2);
  4067. const __m128i q3l_6 = _mm_and_si128(_mm_srli_epi16(q3bits_0, 6), m3);
  4068. const __m128i q3l_7 = _mm_and_si128(_mm_srli_epi16(q3bits_1, 6), m3);
  4069. const __m128i q3h_6 = _mm_slli_epi16(_mm_srli_epi16(_mm_andnot_si128(hbits_0, _mm_slli_epi16(mone, bit+3)), bit+3), 2);
  4070. const __m128i q3h_7 = _mm_slli_epi16(_mm_srli_epi16(_mm_andnot_si128(hbits_1, _mm_slli_epi16(mone, bit+3)), bit+3), 2);
  4071. // load Q8 quants from block_q8_K.qs[QK_K]
  4072. const __m128i q8_0 = _mm_loadu_si128((const __m128i*)q8); q8 += 16;
  4073. const __m128i q8_1 = _mm_loadu_si128((const __m128i*)q8); q8 += 16;
  4074. const __m128i q8_2 = _mm_loadu_si128((const __m128i*)q8); q8 += 16;
  4075. const __m128i q8_3 = _mm_loadu_si128((const __m128i*)q8); q8 += 16;
  4076. const __m128i q8_4 = _mm_loadu_si128((const __m128i*)q8); q8 += 16;
  4077. const __m128i q8_5 = _mm_loadu_si128((const __m128i*)q8); q8 += 16;
  4078. const __m128i q8_6 = _mm_loadu_si128((const __m128i*)q8); q8 += 16;
  4079. const __m128i q8_7 = _mm_loadu_si128((const __m128i*)q8); q8 += 16;
  4080. // Dot product: we multiply the 2 low bits and 1 high bit part separately, so we can use _mm256_maddubs_epi16,
  4081. // and then subtract. The high bit part has the 2 already subtracted (and so, it is zero if the high bit was not set,
  4082. // and 2 if the high bit was set)
  4083. __m128i q8s_0 = _mm_maddubs_epi16(q3h_0, q8_0);
  4084. __m128i q8s_1 = _mm_maddubs_epi16(q3h_1, q8_1);
  4085. __m128i q8s_2 = _mm_maddubs_epi16(q3h_2, q8_2);
  4086. __m128i q8s_3 = _mm_maddubs_epi16(q3h_3, q8_3);
  4087. __m128i q8s_4 = _mm_maddubs_epi16(q3h_4, q8_4);
  4088. __m128i q8s_5 = _mm_maddubs_epi16(q3h_5, q8_5);
  4089. __m128i q8s_6 = _mm_maddubs_epi16(q3h_6, q8_6);
  4090. __m128i q8s_7 = _mm_maddubs_epi16(q3h_7, q8_7);
  4091. __m128i p16_0 = _mm_maddubs_epi16(q3l_0, q8_0);
  4092. __m128i p16_1 = _mm_maddubs_epi16(q3l_1, q8_1);
  4093. __m128i p16_2 = _mm_maddubs_epi16(q3l_2, q8_2);
  4094. __m128i p16_3 = _mm_maddubs_epi16(q3l_3, q8_3);
  4095. __m128i p16_4 = _mm_maddubs_epi16(q3l_4, q8_4);
  4096. __m128i p16_5 = _mm_maddubs_epi16(q3l_5, q8_5);
  4097. __m128i p16_6 = _mm_maddubs_epi16(q3l_6, q8_6);
  4098. __m128i p16_7 = _mm_maddubs_epi16(q3l_7, q8_7);
  4099. p16_0 = _mm_sub_epi16(p16_0, q8s_0);
  4100. p16_1 = _mm_sub_epi16(p16_1, q8s_1);
  4101. p16_2 = _mm_sub_epi16(p16_2, q8s_2);
  4102. p16_3 = _mm_sub_epi16(p16_3, q8s_3);
  4103. p16_4 = _mm_sub_epi16(p16_4, q8s_4);
  4104. p16_5 = _mm_sub_epi16(p16_5, q8s_5);
  4105. p16_6 = _mm_sub_epi16(p16_6, q8s_6);
  4106. p16_7 = _mm_sub_epi16(p16_7, q8s_7);
  4107. // multiply with scales
  4108. __m128i shuffle = _mm_set1_epi16(0x0100);
  4109. p16_0 = _mm_madd_epi16(_mm_shuffle_epi8(scales[j], shuffle), p16_0);
  4110. shuffle = _mm_add_epi16(shuffle, m2);
  4111. p16_1 = _mm_madd_epi16(_mm_shuffle_epi8(scales[j], shuffle), p16_1);
  4112. shuffle = _mm_add_epi16(shuffle, m2);
  4113. p16_2 = _mm_madd_epi16(_mm_shuffle_epi8(scales[j], shuffle), p16_2);
  4114. shuffle = _mm_add_epi16(shuffle, m2);
  4115. p16_3 = _mm_madd_epi16(_mm_shuffle_epi8(scales[j], shuffle), p16_3);
  4116. shuffle = _mm_add_epi16(shuffle, m2);
  4117. p16_4 = _mm_madd_epi16(_mm_shuffle_epi8(scales[j], shuffle), p16_4);
  4118. shuffle = _mm_add_epi16(shuffle, m2);
  4119. p16_5 = _mm_madd_epi16(_mm_shuffle_epi8(scales[j], shuffle), p16_5);
  4120. shuffle = _mm_add_epi16(shuffle, m2);
  4121. p16_6 = _mm_madd_epi16(_mm_shuffle_epi8(scales[j], shuffle), p16_6);
  4122. shuffle = _mm_add_epi16(shuffle, m2);
  4123. p16_7 = _mm_madd_epi16(_mm_shuffle_epi8(scales[j], shuffle), p16_7);
  4124. // accumulate
  4125. p16_0 = _mm_add_epi32(p16_0, p16_1);
  4126. p16_2 = _mm_add_epi32(p16_2, p16_3);
  4127. p16_4 = _mm_add_epi32(p16_4, p16_5);
  4128. p16_6 = _mm_add_epi32(p16_6, p16_7);
  4129. sumi_0 = _mm_add_epi32(sumi_0, _mm_add_epi32(p16_0, p16_2));
  4130. sumi_1 = _mm_add_epi32(sumi_1, _mm_add_epi32(p16_4, p16_6));
  4131. }
  4132. // multiply with block scale and accumulate
  4133. __m256i sumi = MM256_SET_M128I(sumi_1, sumi_0);
  4134. acc = _mm256_add_ps(_mm256_mul_ps(_mm256_broadcast_ss(&d), _mm256_cvtepi32_ps(sumi)), acc);
  4135. }
  4136. *s = hsum_float_8(acc);
  4137. #elif defined __riscv_v_intrinsic
  4138. uint32_t aux[3];
  4139. uint32_t utmp[4];
  4140. float sumf = 0;
  4141. for (int i = 0; i < nb; ++i) {
  4142. const uint8_t * restrict q3 = x[i].qs;
  4143. const uint8_t * restrict qh = x[i].hmask;
  4144. const int8_t * restrict q8 = y[i].qs;
  4145. memcpy(aux, x[i].scales, 12);
  4146. utmp[3] = ((aux[1] >> 4) & kmask2) | (((aux[2] >> 6) & kmask1) << 4);
  4147. utmp[2] = ((aux[0] >> 4) & kmask2) | (((aux[2] >> 4) & kmask1) << 4);
  4148. utmp[1] = (aux[1] & kmask2) | (((aux[2] >> 2) & kmask1) << 4);
  4149. utmp[0] = (aux[0] & kmask2) | (((aux[2] >> 0) & kmask1) << 4);
  4150. int8_t * scale = (int8_t *)utmp;
  4151. for (int j = 0; j < 16; ++j) scale[j] -= 32;
  4152. size_t vl = 32;
  4153. uint8_t m = 1;
  4154. vint32m1_t vzero = __riscv_vmv_v_x_i32m1(0, 1);
  4155. vuint8m1_t vqh = __riscv_vle8_v_u8m1(qh, vl);
  4156. int sum_t = 0;
  4157. for (int j = 0; j < QK_K; j += 128) {
  4158. vl = 32;
  4159. // load Q3
  4160. vuint8m1_t q3_x = __riscv_vle8_v_u8m1(q3, vl);
  4161. vint8m1_t q3_0 = __riscv_vreinterpret_v_u8m1_i8m1(__riscv_vand_vx_u8m1(q3_x, 0x03, vl));
  4162. vint8m1_t q3_1 = __riscv_vreinterpret_v_u8m1_i8m1(__riscv_vand_vx_u8m1(__riscv_vsrl_vx_u8m1(q3_x, 0x2, vl), 0x03 , vl));
  4163. vint8m1_t q3_2 = __riscv_vreinterpret_v_u8m1_i8m1(__riscv_vand_vx_u8m1(__riscv_vsrl_vx_u8m1(q3_x, 0x4, vl), 0x03 , vl));
  4164. vint8m1_t q3_3 = __riscv_vreinterpret_v_u8m1_i8m1(__riscv_vand_vx_u8m1(__riscv_vsrl_vx_u8m1(q3_x, 0x6, vl), 0x03 , vl));
  4165. // compute mask for subtraction
  4166. vuint8m1_t qh_m0 = __riscv_vand_vx_u8m1(vqh, m, vl);
  4167. vbool8_t vmask_0 = __riscv_vmseq_vx_u8m1_b8(qh_m0, 0, vl);
  4168. vint8m1_t q3_m0 = __riscv_vsub_vx_i8m1_mu(vmask_0, q3_0, q3_0, 0x4, vl);
  4169. m <<= 1;
  4170. vuint8m1_t qh_m1 = __riscv_vand_vx_u8m1(vqh, m, vl);
  4171. vbool8_t vmask_1 = __riscv_vmseq_vx_u8m1_b8(qh_m1, 0, vl);
  4172. vint8m1_t q3_m1 = __riscv_vsub_vx_i8m1_mu(vmask_1, q3_1, q3_1, 0x4, vl);
  4173. m <<= 1;
  4174. vuint8m1_t qh_m2 = __riscv_vand_vx_u8m1(vqh, m, vl);
  4175. vbool8_t vmask_2 = __riscv_vmseq_vx_u8m1_b8(qh_m2, 0, vl);
  4176. vint8m1_t q3_m2 = __riscv_vsub_vx_i8m1_mu(vmask_2, q3_2, q3_2, 0x4, vl);
  4177. m <<= 1;
  4178. vuint8m1_t qh_m3 = __riscv_vand_vx_u8m1(vqh, m, vl);
  4179. vbool8_t vmask_3 = __riscv_vmseq_vx_u8m1_b8(qh_m3, 0, vl);
  4180. vint8m1_t q3_m3 = __riscv_vsub_vx_i8m1_mu(vmask_3, q3_3, q3_3, 0x4, vl);
  4181. m <<= 1;
  4182. // load Q8 and take product with Q3
  4183. vint16m2_t a0 = __riscv_vwmul_vv_i16m2(q3_m0, __riscv_vle8_v_i8m1(q8, vl), vl);
  4184. vint16m2_t a1 = __riscv_vwmul_vv_i16m2(q3_m1, __riscv_vle8_v_i8m1(q8+32, vl), vl);
  4185. vint16m2_t a2 = __riscv_vwmul_vv_i16m2(q3_m2, __riscv_vle8_v_i8m1(q8+64, vl), vl);
  4186. vint16m2_t a3 = __riscv_vwmul_vv_i16m2(q3_m3, __riscv_vle8_v_i8m1(q8+96, vl), vl);
  4187. vl = 16;
  4188. // retrieve lane to multiply with scale
  4189. vint32m2_t aux0_0 = __riscv_vwmul_vx_i32m2(__riscv_vget_v_i16m2_i16m1(a0, 0), (scale[0]), vl);
  4190. vint32m2_t aux0_1 = __riscv_vwmul_vx_i32m2(__riscv_vget_v_i16m2_i16m1(a0, 1), (scale[1]), vl);
  4191. vint32m2_t aux1_0 = __riscv_vwmul_vx_i32m2(__riscv_vget_v_i16m2_i16m1(a1, 0), (scale[2]), vl);
  4192. vint32m2_t aux1_1 = __riscv_vwmul_vx_i32m2(__riscv_vget_v_i16m2_i16m1(a1, 1), (scale[3]), vl);
  4193. vint32m2_t aux2_0 = __riscv_vwmul_vx_i32m2(__riscv_vget_v_i16m2_i16m1(a2, 0), (scale[4]), vl);
  4194. vint32m2_t aux2_1 = __riscv_vwmul_vx_i32m2(__riscv_vget_v_i16m2_i16m1(a2, 1), (scale[5]), vl);
  4195. vint32m2_t aux3_0 = __riscv_vwmul_vx_i32m2(__riscv_vget_v_i16m2_i16m1(a3, 0), (scale[6]), vl);
  4196. vint32m2_t aux3_1 = __riscv_vwmul_vx_i32m2(__riscv_vget_v_i16m2_i16m1(a3, 1), (scale[7]), vl);
  4197. vint32m1_t isum0 = __riscv_vredsum_vs_i32m2_i32m1(__riscv_vadd_vv_i32m2(aux0_0, aux0_1, vl), vzero, vl);
  4198. vint32m1_t isum1 = __riscv_vredsum_vs_i32m2_i32m1(__riscv_vadd_vv_i32m2(aux1_0, aux1_1, vl), isum0, vl);
  4199. vint32m1_t isum2 = __riscv_vredsum_vs_i32m2_i32m1(__riscv_vadd_vv_i32m2(aux2_0, aux2_1, vl), isum1, vl);
  4200. vint32m1_t isum3 = __riscv_vredsum_vs_i32m2_i32m1(__riscv_vadd_vv_i32m2(aux3_0, aux3_1, vl), isum2, vl);
  4201. sum_t += __riscv_vmv_x_s_i32m1_i32(isum3);
  4202. q3 += 32; q8 += 128; scale += 8;
  4203. }
  4204. const float d = GGML_FP16_TO_FP32(x[i].d) * y[i].d;
  4205. sumf += d*sum_t;
  4206. }
  4207. *s = sumf;
  4208. #elif defined(__POWER9_VECTOR__)
  4209. const vector signed char lowMask = vec_splats((signed char)0x3);
  4210. const vector signed char lowMask1 = vec_splats((int8_t)0xf);
  4211. const vector signed char lowMask2 = vec_splats((int8_t)0x30);
  4212. const vector int v0 = vec_splats((int32_t)0);
  4213. const vector signed char v1 = vec_splats((signed char)0x1);
  4214. const vector unsigned char v2 = vec_splats((unsigned char)0x2);
  4215. const vector unsigned char v3 = vec_splats((unsigned char)0x3);
  4216. const vector unsigned char v4 = vec_splats((unsigned char)0x4);
  4217. const vector unsigned char v6 = vec_splats((unsigned char)0x6);
  4218. const vector signed char off = vec_splats((signed char)0x20);
  4219. vector float vsumf0 = vec_splats(0.0f);
  4220. vector float vsumf1 = vec_splats(0.0f);
  4221. vector float vsumf2 = vec_splats(0.0f);
  4222. vector float vsumf3 = vec_splats(0.0f);
  4223. for (int i = 0; i < nb; ++i) {
  4224. vector float vxd = vec_splats(GGML_FP16_TO_FP32(x[i].d));
  4225. vector float vyd = vec_splats(y[i].d);
  4226. vector float vd = vec_mul(vxd, vyd);
  4227. UNUSED(kmask1);
  4228. UNUSED(kmask2);
  4229. vector signed char u0 = (vector signed char)vec_xl_len(x[i].scales, 8);
  4230. vector signed char u1 = vec_and(u0, lowMask1);
  4231. vector signed char u2 = (vector signed char)vec_xl_len(x[i].scales + 8, 4);
  4232. vector signed char u3 = (vector signed char)vec_mergeh((vector signed int)u2, (vector signed int)vec_sr(u2, v2));
  4233. vector signed char u30 = vec_sl(vec_and(u3, lowMask), v4);
  4234. vector signed char u31 = vec_and(u3, lowMask2);
  4235. u1 = vec_or(u1, u30);
  4236. u2 = vec_or(vec_sr(u0, v4), u31);
  4237. vector signed char vscales = (vector signed char)vec_mergeh((vector signed long long)u1, (vector signed long long)u2);
  4238. vector signed char qxhs0 = (vector signed char)vec_xl( 0, x[i].hmask);
  4239. vector signed char qxhs1 = (vector signed char)vec_xl(16, x[i].hmask);
  4240. vscales = vec_sub(vscales, off);
  4241. vector signed int vsumi0 = v0;
  4242. vector signed int vsumi1 = v0;
  4243. vector signed int vsumi2 = v0;
  4244. vector signed int vsumi3 = v0;
  4245. vector signed int vsumi4 = v0;
  4246. vector signed int vsumi5 = v0;
  4247. vector signed int vsumi6 = v0;
  4248. vector signed int vsumi7 = v0;
  4249. const uint8_t * restrict q3 = x[i].qs;
  4250. const int8_t * restrict q8 = y[i].qs;
  4251. for (int j = 0; j < QK_K/128; ++j) {
  4252. __builtin_prefetch(q3, 0, 1);
  4253. __builtin_prefetch(q8, 0, 1);
  4254. vector signed char qxs0 = (vector signed char)vec_xl( 0, q3);
  4255. vector signed char qxs1 = (vector signed char)vec_xl(16, q3);
  4256. q3 += 32;
  4257. //the low 2 bits
  4258. vector signed char qxs00 = vec_and(qxs0, lowMask);
  4259. vector signed char qxs01 = vec_and(vec_sr(qxs0, v2), lowMask);
  4260. vector signed char qxs02 = vec_and(vec_sr(qxs0, v4), lowMask);
  4261. vector signed char qxs03 = vec_and(vec_sr(qxs0, v6), lowMask);
  4262. vector signed char qxs10 = vec_and(qxs1, lowMask);
  4263. vector signed char qxs11 = vec_and(vec_sr(qxs1, v2), lowMask);
  4264. vector signed char qxs12 = vec_and(vec_sr(qxs1, v4), lowMask);
  4265. vector signed char qxs13 = vec_and(vec_sr(qxs1, v6), lowMask);
  4266. //the 3rd bit
  4267. vector signed char qxh00 = vec_sl(vec_andc(v1, qxhs0), v2);
  4268. vector signed char qxh01 = vec_sl(vec_andc(v1, vec_sr(qxhs0, (vector unsigned char)v1)), v2);
  4269. vector signed char qxh02 = vec_sl(vec_andc(v1, vec_sr(qxhs0, v2)), v2);
  4270. vector signed char qxh03 = vec_sl(vec_andc(v1, vec_sr(qxhs0, v3)), v2);
  4271. vector signed char qxh10 = vec_sl(vec_andc(v1, qxhs1), v2);
  4272. vector signed char qxh11 = vec_sl(vec_andc(v1, vec_sr(qxhs1, (vector unsigned char)v1)), v2);
  4273. vector signed char qxh12 = vec_sl(vec_andc(v1, vec_sr(qxhs1, v2)), v2);
  4274. vector signed char qxh13 = vec_sl(vec_andc(v1, vec_sr(qxhs1, v3)), v2);
  4275. qxhs0 = vec_sr(qxhs0, v4);
  4276. qxhs1 = vec_sr(qxhs1, v4);
  4277. vector signed char q3x00 = vec_sub(qxs00, qxh00);
  4278. vector signed char q3x01 = vec_sub(qxs01, qxh01);
  4279. vector signed char q3x02 = vec_sub(qxs02, qxh02);
  4280. vector signed char q3x03 = vec_sub(qxs03, qxh03);
  4281. vector signed char q3x10 = vec_sub(qxs10, qxh10);
  4282. vector signed char q3x11 = vec_sub(qxs11, qxh11);
  4283. vector signed char q3x12 = vec_sub(qxs12, qxh12);
  4284. vector signed char q3x13 = vec_sub(qxs13, qxh13);
  4285. vector signed char q8y00 = vec_xl( 0, q8);
  4286. vector signed char q8y10 = vec_xl( 16, q8);
  4287. vector signed char q8y01 = vec_xl( 32, q8);
  4288. vector signed char q8y11 = vec_xl( 48, q8);
  4289. vector signed char q8y02 = vec_xl( 64, q8);
  4290. vector signed char q8y12 = vec_xl( 80, q8);
  4291. vector signed char q8y03 = vec_xl( 96, q8);
  4292. vector signed char q8y13 = vec_xl(112, q8);
  4293. q8 += 128;
  4294. vector signed short vscales_h = vec_unpackh(vscales);
  4295. vector signed short vs0 = vec_splat(vscales_h, 0);
  4296. vector signed short vs1 = vec_splat(vscales_h, 1);
  4297. vector signed short vs2 = vec_splat(vscales_h, 2);
  4298. vector signed short vs3 = vec_splat(vscales_h, 3);
  4299. vector signed short vs4 = vec_splat(vscales_h, 4);
  4300. vector signed short vs5 = vec_splat(vscales_h, 5);
  4301. vector signed short vs6 = vec_splat(vscales_h, 6);
  4302. vector signed short vs7 = vec_splat(vscales_h, 7);
  4303. vscales = vec_sld(vscales, vscales, 8);
  4304. vector signed short qv00 = vec_add(vec_mule(q3x00, q8y00), vec_mulo(q3x00, q8y00));
  4305. vector signed short qv01 = vec_add(vec_mule(q3x01, q8y01), vec_mulo(q3x01, q8y01));
  4306. vector signed short qv02 = vec_add(vec_mule(q3x02, q8y02), vec_mulo(q3x02, q8y02));
  4307. vector signed short qv03 = vec_add(vec_mule(q3x03, q8y03), vec_mulo(q3x03, q8y03));
  4308. vector signed short qv10 = vec_add(vec_mule(q3x10, q8y10), vec_mulo(q3x10, q8y10));
  4309. vector signed short qv11 = vec_add(vec_mule(q3x11, q8y11), vec_mulo(q3x11, q8y11));
  4310. vector signed short qv12 = vec_add(vec_mule(q3x12, q8y12), vec_mulo(q3x12, q8y12));
  4311. vector signed short qv13 = vec_add(vec_mule(q3x13, q8y13), vec_mulo(q3x13, q8y13));
  4312. vsumi0 = vec_msum(qv00, vs0, vsumi0);
  4313. vsumi1 = vec_msum(qv01, vs2, vsumi1);
  4314. vsumi2 = vec_msum(qv02, vs4, vsumi2);
  4315. vsumi3 = vec_msum(qv03, vs6, vsumi3);
  4316. vsumi4 = vec_msum(qv10, vs1, vsumi4);
  4317. vsumi5 = vec_msum(qv11, vs3, vsumi5);
  4318. vsumi6 = vec_msum(qv12, vs5, vsumi6);
  4319. vsumi7 = vec_msum(qv13, vs7, vsumi7);
  4320. }
  4321. vsumi0 = vec_add(vsumi0, vsumi4);
  4322. vsumi1 = vec_add(vsumi1, vsumi5);
  4323. vsumi2 = vec_add(vsumi2, vsumi6);
  4324. vsumi3 = vec_add(vsumi3, vsumi7);
  4325. vsumf0 = vec_madd(vec_ctf(vsumi0, 0), vd, vsumf0);
  4326. vsumf1 = vec_madd(vec_ctf(vsumi1, 0), vd, vsumf1);
  4327. vsumf2 = vec_madd(vec_ctf(vsumi2, 0), vd, vsumf2);
  4328. vsumf3 = vec_madd(vec_ctf(vsumi3, 0), vd, vsumf3);
  4329. }
  4330. vsumf0 = vec_add(vsumf0, vsumf2);
  4331. vsumf1 = vec_add(vsumf1, vsumf3);
  4332. vsumf0 = vec_add(vsumf0, vsumf1);
  4333. vsumf0 = vec_add(vsumf0, vec_sld(vsumf0, vsumf0, 4));
  4334. vsumf0 = vec_add(vsumf0, vec_sld(vsumf0, vsumf0, 8));
  4335. *s = vec_extract(vsumf0, 0);
  4336. #elif defined __loongarch_asx
  4337. const __m256i m3 = __lasx_xvreplgr2vr_b(3);
  4338. const __m256i mone = __lasx_xvreplgr2vr_b(1);
  4339. const __m128i m32 = __lsx_vreplgr2vr_b(32);
  4340. __m256 acc = (__m256)__lasx_xvldi(0);
  4341. uint32_t aux[3];
  4342. for (int i = 0; i < nb; ++i) {
  4343. const float d = y[i].d * GGML_FP16_TO_FP32(x[i].d);
  4344. const uint8_t * restrict q3 = x[i].qs;
  4345. const int8_t * restrict q8 = y[i].qs;
  4346. // Set up scales
  4347. memcpy(aux, x[i].scales, 12);
  4348. __m128i scales128 = lsx_set_w(
  4349. ((aux[1] >> 4) & kmask2) | (((aux[2] >> 6) & kmask1) << 4),
  4350. ((aux[0] >> 4) & kmask2) | (((aux[2] >> 4) & kmask1) << 4),
  4351. (aux[1] & kmask2) | (((aux[2] >> 2) & kmask1) << 4),
  4352. (aux[0] & kmask2) | (((aux[2] >> 0) & kmask1) << 4));
  4353. scales128 = __lsx_vsub_b(scales128, m32);
  4354. const __m256i all_scales = lasx_ext8_16(scales128);
  4355. const __m128i l_scales = lasx_extracti128(all_scales, 0);
  4356. const __m128i h_scales = lasx_extracti128(all_scales, 1);
  4357. const __m256i scales[2] = {lasx_insertf128(l_scales, l_scales), lasx_insertf128(h_scales, h_scales)};
  4358. // high bit
  4359. const __m256i hbits = __lasx_xvld((const __m256i*)x[i].hmask, 0);
  4360. // integer accumulator
  4361. __m256i sumi = __lasx_xvldi(0);
  4362. int bit = 0;
  4363. int is = 0;
  4364. __m256i xvbit;
  4365. for (int j = 0; j < QK_K/128; ++j) {
  4366. // load low 2 bits
  4367. const __m256i q3bits = __lasx_xvld((const __m256i*)q3, 0); q3 += 32;
  4368. xvbit = __lasx_xvreplgr2vr_h(bit);
  4369. // prepare low and high bits
  4370. const __m256i q3l_0 = __lasx_xvand_v(q3bits, m3);
  4371. const __m256i q3h_0 = __lasx_xvslli_h(__lasx_xvsrl_h(__lasx_xvandn_v(hbits, __lasx_xvsll_h(mone, xvbit)), xvbit), 2);
  4372. ++bit;
  4373. xvbit = __lasx_xvreplgr2vr_h(bit);
  4374. const __m256i q3l_1 = __lasx_xvand_v(__lasx_xvsrli_h(q3bits, 2), m3);
  4375. const __m256i q3h_1 = __lasx_xvslli_h(__lasx_xvsrl_h(__lasx_xvandn_v(hbits, __lasx_xvsll_h(mone, xvbit)), xvbit), 2);
  4376. ++bit;
  4377. xvbit = __lasx_xvreplgr2vr_h(bit);
  4378. const __m256i q3l_2 = __lasx_xvand_v(__lasx_xvsrli_h(q3bits, 4), m3);
  4379. const __m256i q3h_2 = __lasx_xvslli_h(__lasx_xvsrl_h(__lasx_xvandn_v(hbits, __lasx_xvsll_h(mone, xvbit)), xvbit), 2);
  4380. ++bit;
  4381. xvbit = __lasx_xvreplgr2vr_h(bit);
  4382. const __m256i q3l_3 = __lasx_xvand_v(__lasx_xvsrli_h(q3bits, 6), m3);
  4383. const __m256i q3h_3 = __lasx_xvslli_h(__lasx_xvsrl_h(__lasx_xvandn_v(hbits, __lasx_xvsll_h(mone, xvbit)), xvbit), 2);
  4384. ++bit;
  4385. // load Q8 quants
  4386. const __m256i q8_0 = __lasx_xvld((const __m256i*)q8, 0); q8 += 32;
  4387. const __m256i q8_1 = __lasx_xvld((const __m256i*)q8, 0); q8 += 32;
  4388. const __m256i q8_2 = __lasx_xvld((const __m256i*)q8, 0); q8 += 32;
  4389. const __m256i q8_3 = __lasx_xvld((const __m256i*)q8, 0); q8 += 32;
  4390. // Dot product: we multiply the 2 low bits and 1 high bit part separately, so we can use lasx_maddubs_h,
  4391. // and then subtract. The high bit part has the 2 already subtracted (and so, it is zero if the high bit was not set,
  4392. // and 2 if the high bit was set)
  4393. __m256i q8s_0 = lasx_maddubs_h(q3h_0, q8_0);
  4394. __m256i q8s_1 = lasx_maddubs_h(q3h_1, q8_1);
  4395. __m256i q8s_2 = lasx_maddubs_h(q3h_2, q8_2);
  4396. __m256i q8s_3 = lasx_maddubs_h(q3h_3, q8_3);
  4397. __m256i p16_0 = lasx_maddubs_h(q3l_0, q8_0);
  4398. __m256i p16_1 = lasx_maddubs_h(q3l_1, q8_1);
  4399. __m256i p16_2 = lasx_maddubs_h(q3l_2, q8_2);
  4400. __m256i p16_3 = lasx_maddubs_h(q3l_3, q8_3);
  4401. p16_0 = __lasx_xvsub_h(p16_0, q8s_0);
  4402. p16_1 = __lasx_xvsub_h(p16_1, q8s_1);
  4403. p16_2 = __lasx_xvsub_h(p16_2, q8s_2);
  4404. p16_3 = __lasx_xvsub_h(p16_3, q8s_3);
  4405. // multiply with scales
  4406. p16_0 = lasx_madd_h(lasx_shuffle_b(scales[j], get_scale_shuffle_q3k(is + 0)), p16_0);
  4407. p16_1 = lasx_madd_h(lasx_shuffle_b(scales[j], get_scale_shuffle_q3k(is + 1)), p16_1);
  4408. p16_2 = lasx_madd_h(lasx_shuffle_b(scales[j], get_scale_shuffle_q3k(is + 2)), p16_2);
  4409. p16_3 = lasx_madd_h(lasx_shuffle_b(scales[j], get_scale_shuffle_q3k(is + 3)), p16_3);
  4410. // accumulate
  4411. p16_0 = __lasx_xvadd_w(p16_0, p16_1);
  4412. p16_2 = __lasx_xvadd_w(p16_2, p16_3);
  4413. sumi = __lasx_xvadd_w(sumi, __lasx_xvadd_w(p16_0, p16_2));
  4414. }
  4415. // multiply with block scale and accumulate
  4416. acc = __lasx_xvfmadd_s(__lasx_xvreplfr2vr_s(d), __lasx_xvffint_s_w(sumi), acc);//FIXME
  4417. }
  4418. *s = hsum_float_8(acc);
  4419. #else
  4420. // scalar version
  4421. // This function is written like this so the compiler can manage to vectorize most of it
  4422. // Using -Ofast, GCC and clang manage to produce code that is within a factor of 2 or so from the
  4423. // manually vectorized version above. Every other version I tried would run at least 4 times slower.
  4424. // The ideal situation would be if we could just write the code once, and the compiler would
  4425. // automatically produce the best possible set of machine instructions, instead of us having to manually
  4426. // write vectorized versions for AVX, ARM_NEON, etc.
  4427. int8_t aux8[QK_K];
  4428. int16_t aux16[8];
  4429. float sums [8];
  4430. int32_t aux32[8];
  4431. memset(sums, 0, 8*sizeof(float));
  4432. uint32_t auxs[4];
  4433. const int8_t * scales = (const int8_t*)auxs;
  4434. float sumf = 0;
  4435. for (int i = 0; i < nb; ++i) {
  4436. const uint8_t * restrict q3 = x[i].qs;
  4437. const uint8_t * restrict hm = x[i].hmask;
  4438. const int8_t * restrict q8 = y[i].qs;
  4439. memset(aux32, 0, 8*sizeof(int32_t));
  4440. int8_t * restrict a = aux8;
  4441. uint8_t m = 1;
  4442. for (int j = 0; j < QK_K; j += 128) {
  4443. for (int l = 0; l < 32; ++l) a[l] = q3[l] & 3;
  4444. for (int l = 0; l < 32; ++l) a[l] -= (hm[l] & m ? 0 : 4);
  4445. a += 32; m <<= 1;
  4446. for (int l = 0; l < 32; ++l) a[l] = (q3[l] >> 2) & 3;
  4447. for (int l = 0; l < 32; ++l) a[l] -= (hm[l] & m ? 0 : 4);
  4448. a += 32; m <<= 1;
  4449. for (int l = 0; l < 32; ++l) a[l] = (q3[l] >> 4) & 3;
  4450. for (int l = 0; l < 32; ++l) a[l] -= (hm[l] & m ? 0 : 4);
  4451. a += 32; m <<= 1;
  4452. for (int l = 0; l < 32; ++l) a[l] = (q3[l] >> 6) & 3;
  4453. for (int l = 0; l < 32; ++l) a[l] -= (hm[l] & m ? 0 : 4);
  4454. a += 32; m <<= 1;
  4455. q3 += 32;
  4456. }
  4457. a = aux8;
  4458. memcpy(auxs, x[i].scales, 12);
  4459. uint32_t tmp = auxs[2];
  4460. auxs[2] = ((auxs[0] >> 4) & kmask2) | (((tmp >> 4) & kmask1) << 4);
  4461. auxs[3] = ((auxs[1] >> 4) & kmask2) | (((tmp >> 6) & kmask1) << 4);
  4462. auxs[0] = (auxs[0] & kmask2) | (((tmp >> 0) & kmask1) << 4);
  4463. auxs[1] = (auxs[1] & kmask2) | (((tmp >> 2) & kmask1) << 4);
  4464. for (int j = 0; j < QK_K/16; ++j) {
  4465. for (int l = 0; l < 8; ++l) aux16[l] = q8[l] * a[l];
  4466. for (int l = 0; l < 8; ++l) aux32[l] += (scales[j] - 32) * aux16[l];
  4467. q8 += 8; a += 8;
  4468. for (int l = 0; l < 8; ++l) aux16[l] = q8[l] * a[l];
  4469. for (int l = 0; l < 8; ++l) aux32[l] += (scales[j] - 32) * aux16[l];
  4470. q8 += 8; a += 8;
  4471. }
  4472. const float d = GGML_FP16_TO_FP32(x[i].d) * y[i].d;
  4473. for (int l = 0; l < 8; ++l) sums[l] += d * aux32[l];
  4474. }
  4475. for (int l = 0; l < 8; ++l) sumf += sums[l];
  4476. *s = sumf;
  4477. #endif
  4478. }
  4479. void ggml_vec_dot_q4_K_q8_K(int n, float * restrict s, size_t bs, const void * restrict vx, size_t bx, const void * restrict vy, size_t by, int nrc) {
  4480. assert(n % QK_K == 0);
  4481. assert(nrc == 1);
  4482. UNUSED(nrc);
  4483. UNUSED(bx);
  4484. UNUSED(by);
  4485. UNUSED(bs);
  4486. const block_q4_K * restrict x = vx;
  4487. const block_q8_K * restrict y = vy;
  4488. const int nb = n / QK_K;
  4489. static const uint32_t kmask1 = 0x3f3f3f3f;
  4490. static const uint32_t kmask2 = 0x0f0f0f0f;
  4491. static const uint32_t kmask3 = 0x03030303;
  4492. uint32_t utmp[4];
  4493. #ifdef __ARM_NEON
  4494. const uint8x16_t m4b = vdupq_n_u8(0xf);
  4495. const int32x4_t mzero = vdupq_n_s32(0);
  4496. ggml_int8x16x2_t q4bytes;
  4497. ggml_int8x16x2_t q8bytes;
  4498. float sumf = 0;
  4499. for (int i = 0; i < nb; ++i) {
  4500. const float d = y[i].d * GGML_FP16_TO_FP32(x[i].d);
  4501. const float dmin = y[i].d * GGML_FP16_TO_FP32(x[i].dmin);
  4502. const int16x8_t q8sums = vpaddq_s16(vld1q_s16(y[i].bsums), vld1q_s16(y[i].bsums + 8));
  4503. memcpy(utmp, x[i].scales, 12);
  4504. uint32x2_t mins8 = { 0 };
  4505. mins8 = vset_lane_u32(utmp[1] & kmask1, mins8, 0);
  4506. mins8 = vset_lane_u32(((utmp[2] >> 4) & kmask2) | (((utmp[1] >> 6) & kmask3) << 4), mins8, 1);
  4507. utmp[1] = (utmp[2] & kmask2) | (((utmp[0] >> 6) & kmask3) << 4);
  4508. utmp[0] &= kmask1;
  4509. const int16x8_t mins = vreinterpretq_s16_u16(vmovl_u8(vreinterpret_u8_u32(mins8)));
  4510. const int32x4_t prod = vaddq_s32(vmull_s16(vget_low_s16 (q8sums), vget_low_s16 (mins)),
  4511. vmull_s16(vget_high_s16(q8sums), vget_high_s16(mins)));
  4512. sumf -= dmin * vaddvq_s32(prod);
  4513. const uint8_t * scales = (const uint8_t *)utmp;
  4514. const uint8_t * restrict q4 = x[i].qs;
  4515. const int8_t * restrict q8 = y[i].qs;
  4516. int32_t sumi1 = 0;
  4517. int32_t sumi2 = 0;
  4518. for (int j = 0; j < QK_K/64; ++j) {
  4519. const ggml_uint8x16x2_t q4bits = ggml_vld1q_u8_x2(q4); q4 += 32;
  4520. q8bytes = ggml_vld1q_s8_x2(q8); q8 += 32;
  4521. q4bytes.val[0] = vreinterpretq_s8_u8(vandq_u8 (q4bits.val[0], m4b));
  4522. q4bytes.val[1] = vreinterpretq_s8_u8(vandq_u8 (q4bits.val[1], m4b));
  4523. const int32x4_t p1 = ggml_vdotq_s32(ggml_vdotq_s32(mzero, q4bytes.val[0], q8bytes.val[0]), q4bytes.val[1], q8bytes.val[1]);
  4524. sumi1 += vaddvq_s32(p1) * scales[2*j+0];
  4525. q8bytes = ggml_vld1q_s8_x2(q8); q8 += 32;
  4526. q4bytes.val[0] = vreinterpretq_s8_u8(vshrq_n_u8(q4bits.val[0], 4));
  4527. q4bytes.val[1] = vreinterpretq_s8_u8(vshrq_n_u8(q4bits.val[1], 4));
  4528. const int32x4_t p2 = ggml_vdotq_s32(ggml_vdotq_s32(mzero, q4bytes.val[0], q8bytes.val[0]), q4bytes.val[1], q8bytes.val[1]);
  4529. sumi2 += vaddvq_s32(p2) * scales[2*j+1];
  4530. }
  4531. sumf += d * (sumi1 + sumi2);
  4532. }
  4533. *s = sumf;
  4534. #elif defined __AVX2__
  4535. const __m256i m4 = _mm256_set1_epi8(0xF);
  4536. __m256 acc = _mm256_setzero_ps();
  4537. __m128 acc_m = _mm_setzero_ps();
  4538. for (int i = 0; i < nb; ++i) {
  4539. const float d = y[i].d * GGML_FP16_TO_FP32(x[i].d);
  4540. const float dmin = -y[i].d * GGML_FP16_TO_FP32(x[i].dmin);
  4541. memcpy(utmp, x[i].scales, 12);
  4542. utmp[3] = ((utmp[2] >> 4) & kmask2) | (((utmp[1] >> 6) & kmask3) << 4);
  4543. const uint32_t uaux = utmp[1] & kmask1;
  4544. utmp[1] = (utmp[2] & kmask2) | (((utmp[0] >> 6) & kmask3) << 4);
  4545. utmp[2] = uaux;
  4546. utmp[0] &= kmask1;
  4547. const uint8_t * restrict q4 = x[i].qs;
  4548. const int8_t * restrict q8 = y[i].qs;
  4549. const __m256i mins_and_scales = _mm256_cvtepu8_epi16(_mm_set_epi32(utmp[3], utmp[2], utmp[1], utmp[0]));
  4550. const __m256i q8sums = _mm256_loadu_si256((const __m256i*)y[i].bsums);
  4551. const __m128i q8s = _mm_hadd_epi16(_mm256_extracti128_si256(q8sums, 0), _mm256_extracti128_si256(q8sums, 1));
  4552. const __m128i prod = _mm_madd_epi16(_mm256_extracti128_si256(mins_and_scales, 1), q8s);
  4553. acc_m = _mm_fmadd_ps(_mm_set1_ps(dmin), _mm_cvtepi32_ps(prod), acc_m);
  4554. const __m128i sc128 = _mm256_extracti128_si256(mins_and_scales, 0);
  4555. const __m256i scales = MM256_SET_M128I(sc128, sc128);
  4556. __m256i sumi = _mm256_setzero_si256();
  4557. for (int j = 0; j < QK_K/64; ++j) {
  4558. const __m256i scale_l = _mm256_shuffle_epi8(scales, get_scale_shuffle_k4(2*j+0));
  4559. const __m256i scale_h = _mm256_shuffle_epi8(scales, get_scale_shuffle_k4(2*j+1));
  4560. const __m256i q4bits = _mm256_loadu_si256((const __m256i*)q4); q4 += 32;
  4561. const __m256i q4l = _mm256_and_si256(q4bits, m4);
  4562. const __m256i q4h = _mm256_and_si256(_mm256_srli_epi16(q4bits, 4), m4);
  4563. const __m256i q8l = _mm256_loadu_si256((const __m256i*)q8); q8 += 32;
  4564. __m256i p16l = _mm256_maddubs_epi16(q4l, q8l);
  4565. p16l = _mm256_madd_epi16(scale_l, p16l);
  4566. const __m256i q8h = _mm256_loadu_si256((const __m256i*)q8); q8 += 32;
  4567. __m256i p16h = _mm256_maddubs_epi16(q4h, q8h);
  4568. p16h = _mm256_madd_epi16(scale_h, p16h);
  4569. const __m256i sumj = _mm256_add_epi32(p16l, p16h);
  4570. sumi = _mm256_add_epi32(sumi, sumj);
  4571. }
  4572. __m256 vd = _mm256_set1_ps(d);
  4573. acc = _mm256_fmadd_ps(vd, _mm256_cvtepi32_ps(sumi), acc);
  4574. }
  4575. acc_m = _mm_add_ps(acc_m, _mm_movehl_ps(acc_m, acc_m));
  4576. acc_m = _mm_add_ss(acc_m, _mm_movehdup_ps(acc_m));
  4577. *s = hsum_float_8(acc) + _mm_cvtss_f32(acc_m);
  4578. #elif defined __AVX__
  4579. const __m128i m4 = _mm_set1_epi8(0xF);
  4580. const __m128i m2 = _mm_set1_epi8(0x2);
  4581. __m256 acc = _mm256_setzero_ps();
  4582. __m128 acc_m = _mm_setzero_ps();
  4583. for (int i = 0; i < nb; ++i) {
  4584. const float d = y[i].d * GGML_FP16_TO_FP32(x[i].d);
  4585. const float dmin = -y[i].d * GGML_FP16_TO_FP32(x[i].dmin);
  4586. const uint8_t * restrict q4 = x[i].qs;
  4587. const int8_t * restrict q8 = y[i].qs;
  4588. memcpy(utmp, x[i].scales, 12);
  4589. utmp[3] = ((utmp[2] >> 4) & kmask2) | (((utmp[1] >> 6) & kmask3) << 4);
  4590. const uint32_t uaux = utmp[1] & kmask1;
  4591. utmp[1] = (utmp[2] & kmask2) | (((utmp[0] >> 6) & kmask3) << 4);
  4592. utmp[2] = uaux;
  4593. utmp[0] &= kmask1;
  4594. const __m128i utmps = _mm_set_epi32(utmp[3], utmp[2], utmp[1], utmp[0]);
  4595. const __m128i scales = _mm_cvtepu8_epi16(utmps);
  4596. const __m128i mins = _mm_cvtepu8_epi16(_mm_unpackhi_epi64(utmps, utmps));
  4597. const __m128i q8sums_0 = _mm_loadu_si128((const __m128i*)&y[i].bsums[0]);
  4598. const __m128i q8sums_1 = _mm_loadu_si128((const __m128i*)&y[i].bsums[8]);
  4599. const __m128i q8s = _mm_hadd_epi16(q8sums_0, q8sums_1);
  4600. const __m128i prod = _mm_madd_epi16(mins, q8s);
  4601. acc_m = _mm_add_ps(_mm_mul_ps(_mm_set1_ps(dmin), _mm_cvtepi32_ps(prod)), acc_m);
  4602. __m128i sumi_0 = _mm_setzero_si128();
  4603. __m128i sumi_1 = _mm_setzero_si128();
  4604. __m128i shuffle = _mm_set1_epi16(0x0100);
  4605. for (int j = 0; j < QK_K/64; ++j) {
  4606. const __m128i scale_l = _mm_shuffle_epi8(scales, shuffle);
  4607. shuffle = _mm_add_epi16(shuffle, m2);
  4608. const __m128i scale_h = _mm_shuffle_epi8(scales, shuffle);
  4609. shuffle = _mm_add_epi16(shuffle, m2);
  4610. __m128i q4bits = _mm_loadu_si128((const __m128i*)q4); q4 += 16;
  4611. const __m128i q4l_0 = _mm_and_si128(q4bits, m4);
  4612. const __m128i q4h_0 = _mm_and_si128(_mm_srli_epi16(q4bits, 4), m4);
  4613. q4bits = _mm_loadu_si128((const __m128i*)q4); q4 += 16;
  4614. const __m128i q4l_1 = _mm_and_si128(q4bits, m4);
  4615. const __m128i q4h_1 = _mm_and_si128(_mm_srli_epi16(q4bits, 4), m4);
  4616. const __m128i q8l_0 = _mm_loadu_si128((const __m128i*)q8); q8 += 16;
  4617. __m128i p16l = _mm_maddubs_epi16(q4l_0, q8l_0);
  4618. p16l = _mm_madd_epi16(scale_l, p16l);
  4619. sumi_0 = _mm_add_epi32(sumi_0, p16l);
  4620. const __m128i q8l_1 = _mm_loadu_si128((const __m128i*)q8); q8 += 16;
  4621. p16l = _mm_maddubs_epi16(q4l_1, q8l_1);
  4622. p16l = _mm_madd_epi16(scale_l, p16l);
  4623. sumi_1 = _mm_add_epi32(sumi_1, p16l);
  4624. const __m128i q8h_0 = _mm_loadu_si128((const __m128i*)q8); q8 += 16;
  4625. __m128i p16h = _mm_maddubs_epi16(q4h_0, q8h_0);
  4626. p16h = _mm_madd_epi16(scale_h, p16h);
  4627. sumi_0 = _mm_add_epi32(sumi_0, p16h);
  4628. const __m128i q8h_1 = _mm_loadu_si128((const __m128i*)q8); q8 += 16;
  4629. p16h = _mm_maddubs_epi16(q4h_1, q8h_1);
  4630. p16h = _mm_madd_epi16(scale_h, p16h);
  4631. sumi_1 = _mm_add_epi32(sumi_1, p16h);
  4632. }
  4633. __m256 vd = _mm256_set1_ps(d);
  4634. __m256i sumi = MM256_SET_M128I(sumi_1, sumi_0);
  4635. acc = _mm256_add_ps(_mm256_mul_ps(vd, _mm256_cvtepi32_ps(sumi)), acc);
  4636. }
  4637. acc_m = _mm_add_ps(acc_m, _mm_movehl_ps(acc_m, acc_m));
  4638. acc_m = _mm_add_ss(acc_m, _mm_movehdup_ps(acc_m));
  4639. *s = hsum_float_8(acc) + _mm_cvtss_f32(acc_m);
  4640. #elif defined __riscv_v_intrinsic
  4641. const uint8_t * scales = (const uint8_t*)&utmp[0];
  4642. const uint8_t * mins = (const uint8_t*)&utmp[2];
  4643. float sumf = 0;
  4644. for (int i = 0; i < nb; ++i) {
  4645. size_t vl = 8;
  4646. const float d = y[i].d * GGML_FP16_TO_FP32(x[i].d);
  4647. const float dmin = y[i].d * GGML_FP16_TO_FP32(x[i].dmin);
  4648. vint16mf2_t q8sums_0 = __riscv_vlse16_v_i16mf2(y[i].bsums, 4, vl);
  4649. vint16mf2_t q8sums_1 = __riscv_vlse16_v_i16mf2(y[i].bsums+1, 4, vl);
  4650. vint16mf2_t q8sums = __riscv_vadd_vv_i16mf2(q8sums_0, q8sums_1, vl);
  4651. memcpy(utmp, x[i].scales, 12);
  4652. utmp[3] = ((utmp[2] >> 4) & kmask2) | (((utmp[1] >> 6) & kmask3) << 4);
  4653. const uint32_t uaux = utmp[1] & kmask1;
  4654. utmp[1] = (utmp[2] & kmask2) | (((utmp[0] >> 6) & kmask3) << 4);
  4655. utmp[2] = uaux;
  4656. utmp[0] &= kmask1;
  4657. vuint8mf4_t mins8 = __riscv_vle8_v_u8mf4(mins, vl);
  4658. vint16mf2_t v_mins = __riscv_vreinterpret_v_u16mf2_i16mf2(__riscv_vzext_vf2_u16mf2(mins8, vl));
  4659. vint32m1_t prod = __riscv_vwmul_vv_i32m1(q8sums, v_mins, vl);
  4660. vint32m1_t sumi = __riscv_vredsum_vs_i32m1_i32m1(prod, __riscv_vmv_v_x_i32m1(0, 1), vl);
  4661. sumf -= dmin * __riscv_vmv_x_s_i32m1_i32(sumi);
  4662. const uint8_t * restrict q4 = x[i].qs;
  4663. const int8_t * restrict q8 = y[i].qs;
  4664. vl = 32;
  4665. int32_t sum_1 = 0;
  4666. int32_t sum_2 = 0;
  4667. vint16m1_t vzero = __riscv_vmv_v_x_i16m1(0, 1);
  4668. for (int j = 0; j < QK_K/64; ++j) {
  4669. // load Q4
  4670. vuint8m1_t q4_x = __riscv_vle8_v_u8m1(q4, vl);
  4671. // load Q8 and multiply it with lower Q4 nibble
  4672. vint8m1_t q8_0 = __riscv_vle8_v_i8m1(q8, vl);
  4673. vint8m1_t q4_0 = __riscv_vreinterpret_v_u8m1_i8m1(__riscv_vand_vx_u8m1(q4_x, 0x0F, vl));
  4674. vint16m2_t qv_0 = __riscv_vwmul_vv_i16m2(q4_0, q8_0, vl);
  4675. vint16m1_t vs_0 = __riscv_vredsum_vs_i16m2_i16m1(qv_0, vzero, vl);
  4676. sum_1 += __riscv_vmv_x_s_i16m1_i16(vs_0) * scales[2*j+0];
  4677. // load Q8 and multiply it with upper Q4 nibble
  4678. vint8m1_t q8_1 = __riscv_vle8_v_i8m1(q8+32, vl);
  4679. vint8m1_t q4_1 = __riscv_vreinterpret_v_u8m1_i8m1(__riscv_vsrl_vx_u8m1(q4_x, 0x04, vl));
  4680. vint16m2_t qv_1 = __riscv_vwmul_vv_i16m2(q4_1, q8_1, vl);
  4681. vint16m1_t vs_1 = __riscv_vredsum_vs_i16m2_i16m1(qv_1, vzero, vl);
  4682. sum_2 += __riscv_vmv_x_s_i16m1_i16(vs_1) * scales[2*j+1];
  4683. q4 += 32; q8 += 64;
  4684. }
  4685. sumf += d*(sum_1 + sum_2);
  4686. }
  4687. *s = sumf;
  4688. #elif defined(__POWER9_VECTOR__)
  4689. const vector signed char lowMask = vec_splats((signed char)0xF);
  4690. const vector signed char lowMask1 = vec_splats((int8_t)0x3f);
  4691. const vector signed char lowMask2 = vec_splats((int8_t)0x30);
  4692. const vector int v0 = vec_splats((int32_t)0);
  4693. const vector unsigned char v2 = vec_splats((uint8_t)2);
  4694. const vector unsigned char v4 = vec_splats((unsigned char)0x4);
  4695. vector float vsumf0 = vec_splats(0.0f);
  4696. vector float vsumf1 = vec_splats(0.0f);
  4697. vector float vsumf2 = vec_splats(0.0f);
  4698. vector float vsumf3 = vec_splats(0.0f);
  4699. for (int i = 0; i < nb; ++i) {
  4700. vector float vxd = vec_splats(GGML_FP16_TO_FP32(x[i].d));
  4701. vector float vyd = vec_splats(y[i].d);
  4702. vector float vd = vec_mul(vxd, vyd);
  4703. vector float vxmin = vec_splats(GGML_FP16_TO_FP32(x[i].dmin));
  4704. vector float vdmin = vec_mul(vxmin, vyd);
  4705. vector signed short q8ysums0 = vec_xl( 0, y[i].bsums);
  4706. vector signed short q8ysums1 = vec_xl(16, y[i].bsums);
  4707. UNUSED(kmask1);
  4708. UNUSED(kmask2);
  4709. UNUSED(kmask3);
  4710. UNUSED(utmp);
  4711. vector signed char u0 = (vector signed char)vec_xl_len(x[i].scales, 8);
  4712. vector signed char u1 = vec_and(vec_sr(u0, v2), lowMask2);
  4713. vector signed char u2 = (vector signed char)vec_xl_len(x[i].scales + 8, 4);
  4714. vector signed char u3 = vec_sr(u2, v4);
  4715. vector signed char u30 = u1;
  4716. vector signed char u31 = (vector signed char)vec_mergeh((vector signed int)vec_and(u2, lowMask), (vector signed int)u3);
  4717. u1 = vec_and(u0, lowMask1);
  4718. u2 = vec_or(u30, u31);
  4719. vector signed char utmps = (vector signed char)vec_mergeh((vector signed int)u1, (vector signed int)u2);
  4720. vector signed short vscales = vec_unpackh(utmps);
  4721. vector signed short q4xmins = vec_unpackl(utmps);
  4722. vector signed short q4xmins0 = vec_mergeh(q4xmins, q4xmins);
  4723. vector signed short q4xmins1 = vec_mergel(q4xmins, q4xmins);
  4724. vector signed int prod0 = vec_mule(q4xmins0, q8ysums0);
  4725. vector signed int prod1 = vec_mule(q4xmins1, q8ysums1);
  4726. vector signed int prod2 = vec_mulo(q4xmins0, q8ysums0);
  4727. vector signed int prod3 = vec_mulo(q4xmins1, q8ysums1);
  4728. vsumf0 = vec_nmsub(vec_ctf(prod0, 0), vdmin, vsumf0);
  4729. vsumf1 = vec_nmsub(vec_ctf(prod1, 0), vdmin, vsumf1);
  4730. vsumf2 = vec_nmsub(vec_ctf(prod2, 0), vdmin, vsumf2);
  4731. vsumf3 = vec_nmsub(vec_ctf(prod3, 0), vdmin, vsumf3);
  4732. vector signed int vsumi0 = v0;
  4733. vector signed int vsumi1 = v0;
  4734. vector signed int vsumi2 = v0;
  4735. vector signed int vsumi3 = v0;
  4736. const uint8_t * restrict q4 = x[i].qs;
  4737. const int8_t * restrict q8 = y[i].qs;
  4738. for (int j = 0; j < QK_K/64; j+=2) {
  4739. __builtin_prefetch(q4, 0, 1);
  4740. __builtin_prefetch(q8, 0, 1);
  4741. vector signed char qxs0 = (vector signed char)vec_xl( 0, q4);
  4742. vector signed char qxs1 = (vector signed char)vec_xl(16, q4);
  4743. vector signed char qxs2 = (vector signed char)vec_xl(32, q4);
  4744. vector signed char qxs3 = (vector signed char)vec_xl(48, q4);
  4745. q4 += 64;
  4746. vector unsigned char q4x00 = (vector unsigned char)vec_and(qxs0, lowMask);
  4747. vector unsigned char q4x01 = (vector unsigned char)vec_sr(qxs0, v4);
  4748. vector unsigned char q4x10 = (vector unsigned char)vec_and(qxs1, lowMask);
  4749. vector unsigned char q4x11 = (vector unsigned char)vec_sr(qxs1, v4);
  4750. vector unsigned char q4x20 = (vector unsigned char)vec_and(qxs2, lowMask);
  4751. vector unsigned char q4x21 = (vector unsigned char)vec_sr(qxs2, v4);
  4752. vector unsigned char q4x30 = (vector unsigned char)vec_and(qxs3, lowMask);
  4753. vector unsigned char q4x31 = (vector unsigned char)vec_sr(qxs3, v4);
  4754. vector signed char q8y00 = vec_xl( 0, q8);
  4755. vector signed char q8y10 = vec_xl( 16, q8);
  4756. vector signed char q8y01 = vec_xl( 32, q8);
  4757. vector signed char q8y11 = vec_xl( 48, q8);
  4758. vector signed char q8y20 = vec_xl( 64, q8);
  4759. vector signed char q8y30 = vec_xl( 80, q8);
  4760. vector signed char q8y21 = vec_xl( 96, q8);
  4761. vector signed char q8y31 = vec_xl(112, q8);
  4762. q8 += 128;
  4763. vector signed int qv00 = vec_msum(q8y00, q4x00, v0);
  4764. vector signed int qv01 = vec_msum(q8y01, q4x01, v0);
  4765. vector signed int qv10 = vec_msum(q8y10, q4x10, v0);
  4766. vector signed int qv11 = vec_msum(q8y11, q4x11, v0);
  4767. vector signed int qv20 = vec_msum(q8y20, q4x20, v0);
  4768. vector signed int qv21 = vec_msum(q8y21, q4x21, v0);
  4769. vector signed int qv30 = vec_msum(q8y30, q4x30, v0);
  4770. vector signed int qv31 = vec_msum(q8y31, q4x31, v0);
  4771. vector signed int vscales_h = vec_unpackh(vscales);
  4772. vector signed int vs0 = vec_splat(vscales_h, 0);
  4773. vector signed int vs1 = vec_splat(vscales_h, 1);
  4774. vector signed int vs2 = vec_splat(vscales_h, 2);
  4775. vector signed int vs3 = vec_splat(vscales_h, 3);
  4776. vscales = vec_sld(vscales, vscales, 8);
  4777. vsumi0 = vec_add(vec_mul(qv00, vs0), vsumi0);
  4778. vsumi1 = vec_add(vec_mul(qv01, vs1), vsumi1);
  4779. vsumi2 = vec_add(vec_mul(qv20, vs2), vsumi2);
  4780. vsumi3 = vec_add(vec_mul(qv21, vs3), vsumi3);
  4781. vsumi0 = vec_add(vec_mul(qv10, vs0), vsumi0);
  4782. vsumi1 = vec_add(vec_mul(qv11, vs1), vsumi1);
  4783. vsumi2 = vec_add(vec_mul(qv30, vs2), vsumi2);
  4784. vsumi3 = vec_add(vec_mul(qv31, vs3), vsumi3);
  4785. }
  4786. vsumf0 = vec_madd(vec_ctf(vsumi0, 0), vd, vsumf0);
  4787. vsumf1 = vec_madd(vec_ctf(vsumi1, 0), vd, vsumf1);
  4788. vsumf2 = vec_madd(vec_ctf(vsumi2, 0), vd, vsumf2);
  4789. vsumf3 = vec_madd(vec_ctf(vsumi3, 0), vd, vsumf3);
  4790. }
  4791. vsumf0 = vec_add(vsumf0, vsumf2);
  4792. vsumf1 = vec_add(vsumf1, vsumf3);
  4793. vsumf0 = vec_add(vsumf0, vsumf1);
  4794. vsumf0 = vec_add(vsumf0, vec_sld(vsumf0, vsumf0, 4));
  4795. vsumf0 = vec_add(vsumf0, vec_sld(vsumf0, vsumf0, 8));
  4796. *s = vec_extract(vsumf0, 0);
  4797. #elif defined __loongarch_asx
  4798. GGML_UNUSED(kmask1);
  4799. GGML_UNUSED(kmask2);
  4800. GGML_UNUSED(kmask3);
  4801. const __m256i m4 = __lasx_xvreplgr2vr_b(0xF);
  4802. __m256 acc = (__m256)__lasx_xvldi(0);
  4803. __m128 acc_m = (__m128)__lsx_vldi(0);
  4804. for (int i = 0; i < nb; ++i) {
  4805. const float d = y[i].d * GGML_FP16_TO_FP32(x[i].d);
  4806. const float dmin = -y[i].d * GGML_FP16_TO_FP32(x[i].dmin);
  4807. memcpy(utmp, x[i].scales, 12);
  4808. utmp[3] = ((utmp[2] >> 4) & kmask2) | (((utmp[1] >> 6) & kmask3) << 4);
  4809. const uint32_t uaux = utmp[1] & kmask1;
  4810. utmp[1] = (utmp[2] & kmask2) | (((utmp[0] >> 6) & kmask3) << 4);
  4811. utmp[2] = uaux;
  4812. utmp[0] &= kmask1;
  4813. const uint8_t * restrict q4 = x[i].qs;
  4814. const int8_t * restrict q8 = y[i].qs;
  4815. const __m256i mins_and_scales = lasx_extu8_16(lsx_set_w(utmp[3], utmp[2], utmp[1], utmp[0]));
  4816. const __m256i q8sums = __lasx_xvld((const __m256i*)y[i].bsums, 0);
  4817. const __m128i q8s = lsx_hadd_h(lasx_extracti128(q8sums, 0), lasx_extracti128(q8sums, 1));
  4818. const __m128i prod = lsx_madd_h(lasx_extracti128(mins_and_scales, 1), q8s);
  4819. acc_m = __lsx_vfmadd_s(__lsx_vreplfr2vr_s(dmin), __lsx_vffint_s_w(prod), acc_m);
  4820. const __m128i sc128 = lasx_extracti128(mins_and_scales, 0);
  4821. const __m256i scales = lasx_insertf128(sc128, sc128);
  4822. __m256i sumi = __lasx_xvldi(0);
  4823. for (int j = 0; j < QK_K/64; ++j) {
  4824. const __m256i scale_l = lasx_shuffle_b(scales, get_scale_shuffle_k4(2*j+0));
  4825. const __m256i scale_h = lasx_shuffle_b(scales, get_scale_shuffle_k4(2*j+1));
  4826. const __m256i q4bits = __lasx_xvld((const __m256i*)q4, 0); q4 += 32;
  4827. const __m256i q4l = __lasx_xvand_v(q4bits, m4);
  4828. const __m256i q4h = __lasx_xvand_v(__lasx_xvsrli_h(q4bits, 4), m4);
  4829. const __m256i q8l = __lasx_xvld((const __m256i*)q8, 0); q8 += 32;
  4830. __m256i p16l = lasx_maddubs_h(q4l, q8l);
  4831. p16l = lasx_madd_h(scale_l, p16l);
  4832. const __m256i q8h = __lasx_xvld((const __m256i*)q8, 0); q8 += 32;
  4833. __m256i p16h = lasx_maddubs_h(q4h, q8h);
  4834. p16h = lasx_madd_h(scale_h, p16h);
  4835. const __m256i sumj = __lasx_xvadd_w(p16l, p16h);
  4836. sumi = __lasx_xvadd_w(sumi, sumj);
  4837. }
  4838. __m256 vd = __lasx_xvreplfr2vr_s(d);
  4839. acc = __lasx_xvfmadd_s(vd, __lasx_xvffint_s_w(sumi), acc);
  4840. }
  4841. acc_m = __lsx_vfadd_s(acc_m, (__m128)__lsx_vpermi_w((__m128i)acc_m, (__m128i)acc_m, 0xee));
  4842. __m128i tmp1 = __lsx_vinsgr2vr_w(__lsx_vldi(0), __lsx_vpickve2gr_w((__m128i)acc_m, 1), 0);
  4843. acc_m = __lsx_vfadd_s(acc_m, (__m128)tmp1);
  4844. ft_union fi;
  4845. fi.i = __lsx_vpickve2gr_w(acc_m, 0);
  4846. *s = hsum_float_8(acc) + fi.f ;
  4847. #else
  4848. const uint8_t * scales = (const uint8_t*)&utmp[0];
  4849. const uint8_t * mins = (const uint8_t*)&utmp[2];
  4850. int8_t aux8[QK_K];
  4851. int16_t aux16[8];
  4852. float sums [8];
  4853. int32_t aux32[8];
  4854. memset(sums, 0, 8*sizeof(float));
  4855. float sumf = 0;
  4856. for (int i = 0; i < nb; ++i) {
  4857. const uint8_t * restrict q4 = x[i].qs;
  4858. const int8_t * restrict q8 = y[i].qs;
  4859. memset(aux32, 0, 8*sizeof(int32_t));
  4860. int8_t * restrict a = aux8;
  4861. for (int j = 0; j < QK_K/64; ++j) {
  4862. for (int l = 0; l < 32; ++l) a[l] = (int8_t)(q4[l] & 0xF);
  4863. a += 32;
  4864. for (int l = 0; l < 32; ++l) a[l] = (int8_t)(q4[l] >> 4);
  4865. a += 32; q4 += 32;
  4866. }
  4867. memcpy(utmp, x[i].scales, 12);
  4868. utmp[3] = ((utmp[2] >> 4) & kmask2) | (((utmp[1] >> 6) & kmask3) << 4);
  4869. const uint32_t uaux = utmp[1] & kmask1;
  4870. utmp[1] = (utmp[2] & kmask2) | (((utmp[0] >> 6) & kmask3) << 4);
  4871. utmp[2] = uaux;
  4872. utmp[0] &= kmask1;
  4873. int sumi = 0;
  4874. for (int j = 0; j < QK_K/16; ++j) sumi += y[i].bsums[j] * mins[j/2];
  4875. a = aux8;
  4876. int is = 0;
  4877. for (int j = 0; j < QK_K/32; ++j) {
  4878. int32_t scale = scales[is++];
  4879. for (int l = 0; l < 8; ++l) aux16[l] = q8[l] * a[l];
  4880. for (int l = 0; l < 8; ++l) aux32[l] += scale * aux16[l];
  4881. q8 += 8; a += 8;
  4882. for (int l = 0; l < 8; ++l) aux16[l] = q8[l] * a[l];
  4883. for (int l = 0; l < 8; ++l) aux32[l] += scale * aux16[l];
  4884. q8 += 8; a += 8;
  4885. for (int l = 0; l < 8; ++l) aux16[l] = q8[l] * a[l];
  4886. for (int l = 0; l < 8; ++l) aux32[l] += scale * aux16[l];
  4887. q8 += 8; a += 8;
  4888. for (int l = 0; l < 8; ++l) aux16[l] = q8[l] * a[l];
  4889. for (int l = 0; l < 8; ++l) aux32[l] += scale * aux16[l];
  4890. q8 += 8; a += 8;
  4891. }
  4892. const float d = GGML_FP16_TO_FP32(x[i].d) * y[i].d;
  4893. for (int l = 0; l < 8; ++l) sums[l] += d * aux32[l];
  4894. const float dmin = GGML_FP16_TO_FP32(x[i].dmin) * y[i].d;
  4895. sumf -= dmin * sumi;
  4896. }
  4897. for (int l = 0; l < 8; ++l) sumf += sums[l];
  4898. *s = sumf;
  4899. #endif
  4900. }
  4901. void ggml_vec_dot_q5_K_q8_K(int n, float * restrict s, size_t bs, const void * restrict vx, size_t bx, const void * restrict vy, size_t by, int nrc) {
  4902. assert(n % QK_K == 0);
  4903. assert(nrc == 1);
  4904. UNUSED(nrc);
  4905. UNUSED(bx);
  4906. UNUSED(by);
  4907. UNUSED(bs);
  4908. const block_q5_K * restrict x = vx;
  4909. const block_q8_K * restrict y = vy;
  4910. const int nb = n / QK_K;
  4911. static const uint32_t kmask1 = 0x3f3f3f3f;
  4912. static const uint32_t kmask2 = 0x0f0f0f0f;
  4913. static const uint32_t kmask3 = 0x03030303;
  4914. uint32_t utmp[4];
  4915. #ifdef __ARM_NEON
  4916. const uint8x16_t m4b = vdupq_n_u8(0xf);
  4917. const uint8x16_t mone = vdupq_n_u8(1);
  4918. const uint8x16_t mtwo = vdupq_n_u8(2);
  4919. const int32x4_t mzero = vdupq_n_s32(0);
  4920. ggml_int8x16x4_t q5bytes;
  4921. float sumf = 0;
  4922. for (int i = 0; i < nb; ++i) {
  4923. const float d = y[i].d * GGML_FP16_TO_FP32(x[i].d);
  4924. const float dmin = y[i].d * GGML_FP16_TO_FP32(x[i].dmin);
  4925. const int16x8_t q8sums = vpaddq_s16(vld1q_s16(y[i].bsums), vld1q_s16(y[i].bsums + 8));
  4926. memcpy(utmp, x[i].scales, 12);
  4927. utmp[3] = ((utmp[2] >> 4) & kmask2) | (((utmp[1] >> 6) & kmask3) << 4);
  4928. const uint32_t uaux = utmp[1] & kmask1;
  4929. utmp[1] = (utmp[2] & kmask2) | (((utmp[0] >> 6) & kmask3) << 4);
  4930. utmp[2] = uaux;
  4931. utmp[0] &= kmask1;
  4932. const uint8x8_t mins8 = vld1_u8((const uint8_t*)utmp + 8);
  4933. const int16x8_t mins = vreinterpretq_s16_u16(vmovl_u8(mins8));
  4934. const int32x4_t prod = vaddq_s32(vmull_s16(vget_low_s16 (q8sums), vget_low_s16 (mins)),
  4935. vmull_s16(vget_high_s16(q8sums), vget_high_s16(mins)));
  4936. int32_t sumi_mins = vaddvq_s32(prod);
  4937. const uint8_t * scales = (const uint8_t *)utmp;
  4938. const uint8_t * restrict q5 = x[i].qs;
  4939. const uint8_t * restrict qh = x[i].qh;
  4940. const int8_t * restrict q8 = y[i].qs;
  4941. ggml_uint8x16x2_t qhbits = ggml_vld1q_u8_x2(qh);
  4942. ggml_uint8x16x4_t q5h;
  4943. int32_t sumi = 0;
  4944. for (int j = 0; j < QK_K/64; ++j) {
  4945. const ggml_uint8x16x2_t q5bits = ggml_vld1q_u8_x2(q5); q5 += 32;
  4946. const ggml_int8x16x4_t q8bytes = ggml_vld1q_s8_x4(q8); q8 += 64;
  4947. q5h.val[0] = vshlq_n_u8(vandq_u8(mone, qhbits.val[0]), 4);
  4948. q5h.val[1] = vshlq_n_u8(vandq_u8(mone, qhbits.val[1]), 4);
  4949. q5h.val[2] = vshlq_n_u8(vandq_u8(mtwo, qhbits.val[0]), 3);
  4950. q5h.val[3] = vshlq_n_u8(vandq_u8(mtwo, qhbits.val[1]), 3);
  4951. qhbits.val[0] = vshrq_n_u8(qhbits.val[0], 2);
  4952. qhbits.val[1] = vshrq_n_u8(qhbits.val[1], 2);
  4953. q5bytes.val[0] = vreinterpretq_s8_u8(vorrq_u8(vandq_u8(q5bits.val[0], m4b), q5h.val[0]));
  4954. q5bytes.val[1] = vreinterpretq_s8_u8(vorrq_u8(vandq_u8(q5bits.val[1], m4b), q5h.val[1]));
  4955. q5bytes.val[2] = vreinterpretq_s8_u8(vorrq_u8(vshrq_n_u8(q5bits.val[0], 4), q5h.val[2]));
  4956. q5bytes.val[3] = vreinterpretq_s8_u8(vorrq_u8(vshrq_n_u8(q5bits.val[1], 4), q5h.val[3]));
  4957. sumi += vaddvq_s32(ggml_vdotq_s32(ggml_vdotq_s32(mzero, q5bytes.val[0], q8bytes.val[0]), q5bytes.val[1], q8bytes.val[1])) * *scales++;
  4958. sumi += vaddvq_s32(ggml_vdotq_s32(ggml_vdotq_s32(mzero, q5bytes.val[2], q8bytes.val[2]), q5bytes.val[3], q8bytes.val[3])) * *scales++;
  4959. }
  4960. sumf += d * sumi - dmin * sumi_mins;
  4961. }
  4962. *s = sumf;
  4963. #elif defined __AVX2__
  4964. const __m256i m4 = _mm256_set1_epi8(0xF);
  4965. const __m128i mzero = _mm_setzero_si128();
  4966. const __m256i mone = _mm256_set1_epi8(1);
  4967. __m256 acc = _mm256_setzero_ps();
  4968. float summs = 0.f;
  4969. for (int i = 0; i < nb; ++i) {
  4970. const uint8_t * restrict q5 = x[i].qs;
  4971. const int8_t * restrict q8 = y[i].qs;
  4972. const float d = y[i].d * GGML_FP16_TO_FP32(x[i].d);
  4973. const float dmin = -y[i].d * GGML_FP16_TO_FP32(x[i].dmin);
  4974. memcpy(utmp, x[i].scales, 12);
  4975. utmp[3] = ((utmp[2] >> 4) & kmask2) | (((utmp[1] >> 6) & kmask3) << 4);
  4976. const uint32_t uaux = utmp[1] & kmask1;
  4977. utmp[1] = (utmp[2] & kmask2) | (((utmp[0] >> 6) & kmask3) << 4);
  4978. utmp[2] = uaux;
  4979. utmp[0] &= kmask1;
  4980. const __m256i mins_and_scales = _mm256_cvtepu8_epi16(_mm_set_epi32(utmp[3], utmp[2], utmp[1], utmp[0]));
  4981. const __m256i q8sums = _mm256_loadu_si256((const __m256i*)y[i].bsums);
  4982. const __m128i q8s = _mm_hadd_epi16(_mm256_extracti128_si256(q8sums, 0), _mm256_extracti128_si256(q8sums, 1));
  4983. const __m128i prod = _mm_madd_epi16(_mm256_extracti128_si256(mins_and_scales, 1), q8s);
  4984. const __m128i hsum = _mm_hadd_epi32(_mm_hadd_epi32(prod, mzero), mzero);
  4985. summs += dmin * _mm_extract_epi32(hsum, 0);
  4986. const __m128i sc128 = _mm256_extracti128_si256(mins_and_scales, 0);
  4987. const __m256i scales = MM256_SET_M128I(sc128, sc128);
  4988. const __m256i hbits = _mm256_loadu_si256((const __m256i*)x[i].qh);
  4989. __m256i hmask = mone;
  4990. __m256i sumi = _mm256_setzero_si256();
  4991. int bit = 0;
  4992. for (int j = 0; j < QK_K/64; ++j) {
  4993. const __m256i scale_0 = _mm256_shuffle_epi8(scales, get_scale_shuffle_k4(2*j+0));
  4994. const __m256i scale_1 = _mm256_shuffle_epi8(scales, get_scale_shuffle_k4(2*j+1));
  4995. const __m256i q5bits = _mm256_loadu_si256((const __m256i*)q5); q5 += 32;
  4996. const __m256i q5l_0 = _mm256_and_si256(q5bits, m4);
  4997. const __m256i q5h_0 = _mm256_slli_epi16(_mm256_srli_epi16(_mm256_and_si256(hbits, hmask), bit++), 4);
  4998. const __m256i q5_0 = _mm256_add_epi8(q5l_0, q5h_0);
  4999. hmask = _mm256_slli_epi16(hmask, 1);
  5000. const __m256i q5l_1 = _mm256_and_si256(_mm256_srli_epi16(q5bits, 4), m4);
  5001. const __m256i q5h_1 = _mm256_slli_epi16(_mm256_srli_epi16(_mm256_and_si256(hbits, hmask), bit++), 4);
  5002. const __m256i q5_1 = _mm256_add_epi8(q5l_1, q5h_1);
  5003. hmask = _mm256_slli_epi16(hmask, 1);
  5004. const __m256i q8_0 = _mm256_loadu_si256((const __m256i*)q8); q8 += 32;
  5005. const __m256i q8_1 = _mm256_loadu_si256((const __m256i*)q8); q8 += 32;
  5006. __m256i p16_0 = _mm256_maddubs_epi16(q5_0, q8_0);
  5007. __m256i p16_1 = _mm256_maddubs_epi16(q5_1, q8_1);
  5008. p16_0 = _mm256_madd_epi16(scale_0, p16_0);
  5009. p16_1 = _mm256_madd_epi16(scale_1, p16_1);
  5010. sumi = _mm256_add_epi32(sumi, _mm256_add_epi32(p16_0, p16_1));
  5011. }
  5012. __m256 vd = _mm256_set1_ps(d);
  5013. acc = _mm256_fmadd_ps(vd, _mm256_cvtepi32_ps(sumi), acc);
  5014. }
  5015. *s = hsum_float_8(acc) + summs;
  5016. #elif defined __AVX__
  5017. const __m128i m4 = _mm_set1_epi8(0xF);
  5018. const __m128i mzero = _mm_setzero_si128();
  5019. const __m128i mone = _mm_set1_epi8(1);
  5020. const __m128i m2 = _mm_set1_epi8(2);
  5021. __m256 acc = _mm256_setzero_ps();
  5022. float summs = 0.f;
  5023. for (int i = 0; i < nb; ++i) {
  5024. const float d = y[i].d * GGML_FP16_TO_FP32(x[i].d);
  5025. const float dmin = -y[i].d * GGML_FP16_TO_FP32(x[i].dmin);
  5026. const uint8_t * restrict q5 = x[i].qs;
  5027. const int8_t * restrict q8 = y[i].qs;
  5028. memcpy(utmp, x[i].scales, 12);
  5029. utmp[3] = ((utmp[2] >> 4) & kmask2) | (((utmp[1] >> 6) & kmask3) << 4);
  5030. const uint32_t uaux = utmp[1] & kmask1;
  5031. utmp[1] = (utmp[2] & kmask2) | (((utmp[0] >> 6) & kmask3) << 4);
  5032. utmp[2] = uaux;
  5033. utmp[0] &= kmask1;
  5034. const __m128i utmps = _mm_set_epi32(utmp[3], utmp[2], utmp[1], utmp[0]);
  5035. const __m128i scales = _mm_cvtepu8_epi16(utmps);
  5036. const __m128i mins = _mm_cvtepu8_epi16(_mm_unpackhi_epi64(utmps, utmps));
  5037. const __m128i q8sums_0 = _mm_loadu_si128((const __m128i*)&y[i].bsums[0]);
  5038. const __m128i q8sums_1 = _mm_loadu_si128((const __m128i*)&y[i].bsums[8]);
  5039. const __m128i q8s = _mm_hadd_epi16(q8sums_0, q8sums_1);
  5040. const __m128i prod = _mm_madd_epi16(mins, q8s);
  5041. const __m128i hsum = _mm_hadd_epi32(_mm_hadd_epi32(prod, mzero), mzero);
  5042. summs += dmin * _mm_extract_epi32(hsum, 0);
  5043. const __m128i hbits_0 = _mm_loadu_si128((const __m128i*)&x[i].qh[0]);
  5044. const __m128i hbits_1 = _mm_loadu_si128((const __m128i*)&x[i].qh[16]);
  5045. __m128i hmask = mone;
  5046. __m128i sumi_0 = _mm_setzero_si128();
  5047. __m128i sumi_1 = _mm_setzero_si128();
  5048. int bit = 0;
  5049. __m128i shuffle = _mm_set1_epi16(0x0100);
  5050. for (int j = 0; j < QK_K/64; ++j) {
  5051. const __m128i scale_0 = _mm_shuffle_epi8(scales, shuffle);
  5052. shuffle = _mm_add_epi16(shuffle, m2);
  5053. const __m128i scale_1 = _mm_shuffle_epi8(scales, shuffle);
  5054. shuffle = _mm_add_epi16(shuffle, m2);
  5055. const __m128i q5bits_0 = _mm_loadu_si128((const __m128i*)q5); q5 += 16;
  5056. const __m128i q5bits_1 = _mm_loadu_si128((const __m128i*)q5); q5 += 16;
  5057. __m128i q5l_0 = _mm_and_si128(q5bits_0, m4);
  5058. __m128i q5l_1 = _mm_and_si128(q5bits_1, m4);
  5059. __m128i q5h_0 = _mm_slli_epi16(_mm_srli_epi16(_mm_and_si128(hbits_0, hmask), bit), 4);
  5060. __m128i q5h_1 = _mm_slli_epi16(_mm_srli_epi16(_mm_and_si128(hbits_1, hmask), bit++), 4);
  5061. __m128i q5_0 = _mm_add_epi8(q5l_0, q5h_0);
  5062. __m128i q5_1 = _mm_add_epi8(q5l_1, q5h_1);
  5063. hmask = _mm_slli_epi16(hmask, 1);
  5064. __m128i q8_0 = _mm_loadu_si128((const __m128i*)q8); q8 += 16;
  5065. __m128i q8_1 = _mm_loadu_si128((const __m128i*)q8); q8 += 16;
  5066. __m128i p16_0 = _mm_maddubs_epi16(q5_0, q8_0);
  5067. __m128i p16_1 = _mm_maddubs_epi16(q5_1, q8_1);
  5068. p16_0 = _mm_madd_epi16(scale_0, p16_0);
  5069. p16_1 = _mm_madd_epi16(scale_0, p16_1);
  5070. q5l_0 = _mm_and_si128(_mm_srli_epi16(q5bits_0, 4), m4);
  5071. q5l_1 = _mm_and_si128(_mm_srli_epi16(q5bits_1, 4), m4);
  5072. q5h_0 = _mm_slli_epi16(_mm_srli_epi16(_mm_and_si128(hbits_0, hmask), bit), 4);
  5073. q5h_1 = _mm_slli_epi16(_mm_srli_epi16(_mm_and_si128(hbits_1, hmask), bit++), 4);
  5074. q5_0 = _mm_add_epi8(q5l_0, q5h_0);
  5075. q5_1 = _mm_add_epi8(q5l_1, q5h_1);
  5076. hmask = _mm_slli_epi16(hmask, 1);
  5077. q8_0 = _mm_loadu_si128((const __m128i*)q8); q8 += 16;
  5078. q8_1 = _mm_loadu_si128((const __m128i*)q8); q8 += 16;
  5079. __m128i p16_2 = _mm_maddubs_epi16(q5_0, q8_0);
  5080. __m128i p16_3 = _mm_maddubs_epi16(q5_1, q8_1);
  5081. p16_2 = _mm_madd_epi16(scale_1, p16_2);
  5082. p16_3 = _mm_madd_epi16(scale_1, p16_3);
  5083. sumi_0 = _mm_add_epi32(sumi_0, _mm_add_epi32(p16_0, p16_2));
  5084. sumi_1 = _mm_add_epi32(sumi_1, _mm_add_epi32(p16_1, p16_3));
  5085. }
  5086. __m256 vd = _mm256_set1_ps(d);
  5087. __m256i sumi = MM256_SET_M128I(sumi_1, sumi_0);
  5088. acc = _mm256_add_ps(_mm256_mul_ps(vd, _mm256_cvtepi32_ps(sumi)), acc);
  5089. }
  5090. *s = hsum_float_8(acc) + summs;
  5091. #elif defined __riscv_v_intrinsic
  5092. const uint8_t * scales = (const uint8_t*)&utmp[0];
  5093. const uint8_t * mins = (const uint8_t*)&utmp[2];
  5094. float sumf = 0;
  5095. float sums = 0.0;
  5096. size_t vl;
  5097. for (int i = 0; i < nb; ++i) {
  5098. vl = 8;
  5099. const uint8_t * restrict q5 = x[i].qs;
  5100. const uint8_t * restrict hm = x[i].qh;
  5101. const int8_t * restrict q8 = y[i].qs;
  5102. const float d = GGML_FP16_TO_FP32(x[i].d) * y[i].d;
  5103. const float dmin = GGML_FP16_TO_FP32(x[i].dmin) * y[i].d;
  5104. vint16mf2_t q8sums_0 = __riscv_vlse16_v_i16mf2(y[i].bsums, 4, vl);
  5105. vint16mf2_t q8sums_1 = __riscv_vlse16_v_i16mf2(y[i].bsums+1, 4, vl);
  5106. vint16mf2_t q8sums = __riscv_vadd_vv_i16mf2(q8sums_0, q8sums_1, vl);
  5107. memcpy(utmp, x[i].scales, 12);
  5108. utmp[3] = ((utmp[2] >> 4) & kmask2) | (((utmp[1] >> 6) & kmask3) << 4);
  5109. const uint32_t uaux = utmp[1] & kmask1;
  5110. utmp[1] = (utmp[2] & kmask2) | (((utmp[0] >> 6) & kmask3) << 4);
  5111. utmp[2] = uaux;
  5112. utmp[0] &= kmask1;
  5113. vuint8mf4_t mins8 = __riscv_vle8_v_u8mf4(mins, vl);
  5114. vint16mf2_t v_mins = __riscv_vreinterpret_v_u16mf2_i16mf2(__riscv_vzext_vf2_u16mf2(mins8, vl));
  5115. vint32m1_t prod = __riscv_vwmul_vv_i32m1(q8sums, v_mins, vl);
  5116. vint32m1_t sumi = __riscv_vredsum_vs_i32m1_i32m1(prod, __riscv_vmv_v_x_i32m1(0, 1), vl);
  5117. sumf -= dmin * __riscv_vmv_x_s_i32m1_i32(sumi);
  5118. vl = 32;
  5119. int32_t aux32 = 0;
  5120. int is = 0;
  5121. uint8_t m = 1;
  5122. vint32m1_t vzero = __riscv_vmv_v_x_i32m1(0, 1);
  5123. vuint8m1_t vqh = __riscv_vle8_v_u8m1(hm, vl);
  5124. for (int j = 0; j < QK_K/64; ++j) {
  5125. // load Q5 and Q8
  5126. vuint8m1_t q5_x = __riscv_vle8_v_u8m1(q5, vl);
  5127. vint8m1_t q8_y1 = __riscv_vle8_v_i8m1(q8, vl);
  5128. vint8m1_t q8_y2 = __riscv_vle8_v_i8m1(q8+32, vl);
  5129. // compute mask for addition
  5130. vint8m1_t q5_a = __riscv_vreinterpret_v_u8m1_i8m1(__riscv_vand_vx_u8m1(q5_x, 0x0F, vl));
  5131. vuint8m1_t qh_m1 = __riscv_vand_vx_u8m1(vqh, m, vl);
  5132. vbool8_t vmask_1 = __riscv_vmsne_vx_u8m1_b8(qh_m1, 0, vl);
  5133. vint8m1_t q5_m1 = __riscv_vadd_vx_i8m1_mu(vmask_1, q5_a, q5_a, 16, vl);
  5134. m <<= 1;
  5135. vint8m1_t q5_l = __riscv_vreinterpret_v_u8m1_i8m1(__riscv_vsrl_vx_u8m1(q5_x, 0x04, vl));
  5136. vuint8m1_t qh_m2 = __riscv_vand_vx_u8m1(vqh, m, vl);
  5137. vbool8_t vmask_2 = __riscv_vmsne_vx_u8m1_b8(qh_m2, 0, vl);
  5138. vint8m1_t q5_m2 = __riscv_vadd_vx_i8m1_mu(vmask_2, q5_l, q5_l, 16, vl);
  5139. m <<= 1;
  5140. vint16m2_t v0 = __riscv_vwmul_vv_i16m2(q5_m1, q8_y1, vl);
  5141. vint16m2_t v1 = __riscv_vwmul_vv_i16m2(q5_m2, q8_y2, vl);
  5142. vint32m4_t vs1 = __riscv_vwmul_vx_i32m4(v0, scales[is++], vl);
  5143. vint32m4_t vs2 = __riscv_vwmul_vx_i32m4(v1, scales[is++], vl);
  5144. vint32m1_t vacc1 = __riscv_vredsum_vs_i32m4_i32m1(vs1, vzero, vl);
  5145. vint32m1_t vacc2 = __riscv_vredsum_vs_i32m4_i32m1(vs2, vzero, vl);
  5146. aux32 += __riscv_vmv_x_s_i32m1_i32(vacc1) + __riscv_vmv_x_s_i32m1_i32(vacc2);
  5147. q5 += 32; q8 += 64;
  5148. }
  5149. vfloat32m1_t vaux = __riscv_vfmul_vf_f32m1(__riscv_vfmv_v_f_f32m1(aux32, 1), d, 1);
  5150. sums += __riscv_vfmv_f_s_f32m1_f32(vaux);
  5151. }
  5152. *s = sumf+sums;
  5153. #elif defined(__POWER9_VECTOR__)
  5154. const vector signed char lowMask = vec_splats((signed char)0xF);
  5155. const vector signed char lowMask1 = vec_splats((int8_t)0x3f);
  5156. const vector signed char lowMask2 = vec_splats((int8_t)0x30);
  5157. const vector int v0 = vec_splats((int32_t)0);
  5158. const vector unsigned char v1 = vec_splats((unsigned char)0x1);
  5159. const vector unsigned char v2 = vec_splats((unsigned char)0x2);
  5160. const vector unsigned char v3 = vec_splats((unsigned char)0x3);
  5161. const vector unsigned char v4 = vec_splats((unsigned char)0x4);
  5162. vector float vsumf0 = vec_splats(0.0f);
  5163. vector float vsumf1 = vec_splats(0.0f);
  5164. vector float vsumf2 = vec_splats(0.0f);
  5165. vector float vsumf3 = vec_splats(0.0f);
  5166. for (int i = 0; i < nb; ++i) {
  5167. vector float vxd = vec_splats(GGML_FP16_TO_FP32(x[i].d));
  5168. vector float vyd = vec_splats(y[i].d);
  5169. vector float vd = vec_mul(vxd, vyd);
  5170. vector float vxmin = vec_splats(GGML_FP16_TO_FP32(x[i].dmin));
  5171. vector float vdmin = vec_mul(vxmin, vyd);
  5172. UNUSED(kmask1);
  5173. UNUSED(kmask2);
  5174. UNUSED(kmask3);
  5175. UNUSED(utmp);
  5176. vector signed char u0 = (vector signed char)vec_xl_len(x[i].scales, 8);
  5177. vector signed char u1 = vec_and(vec_sr(u0, v2), lowMask2);
  5178. vector signed char u2 = (vector signed char)vec_xl_len(x[i].scales + 8, 4);
  5179. vector signed char u3 = vec_sr(u2, v4);
  5180. vector signed char u30 = u1;
  5181. vector signed char u31 = (vector signed char)vec_mergeh((vector signed int)vec_and(u2, lowMask), (vector signed int)u3);
  5182. u1 = vec_and(u0, lowMask1);
  5183. u2 = vec_or(u30, u31);
  5184. vector signed char utmps = (vector signed char)vec_mergeh((vector signed int)u1, (vector signed int)u2);
  5185. vector signed short q8ysums0 = vec_xl( 0, y[i].bsums);
  5186. vector signed short q8ysums1 = vec_xl(16, y[i].bsums);
  5187. vector signed short vscales = vec_unpackh(utmps);
  5188. vector signed short q5xmins = vec_unpackl(utmps);
  5189. vector signed short q5xmins0 = vec_mergeh(q5xmins, q5xmins);
  5190. vector signed short q5xmins1 = vec_mergel(q5xmins, q5xmins);
  5191. vector signed int prod0 = vec_mule(q5xmins0, q8ysums0);
  5192. vector signed int prod1 = vec_mule(q5xmins1, q8ysums1);
  5193. vector signed int prod2 = vec_mulo(q5xmins0, q8ysums0);
  5194. vector signed int prod3 = vec_mulo(q5xmins1, q8ysums1);
  5195. vsumf0 = vec_nmsub(vec_ctf(prod0, 0), vdmin, vsumf0);
  5196. vsumf1 = vec_nmsub(vec_ctf(prod1, 0), vdmin, vsumf1);
  5197. vsumf2 = vec_nmsub(vec_ctf(prod2, 0), vdmin, vsumf2);
  5198. vsumf3 = vec_nmsub(vec_ctf(prod3, 0), vdmin, vsumf3);
  5199. vector signed char qxhs0 = (vector signed char)vec_xl( 0, x[i].qh);
  5200. vector signed char qxhs1 = (vector signed char)vec_xl(16, x[i].qh);
  5201. vector signed int vsumi0 = v0;
  5202. vector signed int vsumi1 = v0;
  5203. vector signed int vsumi2 = v0;
  5204. vector signed int vsumi3 = v0;
  5205. const uint8_t * restrict q5 = x[i].qs;
  5206. const int8_t * restrict q8 = y[i].qs;
  5207. for (int j = 0; j < QK_K/64; ++j) {
  5208. __builtin_prefetch(q5, 0, 1);
  5209. __builtin_prefetch(q8, 0, 1);
  5210. vector signed char qxs0 = (vector signed char)vec_xl( 0, q5);
  5211. vector signed char qxs1 = (vector signed char)vec_xl(16, q5);
  5212. q5 += 32;
  5213. vector signed char qxs00 = vec_and(qxs0, lowMask);
  5214. vector signed char qxs01 = vec_sr(qxs0, v4);
  5215. vector signed char qxs10 = vec_and(qxs1, lowMask);
  5216. vector signed char qxs11 = vec_sr(qxs1, v4);
  5217. vector signed char q5h00 = vec_sl(vec_and((vector signed char)v1, qxhs0), v4);
  5218. vector signed char q5h01 = vec_sl(vec_and((vector signed char)v2, qxhs0), v3);
  5219. vector signed char q5h10 = vec_sl(vec_and((vector signed char)v1, qxhs1), v4);
  5220. vector signed char q5h11 = vec_sl(vec_and((vector signed char)v2, qxhs1), v3);
  5221. qxhs0 = vec_sr(qxhs0, v2);
  5222. qxhs1 = vec_sr(qxhs1, v2);
  5223. vector unsigned char q5x00 = (vector unsigned char)vec_or(q5h00, qxs00);
  5224. vector unsigned char q5x01 = (vector unsigned char)vec_or(q5h01, qxs01);
  5225. vector unsigned char q5x10 = (vector unsigned char)vec_or(q5h10, qxs10);
  5226. vector unsigned char q5x11 = (vector unsigned char)vec_or(q5h11, qxs11);
  5227. vector signed char q8y00 = vec_xl( 0, q8);
  5228. vector signed char q8y10 = vec_xl(16, q8);
  5229. vector signed char q8y01 = vec_xl(32, q8);
  5230. vector signed char q8y11 = vec_xl(48, q8);
  5231. q8 += 64;
  5232. vector signed int qv00 = vec_msum(q8y00, q5x00, v0);
  5233. vector signed int qv01 = vec_msum(q8y01, q5x01, v0);
  5234. vector signed int qv10 = vec_msum(q8y10, q5x10, v0);
  5235. vector signed int qv11 = vec_msum(q8y11, q5x11, v0);
  5236. vector signed int vscales_h = vec_unpackh(vscales);
  5237. vector signed int vs0 = vec_splat(vscales_h, 0);
  5238. vector signed int vs1 = vec_splat(vscales_h, 1);
  5239. vscales = vec_sld(vscales, vscales, 12);
  5240. vsumi0 = vec_add(vec_mul(qv00, vs0), vsumi0);
  5241. vsumi1 = vec_add(vec_mul(qv10, vs0), vsumi1);
  5242. vsumi2 = vec_add(vec_mul(qv01, vs1), vsumi2);
  5243. vsumi3 = vec_add(vec_mul(qv11, vs1), vsumi3);
  5244. }
  5245. vsumf0 = vec_madd(vec_ctf(vsumi0, 0), vd, vsumf0);
  5246. vsumf1 = vec_madd(vec_ctf(vsumi1, 0), vd, vsumf1);
  5247. vsumf2 = vec_madd(vec_ctf(vsumi2, 0), vd, vsumf2);
  5248. vsumf3 = vec_madd(vec_ctf(vsumi3, 0), vd, vsumf3);
  5249. }
  5250. vsumf0 = vec_add(vsumf0, vsumf2);
  5251. vsumf1 = vec_add(vsumf1, vsumf3);
  5252. vsumf0 = vec_add(vsumf0, vsumf1);
  5253. vsumf0 = vec_add(vsumf0, vec_sld(vsumf0, vsumf0, 4));
  5254. vsumf0 = vec_add(vsumf0, vec_sld(vsumf0, vsumf0, 8));
  5255. *s = vec_extract(vsumf0, 0);
  5256. #elif defined __loongarch_asx
  5257. GGML_UNUSED(kmask1);
  5258. GGML_UNUSED(kmask2);
  5259. GGML_UNUSED(kmask3);
  5260. const __m256i m4 = __lasx_xvreplgr2vr_b(0xF);
  5261. const __m128i mzero = __lsx_vldi(0);
  5262. const __m256i mone = __lasx_xvreplgr2vr_b(1);
  5263. __m256 acc = (__m256)__lasx_xvldi(0);
  5264. float summs = 0.f;
  5265. for (int i = 0; i < nb; ++i) {
  5266. const uint8_t * restrict q5 = x[i].qs;
  5267. const int8_t * restrict q8 = y[i].qs;
  5268. const float d = y[i].d * GGML_FP16_TO_FP32(x[i].d);
  5269. const float dmin = -y[i].d * GGML_FP16_TO_FP32(x[i].dmin);
  5270. memcpy(utmp, x[i].scales, 12);
  5271. utmp[3] = ((utmp[2] >> 4) & kmask2) | (((utmp[1] >> 6) & kmask3) << 4);
  5272. const uint32_t uaux = utmp[1] & kmask1;
  5273. utmp[1] = (utmp[2] & kmask2) | (((utmp[0] >> 6) & kmask3) << 4);
  5274. utmp[2] = uaux;
  5275. utmp[0] &= kmask1;
  5276. const __m256i mins_and_scales = lasx_extu8_16(lsx_set_w(utmp[3], utmp[2], utmp[1], utmp[0]));
  5277. const __m256i q8sums = __lasx_xvld((const __m256i*)y[i].bsums, 0);
  5278. const __m128i q8s = lsx_hadd_h(lasx_extracti128(q8sums, 0), lasx_extracti128(q8sums, 1));
  5279. const __m128i prod = lsx_madd_h(lasx_extracti128(mins_and_scales, 1), q8s);
  5280. const __m128i hsum = lsx_hadd_w(lsx_hadd_w(prod, mzero), mzero);
  5281. summs += dmin * __lsx_vpickve2gr_w(hsum, 0); //TODO check
  5282. const __m128i sc128 = lasx_extracti128(mins_and_scales, 0);
  5283. const __m256i scales = lasx_insertf128(sc128, sc128);
  5284. const __m256i hbits = __lasx_xvld((const __m256i*)x[i].qh, 0);
  5285. __m256i hmask = mone;
  5286. __m256i sumi = __lasx_xvldi(0);
  5287. int bit = 0;
  5288. __m256i xvbit;
  5289. for (int j = 0; j < QK_K/64; ++j) {
  5290. const __m256i scale_0 = lasx_shuffle_b(scales, get_scale_shuffle_k4(2*j+0));
  5291. const __m256i scale_1 = lasx_shuffle_b(scales, get_scale_shuffle_k4(2*j+1));
  5292. const __m256i q5bits = __lasx_xvld((const __m256i*)q5, 0); q5 += 32;
  5293. xvbit = __lasx_xvreplgr2vr_h(bit++);
  5294. const __m256i q5l_0 = __lasx_xvand_v(q5bits, m4);
  5295. const __m256i q5h_0 = __lasx_xvslli_h(__lasx_xvsrl_h(__lasx_xvand_v(hbits, hmask), xvbit), 4);
  5296. const __m256i q5_0 = __lasx_xvadd_b(q5l_0, q5h_0);
  5297. hmask = __lasx_xvslli_h(hmask, 1);
  5298. xvbit = __lasx_xvreplgr2vr_h(bit++);
  5299. const __m256i q5l_1 = __lasx_xvand_v(__lasx_xvsrli_h(q5bits, 4), m4);
  5300. const __m256i q5h_1 = __lasx_xvslli_h(__lasx_xvsrl_h(__lasx_xvand_v(hbits, hmask), xvbit), 4);
  5301. const __m256i q5_1 = __lasx_xvadd_b(q5l_1, q5h_1);
  5302. hmask = __lasx_xvslli_h(hmask, 1);
  5303. const __m256i q8_0 = __lasx_xvld((const __m256i*)q8, 0); q8 += 32;
  5304. const __m256i q8_1 = __lasx_xvld((const __m256i*)q8, 0); q8 += 32;
  5305. __m256i p16_0 = lasx_maddubs_h(q5_0, q8_0);
  5306. __m256i p16_1 = lasx_maddubs_h(q5_1, q8_1);
  5307. p16_0 = lasx_madd_h(scale_0, p16_0);
  5308. p16_1 = lasx_madd_h(scale_1, p16_1);
  5309. sumi = __lasx_xvadd_w(sumi, __lasx_xvadd_w(p16_0, p16_1));
  5310. }
  5311. __m256 vd = __lasx_xvreplfr2vr_s(d);
  5312. acc = __lasx_xvfmadd_s(vd, __lasx_xvffint_s_w(sumi), acc);
  5313. }
  5314. *s = hsum_float_8(acc) + summs;
  5315. #else
  5316. const uint8_t * scales = (const uint8_t*)&utmp[0];
  5317. const uint8_t * mins = (const uint8_t*)&utmp[2];
  5318. int8_t aux8[QK_K];
  5319. int16_t aux16[8];
  5320. float sums [8];
  5321. int32_t aux32[8];
  5322. memset(sums, 0, 8*sizeof(float));
  5323. float sumf = 0;
  5324. for (int i = 0; i < nb; ++i) {
  5325. const uint8_t * restrict q4 = x[i].qs;
  5326. const uint8_t * restrict hm = x[i].qh;
  5327. const int8_t * restrict q8 = y[i].qs;
  5328. memset(aux32, 0, 8*sizeof(int32_t));
  5329. int8_t * restrict a = aux8;
  5330. uint8_t m = 1;
  5331. for (int j = 0; j < QK_K/64; ++j) {
  5332. for (int l = 0; l < 32; ++l) a[l] = (int8_t)(q4[l] & 0xF);
  5333. for (int l = 0; l < 32; ++l) a[l] += (hm[l] & m ? 16 : 0);
  5334. a += 32; m <<= 1;
  5335. for (int l = 0; l < 32; ++l) a[l] = (int8_t)(q4[l] >> 4);
  5336. for (int l = 0; l < 32; ++l) a[l] += (hm[l] & m ? 16 : 0);
  5337. a += 32; m <<= 1;
  5338. q4 += 32;
  5339. }
  5340. memcpy(utmp, x[i].scales, 12);
  5341. utmp[3] = ((utmp[2] >> 4) & kmask2) | (((utmp[1] >> 6) & kmask3) << 4);
  5342. const uint32_t uaux = utmp[1] & kmask1;
  5343. utmp[1] = (utmp[2] & kmask2) | (((utmp[0] >> 6) & kmask3) << 4);
  5344. utmp[2] = uaux;
  5345. utmp[0] &= kmask1;
  5346. int sumi = 0;
  5347. for (int j = 0; j < QK_K/16; ++j) sumi += y[i].bsums[j] * mins[j/2];
  5348. a = aux8;
  5349. int is = 0;
  5350. for (int j = 0; j < QK_K/32; ++j) {
  5351. int32_t scale = scales[is++];
  5352. for (int l = 0; l < 8; ++l) aux16[l] = q8[l] * a[l];
  5353. for (int l = 0; l < 8; ++l) aux32[l] += scale * aux16[l];
  5354. q8 += 8; a += 8;
  5355. for (int l = 0; l < 8; ++l) aux16[l] = q8[l] * a[l];
  5356. for (int l = 0; l < 8; ++l) aux32[l] += scale * aux16[l];
  5357. q8 += 8; a += 8;
  5358. for (int l = 0; l < 8; ++l) aux16[l] = q8[l] * a[l];
  5359. for (int l = 0; l < 8; ++l) aux32[l] += scale * aux16[l];
  5360. q8 += 8; a += 8;
  5361. for (int l = 0; l < 8; ++l) aux16[l] = q8[l] * a[l];
  5362. for (int l = 0; l < 8; ++l) aux32[l] += scale * aux16[l];
  5363. q8 += 8; a += 8;
  5364. }
  5365. const float d = GGML_FP16_TO_FP32(x[i].d) * y[i].d;
  5366. for (int l = 0; l < 8; ++l) sums[l] += d * aux32[l];
  5367. const float dmin = GGML_FP16_TO_FP32(x[i].dmin) * y[i].d;
  5368. sumf -= dmin * sumi;
  5369. }
  5370. for (int l = 0; l < 8; ++l) sumf += sums[l];
  5371. *s = sumf;
  5372. #endif
  5373. }
  5374. void ggml_vec_dot_q6_K_q8_K(int n, float * restrict s, size_t bs, const void * restrict vx, size_t bx, const void * restrict vy, size_t by, int nrc) {
  5375. assert(n % QK_K == 0);
  5376. assert(nrc == 1);
  5377. UNUSED(nrc);
  5378. UNUSED(bx);
  5379. UNUSED(by);
  5380. UNUSED(bs);
  5381. const block_q6_K * restrict x = vx;
  5382. const block_q8_K * restrict y = vy;
  5383. const int nb = n / QK_K;
  5384. #ifdef __ARM_NEON
  5385. float sum = 0;
  5386. const uint8x16_t m4b = vdupq_n_u8(0xF);
  5387. const int32x4_t vzero = vdupq_n_s32(0);
  5388. //const int8x16_t m32s = vdupq_n_s8(32);
  5389. const uint8x16_t mone = vdupq_n_u8(3);
  5390. ggml_int8x16x4_t q6bytes;
  5391. ggml_uint8x16x4_t q6h;
  5392. for (int i = 0; i < nb; ++i) {
  5393. const float d_all = GGML_FP16_TO_FP32(x[i].d);
  5394. const uint8_t * restrict q6 = x[i].ql;
  5395. const uint8_t * restrict qh = x[i].qh;
  5396. const int8_t * restrict q8 = y[i].qs;
  5397. const int8_t * restrict scale = x[i].scales;
  5398. const ggml_int16x8x2_t q8sums = ggml_vld1q_s16_x2(y[i].bsums);
  5399. const int8x16_t scales = vld1q_s8(scale);
  5400. const ggml_int16x8x2_t q6scales = {{vmovl_s8(vget_low_s8(scales)), vmovl_s8(vget_high_s8(scales))}};
  5401. const int32x4_t prod = vaddq_s32(vaddq_s32(vmull_s16(vget_low_s16 (q8sums.val[0]), vget_low_s16 (q6scales.val[0])),
  5402. vmull_s16(vget_high_s16(q8sums.val[0]), vget_high_s16(q6scales.val[0]))),
  5403. vaddq_s32(vmull_s16(vget_low_s16 (q8sums.val[1]), vget_low_s16 (q6scales.val[1])),
  5404. vmull_s16(vget_high_s16(q8sums.val[1]), vget_high_s16(q6scales.val[1]))));
  5405. int32_t isum_mins = vaddvq_s32(prod);
  5406. int32_t isum = 0;
  5407. for (int j = 0; j < QK_K/128; ++j) {
  5408. ggml_uint8x16x2_t qhbits = ggml_vld1q_u8_x2(qh); qh += 32;
  5409. ggml_uint8x16x4_t q6bits = ggml_vld1q_u8_x4(q6); q6 += 64;
  5410. ggml_int8x16x4_t q8bytes = ggml_vld1q_s8_x4(q8); q8 += 64;
  5411. q6h.val[0] = vshlq_n_u8(vandq_u8(mone, qhbits.val[0]), 4);
  5412. q6h.val[1] = vshlq_n_u8(vandq_u8(mone, qhbits.val[1]), 4);
  5413. uint8x16_t shifted = vshrq_n_u8(qhbits.val[0], 2);
  5414. q6h.val[2] = vshlq_n_u8(vandq_u8(mone, shifted), 4);
  5415. shifted = vshrq_n_u8(qhbits.val[1], 2);
  5416. q6h.val[3] = vshlq_n_u8(vandq_u8(mone, shifted), 4);
  5417. //q6bytes.val[0] = vsubq_s8(vreinterpretq_s8_u8(vorrq_u8(vandq_u8(q6bits.val[0], m4b), q6h.val[0])), m32s);
  5418. //q6bytes.val[1] = vsubq_s8(vreinterpretq_s8_u8(vorrq_u8(vandq_u8(q6bits.val[1], m4b), q6h.val[1])), m32s);
  5419. //q6bytes.val[2] = vsubq_s8(vreinterpretq_s8_u8(vorrq_u8(vandq_u8(q6bits.val[2], m4b), q6h.val[2])), m32s);
  5420. //q6bytes.val[3] = vsubq_s8(vreinterpretq_s8_u8(vorrq_u8(vandq_u8(q6bits.val[3], m4b), q6h.val[3])), m32s);
  5421. q6bytes.val[0] = vreinterpretq_s8_u8(vorrq_u8(vandq_u8(q6bits.val[0], m4b), q6h.val[0]));
  5422. q6bytes.val[1] = vreinterpretq_s8_u8(vorrq_u8(vandq_u8(q6bits.val[1], m4b), q6h.val[1]));
  5423. q6bytes.val[2] = vreinterpretq_s8_u8(vorrq_u8(vandq_u8(q6bits.val[2], m4b), q6h.val[2]));
  5424. q6bytes.val[3] = vreinterpretq_s8_u8(vorrq_u8(vandq_u8(q6bits.val[3], m4b), q6h.val[3]));
  5425. isum += vaddvq_s32(ggml_vdotq_s32(vzero, q6bytes.val[0], q8bytes.val[0])) * scale[0] +
  5426. vaddvq_s32(ggml_vdotq_s32(vzero, q6bytes.val[1], q8bytes.val[1])) * scale[1] +
  5427. vaddvq_s32(ggml_vdotq_s32(vzero, q6bytes.val[2], q8bytes.val[2])) * scale[2] +
  5428. vaddvq_s32(ggml_vdotq_s32(vzero, q6bytes.val[3], q8bytes.val[3])) * scale[3];
  5429. scale += 4;
  5430. q8bytes = ggml_vld1q_s8_x4(q8); q8 += 64;
  5431. shifted = vshrq_n_u8(qhbits.val[0], 4);
  5432. q6h.val[0] = vshlq_n_u8(vandq_u8(mone, shifted), 4);
  5433. shifted = vshrq_n_u8(qhbits.val[1], 4);
  5434. q6h.val[1] = vshlq_n_u8(vandq_u8(mone, shifted), 4);
  5435. shifted = vshrq_n_u8(qhbits.val[0], 6);
  5436. q6h.val[2] = vshlq_n_u8(vandq_u8(mone, shifted), 4);
  5437. shifted = vshrq_n_u8(qhbits.val[1], 6);
  5438. q6h.val[3] = vshlq_n_u8(vandq_u8(mone, shifted), 4);
  5439. //q6bytes.val[0] = vsubq_s8(vreinterpretq_s8_u8(vorrq_u8(vshrq_n_u8(q6bits.val[0], 4), q6h.val[0])), m32s);
  5440. //q6bytes.val[1] = vsubq_s8(vreinterpretq_s8_u8(vorrq_u8(vshrq_n_u8(q6bits.val[1], 4), q6h.val[1])), m32s);
  5441. //q6bytes.val[2] = vsubq_s8(vreinterpretq_s8_u8(vorrq_u8(vshrq_n_u8(q6bits.val[2], 4), q6h.val[2])), m32s);
  5442. //q6bytes.val[3] = vsubq_s8(vreinterpretq_s8_u8(vorrq_u8(vshrq_n_u8(q6bits.val[3], 4), q6h.val[3])), m32s);
  5443. q6bytes.val[0] = vreinterpretq_s8_u8(vorrq_u8(vshrq_n_u8(q6bits.val[0], 4), q6h.val[0]));
  5444. q6bytes.val[1] = vreinterpretq_s8_u8(vorrq_u8(vshrq_n_u8(q6bits.val[1], 4), q6h.val[1]));
  5445. q6bytes.val[2] = vreinterpretq_s8_u8(vorrq_u8(vshrq_n_u8(q6bits.val[2], 4), q6h.val[2]));
  5446. q6bytes.val[3] = vreinterpretq_s8_u8(vorrq_u8(vshrq_n_u8(q6bits.val[3], 4), q6h.val[3]));
  5447. isum += vaddvq_s32(ggml_vdotq_s32(vzero, q6bytes.val[0], q8bytes.val[0])) * scale[0] +
  5448. vaddvq_s32(ggml_vdotq_s32(vzero, q6bytes.val[1], q8bytes.val[1])) * scale[1] +
  5449. vaddvq_s32(ggml_vdotq_s32(vzero, q6bytes.val[2], q8bytes.val[2])) * scale[2] +
  5450. vaddvq_s32(ggml_vdotq_s32(vzero, q6bytes.val[3], q8bytes.val[3])) * scale[3];
  5451. scale += 4;
  5452. }
  5453. //sum += isum * d_all * y[i].d;
  5454. sum += d_all * y[i].d * (isum - 32 * isum_mins);
  5455. }
  5456. *s = sum;
  5457. #elif defined __AVX2__
  5458. const __m256i m4 = _mm256_set1_epi8(0xF);
  5459. const __m256i m2 = _mm256_set1_epi8(3);
  5460. const __m256i m32s = _mm256_set1_epi8(32);
  5461. __m256 acc = _mm256_setzero_ps();
  5462. for (int i = 0; i < nb; ++i) {
  5463. const float d = y[i].d * GGML_FP16_TO_FP32(x[i].d);
  5464. const uint8_t * restrict q4 = x[i].ql;
  5465. const uint8_t * restrict qh = x[i].qh;
  5466. const int8_t * restrict q8 = y[i].qs;
  5467. const __m128i scales = _mm_loadu_si128((const __m128i*)x[i].scales);
  5468. __m256i sumi = _mm256_setzero_si256();
  5469. int is = 0;
  5470. for (int j = 0; j < QK_K/128; ++j) {
  5471. const __m128i scale_0 = _mm_shuffle_epi8(scales, get_scale_shuffle(is + 0));
  5472. const __m128i scale_1 = _mm_shuffle_epi8(scales, get_scale_shuffle(is + 1));
  5473. const __m128i scale_2 = _mm_shuffle_epi8(scales, get_scale_shuffle(is + 2));
  5474. const __m128i scale_3 = _mm_shuffle_epi8(scales, get_scale_shuffle(is + 3));
  5475. is += 4;
  5476. const __m256i q4bits1 = _mm256_loadu_si256((const __m256i*)q4); q4 += 32;
  5477. const __m256i q4bits2 = _mm256_loadu_si256((const __m256i*)q4); q4 += 32;
  5478. const __m256i q4bitsH = _mm256_loadu_si256((const __m256i*)qh); qh += 32;
  5479. const __m256i q4h_0 = _mm256_slli_epi16(_mm256_and_si256(q4bitsH, m2), 4);
  5480. const __m256i q4h_1 = _mm256_slli_epi16(_mm256_and_si256(_mm256_srli_epi16(q4bitsH, 2), m2), 4);
  5481. const __m256i q4h_2 = _mm256_slli_epi16(_mm256_and_si256(_mm256_srli_epi16(q4bitsH, 4), m2), 4);
  5482. const __m256i q4h_3 = _mm256_slli_epi16(_mm256_and_si256(_mm256_srli_epi16(q4bitsH, 6), m2), 4);
  5483. const __m256i q4_0 = _mm256_or_si256(_mm256_and_si256(q4bits1, m4), q4h_0);
  5484. const __m256i q4_1 = _mm256_or_si256(_mm256_and_si256(q4bits2, m4), q4h_1);
  5485. const __m256i q4_2 = _mm256_or_si256(_mm256_and_si256(_mm256_srli_epi16(q4bits1, 4), m4), q4h_2);
  5486. const __m256i q4_3 = _mm256_or_si256(_mm256_and_si256(_mm256_srli_epi16(q4bits2, 4), m4), q4h_3);
  5487. const __m256i q8_0 = _mm256_loadu_si256((const __m256i*)q8); q8 += 32;
  5488. const __m256i q8_1 = _mm256_loadu_si256((const __m256i*)q8); q8 += 32;
  5489. const __m256i q8_2 = _mm256_loadu_si256((const __m256i*)q8); q8 += 32;
  5490. const __m256i q8_3 = _mm256_loadu_si256((const __m256i*)q8); q8 += 32;
  5491. __m256i q8s_0 = _mm256_maddubs_epi16(m32s, q8_0);
  5492. __m256i q8s_1 = _mm256_maddubs_epi16(m32s, q8_1);
  5493. __m256i q8s_2 = _mm256_maddubs_epi16(m32s, q8_2);
  5494. __m256i q8s_3 = _mm256_maddubs_epi16(m32s, q8_3);
  5495. __m256i p16_0 = _mm256_maddubs_epi16(q4_0, q8_0);
  5496. __m256i p16_1 = _mm256_maddubs_epi16(q4_1, q8_1);
  5497. __m256i p16_2 = _mm256_maddubs_epi16(q4_2, q8_2);
  5498. __m256i p16_3 = _mm256_maddubs_epi16(q4_3, q8_3);
  5499. p16_0 = _mm256_sub_epi16(p16_0, q8s_0);
  5500. p16_1 = _mm256_sub_epi16(p16_1, q8s_1);
  5501. p16_2 = _mm256_sub_epi16(p16_2, q8s_2);
  5502. p16_3 = _mm256_sub_epi16(p16_3, q8s_3);
  5503. p16_0 = _mm256_madd_epi16(_mm256_cvtepi8_epi16(scale_0), p16_0);
  5504. p16_1 = _mm256_madd_epi16(_mm256_cvtepi8_epi16(scale_1), p16_1);
  5505. p16_2 = _mm256_madd_epi16(_mm256_cvtepi8_epi16(scale_2), p16_2);
  5506. p16_3 = _mm256_madd_epi16(_mm256_cvtepi8_epi16(scale_3), p16_3);
  5507. sumi = _mm256_add_epi32(sumi, _mm256_add_epi32(p16_0, p16_1));
  5508. sumi = _mm256_add_epi32(sumi, _mm256_add_epi32(p16_2, p16_3));
  5509. }
  5510. acc = _mm256_fmadd_ps(_mm256_broadcast_ss(&d), _mm256_cvtepi32_ps(sumi), acc);
  5511. }
  5512. *s = hsum_float_8(acc);
  5513. #elif defined __AVX__
  5514. const __m128i m3 = _mm_set1_epi8(3);
  5515. const __m128i m15 = _mm_set1_epi8(15);
  5516. __m256 acc = _mm256_setzero_ps();
  5517. for (int i = 0; i < nb; ++i) {
  5518. const float d = y[i].d * GGML_FP16_TO_FP32(x[i].d);
  5519. const uint8_t * restrict q4 = x[i].ql;
  5520. const uint8_t * restrict qh = x[i].qh;
  5521. const int8_t * restrict q8 = y[i].qs;
  5522. // handle the q6_k -32 offset separately using bsums
  5523. const __m128i q8sums_0 = _mm_loadu_si128((const __m128i*)y[i].bsums);
  5524. const __m128i q8sums_1 = _mm_loadu_si128((const __m128i*)y[i].bsums + 1);
  5525. const __m128i scales = _mm_loadu_si128((const __m128i*)x[i].scales);
  5526. const __m128i scales_16_0 = _mm_cvtepi8_epi16(scales);
  5527. const __m128i scales_16_1 = _mm_cvtepi8_epi16(_mm_bsrli_si128(scales, 8));
  5528. const __m128i q8sclsub_0 = _mm_slli_epi32(_mm_madd_epi16(q8sums_0, scales_16_0), 5);
  5529. const __m128i q8sclsub_1 = _mm_slli_epi32(_mm_madd_epi16(q8sums_1, scales_16_1), 5);
  5530. __m128i sumi_0 = _mm_setzero_si128();
  5531. __m128i sumi_1 = _mm_setzero_si128();
  5532. int is = 0;
  5533. for (int j = 0; j < QK_K/128; ++j) {
  5534. const __m128i q4bitsH_0 = _mm_loadu_si128((const __m128i*)qh); qh += 16;
  5535. const __m128i q4bitsH_1 = _mm_loadu_si128((const __m128i*)qh); qh += 16;
  5536. const __m128i q4h_0 = _mm_slli_epi16(_mm_and_si128(q4bitsH_0, m3), 4);
  5537. const __m128i q4h_1 = _mm_slli_epi16(_mm_and_si128(q4bitsH_1, m3), 4);
  5538. const __m128i q4h_2 = _mm_slli_epi16(_mm_and_si128(q4bitsH_0, _mm_set1_epi8(12)), 2);
  5539. const __m128i q4h_3 = _mm_slli_epi16(_mm_and_si128(q4bitsH_1, _mm_set1_epi8(12)), 2);
  5540. const __m128i q4h_4 = _mm_and_si128(q4bitsH_0, _mm_set1_epi8(48));
  5541. const __m128i q4h_5 = _mm_and_si128(q4bitsH_1, _mm_set1_epi8(48));
  5542. const __m128i q4h_6 = _mm_srli_epi16(_mm_and_si128(q4bitsH_0, _mm_set1_epi8(-64)), 2);
  5543. const __m128i q4h_7 = _mm_srli_epi16(_mm_and_si128(q4bitsH_1, _mm_set1_epi8(-64)), 2);
  5544. const __m128i q4bits1_0 = _mm_loadu_si128((const __m128i*)q4); q4 += 16;
  5545. const __m128i q4bits1_1 = _mm_loadu_si128((const __m128i*)q4); q4 += 16;
  5546. const __m128i q4bits2_0 = _mm_loadu_si128((const __m128i*)q4); q4 += 16;
  5547. const __m128i q4bits2_1 = _mm_loadu_si128((const __m128i*)q4); q4 += 16;
  5548. const __m128i q4_0 = _mm_or_si128(_mm_and_si128(q4bits1_0, m15), q4h_0);
  5549. const __m128i q4_1 = _mm_or_si128(_mm_and_si128(q4bits1_1, m15), q4h_1);
  5550. const __m128i q4_2 = _mm_or_si128(_mm_and_si128(q4bits2_0, m15), q4h_2);
  5551. const __m128i q4_3 = _mm_or_si128(_mm_and_si128(q4bits2_1, m15), q4h_3);
  5552. const __m128i q4_4 = _mm_or_si128(_mm_and_si128(_mm_srli_epi16(q4bits1_0, 4), m15), q4h_4);
  5553. const __m128i q4_5 = _mm_or_si128(_mm_and_si128(_mm_srli_epi16(q4bits1_1, 4), m15), q4h_5);
  5554. const __m128i q4_6 = _mm_or_si128(_mm_and_si128(_mm_srli_epi16(q4bits2_0, 4), m15), q4h_6);
  5555. const __m128i q4_7 = _mm_or_si128(_mm_and_si128(_mm_srli_epi16(q4bits2_1, 4), m15), q4h_7);
  5556. const __m128i q8_0 = _mm_loadu_si128((const __m128i*)q8); q8 += 16;
  5557. const __m128i q8_1 = _mm_loadu_si128((const __m128i*)q8); q8 += 16;
  5558. const __m128i q8_2 = _mm_loadu_si128((const __m128i*)q8); q8 += 16;
  5559. const __m128i q8_3 = _mm_loadu_si128((const __m128i*)q8); q8 += 16;
  5560. const __m128i q8_4 = _mm_loadu_si128((const __m128i*)q8); q8 += 16;
  5561. const __m128i q8_5 = _mm_loadu_si128((const __m128i*)q8); q8 += 16;
  5562. const __m128i q8_6 = _mm_loadu_si128((const __m128i*)q8); q8 += 16;
  5563. const __m128i q8_7 = _mm_loadu_si128((const __m128i*)q8); q8 += 16;
  5564. __m128i p16_0 = _mm_maddubs_epi16(q4_0, q8_0);
  5565. __m128i p16_1 = _mm_maddubs_epi16(q4_1, q8_1);
  5566. __m128i p16_2 = _mm_maddubs_epi16(q4_2, q8_2);
  5567. __m128i p16_3 = _mm_maddubs_epi16(q4_3, q8_3);
  5568. __m128i p16_4 = _mm_maddubs_epi16(q4_4, q8_4);
  5569. __m128i p16_5 = _mm_maddubs_epi16(q4_5, q8_5);
  5570. __m128i p16_6 = _mm_maddubs_epi16(q4_6, q8_6);
  5571. __m128i p16_7 = _mm_maddubs_epi16(q4_7, q8_7);
  5572. const __m128i scale_0 = _mm_shuffle_epi8(scales, get_scale_shuffle(is + 0));
  5573. const __m128i scale_1 = _mm_shuffle_epi8(scales, get_scale_shuffle(is + 1));
  5574. const __m128i scale_2 = _mm_shuffle_epi8(scales, get_scale_shuffle(is + 2));
  5575. const __m128i scale_3 = _mm_shuffle_epi8(scales, get_scale_shuffle(is + 3));
  5576. is += 4;
  5577. p16_0 = _mm_madd_epi16(_mm_cvtepi8_epi16(scale_0), p16_0);
  5578. p16_1 = _mm_madd_epi16(_mm_cvtepi8_epi16(_mm_bsrli_si128(scale_0, 8)), p16_1);
  5579. p16_2 = _mm_madd_epi16(_mm_cvtepi8_epi16(scale_1), p16_2);
  5580. p16_3 = _mm_madd_epi16(_mm_cvtepi8_epi16(_mm_bsrli_si128(scale_1, 8)), p16_3);
  5581. p16_4 = _mm_madd_epi16(_mm_cvtepi8_epi16(scale_2), p16_4);
  5582. p16_5 = _mm_madd_epi16(_mm_cvtepi8_epi16(_mm_bsrli_si128(scale_2, 8)), p16_5);
  5583. p16_6 = _mm_madd_epi16(_mm_cvtepi8_epi16(scale_3), p16_6);
  5584. p16_7 = _mm_madd_epi16(_mm_cvtepi8_epi16(_mm_bsrli_si128(scale_3, 8)), p16_7);
  5585. sumi_0 = _mm_add_epi32(sumi_0, _mm_add_epi32(p16_0, p16_2));
  5586. sumi_1 = _mm_add_epi32(sumi_1, _mm_add_epi32(p16_1, p16_3));
  5587. sumi_0 = _mm_add_epi32(sumi_0, _mm_add_epi32(p16_4, p16_6));
  5588. sumi_1 = _mm_add_epi32(sumi_1, _mm_add_epi32(p16_5, p16_7));
  5589. }
  5590. sumi_0 = _mm_sub_epi32(sumi_0, q8sclsub_0);
  5591. sumi_1 = _mm_sub_epi32(sumi_1, q8sclsub_1);
  5592. const __m256i sumi = MM256_SET_M128I(sumi_1, sumi_0);
  5593. acc = _mm256_add_ps(_mm256_mul_ps(_mm256_set1_ps(d), _mm256_cvtepi32_ps(sumi)), acc);
  5594. }
  5595. *s = hsum_float_8(acc);
  5596. #elif defined __riscv_v_intrinsic
  5597. float sumf = 0;
  5598. for (int i = 0; i < nb; ++i) {
  5599. const float d = GGML_FP16_TO_FP32(x[i].d) * y[i].d;
  5600. const uint8_t * restrict q6 = x[i].ql;
  5601. const uint8_t * restrict qh = x[i].qh;
  5602. const int8_t * restrict q8 = y[i].qs;
  5603. const int8_t * restrict scale = x[i].scales;
  5604. size_t vl;
  5605. vint32m1_t vzero = __riscv_vmv_v_x_i32m1(0, 1);
  5606. int sum_t = 0;
  5607. int is = 0;
  5608. for (int j = 0; j < QK_K/128; ++j) {
  5609. vl = 32;
  5610. // load qh
  5611. vuint8m1_t qh_x = __riscv_vle8_v_u8m1(qh, vl);
  5612. // load Q6
  5613. vuint8m1_t q6_0 = __riscv_vle8_v_u8m1(q6, vl);
  5614. vuint8m1_t q6_1 = __riscv_vle8_v_u8m1(q6+32, vl);
  5615. vuint8m1_t q6a_0 = __riscv_vand_vx_u8m1(q6_0, 0x0F, vl);
  5616. vuint8m1_t q6a_1 = __riscv_vand_vx_u8m1(q6_1, 0x0F, vl);
  5617. vuint8m1_t q6s_0 = __riscv_vsrl_vx_u8m1(q6_0, 0x04, vl);
  5618. vuint8m1_t q6s_1 = __riscv_vsrl_vx_u8m1(q6_1, 0x04, vl);
  5619. vuint8m1_t qh_0 = __riscv_vand_vx_u8m1(qh_x, 0x03, vl);
  5620. vuint8m1_t qh_1 = __riscv_vand_vx_u8m1(__riscv_vsrl_vx_u8m1(qh_x, 0x2, vl), 0x03 , vl);
  5621. vuint8m1_t qh_2 = __riscv_vand_vx_u8m1(__riscv_vsrl_vx_u8m1(qh_x, 0x4, vl), 0x03 , vl);
  5622. vuint8m1_t qh_3 = __riscv_vand_vx_u8m1(__riscv_vsrl_vx_u8m1(qh_x, 0x6, vl), 0x03 , vl);
  5623. vuint8m1_t qhi_0 = __riscv_vor_vv_u8m1(q6a_0, __riscv_vsll_vx_u8m1(qh_0, 0x04, vl), vl);
  5624. vuint8m1_t qhi_1 = __riscv_vor_vv_u8m1(q6a_1, __riscv_vsll_vx_u8m1(qh_1, 0x04, vl), vl);
  5625. vuint8m1_t qhi_2 = __riscv_vor_vv_u8m1(q6s_0, __riscv_vsll_vx_u8m1(qh_2, 0x04, vl), vl);
  5626. vuint8m1_t qhi_3 = __riscv_vor_vv_u8m1(q6s_1, __riscv_vsll_vx_u8m1(qh_3, 0x04, vl), vl);
  5627. vint8m1_t a_0 = __riscv_vsub_vx_i8m1(__riscv_vreinterpret_v_u8m1_i8m1(qhi_0), 32, vl);
  5628. vint8m1_t a_1 = __riscv_vsub_vx_i8m1(__riscv_vreinterpret_v_u8m1_i8m1(qhi_1), 32, vl);
  5629. vint8m1_t a_2 = __riscv_vsub_vx_i8m1(__riscv_vreinterpret_v_u8m1_i8m1(qhi_2), 32, vl);
  5630. vint8m1_t a_3 = __riscv_vsub_vx_i8m1(__riscv_vreinterpret_v_u8m1_i8m1(qhi_3), 32, vl);
  5631. // load Q8 and take product
  5632. vint16m2_t va_q_0 = __riscv_vwmul_vv_i16m2(a_0, __riscv_vle8_v_i8m1(q8, vl), vl);
  5633. vint16m2_t va_q_1 = __riscv_vwmul_vv_i16m2(a_1, __riscv_vle8_v_i8m1(q8+32, vl), vl);
  5634. vint16m2_t va_q_2 = __riscv_vwmul_vv_i16m2(a_2, __riscv_vle8_v_i8m1(q8+64, vl), vl);
  5635. vint16m2_t va_q_3 = __riscv_vwmul_vv_i16m2(a_3, __riscv_vle8_v_i8m1(q8+96, vl), vl);
  5636. vl = 16;
  5637. vint32m2_t vaux_0 = __riscv_vwmul_vx_i32m2(__riscv_vget_v_i16m2_i16m1(va_q_0, 0), scale[is+0], vl);
  5638. vint32m2_t vaux_1 = __riscv_vwmul_vx_i32m2(__riscv_vget_v_i16m2_i16m1(va_q_0, 1), scale[is+1], vl);
  5639. vint32m2_t vaux_2 = __riscv_vwmul_vx_i32m2(__riscv_vget_v_i16m2_i16m1(va_q_1, 0), scale[is+2], vl);
  5640. vint32m2_t vaux_3 = __riscv_vwmul_vx_i32m2(__riscv_vget_v_i16m2_i16m1(va_q_1, 1), scale[is+3], vl);
  5641. vint32m2_t vaux_4 = __riscv_vwmul_vx_i32m2(__riscv_vget_v_i16m2_i16m1(va_q_2, 0), scale[is+4], vl);
  5642. vint32m2_t vaux_5 = __riscv_vwmul_vx_i32m2(__riscv_vget_v_i16m2_i16m1(va_q_2, 1), scale[is+5], vl);
  5643. vint32m2_t vaux_6 = __riscv_vwmul_vx_i32m2(__riscv_vget_v_i16m2_i16m1(va_q_3, 0), scale[is+6], vl);
  5644. vint32m2_t vaux_7 = __riscv_vwmul_vx_i32m2(__riscv_vget_v_i16m2_i16m1(va_q_3, 1), scale[is+7], vl);
  5645. vint32m1_t isum0 = __riscv_vredsum_vs_i32m2_i32m1(__riscv_vadd_vv_i32m2(vaux_0, vaux_1, vl), vzero, vl);
  5646. vint32m1_t isum1 = __riscv_vredsum_vs_i32m2_i32m1(__riscv_vadd_vv_i32m2(vaux_2, vaux_3, vl), isum0, vl);
  5647. vint32m1_t isum2 = __riscv_vredsum_vs_i32m2_i32m1(__riscv_vadd_vv_i32m2(vaux_4, vaux_5, vl), isum1, vl);
  5648. vint32m1_t isum3 = __riscv_vredsum_vs_i32m2_i32m1(__riscv_vadd_vv_i32m2(vaux_6, vaux_7, vl), isum2, vl);
  5649. sum_t += __riscv_vmv_x_s_i32m1_i32(isum3);
  5650. q6 += 64; qh += 32; q8 += 128; is=8;
  5651. }
  5652. sumf += d * sum_t;
  5653. }
  5654. *s = sumf;
  5655. #elif defined(__POWER9_VECTOR__)
  5656. const vector signed char lowMask = vec_splats((signed char)0xF);
  5657. const vector int v0 = vec_splats((int32_t)0);
  5658. const vector unsigned char v2 = vec_splats((unsigned char)0x2);
  5659. const vector unsigned char v3 = vec_splats((unsigned char)0x3);
  5660. const vector unsigned char v4 = vec_splats((unsigned char)0x4);
  5661. const vector unsigned char v6 = vec_splats((unsigned char)0x6);
  5662. const vector signed char off = vec_splats((signed char)0x20);
  5663. vector float vsumf0 = vec_splats(0.0f);
  5664. vector float vsumf1 = vec_splats(0.0f);
  5665. vector float vsumf2 = vec_splats(0.0f);
  5666. vector float vsumf3 = vec_splats(0.0f);
  5667. for (int i = 0; i < nb; ++i) {
  5668. vector float vxd = vec_splats(GGML_FP16_TO_FP32(x[i].d));
  5669. vector float vyd = vec_splats(y[i].d);
  5670. vector float vd = vec_mul(vxd, vyd);
  5671. vector signed int vsumi0 = v0;
  5672. vector signed int vsumi1 = v0;
  5673. vector signed int vsumi2 = v0;
  5674. vector signed int vsumi3 = v0;
  5675. vector signed int vsumi4 = v0;
  5676. vector signed int vsumi5 = v0;
  5677. vector signed int vsumi6 = v0;
  5678. vector signed int vsumi7 = v0;
  5679. const uint8_t * restrict q6 = x[i].ql;
  5680. const uint8_t * restrict qh = x[i].qh;
  5681. const int8_t * restrict qs = x[i].scales;
  5682. const int8_t * restrict q8 = y[i].qs;
  5683. for (int j = 0; j < QK_K/128; ++j) {
  5684. __builtin_prefetch(q6, 0, 0);
  5685. __builtin_prefetch(qh, 0, 0);
  5686. __builtin_prefetch(q8, 0, 0);
  5687. vector signed char qxs0 = (vector signed char)vec_xl( 0, q6);
  5688. vector signed char qxs1 = (vector signed char)vec_xl(16, q6);
  5689. vector signed char qxs2 = (vector signed char)vec_xl(32, q6);
  5690. vector signed char qxs3 = (vector signed char)vec_xl(48, q6);
  5691. q6 += 64;
  5692. vector signed char qxs00 = vec_and(qxs0, lowMask);
  5693. vector signed char qxs01 = vec_sr(qxs0, v4);
  5694. vector signed char qxs10 = vec_and(qxs1, lowMask);
  5695. vector signed char qxs11 = vec_sr(qxs1, v4);
  5696. vector signed char qxs20 = vec_and(qxs2, lowMask);
  5697. vector signed char qxs21 = vec_sr(qxs2, v4);
  5698. vector signed char qxs30 = vec_and(qxs3, lowMask);
  5699. vector signed char qxs31 = vec_sr(qxs3, v4);
  5700. vector signed char qxhs0 = (vector signed char)vec_xl( 0, qh);
  5701. vector signed char qxhs1 = (vector signed char)vec_xl(16, qh);
  5702. qh += 32;
  5703. vector signed char qxh00 = vec_sl(vec_and((vector signed char)v3, qxhs0), v4);
  5704. vector signed char qxh01 = vec_sl(vec_and((vector signed char)v3, vec_sr(qxhs0, v4)), v4);
  5705. vector signed char qxh10 = vec_sl(vec_and((vector signed char)v3, qxhs1), v4);
  5706. vector signed char qxh11 = vec_sl(vec_and((vector signed char)v3, vec_sr(qxhs1, v4)), v4);
  5707. vector signed char qxh20 = vec_sl(vec_and((vector signed char)v3, vec_sr(qxhs0, v2)), v4);
  5708. vector signed char qxh21 = vec_sl(vec_and((vector signed char)v3, vec_sr(qxhs0, v6)), v4);
  5709. vector signed char qxh30 = vec_sl(vec_and((vector signed char)v3, vec_sr(qxhs1, v2)), v4);
  5710. vector signed char qxh31 = vec_sl(vec_and((vector signed char)v3, vec_sr(qxhs1, v6)), v4);
  5711. vector signed char q6x00 = vec_sub(vec_or(qxh00, qxs00), off);
  5712. vector signed char q6x01 = vec_sub(vec_or(qxh01, qxs01), off);
  5713. vector signed char q6x10 = vec_sub(vec_or(qxh10, qxs10), off);
  5714. vector signed char q6x11 = vec_sub(vec_or(qxh11, qxs11), off);
  5715. vector signed char q6x20 = vec_sub(vec_or(qxh20, qxs20), off);
  5716. vector signed char q6x21 = vec_sub(vec_or(qxh21, qxs21), off);
  5717. vector signed char q6x30 = vec_sub(vec_or(qxh30, qxs30), off);
  5718. vector signed char q6x31 = vec_sub(vec_or(qxh31, qxs31), off);
  5719. vector signed char q8y00 = vec_xl( 0, q8);
  5720. vector signed char q8y10 = vec_xl( 16, q8);
  5721. vector signed char q8y20 = vec_xl( 32, q8);
  5722. vector signed char q8y30 = vec_xl( 48, q8);
  5723. vector signed char q8y01 = vec_xl( 64, q8);
  5724. vector signed char q8y11 = vec_xl( 80, q8);
  5725. vector signed char q8y21 = vec_xl( 96, q8);
  5726. vector signed char q8y31 = vec_xl(112, q8);
  5727. q8 += 128;
  5728. vector signed short qv00 = vec_add(vec_mule(q6x00, q8y00), vec_mulo(q6x00, q8y00));
  5729. vector signed short qv10 = vec_add(vec_mule(q6x10, q8y10), vec_mulo(q6x10, q8y10));
  5730. vector signed short qv20 = vec_add(vec_mule(q6x20, q8y20), vec_mulo(q6x20, q8y20));
  5731. vector signed short qv30 = vec_add(vec_mule(q6x30, q8y30), vec_mulo(q6x30, q8y30));
  5732. vector signed short qv01 = vec_add(vec_mule(q6x01, q8y01), vec_mulo(q6x01, q8y01));
  5733. vector signed short qv11 = vec_add(vec_mule(q6x11, q8y11), vec_mulo(q6x11, q8y11));
  5734. vector signed short qv21 = vec_add(vec_mule(q6x21, q8y21), vec_mulo(q6x21, q8y21));
  5735. vector signed short qv31 = vec_add(vec_mule(q6x31, q8y31), vec_mulo(q6x31, q8y31));
  5736. vector signed short vscales = vec_unpackh(vec_xl_len(qs, 8));
  5737. qs += 8;
  5738. vector signed short vs0 = vec_splat(vscales, 0);
  5739. vector signed short vs1 = vec_splat(vscales, 1);
  5740. vector signed short vs2 = vec_splat(vscales, 2);
  5741. vector signed short vs3 = vec_splat(vscales, 3);
  5742. vector signed short vs4 = vec_splat(vscales, 4);
  5743. vector signed short vs5 = vec_splat(vscales, 5);
  5744. vector signed short vs6 = vec_splat(vscales, 6);
  5745. vector signed short vs7 = vec_splat(vscales, 7);
  5746. vsumi0 = vec_msum(qv00, vs0, vsumi0);
  5747. vsumi1 = vec_msum(qv01, vs4, vsumi1);
  5748. vsumi2 = vec_msum(qv10, vs1, vsumi2);
  5749. vsumi3 = vec_msum(qv11, vs5, vsumi3);
  5750. vsumi4 = vec_msum(qv20, vs2, vsumi4);
  5751. vsumi5 = vec_msum(qv21, vs6, vsumi5);
  5752. vsumi6 = vec_msum(qv30, vs3, vsumi6);
  5753. vsumi7 = vec_msum(qv31, vs7, vsumi7);
  5754. }
  5755. vsumi0 = vec_add(vsumi0, vsumi4);
  5756. vsumi1 = vec_add(vsumi1, vsumi5);
  5757. vsumi2 = vec_add(vsumi2, vsumi6);
  5758. vsumi3 = vec_add(vsumi3, vsumi7);
  5759. vsumf0 = vec_madd(vec_ctf(vsumi0, 0), vd, vsumf0);
  5760. vsumf1 = vec_madd(vec_ctf(vsumi1, 0), vd, vsumf1);
  5761. vsumf2 = vec_madd(vec_ctf(vsumi2, 0), vd, vsumf2);
  5762. vsumf3 = vec_madd(vec_ctf(vsumi3, 0), vd, vsumf3);
  5763. }
  5764. vsumf0 = vec_add(vsumf0, vsumf2);
  5765. vsumf1 = vec_add(vsumf1, vsumf3);
  5766. vsumf0 = vec_add(vsumf0, vsumf1);
  5767. vsumf0 = vec_add(vsumf0, vec_sld(vsumf0, vsumf0, 4));
  5768. vsumf0 = vec_add(vsumf0, vec_sld(vsumf0, vsumf0, 8));
  5769. *s = vec_extract(vsumf0, 0);
  5770. #elif defined __loongarch_asx
  5771. const __m256i m4 = __lasx_xvreplgr2vr_b(0xF);
  5772. const __m256i m2 = __lasx_xvreplgr2vr_b(3);
  5773. const __m256i m32s = __lasx_xvreplgr2vr_b(32);
  5774. __m256 acc = (__m256)__lasx_xvldi(0);
  5775. for (int i = 0; i < nb; ++i) {
  5776. const float d = y[i].d * GGML_FP16_TO_FP32(x[i].d);
  5777. const uint8_t * restrict q4 = x[i].ql;
  5778. const uint8_t * restrict qh = x[i].qh;
  5779. const int8_t * restrict q8 = y[i].qs;
  5780. const __m128i scales = __lsx_vld((const __m128i*)x[i].scales, 0);
  5781. __m256i sumi = __lasx_xvldi(0);
  5782. int is = 0;
  5783. for (int j = 0; j < QK_K/128; ++j) {
  5784. const __m128i scale_0 = lsx_shuffle_b(scales, get_scale_shuffle(is + 0));
  5785. const __m128i scale_1 = lsx_shuffle_b(scales, get_scale_shuffle(is + 1));
  5786. const __m128i scale_2 = lsx_shuffle_b(scales, get_scale_shuffle(is + 2));
  5787. const __m128i scale_3 = lsx_shuffle_b(scales, get_scale_shuffle(is + 3));
  5788. is += 4;
  5789. const __m256i q4bits1 = __lasx_xvld((const __m256i*)q4, 0); q4 += 32;
  5790. const __m256i q4bits2 = __lasx_xvld((const __m256i*)q4, 0); q4 += 32;
  5791. const __m256i q4bitsH = __lasx_xvld((const __m256i*)qh, 0); qh += 32;
  5792. const __m256i q4h_0 = __lasx_xvslli_h(__lasx_xvand_v(q4bitsH, m2), 4);
  5793. const __m256i q4h_1 = __lasx_xvslli_h(__lasx_xvand_v(__lasx_xvsrli_h(q4bitsH, 2), m2), 4);
  5794. const __m256i q4h_2 = __lasx_xvslli_h(__lasx_xvand_v(__lasx_xvsrli_h(q4bitsH, 4), m2), 4);
  5795. const __m256i q4h_3 = __lasx_xvslli_h(__lasx_xvand_v(__lasx_xvsrli_h(q4bitsH, 6), m2), 4);
  5796. const __m256i q4_0 = __lasx_xvor_v(__lasx_xvand_v(q4bits1, m4), q4h_0);
  5797. const __m256i q4_1 = __lasx_xvor_v(__lasx_xvand_v(q4bits2, m4), q4h_1);
  5798. const __m256i q4_2 = __lasx_xvor_v(__lasx_xvand_v(__lasx_xvsrli_h(q4bits1, 4), m4), q4h_2);
  5799. const __m256i q4_3 = __lasx_xvor_v(__lasx_xvand_v(__lasx_xvsrli_h(q4bits2, 4), m4), q4h_3);
  5800. const __m256i q8_0 = __lasx_xvld((const __m256i*)q8, 0); q8 += 32;
  5801. const __m256i q8_1 = __lasx_xvld((const __m256i*)q8, 0); q8 += 32;
  5802. const __m256i q8_2 = __lasx_xvld((const __m256i*)q8, 0); q8 += 32;
  5803. const __m256i q8_3 = __lasx_xvld((const __m256i*)q8, 0); q8 += 32;
  5804. __m256i q8s_0 = lasx_maddubs_h(m32s, q8_0);
  5805. __m256i q8s_1 = lasx_maddubs_h(m32s, q8_1);
  5806. __m256i q8s_2 = lasx_maddubs_h(m32s, q8_2);
  5807. __m256i q8s_3 = lasx_maddubs_h(m32s, q8_3);
  5808. __m256i p16_0 = lasx_maddubs_h(q4_0, q8_0);
  5809. __m256i p16_1 = lasx_maddubs_h(q4_1, q8_1);
  5810. __m256i p16_2 = lasx_maddubs_h(q4_2, q8_2);
  5811. __m256i p16_3 = lasx_maddubs_h(q4_3, q8_3);
  5812. p16_0 = __lasx_xvsub_h(p16_0, q8s_0);
  5813. p16_1 = __lasx_xvsub_h(p16_1, q8s_1);
  5814. p16_2 = __lasx_xvsub_h(p16_2, q8s_2);
  5815. p16_3 = __lasx_xvsub_h(p16_3, q8s_3);
  5816. p16_0 = lasx_madd_h(lasx_ext8_16(scale_0), p16_0);
  5817. p16_1 = lasx_madd_h(lasx_ext8_16(scale_1), p16_1);
  5818. p16_2 = lasx_madd_h(lasx_ext8_16(scale_2), p16_2);
  5819. p16_3 = lasx_madd_h(lasx_ext8_16(scale_3), p16_3);
  5820. sumi = __lasx_xvadd_w(sumi, __lasx_xvadd_w(p16_0, p16_1));
  5821. sumi = __lasx_xvadd_w(sumi, __lasx_xvadd_w(p16_2, p16_3));
  5822. }
  5823. acc = __lasx_xvfmadd_s((__m256)__lasx_xvreplfr2vr_s(d), __lasx_xvffint_s_w(sumi), acc);
  5824. }
  5825. *s = hsum_float_8(acc);
  5826. #else
  5827. int8_t aux8[QK_K];
  5828. int16_t aux16[8];
  5829. float sums [8];
  5830. int32_t aux32[8];
  5831. memset(sums, 0, 8*sizeof(float));
  5832. float sumf = 0;
  5833. for (int i = 0; i < nb; ++i) {
  5834. const uint8_t * restrict q4 = x[i].ql;
  5835. const uint8_t * restrict qh = x[i].qh;
  5836. const int8_t * restrict q8 = y[i].qs;
  5837. memset(aux32, 0, 8*sizeof(int32_t));
  5838. int8_t * restrict a = aux8;
  5839. for (int j = 0; j < QK_K; j += 128) {
  5840. for (int l = 0; l < 32; ++l) {
  5841. a[l + 0] = (int8_t)((q4[l + 0] & 0xF) | (((qh[l] >> 0) & 3) << 4)) - 32;
  5842. a[l + 32] = (int8_t)((q4[l + 32] & 0xF) | (((qh[l] >> 2) & 3) << 4)) - 32;
  5843. a[l + 64] = (int8_t)((q4[l + 0] >> 4) | (((qh[l] >> 4) & 3) << 4)) - 32;
  5844. a[l + 96] = (int8_t)((q4[l + 32] >> 4) | (((qh[l] >> 6) & 3) << 4)) - 32;
  5845. }
  5846. a += 128;
  5847. q4 += 64;
  5848. qh += 32;
  5849. }
  5850. a = aux8;
  5851. int is = 0;
  5852. for (int j = 0; j < QK_K/16; ++j) {
  5853. int scale = x[i].scales[is++];
  5854. for (int l = 0; l < 8; ++l) aux16[l] = q8[l] * a[l];
  5855. for (int l = 0; l < 8; ++l) aux32[l] += scale * aux16[l];
  5856. q8 += 8; a += 8;
  5857. for (int l = 0; l < 8; ++l) aux16[l] = q8[l] * a[l];
  5858. for (int l = 0; l < 8; ++l) aux32[l] += scale * aux16[l];
  5859. q8 += 8; a += 8;
  5860. }
  5861. const float d = GGML_FP16_TO_FP32(x[i].d) * y[i].d;
  5862. for (int l = 0; l < 8; ++l) sums[l] += d * aux32[l];
  5863. }
  5864. for (int l = 0; l < 8; ++l) sumf += sums[l];
  5865. *s = sumf;
  5866. #endif
  5867. }
  5868. #if defined (__AVX__) || defined (__AVX2__) || defined (__ARM_NEON) || defined (__POWER9_VECTOR__) || defined(__loongarch_asx)
  5869. static const int8_t keven_signs_q2xs[1024] = {
  5870. 1, 1, 1, 1, 1, 1, 1, 1, -1, 1, 1, 1, 1, 1, 1, -1, 1, -1, 1, 1, 1, 1, 1, -1, -1, -1, 1, 1, 1, 1, 1, 1,
  5871. 1, 1, -1, 1, 1, 1, 1, -1, -1, 1, -1, 1, 1, 1, 1, 1, 1, -1, -1, 1, 1, 1, 1, 1, -1, -1, -1, 1, 1, 1, 1, -1,
  5872. 1, 1, 1, -1, 1, 1, 1, -1, -1, 1, 1, -1, 1, 1, 1, 1, 1, -1, 1, -1, 1, 1, 1, 1, -1, -1, 1, -1, 1, 1, 1, -1,
  5873. 1, 1, -1, -1, 1, 1, 1, 1, -1, 1, -1, -1, 1, 1, 1, -1, 1, -1, -1, -1, 1, 1, 1, -1, -1, -1, -1, -1, 1, 1, 1, 1,
  5874. 1, 1, 1, 1, -1, 1, 1, -1, -1, 1, 1, 1, -1, 1, 1, 1, 1, -1, 1, 1, -1, 1, 1, 1, -1, -1, 1, 1, -1, 1, 1, -1,
  5875. 1, 1, -1, 1, -1, 1, 1, 1, -1, 1, -1, 1, -1, 1, 1, -1, 1, -1, -1, 1, -1, 1, 1, -1, -1, -1, -1, 1, -1, 1, 1, 1,
  5876. 1, 1, 1, -1, -1, 1, 1, 1, -1, 1, 1, -1, -1, 1, 1, -1, 1, -1, 1, -1, -1, 1, 1, -1, -1, -1, 1, -1, -1, 1, 1, 1,
  5877. 1, 1, -1, -1, -1, 1, 1, -1, -1, 1, -1, -1, -1, 1, 1, 1, 1, -1, -1, -1, -1, 1, 1, 1, -1, -1, -1, -1, -1, 1, 1, -1,
  5878. 1, 1, 1, 1, 1, -1, 1, -1, -1, 1, 1, 1, 1, -1, 1, 1, 1, -1, 1, 1, 1, -1, 1, 1, -1, -1, 1, 1, 1, -1, 1, -1,
  5879. 1, 1, -1, 1, 1, -1, 1, 1, -1, 1, -1, 1, 1, -1, 1, -1, 1, -1, -1, 1, 1, -1, 1, -1, -1, -1, -1, 1, 1, -1, 1, 1,
  5880. 1, 1, 1, -1, 1, -1, 1, 1, -1, 1, 1, -1, 1, -1, 1, -1, 1, -1, 1, -1, 1, -1, 1, -1, -1, -1, 1, -1, 1, -1, 1, 1,
  5881. 1, 1, -1, -1, 1, -1, 1, -1, -1, 1, -1, -1, 1, -1, 1, 1, 1, -1, -1, -1, 1, -1, 1, 1, -1, -1, -1, -1, 1, -1, 1, -1,
  5882. 1, 1, 1, 1, -1, -1, 1, 1, -1, 1, 1, 1, -1, -1, 1, -1, 1, -1, 1, 1, -1, -1, 1, -1, -1, -1, 1, 1, -1, -1, 1, 1,
  5883. 1, 1, -1, 1, -1, -1, 1, -1, -1, 1, -1, 1, -1, -1, 1, 1, 1, -1, -1, 1, -1, -1, 1, 1, -1, -1, -1, 1, -1, -1, 1, -1,
  5884. 1, 1, 1, -1, -1, -1, 1, -1, -1, 1, 1, -1, -1, -1, 1, 1, 1, -1, 1, -1, -1, -1, 1, 1, -1, -1, 1, -1, -1, -1, 1, -1,
  5885. 1, 1, -1, -1, -1, -1, 1, 1, -1, 1, -1, -1, -1, -1, 1, -1, 1, -1, -1, -1, -1, -1, 1, -1, -1, -1, -1, -1, -1, -1, 1, 1,
  5886. 1, 1, 1, 1, 1, 1, -1, -1, -1, 1, 1, 1, 1, 1, -1, 1, 1, -1, 1, 1, 1, 1, -1, 1, -1, -1, 1, 1, 1, 1, -1, -1,
  5887. 1, 1, -1, 1, 1, 1, -1, 1, -1, 1, -1, 1, 1, 1, -1, -1, 1, -1, -1, 1, 1, 1, -1, -1, -1, -1, -1, 1, 1, 1, -1, 1,
  5888. 1, 1, 1, -1, 1, 1, -1, 1, -1, 1, 1, -1, 1, 1, -1, -1, 1, -1, 1, -1, 1, 1, -1, -1, -1, -1, 1, -1, 1, 1, -1, 1,
  5889. 1, 1, -1, -1, 1, 1, -1, -1, -1, 1, -1, -1, 1, 1, -1, 1, 1, -1, -1, -1, 1, 1, -1, 1, -1, -1, -1, -1, 1, 1, -1, -1,
  5890. 1, 1, 1, 1, -1, 1, -1, 1, -1, 1, 1, 1, -1, 1, -1, -1, 1, -1, 1, 1, -1, 1, -1, -1, -1, -1, 1, 1, -1, 1, -1, 1,
  5891. 1, 1, -1, 1, -1, 1, -1, -1, -1, 1, -1, 1, -1, 1, -1, 1, 1, -1, -1, 1, -1, 1, -1, 1, -1, -1, -1, 1, -1, 1, -1, -1,
  5892. 1, 1, 1, -1, -1, 1, -1, -1, -1, 1, 1, -1, -1, 1, -1, 1, 1, -1, 1, -1, -1, 1, -1, 1, -1, -1, 1, -1, -1, 1, -1, -1,
  5893. 1, 1, -1, -1, -1, 1, -1, 1, -1, 1, -1, -1, -1, 1, -1, -1, 1, -1, -1, -1, -1, 1, -1, -1, -1, -1, -1, -1, -1, 1, -1, 1,
  5894. 1, 1, 1, 1, 1, -1, -1, 1, -1, 1, 1, 1, 1, -1, -1, -1, 1, -1, 1, 1, 1, -1, -1, -1, -1, -1, 1, 1, 1, -1, -1, 1,
  5895. 1, 1, -1, 1, 1, -1, -1, -1, -1, 1, -1, 1, 1, -1, -1, 1, 1, -1, -1, 1, 1, -1, -1, 1, -1, -1, -1, 1, 1, -1, -1, -1,
  5896. 1, 1, 1, -1, 1, -1, -1, -1, -1, 1, 1, -1, 1, -1, -1, 1, 1, -1, 1, -1, 1, -1, -1, 1, -1, -1, 1, -1, 1, -1, -1, -1,
  5897. 1, 1, -1, -1, 1, -1, -1, 1, -1, 1, -1, -1, 1, -1, -1, -1, 1, -1, -1, -1, 1, -1, -1, -1, -1, -1, -1, -1, 1, -1, -1, 1,
  5898. 1, 1, 1, 1, -1, -1, -1, -1, -1, 1, 1, 1, -1, -1, -1, 1, 1, -1, 1, 1, -1, -1, -1, 1, -1, -1, 1, 1, -1, -1, -1, -1,
  5899. 1, 1, -1, 1, -1, -1, -1, 1, -1, 1, -1, 1, -1, -1, -1, -1, 1, -1, -1, 1, -1, -1, -1, -1, -1, -1, -1, 1, -1, -1, -1, 1,
  5900. 1, 1, 1, -1, -1, -1, -1, 1, -1, 1, 1, -1, -1, -1, -1, -1, 1, -1, 1, -1, -1, -1, -1, -1, -1, -1, 1, -1, -1, -1, -1, 1,
  5901. 1, 1, -1, -1, -1, -1, -1, -1, -1, 1, -1, -1, -1, -1, -1, 1, 1, -1, -1, -1, -1, -1, -1, 1, -1, -1, -1, -1, -1, -1, -1, -1,
  5902. };
  5903. #endif
  5904. void ggml_vec_dot_iq2_xxs_q8_K(int n, float * restrict s, size_t bs, const void * restrict vx, size_t bx, const void * restrict vy, size_t by, int nrc) {
  5905. assert(n % QK_K == 0);
  5906. assert(nrc == 1);
  5907. UNUSED(nrc);
  5908. UNUSED(bx);
  5909. UNUSED(by);
  5910. UNUSED(bs);
  5911. const block_iq2_xxs * restrict x = vx;
  5912. const block_q8_K * restrict y = vy;
  5913. const int nb = n / QK_K;
  5914. #if defined(__ARM_NEON)
  5915. const uint64_t * signs64 = (const uint64_t *)keven_signs_q2xs;
  5916. uint32_t aux32[4];
  5917. const uint8_t * aux8 = (const uint8_t *)aux32;
  5918. ggml_int8x16x4_t q2u;
  5919. ggml_int8x16x4_t q2s;
  5920. ggml_int8x16x4_t q8b;
  5921. float sumf = 0;
  5922. for (int i = 0; i < nb; ++i) {
  5923. const float d = GGML_FP16_TO_FP32(x[i].d) * y[i].d;
  5924. const uint16_t * restrict q2 = x[i].qs;
  5925. const int8_t * restrict q8 = y[i].qs;
  5926. float sumf1 = 0, sumf2 = 0;
  5927. for (int ib32 = 0; ib32 < QK_K/32; ib32 += 2) {
  5928. q8b = ggml_vld1q_s8_x4(q8); q8 += 64;
  5929. memcpy(aux32, q2, 4*sizeof(uint32_t)); q2 += 8;
  5930. q2u.val[0] = vcombine_s8(vld1_s8((const void *)(iq2xxs_grid + aux8[ 0])), vld1_s8((const void *)(iq2xxs_grid + aux8[ 1])));
  5931. q2u.val[1] = vcombine_s8(vld1_s8((const void *)(iq2xxs_grid + aux8[ 2])), vld1_s8((const void *)(iq2xxs_grid + aux8[ 3])));
  5932. q2u.val[2] = vcombine_s8(vld1_s8((const void *)(iq2xxs_grid + aux8[ 8])), vld1_s8((const void *)(iq2xxs_grid + aux8[ 9])));
  5933. q2u.val[3] = vcombine_s8(vld1_s8((const void *)(iq2xxs_grid + aux8[10])), vld1_s8((const void *)(iq2xxs_grid + aux8[11])));
  5934. q2s.val[0] = vcombine_s8(vld1_s8((const void *)(signs64 + ((aux32[1] >> 0) & 127))), vld1_s8((const void *)(signs64 + ((aux32[1] >> 7) & 127))));
  5935. q2s.val[1] = vcombine_s8(vld1_s8((const void *)(signs64 + ((aux32[1] >> 14) & 127))), vld1_s8((const void *)(signs64 + ((aux32[1] >> 21) & 127))));
  5936. q2s.val[2] = vcombine_s8(vld1_s8((const void *)(signs64 + ((aux32[3] >> 0) & 127))), vld1_s8((const void *)(signs64 + ((aux32[3] >> 7) & 127))));
  5937. q2s.val[3] = vcombine_s8(vld1_s8((const void *)(signs64 + ((aux32[3] >> 14) & 127))), vld1_s8((const void *)(signs64 + ((aux32[3] >> 21) & 127))));
  5938. q2u.val[0] = vmulq_s8(q2u.val[0], q2s.val[0]);
  5939. q2u.val[1] = vmulq_s8(q2u.val[1], q2s.val[1]);
  5940. q2u.val[2] = vmulq_s8(q2u.val[2], q2s.val[2]);
  5941. q2u.val[3] = vmulq_s8(q2u.val[3], q2s.val[3]);
  5942. const int32x4_t p1 = ggml_vdotq_s32(ggml_vdotq_s32(vdupq_n_s32(0), q2u.val[0], q8b.val[0]), q2u.val[1], q8b.val[1]);
  5943. const int32x4_t p2 = ggml_vdotq_s32(ggml_vdotq_s32(vdupq_n_s32(0), q2u.val[2], q8b.val[2]), q2u.val[3], q8b.val[3]);
  5944. sumf1 += vaddvq_s32(p1) * (0.5f + (aux32[1] >> 28));
  5945. sumf2 += vaddvq_s32(p2) * (0.5f + (aux32[3] >> 28));
  5946. }
  5947. sumf += d*(sumf1 + sumf2);
  5948. }
  5949. *s = 0.25f * sumf;
  5950. #elif defined(__AVX2__)
  5951. const uint64_t * signs64 = (const uint64_t *)keven_signs_q2xs;
  5952. uint32_t aux32[4];
  5953. const uint8_t * aux8 = (const uint8_t *)aux32;
  5954. __m256 accumf = _mm256_setzero_ps();
  5955. for (int i = 0; i < nb; ++i) {
  5956. const float d = GGML_FP16_TO_FP32(x[i].d) * y[i].d;
  5957. const uint16_t * restrict q2 = x[i].qs;
  5958. const int8_t * restrict q8 = y[i].qs;
  5959. __m256i sumi1 = _mm256_setzero_si256();
  5960. __m256i sumi2 = _mm256_setzero_si256();
  5961. for (int ib32 = 0; ib32 < QK_K/32; ib32 += 2) {
  5962. const __m256i q8_1 = _mm256_loadu_si256((const __m256i *)q8); q8 += 32;
  5963. const __m256i q8_2 = _mm256_loadu_si256((const __m256i *)q8); q8 += 32;
  5964. memcpy(aux32, q2, 4*sizeof(uint32_t)); q2 += 8;
  5965. const __m256i q2_1 = _mm256_set_epi64x(iq2xxs_grid[aux8[ 3]], iq2xxs_grid[aux8[ 2]], iq2xxs_grid[aux8[1]], iq2xxs_grid[aux8[0]]);
  5966. const __m256i q2_2 = _mm256_set_epi64x(iq2xxs_grid[aux8[11]], iq2xxs_grid[aux8[10]], iq2xxs_grid[aux8[9]], iq2xxs_grid[aux8[8]]);
  5967. const __m256i s2_1 = _mm256_set_epi64x(signs64[(aux32[1] >> 21) & 127], signs64[(aux32[1] >> 14) & 127],
  5968. signs64[(aux32[1] >> 7) & 127], signs64[(aux32[1] >> 0) & 127]);
  5969. const __m256i s2_2 = _mm256_set_epi64x(signs64[(aux32[3] >> 21) & 127], signs64[(aux32[3] >> 14) & 127],
  5970. signs64[(aux32[3] >> 7) & 127], signs64[(aux32[3] >> 0) & 127]);
  5971. const __m256i q8s_1 = _mm256_sign_epi8(q8_1, s2_1);
  5972. const __m256i q8s_2 = _mm256_sign_epi8(q8_2, s2_2);
  5973. const __m256i dot1 = _mm256_maddubs_epi16(q2_1, q8s_1);
  5974. const __m256i dot2 = _mm256_maddubs_epi16(q2_2, q8s_2);
  5975. const uint16_t ls1 = aux32[1] >> 28;
  5976. const uint16_t ls2 = aux32[3] >> 28;
  5977. const __m256i p1 = _mm256_madd_epi16(dot1, _mm256_set1_epi16(2*ls1+1));
  5978. const __m256i p2 = _mm256_madd_epi16(dot2, _mm256_set1_epi16(2*ls2+1));
  5979. sumi1 = _mm256_add_epi32(sumi1, p1);
  5980. sumi2 = _mm256_add_epi32(sumi2, p2);
  5981. }
  5982. accumf = _mm256_fmadd_ps(_mm256_set1_ps(d), _mm256_cvtepi32_ps(_mm256_add_epi32(sumi1, sumi2)), accumf);
  5983. }
  5984. *s = 0.125f * hsum_float_8(accumf);
  5985. #elif defined(__AVX__)
  5986. const uint64_t * signs64 = (const uint64_t *)keven_signs_q2xs;
  5987. uint32_t aux32[4];
  5988. const uint8_t * aux8 = (const uint8_t *)aux32;
  5989. __m256 accumf = _mm256_setzero_ps();
  5990. for (int i = 0; i < nb; ++i) {
  5991. const float d = GGML_FP16_TO_FP32(x[i].d) * y[i].d;
  5992. const uint16_t * restrict q2 = x[i].qs;
  5993. const int8_t * restrict q8 = y[i].qs;
  5994. __m128i sumi1_0 = _mm_setzero_si128();
  5995. __m128i sumi1_1 = _mm_setzero_si128();
  5996. __m128i sumi2_0 = _mm_setzero_si128();
  5997. __m128i sumi2_1 = _mm_setzero_si128();
  5998. for (int ib32 = 0; ib32 < QK_K/32; ib32 += 2) {
  5999. const __m128i q8_1_0 = _mm_loadu_si128((const __m128i *)q8); q8 += 16;
  6000. const __m128i q8_1_1 = _mm_loadu_si128((const __m128i *)q8); q8 += 16;
  6001. const __m128i q8_2_0 = _mm_loadu_si128((const __m128i *)q8); q8 += 16;
  6002. const __m128i q8_2_1 = _mm_loadu_si128((const __m128i *)q8); q8 += 16;
  6003. memcpy(aux32, q2, 4*sizeof(uint32_t)); q2 += 8;
  6004. const __m128i q2_1_0 = _mm_set_epi64x(iq2xxs_grid[aux8[1]], iq2xxs_grid[aux8[0]]);
  6005. const __m128i q2_1_1 = _mm_set_epi64x(iq2xxs_grid[aux8[3]], iq2xxs_grid[aux8[2]]);
  6006. const __m128i q2_2_0 = _mm_set_epi64x(iq2xxs_grid[aux8[9]], iq2xxs_grid[aux8[8]]);
  6007. const __m128i q2_2_1 = _mm_set_epi64x(iq2xxs_grid[aux8[11]], iq2xxs_grid[aux8[10]]);
  6008. const __m128i s2_1_0 = _mm_set_epi64x(signs64[(aux32[1] >> 7) & 127], signs64[(aux32[1] >> 0) & 127]);
  6009. const __m128i s2_1_1 = _mm_set_epi64x(signs64[(aux32[1] >> 21) & 127], signs64[(aux32[1] >> 14) & 127]);
  6010. const __m128i s2_2_0 = _mm_set_epi64x(signs64[(aux32[3] >> 7) & 127], signs64[(aux32[3] >> 0) & 127]);
  6011. const __m128i s2_2_1 = _mm_set_epi64x(signs64[(aux32[3] >> 21) & 127], signs64[(aux32[3] >> 14) & 127]);
  6012. const __m128i q8s_1_0 = _mm_sign_epi8(q8_1_0, s2_1_0);
  6013. const __m128i q8s_1_1 = _mm_sign_epi8(q8_1_1, s2_1_1);
  6014. const __m128i q8s_2_0 = _mm_sign_epi8(q8_2_0, s2_2_0);
  6015. const __m128i q8s_2_1 = _mm_sign_epi8(q8_2_1, s2_2_1);
  6016. const __m128i dot1_0 = _mm_maddubs_epi16(q2_1_0, q8s_1_0);
  6017. const __m128i dot1_1 = _mm_maddubs_epi16(q2_1_1, q8s_1_1);
  6018. const __m128i dot2_0 = _mm_maddubs_epi16(q2_2_0, q8s_2_0);
  6019. const __m128i dot2_1 = _mm_maddubs_epi16(q2_2_1, q8s_2_1);
  6020. const uint16_t ls1 = aux32[1] >> 28;
  6021. const uint16_t ls2 = aux32[3] >> 28;
  6022. const __m128i p1_0 = _mm_madd_epi16(dot1_0, _mm_set1_epi16(2*ls1+1));
  6023. const __m128i p1_1 = _mm_madd_epi16(dot1_1, _mm_set1_epi16(2*ls1+1));
  6024. const __m128i p2_0 = _mm_madd_epi16(dot2_0, _mm_set1_epi16(2*ls2+1));
  6025. const __m128i p2_1 = _mm_madd_epi16(dot2_1, _mm_set1_epi16(2*ls2+1));
  6026. sumi1_0 = _mm_add_epi32(sumi1_0, p1_0);
  6027. sumi1_1 = _mm_add_epi32(sumi1_1, p1_1);
  6028. sumi2_0 = _mm_add_epi32(sumi2_0, p2_0);
  6029. sumi2_1 = _mm_add_epi32(sumi2_1, p2_1);
  6030. }
  6031. accumf = _mm256_add_ps(_mm256_mul_ps(_mm256_set1_ps(d), _mm256_cvtepi32_ps(MM256_SET_M128I(_mm_add_epi32(sumi1_1, sumi2_1), _mm_add_epi32(sumi1_0, sumi2_0)))), accumf);
  6032. }
  6033. *s = 0.125f * hsum_float_8(accumf);
  6034. #elif defined(__POWER9_VECTOR__)
  6035. const vector int v0 = vec_splats((int32_t)0);
  6036. vector float vsumf0 = vec_splats(0.0f);
  6037. vector float vsumf1 = vec_splats(0.0f);
  6038. vector float vsumf2 = vec_splats(0.0f);
  6039. vector float vsumf3 = vec_splats(0.0f);
  6040. const uint64_t * signs64 = (const uint64_t *)keven_signs_q2xs;
  6041. for (int i = 0; i < nb; ++i) {
  6042. vector float vxd = vec_splats(GGML_FP16_TO_FP32(x[i].d));
  6043. vector float vyd = vec_splats(y[i].d);
  6044. vector float vd = vec_mul(vxd, vyd);
  6045. vector signed int vsumi0 = v0;
  6046. vector signed int vsumi1 = v0;
  6047. vector signed int vsumi2 = v0;
  6048. vector signed int vsumi3 = v0;
  6049. const uint16_t * restrict q2 = x[i].qs;
  6050. const int8_t * restrict q8 = y[i].qs;
  6051. for (int j = 0; j < QK_K/32; j += 2) {
  6052. __builtin_prefetch(q2, 0, 1);
  6053. __builtin_prefetch(q8, 0, 1);
  6054. uint32_t aux32[4];
  6055. const uint8_t * aux8 = (const uint8_t *)aux32;
  6056. memcpy(aux32, q2, 4*sizeof(uint32_t));
  6057. q2 += 8;
  6058. vector signed long long aux64x2_0 = {*(const int64_t *)(iq2xxs_grid + aux8[ 0]), *(const int64_t *)(iq2xxs_grid + aux8[ 1])};
  6059. vector signed long long aux64x2_1 = {*(const int64_t *)(iq2xxs_grid + aux8[ 2]), *(const int64_t *)(iq2xxs_grid + aux8[ 3])};
  6060. vector signed long long aux64x2_2 = {*(const int64_t *)(iq2xxs_grid + aux8[ 8]), *(const int64_t *)(iq2xxs_grid + aux8[ 9])};
  6061. vector signed long long aux64x2_3 = {*(const int64_t *)(iq2xxs_grid + aux8[10]), *(const int64_t *)(iq2xxs_grid + aux8[11])};
  6062. vector signed long long vsigns0 = {*(const int64_t *)(signs64 + ((aux32[1] >> 0) & 127)), *(const int64_t *)(signs64 + ((aux32[1] >> 7) & 127))};
  6063. vector signed long long vsigns1 = {*(const int64_t *)(signs64 + ((aux32[1] >> 14) & 127)), *(const int64_t *)(signs64 + ((aux32[1] >> 21) & 127))};
  6064. vector signed long long vsigns2 = {*(const int64_t *)(signs64 + ((aux32[3] >> 0) & 127)), *(const int64_t *)(signs64 + ((aux32[3] >> 7) & 127))};
  6065. vector signed long long vsigns3 = {*(const int64_t *)(signs64 + ((aux32[3] >> 14) & 127)), *(const int64_t *)(signs64 + ((aux32[3] >> 21) & 127))};
  6066. vector signed char q2x0 = (vector signed char)vec_mul((vector signed char)vsigns0, (vector signed char)aux64x2_0);
  6067. vector signed char q2x1 = (vector signed char)vec_mul((vector signed char)vsigns1, (vector signed char)aux64x2_1);
  6068. vector signed char q2x2 = (vector signed char)vec_mul((vector signed char)vsigns2, (vector signed char)aux64x2_2);
  6069. vector signed char q2x3 = (vector signed char)vec_mul((vector signed char)vsigns3, (vector signed char)aux64x2_3);
  6070. vector signed char q8y0 = vec_xl( 0, q8);
  6071. vector signed char q8y1 = vec_xl(16, q8);
  6072. vector signed char q8y2 = vec_xl(32, q8);
  6073. vector signed char q8y3 = vec_xl(48, q8);
  6074. q8 += 64;
  6075. vector signed short qv0 = vec_add(vec_mule(q2x0, q8y0), vec_mulo(q2x0, q8y0));
  6076. vector signed short qv1 = vec_add(vec_mule(q2x1, q8y1), vec_mulo(q2x1, q8y1));
  6077. vector signed short qv2 = vec_add(vec_mule(q2x2, q8y2), vec_mulo(q2x2, q8y2));
  6078. vector signed short qv3 = vec_add(vec_mule(q2x3, q8y3), vec_mulo(q2x3, q8y3));
  6079. const uint16_t ls0 = aux32[1] >> 28;
  6080. const uint16_t ls1 = aux32[3] >> 28;
  6081. vector signed short vscales01 = vec_splats((int16_t)(2*ls0+1));
  6082. vector signed short vscales23 = vec_splats((int16_t)(2*ls1+1));
  6083. vsumi0 = vec_msum(qv0, vscales01, vsumi0);
  6084. vsumi1 = vec_msum(qv1, vscales01, vsumi1);
  6085. vsumi2 = vec_msum(qv2, vscales23, vsumi2);
  6086. vsumi3 = vec_msum(qv3, vscales23, vsumi3);
  6087. }
  6088. vsumf0 = vec_madd(vec_ctf(vsumi0, 0), vd, vsumf0);
  6089. vsumf1 = vec_madd(vec_ctf(vsumi1, 0), vd, vsumf1);
  6090. vsumf2 = vec_madd(vec_ctf(vsumi2, 0), vd, vsumf2);
  6091. vsumf3 = vec_madd(vec_ctf(vsumi3, 0), vd, vsumf3);
  6092. }
  6093. vsumf0 = vec_add(vsumf0, vsumf2);
  6094. vsumf1 = vec_add(vsumf1, vsumf3);
  6095. vsumf0 = vec_add(vsumf0, vsumf1);
  6096. vsumf0 = vec_add(vsumf0, vec_sld(vsumf0, vsumf0, 4));
  6097. vsumf0 = vec_add(vsumf0, vec_sld(vsumf0, vsumf0, 8));
  6098. *s = 0.125f * vec_extract(vsumf0, 0);
  6099. #elif defined(__loongarch_asx)
  6100. const uint64_t * signs64 = (const uint64_t *)keven_signs_q2xs;
  6101. uint32_t aux32[4];
  6102. const uint8_t * aux8 = (const uint8_t *)aux32;
  6103. __m256 accumf = (__m256)__lasx_xvldi(0);
  6104. for (int i = 0; i < nb; ++i) {
  6105. const float d = GGML_FP16_TO_FP32(x[i].d) * y[i].d;
  6106. const uint16_t * restrict q2 = x[i].qs;
  6107. const int8_t * restrict q8 = y[i].qs;
  6108. __m256i sumi1 = __lasx_xvldi(0);
  6109. __m256i sumi2 = __lasx_xvldi(0);
  6110. for (int ib32 = 0; ib32 < QK_K/32; ib32 += 2) {
  6111. const __m256i q8_1 = __lasx_xvld((const __m256i *)q8, 0); q8 += 32;
  6112. const __m256i q8_2 = __lasx_xvld((const __m256i *)q8, 0); q8 += 32;
  6113. memcpy(aux32, q2, 4*sizeof(uint32_t)); q2 += 8;
  6114. const __m256i q2_1 = lasx_set_d(iq2xxs_grid[aux8[ 3]], iq2xxs_grid[aux8[ 2]], iq2xxs_grid[aux8[1]], iq2xxs_grid[aux8[0]]);
  6115. const __m256i q2_2 = lasx_set_d(iq2xxs_grid[aux8[11]], iq2xxs_grid[aux8[10]], iq2xxs_grid[aux8[9]], iq2xxs_grid[aux8[8]]);
  6116. const __m256i s2_1 = lasx_set_d(signs64[(aux32[1] >> 21) & 127], signs64[(aux32[1] >> 14) & 127],
  6117. signs64[(aux32[1] >> 7) & 127], signs64[(aux32[1] >> 0) & 127]);
  6118. const __m256i s2_2 = lasx_set_d(signs64[(aux32[3] >> 21) & 127], signs64[(aux32[3] >> 14) & 127],
  6119. signs64[(aux32[3] >> 7) & 127], signs64[(aux32[3] >> 0) & 127]);
  6120. const __m256i q8s_1 = __lasx_xvsigncov_b(s2_1, q8_1);
  6121. const __m256i q8s_2 = __lasx_xvsigncov_b(s2_2, q8_2);
  6122. const __m256i dot1 = lasx_maddubs_h(q2_1, q8s_1);
  6123. const __m256i dot2 = lasx_maddubs_h(q2_2, q8s_2);
  6124. const uint16_t ls1 = aux32[1] >> 28;
  6125. const uint16_t ls2 = aux32[3] >> 28;
  6126. const __m256i p1 = lasx_madd_h(dot1, __lasx_xvreplgr2vr_h(2*ls1+1));
  6127. const __m256i p2 = lasx_madd_h(dot2, __lasx_xvreplgr2vr_h(2*ls2+1));
  6128. sumi1 = __lasx_xvadd_w(sumi1, p1);
  6129. sumi2 = __lasx_xvadd_w(sumi2, p2);
  6130. }
  6131. accumf = __lasx_xvfmadd_s(__lasx_xvreplfr2vr_s(d), __lasx_xvffint_s_w(__lasx_xvadd_w(sumi1, sumi2)), accumf);
  6132. }
  6133. *s = 0.125f * hsum_float_8(accumf);
  6134. #else
  6135. uint32_t aux32[2];
  6136. const uint8_t * aux8 = (const uint8_t *)aux32;
  6137. float sumf = 0.f;
  6138. for (int i = 0; i < nb; ++i) {
  6139. const float d = GGML_FP16_TO_FP32(x[i].d) * y[i].d;
  6140. const uint16_t * restrict q2 = x[i].qs;
  6141. const int8_t * restrict q8 = y[i].qs;
  6142. int32_t bsum = 0;
  6143. for (int ib32 = 0; ib32 < QK_K/32; ++ib32) {
  6144. memcpy(aux32, q2, 2*sizeof(uint32_t));
  6145. q2 += 4;
  6146. const uint32_t ls = 2*(aux32[1] >> 28) + 1;
  6147. int32_t sumi = 0;
  6148. for (int l = 0; l < 4; ++l) {
  6149. const uint8_t * grid = (const uint8_t *)(iq2xxs_grid + aux8[l]);
  6150. const uint8_t signs = ksigns_iq2xs[(aux32[1] >> 7*l) & 127];
  6151. for (int j = 0; j < 8; ++j) {
  6152. sumi += grid[j] * q8[j] * (signs & kmask_iq2xs[j] ? -1 : 1);
  6153. }
  6154. q8 += 8;
  6155. }
  6156. bsum += sumi * ls;
  6157. }
  6158. sumf += d * bsum;
  6159. }
  6160. *s = 0.125f * sumf;
  6161. #endif
  6162. }
  6163. void ggml_vec_dot_iq2_xs_q8_K(int n, float * restrict s, size_t bs, const void * restrict vx, size_t bx, const void * restrict vy, size_t by, int nrc) {
  6164. assert(n % QK_K == 0);
  6165. assert(nrc == 1);
  6166. UNUSED(nrc);
  6167. UNUSED(bx);
  6168. UNUSED(by);
  6169. UNUSED(bs);
  6170. const block_iq2_xs * restrict x = vx;
  6171. const block_q8_K * restrict y = vy;
  6172. const int nb = n / QK_K;
  6173. #if defined(__ARM_NEON)
  6174. const uint64_t * signs64 = (const uint64_t *)keven_signs_q2xs;
  6175. ggml_int8x16x4_t q2u;
  6176. ggml_int8x16x4_t q2s;
  6177. ggml_int8x16x4_t q8b;
  6178. int32x4x4_t scales32;
  6179. float sumf = 0;
  6180. for (int i = 0; i < nb; ++i) {
  6181. const float d = GGML_FP16_TO_FP32(x[i].d) * y[i].d;
  6182. const uint16_t * restrict q2 = x[i].qs;
  6183. const int8_t * restrict q8 = y[i].qs;
  6184. const uint8x8_t scales8 = vld1_u8(x[i].scales);
  6185. const uint8x8_t scales_l = vand_u8(scales8, vdup_n_u8(0xf));
  6186. const uint8x8_t scales_h = vshr_n_u8(scales8, 4);
  6187. uint8x16_t scales = vcombine_u8(vzip1_u8(scales_l, scales_h), vzip2_u8(scales_l, scales_h));
  6188. scales = vaddq_u8(vshlq_n_u8(scales, 1), vdupq_n_u8(1));
  6189. const uint16x8_t scales1 = vmovl_u8(vget_low_u8(scales));
  6190. const uint16x8_t scales2 = vmovl_u8(vget_high_u8(scales));
  6191. scales32.val[0] = vreinterpretq_s32_u32(vmovl_u16(vget_low_u16(scales1)));
  6192. scales32.val[1] = vreinterpretq_s32_u32(vmovl_u16(vget_high_u16(scales1)));
  6193. scales32.val[2] = vreinterpretq_s32_u32(vmovl_u16(vget_low_u16(scales2)));
  6194. scales32.val[3] = vreinterpretq_s32_u32(vmovl_u16(vget_high_u16(scales2)));
  6195. int32x4_t sumi = vdupq_n_s32(0);
  6196. for (int ib64 = 0; ib64 < QK_K/64; ++ib64) {
  6197. q8b = ggml_vld1q_s8_x4(q8); q8 += 64;
  6198. q2u.val[0] = vcombine_s8(vld1_s8((const void *)(iq2xs_grid + (q2[0] & 511))), vld1_s8((const void *)(iq2xs_grid + (q2[1] & 511))));
  6199. q2u.val[1] = vcombine_s8(vld1_s8((const void *)(iq2xs_grid + (q2[2] & 511))), vld1_s8((const void *)(iq2xs_grid + (q2[3] & 511))));
  6200. q2u.val[2] = vcombine_s8(vld1_s8((const void *)(iq2xs_grid + (q2[4] & 511))), vld1_s8((const void *)(iq2xs_grid + (q2[5] & 511))));
  6201. q2u.val[3] = vcombine_s8(vld1_s8((const void *)(iq2xs_grid + (q2[6] & 511))), vld1_s8((const void *)(iq2xs_grid + (q2[7] & 511))));
  6202. q2s.val[0] = vcombine_s8(vld1_s8((const void *)(signs64 + (q2[0] >> 9))), vld1_s8((const void *)(signs64 + (q2[1] >> 9))));
  6203. q2s.val[1] = vcombine_s8(vld1_s8((const void *)(signs64 + (q2[2] >> 9))), vld1_s8((const void *)(signs64 + (q2[3] >> 9))));
  6204. q2s.val[2] = vcombine_s8(vld1_s8((const void *)(signs64 + (q2[4] >> 9))), vld1_s8((const void *)(signs64 + (q2[5] >> 9))));
  6205. q2s.val[3] = vcombine_s8(vld1_s8((const void *)(signs64 + (q2[6] >> 9))), vld1_s8((const void *)(signs64 + (q2[7] >> 9))));
  6206. q2u.val[0] = vmulq_s8(q2u.val[0], q2s.val[0]);
  6207. q2u.val[1] = vmulq_s8(q2u.val[1], q2s.val[1]);
  6208. q2u.val[2] = vmulq_s8(q2u.val[2], q2s.val[2]);
  6209. q2u.val[3] = vmulq_s8(q2u.val[3], q2s.val[3]);
  6210. const int32x4_t p1 = ggml_vdotq_s32(vdupq_n_s32(0), q2u.val[0], q8b.val[0]);
  6211. const int32x4_t p2 = ggml_vdotq_s32(vdupq_n_s32(0), q2u.val[1], q8b.val[1]);
  6212. const int32x4_t p3 = ggml_vdotq_s32(vdupq_n_s32(0), q2u.val[2], q8b.val[2]);
  6213. const int32x4_t p4 = ggml_vdotq_s32(vdupq_n_s32(0), q2u.val[3], q8b.val[3]);
  6214. const int32x4_t p = vpaddq_s32(vpaddq_s32(p1, p2), vpaddq_s32(p3, p4));
  6215. sumi = vmlaq_s32(sumi, p, scales32.val[ib64]);
  6216. q2 += 8;
  6217. }
  6218. sumf += d*vaddvq_s32(sumi);
  6219. }
  6220. *s = 0.125f * sumf;
  6221. #elif defined(__AVX2__)
  6222. const __m256i mone = _mm256_set1_epi8(1);
  6223. static const char block_sign_shuffle_mask_1[32] = {
  6224. 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x02, 0x02, 0x02, 0x02, 0x02, 0x02, 0x02, 0x02,
  6225. 0x04, 0x04, 0x04, 0x04, 0x04, 0x04, 0x04, 0x04, 0x06, 0x06, 0x06, 0x06, 0x06, 0x06, 0x06, 0x06,
  6226. };
  6227. static const char block_sign_shuffle_mask_2[32] = {
  6228. 0x08, 0x08, 0x08, 0x08, 0x08, 0x08, 0x08, 0x08, 0x0a, 0x0a, 0x0a, 0x0a, 0x0a, 0x0a, 0x0a, 0x0a,
  6229. 0x0c, 0x0c, 0x0c, 0x0c, 0x0c, 0x0c, 0x0c, 0x0c, 0x0e, 0x0e, 0x0e, 0x0e, 0x0e, 0x0e, 0x0e, 0x0e,
  6230. };
  6231. static const uint8_t bit_selector_mask_bytes[32] = {
  6232. 0x01, 0x02, 0x04, 0x08, 0x10, 0x20, 0x40, 0x80, 0x01, 0x02, 0x04, 0x08, 0x10, 0x20, 0x40, 0x80,
  6233. 0x01, 0x02, 0x04, 0x08, 0x10, 0x20, 0x40, 0x80, 0x01, 0x02, 0x04, 0x08, 0x10, 0x20, 0x40, 0x80,
  6234. };
  6235. const __m256i bit_selector_mask = _mm256_loadu_si256((const __m256i*)bit_selector_mask_bytes);
  6236. const __m256i block_sign_shuffle_1 = _mm256_loadu_si256((const __m256i*)block_sign_shuffle_mask_1);
  6237. const __m256i block_sign_shuffle_2 = _mm256_loadu_si256((const __m256i*)block_sign_shuffle_mask_2);
  6238. static const uint8_t k_bit_helper[32] = {
  6239. 0x00, 0x80, 0x80, 0x00, 0x80, 0x00, 0x00, 0x80, 0x80, 0x00, 0x00, 0x80, 0x00, 0x80, 0x80, 0x00,
  6240. 0x00, 0x80, 0x80, 0x00, 0x80, 0x00, 0x00, 0x80, 0x80, 0x00, 0x00, 0x80, 0x00, 0x80, 0x80, 0x00,
  6241. };
  6242. const __m256i bit_helper = _mm256_loadu_si256((const __m256i*)k_bit_helper);
  6243. const __m256i m511 = _mm256_set1_epi16(511);
  6244. const __m128i m4 = _mm_set1_epi8(0xf);
  6245. const __m128i m1 = _mm_set1_epi8(1);
  6246. uint64_t aux64;
  6247. // somewhat hacky, but gives a significant boost in performance
  6248. __m256i aux_gindex;
  6249. const uint16_t * gindex = (const uint16_t *)&aux_gindex;
  6250. __m256 accumf = _mm256_setzero_ps();
  6251. for (int i = 0; i < nb; ++i) {
  6252. const float d = GGML_FP16_TO_FP32(x[i].d) * y[i].d;
  6253. const uint16_t * restrict q2 = x[i].qs;
  6254. const int8_t * restrict q8 = y[i].qs;
  6255. memcpy(&aux64, x[i].scales, 8);
  6256. __m128i stmp = _mm_set1_epi64x(aux64);
  6257. stmp = _mm_unpacklo_epi8(_mm_and_si128(stmp, m4), _mm_and_si128(_mm_srli_epi16(stmp, 4), m4));
  6258. const __m128i scales = _mm_add_epi8(_mm_slli_epi16(stmp, 1), m1);
  6259. __m256i sumi1 = _mm256_setzero_si256();
  6260. __m256i sumi2 = _mm256_setzero_si256();
  6261. for (int ib32 = 0; ib32 < QK_K/32; ib32 += 4) {
  6262. const __m256i q2_data = _mm256_loadu_si256((const __m256i*)q2); q2 += 16;
  6263. aux_gindex = _mm256_and_si256(q2_data, m511);
  6264. const __m256i partial_sign_bits = _mm256_srli_epi16(q2_data, 9);
  6265. const __m256i partial_sign_bits_upper = _mm256_srli_epi16(q2_data, 13);
  6266. const __m256i partial_sign_bits_for_counting = _mm256_xor_si256(partial_sign_bits, partial_sign_bits_upper);
  6267. const __m256i odd_bits = _mm256_shuffle_epi8(bit_helper, partial_sign_bits_for_counting);
  6268. const __m256i full_sign_bits = _mm256_or_si256(partial_sign_bits, odd_bits);
  6269. const __m256i q8_1 = _mm256_loadu_si256((const __m256i *)q8); q8 += 32;
  6270. const __m256i q8_2 = _mm256_loadu_si256((const __m256i *)q8); q8 += 32;
  6271. const __m256i q8_3 = _mm256_loadu_si256((const __m256i *)q8); q8 += 32;
  6272. const __m256i q8_4 = _mm256_loadu_si256((const __m256i *)q8); q8 += 32;
  6273. const __m256i q2_1 = _mm256_set_epi64x(iq2xs_grid[gindex[ 3]], iq2xs_grid[gindex[ 2]],
  6274. iq2xs_grid[gindex[ 1]], iq2xs_grid[gindex[ 0]]);
  6275. const __m256i q2_2 = _mm256_set_epi64x(iq2xs_grid[gindex[ 7]], iq2xs_grid[gindex[ 6]],
  6276. iq2xs_grid[gindex[ 5]], iq2xs_grid[gindex[ 4]]);
  6277. const __m256i q2_3 = _mm256_set_epi64x(iq2xs_grid[gindex[11]], iq2xs_grid[gindex[10]],
  6278. iq2xs_grid[gindex[ 9]], iq2xs_grid[gindex[ 8]]);
  6279. const __m256i q2_4 = _mm256_set_epi64x(iq2xs_grid[gindex[15]], iq2xs_grid[gindex[14]],
  6280. iq2xs_grid[gindex[13]], iq2xs_grid[gindex[12]]);
  6281. const __m128i full_signs_l = _mm256_castsi256_si128(full_sign_bits);
  6282. const __m128i full_signs_h = _mm256_extractf128_si256(full_sign_bits, 1);
  6283. const __m256i full_signs_1 = MM256_SET_M128I(full_signs_l, full_signs_l);
  6284. const __m256i full_signs_2 = MM256_SET_M128I(full_signs_h, full_signs_h);
  6285. __m256i signs;
  6286. signs = _mm256_shuffle_epi8(full_signs_1, block_sign_shuffle_1);
  6287. signs = _mm256_cmpeq_epi8(_mm256_and_si256(signs, bit_selector_mask), bit_selector_mask);
  6288. const __m256i q8s_1 = _mm256_sign_epi8(q8_1, _mm256_or_si256(signs, mone));
  6289. signs = _mm256_shuffle_epi8(full_signs_1, block_sign_shuffle_2);
  6290. signs = _mm256_cmpeq_epi8(_mm256_and_si256(signs, bit_selector_mask), bit_selector_mask);
  6291. const __m256i q8s_2 = _mm256_sign_epi8(q8_2, _mm256_or_si256(signs, mone));
  6292. signs = _mm256_shuffle_epi8(full_signs_2, block_sign_shuffle_1);
  6293. signs = _mm256_cmpeq_epi8(_mm256_and_si256(signs, bit_selector_mask), bit_selector_mask);
  6294. const __m256i q8s_3 = _mm256_sign_epi8(q8_3, _mm256_or_si256(signs, mone));
  6295. signs = _mm256_shuffle_epi8(full_signs_2, block_sign_shuffle_2);
  6296. signs = _mm256_cmpeq_epi8(_mm256_and_si256(signs, bit_selector_mask), bit_selector_mask);
  6297. const __m256i q8s_4 = _mm256_sign_epi8(q8_4, _mm256_or_si256(signs, mone));
  6298. const __m256i dot1 = _mm256_maddubs_epi16(q2_1, q8s_1);
  6299. const __m256i dot2 = _mm256_maddubs_epi16(q2_2, q8s_2);
  6300. const __m256i dot3 = _mm256_maddubs_epi16(q2_3, q8s_3);
  6301. const __m256i dot4 = _mm256_maddubs_epi16(q2_4, q8s_4);
  6302. const __m256i sc1 = _mm256_cvtepi8_epi16(_mm_shuffle_epi8(scales, get_scale_shuffle(ib32+0)));
  6303. const __m256i sc2 = _mm256_cvtepi8_epi16(_mm_shuffle_epi8(scales, get_scale_shuffle(ib32+1)));
  6304. const __m256i sc3 = _mm256_cvtepi8_epi16(_mm_shuffle_epi8(scales, get_scale_shuffle(ib32+2)));
  6305. const __m256i sc4 = _mm256_cvtepi8_epi16(_mm_shuffle_epi8(scales, get_scale_shuffle(ib32+3)));
  6306. sumi1 = _mm256_add_epi32(sumi1, _mm256_madd_epi16(dot1, sc1));
  6307. sumi2 = _mm256_add_epi32(sumi2, _mm256_madd_epi16(dot2, sc2));
  6308. sumi1 = _mm256_add_epi32(sumi1, _mm256_madd_epi16(dot3, sc3));
  6309. sumi2 = _mm256_add_epi32(sumi2, _mm256_madd_epi16(dot4, sc4));
  6310. }
  6311. accumf = _mm256_fmadd_ps(_mm256_set1_ps(d), _mm256_cvtepi32_ps(_mm256_add_epi32(sumi1, sumi2)), accumf);
  6312. }
  6313. *s = 0.125f * hsum_float_8(accumf);
  6314. #elif defined(__AVX__)
  6315. const __m128i mone = _mm_set1_epi8(1);
  6316. static const char block_sign_shuffle_mask_1[32] = {
  6317. 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x02, 0x02, 0x02, 0x02, 0x02, 0x02, 0x02, 0x02,
  6318. 0x04, 0x04, 0x04, 0x04, 0x04, 0x04, 0x04, 0x04, 0x06, 0x06, 0x06, 0x06, 0x06, 0x06, 0x06, 0x06,
  6319. };
  6320. static const char block_sign_shuffle_mask_2[32] = {
  6321. 0x08, 0x08, 0x08, 0x08, 0x08, 0x08, 0x08, 0x08, 0x0a, 0x0a, 0x0a, 0x0a, 0x0a, 0x0a, 0x0a, 0x0a,
  6322. 0x0c, 0x0c, 0x0c, 0x0c, 0x0c, 0x0c, 0x0c, 0x0c, 0x0e, 0x0e, 0x0e, 0x0e, 0x0e, 0x0e, 0x0e, 0x0e,
  6323. };
  6324. static const uint8_t bit_selector_mask_bytes[32] = {
  6325. 0x01, 0x02, 0x04, 0x08, 0x10, 0x20, 0x40, 0x80, 0x01, 0x02, 0x04, 0x08, 0x10, 0x20, 0x40, 0x80,
  6326. 0x01, 0x02, 0x04, 0x08, 0x10, 0x20, 0x40, 0x80, 0x01, 0x02, 0x04, 0x08, 0x10, 0x20, 0x40, 0x80,
  6327. };
  6328. const __m128i bit_selector_mask_0 = _mm_loadu_si128((const __m128i*)bit_selector_mask_bytes);
  6329. const __m128i bit_selector_mask_1 = _mm_loadu_si128((const __m128i*)bit_selector_mask_bytes + 1);
  6330. const __m128i block_sign_shuffle_1_0 = _mm_loadu_si128((const __m128i*)block_sign_shuffle_mask_1);
  6331. const __m128i block_sign_shuffle_1_1 = _mm_loadu_si128((const __m128i*)block_sign_shuffle_mask_1 + 1);
  6332. const __m128i block_sign_shuffle_2_0 = _mm_loadu_si128((const __m128i*)block_sign_shuffle_mask_2);
  6333. const __m128i block_sign_shuffle_2_1 = _mm_loadu_si128((const __m128i*)block_sign_shuffle_mask_2 + 1);
  6334. static const uint8_t k_bit_helper[32] = {
  6335. 0x00, 0x80, 0x80, 0x00, 0x80, 0x00, 0x00, 0x80, 0x80, 0x00, 0x00, 0x80, 0x00, 0x80, 0x80, 0x00,
  6336. 0x00, 0x80, 0x80, 0x00, 0x80, 0x00, 0x00, 0x80, 0x80, 0x00, 0x00, 0x80, 0x00, 0x80, 0x80, 0x00,
  6337. };
  6338. const __m128i bit_helper_0 = _mm_loadu_si128((const __m128i*)k_bit_helper);
  6339. const __m128i bit_helper_1 = _mm_loadu_si128((const __m128i*)k_bit_helper + 1);
  6340. const __m128i m511 = _mm_set1_epi16(511);
  6341. const __m128i m4 = _mm_set1_epi8(0xf);
  6342. const __m128i m1 = _mm_set1_epi8(1);
  6343. uint64_t aux64;
  6344. // somewhat hacky, but gives a significant boost in performance
  6345. __m256i aux_gindex;
  6346. const uint16_t * gindex = (const uint16_t *)&aux_gindex;
  6347. __m256 accumf = _mm256_setzero_ps();
  6348. for (int i = 0; i < nb; ++i) {
  6349. const float d = GGML_FP16_TO_FP32(x[i].d) * y[i].d;
  6350. const uint16_t * restrict q2 = x[i].qs;
  6351. const int8_t * restrict q8 = y[i].qs;
  6352. memcpy(&aux64, x[i].scales, 8);
  6353. __m128i stmp = _mm_set1_epi64x(aux64);
  6354. stmp = _mm_unpacklo_epi8(_mm_and_si128(stmp, m4), _mm_and_si128(_mm_srli_epi16(stmp, 4), m4));
  6355. const __m128i scales = _mm_add_epi8(_mm_slli_epi16(stmp, 1), m1);
  6356. __m128i sumi1_0 = _mm_setzero_si128();
  6357. __m128i sumi1_1 = _mm_setzero_si128();
  6358. __m128i sumi2_0 = _mm_setzero_si128();
  6359. __m128i sumi2_1 = _mm_setzero_si128();
  6360. for (int ib32 = 0; ib32 < QK_K/32; ib32 += 4) {
  6361. const __m128i q2_data_0 = _mm_loadu_si128((const __m128i*)q2);
  6362. const __m128i q2_data_1 = _mm_loadu_si128((const __m128i*)q2 + 1); q2 += 16;
  6363. aux_gindex = MM256_SET_M128I(_mm_and_si128(q2_data_1, m511), _mm_and_si128(q2_data_0, m511));
  6364. const __m128i partial_sign_bits_0 = _mm_srli_epi16(q2_data_0, 9);
  6365. const __m128i partial_sign_bits_1 = _mm_srli_epi16(q2_data_1, 9);
  6366. const __m128i partial_sign_bits_upper_0 = _mm_srli_epi16(q2_data_0, 13);
  6367. const __m128i partial_sign_bits_upper_1 = _mm_srli_epi16(q2_data_1, 13);
  6368. const __m128i partial_sign_bits_for_counting_0 = _mm_xor_si128(partial_sign_bits_0, partial_sign_bits_upper_0);
  6369. const __m128i partial_sign_bits_for_counting_1 = _mm_xor_si128(partial_sign_bits_1, partial_sign_bits_upper_1);
  6370. const __m128i odd_bits_0 = _mm_shuffle_epi8(bit_helper_0, partial_sign_bits_for_counting_0);
  6371. const __m128i odd_bits_1 = _mm_shuffle_epi8(bit_helper_1, partial_sign_bits_for_counting_1);
  6372. const __m128i full_sign_bits_0 = _mm_or_si128(partial_sign_bits_0, odd_bits_0);
  6373. const __m128i full_sign_bits_1 = _mm_or_si128(partial_sign_bits_1, odd_bits_1);
  6374. const __m128i q8_1_0 = _mm_loadu_si128((const __m128i *)q8); q8 += 16;
  6375. const __m128i q8_1_1 = _mm_loadu_si128((const __m128i *)q8); q8 += 16;
  6376. const __m128i q8_2_0 = _mm_loadu_si128((const __m128i *)q8); q8 += 16;
  6377. const __m128i q8_2_1 = _mm_loadu_si128((const __m128i *)q8); q8 += 16;
  6378. const __m128i q8_3_0 = _mm_loadu_si128((const __m128i *)q8); q8 += 16;
  6379. const __m128i q8_3_1 = _mm_loadu_si128((const __m128i *)q8); q8 += 16;
  6380. const __m128i q8_4_0 = _mm_loadu_si128((const __m128i *)q8); q8 += 16;
  6381. const __m128i q8_4_1 = _mm_loadu_si128((const __m128i *)q8); q8 += 16;
  6382. const __m128i q2_1_0 = _mm_set_epi64x(iq2xs_grid[gindex[1]], iq2xs_grid[gindex[0]]);
  6383. const __m128i q2_1_1 = _mm_set_epi64x(iq2xs_grid[gindex[3]], iq2xs_grid[gindex[2]]);
  6384. const __m128i q2_2_0 = _mm_set_epi64x(iq2xs_grid[gindex[5]], iq2xs_grid[gindex[4]]);
  6385. const __m128i q2_2_1 = _mm_set_epi64x(iq2xs_grid[gindex[7]], iq2xs_grid[gindex[6]]);
  6386. const __m128i q2_3_0 = _mm_set_epi64x(iq2xs_grid[gindex[9]], iq2xs_grid[gindex[8]]);
  6387. const __m128i q2_3_1 = _mm_set_epi64x(iq2xs_grid[gindex[11]], iq2xs_grid[gindex[10]]);
  6388. const __m128i q2_4_0 = _mm_set_epi64x(iq2xs_grid[gindex[13]], iq2xs_grid[gindex[12]]);
  6389. const __m128i q2_4_1 = _mm_set_epi64x(iq2xs_grid[gindex[15]], iq2xs_grid[gindex[14]]);
  6390. // AVX2 full_signs_1 is full_sign_bits_0 here
  6391. // AVX2 full_signs_2 is full_sign_bits_1 here
  6392. __m128i signs_0, signs_1;
  6393. signs_0 = _mm_shuffle_epi8(full_sign_bits_0, block_sign_shuffle_1_0);
  6394. signs_1 = _mm_shuffle_epi8(full_sign_bits_0, block_sign_shuffle_1_1);
  6395. signs_0 = _mm_cmpeq_epi8(_mm_and_si128(signs_0, bit_selector_mask_0), bit_selector_mask_0);
  6396. signs_1 = _mm_cmpeq_epi8(_mm_and_si128(signs_1, bit_selector_mask_1), bit_selector_mask_1);
  6397. const __m128i q8s_1_0 = _mm_sign_epi8(q8_1_0, _mm_or_si128(signs_0, mone));
  6398. const __m128i q8s_1_1 = _mm_sign_epi8(q8_1_1, _mm_or_si128(signs_1, mone));
  6399. signs_0 = _mm_shuffle_epi8(full_sign_bits_0, block_sign_shuffle_2_0);
  6400. signs_1 = _mm_shuffle_epi8(full_sign_bits_0, block_sign_shuffle_2_1);
  6401. signs_0 = _mm_cmpeq_epi8(_mm_and_si128(signs_0, bit_selector_mask_0), bit_selector_mask_0);
  6402. signs_1 = _mm_cmpeq_epi8(_mm_and_si128(signs_1, bit_selector_mask_1), bit_selector_mask_1);
  6403. const __m128i q8s_2_0 = _mm_sign_epi8(q8_2_0, _mm_or_si128(signs_0, mone));
  6404. const __m128i q8s_2_1 = _mm_sign_epi8(q8_2_1, _mm_or_si128(signs_1, mone));
  6405. signs_0 = _mm_shuffle_epi8(full_sign_bits_1, block_sign_shuffle_1_0);
  6406. signs_1 = _mm_shuffle_epi8(full_sign_bits_1, block_sign_shuffle_1_1);
  6407. signs_0 = _mm_cmpeq_epi8(_mm_and_si128(signs_0, bit_selector_mask_0), bit_selector_mask_0);
  6408. signs_1 = _mm_cmpeq_epi8(_mm_and_si128(signs_1, bit_selector_mask_1), bit_selector_mask_1);
  6409. const __m128i q8s_3_0 = _mm_sign_epi8(q8_3_0, _mm_or_si128(signs_0, mone));
  6410. const __m128i q8s_3_1 = _mm_sign_epi8(q8_3_1, _mm_or_si128(signs_1, mone));
  6411. signs_0 = _mm_shuffle_epi8(full_sign_bits_1, block_sign_shuffle_2_0);
  6412. signs_1 = _mm_shuffle_epi8(full_sign_bits_1, block_sign_shuffle_2_1);
  6413. signs_0 = _mm_cmpeq_epi8(_mm_and_si128(signs_0, bit_selector_mask_0), bit_selector_mask_0);
  6414. signs_1 = _mm_cmpeq_epi8(_mm_and_si128(signs_1, bit_selector_mask_1), bit_selector_mask_1);
  6415. const __m128i q8s_4_0 = _mm_sign_epi8(q8_4_0, _mm_or_si128(signs_0, mone));
  6416. const __m128i q8s_4_1 = _mm_sign_epi8(q8_4_1, _mm_or_si128(signs_1, mone));
  6417. const __m128i dot1_0 = _mm_maddubs_epi16(q2_1_0, q8s_1_0);
  6418. const __m128i dot1_1 = _mm_maddubs_epi16(q2_1_1, q8s_1_1);
  6419. const __m128i dot2_0 = _mm_maddubs_epi16(q2_2_0, q8s_2_0);
  6420. const __m128i dot2_1 = _mm_maddubs_epi16(q2_2_1, q8s_2_1);
  6421. const __m128i dot3_0 = _mm_maddubs_epi16(q2_3_0, q8s_3_0);
  6422. const __m128i dot3_1 = _mm_maddubs_epi16(q2_3_1, q8s_3_1);
  6423. const __m128i dot4_0 = _mm_maddubs_epi16(q2_4_0, q8s_4_0);
  6424. const __m128i dot4_1 = _mm_maddubs_epi16(q2_4_1, q8s_4_1);
  6425. __m128i sc_tmp = _mm_shuffle_epi8(scales, get_scale_shuffle(ib32+0));
  6426. const __m128i sc1_0 = _mm_cvtepi8_epi16(sc_tmp);
  6427. const __m128i sc1_1 = _mm_cvtepi8_epi16(_mm_srli_si128(sc_tmp, 8));
  6428. sc_tmp = _mm_shuffle_epi8(scales, get_scale_shuffle(ib32+1));
  6429. const __m128i sc2_0 = _mm_cvtepi8_epi16(sc_tmp);
  6430. const __m128i sc2_1 = _mm_cvtepi8_epi16(_mm_srli_si128(sc_tmp, 8));
  6431. sc_tmp = _mm_shuffle_epi8(scales, get_scale_shuffle(ib32+2));
  6432. const __m128i sc3_0 = _mm_cvtepi8_epi16(sc_tmp);
  6433. const __m128i sc3_1 = _mm_cvtepi8_epi16(_mm_srli_si128(sc_tmp, 8));
  6434. sc_tmp = _mm_shuffle_epi8(scales, get_scale_shuffle(ib32+3));
  6435. const __m128i sc4_0 = _mm_cvtepi8_epi16(sc_tmp);
  6436. const __m128i sc4_1 = _mm_cvtepi8_epi16(_mm_srli_si128(sc_tmp, 8));
  6437. sumi1_0 = _mm_add_epi32(sumi1_0, _mm_madd_epi16(dot1_0, sc1_0));
  6438. sumi1_1 = _mm_add_epi32(sumi1_1, _mm_madd_epi16(dot1_1, sc1_1));
  6439. sumi2_0 = _mm_add_epi32(sumi2_0, _mm_madd_epi16(dot2_0, sc2_0));
  6440. sumi2_1 = _mm_add_epi32(sumi2_1, _mm_madd_epi16(dot2_1, sc2_1));
  6441. sumi1_0 = _mm_add_epi32(sumi1_0, _mm_madd_epi16(dot3_0, sc3_0));
  6442. sumi1_1 = _mm_add_epi32(sumi1_1, _mm_madd_epi16(dot3_1, sc3_1));
  6443. sumi2_0 = _mm_add_epi32(sumi2_0, _mm_madd_epi16(dot4_0, sc4_0));
  6444. sumi2_1 = _mm_add_epi32(sumi2_1, _mm_madd_epi16(dot4_1, sc4_1));
  6445. }
  6446. accumf = _mm256_add_ps(_mm256_mul_ps(_mm256_set1_ps(d), _mm256_cvtepi32_ps(MM256_SET_M128I(_mm_add_epi32(sumi1_1, sumi2_1), _mm_add_epi32(sumi1_0, sumi2_0)))), accumf);
  6447. }
  6448. *s = 0.125f * hsum_float_8(accumf);
  6449. #elif defined(__loongarch_asx)
  6450. const __m256i mone = __lasx_xvreplgr2vr_b(1);
  6451. static const char block_sign_shuffle_mask_1[32] = {
  6452. 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x02, 0x02, 0x02, 0x02, 0x02, 0x02, 0x02, 0x02,
  6453. 0x04, 0x04, 0x04, 0x04, 0x04, 0x04, 0x04, 0x04, 0x06, 0x06, 0x06, 0x06, 0x06, 0x06, 0x06, 0x06,
  6454. };
  6455. static const char block_sign_shuffle_mask_2[32] = {
  6456. 0x08, 0x08, 0x08, 0x08, 0x08, 0x08, 0x08, 0x08, 0x0a, 0x0a, 0x0a, 0x0a, 0x0a, 0x0a, 0x0a, 0x0a,
  6457. 0x0c, 0x0c, 0x0c, 0x0c, 0x0c, 0x0c, 0x0c, 0x0c, 0x0e, 0x0e, 0x0e, 0x0e, 0x0e, 0x0e, 0x0e, 0x0e,
  6458. };
  6459. static const uint8_t bit_selector_mask_bytes[32] = {
  6460. 0x01, 0x02, 0x04, 0x08, 0x10, 0x20, 0x40, 0x80, 0x01, 0x02, 0x04, 0x08, 0x10, 0x20, 0x40, 0x80,
  6461. 0x01, 0x02, 0x04, 0x08, 0x10, 0x20, 0x40, 0x80, 0x01, 0x02, 0x04, 0x08, 0x10, 0x20, 0x40, 0x80,
  6462. };
  6463. const __m256i bit_selector_mask = __lasx_xvld((const __m256i*)bit_selector_mask_bytes, 0);
  6464. const __m256i block_sign_shuffle_1 = __lasx_xvld((const __m256i*)block_sign_shuffle_mask_1, 0);
  6465. const __m256i block_sign_shuffle_2 = __lasx_xvld((const __m256i*)block_sign_shuffle_mask_2, 0);
  6466. static const uint8_t k_bit_helper[32] = {
  6467. 0x00, 0x80, 0x80, 0x00, 0x80, 0x00, 0x00, 0x80, 0x80, 0x00, 0x00, 0x80, 0x00, 0x80, 0x80, 0x00,
  6468. 0x00, 0x80, 0x80, 0x00, 0x80, 0x00, 0x00, 0x80, 0x80, 0x00, 0x00, 0x80, 0x00, 0x80, 0x80, 0x00,
  6469. };
  6470. const __m256i bit_helper = __lasx_xvld((const __m256i*)k_bit_helper, 0);
  6471. const __m256i m511 = __lasx_xvreplgr2vr_h(511);
  6472. const __m128i m4 = __lsx_vreplgr2vr_b(0xf);
  6473. const __m128i m1 = __lsx_vreplgr2vr_b(1);
  6474. uint64_t aux64;
  6475. // somewhat hacky, but gives a significant boost in performance
  6476. __m256i aux_gindex;
  6477. const uint16_t * gindex = (const uint16_t *)&aux_gindex;
  6478. __m256 accumf = (__m256)__lasx_xvldi(0);
  6479. for (int i = 0; i < nb; ++i) {
  6480. const float d = GGML_FP16_TO_FP32(x[i].d) * y[i].d;
  6481. const uint16_t * restrict q2 = x[i].qs;
  6482. const int8_t * restrict q8 = y[i].qs;
  6483. memcpy(&aux64, x[i].scales, 8);
  6484. __m128i stmp = __lsx_vreplgr2vr_d(aux64);
  6485. stmp = __lsx_vilvl_b( __lsx_vand_v(__lsx_vsrli_h(stmp, 4), m4), __lsx_vand_v(stmp, m4));
  6486. const __m128i scales = __lsx_vadd_b(__lsx_vslli_h(stmp, 1), m1);
  6487. __m256i sumi1 = __lasx_xvldi(0);
  6488. __m256i sumi2 = __lasx_xvldi(0);
  6489. for (int ib32 = 0; ib32 < QK_K/32; ib32 += 4) {
  6490. const __m256i q2_data = __lasx_xvld((const __m256i*)q2, 0); q2 += 16;
  6491. aux_gindex = __lasx_xvand_v(q2_data, m511);
  6492. const __m256i partial_sign_bits = __lasx_xvsrli_h(q2_data, 9);
  6493. const __m256i partial_sign_bits_upper = __lasx_xvsrli_h(q2_data, 13);
  6494. const __m256i partial_sign_bits_for_counting = __lasx_xvxor_v(partial_sign_bits, partial_sign_bits_upper);
  6495. const __m256i odd_bits = lasx_shuffle_b(bit_helper, partial_sign_bits_for_counting);
  6496. const __m256i full_sign_bits = __lasx_xvor_v(partial_sign_bits, odd_bits);
  6497. const __m256i q8_1 = __lasx_xvld((const __m256i *)q8, 0); q8 += 32;
  6498. const __m256i q8_2 = __lasx_xvld((const __m256i *)q8, 0); q8 += 32;
  6499. const __m256i q8_3 = __lasx_xvld((const __m256i *)q8, 0); q8 += 32;
  6500. const __m256i q8_4 = __lasx_xvld((const __m256i *)q8, 0); q8 += 32;
  6501. const __m256i q2_1 = lasx_set_d(iq2xs_grid[gindex[ 3]], iq2xs_grid[gindex[ 2]],
  6502. iq2xs_grid[gindex[ 1]], iq2xs_grid[gindex[ 0]]);
  6503. const __m256i q2_2 = lasx_set_d(iq2xs_grid[gindex[ 7]], iq2xs_grid[gindex[ 6]],
  6504. iq2xs_grid[gindex[ 5]], iq2xs_grid[gindex[ 4]]);
  6505. const __m256i q2_3 = lasx_set_d(iq2xs_grid[gindex[11]], iq2xs_grid[gindex[10]],
  6506. iq2xs_grid[gindex[ 9]], iq2xs_grid[gindex[ 8]]);
  6507. const __m256i q2_4 = lasx_set_d(iq2xs_grid[gindex[15]], iq2xs_grid[gindex[14]],
  6508. iq2xs_grid[gindex[13]], iq2xs_grid[gindex[12]]);
  6509. const __m128i full_signs_l = lasx_extracti128(full_sign_bits, 0);
  6510. const __m128i full_signs_h = lasx_extracti128(full_sign_bits, 1);
  6511. const __m256i full_signs_1 = lasx_insertf128(full_signs_l, full_signs_l);
  6512. const __m256i full_signs_2 = lasx_insertf128(full_signs_h, full_signs_h);
  6513. __m256i signs;
  6514. signs = lasx_shuffle_b(full_signs_1, block_sign_shuffle_1);
  6515. signs = __lasx_xvseq_b(__lasx_xvand_v(signs, bit_selector_mask), bit_selector_mask);
  6516. const __m256i q8s_1 = __lasx_xvsigncov_b(__lasx_xvor_v(signs, mone), q8_1);
  6517. signs = lasx_shuffle_b(full_signs_1, block_sign_shuffle_2);
  6518. signs = __lasx_xvseq_b(__lasx_xvand_v(signs, bit_selector_mask), bit_selector_mask);
  6519. const __m256i q8s_2 = __lasx_xvsigncov_b(__lasx_xvor_v(signs, mone), q8_2);
  6520. signs = lasx_shuffle_b(full_signs_2, block_sign_shuffle_1);
  6521. signs = __lasx_xvseq_b(__lasx_xvand_v(signs, bit_selector_mask), bit_selector_mask);
  6522. const __m256i q8s_3 = __lasx_xvsigncov_b(__lasx_xvor_v(signs, mone), q8_3);
  6523. signs = lasx_shuffle_b(full_signs_2, block_sign_shuffle_2);
  6524. signs = __lasx_xvseq_b(__lasx_xvand_v(signs, bit_selector_mask), bit_selector_mask);
  6525. const __m256i q8s_4 = __lasx_xvsigncov_b(__lasx_xvor_v(signs, mone), q8_4);
  6526. const __m256i dot1 = lasx_maddubs_h(q2_1, q8s_1);
  6527. const __m256i dot2 = lasx_maddubs_h(q2_2, q8s_2);
  6528. const __m256i dot3 = lasx_maddubs_h(q2_3, q8s_3);
  6529. const __m256i dot4 = lasx_maddubs_h(q2_4, q8s_4);
  6530. const __m256i sc1 = lasx_ext8_16(lsx_shuffle_b(scales, get_scale_shuffle(ib32+0)));
  6531. const __m256i sc2 = lasx_ext8_16(lsx_shuffle_b(scales, get_scale_shuffle(ib32+1)));
  6532. const __m256i sc3 = lasx_ext8_16(lsx_shuffle_b(scales, get_scale_shuffle(ib32+2)));
  6533. const __m256i sc4 = lasx_ext8_16(lsx_shuffle_b(scales, get_scale_shuffle(ib32+3)));
  6534. sumi1 = __lasx_xvadd_w(sumi1, lasx_madd_h(dot1, sc1));
  6535. sumi2 = __lasx_xvadd_w(sumi2, lasx_madd_h(dot2, sc2));
  6536. sumi1 = __lasx_xvadd_w(sumi1, lasx_madd_h(dot3, sc3));
  6537. sumi2 = __lasx_xvadd_w(sumi2, lasx_madd_h(dot4, sc4));
  6538. }
  6539. accumf = __lasx_xvfmadd_s(__lasx_xvreplfr2vr_s(d), __lasx_xvffint_s_w(__lasx_xvadd_w(sumi1, sumi2)), accumf);
  6540. }
  6541. *s = 0.125f * hsum_float_8(accumf);
  6542. #elif defined(__POWER9_VECTOR__)
  6543. const vector int v0 = vec_splats((int32_t)0);
  6544. vector float vsumf0 = vec_splats(0.0f);
  6545. vector float vsumf1 = vec_splats(0.0f);
  6546. vector float vsumf2 = vec_splats(0.0f);
  6547. vector float vsumf3 = vec_splats(0.0f);
  6548. const uint64_t * signs64 = (const uint64_t *)keven_signs_q2xs;
  6549. for (int i = 0; i < nb; ++i) {
  6550. vector float vxd = vec_splats(GGML_FP16_TO_FP32(x[i].d));
  6551. vector float vyd = vec_splats(y[i].d);
  6552. vector float vd = vec_mul(vxd, vyd);
  6553. vector signed int vsumi0 = v0;
  6554. vector signed int vsumi1 = v0;
  6555. vector signed int vsumi2 = v0;
  6556. vector signed int vsumi3 = v0;
  6557. const uint16_t * restrict q2 = x[i].qs;
  6558. const uint8_t * restrict sc = x[i].scales;
  6559. const int8_t * restrict q8 = y[i].qs;
  6560. for (int j = 0; j < QK_K/64; ++j) {
  6561. __builtin_prefetch(q2, 0, 1);
  6562. __builtin_prefetch(q8, 0, 1);
  6563. vector signed long long aux64x2_0 = {*(const int64_t *)(iq2xs_grid + (q2[0] & 511)), *(const int64_t *)(iq2xs_grid + (q2[1] & 511))};
  6564. vector signed long long aux64x2_1 = {*(const int64_t *)(iq2xs_grid + (q2[2] & 511)), *(const int64_t *)(iq2xs_grid + (q2[3] & 511))};
  6565. vector signed long long aux64x2_2 = {*(const int64_t *)(iq2xs_grid + (q2[4] & 511)), *(const int64_t *)(iq2xs_grid + (q2[5] & 511))};
  6566. vector signed long long aux64x2_3 = {*(const int64_t *)(iq2xs_grid + (q2[6] & 511)), *(const int64_t *)(iq2xs_grid + (q2[7] & 511))};
  6567. vector signed long long vsigns0 = {*(const int64_t *)(signs64 + ((q2[0] >> 9))), *(const int64_t *)(signs64 + ((q2[1] >> 9)))};
  6568. vector signed long long vsigns1 = {*(const int64_t *)(signs64 + ((q2[2] >> 9))), *(const int64_t *)(signs64 + ((q2[3] >> 9)))};
  6569. vector signed long long vsigns2 = {*(const int64_t *)(signs64 + ((q2[4] >> 9))), *(const int64_t *)(signs64 + ((q2[5] >> 9)))};
  6570. vector signed long long vsigns3 = {*(const int64_t *)(signs64 + ((q2[6] >> 9))), *(const int64_t *)(signs64 + ((q2[7] >> 9)))};
  6571. q2 += 8;
  6572. vector signed char q2x0 = (vector signed char)vec_mul((vector signed char)vsigns0, (vector signed char)aux64x2_0);
  6573. vector signed char q2x1 = (vector signed char)vec_mul((vector signed char)vsigns1, (vector signed char)aux64x2_1);
  6574. vector signed char q2x2 = (vector signed char)vec_mul((vector signed char)vsigns2, (vector signed char)aux64x2_2);
  6575. vector signed char q2x3 = (vector signed char)vec_mul((vector signed char)vsigns3, (vector signed char)aux64x2_3);
  6576. vector signed char q8y0 = vec_xl( 0, q8);
  6577. vector signed char q8y1 = vec_xl(16, q8);
  6578. vector signed char q8y2 = vec_xl(32, q8);
  6579. vector signed char q8y3 = vec_xl(48, q8);
  6580. q8 += 64;
  6581. vector signed short qv0 = vec_add(vec_mule(q2x0, q8y0), vec_mulo(q2x0, q8y0));
  6582. vector signed short qv1 = vec_add(vec_mule(q2x1, q8y1), vec_mulo(q2x1, q8y1));
  6583. vector signed short qv2 = vec_add(vec_mule(q2x2, q8y2), vec_mulo(q2x2, q8y2));
  6584. vector signed short qv3 = vec_add(vec_mule(q2x3, q8y3), vec_mulo(q2x3, q8y3));
  6585. const uint16_t ls0 = (uint16_t)(sc[0] & 0xf);
  6586. const uint16_t ls1 = (uint16_t)(sc[0] >> 4);
  6587. const uint16_t ls2 = (uint16_t)(sc[1] & 0xf);
  6588. const uint16_t ls3 = (uint16_t)(sc[1] >> 4);
  6589. sc += 2;
  6590. vector signed short vscales0 = vec_splats((int16_t)(2*ls0+1));
  6591. vector signed short vscales1 = vec_splats((int16_t)(2*ls1+1));
  6592. vector signed short vscales2 = vec_splats((int16_t)(2*ls2+1));
  6593. vector signed short vscales3 = vec_splats((int16_t)(2*ls3+1));
  6594. vsumi0 = vec_msum(qv0, vscales0, vsumi0);
  6595. vsumi1 = vec_msum(qv1, vscales1, vsumi1);
  6596. vsumi2 = vec_msum(qv2, vscales2, vsumi2);
  6597. vsumi3 = vec_msum(qv3, vscales3, vsumi3);
  6598. }
  6599. vsumf0 = vec_madd(vec_ctf(vsumi0, 0), vd, vsumf0);
  6600. vsumf1 = vec_madd(vec_ctf(vsumi1, 0), vd, vsumf1);
  6601. vsumf2 = vec_madd(vec_ctf(vsumi2, 0), vd, vsumf2);
  6602. vsumf3 = vec_madd(vec_ctf(vsumi3, 0), vd, vsumf3);
  6603. }
  6604. vsumf0 = vec_add(vsumf0, vsumf2);
  6605. vsumf1 = vec_add(vsumf1, vsumf3);
  6606. vsumf0 = vec_add(vsumf0, vsumf1);
  6607. vsumf0 = vec_add(vsumf0, vec_sld(vsumf0, vsumf0, 4));
  6608. vsumf0 = vec_add(vsumf0, vec_sld(vsumf0, vsumf0, 8));
  6609. *s = 0.125f * vec_extract(vsumf0, 0);
  6610. #else
  6611. float sumf = 0.f;
  6612. for (int i = 0; i < nb; ++i) {
  6613. const float d = GGML_FP16_TO_FP32(x[i].d) * y[i].d;
  6614. const uint16_t * restrict q2 = x[i].qs;
  6615. const uint8_t * restrict sc = x[i].scales;
  6616. const int8_t * restrict q8 = y[i].qs;
  6617. int32_t bsum = 0;
  6618. for (int ib32 = 0; ib32 < QK_K/32; ++ib32) {
  6619. const uint16_t ls1 = 2*(sc[ib32] & 0xf) + 1;
  6620. const uint16_t ls2 = 2*(sc[ib32] >> 4) + 1;
  6621. int32_t sumi = 0;
  6622. for (int l = 0; l < 2; ++l) {
  6623. const uint8_t * grid = (const uint8_t *)(iq2xs_grid + (q2[l] & 511));
  6624. const uint8_t signs = ksigns_iq2xs[q2[l] >> 9];
  6625. for (int j = 0; j < 8; ++j) {
  6626. sumi += grid[j] * q8[j] * (signs & kmask_iq2xs[j] ? -1 : 1);
  6627. }
  6628. q8 += 8;
  6629. }
  6630. bsum += sumi * ls1;
  6631. sumi = 0;
  6632. for (int l = 2; l < 4; ++l) {
  6633. const uint8_t * grid = (const uint8_t *)(iq2xs_grid + (q2[l] & 511));
  6634. const uint8_t signs = ksigns_iq2xs[q2[l] >> 9];
  6635. for (int j = 0; j < 8; ++j) {
  6636. sumi += grid[j] * q8[j] * (signs & kmask_iq2xs[j] ? -1 : 1);
  6637. }
  6638. q8 += 8;
  6639. }
  6640. bsum += sumi * ls2;
  6641. q2 += 4;
  6642. }
  6643. sumf += d * bsum;
  6644. }
  6645. *s = 0.125f * sumf;
  6646. #endif
  6647. }
  6648. void ggml_vec_dot_iq2_s_q8_K(int n, float * restrict s, size_t bs, const void * restrict vx, size_t bx, const void * restrict vy, size_t by, int nrc) {
  6649. assert(n % QK_K == 0);
  6650. assert(nrc == 1);
  6651. UNUSED(nrc);
  6652. UNUSED(bx);
  6653. UNUSED(by);
  6654. UNUSED(bs);
  6655. const block_iq2_s * restrict x = vx;
  6656. const block_q8_K * restrict y = vy;
  6657. const int nb = n / QK_K;
  6658. #if defined(__ARM_NEON)
  6659. static const uint8_t k_mask1[32] = {0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x01, 0x01, 0x01, 0x01, 0x01, 0x01, 0x01, 0x01,
  6660. 0x02, 0x02, 0x02, 0x02, 0x02, 0x02, 0x02, 0x02, 0x03, 0x03, 0x03, 0x03, 0x03, 0x03, 0x03, 0x03
  6661. };
  6662. static const uint8_t k_mask2[16] = {0x01, 0x02, 0x04, 0x08, 0x10, 0x20, 0x40, 0x80, 0x01, 0x02, 0x04, 0x08, 0x10, 0x20, 0x40, 0x80,};
  6663. const ggml_uint8x16x2_t mask1 = ggml_vld1q_u8_x2(k_mask1);
  6664. const uint8x16_t mask2 = vld1q_u8(k_mask2);
  6665. const uint8x16_t m1 = vdupq_n_u8(1);
  6666. const int32x4_t vzero = vdupq_n_s32(0);
  6667. uint8x16x2_t vs;
  6668. ggml_int8x16x4_t q2s;
  6669. ggml_int8x16x4_t q8b;
  6670. float sumf = 0;
  6671. for (int i = 0; i < nb; ++i) {
  6672. const float d = GGML_FP16_TO_FP32(x[i].d) * y[i].d;
  6673. const uint8_t * restrict qs = x[i].qs;
  6674. const uint8_t * restrict qh = x[i].qh;
  6675. const uint16_t * restrict signs = (const uint16_t *)(x[i].qs + QK_K/8);
  6676. const int8_t * restrict q8 = y[i].qs;
  6677. int sumi1 = 0, sumi2 = 0;
  6678. for (int ib32 = 0; ib32 < QK_K/32; ib32 += 2) {
  6679. q8b = ggml_vld1q_s8_x4(q8); q8 += 64;
  6680. q2s.val[0] = vcombine_s8(vld1_s8((const int8_t *)(iq2s_grid + (qs[0] | ((qh[ib32+0] << 8) & 0x300)))),
  6681. vld1_s8((const int8_t *)(iq2s_grid + (qs[1] | ((qh[ib32+0] << 6) & 0x300)))));
  6682. q2s.val[1] = vcombine_s8(vld1_s8((const int8_t *)(iq2s_grid + (qs[2] | ((qh[ib32+0] << 4) & 0x300)))),
  6683. vld1_s8((const int8_t *)(iq2s_grid + (qs[3] | ((qh[ib32+0] << 2) & 0x300)))));
  6684. q2s.val[2] = vcombine_s8(vld1_s8((const int8_t *)(iq2s_grid + (qs[4] | ((qh[ib32+1] << 8) & 0x300)))),
  6685. vld1_s8((const int8_t *)(iq2s_grid + (qs[5] | ((qh[ib32+1] << 6) & 0x300)))));
  6686. q2s.val[3] = vcombine_s8(vld1_s8((const int8_t *)(iq2s_grid + (qs[6] | ((qh[ib32+1] << 4) & 0x300)))),
  6687. vld1_s8((const int8_t *)(iq2s_grid + (qs[7] | ((qh[ib32+1] << 2) & 0x300)))));
  6688. qs += 8;
  6689. vs.val[0] = vreinterpretq_u8_u32(vdupq_n_u32(signs[0] | ((uint32_t) signs[1] << 16)));
  6690. vs.val[1] = vandq_u8(ggml_vqtbl1q_u8(vs.val[0], mask1.val[1]), mask2);
  6691. vs.val[0] = vandq_u8(ggml_vqtbl1q_u8(vs.val[0], mask1.val[0]), mask2);
  6692. vs.val[0] = vceqq_u8(vs.val[0], mask2);
  6693. vs.val[1] = vceqq_u8(vs.val[1], mask2);
  6694. q2s.val[0] = vmulq_s8(vreinterpretq_s8_u8(vorrq_u8(vs.val[0], m1)), q2s.val[0]);
  6695. q2s.val[1] = vmulq_s8(vreinterpretq_s8_u8(vorrq_u8(vs.val[1], m1)), q2s.val[1]);
  6696. vs.val[0] = vreinterpretq_u8_u32(vdupq_n_u32(signs[2] | ((uint32_t) signs[3] << 16)));
  6697. vs.val[1] = vandq_u8(ggml_vqtbl1q_u8(vs.val[0], mask1.val[1]), mask2);
  6698. vs.val[0] = vandq_u8(ggml_vqtbl1q_u8(vs.val[0], mask1.val[0]), mask2);
  6699. vs.val[0] = vceqq_u8(vs.val[0], mask2);
  6700. vs.val[1] = vceqq_u8(vs.val[1], mask2);
  6701. signs += 4;
  6702. q2s.val[2] = vmulq_s8(vreinterpretq_s8_u8(vorrq_u8(vs.val[0], m1)), q2s.val[2]);
  6703. q2s.val[3] = vmulq_s8(vreinterpretq_s8_u8(vorrq_u8(vs.val[1], m1)), q2s.val[3]);
  6704. const int32x4_t p1 = ggml_vdotq_s32(vzero, q2s.val[0], q8b.val[0]);
  6705. const int32x4_t p2 = ggml_vdotq_s32(vzero, q2s.val[1], q8b.val[1]);
  6706. const int32x4_t p3 = ggml_vdotq_s32(vzero, q2s.val[2], q8b.val[2]);
  6707. const int32x4_t p4 = ggml_vdotq_s32(vzero, q2s.val[3], q8b.val[3]);
  6708. sumi1 += vaddvq_s32(p1) * (1 + 2*(x[i].scales[ib32+0] & 0xf));
  6709. sumi2 += vaddvq_s32(p2) * (1 + 2*(x[i].scales[ib32+0] >> 4));
  6710. sumi1 += vaddvq_s32(p3) * (1 + 2*(x[i].scales[ib32+1] & 0xf));
  6711. sumi2 += vaddvq_s32(p4) * (1 + 2*(x[i].scales[ib32+1] >> 4));
  6712. }
  6713. sumf += d*(sumi1 + sumi2);
  6714. }
  6715. *s = 0.125f * sumf;
  6716. #elif defined(__AVX2__)
  6717. static const uint8_t k_mask1[32] = {0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x01, 0x01, 0x01, 0x01, 0x01, 0x01, 0x01, 0x01,
  6718. 0x02, 0x02, 0x02, 0x02, 0x02, 0x02, 0x02, 0x02, 0x03, 0x03, 0x03, 0x03, 0x03, 0x03, 0x03, 0x03
  6719. };
  6720. static const uint8_t k_mask2[32] = {0x01, 0x02, 0x04, 0x08, 0x10, 0x20, 0x40, 0x80, 0x01, 0x02, 0x04, 0x08, 0x10, 0x20, 0x40, 0x80,
  6721. 0x01, 0x02, 0x04, 0x08, 0x10, 0x20, 0x40, 0x80, 0x01, 0x02, 0x04, 0x08, 0x10, 0x20, 0x40, 0x80,
  6722. };
  6723. const __m128i m4 = _mm_set1_epi8(0xf);
  6724. const __m128i m1 = _mm_set1_epi8(1);
  6725. const __m256i mask1 = _mm256_loadu_si256((const __m256i*)k_mask1);
  6726. const __m256i mask2 = _mm256_loadu_si256((const __m256i*)k_mask2);
  6727. uint64_t aux64;
  6728. __m256 accumf = _mm256_setzero_ps();
  6729. for (int i = 0; i < nb; ++i) {
  6730. const float d = GGML_FP16_TO_FP32(x[i].d) * y[i].d;
  6731. const uint8_t * restrict qs = x[i].qs;
  6732. const uint8_t * restrict qh = x[i].qh;
  6733. const uint16_t * restrict signs = (const uint16_t *)(x[i].qs + QK_K/8);
  6734. const int8_t * restrict q8 = y[i].qs;
  6735. memcpy(&aux64, x[i].scales, 8);
  6736. const __m128i scales8 = _mm_add_epi8(_mm_slli_epi16(_mm_and_si128(_mm_set_epi64x(aux64 >> 4, aux64), m4), 1), m1);
  6737. const __m256i scales16 = _mm256_cvtepi8_epi16(scales8); // 0 2 4 6 8 10 12 14 1 3 5 7 9 11 13 15
  6738. __m256i sumi1 = _mm256_setzero_si256();
  6739. __m256i sumi2 = _mm256_setzero_si256();
  6740. for (int ib32 = 0; ib32 < QK_K/32; ib32 += 2) {
  6741. const __m256i q8_1 = _mm256_loadu_si256((const __m256i *)q8); q8 += 32;
  6742. const __m256i q8_2 = _mm256_loadu_si256((const __m256i *)q8); q8 += 32;
  6743. const __m256i q2_1 = _mm256_set_epi64x(iq2s_grid[qs[3] | ((qh[ib32+0] << 2) & 0x300)],
  6744. iq2s_grid[qs[2] | ((qh[ib32+0] << 4) & 0x300)],
  6745. iq2s_grid[qs[1] | ((qh[ib32+0] << 6) & 0x300)],
  6746. iq2s_grid[qs[0] | ((qh[ib32+0] << 8) & 0x300)]);
  6747. const __m256i q2_2 = _mm256_set_epi64x(iq2s_grid[qs[7] | ((qh[ib32+1] << 2) & 0x300)],
  6748. iq2s_grid[qs[6] | ((qh[ib32+1] << 4) & 0x300)],
  6749. iq2s_grid[qs[5] | ((qh[ib32+1] << 6) & 0x300)],
  6750. iq2s_grid[qs[4] | ((qh[ib32+1] << 8) & 0x300)]);
  6751. qs += 8;
  6752. __m256i aux256 = _mm256_set1_epi32(signs[0] | ((uint32_t) signs[1] << 16));
  6753. aux256 = _mm256_and_si256(_mm256_shuffle_epi8(aux256,mask1), mask2);
  6754. const __m256i s2_1 = _mm256_cmpeq_epi8(aux256, mask2);
  6755. const __m256i q8s_1 = _mm256_sub_epi8(_mm256_xor_si256(s2_1, q8_1), s2_1);
  6756. aux256 = _mm256_set1_epi32(signs[2] | ((uint32_t) signs[3] << 16));
  6757. aux256 = _mm256_and_si256(_mm256_shuffle_epi8(aux256,mask1), mask2);
  6758. const __m256i s2_2 = _mm256_cmpeq_epi8(aux256, mask2);
  6759. const __m256i q8s_2 = _mm256_sub_epi8(_mm256_xor_si256(s2_2, q8_2), s2_2);
  6760. signs += 4;
  6761. const __m256i dot1 = _mm256_maddubs_epi16(q2_1, q8s_1); // blocks 2*ib32+0, 2*ib32+1
  6762. const __m256i dot2 = _mm256_maddubs_epi16(q2_2, q8s_2); // blocks 2*ib32+2, 2*ib32+3
  6763. const __m256i p1 = _mm256_madd_epi16(dot1, _mm256_shuffle_epi8(scales16, get_scale_shuffle_k4(ib32+0)));
  6764. const __m256i p2 = _mm256_madd_epi16(dot2, _mm256_shuffle_epi8(scales16, get_scale_shuffle_k4(ib32+1)));
  6765. sumi1 = _mm256_add_epi32(sumi1, p1);
  6766. sumi2 = _mm256_add_epi32(sumi2, p2);
  6767. }
  6768. accumf = _mm256_fmadd_ps(_mm256_set1_ps(d), _mm256_cvtepi32_ps(_mm256_add_epi32(sumi1, sumi2)), accumf);
  6769. }
  6770. *s = 0.125f * hsum_float_8(accumf);
  6771. #elif defined(__AVX__)
  6772. static const uint8_t k_mask1[32] = {0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x01, 0x01, 0x01, 0x01, 0x01, 0x01, 0x01, 0x01,
  6773. 0x02, 0x02, 0x02, 0x02, 0x02, 0x02, 0x02, 0x02, 0x03, 0x03, 0x03, 0x03, 0x03, 0x03, 0x03, 0x03
  6774. };
  6775. static const uint8_t k_mask2[32] = {0x01, 0x02, 0x04, 0x08, 0x10, 0x20, 0x40, 0x80, 0x01, 0x02, 0x04, 0x08, 0x10, 0x20, 0x40, 0x80,
  6776. 0x01, 0x02, 0x04, 0x08, 0x10, 0x20, 0x40, 0x80, 0x01, 0x02, 0x04, 0x08, 0x10, 0x20, 0x40, 0x80,
  6777. };
  6778. const __m128i m4 = _mm_set1_epi8(0xf);
  6779. const __m128i m1 = _mm_set1_epi8(1);
  6780. const __m128i mask1_0 = _mm_loadu_si128((const __m128i*)k_mask1);
  6781. const __m128i mask1_1 = _mm_loadu_si128((const __m128i*)k_mask1 + 1);
  6782. const __m128i mask2_0 = _mm_loadu_si128((const __m128i*)k_mask2);
  6783. const __m128i mask2_1 = _mm_loadu_si128((const __m128i*)k_mask2 + 1);
  6784. uint64_t aux64;
  6785. __m256 accumf = _mm256_setzero_ps();
  6786. for (int i = 0; i < nb; ++i) {
  6787. const float d = GGML_FP16_TO_FP32(x[i].d) * y[i].d;
  6788. const uint8_t * restrict qs = x[i].qs;
  6789. const uint8_t * restrict qh = x[i].qh;
  6790. const uint16_t * restrict signs = (const uint16_t *)(x[i].qs + QK_K/8);
  6791. const int8_t * restrict q8 = y[i].qs;
  6792. memcpy(&aux64, x[i].scales, 8);
  6793. const __m128i scales8 = _mm_add_epi8(_mm_slli_epi16(_mm_and_si128(_mm_set_epi64x(aux64 >> 4, aux64), m4), 1), m1);
  6794. const __m128i scales16_0 = _mm_cvtepi8_epi16(scales8);
  6795. const __m128i scales16_1 = _mm_cvtepi8_epi16(_mm_srli_si128(scales8, 8));
  6796. __m128i sumi1_0 = _mm_setzero_si128();
  6797. __m128i sumi1_1 = _mm_setzero_si128();
  6798. __m128i sumi2_0 = _mm_setzero_si128();
  6799. __m128i sumi2_1 = _mm_setzero_si128();
  6800. for (int ib32 = 0; ib32 < QK_K/32; ib32 += 2) {
  6801. const __m128i q8_1_0 = _mm_loadu_si128((const __m128i *)q8); q8 += 16;
  6802. const __m128i q8_1_1 = _mm_loadu_si128((const __m128i *)q8); q8 += 16;
  6803. const __m128i q8_2_0 = _mm_loadu_si128((const __m128i *)q8); q8 += 16;
  6804. const __m128i q8_2_1 = _mm_loadu_si128((const __m128i *)q8); q8 += 16;
  6805. const __m128i q2_1_0 = _mm_set_epi64x(iq2s_grid[qs[1] | ((qh[ib32+0] << 6) & 0x300)],
  6806. iq2s_grid[qs[0] | ((qh[ib32+0] << 8) & 0x300)]);
  6807. const __m128i q2_1_1 = _mm_set_epi64x(iq2s_grid[qs[3] | ((qh[ib32+0] << 2) & 0x300)],
  6808. iq2s_grid[qs[2] | ((qh[ib32+0] << 4) & 0x300)]);
  6809. const __m128i q2_2_0 = _mm_set_epi64x(iq2s_grid[qs[5] | ((qh[ib32+1] << 6) & 0x300)],
  6810. iq2s_grid[qs[4] | ((qh[ib32+1] << 8) & 0x300)]);
  6811. const __m128i q2_2_1 = _mm_set_epi64x(iq2s_grid[qs[7] | ((qh[ib32+1] << 2) & 0x300)],
  6812. iq2s_grid[qs[6] | ((qh[ib32+1] << 4) & 0x300)]);
  6813. qs += 8;
  6814. __m128i aux128_0 = _mm_set1_epi32(signs[0] | ((uint32_t) signs[1] << 16));
  6815. __m128i aux128_1 = aux128_0;
  6816. aux128_0 = _mm_and_si128(_mm_shuffle_epi8(aux128_0,mask1_0), mask2_0);
  6817. aux128_1 = _mm_and_si128(_mm_shuffle_epi8(aux128_1,mask1_1), mask2_1);
  6818. const __m128i s2_1_0 = _mm_cmpeq_epi8(aux128_0, mask2_0);
  6819. const __m128i s2_1_1 = _mm_cmpeq_epi8(aux128_1, mask2_1);
  6820. const __m128i q8s_1_0 = _mm_sub_epi8(_mm_xor_si128(s2_1_0, q8_1_0), s2_1_0);
  6821. const __m128i q8s_1_1 = _mm_sub_epi8(_mm_xor_si128(s2_1_1, q8_1_1), s2_1_1);
  6822. aux128_0 = _mm_set1_epi32(signs[2] | ((uint32_t) signs[3] << 16));
  6823. aux128_1 = aux128_0;
  6824. aux128_0 = _mm_and_si128(_mm_shuffle_epi8(aux128_0,mask1_0), mask2_0);
  6825. aux128_1 = _mm_and_si128(_mm_shuffle_epi8(aux128_1,mask1_1), mask2_1);
  6826. const __m128i s2_2_0 = _mm_cmpeq_epi8(aux128_0, mask2_0);
  6827. const __m128i s2_2_1 = _mm_cmpeq_epi8(aux128_1, mask2_1);
  6828. const __m128i q8s_2_0 = _mm_sub_epi8(_mm_xor_si128(s2_2_0, q8_2_0), s2_2_0);
  6829. const __m128i q8s_2_1 = _mm_sub_epi8(_mm_xor_si128(s2_2_1, q8_2_1), s2_2_1);
  6830. signs += 4;
  6831. const __m128i dot1_0 = _mm_maddubs_epi16(q2_1_0, q8s_1_0);
  6832. const __m128i dot1_1 = _mm_maddubs_epi16(q2_1_1, q8s_1_1);
  6833. const __m128i dot2_0 = _mm_maddubs_epi16(q2_2_0, q8s_2_0);
  6834. const __m128i dot2_1 = _mm_maddubs_epi16(q2_2_1, q8s_2_1);
  6835. const __m128i p1_0 = _mm_madd_epi16(dot1_0, _mm_shuffle_epi8(scales16_0, _mm256_extractf128_si256(get_scale_shuffle_k4(ib32+0), 0)));
  6836. const __m128i p1_1 = _mm_madd_epi16(dot1_1, _mm_shuffle_epi8(scales16_1, _mm256_extractf128_si256(get_scale_shuffle_k4(ib32+0), 1)));
  6837. const __m128i p2_0 = _mm_madd_epi16(dot2_0, _mm_shuffle_epi8(scales16_0, _mm256_extractf128_si256(get_scale_shuffle_k4(ib32+1), 0)));
  6838. const __m128i p2_1 = _mm_madd_epi16(dot2_1, _mm_shuffle_epi8(scales16_1, _mm256_extractf128_si256(get_scale_shuffle_k4(ib32+1), 1)));
  6839. sumi1_0 = _mm_add_epi32(sumi1_0, p1_0);
  6840. sumi1_1 = _mm_add_epi32(sumi1_1, p1_1);
  6841. sumi2_0 = _mm_add_epi32(sumi2_0, p2_0);
  6842. sumi2_1 = _mm_add_epi32(sumi2_1, p2_1);
  6843. }
  6844. accumf = _mm256_add_ps(_mm256_mul_ps(_mm256_set1_ps(d), _mm256_cvtepi32_ps(MM256_SET_M128I(_mm_add_epi32(sumi1_1, sumi2_1), _mm_add_epi32(sumi1_0, sumi2_0)))), accumf);
  6845. }
  6846. *s = 0.125f * hsum_float_8(accumf);
  6847. #elif defined(__POWER9_VECTOR__)
  6848. static const uint8_t k_mask1[32] = {0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x01, 0x01, 0x01, 0x01, 0x01, 0x01, 0x01, 0x01,
  6849. 0x02, 0x02, 0x02, 0x02, 0x02, 0x02, 0x02, 0x02, 0x03, 0x03, 0x03, 0x03, 0x03, 0x03, 0x03, 0x03
  6850. };
  6851. static const uint8_t k_mask2[16] = {0x01, 0x02, 0x04, 0x08, 0x10, 0x20, 0x40, 0x80, 0x01, 0x02, 0x04, 0x08, 0x10, 0x20, 0x40, 0x80,};
  6852. const vector int v0 = vec_splats((int32_t)0);
  6853. vector float vsumf0 = vec_splats(0.0f);
  6854. vector float vsumf1 = vec_splats(0.0f);
  6855. vector float vsumf2 = vec_splats(0.0f);
  6856. vector float vsumf3 = vec_splats(0.0f);
  6857. const vector unsigned char mask0 = vec_xl( 0, k_mask1);
  6858. const vector unsigned char mask1 = vec_xl(16, k_mask1);
  6859. const vector signed char mask2 = (vector signed char)vec_xl( 0, k_mask2);
  6860. for (int i = 0; i < nb; ++i) {
  6861. vector float vxd = vec_splats(GGML_FP16_TO_FP32(x[i].d));
  6862. vector float vyd = vec_splats(y[i].d);
  6863. vector float vd = vec_mul(vxd, vyd);
  6864. vector signed int vsumi0 = v0;
  6865. vector signed int vsumi1 = v0;
  6866. vector signed int vsumi2 = v0;
  6867. vector signed int vsumi3 = v0;
  6868. const uint8_t * restrict q2 = x[i].qs;
  6869. const uint8_t * restrict qh = x[i].qh;
  6870. const uint16_t * restrict signs = (const uint16_t *)(x[i].qs + QK_K/8);
  6871. const uint8_t * restrict sc = x[i].scales;
  6872. const int8_t * restrict q8 = y[i].qs;
  6873. for (int j = 0; j < QK_K/32; j += 2) {
  6874. __builtin_prefetch(q2, 0, 1);
  6875. __builtin_prefetch(q8, 0, 1);
  6876. vector signed long long aux64x2_0 = {*(const int64_t *)(iq2s_grid + (q2[0] | ((qh[0] << 8) & 0x300))), *(const int64_t *)(iq2s_grid + (q2[1] | ((qh[0] << 6) & 0x300)))};
  6877. vector signed long long aux64x2_1 = {*(const int64_t *)(iq2s_grid + (q2[2] | ((qh[0] << 4) & 0x300))), *(const int64_t *)(iq2s_grid + (q2[3] | ((qh[0] << 2) & 0x300)))};
  6878. vector signed long long aux64x2_2 = {*(const int64_t *)(iq2s_grid + (q2[4] | ((qh[1] << 8) & 0x300))), *(const int64_t *)(iq2s_grid + (q2[5] | ((qh[1] << 6) & 0x300)))};
  6879. vector signed long long aux64x2_3 = {*(const int64_t *)(iq2s_grid + (q2[6] | ((qh[1] << 4) & 0x300))), *(const int64_t *)(iq2s_grid + (q2[7] | ((qh[1] << 2) & 0x300)))};
  6880. q2 += 8;
  6881. qh += 2;
  6882. vector signed char vsigns01 = (vector signed char)vec_splats(*(const uint32_t *)&signs[0]);
  6883. vector signed char vsigns23 = (vector signed char)vec_splats(*(const uint32_t *)&signs[2]);
  6884. signs += 4;
  6885. vector signed char vsigns0 = vec_perm(vsigns01, vsigns01, mask0);
  6886. vector signed char vsigns1 = vec_perm(vsigns01, vsigns01, mask1);
  6887. vector signed char vsigns2 = vec_perm(vsigns23, vsigns23, mask0);
  6888. vector signed char vsigns3 = vec_perm(vsigns23, vsigns23, mask1);
  6889. vsigns0 = (vector signed char)vec_cmpeq(vec_and(vsigns0, mask2), mask2);
  6890. vsigns1 = (vector signed char)vec_cmpeq(vec_and(vsigns1, mask2), mask2);
  6891. vsigns2 = (vector signed char)vec_cmpeq(vec_and(vsigns2, mask2), mask2);
  6892. vsigns3 = (vector signed char)vec_cmpeq(vec_and(vsigns3, mask2), mask2);
  6893. vector signed char q2x0 = vec_sub(vec_xor(vsigns0, (vector signed char)aux64x2_0), vsigns0);
  6894. vector signed char q2x1 = vec_sub(vec_xor(vsigns1, (vector signed char)aux64x2_1), vsigns1);
  6895. vector signed char q2x2 = vec_sub(vec_xor(vsigns2, (vector signed char)aux64x2_2), vsigns2);
  6896. vector signed char q2x3 = vec_sub(vec_xor(vsigns3, (vector signed char)aux64x2_3), vsigns3);
  6897. vector signed char q8y0 = vec_xl( 0, q8);
  6898. vector signed char q8y1 = vec_xl(16, q8);
  6899. vector signed char q8y2 = vec_xl(32, q8);
  6900. vector signed char q8y3 = vec_xl(48, q8);
  6901. q8 += 64;
  6902. vector signed short qv0 = vec_add(vec_mule(q2x0, q8y0), vec_mulo(q2x0, q8y0));
  6903. vector signed short qv1 = vec_add(vec_mule(q2x1, q8y1), vec_mulo(q2x1, q8y1));
  6904. vector signed short qv2 = vec_add(vec_mule(q2x2, q8y2), vec_mulo(q2x2, q8y2));
  6905. vector signed short qv3 = vec_add(vec_mule(q2x3, q8y3), vec_mulo(q2x3, q8y3));
  6906. const uint16_t ls0 = (uint16_t)(sc[0] & 0xf);
  6907. const uint16_t ls1 = (uint16_t)(sc[0] >> 4);
  6908. const uint16_t ls2 = (uint16_t)(sc[1] & 0xf);
  6909. const uint16_t ls3 = (uint16_t)(sc[1] >> 4);
  6910. sc += 2;
  6911. vector signed short vscales0 = vec_splats((int16_t)(2*ls0+1));
  6912. vector signed short vscales1 = vec_splats((int16_t)(2*ls1+1));
  6913. vector signed short vscales2 = vec_splats((int16_t)(2*ls2+1));
  6914. vector signed short vscales3 = vec_splats((int16_t)(2*ls3+1));
  6915. vsumi0 = vec_msum(qv0, vscales0, vsumi0);
  6916. vsumi1 = vec_msum(qv1, vscales1, vsumi1);
  6917. vsumi2 = vec_msum(qv2, vscales2, vsumi2);
  6918. vsumi3 = vec_msum(qv3, vscales3, vsumi3);
  6919. }
  6920. vsumf0 = vec_madd(vec_ctf(vsumi0, 0), vd, vsumf0);
  6921. vsumf1 = vec_madd(vec_ctf(vsumi1, 0), vd, vsumf1);
  6922. vsumf2 = vec_madd(vec_ctf(vsumi2, 0), vd, vsumf2);
  6923. vsumf3 = vec_madd(vec_ctf(vsumi3, 0), vd, vsumf3);
  6924. }
  6925. vsumf0 = vec_add(vsumf0, vsumf2);
  6926. vsumf1 = vec_add(vsumf1, vsumf3);
  6927. vsumf0 = vec_add(vsumf0, vsumf1);
  6928. vsumf0 = vec_add(vsumf0, vec_sld(vsumf0, vsumf0, 4));
  6929. vsumf0 = vec_add(vsumf0, vec_sld(vsumf0, vsumf0, 8));
  6930. *s = 0.125f * vec_extract(vsumf0, 0);
  6931. #elif defined(__loongarch_asx)
  6932. static const uint8_t k_mask1[32] = {0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x01, 0x01, 0x01, 0x01, 0x01, 0x01, 0x01, 0x01,
  6933. 0x02, 0x02, 0x02, 0x02, 0x02, 0x02, 0x02, 0x02, 0x03, 0x03, 0x03, 0x03, 0x03, 0x03, 0x03, 0x03
  6934. };
  6935. static const uint8_t k_mask2[32] = {0x01, 0x02, 0x04, 0x08, 0x10, 0x20, 0x40, 0x80, 0x01, 0x02, 0x04, 0x08, 0x10, 0x20, 0x40, 0x80,
  6936. 0x01, 0x02, 0x04, 0x08, 0x10, 0x20, 0x40, 0x80, 0x01, 0x02, 0x04, 0x08, 0x10, 0x20, 0x40, 0x80,
  6937. };
  6938. const __m128i m4 = __lsx_vreplgr2vr_b(0xf);
  6939. const __m128i m1 = __lsx_vreplgr2vr_b(1);
  6940. const __m256i mask1 = __lasx_xvld((const __m256i*)k_mask1, 0);
  6941. const __m256i mask2 = __lasx_xvld((const __m256i*)k_mask2, 0);
  6942. uint64_t aux64;
  6943. __m256 accumf = (__m256)__lasx_xvldi(0);
  6944. for (int i = 0; i < nb; ++i) {
  6945. const float d = GGML_FP16_TO_FP32(x[i].d) * y[i].d;
  6946. const uint8_t * restrict qs = x[i].qs;
  6947. const uint8_t * restrict qh = x[i].qh;
  6948. const uint16_t * restrict signs = (const uint16_t *)(x[i].qs + QK_K/8);
  6949. const int8_t * restrict q8 = y[i].qs;
  6950. __m128i tmp1;
  6951. memcpy(&aux64, x[i].scales, 8);
  6952. tmp1 = __lsx_vinsgr2vr_d(tmp1, aux64, 0);
  6953. tmp1 = __lsx_vinsgr2vr_d(tmp1, aux64 >> 4, 1);
  6954. const __m128i scales8 = __lsx_vadd_b(__lsx_vslli_h(__lsx_vand_v(tmp1, m4), 1), m1);
  6955. const __m256i scales16 = lasx_ext8_16(scales8); // 0 2 4 6 8 10 12 14 1 3 5 7 9 11 13 15
  6956. __m256i sumi1 = __lasx_xvldi(0);
  6957. __m256i sumi2 = __lasx_xvldi(0);
  6958. for (int ib32 = 0; ib32 < QK_K/32; ib32 += 2) {
  6959. const __m256i q8_1 = __lasx_xvld((const __m256i *)q8, 0); q8 += 32;
  6960. const __m256i q8_2 = __lasx_xvld((const __m256i *)q8, 0); q8 += 32;
  6961. const __m256i q2_1 = lasx_set_d(iq2s_grid[qs[3] | ((qh[ib32+0] << 2) & 0x300)],
  6962. iq2s_grid[qs[2] | ((qh[ib32+0] << 4) & 0x300)],
  6963. iq2s_grid[qs[1] | ((qh[ib32+0] << 6) & 0x300)],
  6964. iq2s_grid[qs[0] | ((qh[ib32+0] << 8) & 0x300)]);
  6965. const __m256i q2_2 = lasx_set_d(iq2s_grid[qs[7] | ((qh[ib32+1] << 2) & 0x300)],
  6966. iq2s_grid[qs[6] | ((qh[ib32+1] << 4) & 0x300)],
  6967. iq2s_grid[qs[5] | ((qh[ib32+1] << 6) & 0x300)],
  6968. iq2s_grid[qs[4] | ((qh[ib32+1] << 8) & 0x300)]);
  6969. qs += 8;
  6970. __m256i aux256 = __lasx_xvreplgr2vr_w(signs[0] | ((uint32_t) signs[1] << 16));
  6971. aux256 = __lasx_xvand_v(lasx_shuffle_b(aux256,mask1), mask2);
  6972. const __m256i s2_1 = __lasx_xvseq_b(aux256, mask2);
  6973. const __m256i q8s_1 = __lasx_xvsub_b(__lasx_xvxor_v(s2_1, q8_1), s2_1);
  6974. aux256 = __lasx_xvreplgr2vr_w(signs[2] | ((uint32_t) signs[3] << 16));
  6975. aux256 = __lasx_xvand_v(lasx_shuffle_b(aux256,mask1), mask2);
  6976. const __m256i s2_2 = __lasx_xvseq_b(aux256, mask2);
  6977. const __m256i q8s_2 = __lasx_xvsub_b(__lasx_xvxor_v(s2_2, q8_2), s2_2);
  6978. signs += 4;
  6979. const __m256i dot1 = lasx_maddubs_h(q2_1, q8s_1); // blocks 2*ib32+0, 2*ib32+1
  6980. const __m256i dot2 = lasx_maddubs_h(q2_2, q8s_2); // blocks 2*ib32+2, 2*ib32+3
  6981. const __m256i p1 = lasx_madd_h(dot1, lasx_shuffle_b(scales16, get_scale_shuffle_k4(ib32+0)));
  6982. const __m256i p2 = lasx_madd_h(dot2, lasx_shuffle_b(scales16, get_scale_shuffle_k4(ib32+1)));
  6983. sumi1 = __lasx_xvadd_w(sumi1, p1);
  6984. sumi2 = __lasx_xvadd_w(sumi2, p2);
  6985. }
  6986. accumf = __lasx_xvfmadd_s(__lasx_xvreplfr2vr_s(d), __lasx_xvffint_s_w(__lasx_xvadd_w(sumi1, sumi2)), accumf);
  6987. }
  6988. *s = 0.125f * hsum_float_8(accumf);
  6989. #else
  6990. float sumf = 0;
  6991. for (int i = 0; i < nb; i++) {
  6992. const float d = GGML_FP16_TO_FP32(x[i].d) * y[i].d;
  6993. const int8_t * q8 = y[i].qs;
  6994. const uint8_t * qs = x[i].qs;
  6995. const uint8_t * qh = x[i].qh;
  6996. const uint8_t * signs = qs + QK_K/8;
  6997. int bsum = 0;
  6998. for (int ib32 = 0; ib32 < QK_K/32; ++ib32) {
  6999. int ls1 = 1 + 2*(x[i].scales[ib32] & 0xf);
  7000. int ls2 = 1 + 2*(x[i].scales[ib32] >> 4);
  7001. int sumi1 = 0, sumi2 = 0;
  7002. for (int l = 0; l < 2; ++l) {
  7003. const uint8_t * grid = (const uint8_t *)(iq2s_grid + (qs[l] | (qh[ib32] << (8-2*l) & 0x300)));
  7004. for (int j = 0; j < 8; ++j) {
  7005. sumi1 += q8[j] * grid[j] * (signs[l] & kmask_iq2xs[j] ? -1 : 1);
  7006. }
  7007. q8 += 8;
  7008. }
  7009. for (int l = 2; l < 4; ++l) {
  7010. const uint8_t * grid = (const uint8_t *)(iq2s_grid + (qs[l] | (qh[ib32] << (8-2*l) & 0x300)));
  7011. for (int j = 0; j < 8; ++j) {
  7012. sumi2 += q8[j] * grid[j] * (signs[l] & kmask_iq2xs[j] ? -1 : 1);
  7013. }
  7014. q8 += 8;
  7015. }
  7016. bsum += ls1 * sumi1 + ls2 * sumi2;
  7017. qs += 4;
  7018. signs += 4;
  7019. }
  7020. sumf += d * bsum;
  7021. }
  7022. *s = 0.125f * sumf;
  7023. #endif
  7024. }
  7025. void ggml_vec_dot_iq3_xxs_q8_K(int n, float * restrict s, size_t bs, const void * restrict vx, size_t bx, const void * restrict vy, size_t by, int nrc) {
  7026. assert(n % QK_K == 0);
  7027. assert(nrc == 1);
  7028. UNUSED(nrc);
  7029. UNUSED(bx);
  7030. UNUSED(by);
  7031. UNUSED(bs);
  7032. const block_iq3_xxs * restrict x = vx;
  7033. const block_q8_K * restrict y = vy;
  7034. const int nb = n / QK_K;
  7035. #if defined(__ARM_NEON)
  7036. const uint64_t * signs64 = (const uint64_t *)keven_signs_q2xs;
  7037. uint32_t aux32[2];
  7038. ggml_int8x16x4_t q3s;
  7039. ggml_int8x16x4_t q8b;
  7040. float sumf = 0;
  7041. for (int i = 0; i < nb; ++i) {
  7042. const float d = GGML_FP16_TO_FP32(x[i].d) * y[i].d;
  7043. const uint8_t * restrict q3 = x[i].qs;
  7044. const uint8_t * restrict gas = x[i].qs + QK_K/4;
  7045. const int8_t * restrict q8 = y[i].qs;
  7046. float sumf1 = 0, sumf2 = 0;
  7047. for (int ib32 = 0; ib32 < QK_K/32; ib32 += 2) {
  7048. q8b = ggml_vld1q_s8_x4(q8); q8 += 64;
  7049. memcpy(aux32, gas, 2*sizeof(uint32_t)); gas += 2*sizeof(uint32_t);
  7050. const uint32x4_t aux32x4_0 = ggml_vld1q_u32(iq3xxs_grid[q3[ 0]], iq3xxs_grid[q3[ 1]], iq3xxs_grid[q3[ 2]], iq3xxs_grid[q3[ 3]]);
  7051. const uint32x4_t aux32x4_1 = ggml_vld1q_u32(iq3xxs_grid[q3[ 4]], iq3xxs_grid[q3[ 5]], iq3xxs_grid[q3[ 6]], iq3xxs_grid[q3[ 7]]);
  7052. const uint32x4_t aux32x4_2 = ggml_vld1q_u32(iq3xxs_grid[q3[ 8]], iq3xxs_grid[q3[ 9]], iq3xxs_grid[q3[10]], iq3xxs_grid[q3[11]]);
  7053. const uint32x4_t aux32x4_3 = ggml_vld1q_u32(iq3xxs_grid[q3[12]], iq3xxs_grid[q3[13]], iq3xxs_grid[q3[14]], iq3xxs_grid[q3[15]]);
  7054. q3 += 16;
  7055. q3s.val[0] = vcombine_s8(vld1_s8((const void *)(signs64 + ((aux32[0] >> 0) & 127))), vld1_s8((const void *)(signs64 + ((aux32[0] >> 7) & 127))));
  7056. q3s.val[1] = vcombine_s8(vld1_s8((const void *)(signs64 + ((aux32[0] >> 14) & 127))), vld1_s8((const void *)(signs64 + ((aux32[0] >> 21) & 127))));
  7057. q3s.val[2] = vcombine_s8(vld1_s8((const void *)(signs64 + ((aux32[1] >> 0) & 127))), vld1_s8((const void *)(signs64 + ((aux32[1] >> 7) & 127))));
  7058. q3s.val[3] = vcombine_s8(vld1_s8((const void *)(signs64 + ((aux32[1] >> 14) & 127))), vld1_s8((const void *)(signs64 + ((aux32[1] >> 21) & 127))));
  7059. q3s.val[0] = vmulq_s8(q3s.val[0], vreinterpretq_s8_u32(aux32x4_0));
  7060. q3s.val[1] = vmulq_s8(q3s.val[1], vreinterpretq_s8_u32(aux32x4_1));
  7061. q3s.val[2] = vmulq_s8(q3s.val[2], vreinterpretq_s8_u32(aux32x4_2));
  7062. q3s.val[3] = vmulq_s8(q3s.val[3], vreinterpretq_s8_u32(aux32x4_3));
  7063. const int32x4_t p1 = ggml_vdotq_s32(ggml_vdotq_s32(vdupq_n_s32(0), q3s.val[0], q8b.val[0]), q3s.val[1], q8b.val[1]);
  7064. const int32x4_t p2 = ggml_vdotq_s32(ggml_vdotq_s32(vdupq_n_s32(0), q3s.val[2], q8b.val[2]), q3s.val[3], q8b.val[3]);
  7065. sumf1 += vaddvq_s32(p1) * (0.5f + (aux32[0] >> 28));
  7066. sumf2 += vaddvq_s32(p2) * (0.5f + (aux32[1] >> 28));
  7067. }
  7068. sumf += d*(sumf1 + sumf2);
  7069. }
  7070. *s = 0.5f * sumf;
  7071. #elif defined(__AVX2__)
  7072. const uint64_t * signs64 = (const uint64_t *)keven_signs_q2xs;
  7073. uint32_t aux32[2];
  7074. __m256 accumf = _mm256_setzero_ps();
  7075. for (int i = 0; i < nb; ++i) {
  7076. const float d = GGML_FP16_TO_FP32(x[i].d) * y[i].d;
  7077. const uint8_t * restrict q3 = x[i].qs;
  7078. const uint8_t * restrict gas = x[i].qs + QK_K/4;
  7079. const int8_t * restrict q8 = y[i].qs;
  7080. __m256i sumi1 = _mm256_setzero_si256();
  7081. __m256i sumi2 = _mm256_setzero_si256();
  7082. for (int ib32 = 0; ib32 < QK_K/32; ib32 += 2) {
  7083. const __m256i q8_1 = _mm256_loadu_si256((const __m256i *)q8); q8 += 32;
  7084. const __m256i q8_2 = _mm256_loadu_si256((const __m256i *)q8); q8 += 32;
  7085. const __m256i q2_1 = _mm256_set_epi32(iq3xxs_grid[q3[7]], iq3xxs_grid[q3[6]], iq3xxs_grid[q3[5]], iq3xxs_grid[q3[4]],
  7086. iq3xxs_grid[q3[3]], iq3xxs_grid[q3[2]], iq3xxs_grid[q3[1]], iq3xxs_grid[q3[0]]);
  7087. q3 += 8;
  7088. const __m256i q2_2 = _mm256_set_epi32(iq3xxs_grid[q3[7]], iq3xxs_grid[q3[6]], iq3xxs_grid[q3[5]], iq3xxs_grid[q3[4]],
  7089. iq3xxs_grid[q3[3]], iq3xxs_grid[q3[2]], iq3xxs_grid[q3[1]], iq3xxs_grid[q3[0]]);
  7090. q3 += 8;
  7091. memcpy(aux32, gas, 8); gas += 8;
  7092. const __m256i s2_1 = _mm256_set_epi64x(signs64[(aux32[0] >> 21) & 127], signs64[(aux32[0] >> 14) & 127],
  7093. signs64[(aux32[0] >> 7) & 127], signs64[(aux32[0] >> 0) & 127]);
  7094. const __m256i s2_2 = _mm256_set_epi64x(signs64[(aux32[1] >> 21) & 127], signs64[(aux32[1] >> 14) & 127],
  7095. signs64[(aux32[1] >> 7) & 127], signs64[(aux32[1] >> 0) & 127]);
  7096. const __m256i q8s_1 = _mm256_sign_epi8(q8_1, s2_1);
  7097. const __m256i q8s_2 = _mm256_sign_epi8(q8_2, s2_2);
  7098. const __m256i dot1 = _mm256_maddubs_epi16(q2_1, q8s_1);
  7099. const __m256i dot2 = _mm256_maddubs_epi16(q2_2, q8s_2);
  7100. const uint16_t ls1 = aux32[0] >> 28;
  7101. const uint16_t ls2 = aux32[1] >> 28;
  7102. const __m256i p1 = _mm256_madd_epi16(dot1, _mm256_set1_epi16(2*ls1+1));
  7103. const __m256i p2 = _mm256_madd_epi16(dot2, _mm256_set1_epi16(2*ls2+1));
  7104. sumi1 = _mm256_add_epi32(sumi1, p1);
  7105. sumi2 = _mm256_add_epi32(sumi2, p2);
  7106. }
  7107. accumf = _mm256_fmadd_ps(_mm256_set1_ps(d), _mm256_cvtepi32_ps(_mm256_add_epi32(sumi1, sumi2)), accumf);
  7108. }
  7109. *s = 0.25f * hsum_float_8(accumf);
  7110. #elif defined(__AVX__)
  7111. const uint64_t * signs64 = (const uint64_t *)keven_signs_q2xs;
  7112. uint32_t aux32[2];
  7113. __m256 accumf = _mm256_setzero_ps();
  7114. for (int i = 0; i < nb; ++i) {
  7115. const float d = GGML_FP16_TO_FP32(x[i].d) * y[i].d;
  7116. const uint8_t * restrict q3 = x[i].qs;
  7117. const uint8_t * restrict gas = x[i].qs + QK_K/4;
  7118. const int8_t * restrict q8 = y[i].qs;
  7119. __m128i sumi1_0 = _mm_setzero_si128();
  7120. __m128i sumi1_1 = _mm_setzero_si128();
  7121. __m128i sumi2_0 = _mm_setzero_si128();
  7122. __m128i sumi2_1 = _mm_setzero_si128();
  7123. for (int ib32 = 0; ib32 < QK_K/32; ib32 += 2) {
  7124. const __m128i q8_1_0 = _mm_loadu_si128((const __m128i *)q8); q8 += 16;
  7125. const __m128i q8_1_1 = _mm_loadu_si128((const __m128i *)q8); q8 += 16;
  7126. const __m128i q8_2_0 = _mm_loadu_si128((const __m128i *)q8); q8 += 16;
  7127. const __m128i q8_2_1 = _mm_loadu_si128((const __m128i *)q8); q8 += 16;
  7128. const __m128i q2_1_0 = _mm_set_epi32(iq3xxs_grid[q3[3]], iq3xxs_grid[q3[2]], iq3xxs_grid[q3[1]], iq3xxs_grid[q3[0]]);
  7129. const __m128i q2_1_1 = _mm_set_epi32(iq3xxs_grid[q3[7]], iq3xxs_grid[q3[6]], iq3xxs_grid[q3[5]], iq3xxs_grid[q3[4]]);
  7130. q3 += 8;
  7131. const __m128i q2_2_0 = _mm_set_epi32(iq3xxs_grid[q3[3]], iq3xxs_grid[q3[2]], iq3xxs_grid[q3[1]], iq3xxs_grid[q3[0]]);
  7132. const __m128i q2_2_1 = _mm_set_epi32(iq3xxs_grid[q3[7]], iq3xxs_grid[q3[6]], iq3xxs_grid[q3[5]], iq3xxs_grid[q3[4]]);
  7133. q3 += 8;
  7134. memcpy(aux32, gas, 8); gas += 8;
  7135. const __m128i s2_1_0 = _mm_set_epi64x(signs64[(aux32[0] >> 7) & 127], signs64[(aux32[0] >> 0) & 127]);
  7136. const __m128i s2_1_1 = _mm_set_epi64x(signs64[(aux32[0] >> 21) & 127], signs64[(aux32[0] >> 14) & 127]);
  7137. const __m128i s2_2_0 = _mm_set_epi64x(signs64[(aux32[1] >> 7) & 127], signs64[(aux32[1] >> 0) & 127]);
  7138. const __m128i s2_2_1 = _mm_set_epi64x(signs64[(aux32[1] >> 21) & 127], signs64[(aux32[1] >> 14) & 127]);
  7139. const __m128i q8s_1_0 = _mm_sign_epi8(q8_1_0, s2_1_0);
  7140. const __m128i q8s_1_1 = _mm_sign_epi8(q8_1_1, s2_1_1);
  7141. const __m128i q8s_2_0 = _mm_sign_epi8(q8_2_0, s2_2_0);
  7142. const __m128i q8s_2_1 = _mm_sign_epi8(q8_2_1, s2_2_1);
  7143. const __m128i dot1_0 = _mm_maddubs_epi16(q2_1_0, q8s_1_0);
  7144. const __m128i dot1_1 = _mm_maddubs_epi16(q2_1_1, q8s_1_1);
  7145. const __m128i dot2_0 = _mm_maddubs_epi16(q2_2_0, q8s_2_0);
  7146. const __m128i dot2_1 = _mm_maddubs_epi16(q2_2_1, q8s_2_1);
  7147. const uint16_t ls1 = aux32[0] >> 28;
  7148. const uint16_t ls2 = aux32[1] >> 28;
  7149. const __m128i p1_0 = _mm_madd_epi16(dot1_0, _mm_set1_epi16(2*ls1+1));
  7150. const __m128i p1_1 = _mm_madd_epi16(dot1_1, _mm_set1_epi16(2*ls1+1));
  7151. const __m128i p2_0 = _mm_madd_epi16(dot2_0, _mm_set1_epi16(2*ls2+1));
  7152. const __m128i p2_1 = _mm_madd_epi16(dot2_1, _mm_set1_epi16(2*ls2+1));
  7153. sumi1_0 = _mm_add_epi32(sumi1_0, p1_0);
  7154. sumi1_1 = _mm_add_epi32(sumi1_1, p1_1);
  7155. sumi2_0 = _mm_add_epi32(sumi2_0, p2_0);
  7156. sumi2_1 = _mm_add_epi32(sumi2_1, p2_1);
  7157. }
  7158. accumf = _mm256_add_ps(_mm256_mul_ps(_mm256_set1_ps(d), _mm256_cvtepi32_ps(MM256_SET_M128I(_mm_add_epi32(sumi1_1, sumi2_1), _mm_add_epi32(sumi1_0, sumi2_0)))), accumf);
  7159. }
  7160. *s = 0.25f * hsum_float_8(accumf);
  7161. #elif defined(__POWER9_VECTOR__)
  7162. const uint64_t * signs64 = (const uint64_t *)keven_signs_q2xs;
  7163. const vector int v0 = vec_splats((int32_t)0);
  7164. vector float vsumf0 = vec_splats(0.0f);
  7165. vector float vsumf1 = vec_splats(0.0f);
  7166. vector float vsumf2 = vec_splats(0.0f);
  7167. vector float vsumf3 = vec_splats(0.0f);
  7168. for (int i = 0; i < nb; ++i) {
  7169. vector float vxd = vec_splats(GGML_FP16_TO_FP32(x[i].d));
  7170. vector float vyd = vec_splats(y[i].d);
  7171. vector float vd = vec_mul(vxd, vyd);
  7172. vector signed int vsumi0 = v0;
  7173. vector signed int vsumi1 = v0;
  7174. vector signed int vsumi2 = v0;
  7175. vector signed int vsumi3 = v0;
  7176. const uint8_t * restrict q3 = x[i].qs;
  7177. const uint32_t * restrict signs = (const uint32_t *)(x[i].qs + QK_K/4);
  7178. const int8_t * restrict q8 = y[i].qs;
  7179. #pragma GCC unroll 1
  7180. for (int j = 0; j < QK_K/32; j += 2) {
  7181. __builtin_prefetch(q3, 0, 1);
  7182. __builtin_prefetch(q8, 0, 1);
  7183. vector unsigned int aux32x4_0 = {iq3xxs_grid[q3[ 0]], iq3xxs_grid[q3[ 1]], iq3xxs_grid[q3[ 2]], iq3xxs_grid[q3[ 3]]};
  7184. vector unsigned int aux32x4_1 = {iq3xxs_grid[q3[ 4]], iq3xxs_grid[q3[ 5]], iq3xxs_grid[q3[ 6]], iq3xxs_grid[q3[ 7]]};
  7185. vector unsigned int aux32x4_2 = {iq3xxs_grid[q3[ 8]], iq3xxs_grid[q3[ 9]], iq3xxs_grid[q3[10]], iq3xxs_grid[q3[11]]};
  7186. vector unsigned int aux32x4_3 = {iq3xxs_grid[q3[12]], iq3xxs_grid[q3[13]], iq3xxs_grid[q3[14]], iq3xxs_grid[q3[15]]};
  7187. q3 += 16;
  7188. vector unsigned long long aux64x2_0 = {(uint64_t)(signs64[(signs[0] >> 0) & 127]), (uint64_t)(signs64[(signs[0] >> 7) & 127])};
  7189. vector unsigned long long aux64x2_1 = {(uint64_t)(signs64[(signs[0] >> 14) & 127]), (uint64_t)(signs64[(signs[0] >> 21) & 127])};
  7190. vector unsigned long long aux64x2_2 = {(uint64_t)(signs64[(signs[1] >> 0) & 127]), (uint64_t)(signs64[(signs[1] >> 7) & 127])};
  7191. vector unsigned long long aux64x2_3 = {(uint64_t)(signs64[(signs[1] >> 14) & 127]), (uint64_t)(signs64[(signs[1] >> 21) & 127])};
  7192. vector signed char q3x0 = vec_mul((vector signed char)aux64x2_0, (vector signed char)aux32x4_0);
  7193. vector signed char q3x1 = vec_mul((vector signed char)aux64x2_1, (vector signed char)aux32x4_1);
  7194. vector signed char q3x2 = vec_mul((vector signed char)aux64x2_2, (vector signed char)aux32x4_2);
  7195. vector signed char q3x3 = vec_mul((vector signed char)aux64x2_3, (vector signed char)aux32x4_3);
  7196. vector signed char q8y0 = vec_xl( 0, q8);
  7197. vector signed char q8y1 = vec_xl(16, q8);
  7198. vector signed char q8y2 = vec_xl(32, q8);
  7199. vector signed char q8y3 = vec_xl(48, q8);
  7200. q8 += 64;
  7201. vector signed short qv0 = vec_add(vec_mule(q3x0, q8y0), vec_mulo(q3x0, q8y0));
  7202. vector signed short qv1 = vec_add(vec_mule(q3x1, q8y1), vec_mulo(q3x1, q8y1));
  7203. vector signed short qv2 = vec_add(vec_mule(q3x2, q8y2), vec_mulo(q3x2, q8y2));
  7204. vector signed short qv3 = vec_add(vec_mule(q3x3, q8y3), vec_mulo(q3x3, q8y3));
  7205. const uint16_t ls0 = (uint16_t)(signs[0] >> 28);
  7206. const uint16_t ls1 = (uint16_t)(signs[1] >> 28);
  7207. signs += 2;
  7208. vector signed short vscales01 = (vector signed short)vec_splats((uint16_t)(2*ls0+1));
  7209. vector signed short vscales23 = (vector signed short)vec_splats((uint16_t)(2*ls1+1));
  7210. vsumi0 = vec_msum(qv0, vscales01, vsumi0);
  7211. vsumi1 = vec_msum(qv1, vscales01, vsumi1);
  7212. vsumi2 = vec_msum(qv2, vscales23, vsumi2);
  7213. vsumi3 = vec_msum(qv3, vscales23, vsumi3);
  7214. }
  7215. vsumf0 = vec_madd(vec_ctf(vsumi0, 0), vd, vsumf0);
  7216. vsumf1 = vec_madd(vec_ctf(vsumi1, 0), vd, vsumf1);
  7217. vsumf2 = vec_madd(vec_ctf(vsumi2, 0), vd, vsumf2);
  7218. vsumf3 = vec_madd(vec_ctf(vsumi3, 0), vd, vsumf3);
  7219. }
  7220. vsumf0 = vec_add(vsumf0, vsumf2);
  7221. vsumf1 = vec_add(vsumf1, vsumf3);
  7222. vsumf0 = vec_add(vsumf0, vsumf1);
  7223. vsumf0 = vec_add(vsumf0, vec_sld(vsumf0, vsumf0, 4));
  7224. vsumf0 = vec_add(vsumf0, vec_sld(vsumf0, vsumf0, 8));
  7225. *s = 0.25f * vec_extract(vsumf0, 0);
  7226. #elif defined(__loongarch_asx)
  7227. const uint64_t * signs64 = (const uint64_t *)keven_signs_q2xs;
  7228. uint32_t aux32[2];
  7229. __m256 accumf = (__m256)__lasx_xvldi(0);
  7230. for (int i = 0; i < nb; ++i) {
  7231. const float d = GGML_FP16_TO_FP32(x[i].d) * y[i].d;
  7232. const uint8_t * restrict q3 = x[i].qs;
  7233. const uint8_t * restrict gas = x[i].qs + QK_K/4;
  7234. const int8_t * restrict q8 = y[i].qs;
  7235. __m256i sumi1 = __lasx_xvldi(0);
  7236. __m256i sumi2 = __lasx_xvldi(0);
  7237. for (int ib32 = 0; ib32 < QK_K/32; ib32 += 2) {
  7238. const __m256i q8_1 = __lasx_xvld((const __m256i *)q8, 0); q8 += 32;
  7239. const __m256i q8_2 = __lasx_xvld((const __m256i *)q8, 0); q8 += 32;
  7240. const __m256i q2_1 = lasx_set_w(iq3xxs_grid[q3[7]], iq3xxs_grid[q3[6]], iq3xxs_grid[q3[5]], iq3xxs_grid[q3[4]],
  7241. iq3xxs_grid[q3[3]], iq3xxs_grid[q3[2]], iq3xxs_grid[q3[1]], iq3xxs_grid[q3[0]]);
  7242. q3 += 8;
  7243. const __m256i q2_2 = lasx_set_w(iq3xxs_grid[q3[7]], iq3xxs_grid[q3[6]], iq3xxs_grid[q3[5]], iq3xxs_grid[q3[4]],
  7244. iq3xxs_grid[q3[3]], iq3xxs_grid[q3[2]], iq3xxs_grid[q3[1]], iq3xxs_grid[q3[0]]);
  7245. q3 += 8;
  7246. memcpy(aux32, gas, 8); gas += 8;
  7247. const __m256i s2_1 = lasx_set_d(signs64[(aux32[0] >> 21) & 127], signs64[(aux32[0] >> 14) & 127],
  7248. signs64[(aux32[0] >> 7) & 127], signs64[(aux32[0] >> 0) & 127]);
  7249. const __m256i s2_2 = lasx_set_d(signs64[(aux32[1] >> 21) & 127], signs64[(aux32[1] >> 14) & 127],
  7250. signs64[(aux32[1] >> 7) & 127], signs64[(aux32[1] >> 0) & 127]);
  7251. const __m256i q8s_1 = __lasx_xvsigncov_b(s2_1, q8_1);
  7252. const __m256i q8s_2 = __lasx_xvsigncov_b(s2_2, q8_2);
  7253. const __m256i dot1 = lasx_maddubs_h(q2_1, q8s_1);
  7254. const __m256i dot2 = lasx_maddubs_h(q2_2, q8s_2);
  7255. const uint16_t ls1 = aux32[0] >> 28;
  7256. const uint16_t ls2 = aux32[1] >> 28;
  7257. const __m256i p1 = lasx_madd_h(dot1, __lasx_xvreplgr2vr_h(2*ls1+1));
  7258. const __m256i p2 = lasx_madd_h(dot2, __lasx_xvreplgr2vr_h(2*ls2+1));
  7259. sumi1 = __lasx_xvadd_w(sumi1, p1);
  7260. sumi2 = __lasx_xvadd_w(sumi2, p2);
  7261. }
  7262. accumf = __lasx_xvfmadd_s(__lasx_xvreplfr2vr_s(d), __lasx_xvffint_s_w(__lasx_xvadd_w(sumi1, sumi2)), accumf);
  7263. }
  7264. *s = 0.25f * hsum_float_8(accumf);
  7265. #else
  7266. uint32_t aux32;
  7267. float sumf = 0.f;
  7268. for (int i = 0; i < nb; ++i) {
  7269. const float d = GGML_FP16_TO_FP32(x[i].d) * y[i].d;
  7270. const uint8_t * restrict q3 = x[i].qs;
  7271. const uint8_t * restrict gas = x[i].qs + QK_K/4;
  7272. const int8_t * restrict q8 = y[i].qs;
  7273. int32_t bsum = 0;
  7274. for (int ib32 = 0; ib32 < QK_K/32; ++ib32) {
  7275. memcpy(&aux32, gas, sizeof(uint32_t)); gas += sizeof(uint32_t);
  7276. const uint32_t ls = 2*(aux32 >> 28) + 1;
  7277. int32_t sumi = 0;
  7278. for (int l = 0; l < 4; ++l) {
  7279. const uint8_t * grid1 = (const uint8_t *)(iq3xxs_grid + q3[2*l+0]);
  7280. const uint8_t * grid2 = (const uint8_t *)(iq3xxs_grid + q3[2*l+1]);
  7281. const uint8_t signs = ksigns_iq2xs[(aux32 >> 7*l) & 127];
  7282. for (int j = 0; j < 4; ++j) {
  7283. sumi += grid1[j] * q8[j+0] * (signs & kmask_iq2xs[j+0] ? -1 : 1);
  7284. sumi += grid2[j] * q8[j+4] * (signs & kmask_iq2xs[j+4] ? -1 : 1);
  7285. }
  7286. q8 += 8;
  7287. }
  7288. q3 += 8;
  7289. bsum += sumi * ls;
  7290. }
  7291. sumf += d * bsum;
  7292. }
  7293. *s = 0.25f * sumf;
  7294. #endif
  7295. }
  7296. void ggml_vec_dot_iq3_s_q8_K (int n, float * restrict s, size_t bs, const void * restrict vx, size_t bx, const void * restrict vy, size_t by, int nrc) {
  7297. assert(n % QK_K == 0);
  7298. assert(nrc == 1);
  7299. UNUSED(nrc);
  7300. UNUSED(bx);
  7301. UNUSED(by);
  7302. UNUSED(bs);
  7303. const block_iq3_s * restrict x = vx;
  7304. const block_q8_K * restrict y = vy;
  7305. const int nb = n / QK_K;
  7306. #if defined(__ARM_NEON)
  7307. typedef union {
  7308. uint16x8_t vec_index;
  7309. uint16_t index[8];
  7310. } vec_index_t;
  7311. static const uint8_t k_mask1[32] = {0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x01, 0x01, 0x01, 0x01, 0x01, 0x01, 0x01, 0x01,
  7312. 0x02, 0x02, 0x02, 0x02, 0x02, 0x02, 0x02, 0x02, 0x03, 0x03, 0x03, 0x03, 0x03, 0x03, 0x03, 0x03
  7313. };
  7314. static const uint8_t k_mask2[16] = {0x01, 0x02, 0x04, 0x08, 0x10, 0x20, 0x40, 0x80, 0x01, 0x02, 0x04, 0x08, 0x10, 0x20, 0x40, 0x80,};
  7315. static const int16_t k_shift[8] = {8, 7, 6, 5, 4, 3, 2, 1};
  7316. const ggml_uint8x16x2_t mask1 = ggml_vld1q_u8_x2(k_mask1);
  7317. const uint8x16_t mask2 = vld1q_u8(k_mask2);
  7318. const int16x8_t hshift = vld1q_s16(k_shift);
  7319. const uint16x8_t m256 = vdupq_n_u16(256);
  7320. const uint8x16_t m1 = vdupq_n_u8(1);
  7321. uint8x16x2_t vs;
  7322. ggml_int8x16x4_t q3s;
  7323. ggml_int8x16x4_t q8b;
  7324. vec_index_t idx;
  7325. uint32_t scales32[2];
  7326. const uint8_t * scales8 = (const uint8_t *)scales32;
  7327. float sumf = 0;
  7328. for (int i = 0; i < nb; ++i) {
  7329. const float d = GGML_FP16_TO_FP32(x[i].d) * y[i].d;
  7330. const uint8_t * restrict qs = x[i].qs;
  7331. const uint8_t * restrict qh = x[i].qh;
  7332. const uint16_t * restrict signs = (const uint16_t *)x[i].signs;
  7333. const int8_t * restrict q8 = y[i].qs;
  7334. memcpy(scales32, x[i].scales, 4);
  7335. scales32[1] = (((scales32[0] >> 4) & 0x0f0f0f0f) << 1) | 0x01010101;
  7336. scales32[0] = ((scales32[0] & 0x0f0f0f0f) << 1) | 0x01010101;
  7337. int sumi1 = 0, sumi2 = 0;
  7338. for (int ib32 = 0; ib32 < QK_K/32; ib32 += 2) {
  7339. q8b = ggml_vld1q_s8_x4(q8); q8 += 64;
  7340. const uint8x16_t idx_l = vld1q_u8(qs); qs += 16;
  7341. idx.vec_index = vorrq_u16(vmovl_u8(vget_low_u8 (idx_l)), vandq_u16(vshlq_u16(vdupq_n_u16(qh[ib32+0]), hshift), m256));
  7342. const uint32x4_t aux32x4_0 = ggml_vld1q_u32(iq3s_grid[idx.index[0]], iq3s_grid[idx.index[1]],
  7343. iq3s_grid[idx.index[2]], iq3s_grid[idx.index[3]]);
  7344. const uint32x4_t aux32x4_1 = ggml_vld1q_u32(iq3s_grid[idx.index[4]], iq3s_grid[idx.index[5]],
  7345. iq3s_grid[idx.index[6]], iq3s_grid[idx.index[7]]);
  7346. idx.vec_index = vorrq_u16(vmovl_u8(vget_high_u8(idx_l)), vandq_u16(vshlq_u16(vdupq_n_u16(qh[ib32+1]), hshift), m256));
  7347. const uint32x4_t aux32x4_2 = ggml_vld1q_u32(iq3s_grid[idx.index[0]], iq3s_grid[idx.index[1]],
  7348. iq3s_grid[idx.index[2]], iq3s_grid[idx.index[3]]);
  7349. const uint32x4_t aux32x4_3 = ggml_vld1q_u32(iq3s_grid[idx.index[4]], iq3s_grid[idx.index[5]],
  7350. iq3s_grid[idx.index[6]], iq3s_grid[idx.index[7]]);
  7351. vs.val[0] = vreinterpretq_u8_u32(vdupq_n_u32(signs[0] | ((uint32_t) signs[1] << 16)));
  7352. vs.val[1] = vandq_u8(ggml_vqtbl1q_u8(vs.val[0], mask1.val[1]), mask2);
  7353. vs.val[0] = vandq_u8(ggml_vqtbl1q_u8(vs.val[0], mask1.val[0]), mask2);
  7354. vs.val[0] = vorrq_u8(vceqq_u8(vs.val[0], mask2), m1);
  7355. vs.val[1] = vorrq_u8(vceqq_u8(vs.val[1], mask2), m1);
  7356. q3s.val[0] = vmulq_s8(vreinterpretq_s8_u8(vs.val[0]), vreinterpretq_s8_u32(aux32x4_0));
  7357. q3s.val[1] = vmulq_s8(vreinterpretq_s8_u8(vs.val[1]), vreinterpretq_s8_u32(aux32x4_1));
  7358. vs.val[0] = vreinterpretq_u8_u32(vdupq_n_u32(signs[2] | ((uint32_t) signs[3] << 16)));
  7359. vs.val[1] = vandq_u8(ggml_vqtbl1q_u8(vs.val[0], mask1.val[1]), mask2);
  7360. vs.val[0] = vandq_u8(ggml_vqtbl1q_u8(vs.val[0], mask1.val[0]), mask2);
  7361. vs.val[0] = vorrq_u8(vceqq_u8(vs.val[0], mask2), m1);
  7362. vs.val[1] = vorrq_u8(vceqq_u8(vs.val[1], mask2), m1);
  7363. signs += 4;
  7364. q3s.val[2] = vmulq_s8(vreinterpretq_s8_u8(vs.val[0]), vreinterpretq_s8_u32(aux32x4_2));
  7365. q3s.val[3] = vmulq_s8(vreinterpretq_s8_u8(vs.val[1]), vreinterpretq_s8_u32(aux32x4_3));
  7366. const int32x4_t p1 = ggml_vdotq_s32(ggml_vdotq_s32(vdupq_n_s32(0), q3s.val[0], q8b.val[0]), q3s.val[1], q8b.val[1]);
  7367. const int32x4_t p2 = ggml_vdotq_s32(ggml_vdotq_s32(vdupq_n_s32(0), q3s.val[2], q8b.val[2]), q3s.val[3], q8b.val[3]);
  7368. sumi1 += vaddvq_s32(p1) * scales8[ib32/2+0];
  7369. sumi2 += vaddvq_s32(p2) * scales8[ib32/2+4];
  7370. }
  7371. sumf += d*(sumi1 + sumi2);
  7372. }
  7373. *s = sumf;
  7374. #elif defined(__AVX2__)
  7375. static const uint8_t k_mask1[32] = {0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x01, 0x01, 0x01, 0x01, 0x01, 0x01, 0x01, 0x01,
  7376. 0x02, 0x02, 0x02, 0x02, 0x02, 0x02, 0x02, 0x02, 0x03, 0x03, 0x03, 0x03, 0x03, 0x03, 0x03, 0x03
  7377. };
  7378. static const uint8_t k_mask2[32] = {0x01, 0x02, 0x04, 0x08, 0x10, 0x20, 0x40, 0x80, 0x01, 0x02, 0x04, 0x08, 0x10, 0x20, 0x40, 0x80,
  7379. 0x01, 0x02, 0x04, 0x08, 0x10, 0x20, 0x40, 0x80, 0x01, 0x02, 0x04, 0x08, 0x10, 0x20, 0x40, 0x80,
  7380. };
  7381. const __m256i mask1 = _mm256_loadu_si256((const __m256i*)k_mask1);
  7382. const __m256i mask2 = _mm256_loadu_si256((const __m256i*)k_mask2);
  7383. const __m256i idx_shift = _mm256_set_epi32(1, 2, 3, 4, 5, 6, 7, 8);
  7384. const __m256i idx_mask = _mm256_set1_epi32(256);
  7385. typedef union {
  7386. __m256i vec[2];
  7387. uint32_t index[16];
  7388. } index_t;
  7389. index_t idx;
  7390. __m256 accumf = _mm256_setzero_ps();
  7391. for (int i = 0; i < nb; ++i) {
  7392. const float d = GGML_FP16_TO_FP32(x[i].d) * y[i].d;
  7393. const uint8_t * restrict qs = x[i].qs;
  7394. const uint8_t * restrict qh = x[i].qh;
  7395. const uint16_t * restrict signs = (const uint16_t *)x[i].signs;
  7396. const int8_t * restrict q8 = y[i].qs;
  7397. __m256i sumi1 = _mm256_setzero_si256();
  7398. __m256i sumi2 = _mm256_setzero_si256();
  7399. for (int ib32 = 0; ib32 < QK_K/32; ib32 += 2) {
  7400. const __m256i q8_1 = _mm256_loadu_si256((const __m256i *)q8); q8 += 32;
  7401. const __m256i q8_2 = _mm256_loadu_si256((const __m256i *)q8); q8 += 32;
  7402. const __m256i idx_l = _mm256_cvtepu8_epi16(_mm_loadu_si128((const __m128i *)qs)); qs += 16;
  7403. idx.vec[0] = _mm256_set1_epi32(qh[ib32+0]);
  7404. idx.vec[1] = _mm256_set1_epi32(qh[ib32+1]);
  7405. idx.vec[0] = _mm256_and_si256(_mm256_sllv_epi32(idx.vec[0], idx_shift), idx_mask);
  7406. idx.vec[1] = _mm256_and_si256(_mm256_sllv_epi32(idx.vec[1], idx_shift), idx_mask);
  7407. idx.vec[0] = _mm256_or_si256(idx.vec[0], _mm256_cvtepi16_epi32(_mm256_castsi256_si128(idx_l)));
  7408. idx.vec[1] = _mm256_or_si256(idx.vec[1], _mm256_cvtepi16_epi32(_mm256_extractf128_si256(idx_l, 1)));
  7409. // At leat on my CPU (Ryzen 7950X), using _mm256_i32gather_epi32 is slower than _mm256_set_epi32. Strange.
  7410. //const __m256i q2_1 = _mm256_i32gather_epi32((const int *)iq3s_grid, idx.vec[0], 4);
  7411. //const __m256i q2_2 = _mm256_i32gather_epi32((const int *)iq3s_grid, idx.vec[1], 4);
  7412. const __m256i q2_1 = _mm256_set_epi32(
  7413. iq3s_grid[idx.index[7]], iq3s_grid[idx.index[6]], iq3s_grid[idx.index[5]], iq3s_grid[idx.index[4]],
  7414. iq3s_grid[idx.index[3]], iq3s_grid[idx.index[2]], iq3s_grid[idx.index[1]], iq3s_grid[idx.index[0]]
  7415. );
  7416. const __m256i q2_2 = _mm256_set_epi32(
  7417. iq3s_grid[idx.index[15]], iq3s_grid[idx.index[14]], iq3s_grid[idx.index[13]], iq3s_grid[idx.index[12]],
  7418. iq3s_grid[idx.index[11]], iq3s_grid[idx.index[10]], iq3s_grid[idx.index[ 9]], iq3s_grid[idx.index[ 8]]
  7419. );
  7420. __m256i aux256 = _mm256_set1_epi32(signs[0] | (signs[1] << 16));
  7421. aux256 = _mm256_and_si256(_mm256_shuffle_epi8(aux256,mask1), mask2);
  7422. const __m256i s2_1 = _mm256_cmpeq_epi8(aux256, mask2);
  7423. const __m256i q8s_1 = _mm256_sub_epi8(_mm256_xor_si256(s2_1, q8_1), s2_1);
  7424. aux256 = _mm256_set1_epi32(signs[2] | (signs[3] << 16));
  7425. aux256 = _mm256_and_si256(_mm256_shuffle_epi8(aux256,mask1), mask2);
  7426. const __m256i s2_2 = _mm256_cmpeq_epi8(aux256, mask2);
  7427. const __m256i q8s_2 = _mm256_sub_epi8(_mm256_xor_si256(s2_2, q8_2), s2_2);
  7428. signs += 4;
  7429. const __m256i dot1 = _mm256_maddubs_epi16(q2_1, q8s_1);
  7430. const __m256i dot2 = _mm256_maddubs_epi16(q2_2, q8s_2);
  7431. const uint16_t ls1 = x[i].scales[ib32/2] & 0xf;
  7432. const uint16_t ls2 = x[i].scales[ib32/2] >> 4;
  7433. const __m256i p1 = _mm256_madd_epi16(dot1, _mm256_set1_epi16(2*ls1+1));
  7434. const __m256i p2 = _mm256_madd_epi16(dot2, _mm256_set1_epi16(2*ls2+1));
  7435. sumi1 = _mm256_add_epi32(sumi1, p1);
  7436. sumi2 = _mm256_add_epi32(sumi2, p2);
  7437. }
  7438. accumf = _mm256_fmadd_ps(_mm256_set1_ps(d), _mm256_cvtepi32_ps(_mm256_add_epi32(sumi1, sumi2)), accumf);
  7439. }
  7440. *s = hsum_float_8(accumf);
  7441. #elif defined(__AVX__)
  7442. static const uint8_t k_mask1[32] = {0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x01, 0x01, 0x01, 0x01, 0x01, 0x01, 0x01, 0x01,
  7443. 0x02, 0x02, 0x02, 0x02, 0x02, 0x02, 0x02, 0x02, 0x03, 0x03, 0x03, 0x03, 0x03, 0x03, 0x03, 0x03
  7444. };
  7445. static const uint8_t k_mask2[32] = {0x01, 0x02, 0x04, 0x08, 0x10, 0x20, 0x40, 0x80, 0x01, 0x02, 0x04, 0x08, 0x10, 0x20, 0x40, 0x80,
  7446. 0x01, 0x02, 0x04, 0x08, 0x10, 0x20, 0x40, 0x80, 0x01, 0x02, 0x04, 0x08, 0x10, 0x20, 0x40, 0x80,
  7447. };
  7448. const __m128i mask1_0 = _mm_loadu_si128((const __m128i*)k_mask1);
  7449. const __m128i mask1_1 = _mm_loadu_si128((const __m128i*)k_mask1 + 1);
  7450. const __m128i mask2_0 = _mm_loadu_si128((const __m128i*)k_mask2);
  7451. const __m128i mask2_1 = _mm_loadu_si128((const __m128i*)k_mask2 + 1);
  7452. const __m128i idx_mul_0 = _mm_set_epi32(32, 64, 128, 256);
  7453. const __m128i idx_mul_1 = _mm_set_epi32(2, 4, 8, 16);
  7454. const __m128i idx_mask = _mm_set1_epi32(256);
  7455. typedef union {
  7456. __m128i vec[4];
  7457. uint32_t index[16];
  7458. } index_t;
  7459. index_t idx;
  7460. __m256 accumf = _mm256_setzero_ps();
  7461. for (int i = 0; i < nb; ++i) {
  7462. const float d = GGML_FP16_TO_FP32(x[i].d) * y[i].d;
  7463. const uint8_t * restrict qs = x[i].qs;
  7464. const uint8_t * restrict qh = x[i].qh;
  7465. const uint16_t * restrict signs = (const uint16_t *)x[i].signs;
  7466. const int8_t * restrict q8 = y[i].qs;
  7467. __m128i sumi1_0 = _mm_setzero_si128();
  7468. __m128i sumi1_1 = _mm_setzero_si128();
  7469. __m128i sumi2_0 = _mm_setzero_si128();
  7470. __m128i sumi2_1 = _mm_setzero_si128();
  7471. for (int ib32 = 0; ib32 < QK_K/32; ib32 += 2) {
  7472. const __m128i q8_1_0 = _mm_loadu_si128((const __m128i *)q8); q8 += 16;
  7473. const __m128i q8_1_1 = _mm_loadu_si128((const __m128i *)q8); q8 += 16;
  7474. const __m128i q8_2_0 = _mm_loadu_si128((const __m128i *)q8); q8 += 16;
  7475. const __m128i q8_2_1 = _mm_loadu_si128((const __m128i *)q8); q8 += 16;
  7476. const __m128i qs_tmp = _mm_loadu_si128((const __m128i *)qs);
  7477. const __m128i idx_l_0 = _mm_cvtepu8_epi16(qs_tmp);
  7478. const __m128i idx_l_1 = _mm_cvtepu8_epi16(_mm_srli_si128(qs_tmp, 8)); qs += 16;
  7479. idx.vec[0] = _mm_set1_epi32(qh[ib32+0]);
  7480. idx.vec[1] = idx.vec[0];
  7481. idx.vec[2] = _mm_set1_epi32(qh[ib32+1]);
  7482. idx.vec[3] = idx.vec[2];
  7483. idx.vec[0] = _mm_and_si128(_mm_mullo_epi32(idx.vec[0], idx_mul_0), idx_mask);
  7484. idx.vec[1] = _mm_and_si128(_mm_mullo_epi32(idx.vec[1], idx_mul_1), idx_mask);
  7485. idx.vec[2] = _mm_and_si128(_mm_mullo_epi32(idx.vec[2], idx_mul_0), idx_mask);
  7486. idx.vec[3] = _mm_and_si128(_mm_mullo_epi32(idx.vec[3], idx_mul_1), idx_mask);
  7487. idx.vec[0] = _mm_or_si128(idx.vec[0], _mm_cvtepi16_epi32(idx_l_0));
  7488. idx.vec[1] = _mm_or_si128(idx.vec[1], _mm_cvtepi16_epi32(_mm_srli_si128(idx_l_0, 8)));
  7489. idx.vec[2] = _mm_or_si128(idx.vec[2], _mm_cvtepi16_epi32(idx_l_1));
  7490. idx.vec[3] = _mm_or_si128(idx.vec[3], _mm_cvtepi16_epi32(_mm_srli_si128(idx_l_1, 8)));
  7491. const __m128i q2_1_0 = _mm_set_epi32(iq3s_grid[idx.index[3]], iq3s_grid[idx.index[2]], iq3s_grid[idx.index[1]], iq3s_grid[idx.index[0]]);
  7492. const __m128i q2_1_1 = _mm_set_epi32(iq3s_grid[idx.index[7]], iq3s_grid[idx.index[6]], iq3s_grid[idx.index[5]], iq3s_grid[idx.index[4]]);
  7493. const __m128i q2_2_0 = _mm_set_epi32(iq3s_grid[idx.index[11]], iq3s_grid[idx.index[10]], iq3s_grid[idx.index[9]], iq3s_grid[idx.index[8]]);
  7494. const __m128i q2_2_1 = _mm_set_epi32(iq3s_grid[idx.index[15]], iq3s_grid[idx.index[14]], iq3s_grid[idx.index[13]], iq3s_grid[idx.index[12]]);
  7495. __m128i aux128_0 = _mm_set1_epi32(signs[0] | (signs[1] << 16));
  7496. __m128i aux128_1 = aux128_0;
  7497. aux128_0 = _mm_and_si128(_mm_shuffle_epi8(aux128_0,mask1_0), mask2_0);
  7498. aux128_1 = _mm_and_si128(_mm_shuffle_epi8(aux128_1,mask1_1), mask2_1);
  7499. const __m128i s2_1_0 = _mm_cmpeq_epi8(aux128_0, mask2_0);
  7500. const __m128i s2_1_1 = _mm_cmpeq_epi8(aux128_1, mask2_1);
  7501. const __m128i q8s_1_0 = _mm_sub_epi8(_mm_xor_si128(s2_1_0, q8_1_0), s2_1_0);
  7502. const __m128i q8s_1_1 = _mm_sub_epi8(_mm_xor_si128(s2_1_1, q8_1_1), s2_1_1);
  7503. aux128_0 = _mm_set1_epi32(signs[2] | (signs[3] << 16));
  7504. aux128_1 = aux128_0;
  7505. aux128_0 = _mm_and_si128(_mm_shuffle_epi8(aux128_0,mask1_0), mask2_0);
  7506. aux128_1 = _mm_and_si128(_mm_shuffle_epi8(aux128_1,mask1_1), mask2_1);
  7507. const __m128i s2_2_0 = _mm_cmpeq_epi8(aux128_0, mask2_0);
  7508. const __m128i s2_2_1 = _mm_cmpeq_epi8(aux128_1, mask2_1);
  7509. const __m128i q8s_2_0 = _mm_sub_epi8(_mm_xor_si128(s2_2_0, q8_2_0), s2_2_0);
  7510. const __m128i q8s_2_1 = _mm_sub_epi8(_mm_xor_si128(s2_2_1, q8_2_1), s2_2_1);
  7511. signs += 4;
  7512. const __m128i dot1_0 = _mm_maddubs_epi16(q2_1_0, q8s_1_0);
  7513. const __m128i dot1_1 = _mm_maddubs_epi16(q2_1_1, q8s_1_1);
  7514. const __m128i dot2_0 = _mm_maddubs_epi16(q2_2_0, q8s_2_0);
  7515. const __m128i dot2_1 = _mm_maddubs_epi16(q2_2_1, q8s_2_1);
  7516. const uint16_t ls1 = x[i].scales[ib32/2] & 0xf;
  7517. const uint16_t ls2 = x[i].scales[ib32/2] >> 4;
  7518. const __m128i p1_0 = _mm_madd_epi16(dot1_0, _mm_set1_epi16(2*ls1+1));
  7519. const __m128i p1_1 = _mm_madd_epi16(dot1_1, _mm_set1_epi16(2*ls1+1));
  7520. const __m128i p2_0 = _mm_madd_epi16(dot2_0, _mm_set1_epi16(2*ls2+1));
  7521. const __m128i p2_1 = _mm_madd_epi16(dot2_1, _mm_set1_epi16(2*ls2+1));
  7522. sumi1_0 = _mm_add_epi32(sumi1_0, p1_0);
  7523. sumi1_1 = _mm_add_epi32(sumi1_1, p1_1);
  7524. sumi2_0 = _mm_add_epi32(sumi2_0, p2_0);
  7525. sumi2_1 = _mm_add_epi32(sumi2_1, p2_1);
  7526. }
  7527. accumf = _mm256_add_ps(_mm256_mul_ps(_mm256_set1_ps(d), _mm256_cvtepi32_ps(MM256_SET_M128I(_mm_add_epi32(sumi1_1, sumi2_1), _mm_add_epi32(sumi1_0, sumi2_0)))), accumf);
  7528. }
  7529. *s = hsum_float_8(accumf);
  7530. #elif defined(__POWER9_VECTOR__)
  7531. static const uint8_t k_mask1[32] = {0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x01, 0x01, 0x01, 0x01, 0x01, 0x01, 0x01, 0x01,
  7532. 0x02, 0x02, 0x02, 0x02, 0x02, 0x02, 0x02, 0x02, 0x03, 0x03, 0x03, 0x03, 0x03, 0x03, 0x03, 0x03
  7533. };
  7534. static const uint8_t k_mask2[16] = {0x01, 0x02, 0x04, 0x08, 0x10, 0x20, 0x40, 0x80, 0x01, 0x02, 0x04, 0x08, 0x10, 0x20, 0x40, 0x80,};
  7535. const vector int v0 = vec_splats((int32_t)0);
  7536. vector float vsumf0 = vec_splats(0.0f);
  7537. vector float vsumf1 = vec_splats(0.0f);
  7538. vector float vsumf2 = vec_splats(0.0f);
  7539. vector float vsumf3 = vec_splats(0.0f);
  7540. const vector unsigned char mask0 = vec_xl( 0, k_mask1);
  7541. const vector unsigned char mask1 = vec_xl(16, k_mask1);
  7542. const vector signed char mask2 = (vector signed char)vec_xl( 0, k_mask2);
  7543. for (int i = 0; i < nb; ++i) {
  7544. vector float vxd = vec_splats(GGML_FP16_TO_FP32(x[i].d));
  7545. vector float vyd = vec_splats(y[i].d);
  7546. vector float vd = vec_mul(vxd, vyd);
  7547. const uint8_t * restrict q3 = x[i].qs;
  7548. const uint8_t * restrict qh = x[i].qh;
  7549. const uint16_t * restrict signs = (const uint16_t *)(x[i].signs);
  7550. const uint8_t * restrict sc = x[i].scales;
  7551. const int8_t * restrict q8 = y[i].qs;
  7552. vector signed int vsumi0 = v0;
  7553. vector signed int vsumi1 = v0;
  7554. vector signed int vsumi2 = v0;
  7555. vector signed int vsumi3 = v0;
  7556. for (int j = 0; j < QK_K/32; j += 2) {
  7557. __builtin_prefetch(q3, 0, 1);
  7558. __builtin_prefetch(q8, 0, 1);
  7559. vector unsigned int aux32x4_0 = {iq3s_grid[q3[ 0] | ((qh[0] << 8) & 256)], iq3s_grid[q3[ 1] | ((qh[0] << 7) & 256)],
  7560. iq3s_grid[q3[ 2] | ((qh[0] << 6) & 256)], iq3s_grid[q3[ 3] | ((qh[0] << 5) & 256)]};
  7561. vector unsigned int aux32x4_1 = {iq3s_grid[q3[ 4] | ((qh[0] << 4) & 256)], iq3s_grid[q3[ 5] | ((qh[0] << 3) & 256)],
  7562. iq3s_grid[q3[ 6] | ((qh[0] << 2) & 256)], iq3s_grid[q3[ 7] | ((qh[0] << 1) & 256)]};
  7563. vector unsigned int aux32x4_2 = {iq3s_grid[q3[ 8] | ((qh[1] << 8) & 256)], iq3s_grid[q3[ 9] | ((qh[1] << 7) & 256)],
  7564. iq3s_grid[q3[10] | ((qh[1] << 6) & 256)], iq3s_grid[q3[11] | ((qh[1] << 5) & 256)]};
  7565. vector unsigned int aux32x4_3 = {iq3s_grid[q3[12] | ((qh[1] << 4) & 256)], iq3s_grid[q3[13] | ((qh[1] << 3) & 256)],
  7566. iq3s_grid[q3[14] | ((qh[1] << 2) & 256)], iq3s_grid[q3[15] | ((qh[1] << 1) & 256)]};
  7567. q3 += 16;
  7568. qh += 2;
  7569. vector signed char vsigns01 = (vector signed char)vec_splats(*(const uint32_t *)&signs[0]);
  7570. vector signed char vsigns02 = (vector signed char)vec_splats(*(const uint32_t *)&signs[2]);
  7571. signs += 4;
  7572. vector signed char vsigns0 = vec_perm(vsigns01, vsigns01, mask0);
  7573. vector signed char vsigns1 = vec_perm(vsigns01, vsigns01, mask1);
  7574. vector signed char vsigns2 = vec_perm(vsigns02, vsigns02, mask0);
  7575. vector signed char vsigns3 = vec_perm(vsigns02, vsigns02, mask1);
  7576. vsigns0 = (vector signed char)vec_cmpeq(vec_and(vsigns0, mask2), mask2);
  7577. vsigns1 = (vector signed char)vec_cmpeq(vec_and(vsigns1, mask2), mask2);
  7578. vsigns2 = (vector signed char)vec_cmpeq(vec_and(vsigns2, mask2), mask2);
  7579. vsigns3 = (vector signed char)vec_cmpeq(vec_and(vsigns3, mask2), mask2);
  7580. vector signed char q3x0 = vec_sub(vec_xor(vsigns0, (vector signed char)aux32x4_0), vsigns0);
  7581. vector signed char q3x1 = vec_sub(vec_xor(vsigns1, (vector signed char)aux32x4_1), vsigns1);
  7582. vector signed char q3x2 = vec_sub(vec_xor(vsigns2, (vector signed char)aux32x4_2), vsigns2);
  7583. vector signed char q3x3 = vec_sub(vec_xor(vsigns3, (vector signed char)aux32x4_3), vsigns3);
  7584. vector signed char q8y0 = vec_xl( 0, q8);
  7585. vector signed char q8y1 = vec_xl(16, q8);
  7586. vector signed char q8y2 = vec_xl(32, q8);
  7587. vector signed char q8y3 = vec_xl(48, q8);
  7588. q8 += 64;
  7589. vector signed short qv0 = vec_add(vec_mule(q3x0, q8y0), vec_mulo(q3x0, q8y0));
  7590. vector signed short qv1 = vec_add(vec_mule(q3x1, q8y1), vec_mulo(q3x1, q8y1));
  7591. vector signed short qv2 = vec_add(vec_mule(q3x2, q8y2), vec_mulo(q3x2, q8y2));
  7592. vector signed short qv3 = vec_add(vec_mule(q3x3, q8y3), vec_mulo(q3x3, q8y3));
  7593. const uint16_t ls0 = (uint16_t)(sc[0] & 0xf);
  7594. const uint16_t ls1 = (uint16_t)(sc[0] >> 4);
  7595. sc ++;
  7596. vector signed short vscales01 = (vector signed short)vec_splats((uint16_t)(2*ls0+1));
  7597. vector signed short vscales23 = (vector signed short)vec_splats((uint16_t)(2*ls1+1));
  7598. vsumi0 = vec_msum(qv0, vscales01, vsumi0);
  7599. vsumi1 = vec_msum(qv1, vscales01, vsumi1);
  7600. vsumi2 = vec_msum(qv2, vscales23, vsumi2);
  7601. vsumi3 = vec_msum(qv3, vscales23, vsumi3);
  7602. }
  7603. vsumf0 = vec_madd(vec_ctf(vsumi0, 0), vd, vsumf0);
  7604. vsumf1 = vec_madd(vec_ctf(vsumi1, 0), vd, vsumf1);
  7605. vsumf2 = vec_madd(vec_ctf(vsumi2, 0), vd, vsumf2);
  7606. vsumf3 = vec_madd(vec_ctf(vsumi3, 0), vd, vsumf3);
  7607. }
  7608. vsumf0 = vec_add(vsumf0, vsumf2);
  7609. vsumf1 = vec_add(vsumf1, vsumf3);
  7610. vsumf0 = vec_add(vsumf0, vsumf1);
  7611. vsumf0 = vec_add(vsumf0, vec_sld(vsumf0, vsumf0, 4));
  7612. vsumf0 = vec_add(vsumf0, vec_sld(vsumf0, vsumf0, 8));
  7613. *s = vec_extract(vsumf0, 0);
  7614. #elif defined(__loongarch_asx)
  7615. static const uint8_t k_mask1[32] = {0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x01, 0x01, 0x01, 0x01, 0x01, 0x01, 0x01, 0x01,
  7616. 0x02, 0x02, 0x02, 0x02, 0x02, 0x02, 0x02, 0x02, 0x03, 0x03, 0x03, 0x03, 0x03, 0x03, 0x03, 0x03
  7617. };
  7618. static const uint8_t k_mask2[32] = {0x01, 0x02, 0x04, 0x08, 0x10, 0x20, 0x40, 0x80, 0x01, 0x02, 0x04, 0x08, 0x10, 0x20, 0x40, 0x80,
  7619. 0x01, 0x02, 0x04, 0x08, 0x10, 0x20, 0x40, 0x80, 0x01, 0x02, 0x04, 0x08, 0x10, 0x20, 0x40, 0x80,
  7620. };
  7621. const __m256i mask1 = __lasx_xvld((const __m256i*)k_mask1, 0);
  7622. const __m256i mask2 = __lasx_xvld((const __m256i*)k_mask2, 0);
  7623. __m256i idx_shift = lasx_set_w(1, 2, 3, 4, 5, 6, 7, 8);
  7624. const __m256i idx_mask = __lasx_xvreplgr2vr_w(256);
  7625. typedef union {
  7626. __m256i vec[2];
  7627. uint32_t index[16];
  7628. } index_t;
  7629. index_t idx;
  7630. __m256 accumf = (__m256)__lasx_xvldi(0);
  7631. for (int i = 0; i < nb; ++i) {
  7632. const float d = GGML_FP16_TO_FP32(x[i].d) * y[i].d;
  7633. const uint8_t * restrict qs = x[i].qs;
  7634. const uint8_t * restrict qh = x[i].qh;
  7635. const uint16_t * restrict signs = (const uint16_t *)x[i].signs;
  7636. const int8_t * restrict q8 = y[i].qs;
  7637. __m256i sumi1 = __lasx_xvldi(0);
  7638. __m256i sumi2 = __lasx_xvldi(0);
  7639. for (int ib32 = 0; ib32 < QK_K/32; ib32 += 2) {
  7640. const __m256i q8_1 = __lasx_xvld((const __m256i *)q8, 0); q8 += 32;
  7641. const __m256i q8_2 = __lasx_xvld((const __m256i *)q8, 0); q8 += 32;
  7642. const __m256i idx_l = lasx_extu8_16(__lsx_vld(qs, 0)); qs += 16;
  7643. idx.vec[0] = __lasx_xvreplgr2vr_w(qh[ib32+0]);
  7644. idx.vec[1] = __lasx_xvreplgr2vr_w(qh[ib32+1]);
  7645. idx.vec[0] = __lasx_xvand_v(__lasx_xvsll_w(idx.vec[0], idx_shift), idx_mask);
  7646. idx.vec[1] = __lasx_xvand_v(__lasx_xvsll_w(idx.vec[1], idx_shift), idx_mask);
  7647. idx.vec[0] = __lasx_xvor_v(idx.vec[0], lasx_ext16_32(lasx_extracti128(idx_l, 0)));
  7648. idx.vec[1] = __lasx_xvor_v(idx.vec[1], lasx_ext16_32(lasx_extracti128(idx_l, 1)));
  7649. // At leat on my CPU (Ryzen 7950X), using _mm256_i32gather_epi32 is slower than _mm256_set_epi32. Strange.
  7650. //const __m256i q2_1 = _mm256_i32gather_epi32((const int *)iq3s_grid, idx.vec[0], 4);
  7651. //const __m256i q2_2 = _mm256_i32gather_epi32((const int *)iq3s_grid, idx.vec[1], 4);
  7652. const __m256i q2_1 = lasx_set_w(
  7653. iq3s_grid[idx.index[7]], iq3s_grid[idx.index[6]], iq3s_grid[idx.index[5]], iq3s_grid[idx.index[4]],
  7654. iq3s_grid[idx.index[3]], iq3s_grid[idx.index[2]], iq3s_grid[idx.index[1]], iq3s_grid[idx.index[0]]
  7655. );
  7656. const __m256i q2_2 = lasx_set_w(
  7657. iq3s_grid[idx.index[15]], iq3s_grid[idx.index[14]], iq3s_grid[idx.index[13]], iq3s_grid[idx.index[12]],
  7658. iq3s_grid[idx.index[11]], iq3s_grid[idx.index[10]], iq3s_grid[idx.index[ 9]], iq3s_grid[idx.index[ 8]]
  7659. );
  7660. __m256i aux256 = __lasx_xvreplgr2vr_w(signs[0] | (signs[1] << 16));
  7661. aux256 = __lasx_xvand_v(lasx_shuffle_b(aux256,mask1), mask2);
  7662. const __m256i s2_1 = __lasx_xvseq_b(aux256, mask2);
  7663. const __m256i q8s_1 = __lasx_xvsub_b(__lasx_xvxor_v(s2_1, q8_1), s2_1);
  7664. aux256 = __lasx_xvreplgr2vr_w(signs[2] | (signs[3] << 16));
  7665. aux256 = __lasx_xvand_v(lasx_shuffle_b(aux256,mask1), mask2);
  7666. const __m256i s2_2 = __lasx_xvseq_b(aux256, mask2);
  7667. const __m256i q8s_2 = __lasx_xvsub_b(__lasx_xvxor_v(s2_2, q8_2), s2_2);
  7668. signs += 4;
  7669. const __m256i dot1 = lasx_maddubs_h(q2_1, q8s_1);
  7670. const __m256i dot2 = lasx_maddubs_h(q2_2, q8s_2);
  7671. const uint16_t ls1 = x[i].scales[ib32/2] & 0xf;
  7672. const uint16_t ls2 = x[i].scales[ib32/2] >> 4;
  7673. const __m256i p1 = lasx_madd_h(dot1, __lasx_xvreplgr2vr_h(2*ls1+1));
  7674. const __m256i p2 = lasx_madd_h(dot2, __lasx_xvreplgr2vr_h(2*ls2+1));
  7675. sumi1 = __lasx_xvadd_w(sumi1, p1);
  7676. sumi2 = __lasx_xvadd_w(sumi2, p2);
  7677. }
  7678. accumf = __lasx_xvfmadd_s(__lasx_xvreplfr2vr_s(d), __lasx_xvffint_s_w(__lasx_xvadd_w(sumi1, sumi2)), accumf);
  7679. }
  7680. *s = hsum_float_8(accumf);
  7681. #else
  7682. float sumf = 0.f;
  7683. for (int i = 0; i < nb; ++i) {
  7684. const float d = GGML_FP16_TO_FP32(x[i].d) * y[i].d;
  7685. const uint8_t * restrict qs = x[i].qs;
  7686. const uint8_t * restrict qh = x[i].qh;
  7687. const uint8_t * restrict signs = x[i].signs;
  7688. const int8_t * restrict q8 = y[i].qs;
  7689. int32_t bsum = 0;
  7690. for (int ib32 = 0; ib32 < QK_K/32; ib32 += 2) {
  7691. const uint32_t ls1 = 2*(x[i].scales[ib32/2] & 0xf) + 1;
  7692. const uint32_t ls2 = 2*(x[i].scales[ib32/2] >> 4) + 1;
  7693. int32_t sumi = 0;
  7694. for (int l = 0; l < 4; ++l) {
  7695. const uint8_t * grid1 = (const uint8_t *)(iq3s_grid + (qs[2*l+0] | ((qh[ib32+0] << (8-2*l)) & 256)));
  7696. const uint8_t * grid2 = (const uint8_t *)(iq3s_grid + (qs[2*l+1] | ((qh[ib32+0] << (7-2*l)) & 256)));
  7697. for (int j = 0; j < 4; ++j) {
  7698. sumi += grid1[j] * q8[j+0] * (signs[l] & kmask_iq2xs[j+0] ? -1 : 1);
  7699. sumi += grid2[j] * q8[j+4] * (signs[l] & kmask_iq2xs[j+4] ? -1 : 1);
  7700. }
  7701. q8 += 8;
  7702. }
  7703. qs += 8;
  7704. signs += 4;
  7705. bsum += sumi * ls1;
  7706. sumi = 0;
  7707. for (int l = 0; l < 4; ++l) {
  7708. const uint8_t * grid1 = (const uint8_t *)(iq3s_grid + (qs[2*l+0] | ((qh[ib32+1] << (8-2*l)) & 256)));
  7709. const uint8_t * grid2 = (const uint8_t *)(iq3s_grid + (qs[2*l+1] | ((qh[ib32+1] << (7-2*l)) & 256)));
  7710. for (int j = 0; j < 4; ++j) {
  7711. sumi += grid1[j] * q8[j+0] * (signs[l] & kmask_iq2xs[j+0] ? -1 : 1);
  7712. sumi += grid2[j] * q8[j+4] * (signs[l] & kmask_iq2xs[j+4] ? -1 : 1);
  7713. }
  7714. q8 += 8;
  7715. }
  7716. qs += 8;
  7717. signs += 4;
  7718. bsum += sumi * ls2;
  7719. }
  7720. sumf += d * bsum;
  7721. }
  7722. *s = sumf;
  7723. #endif
  7724. }
  7725. #if defined(__AVX2__)
  7726. static inline __m256i mul_add_epi8(const __m256i x, const __m256i y) {
  7727. const __m256i ax = _mm256_sign_epi8(x, x);
  7728. const __m256i sy = _mm256_sign_epi8(y, x);
  7729. return _mm256_maddubs_epi16(ax, sy);
  7730. }
  7731. #elif defined(__loongarch_asx)
  7732. static inline __m256i mul_add_epi8(const __m256i x, const __m256i y) {
  7733. const __m256i ax = __lasx_xvsigncov_b(x, x);
  7734. const __m256i sy = __lasx_xvsigncov_b(x, y);
  7735. __m256i tmp1, tmp2, tmp3;
  7736. tmp1 = __lasx_xvmulwev_h_bu_b(ax, sy);
  7737. tmp2 = __lasx_xvmulwod_h_bu_b(ax, sy);
  7738. tmp3 = __lasx_xvadd_h(tmp1, tmp2);
  7739. return __lasx_xvsat_h(tmp3, 15);
  7740. }
  7741. #endif
  7742. void ggml_vec_dot_iq1_s_q8_K (int n, float * restrict s, size_t bs, const void * restrict vx, size_t bx, const void * restrict vy, size_t by, int nrc) {
  7743. assert(n % QK_K == 0);
  7744. assert(nrc == 1);
  7745. UNUSED(nrc);
  7746. UNUSED(bx);
  7747. UNUSED(by);
  7748. UNUSED(bs);
  7749. const block_iq1_s * restrict x = vx;
  7750. const block_q8_K * restrict y = vy;
  7751. const int nb = n / QK_K;
  7752. #if defined __ARM_NEON
  7753. ggml_int8x16x4_t q1b;
  7754. ggml_int8x16x4_t q8b;
  7755. float sumf = 0;
  7756. for (int i = 0; i < nb; ++i) {
  7757. const int8_t * q8 = y[i].qs;
  7758. const uint8_t * qs = x[i].qs;
  7759. const uint16_t * qh = x[i].qh;
  7760. int sumi1 = 0, sumi2 = 0, sumi3 = 0;
  7761. for (int ib = 0; ib < QK_K/32; ib += 2) {
  7762. q1b.val[0] = vcombine_s8(vld1_s8((const int8_t *)(iq1s_grid + (qs[0] | ((qh[ib+0] << 8) & 0x700)))),
  7763. vld1_s8((const int8_t *)(iq1s_grid + (qs[1] | ((qh[ib+0] << 5) & 0x700)))));
  7764. q1b.val[1] = vcombine_s8(vld1_s8((const int8_t *)(iq1s_grid + (qs[2] | ((qh[ib+0] << 2) & 0x700)))),
  7765. vld1_s8((const int8_t *)(iq1s_grid + (qs[3] | ((qh[ib+0] >> 1) & 0x700)))));
  7766. q1b.val[2] = vcombine_s8(vld1_s8((const int8_t *)(iq1s_grid + (qs[4] | ((qh[ib+1] << 8) & 0x700)))),
  7767. vld1_s8((const int8_t *)(iq1s_grid + (qs[5] | ((qh[ib+1] << 5) & 0x700)))));
  7768. q1b.val[3] = vcombine_s8(vld1_s8((const int8_t *)(iq1s_grid + (qs[6] | ((qh[ib+1] << 2) & 0x700)))),
  7769. vld1_s8((const int8_t *)(iq1s_grid + (qs[7] | ((qh[ib+1] >> 1) & 0x700)))));
  7770. qs += 8;
  7771. q8b = ggml_vld1q_s8_x4(q8); q8 += 64;
  7772. const int32x4_t p1 = ggml_vdotq_s32(ggml_vdotq_s32(vdupq_n_s32(0), q1b.val[0], q8b.val[0]), q1b.val[1], q8b.val[1]);
  7773. const int32x4_t p2 = ggml_vdotq_s32(ggml_vdotq_s32(vdupq_n_s32(0), q1b.val[2], q8b.val[2]), q1b.val[3], q8b.val[3]);
  7774. const int ls1 = 2*((qh[ib+0] >> 12) & 7) + 1;
  7775. const int ls2 = 2*((qh[ib+1] >> 12) & 7) + 1;
  7776. sumi1 += vaddvq_s32(p1) * ls1;
  7777. sumi2 += vaddvq_s32(p2) * ls2;
  7778. sumi3 += (y[i].bsums[2*ib+0] + y[i].bsums[2*ib+1]) * ls1 * (qh[ib+0] & 0x8000 ? -1 : 1)
  7779. + (y[i].bsums[2*ib+2] + y[i].bsums[2*ib+3]) * ls2 * (qh[ib+1] & 0x8000 ? -1 : 1);
  7780. }
  7781. sumf += y[i].d * GGML_FP16_TO_FP32(x[i].d) * (sumi1 + sumi2 + IQ1S_DELTA * sumi3);
  7782. }
  7783. *s = sumf;
  7784. #elif defined __AVX2__
  7785. __m256 accum = _mm256_setzero_ps();
  7786. float accum1 = 0;
  7787. for (int i = 0; i < nb; ++i) {
  7788. const int8_t * q8 = y[i].qs;
  7789. const uint8_t * qs = x[i].qs;
  7790. const uint16_t * qh = x[i].qh;
  7791. __m256i sumi = _mm256_setzero_si256();
  7792. int sumi1 = 0;
  7793. for (int ib = 0; ib < QK_K/32; ib += 2) {
  7794. const __m256i q1b_1 = _mm256_set_epi64x(iq1s_grid[qs[3] | ((qh[ib+0] >> 1) & 0x700)], iq1s_grid[qs[2] | ((qh[ib+0] << 2) & 0x700)],
  7795. iq1s_grid[qs[1] | ((qh[ib+0] << 5) & 0x700)], iq1s_grid[qs[0] | ((qh[ib+0] << 8) & 0x700)]);
  7796. const __m256i q1b_2 = _mm256_set_epi64x(iq1s_grid[qs[7] | ((qh[ib+1] >> 1) & 0x700)], iq1s_grid[qs[6] | ((qh[ib+1] << 2) & 0x700)],
  7797. iq1s_grid[qs[5] | ((qh[ib+1] << 5) & 0x700)], iq1s_grid[qs[4] | ((qh[ib+1] << 8) & 0x700)]);
  7798. qs += 8;
  7799. const __m256i q8b_1 = _mm256_loadu_si256((const __m256i*)q8); q8 += 32;
  7800. const __m256i q8b_2 = _mm256_loadu_si256((const __m256i*)q8); q8 += 32;
  7801. const __m256i dot1 = mul_add_epi8(q1b_1, q8b_1);
  7802. const __m256i dot2 = mul_add_epi8(q1b_2, q8b_2);
  7803. const int16_t ls1 = 2*((qh[ib+0] >> 12) & 7) + 1;
  7804. const int16_t ls2 = 2*((qh[ib+1] >> 12) & 7) + 1;
  7805. const __m256i p1 = _mm256_madd_epi16(dot1, _mm256_set1_epi16(ls1));
  7806. const __m256i p2 = _mm256_madd_epi16(dot2, _mm256_set1_epi16(ls2));
  7807. sumi = _mm256_add_epi32(sumi, _mm256_add_epi32(p1, p2));
  7808. sumi1 += (y[i].bsums[2*ib+0] + y[i].bsums[2*ib+1]) * (qh[ib+0] & 0x8000 ? -1 : 1) * ls1
  7809. + (y[i].bsums[2*ib+2] + y[i].bsums[2*ib+3]) * (qh[ib+1] & 0x8000 ? -1 : 1) * ls2;
  7810. }
  7811. const float d = y[i].d * GGML_FP16_TO_FP32(x[i].d);
  7812. accum = _mm256_fmadd_ps(_mm256_set1_ps(d), _mm256_cvtepi32_ps(sumi), accum);
  7813. accum1 += d * sumi1;
  7814. }
  7815. *s = hsum_float_8(accum) + IQ1S_DELTA * accum1;
  7816. #elif defined __AVX__
  7817. __m256 accum = _mm256_setzero_ps();
  7818. float accum1 = 0;
  7819. for (int i = 0; i < nb; ++i) {
  7820. const int8_t * q8 = y[i].qs;
  7821. const uint8_t * qs = x[i].qs;
  7822. const uint16_t * qh = x[i].qh;
  7823. __m128i sumi1_0 = _mm_setzero_si128();
  7824. __m128i sumi1_1 = _mm_setzero_si128();
  7825. int sumi1 = 0;
  7826. for (int ib = 0; ib < QK_K/32; ib += 2) {
  7827. const __m128i q1b_1_0 = _mm_set_epi64x(iq1s_grid[qs[1] | ((qh[ib+0] << 5) & 0x700)], iq1s_grid[qs[0] | ((qh[ib+0] << 8) & 0x700)]);
  7828. const __m128i q1b_1_1 = _mm_set_epi64x(iq1s_grid[qs[3] | ((qh[ib+0] >> 1) & 0x700)], iq1s_grid[qs[2] | ((qh[ib+0] << 2) & 0x700)]);
  7829. const __m128i q1b_2_0 = _mm_set_epi64x(iq1s_grid[qs[5] | ((qh[ib+1] << 5) & 0x700)], iq1s_grid[qs[4] | ((qh[ib+1] << 8) & 0x700)]);
  7830. const __m128i q1b_2_1 = _mm_set_epi64x(iq1s_grid[qs[7] | ((qh[ib+1] >> 1) & 0x700)], iq1s_grid[qs[6] | ((qh[ib+1] << 2) & 0x700)]);
  7831. qs += 8;
  7832. const __m128i q8b_1_0 = _mm_loadu_si128((const __m128i *)q8); q8 += 16;
  7833. const __m128i q8b_1_1 = _mm_loadu_si128((const __m128i *)q8); q8 += 16;
  7834. const __m128i q8b_2_0 = _mm_loadu_si128((const __m128i *)q8); q8 += 16;
  7835. const __m128i q8b_2_1 = _mm_loadu_si128((const __m128i *)q8); q8 += 16;
  7836. const __m128i dot1_0 = mul_add_epi8_sse(q1b_1_0, q8b_1_0);
  7837. const __m128i dot1_1 = mul_add_epi8_sse(q1b_1_1, q8b_1_1);
  7838. const __m128i dot2_0 = mul_add_epi8_sse(q1b_2_0, q8b_2_0);
  7839. const __m128i dot2_1 = mul_add_epi8_sse(q1b_2_1, q8b_2_1);
  7840. const int16_t ls1 = 2*((qh[ib+0] >> 12) & 7) + 1;
  7841. const int16_t ls2 = 2*((qh[ib+1] >> 12) & 7) + 1;
  7842. const __m128i p1_0 = _mm_madd_epi16(dot1_0, _mm_set1_epi16(ls1));
  7843. const __m128i p1_1 = _mm_madd_epi16(dot1_1, _mm_set1_epi16(ls1));
  7844. const __m128i p2_0 = _mm_madd_epi16(dot2_0, _mm_set1_epi16(ls2));
  7845. const __m128i p2_1 = _mm_madd_epi16(dot2_1, _mm_set1_epi16(ls2));
  7846. sumi1_0 = _mm_add_epi32(sumi1_0, _mm_add_epi32(p1_0, p2_0));
  7847. sumi1_1 = _mm_add_epi32(sumi1_1, _mm_add_epi32(p1_1, p2_1));
  7848. sumi1 += (y[i].bsums[2*ib+0] + y[i].bsums[2*ib+1]) * (qh[ib+0] & 0x8000 ? -1 : 1) * ls1
  7849. + (y[i].bsums[2*ib+2] + y[i].bsums[2*ib+3]) * (qh[ib+1] & 0x8000 ? -1 : 1) * ls2;
  7850. }
  7851. const float d = y[i].d * GGML_FP16_TO_FP32(x[i].d);
  7852. accum = _mm256_add_ps(_mm256_mul_ps(_mm256_set1_ps(d), _mm256_cvtepi32_ps(MM256_SET_M128I(sumi1_1, sumi1_0))), accum);
  7853. accum1 += d * sumi1;
  7854. }
  7855. *s = hsum_float_8(accum) + IQ1S_DELTA * accum1;
  7856. #elif defined(__POWER9_VECTOR__)
  7857. const vector unsigned char v0 = vec_splats((unsigned char)0x0);
  7858. const vector unsigned short vsign = vec_splats((unsigned short)0x8000);
  7859. vector float vsumf0 = vec_splats(0.0f);
  7860. vector float vsumf1 = vec_splats(0.0f);
  7861. vector float vsumf2 = vec_splats(0.0f);
  7862. vector float vsumf3 = vec_splats(0.0f);
  7863. for (int i = 0; i < nb; ++i) {
  7864. vector float vxd = vec_splats(GGML_FP16_TO_FP32(x[i].d));
  7865. vector float vyd = vec_splats(y[i].d);
  7866. vector float vd = vec_mul(vxd, vyd);
  7867. vector signed int vsumi0 = vec_splats((int32_t)0);
  7868. vector signed int vsumi1 = vec_splats((int32_t)0);
  7869. vector signed int vsumi2 = vec_splats((int32_t)0);
  7870. vector signed int vsumi3 = vec_splats((int32_t)0);
  7871. vector signed int vsumi8 = vec_splats((int32_t)0);
  7872. const uint8_t * restrict q1 = x[i].qs;
  7873. const uint16_t * restrict qh = x[i].qh;
  7874. const int8_t * restrict q8 = y[i].qs;
  7875. const int16_t * restrict qs = y[i].bsums;
  7876. for (int j = 0; j < QK_K/32; j += 2) {
  7877. __builtin_prefetch(q1, 0, 1);
  7878. __builtin_prefetch(qh, 0, 1);
  7879. __builtin_prefetch(q8, 0, 1);
  7880. vector signed long long aux64x2_0 = {*(const int64_t *)(iq1s_grid + (q1[0] | ((qh[0] << 8) & 0x700))), *(const int64_t *)(iq1s_grid + (q1[1] | ((qh[0] << 5) & 0x700)))};
  7881. vector signed long long aux64x2_1 = {*(const int64_t *)(iq1s_grid + (q1[2] | ((qh[0] << 2) & 0x700))), *(const int64_t *)(iq1s_grid + (q1[3] | ((qh[0] >> 1) & 0x700)))};
  7882. vector signed long long aux64x2_2 = {*(const int64_t *)(iq1s_grid + (q1[4] | ((qh[1] << 8) & 0x700))), *(const int64_t *)(iq1s_grid + (q1[5] | ((qh[1] << 5) & 0x700)))};
  7883. vector signed long long aux64x2_3 = {*(const int64_t *)(iq1s_grid + (q1[6] | ((qh[1] << 2) & 0x700))), *(const int64_t *)(iq1s_grid + (q1[7] | ((qh[1] >> 1) & 0x700)))};
  7884. q1 += 8;
  7885. vector signed char q1x0 = (vector signed char)aux64x2_0;
  7886. vector signed char q1x1 = (vector signed char)aux64x2_1;
  7887. vector signed char q1x2 = (vector signed char)aux64x2_2;
  7888. vector signed char q1x3 = (vector signed char)aux64x2_3;
  7889. vector signed char q8y0 = vec_xl( 0, q8);
  7890. vector signed char q8y1 = vec_xl(16, q8);
  7891. vector signed char q8y2 = vec_xl(32, q8);
  7892. vector signed char q8y3 = vec_xl(48, q8);
  7893. q8 += 64;
  7894. vector signed short qv0 = vec_add(vec_mule(q1x0, q8y0), vec_mulo(q1x0, q8y0));
  7895. vector signed short qv1 = vec_add(vec_mule(q1x1, q8y1), vec_mulo(q1x1, q8y1));
  7896. vector signed short qv2 = vec_add(vec_mule(q1x2, q8y2), vec_mulo(q1x2, q8y2));
  7897. vector signed short qv3 = vec_add(vec_mule(q1x3, q8y3), vec_mulo(q1x3, q8y3));
  7898. const uint16_t ls0 = (uint16_t)((qh[0] >> 12) & 7);
  7899. const uint16_t ls1 = (uint16_t)((qh[1] >> 12) & 7);
  7900. vector signed short vscales01 = (vector signed short)vec_splats((uint16_t)(2*ls0+1));
  7901. vector signed short vscales23 = (vector signed short)vec_splats((uint16_t)(2*ls1+1));
  7902. vector signed short vscales = vec_sld(vscales23, vscales01, 8);
  7903. vsumi0 = vec_msum(qv0, vscales01, vsumi0);
  7904. vsumi1 = vec_msum(qv1, vscales01, vsumi1);
  7905. vsumi2 = vec_msum(qv2, vscales23, vsumi2);
  7906. vsumi3 = vec_msum(qv3, vscales23, vsumi3);
  7907. vector signed short q8ysums = vec_xl_len(qs, 8);
  7908. qs += 4;
  7909. q8ysums = vec_mergeh(q8ysums, (vector signed short)v0);
  7910. vector signed short qxh = (vector signed short)vec_sld(vec_splats(qh[1]), vec_splats(qh[0]), 8);
  7911. qh += 2;
  7912. vector __bool short vsel = vec_cmpge(qxh, (vector signed short)v0);
  7913. vector signed short q8ysum = vec_sel((vector signed short)vec_xor((vector unsigned short)q8ysums, vsign), q8ysums, vsel);
  7914. vsumi8 = vec_add(vec_mule(q8ysum, vscales), vsumi8);
  7915. }
  7916. vsumf0 = vec_madd(vec_ctf(vsumi0, 0), vd, vsumf0);
  7917. vsumf1 = vec_madd(vec_ctf(vsumi1, 0), vd, vsumf1);
  7918. vsumf2 = vec_madd(vec_ctf(vsumi2, 0), vd, vsumf2);
  7919. vsumf3 = vec_madd(vec_ctf(vsumi3, 0), vd, vsumf3);
  7920. vsumf0 = vec_madd(vec_ctf(vsumi8, 0), vec_mul(vd, vec_splats(IQ1S_DELTA)), vsumf0);
  7921. }
  7922. vsumf0 = vec_add(vsumf0, vsumf2);
  7923. vsumf1 = vec_add(vsumf1, vsumf3);
  7924. vsumf0 = vec_add(vsumf0, vsumf1);
  7925. vsumf0 = vec_add(vsumf0, vec_sld(vsumf0, vsumf0, 4));
  7926. vsumf0 = vec_add(vsumf0, vec_sld(vsumf0, vsumf0, 8));
  7927. *s = vec_extract(vsumf0, 0);
  7928. #elif defined(__loongarch_asx)
  7929. __m256 accum = (__m256)__lasx_xvldi(0);
  7930. float accum1 = 0;
  7931. for (int i = 0; i < nb; ++i) {
  7932. const int8_t * q8 = y[i].qs;
  7933. const uint8_t * qs = x[i].qs;
  7934. const uint16_t * qh = x[i].qh;
  7935. __m256i sumi = __lasx_xvldi(0);
  7936. int sumi1 = 0;
  7937. for (int ib = 0; ib < QK_K/32; ib += 2) {
  7938. __m256i q1b_1 = __lasx_xvinsgr2vr_d(q1b_1, iq1s_grid[qs[0] | ((qh[ib+0] << 8) & 0x700)], 0);
  7939. q1b_1 = __lasx_xvinsgr2vr_d(q1b_1, iq1s_grid[qs[1] | ((qh[ib+0] << 5) & 0x700)], 1);
  7940. q1b_1 = __lasx_xvinsgr2vr_d(q1b_1, iq1s_grid[qs[2] | ((qh[ib+0] << 2) & 0x700)], 2);
  7941. q1b_1 = __lasx_xvinsgr2vr_d(q1b_1, iq1s_grid[qs[3] | ((qh[ib+0] >> 1) & 0x700)], 3);
  7942. __m256i q1b_2 = __lasx_xvinsgr2vr_d(q1b_2, iq1s_grid[qs[4] | ((qh[ib+1] << 8) & 0x700)], 0);
  7943. q1b_2 = __lasx_xvinsgr2vr_d(q1b_2, iq1s_grid[qs[5] | ((qh[ib+1] << 5) & 0x700)], 1);
  7944. q1b_2 = __lasx_xvinsgr2vr_d(q1b_2, iq1s_grid[qs[6] | ((qh[ib+1] << 2) & 0x700)], 2);
  7945. q1b_2 = __lasx_xvinsgr2vr_d(q1b_2, iq1s_grid[qs[7] | ((qh[ib+1] >> 1) & 0x700)], 3);
  7946. qs += 8;
  7947. const __m256i q8b_1 = __lasx_xvld((const __m256i*)q8, 0); q8 += 32;
  7948. const __m256i q8b_2 = __lasx_xvld((const __m256i*)q8, 0); q8 += 32;
  7949. const __m256i dot1 = mul_add_epi8(q1b_1, q8b_1);
  7950. const __m256i dot2 = mul_add_epi8(q1b_2, q8b_2);
  7951. const int16_t ls1 = 2*((qh[ib+0] >> 12) & 7) + 1;
  7952. const int16_t ls2 = 2*((qh[ib+1] >> 12) & 7) + 1;
  7953. __m256i tmp1, tmp5, tmp6;
  7954. tmp1 = __lasx_xvreplgr2vr_h(ls1);
  7955. tmp5 = __lasx_xvmulwev_w_h(dot1, tmp1);
  7956. tmp6 = __lasx_xvmulwod_w_h(dot1, tmp1);
  7957. const __m256i p1 = __lasx_xvadd_w(tmp5, tmp6);
  7958. tmp1 = __lasx_xvreplgr2vr_h(ls2);
  7959. tmp5 = __lasx_xvmulwev_w_h(dot2, tmp1);
  7960. tmp6 = __lasx_xvmulwod_w_h(dot2, tmp1);
  7961. const __m256i p2 = __lasx_xvadd_w(tmp5, tmp6);
  7962. sumi = __lasx_xvadd_w(sumi, __lasx_xvadd_w(p1, p2));
  7963. sumi1 += (y[i].bsums[2*ib+0] + y[i].bsums[2*ib+1]) * (qh[ib+0] & 0x8000 ? -1 : 1) * ls1
  7964. + (y[i].bsums[2*ib+2] + y[i].bsums[2*ib+3]) * (qh[ib+1] & 0x8000 ? -1 : 1) * ls2;
  7965. }
  7966. const float d = y[i].d * GGML_FP16_TO_FP32(x[i].d);
  7967. accum = __lasx_xvfmadd_s(__lasx_xvreplfr2vr_s(d), __lasx_xvffint_s_w(sumi), accum);
  7968. accum1 += d * sumi1;
  7969. }
  7970. *s = hsum_float_8(accum) + IQ1S_DELTA * accum1;
  7971. #else
  7972. float sumf = 0;
  7973. for (int i = 0; i < nb; i++) {
  7974. const int8_t * q8 = y[i].qs;
  7975. const uint8_t * qs = x[i].qs;
  7976. const uint16_t * qh = x[i].qh;
  7977. int sumi = 0, sumi1 = 0;
  7978. for (int ib = 0; ib < QK_K/32; ++ib) {
  7979. const int ls = 2*((qh[ib] >> 12) & 7) + 1;
  7980. const int delta = qh[ib] & 0x8000 ? -1 : 1;
  7981. int lsum = 0;
  7982. for (int l = 0; l < 4; ++l) {
  7983. const int8_t * grid = (const int8_t *)(iq1s_grid + (qs[l] | (((qh[ib] >> 3*l) & 7) << 8)));
  7984. for (int j = 0; j < 8; ++j) {
  7985. lsum += q8[j] * grid[j];
  7986. }
  7987. q8 += 8;
  7988. }
  7989. sumi += ls * lsum;
  7990. sumi1 += ls * delta * (y[i].bsums[2*ib+0] + y[i].bsums[2*ib+1]);
  7991. qs += 4;
  7992. }
  7993. sumf += GGML_FP16_TO_FP32(x[i].d) * y[i].d * (sumi + IQ1S_DELTA * sumi1);
  7994. }
  7995. *s = sumf;
  7996. #endif
  7997. }
  7998. void ggml_vec_dot_iq1_m_q8_K (int n, float * restrict s, size_t bs, const void * restrict vx, size_t bx, const void * restrict vy, size_t by, int nrc) {
  7999. assert(n % QK_K == 0);
  8000. assert(nrc == 1);
  8001. UNUSED(nrc);
  8002. UNUSED(bx);
  8003. UNUSED(by);
  8004. UNUSED(bs);
  8005. const block_iq1_m * restrict x = vx;
  8006. const block_q8_K * restrict y = vy;
  8007. const int nb = n / QK_K;
  8008. iq1m_scale_t scale;
  8009. #if defined __ARM_NEON
  8010. const int32x4_t mask = vdupq_n_s32(0x7);
  8011. const int32x4_t mone = vdupq_n_s32(1);
  8012. const int32x4_t mzero = vdupq_n_s32(0);
  8013. ggml_int8x16x4_t deltas;
  8014. deltas.val[0] = vcombine_s8(vdup_n_s8(+1), vdup_n_s8(+1));
  8015. deltas.val[1] = vcombine_s8(vdup_n_s8(-1), vdup_n_s8(+1));
  8016. deltas.val[2] = vcombine_s8(vdup_n_s8(+1), vdup_n_s8(-1));
  8017. deltas.val[3] = vcombine_s8(vdup_n_s8(-1), vdup_n_s8(-1));
  8018. ggml_int8x16x4_t q1b;
  8019. ggml_int8x16x4_t q8b;
  8020. uint32_t aux32;
  8021. const uint8_t * aux8 = (const uint8_t *)&aux32;
  8022. float sumf = 0;
  8023. for (int i = 0; i < nb; ++i) {
  8024. const int8_t * q8 = y[i].qs;
  8025. const uint8_t * qs = x[i].qs;
  8026. const uint8_t * qh = x[i].qh;
  8027. const uint16_t * sc = (const uint16_t *)x[i].scales;
  8028. scale.u16 = (sc[0] >> 12) | ((sc[1] >> 8) & 0x00f0) | ((sc[2] >> 4) & 0x0f00) | (sc[3] & 0xf000);
  8029. int32x4_t sumi1 = mzero;
  8030. int32x4_t sumi2 = mzero;
  8031. for (int ib = 0; ib < QK_K/32; ib += 2) {
  8032. q1b.val[0] = vcombine_s8(vld1_s8((const int8_t *)(iq1s_grid + (qs[0] | ((qh[0] << 8) & 0x700)))),
  8033. vld1_s8((const int8_t *)(iq1s_grid + (qs[1] | ((qh[0] << 4) & 0x700)))));
  8034. q1b.val[1] = vcombine_s8(vld1_s8((const int8_t *)(iq1s_grid + (qs[2] | ((qh[1] << 8) & 0x700)))),
  8035. vld1_s8((const int8_t *)(iq1s_grid + (qs[3] | ((qh[1] << 4) & 0x700)))));
  8036. q1b.val[2] = vcombine_s8(vld1_s8((const int8_t *)(iq1s_grid + (qs[4] | ((qh[2] << 8) & 0x700)))),
  8037. vld1_s8((const int8_t *)(iq1s_grid + (qs[5] | ((qh[2] << 4) & 0x700)))));
  8038. q1b.val[3] = vcombine_s8(vld1_s8((const int8_t *)(iq1s_grid + (qs[6] | ((qh[3] << 8) & 0x700)))),
  8039. vld1_s8((const int8_t *)(iq1s_grid + (qs[7] | ((qh[3] << 4) & 0x700)))));
  8040. q8b = ggml_vld1q_s8_x4(q8); q8 += 64;
  8041. const int32x4_t p1 = vpaddq_s32(ggml_vdotq_s32(mzero, q1b.val[0], q8b.val[0]), ggml_vdotq_s32(mzero, q1b.val[1], q8b.val[1]));
  8042. const int32x4_t p2 = vpaddq_s32(ggml_vdotq_s32(mzero, q1b.val[2], q8b.val[2]), ggml_vdotq_s32(mzero, q1b.val[3], q8b.val[3]));
  8043. const int32x4_t p12 = vpaddq_s32(p1, p2);
  8044. const uint32_t * qh32 = (const uint32_t *)qh; // we are 4-byte aligned, so we can do that
  8045. aux32 = ((qh32[0] >> 3) & 0x01010101) | ((qh32[0] >> 6) & 0x02020202);
  8046. const int32x4_t p3 = vpaddq_s32(ggml_vdotq_s32(mzero, deltas.val[aux8[0]], q8b.val[0]), ggml_vdotq_s32(mzero, deltas.val[aux8[1]], q8b.val[1]));
  8047. const int32x4_t p4 = vpaddq_s32(ggml_vdotq_s32(mzero, deltas.val[aux8[2]], q8b.val[2]), ggml_vdotq_s32(mzero, deltas.val[aux8[3]], q8b.val[3]));
  8048. const int32x4_t p34 = vpaddq_s32(p3, p4);
  8049. int32x4_t scales_4 = ggml_vld1q_u32(sc[ib/2] >> 0, sc[ib/2] >> 3, sc[ib/2] >> 6, sc[ib/2] >> 9);
  8050. scales_4 = vaddq_s32(vshlq_n_s32(vandq_s32(scales_4, mask), 1), mone);
  8051. sumi1 = vmlaq_s32(sumi1, scales_4, p12);
  8052. sumi2 = vmlaq_s32(sumi2, scales_4, p34);
  8053. qs += 8; qh += 4;
  8054. }
  8055. sumf += y[i].d * GGML_FP16_TO_FP32(scale.f16) * (vaddvq_s32(sumi1) + IQ1M_DELTA * vaddvq_s32(sumi2));
  8056. }
  8057. *s = sumf;
  8058. #elif defined __AVX2__
  8059. const __m256i mask = _mm256_set1_epi16(0x7);
  8060. const __m256i mone = _mm256_set1_epi16(1);
  8061. __m256 accum1 = _mm256_setzero_ps();
  8062. __m256 accum2 = _mm256_setzero_ps();
  8063. for (int i = 0; i < nb; ++i) {
  8064. const int8_t * q8 = y[i].qs;
  8065. const uint8_t * qs = x[i].qs;
  8066. const uint8_t * qh = x[i].qh;
  8067. const uint16_t * sc = (const uint16_t *)x[i].scales;
  8068. scale.u16 = (sc[0] >> 12) | ((sc[1] >> 8) & 0x00f0) | ((sc[2] >> 4) & 0x0f00) | (sc[3] & 0xf000);
  8069. __m256i sumi1 = _mm256_setzero_si256();
  8070. __m256i sumi2 = _mm256_setzero_si256();
  8071. for (int ib = 0; ib < QK_K/32; ib += 2) {
  8072. const __m256i q1b_1 = _mm256_set_epi64x(
  8073. iq1s_grid[qs[3] | (((uint16_t)qh[1] << 4) & 0x700)], iq1s_grid[qs[2] | (((uint16_t)qh[1] << 8) & 0x700)],
  8074. iq1s_grid[qs[1] | (((uint16_t)qh[0] << 4) & 0x700)], iq1s_grid[qs[0] | (((uint16_t)qh[0] << 8) & 0x700)]
  8075. );
  8076. const __m256i q1b_2 = _mm256_set_epi64x(
  8077. iq1s_grid[qs[7] | (((uint16_t)qh[3] << 4) & 0x700)], iq1s_grid[qs[6] | (((uint16_t)qh[3] << 8) & 0x700)],
  8078. iq1s_grid[qs[5] | (((uint16_t)qh[2] << 4) & 0x700)], iq1s_grid[qs[4] | (((uint16_t)qh[2] << 8) & 0x700)]
  8079. );
  8080. const __m256i q8b_1 = _mm256_loadu_si256((const __m256i*)q8); q8 += 32;
  8081. const __m256i q8b_2 = _mm256_loadu_si256((const __m256i*)q8); q8 += 32;
  8082. const __m256i dot1 = mul_add_epi8(q1b_1, q8b_1);
  8083. const __m256i dot2 = mul_add_epi8(q1b_2, q8b_2);
  8084. const __m256i delta1 = _mm256_set_epi64x(qh[1] & 0x80 ? 0xffffffffffffffff : 0x0101010101010101,
  8085. qh[1] & 0x08 ? 0xffffffffffffffff : 0x0101010101010101,
  8086. qh[0] & 0x80 ? 0xffffffffffffffff : 0x0101010101010101,
  8087. qh[0] & 0x08 ? 0xffffffffffffffff : 0x0101010101010101);
  8088. const __m256i delta2 = _mm256_set_epi64x(qh[3] & 0x80 ? 0xffffffffffffffff : 0x0101010101010101,
  8089. qh[3] & 0x08 ? 0xffffffffffffffff : 0x0101010101010101,
  8090. qh[2] & 0x80 ? 0xffffffffffffffff : 0x0101010101010101,
  8091. qh[2] & 0x08 ? 0xffffffffffffffff : 0x0101010101010101);
  8092. const __m256i dot3 = mul_add_epi8(delta1, q8b_1);
  8093. const __m256i dot4 = mul_add_epi8(delta2, q8b_2);
  8094. __m256i scale1 = MM256_SET_M128I(_mm_set1_epi16(sc[ib/2] >> 3), _mm_set1_epi16(sc[ib/2] >> 0));
  8095. __m256i scale2 = MM256_SET_M128I(_mm_set1_epi16(sc[ib/2] >> 9), _mm_set1_epi16(sc[ib/2] >> 6));
  8096. scale1 = _mm256_add_epi16(_mm256_slli_epi16(_mm256_and_si256(scale1, mask), 1), mone);
  8097. scale2 = _mm256_add_epi16(_mm256_slli_epi16(_mm256_and_si256(scale2, mask), 1), mone);
  8098. const __m256i p1 = _mm256_madd_epi16(dot1, scale1);
  8099. const __m256i p2 = _mm256_madd_epi16(dot2, scale2);
  8100. const __m256i p3 = _mm256_madd_epi16(dot3, scale1);
  8101. const __m256i p4 = _mm256_madd_epi16(dot4, scale2);
  8102. sumi1 = _mm256_add_epi32(sumi1, _mm256_add_epi32(p1, p2));
  8103. sumi2 = _mm256_add_epi32(sumi2, _mm256_add_epi32(p3, p4));
  8104. qs += 8; qh += 4;
  8105. }
  8106. const __m256 d = _mm256_set1_ps(y[i].d * GGML_FP16_TO_FP32(scale.f16));
  8107. accum1 = _mm256_fmadd_ps(d, _mm256_cvtepi32_ps(sumi1), accum1);
  8108. accum2 = _mm256_fmadd_ps(d, _mm256_cvtepi32_ps(sumi2), accum2);
  8109. }
  8110. *s = hsum_float_8(accum1) + IQ1M_DELTA * hsum_float_8(accum2);
  8111. #elif defined __AVX__
  8112. const __m128i mask = _mm_set1_epi16(0x7);
  8113. const __m128i mone = _mm_set1_epi16(1);
  8114. __m256 accum1 = _mm256_setzero_ps();
  8115. __m256 accum2 = _mm256_setzero_ps();
  8116. for (int i = 0; i < nb; ++i) {
  8117. const int8_t * q8 = y[i].qs;
  8118. const uint8_t * qs = x[i].qs;
  8119. const uint8_t * qh = x[i].qh;
  8120. const uint16_t * sc = (const uint16_t *)x[i].scales;
  8121. scale.u16 = (sc[0] >> 12) | ((sc[1] >> 8) & 0x00f0) | ((sc[2] >> 4) & 0x0f00) | (sc[3] & 0xf000);
  8122. __m128i sumi1_0 = _mm_setzero_si128();
  8123. __m128i sumi1_1 = _mm_setzero_si128();
  8124. __m128i sumi2_0 = _mm_setzero_si128();
  8125. __m128i sumi2_1 = _mm_setzero_si128();
  8126. for (int ib = 0; ib < QK_K/32; ib += 2) {
  8127. const __m128i q1b_1_0 = _mm_set_epi64x(
  8128. iq1s_grid[qs[1] | (((uint16_t)qh[0] << 4) & 0x700)], iq1s_grid[qs[0] | (((uint16_t)qh[0] << 8) & 0x700)]);
  8129. const __m128i q1b_1_1 = _mm_set_epi64x(
  8130. iq1s_grid[qs[3] | (((uint16_t)qh[1] << 4) & 0x700)], iq1s_grid[qs[2] | (((uint16_t)qh[1] << 8) & 0x700)]);
  8131. const __m128i q1b_2_0 = _mm_set_epi64x(
  8132. iq1s_grid[qs[5] | (((uint16_t)qh[2] << 4) & 0x700)], iq1s_grid[qs[4] | (((uint16_t)qh[2] << 8) & 0x700)]);
  8133. const __m128i q1b_2_1 = _mm_set_epi64x(
  8134. iq1s_grid[qs[7] | (((uint16_t)qh[3] << 4) & 0x700)], iq1s_grid[qs[6] | (((uint16_t)qh[3] << 8) & 0x700)]);
  8135. const __m128i q8b_1_0 = _mm_loadu_si128((const __m128i *)q8); q8 += 16;
  8136. const __m128i q8b_1_1 = _mm_loadu_si128((const __m128i *)q8); q8 += 16;
  8137. const __m128i q8b_2_0 = _mm_loadu_si128((const __m128i *)q8); q8 += 16;
  8138. const __m128i q8b_2_1 = _mm_loadu_si128((const __m128i *)q8); q8 += 16;
  8139. const __m128i dot1_0 = mul_add_epi8_sse(q1b_1_0, q8b_1_0);
  8140. const __m128i dot1_1 = mul_add_epi8_sse(q1b_1_1, q8b_1_1);
  8141. const __m128i dot2_0 = mul_add_epi8_sse(q1b_2_0, q8b_2_0);
  8142. const __m128i dot2_1 = mul_add_epi8_sse(q1b_2_1, q8b_2_1);
  8143. const __m128i delta1_0 = _mm_set_epi64x(qh[0] & 0x80 ? 0xffffffffffffffff : 0x0101010101010101,
  8144. qh[0] & 0x08 ? 0xffffffffffffffff : 0x0101010101010101);
  8145. const __m128i delta1_1 = _mm_set_epi64x(qh[1] & 0x80 ? 0xffffffffffffffff : 0x0101010101010101,
  8146. qh[1] & 0x08 ? 0xffffffffffffffff : 0x0101010101010101);
  8147. const __m128i delta2_0 = _mm_set_epi64x(qh[2] & 0x80 ? 0xffffffffffffffff : 0x0101010101010101,
  8148. qh[2] & 0x08 ? 0xffffffffffffffff : 0x0101010101010101);
  8149. const __m128i delta2_1 = _mm_set_epi64x(qh[3] & 0x80 ? 0xffffffffffffffff : 0x0101010101010101,
  8150. qh[3] & 0x08 ? 0xffffffffffffffff : 0x0101010101010101);
  8151. const __m128i dot3_0 = mul_add_epi8_sse(delta1_0, q8b_1_0);
  8152. const __m128i dot3_1 = mul_add_epi8_sse(delta1_1, q8b_1_1);
  8153. const __m128i dot4_0 = mul_add_epi8_sse(delta2_0, q8b_2_0);
  8154. const __m128i dot4_1 = mul_add_epi8_sse(delta2_1, q8b_2_1);
  8155. __m128i scale1_0 = _mm_set1_epi16(sc[ib/2] >> 0);
  8156. __m128i scale1_1 = _mm_set1_epi16(sc[ib/2] >> 3);
  8157. __m128i scale2_0 = _mm_set1_epi16(sc[ib/2] >> 6);
  8158. __m128i scale2_1 = _mm_set1_epi16(sc[ib/2] >> 9);
  8159. scale1_0 = _mm_add_epi16(_mm_slli_epi16(_mm_and_si128(scale1_0, mask), 1), mone);
  8160. scale1_1 = _mm_add_epi16(_mm_slli_epi16(_mm_and_si128(scale1_1, mask), 1), mone);
  8161. scale2_0 = _mm_add_epi16(_mm_slli_epi16(_mm_and_si128(scale2_0, mask), 1), mone);
  8162. scale2_1 = _mm_add_epi16(_mm_slli_epi16(_mm_and_si128(scale2_1, mask), 1), mone);
  8163. const __m128i p1_0 = _mm_madd_epi16(dot1_0, scale1_0);
  8164. const __m128i p1_1 = _mm_madd_epi16(dot1_1, scale1_1);
  8165. const __m128i p2_0 = _mm_madd_epi16(dot2_0, scale2_0);
  8166. const __m128i p2_1 = _mm_madd_epi16(dot2_1, scale2_1);
  8167. const __m128i p3_0 = _mm_madd_epi16(dot3_0, scale1_0);
  8168. const __m128i p3_1 = _mm_madd_epi16(dot3_1, scale1_1);
  8169. const __m128i p4_0 = _mm_madd_epi16(dot4_0, scale2_0);
  8170. const __m128i p4_1 = _mm_madd_epi16(dot4_1, scale2_1);
  8171. sumi1_0 = _mm_add_epi32(sumi1_0, _mm_add_epi32(p1_0, p2_0));
  8172. sumi1_1 = _mm_add_epi32(sumi1_1, _mm_add_epi32(p1_1, p2_1));
  8173. sumi2_0 = _mm_add_epi32(sumi2_0, _mm_add_epi32(p3_0, p4_0));
  8174. sumi2_1 = _mm_add_epi32(sumi2_1, _mm_add_epi32(p3_1, p4_1));
  8175. qs += 8; qh += 4;
  8176. }
  8177. const __m256 d = _mm256_set1_ps(y[i].d * GGML_FP16_TO_FP32(scale.f16));
  8178. accum1 = _mm256_add_ps(_mm256_mul_ps(d, _mm256_cvtepi32_ps(MM256_SET_M128I(sumi1_1, sumi1_0))), accum1);
  8179. accum2 = _mm256_add_ps(_mm256_mul_ps(d, _mm256_cvtepi32_ps(MM256_SET_M128I(sumi2_1, sumi2_0))), accum2);
  8180. }
  8181. *s = hsum_float_8(accum1) + IQ1M_DELTA * hsum_float_8(accum2);
  8182. #else
  8183. int sum1[2], sum2[2], delta[4];
  8184. float sumf = 0;
  8185. for (int i = 0; i < nb; i++) {
  8186. const int8_t * q8 = y[i].qs;
  8187. const uint8_t * qs = x[i].qs;
  8188. const uint8_t * qh = x[i].qh;
  8189. const uint16_t * sc = (const uint16_t *)x[i].scales;
  8190. scale.u16 = (sc[0] >> 12) | ((sc[1] >> 8) & 0x00f0) | ((sc[2] >> 4) & 0x0f00) | (sc[3] & 0xf000);
  8191. int sumi1 = 0, sumi2 = 0;
  8192. for (int ib = 0; ib < QK_K/32; ++ib) {
  8193. delta[0] = qh[0] & 0x08 ? -1 : 1;
  8194. delta[1] = qh[0] & 0x80 ? -1 : 1;
  8195. delta[2] = qh[1] & 0x08 ? -1 : 1;
  8196. delta[3] = qh[1] & 0x80 ? -1 : 1;
  8197. sum1[0] = sum1[1] = sum2[0] = sum2[1] = 0;
  8198. for (int l = 0; l < 4; ++l) {
  8199. const int8_t * grid = (const int8_t *)(iq1s_grid + (qs[l] | (((uint16_t)qh[l/2] << (8 - 4*(l%2))) & 0x700)));
  8200. int lsum1 = 0, lsum2 = 0;
  8201. for (int j = 0; j < 8; ++j) {
  8202. lsum1 += q8[j] * grid[j];
  8203. lsum2 += q8[j];
  8204. }
  8205. q8 += 8;
  8206. sum1[l/2] += lsum1;
  8207. sum2[l/2] += lsum2*delta[l];
  8208. }
  8209. const int ls1 = 2*((sc[ib/2] >> (6*(ib%2)+0)) & 0x7) + 1;
  8210. const int ls2 = 2*((sc[ib/2] >> (6*(ib%2)+3)) & 0x7) + 1;
  8211. sumi1 += sum1[0] * ls1 + sum1[1] * ls2;
  8212. sumi2 += sum2[0] * ls1 + sum2[1] * ls2;
  8213. qs += 4;
  8214. qh += 2;
  8215. }
  8216. sumf += GGML_FP16_TO_FP32(scale.f16) * y[i].d * (sumi1 + IQ1M_DELTA * sumi2);
  8217. }
  8218. *s = sumf;
  8219. #endif
  8220. }
  8221. void ggml_vec_dot_iq4_nl_q8_0(int n, float * restrict s, size_t bs, const void * restrict vx, size_t bx, const void * restrict vy, size_t by, int nrc) {
  8222. assert(nrc == 1);
  8223. UNUSED(nrc);
  8224. UNUSED(bx);
  8225. UNUSED(by);
  8226. UNUSED(bs);
  8227. assert(n % QK4_NL == 0);
  8228. static_assert(QK4_NL == QK8_0, "QK4_NL and QK8_0 must be the same");
  8229. const block_iq4_nl * restrict x = vx;
  8230. const block_q8_0 * restrict y = vy;
  8231. const int nb = n / QK4_NL;
  8232. int ib = 0;
  8233. float sumf = 0;
  8234. #if defined __ARM_NEON
  8235. const int8x16_t values = vld1q_s8(kvalues_iq4nl);
  8236. const uint8x16_t m4b = vdupq_n_u8(0x0f);
  8237. uint8x16x2_t q4bits;
  8238. int8x16x4_t q4b;
  8239. int8x16x4_t q8b;
  8240. int32x4_t prod_1, prod_2;
  8241. for (; ib + 1 < nb; ib += 2) {
  8242. q4bits.val[0] = vld1q_u8(x[ib + 0].qs);
  8243. q4bits.val[1] = vld1q_u8(x[ib + 1].qs);
  8244. q8b.val[0] = vld1q_s8(y[ib + 0].qs);
  8245. q8b.val[1] = vld1q_s8(y[ib + 0].qs + 16);
  8246. q8b.val[2] = vld1q_s8(y[ib + 1].qs);
  8247. q8b.val[3] = vld1q_s8(y[ib + 1].qs + 16);
  8248. q4b.val[0] = ggml_vqtbl1q_s8(values, vandq_u8 (q4bits.val[0], m4b));
  8249. q4b.val[1] = ggml_vqtbl1q_s8(values, vshrq_n_u8(q4bits.val[0], 4));
  8250. q4b.val[2] = ggml_vqtbl1q_s8(values, vandq_u8 (q4bits.val[1], m4b));
  8251. q4b.val[3] = ggml_vqtbl1q_s8(values, vshrq_n_u8(q4bits.val[1], 4));
  8252. prod_1 = ggml_vdotq_s32(ggml_vdotq_s32(vdupq_n_s32(0), q4b.val[0], q8b.val[0]), q4b.val[1], q8b.val[1]);
  8253. prod_2 = ggml_vdotq_s32(ggml_vdotq_s32(vdupq_n_s32(0), q4b.val[2], q8b.val[2]), q4b.val[3], q8b.val[3]);
  8254. sumf +=
  8255. GGML_FP16_TO_FP32(x[ib+0].d) * GGML_FP16_TO_FP32(y[ib + 0].d) * vaddvq_s32(prod_1) +
  8256. GGML_FP16_TO_FP32(x[ib+1].d) * GGML_FP16_TO_FP32(y[ib + 1].d) * vaddvq_s32(prod_2);
  8257. }
  8258. #elif defined __AVX2__
  8259. const __m128i values128 = _mm_loadu_si128((const __m128i*)kvalues_iq4nl);
  8260. const __m128i m4b = _mm_set1_epi8(0x0f);
  8261. const __m256i mone = _mm256_set1_epi16(1);
  8262. __m256 accum1 = _mm256_setzero_ps();
  8263. __m256 accum2 = _mm256_setzero_ps();
  8264. for (; ib + 1 < nb; ib += 2) {
  8265. const __m128i q4bits_1 = _mm_loadu_si128((const __m128i*)x[ib + 0].qs);
  8266. const __m128i q4bits_2 = _mm_loadu_si128((const __m128i*)x[ib + 1].qs);
  8267. const __m256i q8b_1 = _mm256_loadu_si256((const __m256i *)y[ib + 0].qs);
  8268. const __m256i q8b_2 = _mm256_loadu_si256((const __m256i *)y[ib + 1].qs);
  8269. const __m256i q4b_1 = MM256_SET_M128I(_mm_shuffle_epi8(values128, _mm_and_si128(_mm_srli_epi16(q4bits_1, 4), m4b)),
  8270. _mm_shuffle_epi8(values128, _mm_and_si128(q4bits_1, m4b)));
  8271. const __m256i q4b_2 = MM256_SET_M128I(_mm_shuffle_epi8(values128, _mm_and_si128(_mm_srli_epi16(q4bits_2, 4), m4b)),
  8272. _mm_shuffle_epi8(values128, _mm_and_si128(q4bits_2, m4b)));
  8273. const __m256i p16_1 = mul_add_epi8(q4b_1, q8b_1);
  8274. const __m256i p16_2 = mul_add_epi8(q4b_2, q8b_2);
  8275. const __m256i p_1 = _mm256_madd_epi16(p16_1, mone);
  8276. const __m256i p_2 = _mm256_madd_epi16(p16_2, mone);
  8277. accum1 = _mm256_fmadd_ps(_mm256_set1_ps(GGML_FP16_TO_FP32(y[ib + 0].d)*GGML_FP16_TO_FP32(x[ib + 0].d)),
  8278. _mm256_cvtepi32_ps(p_1), accum1);
  8279. accum2 = _mm256_fmadd_ps(_mm256_set1_ps(GGML_FP16_TO_FP32(y[ib + 1].d)*GGML_FP16_TO_FP32(x[ib + 1].d)),
  8280. _mm256_cvtepi32_ps(p_2), accum2);
  8281. }
  8282. sumf = hsum_float_8(_mm256_add_ps(accum1, accum2));
  8283. #elif defined __AVX__
  8284. const __m128i values128 = _mm_loadu_si128((const __m128i*)kvalues_iq4nl);
  8285. const __m128i m4b = _mm_set1_epi8(0x0f);
  8286. __m256 accum = _mm256_setzero_ps();
  8287. for (; ib + 1 < nb; ib += 2) {
  8288. const __m128i q4bits_1 = _mm_loadu_si128((const __m128i *)x[ib + 0].qs);
  8289. const __m128i q4bits_2 = _mm_loadu_si128((const __m128i *)x[ib + 1].qs);
  8290. const __m128i q8b_1_0 = _mm_loadu_si128((const __m128i *)y[ib + 0].qs);
  8291. const __m128i q8b_1_1 = _mm_loadu_si128((const __m128i *)y[ib + 0].qs + 1);
  8292. const __m128i q8b_2_0 = _mm_loadu_si128((const __m128i *)y[ib + 1].qs);
  8293. const __m128i q8b_2_1 = _mm_loadu_si128((const __m128i *)y[ib + 1].qs + 1);
  8294. const __m128i q4b_1_0 = _mm_shuffle_epi8(values128, _mm_and_si128(q4bits_1, m4b));
  8295. const __m128i q4b_1_1 = _mm_shuffle_epi8(values128, _mm_and_si128(_mm_srli_epi16(q4bits_1, 4), m4b));
  8296. const __m128i q4b_2_0 = _mm_shuffle_epi8(values128, _mm_and_si128(q4bits_2, m4b));
  8297. const __m128i q4b_2_1 = _mm_shuffle_epi8(values128, _mm_and_si128(_mm_srli_epi16(q4bits_2, 4), m4b));
  8298. const __m256 p = mul_sum_i8_quad_float(q4b_1_0, q4b_1_1, q4b_2_0, q4b_2_1, q8b_1_0, q8b_1_1, q8b_2_0, q8b_2_1);
  8299. const __m256 deltas = quad_fp16_delta_float(x[ib].d, y[ib].d, x[ib + 1].d, y[ib + 1].d);
  8300. accum = _mm256_add_ps(_mm256_mul_ps(deltas, p), accum);
  8301. }
  8302. sumf = hsum_float_8(accum);
  8303. #elif defined(__POWER9_VECTOR__)
  8304. const vector signed char lowMask = vec_splats((signed char)0xF);
  8305. const vector signed int v0 = vec_splats((int32_t)0);
  8306. const vector unsigned char v4 = vec_splats((unsigned char)0x4);
  8307. vector float vsumf0 = vec_splats(0.0f);
  8308. vector float vsumf1 = vec_splats(0.0f);
  8309. const vector signed char values = vec_xl( 0, kvalues_iq4nl);
  8310. #pragma GCC unroll 4
  8311. for (; ib < nb; ++ib) {
  8312. __builtin_prefetch(x[ib].qs, 0, 1);
  8313. __builtin_prefetch(y[ib].qs, 0, 1);
  8314. vector float vxd = vec_splats(GGML_FP16_TO_FP32(x[ib].d));
  8315. vector float vyd = vec_splats(GGML_FP16_TO_FP32(y[ib].d));
  8316. vector float vd = vec_mul(vxd, vyd);
  8317. vector signed char qxs = (vector signed char)vec_xl( 0, x[ib].qs);
  8318. vector signed char q4x0 = vec_and(qxs, lowMask);
  8319. vector signed char q4x1 = vec_sr(qxs, v4);
  8320. q4x0 = vec_perm(values, values, (vector unsigned char)q4x0);
  8321. q4x1 = vec_perm(values, values, (vector unsigned char)q4x1);
  8322. vector signed char q8y0 = vec_xl( 0, y[ib].qs);
  8323. vector signed char q8y1 = vec_xl(16, y[ib].qs);
  8324. vector signed short qv0 = vec_add(vec_mule(q4x0, q8y0), vec_mulo(q4x0, q8y0));
  8325. vector signed short qv1 = vec_add(vec_mule(q4x1, q8y1), vec_mulo(q4x1, q8y1));
  8326. vector signed int vsumi0 = v0;
  8327. vector signed int vsumi1 = v0;
  8328. vsumi0 = vec_sum4s(qv0, vsumi0);
  8329. vsumi1 = vec_sum4s(qv1, vsumi1);
  8330. vsumf0 = vec_madd(vec_ctf(vsumi0, 0), vd, vsumf0);
  8331. vsumf1 = vec_madd(vec_ctf(vsumi1, 0), vd, vsumf1);
  8332. }
  8333. vsumf0 = vec_add(vsumf0, vsumf1);
  8334. vsumf0 = vec_add(vsumf0, vec_sld(vsumf0, vsumf0, 4));
  8335. vsumf0 = vec_add(vsumf0, vec_sld(vsumf0, vsumf0, 8));
  8336. sumf = vec_extract(vsumf0, 0);
  8337. #elif defined (__loongarch_asx)
  8338. const __m128i values128 = __lsx_vld((const __m128i*)kvalues_iq4nl, 0);
  8339. const __m128i m4b = __lsx_vreplgr2vr_b(0x0f);
  8340. const __m256i mone = __lasx_xvreplgr2vr_h(1);
  8341. __m256 accum1 = (__m256)__lasx_xvldi(0);
  8342. __m256 accum2 = (__m256)__lasx_xvldi(0);
  8343. for (; ib + 1 < nb; ib += 2) {
  8344. const __m128i q4bits_1 = __lsx_vld((const __m128i*)x[ib + 0].qs, 0);
  8345. const __m128i q4bits_2 = __lsx_vld((const __m128i*)x[ib + 1].qs, 0);
  8346. const __m256i q8b_1 = __lasx_xvld((const __m256i *)y[ib + 0].qs, 0);
  8347. const __m256i q8b_2 = __lasx_xvld((const __m256i *)y[ib + 1].qs, 0);
  8348. const __m256i q4b_1 = lasx_insertf128(lsx_shuffle_b(values128, __lsx_vand_v(__lsx_vsrli_h(q4bits_1, 4), m4b)),
  8349. lsx_shuffle_b(values128, __lsx_vand_v(q4bits_1, m4b)));
  8350. const __m256i q4b_2 = lasx_insertf128(lsx_shuffle_b(values128, __lsx_vand_v(__lsx_vsrli_h(q4bits_2, 4), m4b)),
  8351. lsx_shuffle_b(values128, __lsx_vand_v(q4bits_2, m4b)));
  8352. const __m256i p16_1 = mul_add_epi8(q4b_1, q8b_1);
  8353. const __m256i p16_2 = mul_add_epi8(q4b_2, q8b_2);
  8354. const __m256i p_1 = lasx_madd_h(p16_1, mone);
  8355. const __m256i p_2 = lasx_madd_h(p16_2, mone);
  8356. accum1 = __lasx_xvfmadd_s(__lasx_xvreplfr2vr_s(GGML_FP16_TO_FP32(y[ib + 0].d)*GGML_FP16_TO_FP32(x[ib + 0].d)),
  8357. __lasx_xvffint_s_w(p_1), accum1);
  8358. accum2 = __lasx_xvfmadd_s(__lasx_xvreplfr2vr_s(GGML_FP16_TO_FP32(y[ib + 1].d)*GGML_FP16_TO_FP32(x[ib + 1].d)),
  8359. __lasx_xvffint_s_w(p_2), accum2);
  8360. }
  8361. sumf = hsum_float_8(__lasx_xvfadd_s(accum1, accum2));
  8362. #endif
  8363. for (; ib < nb; ++ib) {
  8364. const float d = GGML_FP16_TO_FP32(y[ib].d)*GGML_FP16_TO_FP32(x[ib].d);
  8365. int sumi1 = 0, sumi2 = 0;
  8366. for (int j = 0; j < QK4_NL/2; ++j) {
  8367. sumi1 += y[ib].qs[j+ 0] * kvalues_iq4nl[x[ib].qs[j] & 0xf];
  8368. sumi2 += y[ib].qs[j+QK4_NL/2] * kvalues_iq4nl[x[ib].qs[j] >> 4];
  8369. }
  8370. sumf += d * (sumi1 + sumi2);
  8371. }
  8372. *s = sumf;
  8373. }
  8374. void ggml_vec_dot_iq4_xs_q8_K(int n, float * restrict s, size_t bs, const void * restrict vx, size_t bx, const void * restrict vy, size_t by, int nrc) {
  8375. assert(nrc == 1);
  8376. UNUSED(nrc);
  8377. UNUSED(bx);
  8378. UNUSED(by);
  8379. UNUSED(bs);
  8380. assert(n % QK_K == 0);
  8381. const block_iq4_xs * restrict x = vx;
  8382. const block_q8_K * restrict y = vy;
  8383. const int nb = n / QK_K;
  8384. #if defined __ARM_NEON
  8385. const int8x16_t values = vld1q_s8(kvalues_iq4nl);
  8386. const uint8x16_t m4b = vdupq_n_u8(0x0f);
  8387. ggml_uint8x16x2_t q4bits;
  8388. ggml_int8x16x4_t q4b;
  8389. ggml_int8x16x4_t q8b;
  8390. int32x4_t prod_1, prod_2;
  8391. float sumf = 0;
  8392. for (int ibl = 0; ibl < nb; ++ibl) {
  8393. const int8_t * q8 = y[ibl].qs;
  8394. const uint8_t * q4 = x[ibl].qs;
  8395. uint16_t h = x[ibl].scales_h;
  8396. int sumi1 = 0, sumi2 = 0;
  8397. for (int ib = 0; ib < QK_K/64; ++ib) {
  8398. q4bits = ggml_vld1q_u8_x2(q4); q4 += 32;
  8399. q8b = ggml_vld1q_s8_x4(q8); q8 += 64;
  8400. q4b.val[0] = ggml_vqtbl1q_s8(values, vandq_u8 (q4bits.val[0], m4b));
  8401. q4b.val[1] = ggml_vqtbl1q_s8(values, vshrq_n_u8(q4bits.val[0], 4));
  8402. q4b.val[2] = ggml_vqtbl1q_s8(values, vandq_u8 (q4bits.val[1], m4b));
  8403. q4b.val[3] = ggml_vqtbl1q_s8(values, vshrq_n_u8(q4bits.val[1], 4));
  8404. prod_1 = ggml_vdotq_s32(ggml_vdotq_s32(vdupq_n_s32(0), q4b.val[0], q8b.val[0]), q4b.val[1], q8b.val[1]);
  8405. prod_2 = ggml_vdotq_s32(ggml_vdotq_s32(vdupq_n_s32(0), q4b.val[2], q8b.val[2]), q4b.val[3], q8b.val[3]);
  8406. int ls1 = ((x[ibl].scales_l[ib] & 0xf) | ((h << 4) & 0x30)) - 32;
  8407. int ls2 = ((x[ibl].scales_l[ib] >> 4) | ((h << 2) & 0x30)) - 32;
  8408. h >>= 4;
  8409. sumi1 += vaddvq_s32(prod_1) * ls1;
  8410. sumi2 += vaddvq_s32(prod_2) * ls2;
  8411. }
  8412. sumf += GGML_FP16_TO_FP32(x[ibl].d) * y[ibl].d * (sumi1 + sumi2);
  8413. }
  8414. *s = sumf;
  8415. #elif defined __AVX2__
  8416. const __m128i values128 = _mm_loadu_si128((const __m128i*)kvalues_iq4nl);
  8417. const __m128i m4b = _mm_set1_epi8(0x0f);
  8418. __m256 accum = _mm256_setzero_ps();
  8419. for (int ibl = 0; ibl < nb; ++ibl) {
  8420. const uint8_t * qs = x[ibl].qs;
  8421. const int8_t * q8 = y[ibl].qs;
  8422. uint16_t sh = x[ibl].scales_h;
  8423. __m256i sumi1 = _mm256_setzero_si256();
  8424. __m256i sumi2 = _mm256_setzero_si256();
  8425. for (int ib = 0; ib < QK_K/32; ib += 2) {
  8426. const __m128i q4bits_1 = _mm_loadu_si128((const __m128i*)qs); qs += 16;
  8427. const __m128i q4bits_2 = _mm_loadu_si128((const __m128i*)qs); qs += 16;
  8428. const __m256i q8b_1 = _mm256_loadu_si256((const __m256i *)q8); q8 += 32;
  8429. const __m256i q8b_2 = _mm256_loadu_si256((const __m256i *)q8); q8 += 32;
  8430. const __m256i q4b_1 = MM256_SET_M128I(_mm_shuffle_epi8(values128, _mm_and_si128(_mm_srli_epi16(q4bits_1, 4), m4b)),
  8431. _mm_shuffle_epi8(values128, _mm_and_si128(q4bits_1, m4b)));
  8432. const __m256i q4b_2 = MM256_SET_M128I(_mm_shuffle_epi8(values128, _mm_and_si128(_mm_srli_epi16(q4bits_2, 4), m4b)),
  8433. _mm_shuffle_epi8(values128, _mm_and_si128(q4bits_2, m4b)));
  8434. const __m256i p16_1 = mul_add_epi8(q4b_1, q8b_1);
  8435. const __m256i p16_2 = mul_add_epi8(q4b_2, q8b_2);
  8436. const int16_t ls1 = ((x[ibl].scales_l[ib/2] & 0xf) | ((sh << 4) & 0x30)) - 32;
  8437. const int16_t ls2 = ((x[ibl].scales_l[ib/2] >> 4) | ((sh << 2) & 0x30)) - 32;
  8438. sh >>= 4;
  8439. const __m256i p_1 = _mm256_madd_epi16(p16_1, _mm256_set1_epi16(ls1));
  8440. const __m256i p_2 = _mm256_madd_epi16(p16_2, _mm256_set1_epi16(ls2));
  8441. sumi1 = _mm256_add_epi32(p_1, sumi1);
  8442. sumi2 = _mm256_add_epi32(p_2, sumi2);
  8443. }
  8444. accum = _mm256_fmadd_ps(_mm256_set1_ps(GGML_FP16_TO_FP32(x[ibl].d)*y[ibl].d),
  8445. _mm256_cvtepi32_ps(_mm256_add_epi32(sumi1, sumi2)), accum);
  8446. }
  8447. *s = hsum_float_8(accum);
  8448. #elif defined __AVX__
  8449. const __m128i values128 = _mm_loadu_si128((const __m128i*)kvalues_iq4nl);
  8450. const __m128i m4b = _mm_set1_epi8(0x0f);
  8451. __m256 accum = _mm256_setzero_ps();
  8452. for (int ibl = 0; ibl < nb; ++ibl) {
  8453. const uint8_t * qs = x[ibl].qs;
  8454. const int8_t * q8 = y[ibl].qs;
  8455. uint16_t sh = x[ibl].scales_h;
  8456. __m128i sumi1_0 = _mm_setzero_si128();
  8457. __m128i sumi1_1 = _mm_setzero_si128();
  8458. __m128i sumi2_0 = _mm_setzero_si128();
  8459. __m128i sumi2_1 = _mm_setzero_si128();
  8460. for (int ib = 0; ib < QK_K/32; ib += 2) {
  8461. const __m128i q4bits_1 = _mm_loadu_si128((const __m128i *)qs); qs += 16;
  8462. const __m128i q4bits_2 = _mm_loadu_si128((const __m128i *)qs); qs += 16;
  8463. const __m128i q8b_1_0 = _mm_loadu_si128((const __m128i *)q8); q8 += 16;
  8464. const __m128i q8b_1_1 = _mm_loadu_si128((const __m128i *)q8); q8 += 16;
  8465. const __m128i q8b_2_0 = _mm_loadu_si128((const __m128i *)q8); q8 += 16;
  8466. const __m128i q8b_2_1 = _mm_loadu_si128((const __m128i *)q8); q8 += 16;
  8467. const __m128i q4b_1_0 = _mm_shuffle_epi8(values128, _mm_and_si128(q4bits_1, m4b));
  8468. const __m128i q4b_1_1 = _mm_shuffle_epi8(values128, _mm_and_si128(_mm_srli_epi16(q4bits_1, 4), m4b));
  8469. const __m128i q4b_2_0 = _mm_shuffle_epi8(values128, _mm_and_si128(q4bits_2, m4b));
  8470. const __m128i q4b_2_1 = _mm_shuffle_epi8(values128, _mm_and_si128(_mm_srli_epi16(q4bits_2, 4), m4b));
  8471. const __m128i p16_1_0 = mul_add_epi8_sse(q4b_1_0, q8b_1_0);
  8472. const __m128i p16_1_1 = mul_add_epi8_sse(q4b_1_1, q8b_1_1);
  8473. const __m128i p16_2_0 = mul_add_epi8_sse(q4b_2_0, q8b_2_0);
  8474. const __m128i p16_2_1 = mul_add_epi8_sse(q4b_2_1, q8b_2_1);
  8475. const int16_t ls1 = ((x[ibl].scales_l[ib/2] & 0xf) | ((sh << 4) & 0x30)) - 32;
  8476. const int16_t ls2 = ((x[ibl].scales_l[ib/2] >> 4) | ((sh << 2) & 0x30)) - 32;
  8477. sh >>= 4;
  8478. const __m128i p_1_0 = _mm_madd_epi16(p16_1_0, _mm_set1_epi16(ls1));
  8479. const __m128i p_1_1 = _mm_madd_epi16(p16_1_1, _mm_set1_epi16(ls1));
  8480. const __m128i p_2_0 = _mm_madd_epi16(p16_2_0, _mm_set1_epi16(ls2));
  8481. const __m128i p_2_1 = _mm_madd_epi16(p16_2_1, _mm_set1_epi16(ls2));
  8482. sumi1_0 = _mm_add_epi32(p_1_0, sumi1_0);
  8483. sumi1_1 = _mm_add_epi32(p_1_1, sumi1_1);
  8484. sumi2_0 = _mm_add_epi32(p_2_0, sumi2_0);
  8485. sumi2_1 = _mm_add_epi32(p_2_1, sumi2_1);
  8486. }
  8487. __m128i sumi12_0 = _mm_add_epi32(sumi1_0, sumi2_0);
  8488. __m128i sumi12_1 = _mm_add_epi32(sumi1_1, sumi2_1);
  8489. accum = _mm256_add_ps(_mm256_mul_ps(_mm256_set1_ps(GGML_FP16_TO_FP32(x[ibl].d)*y[ibl].d),
  8490. _mm256_cvtepi32_ps(MM256_SET_M128I(sumi12_1, sumi12_0))), accum);
  8491. }
  8492. *s = hsum_float_8(accum);
  8493. #elif defined(__POWER9_VECTOR__)
  8494. const vector signed char lowMask = vec_splats((signed char)0xF);
  8495. const vector int v0 = vec_splats((int32_t)0);
  8496. const vector unsigned char v4 = vec_splats((unsigned char)0x4);
  8497. vector float vsumf0 = vec_splats(0.0f);
  8498. vector float vsumf1 = vec_splats(0.0f);
  8499. vector float vsumf2 = vec_splats(0.0f);
  8500. vector float vsumf3 = vec_splats(0.0f);
  8501. const vector signed char values = vec_xl( 0, kvalues_iq4nl);
  8502. for (int ibl = 0; ibl < nb; ++ibl) {
  8503. vector float vxd = vec_splats(GGML_FP16_TO_FP32(x[ibl].d));
  8504. vector float vyd = vec_splats(y[ibl].d);
  8505. vector float vd = vec_mul(vxd, vyd);
  8506. vector signed int vsumi0 = v0;
  8507. vector signed int vsumi1 = v0;
  8508. vector signed int vsumi2 = v0;
  8509. vector signed int vsumi3 = v0;
  8510. uint16_t h = x[ibl].scales_h;
  8511. const uint8_t * restrict q4 = x[ibl].qs;
  8512. const uint8_t * restrict sc = x[ibl].scales_l;
  8513. const int8_t * restrict q8 = y[ibl].qs;
  8514. for (int ib = 0; ib < QK_K/64; ib ++ ) {
  8515. __builtin_prefetch(q4, 0, 1);
  8516. __builtin_prefetch(q8, 0, 1);
  8517. vector signed char qxs0 = (vector signed char)vec_xl( 0, q4);
  8518. vector signed char qxs1 = (vector signed char)vec_xl(16, q4);
  8519. q4 += 32;
  8520. vector signed char q4x00 = (vector signed char)vec_and(qxs0, lowMask);
  8521. vector signed char q4x01 = (vector signed char)vec_sr(qxs0, v4);
  8522. vector signed char q4x10 = (vector signed char)vec_and(qxs1, lowMask);
  8523. vector signed char q4x11 = (vector signed char)vec_sr(qxs1, v4);
  8524. q4x00 = vec_perm(values, values, (vector unsigned char)q4x00);
  8525. q4x01 = vec_perm(values, values, (vector unsigned char)q4x01);
  8526. q4x10 = vec_perm(values, values, (vector unsigned char)q4x10);
  8527. q4x11 = vec_perm(values, values, (vector unsigned char)q4x11);
  8528. vector signed char q8y0 = vec_xl( 0, q8);
  8529. vector signed char q8y1 = vec_xl(16, q8);
  8530. vector signed char q8y2 = vec_xl(32, q8);
  8531. vector signed char q8y3 = vec_xl(48, q8);
  8532. q8 += 64;
  8533. vector signed short qv0 = vec_add(vec_mule(q4x00, q8y0), vec_mulo(q4x00, q8y0));
  8534. vector signed short qv1 = vec_add(vec_mule(q4x01, q8y1), vec_mulo(q4x01, q8y1));
  8535. vector signed short qv2 = vec_add(vec_mule(q4x10, q8y2), vec_mulo(q4x10, q8y2));
  8536. vector signed short qv3 = vec_add(vec_mule(q4x11, q8y3), vec_mulo(q4x11, q8y3));
  8537. const uint16_t ls0 = (uint16_t)(((sc[0] & 0xf) | ((h << 4) & 0x30)) - 32);
  8538. const uint16_t ls1 = (uint16_t)(((sc[0] >> 4) | ((h << 2) & 0x30)) - 32);
  8539. h >>= 4;
  8540. sc ++;
  8541. vector signed short vscales01 = vec_splats((int16_t)ls0);
  8542. vector signed short vscales23 = vec_splats((int16_t)ls1);
  8543. vsumi0 = vec_msum(qv0, vscales01, vsumi0);
  8544. vsumi1 = vec_msum(qv1, vscales01, vsumi1);
  8545. vsumi2 = vec_msum(qv2, vscales23, vsumi2);
  8546. vsumi3 = vec_msum(qv3, vscales23, vsumi3);
  8547. }
  8548. vsumf0 = vec_madd(vec_ctf(vsumi0, 0), vd, vsumf0);
  8549. vsumf1 = vec_madd(vec_ctf(vsumi1, 0), vd, vsumf1);
  8550. vsumf2 = vec_madd(vec_ctf(vsumi2, 0), vd, vsumf2);
  8551. vsumf3 = vec_madd(vec_ctf(vsumi3, 0), vd, vsumf3);
  8552. }
  8553. vsumf0 = vec_add(vsumf0, vsumf2);
  8554. vsumf1 = vec_add(vsumf1, vsumf3);
  8555. vsumf0 = vec_add(vsumf0, vsumf1);
  8556. vsumf0 = vec_add(vsumf0, vec_sld(vsumf0, vsumf0, 4));
  8557. vsumf0 = vec_add(vsumf0, vec_sld(vsumf0, vsumf0, 8));
  8558. *s = vec_extract(vsumf0, 0);
  8559. #elif defined(__loongarch_asx)
  8560. const __m128i values128 = __lsx_vld((const __m128i*)kvalues_iq4nl, 0);
  8561. const __m128i m4b = __lsx_vreplgr2vr_b(0x0f);
  8562. __m256 accum = (__m256)__lasx_xvldi(0);
  8563. __m256i tmp1;
  8564. __m128i tmp0, tmp2, tmp3, tmp4, mask_8f, mask;
  8565. mask_8f = __lsx_vreplgr2vr_b(0x8f);
  8566. for (int ibl = 0; ibl < nb; ++ibl) {
  8567. const uint8_t * qs = x[ibl].qs;
  8568. const int8_t * q8 = y[ibl].qs;
  8569. uint16_t sh = x[ibl].scales_h;
  8570. __m256i sumi1 = __lasx_xvldi(0);
  8571. __m256i sumi2 = __lasx_xvldi(0);
  8572. __m128i zero = __lsx_vldi(0);
  8573. for (int ib = 0; ib < QK_K/32; ib += 2) {
  8574. const __m128i q4bits_1 = __lsx_vld((const __m128i*)qs, 0); qs += 16;
  8575. const __m128i q4bits_2 = __lsx_vld((const __m128i*)qs, 0); qs += 16;
  8576. const __m256i q8b_1 = __lasx_xvld((const __m256i *)q8, 0); q8 += 32;
  8577. const __m256i q8b_2 = __lasx_xvld((const __m256i *)q8, 0); q8 += 32;
  8578. tmp2 = __lsx_vand_v(__lsx_vand_v(__lsx_vsrli_h(q4bits_1, 4), m4b), mask_8f);
  8579. tmp0 = __lsx_vori_b(tmp2, 0x10);
  8580. mask = __lsx_vsle_b(zero, tmp2);
  8581. tmp3 = __lsx_vand_v(tmp0, mask);
  8582. tmp3 = __lsx_vshuf_b(values128, zero, tmp3);
  8583. tmp2 = __lsx_vand_v(__lsx_vand_v(q4bits_1, m4b), mask_8f);
  8584. tmp0 = __lsx_vori_b(tmp2, 0x10);
  8585. mask = __lsx_vsle_b(zero, tmp2);
  8586. tmp4 = __lsx_vand_v(tmp0, mask);
  8587. tmp4 = __lsx_vshuf_b(values128, zero, tmp4);
  8588. const __m256i q4b_1 = lasx_insertf128(tmp3, tmp4);
  8589. tmp2 = __lsx_vand_v(__lsx_vand_v(__lsx_vsrli_h(q4bits_2, 4), m4b), mask_8f);
  8590. tmp0 = __lsx_vori_b(tmp2, 0x10);
  8591. mask = __lsx_vsle_b(zero, tmp2);
  8592. tmp3 = __lsx_vand_v(tmp0, mask);
  8593. tmp3 = __lsx_vshuf_b(values128, zero, tmp3);
  8594. tmp2 = __lsx_vand_v(__lsx_vand_v(q4bits_2, m4b), mask_8f);
  8595. tmp0 = __lsx_vori_b(tmp2, 0x10);
  8596. mask = __lsx_vsle_b(zero, tmp2);
  8597. tmp4 = __lsx_vand_v(tmp0, mask);
  8598. tmp4 = __lsx_vshuf_b(values128, zero, tmp4);
  8599. const __m256i q4b_2 = lasx_insertf128(tmp3, tmp4);
  8600. const __m256i p16_1 = mul_add_epi8(q4b_1, q8b_1);
  8601. const __m256i p16_2 = mul_add_epi8(q4b_2, q8b_2);
  8602. const int16_t ls1 = ((x[ibl].scales_l[ib/2] & 0xf) | ((sh << 4) & 0x30)) - 32;
  8603. const int16_t ls2 = ((x[ibl].scales_l[ib/2] >> 4) | ((sh << 2) & 0x30)) - 32;
  8604. sh >>= 4;
  8605. __m256i tmp5, tmp6;
  8606. tmp1 = __lasx_xvreplgr2vr_h(ls1);
  8607. tmp5 = __lasx_xvmulwev_w_h(p16_1, tmp1);
  8608. tmp6 = __lasx_xvmulwod_w_h(p16_1, tmp1);
  8609. const __m256i p_1 = __lasx_xvadd_w(tmp5, tmp6);
  8610. tmp1 = __lasx_xvreplgr2vr_h(ls2);
  8611. tmp5 = __lasx_xvmulwev_w_h(p16_2, tmp1);
  8612. tmp6 = __lasx_xvmulwod_w_h(p16_2, tmp1);
  8613. const __m256i p_2 = __lasx_xvadd_w(tmp5, tmp6);
  8614. sumi1 = __lasx_xvadd_w(p_1, sumi1);
  8615. sumi2 = __lasx_xvadd_w(p_2, sumi2);
  8616. }
  8617. accum = __lasx_xvfmadd_s(__lasx_xvreplfr2vr_s(GGML_FP16_TO_FP32(x[ibl].d)*y[ibl].d),
  8618. __lasx_xvffint_s_w(__lasx_xvadd_w(sumi1, sumi2)), accum);
  8619. }
  8620. *s = hsum_float_8(accum);
  8621. #else
  8622. float sumf = 0;
  8623. for (int ibl = 0; ibl < nb; ++ibl) {
  8624. const float d4d8 = GGML_FP16_TO_FP32(x[ibl].d) * y[ibl].d;
  8625. uint16_t h = x[ibl].scales_h;
  8626. const uint8_t * qs = x[ibl].qs;
  8627. const int8_t * q8 = y[ibl].qs;
  8628. for (int ib = 0; ib < QK_K/32; ib += 2) {
  8629. const uint8_t ls1 = (x[ibl].scales_l[ib/2] & 0xf) | ((h << 4) & 0x30);
  8630. const uint8_t ls2 = (x[ibl].scales_l[ib/2] >> 4) | ((h << 2) & 0x30);
  8631. h >>= 4;
  8632. const float d1 = d4d8*(ls1 - 32);
  8633. const float d2 = d4d8*(ls2 - 32);
  8634. int sumi1 = 0, sumi2 = 0;
  8635. for (int j = 0; j < 16; ++j) {
  8636. sumi1 += q8[j+ 0] * kvalues_iq4nl[qs[j] & 0xf];
  8637. sumi2 += q8[j+16] * kvalues_iq4nl[qs[j] >> 4];
  8638. }
  8639. sumf += d1 * (sumi1 + sumi2);
  8640. qs += 16;
  8641. q8 += 32;
  8642. sumi1 = sumi2 = 0;
  8643. for (int j = 0; j < 16; ++j) {
  8644. sumi1 += q8[j+ 0] * kvalues_iq4nl[qs[j] & 0xf];
  8645. sumi2 += q8[j+16] * kvalues_iq4nl[qs[j] >> 4];
  8646. }
  8647. sumf += d2 * (sumi1 + sumi2);
  8648. qs += 16;
  8649. q8 += 32;
  8650. }
  8651. }
  8652. *s = sumf;
  8653. #endif
  8654. }
  8655. // ============================ 4-bit non-linear quants
  8656. void quantize_row_iq4_nl(const float * restrict x, void * restrict y, int64_t k) {
  8657. assert(k % QK4_NL == 0);
  8658. quantize_row_iq4_nl_ref(x, y, k);
  8659. }
  8660. void quantize_row_iq4_xs(const float * restrict x, void * restrict y, int64_t k) {
  8661. assert(k % QK_K == 0);
  8662. quantize_iq4_xs(x, y, 1, k, NULL);
  8663. }