llava.cpp 25 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585
  1. /**
  2. * llama.cpp - commit 081b29bd2a3d91e7772e3910ce223dd63b8d7d26 - do not edit this file
  3. *
  4. * MIT License
  5. *
  6. * Copyright (c) 2023-2024 The ggml authors
  7. *
  8. * Permission is hereby granted, free of charge, to any person obtaining a copy
  9. * of this software and associated documentation files (the "Software"), to deal
  10. * in the Software without restriction, including without limitation the rights
  11. * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
  12. * copies of the Software, and to permit persons to whom the Software is
  13. * furnished to do so, subject to the following conditions:
  14. *
  15. * The above copyright notice and this permission notice shall be included in all
  16. * copies or substantial portions of the Software.
  17. *
  18. * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
  19. * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
  20. * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
  21. * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
  22. * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
  23. * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
  24. * SOFTWARE.
  25. */
  26. #include "clip.h"
  27. #include "llava.h"
  28. #include "llama.h"
  29. #include <algorithm>
  30. #include <cerrno>
  31. #include <cstdio>
  32. #include <cstdlib>
  33. #include <cstring>
  34. #include <limits>
  35. #include <vector>
  36. #if defined(LLAVA_LOG_OFF)
  37. # define LOG_INF(...)
  38. # define LOG_WRN(...)
  39. # define LOG_ERR(...)
  40. # define LOG_DBG(...)
  41. #else // defined(LLAVA_LOG_OFF)
  42. # define LOG_INF(...) do { fprintf(stdout, __VA_ARGS__); } while (0)
  43. # define LOG_WRN(...) do { fprintf(stderr, __VA_ARGS__); } while (0)
  44. # define LOG_ERR(...) do { fprintf(stderr, __VA_ARGS__); } while (0)
  45. # define LOG_DBG(...) do { fprintf(stdout, __VA_ARGS__); } while (0)
  46. #endif // defined(LLAVA_LOG_OFF)
  47. // RGB uint8 image
  48. struct clip_image_u8 {
  49. int nx;
  50. int ny;
  51. std::vector<uint8_t> buf;
  52. };
  53. // RGB float32 image (NHWC)
  54. // Memory layout: RGBRGBRGB...
  55. struct clip_image_f32 {
  56. int nx;
  57. int ny;
  58. std::vector<float> buf;
  59. };
  60. struct clip_image_grid_shape {
  61. int first;
  62. int second;
  63. };
  64. /**
  65. * Selects the best resolution from a list of possible resolutions based on the original size.
  66. *
  67. * @param original_size The original size of the image in the format (width, height).
  68. * @param possible_resolutions A list of possible resolutions in the format [(width1, height1), (width2, height2), ...].
  69. * @return The best fit resolution in the format (width, height).
  70. */
  71. static std::pair<int, int> select_best_resolution(const std::pair<int, int>& original_size, const std::vector<std::pair<int, int>>& possible_resolutions) {
  72. int original_width = original_size.first;
  73. int original_height = original_size.second;
  74. std::pair<int, int> best_fit;
  75. int max_effective_resolution = 0;
  76. int min_wasted_resolution = std::numeric_limits<int>::max();
  77. for (const auto& resolution : possible_resolutions) {
  78. int width = resolution.first;
  79. int height = resolution.second;
  80. float scale = std::min(static_cast<float>(width) / original_width, static_cast<float>(height) / original_height);
  81. int downscaled_width = static_cast<int>(original_width * scale);
  82. int downscaled_height = static_cast<int>(original_height * scale);
  83. int effective_resolution = std::min(downscaled_width * downscaled_height, original_width * original_height);
  84. int wasted_resolution = (width * height) - effective_resolution;
  85. // LOG_DBG("resolution: %d %d, scale: %f, downscaled: %d %d, effective: %d, wasted: %d\n", width, height, scale, downscaled_width, downscaled_height, effective_resolution, wasted_resolution);
  86. if (effective_resolution > max_effective_resolution || (effective_resolution == max_effective_resolution && wasted_resolution < min_wasted_resolution)) {
  87. max_effective_resolution = effective_resolution;
  88. min_wasted_resolution = wasted_resolution;
  89. best_fit = resolution;
  90. }
  91. }
  92. return best_fit;
  93. }
  94. /**
  95. * @brief Get the anyres image grid shape object
  96. *
  97. * @param image_size
  98. * @param grid_pinpoints
  99. * @param image_patch_size
  100. * @return <int, int>
  101. */
  102. static struct clip_image_grid_shape get_anyres_image_grid_shape(const std::pair<int, int> & image_size, const std::vector<std::pair<int, int>> & grid_pinpoints, int image_patch_size) {
  103. /**
  104. Conversion from gguf flat array to vector:
  105. std::vector<std::pair<int, int>> possible_resolutions;
  106. for (int i = 0; i < 32 && params.image_grid_pinpoints[i] != 0; i+=2) {
  107. possible_resolutions.push_back({params.image_grid_pinpoints[i], params.image_grid_pinpoints[i+1]});
  108. }
  109. */
  110. auto best_resolution = select_best_resolution(image_size, grid_pinpoints);
  111. return {best_resolution.first / image_patch_size, best_resolution.second / image_patch_size};
  112. }
  113. // Take the image segments in a grid configuration and return the embeddings and the number of embeddings into preallocated memory (image_embd_out)
  114. static bool clip_llava_handle_patches(clip_ctx * ctx_clip, std::vector<float *> & image_embd_v, struct clip_image_grid_shape grid_shape, float * image_embd_out, int * n_img_pos_out) {
  115. struct {
  116. struct ggml_context * ctx;
  117. } model;
  118. const int32_t image_size = clip_image_size(ctx_clip);
  119. const int32_t patch_size = clip_patch_size(ctx_clip);
  120. int32_t num_patches_per_side = image_size / patch_size; // 336 / 14 = 24 - used for embedding-patching boxes (24*24 = 576 patches)
  121. int num_patches_width = grid_shape.first; // grid 1-4
  122. int num_patches_height = grid_shape.second; // grid 1-4
  123. const size_t num_images = num_patches_width * num_patches_height + 1;
  124. // TODO: size calculation is not calculated - it's only tens of MB
  125. size_t ctx_size = 0;
  126. {
  127. ctx_size += clip_embd_nbytes(ctx_clip) * num_images * 8; // image_features
  128. ctx_size += 1024*1024 * ggml_type_size(GGML_TYPE_F32);
  129. }
  130. struct ggml_init_params params {
  131. /*.mem_size =*/ ctx_size,
  132. /*.mem_buffer =*/ NULL,
  133. /*.no_alloc =*/ false, // NOTE: this should be false when using the legacy API
  134. };
  135. // Python reference code for full unpad:
  136. /*
  137. base_image_feature = image_feature[0]
  138. image_feature = image_feature[1:]
  139. image_feature = image_feature.permute(4, 0, 2, 1, 3).contiguous()
  140. image_feature = image_feature.flatten(1, 2).flatten(2, 3)
  141. image_feature = unpad_image(image_feature, image_sizes[image_idx])
  142. image_feature = torch.cat((
  143. image_feature,
  144. self.model.image_newline[:, None, None].expand(*image_feature.shape[:-1], 1)
  145. ), dim=-1)
  146. image_feature = image_feature.flatten(1, 2).transpose(0, 1)
  147. image_feature = torch.cat((base_image_feature, image_feature), dim=0)
  148. */
  149. // We now have two options: unpad or no unpad. Unpad removes tokens for faster llm eval.
  150. // In terms of result quality it appears to make no difference, so we'll start with the easier approach given 5D tensors are not supported in ggml yet.
  151. // Without unpad we have to split the sub-image embeddings into patches of 24 features each and permute them.
  152. // Once all images are processed to prepended the base_image_features without any changes.
  153. // Pytorch reference simplified, modified for ggml compatibility - confirmed identical output in python (for a 2x2 grid image (676x676 scaling))
  154. /*
  155. image_feature = image_feature.view(2, 2, 24, 24, 4096)
  156. image_feature = image_feature.permute(0, 2, 1, 3, 4).contiguous()
  157. image_feature = image_feature.view(2, 24, 2, 24, 4096)
  158. image_feature = image_feature.flatten(0, 3)
  159. // Reshape to 4D tensor by merging the last two dimensions
  160. image_feature = image_feature.view(2, 2, 24, 24*4096)
  161. image_feature = image_feature.permute(0, 2, 1, 3).contiguous()
  162. image_feature = image_feature.view(-1, 4096)
  163. */
  164. model.ctx = ggml_init(params);
  165. struct ggml_tensor * image_features = ggml_new_tensor_3d(model.ctx, GGML_TYPE_F32, clip_n_mmproj_embd(ctx_clip), clip_n_patches(ctx_clip), num_images - 1); // example: 4096 x 576 x 4
  166. // ggml_tensor_printf(image_features,"image_features",__LINE__,false,false);
  167. // fill it with the image embeddings, ignoring the base
  168. for (size_t i = 1; i < num_images; i++) {
  169. size_t offset = (i-1) * clip_embd_nbytes(ctx_clip);
  170. memcpy((uint8_t *)(image_features->data) + offset, image_embd_v[i], clip_embd_nbytes(ctx_clip));
  171. }
  172. struct ggml_cgraph * gf = ggml_new_graph(model.ctx);
  173. size_t size_ele = ggml_type_size(GGML_TYPE_F32);
  174. struct ggml_tensor *image_features_patchview = ggml_view_4d(model.ctx, image_features,
  175. num_patches_per_side * clip_n_mmproj_embd(ctx_clip),
  176. num_patches_per_side,
  177. num_patches_width,
  178. num_patches_height,
  179. size_ele * num_patches_per_side * clip_n_mmproj_embd(ctx_clip),
  180. size_ele * num_patches_per_side * clip_n_mmproj_embd(ctx_clip) * num_patches_per_side,
  181. size_ele * num_patches_per_side * clip_n_mmproj_embd(ctx_clip) * num_patches_per_side * num_patches_width, 0);
  182. // ggml_tensor_printf(image_features_patchview,"image_features_patchview",__LINE__,false,false);
  183. struct ggml_tensor *permuted_cont = ggml_cont(model.ctx, ggml_permute(model.ctx, image_features_patchview, 0, 2, 1, 3));
  184. /**
  185. At the end of each row we have to add the row_end embeddings, which are the same as the newline embeddings
  186. image_feature = torch.cat((
  187. image_feature,
  188. self.model.image_newline[:, None, None].expand(*image_feature.shape[:-1], 1).to(image_feature.device)
  189. ), dim=-1)
  190. *
  191. */
  192. // ggml_tensor_printf(permuted_cont,"permuted_cont",__LINE__,false,false);
  193. struct ggml_tensor *flatten = ggml_view_2d(model.ctx, permuted_cont, clip_n_mmproj_embd(ctx_clip), num_patches_height * num_patches_width * num_patches_per_side * num_patches_per_side, size_ele * clip_n_mmproj_embd(ctx_clip), 0);
  194. // ggml_tensor_printf(flatten,"flatten",__LINE__,false,false);
  195. ggml_build_forward_expand(gf, flatten);
  196. ggml_graph_compute_with_ctx(model.ctx, gf, 1);
  197. struct ggml_tensor* result = ggml_graph_node(gf, -1);
  198. memcpy(image_embd_out, image_embd_v[0], clip_embd_nbytes(ctx_clip)); // main image as global context
  199. // append without newline tokens (default behavior in llava_arch when not using unpad ):
  200. memcpy(image_embd_out + clip_n_patches(ctx_clip) * clip_n_mmproj_embd(ctx_clip), (float*)result->data, clip_embd_nbytes(ctx_clip) * (num_images-1)); // grid patches
  201. *n_img_pos_out = static_cast<int>(result->ne[1]+clip_n_patches(ctx_clip));
  202. // Debug: Test single segments
  203. // Current findings: sending base image, sending a segment embedding all works similar to python
  204. // However, permuted embeddings do not work yet (stride issue?)
  205. // memcpy(image_embd_out, image_embd_v[0], clip_embd_nbytes(ctx_clip)); // main image as context
  206. // memcpy(image_embd_out, (float*)prepared_cont->data, clip_embd_nbytes(ctx_clip)); // main image as context
  207. // *n_img_pos_out=576;
  208. ggml_free(model.ctx);
  209. return true;
  210. }
  211. static clip_image_f32 * only_v2_5_reshape_by_patch(clip_image_f32 * image, int patch_size) {
  212. int width = image->nx;
  213. int height = image->ny;
  214. int num_patches = (height / patch_size) * (width / patch_size);
  215. clip_image_f32 * patch = clip_image_f32_init();
  216. patch->nx = patch_size * num_patches;
  217. patch->ny = patch_size;
  218. patch->buf.resize(3 * patch->nx * patch->ny);
  219. int patch_index = 0;
  220. for (int i = 0; i < height; i += patch_size) {
  221. for (int j = 0; j < width; j += patch_size) {
  222. for (int pi = 0; pi < patch_size; ++pi) {
  223. for (int pj = 0; pj < patch_size; ++pj) {
  224. int input_index = ((i + pi) * width + (j + pj)) * 3;
  225. int output_index = (pi * patch_size * num_patches + patch_index * patch_size + pj) * 3;
  226. patch->buf[output_index] = image->buf[input_index];
  227. patch->buf[output_index+1] = image->buf[input_index+1];
  228. patch->buf[output_index+2] = image->buf[input_index+2];
  229. }
  230. }
  231. patch_index++;
  232. }
  233. }
  234. return patch;
  235. }
  236. static bool encode_image_with_clip(clip_ctx * ctx_clip, int n_threads, const clip_image_u8 * img, float * image_embd, int * n_img_pos) {
  237. // std::vector<clip_image_f32*> img_res_v; // format VectN x H x W x RGB (N x 336 x 336 x 3), so interleaved RGB - different to the python implementation which is N x 3 x 336 x 336
  238. clip_image_f32_batch img_res_v;
  239. img_res_v.size = 0;
  240. img_res_v.data = nullptr;
  241. if (!clip_image_preprocess(ctx_clip, img, &img_res_v)) {
  242. LOG_ERR("%s: unable to preprocess image\n", __func__);
  243. delete[] img_res_v.data;
  244. return false;
  245. }
  246. const int64_t t_img_enc_start_us = ggml_time_us();
  247. const char * mm_patch_merge_type = clip_patch_merge_type(ctx_clip);
  248. if (clip_is_minicpmv(ctx_clip) || clip_is_qwen2vl(ctx_clip)) {
  249. std::vector<float *> image_embd_v;
  250. image_embd_v.resize(img_res_v.size);
  251. struct clip_image_size * load_image_size = clip_image_size_init();
  252. for (size_t i = 0; i < img_res_v.size; i++) {
  253. const int64_t t_img_enc_step_start_us = ggml_time_us();
  254. image_embd_v[i] = (float *)malloc(clip_embd_nbytes_by_img(ctx_clip, img_res_v.data[i].nx, img_res_v.data[i].ny));
  255. int patch_size=14;
  256. load_image_size->width = img_res_v.data[i].nx;
  257. load_image_size->height = img_res_v.data[i].ny;
  258. clip_add_load_image_size(ctx_clip, load_image_size);
  259. bool encoded = false;
  260. if (clip_is_qwen2vl(ctx_clip)) {
  261. encoded = clip_image_encode(ctx_clip, n_threads, &img_res_v.data[i], image_embd_v[i]);
  262. }
  263. else {
  264. int has_minicpmv_projector = clip_is_minicpmv(ctx_clip);
  265. if (has_minicpmv_projector == 2) {
  266. encoded = clip_image_encode(ctx_clip, n_threads, only_v2_5_reshape_by_patch(&img_res_v.data[i], patch_size), image_embd_v[i]);
  267. }
  268. else if (has_minicpmv_projector == 3) {
  269. encoded = clip_image_encode(ctx_clip, n_threads, &img_res_v.data[i], image_embd_v[i]);
  270. }
  271. }
  272. if (!encoded) {
  273. LOG_ERR("Unable to encode image - spatial_unpad - subimage %d of %d\n", (int) i+1, (int) img_res_v.size);
  274. return false;
  275. }
  276. const int64_t t_img_enc_steop_batch_us = ggml_time_us();
  277. LOG_INF("%s: step %d of %d encoded in %8.2f ms\n", __func__, (int)i+1, (int)img_res_v.size, (t_img_enc_steop_batch_us - t_img_enc_step_start_us) / 1000.0);
  278. }
  279. const int64_t t_img_enc_batch_us = ggml_time_us();
  280. LOG_INF("%s: all %d segments encoded in %8.2f ms\n", __func__, (int)img_res_v.size, (t_img_enc_batch_us - t_img_enc_start_us) / 1000.0);
  281. int n_img_pos_out = 0;
  282. for (size_t i = 0; i < image_embd_v.size(); i++) {
  283. std::memcpy(
  284. image_embd + n_img_pos_out * clip_n_mmproj_embd(ctx_clip),
  285. image_embd_v[i],
  286. clip_embd_nbytes_by_img(ctx_clip, img_res_v.data[i].nx, img_res_v.data[i].ny));
  287. n_img_pos_out += clip_n_patches_by_img(ctx_clip, &img_res_v.data[i]);
  288. }
  289. *n_img_pos = n_img_pos_out;
  290. for (size_t i = 0; i < image_embd_v.size(); i++) {
  291. free(image_embd_v[i]);
  292. }
  293. image_embd_v.clear();
  294. load_image_size->width = img->nx;
  295. load_image_size->height = img->ny;
  296. clip_add_load_image_size(ctx_clip, load_image_size);
  297. LOG_INF("%s: load_image_size %d %d\n", __func__, load_image_size->width, load_image_size->height);
  298. }
  299. else if (strcmp(mm_patch_merge_type, "spatial_unpad") != 0) {
  300. // flat / default llava-1.5 type embedding
  301. *n_img_pos = clip_n_patches(ctx_clip);
  302. bool encoded = clip_image_encode(ctx_clip, n_threads, &img_res_v.data[0], image_embd); // image_embd shape is 576 x 4096
  303. delete[] img_res_v.data;
  304. if (!encoded) {
  305. LOG_ERR("Unable to encode image\n");
  306. return false;
  307. }
  308. }
  309. else {
  310. // spatial_unpad llava-1.6 type embedding
  311. // TODO: CLIP needs batching support - in HF the llm projection is separate after encoding, which might be a solution to quickly get batching working
  312. std::vector<float *> image_embd_v;
  313. image_embd_v.resize(img_res_v.size);
  314. for (size_t i = 0; i < img_res_v.size; i++) {
  315. image_embd_v[i] = (float *)malloc(clip_embd_nbytes(ctx_clip)); // 576 patches * 4096 embeddings * 4 bytes = 9437184
  316. const bool encoded = clip_image_encode(ctx_clip, n_threads, &img_res_v.data[i], image_embd_v[i]); // image data is in 3x336x336 format and will be converted to 336x336x3 inside
  317. if (!encoded) {
  318. LOG_ERR("Unable to encode image - spatial_unpad - subimage %d of %d\n", (int) i+1, (int) img_res_v.size);
  319. return false;
  320. }
  321. }
  322. const int64_t t_img_enc_batch_us = ggml_time_us();
  323. LOG_INF("%s: %d segments encoded in %8.2f ms\n", __func__, (int)img_res_v.size, (t_img_enc_batch_us - t_img_enc_start_us) / 1000.0);
  324. const int32_t * image_grid = clip_image_grid(ctx_clip);
  325. std::vector<std::pair<int, int>> grid_pinpoints;
  326. for (int i = 0; i < 32 && image_grid[i] != 0; i += 2) {
  327. grid_pinpoints.push_back({image_grid[i], image_grid[i+1]});
  328. }
  329. // free all img_res_v - not needed anymore
  330. delete[] img_res_v.data;
  331. img_res_v.size = 0;
  332. img_res_v.data = nullptr;
  333. const int32_t image_size = clip_image_size(ctx_clip);
  334. struct clip_image_grid_shape grid_shape = get_anyres_image_grid_shape({img->nx,img->ny}, grid_pinpoints, image_size);
  335. int n_img_pos_out;
  336. clip_llava_handle_patches(ctx_clip, image_embd_v, grid_shape, image_embd, &n_img_pos_out);
  337. *n_img_pos = n_img_pos_out;
  338. for (size_t i = 0; i < image_embd_v.size(); i++) {
  339. free(image_embd_v[i]);
  340. }
  341. image_embd_v.clear();
  342. // debug image/segment/normalization content:
  343. // clip_image_u8 * tmp = clip_image_u8_init();
  344. // clip_image_convert_f32_to_u8(*image_feature, *tmp);
  345. // clip_image_save_to_bmp(*tmp, "image_feature.bmp");
  346. }
  347. LOG_INF("%s: image embedding created: %d tokens\n", __func__, *n_img_pos);
  348. const int64_t t_img_enc_end_us = ggml_time_us();
  349. float t_img_enc_ms = (t_img_enc_end_us - t_img_enc_start_us) / 1000.0;
  350. LOG_INF("\n%s: image encoded in %8.2f ms by CLIP (%8.2f ms per image patch)\n", __func__, t_img_enc_ms, t_img_enc_ms / *n_img_pos);
  351. return true;
  352. }
  353. bool llava_validate_embed_size(const llama_context * ctx_llama, const clip_ctx * ctx_clip) {
  354. // make sure that the correct mmproj was used, i.e., compare apples to apples
  355. int n_llama_embd = llama_n_embd(llama_get_model(ctx_llama));
  356. auto n_image_embd = clip_n_mmproj_embd(ctx_clip);
  357. if (n_image_embd != n_llama_embd) {
  358. LOG_ERR("%s: embedding dim of the multimodal projector (%d) is not equal to that of LLaMA (%d). Make sure that you use the correct mmproj file.\n", __func__, n_image_embd, n_llama_embd);
  359. return false;
  360. }
  361. return true;
  362. }
  363. bool llava_image_embed_make_with_clip_img(clip_ctx * ctx_clip, int n_threads, const clip_image_u8 * img, float ** image_embd_out, int * n_img_pos_out) {
  364. int num_max_patches = 6;
  365. if (clip_is_minicpmv(ctx_clip)) {
  366. num_max_patches = 10;
  367. }
  368. float * image_embd;
  369. if (clip_is_qwen2vl(ctx_clip)) {
  370. // qwen2vl don't split image into chunks, so `num_max_patches` is not needed.
  371. image_embd = (float *)malloc(clip_embd_nbytes_by_img(ctx_clip, img->nx, img->ny));
  372. } else {
  373. image_embd = (float *)malloc(clip_embd_nbytes(ctx_clip)*num_max_patches); // TODO: base on gridsize/llava model
  374. }
  375. if (!image_embd) {
  376. LOG_ERR("Unable to allocate memory for image embeddings\n");
  377. return false;
  378. }
  379. int n_img_pos;
  380. if (!encode_image_with_clip(ctx_clip, n_threads, img, image_embd, &n_img_pos)) {
  381. LOG_ERR("%s: cannot encode image, aborting\n", __func__);
  382. free(image_embd);
  383. return false;
  384. }
  385. *image_embd_out = image_embd;
  386. *n_img_pos_out = n_img_pos;
  387. return true;
  388. }
  389. struct llava_embd_batch {
  390. std::vector<llama_pos> pos;
  391. std::vector<int32_t> n_seq_id;
  392. std::vector<llama_seq_id> seq_id_0;
  393. std::vector<llama_seq_id *> seq_ids;
  394. std::vector<int8_t> logits;
  395. llama_batch batch;
  396. llava_embd_batch(float * embd, int32_t n_embd, int32_t n_tokens, llama_pos pos_0, llama_seq_id seq_id) {
  397. pos .resize(n_tokens);
  398. n_seq_id.resize(n_tokens);
  399. seq_ids .resize(n_tokens + 1);
  400. logits .resize(n_tokens);
  401. seq_id_0.resize(1);
  402. seq_id_0[0] = seq_id;
  403. seq_ids [n_tokens] = nullptr;
  404. batch = {
  405. /*n_tokens =*/ n_tokens,
  406. /*tokens =*/ nullptr,
  407. /*embd =*/ embd,
  408. /*n_embd =*/ n_embd,
  409. /*pos =*/ pos.data(),
  410. /*n_seq_id =*/ n_seq_id.data(),
  411. /*seq_id =*/ seq_ids.data(),
  412. /*logits =*/ logits.data(),
  413. };
  414. for (int i = 0; i < n_tokens; i++) {
  415. batch.pos [i] = pos_0 + i;
  416. batch.n_seq_id[i] = 1;
  417. batch.seq_id [i] = seq_id_0.data();
  418. batch.logits [i] = false;
  419. }
  420. }
  421. };
  422. bool llava_eval_image_embed(llama_context * ctx_llama, const struct llava_image_embed * image_embed, int n_batch, int * n_past) {
  423. int n_embd = llama_n_embd(llama_get_model(ctx_llama));
  424. for (int i = 0; i < image_embed->n_image_pos; i += n_batch) {
  425. int n_eval = image_embed->n_image_pos - i;
  426. if (n_eval > n_batch) {
  427. n_eval = n_batch;
  428. }
  429. float * embd = image_embed->embed+i*n_embd;
  430. llava_embd_batch llava_batch = llava_embd_batch(embd, n_embd, n_eval, *n_past, 0);
  431. if (llama_decode(ctx_llama, llava_batch.batch)) {
  432. LOG_ERR("%s : failed to eval\n", __func__);
  433. return false;
  434. }
  435. *n_past += n_eval;
  436. }
  437. return true;
  438. }
  439. struct llava_image_embed * llava_image_embed_make_with_bytes(struct clip_ctx * ctx_clip, int n_threads, const unsigned char * image_bytes, int image_bytes_length) {
  440. clip_image_u8 * img = clip_image_u8_init();
  441. if (!clip_image_load_from_bytes(image_bytes, image_bytes_length, img)) {
  442. clip_image_u8_free(img);
  443. LOG_ERR("%s: can't load image from bytes, is it a valid image?", __func__);
  444. return NULL;
  445. }
  446. float* image_embed = NULL;
  447. int n_image_pos = 0;
  448. bool image_embed_result = llava_image_embed_make_with_clip_img(ctx_clip, n_threads, img, &image_embed, &n_image_pos);
  449. if (!image_embed_result) {
  450. clip_image_u8_free(img);
  451. LOG_ERR("%s: couldn't embed the image\n", __func__);
  452. return NULL;
  453. }
  454. clip_image_u8_free(img);
  455. auto result = (llava_image_embed*)malloc(sizeof(llava_image_embed));
  456. result->embed = image_embed;
  457. result->n_image_pos = n_image_pos;
  458. return result;
  459. }
  460. static bool load_file_to_bytes(const char* path, unsigned char** bytesOut, long *sizeOut) {
  461. auto file = fopen(path, "rb");
  462. if (file == NULL) {
  463. LOG_ERR("%s: can't read file %s\n", __func__, path);
  464. return false;
  465. }
  466. fseek(file, 0, SEEK_END);
  467. auto fileSize = ftell(file);
  468. fseek(file, 0, SEEK_SET);
  469. auto buffer = (unsigned char *)malloc(fileSize); // Allocate memory to hold the file data
  470. if (buffer == NULL) {
  471. LOG_ERR("%s: failed to alloc %ld bytes for file %s\n", __func__, fileSize, path);
  472. perror("Memory allocation error");
  473. fclose(file);
  474. return false;
  475. }
  476. errno = 0;
  477. size_t ret = fread(buffer, 1, fileSize, file); // Read the file into the buffer
  478. if (ferror(file)) {
  479. LOG_ERR("read error: %s", strerror(errno));
  480. free(buffer);
  481. fclose(file);
  482. return false;
  483. }
  484. if (ret != (size_t) fileSize) {
  485. LOG_ERR("unexpectedly reached end of file");
  486. free(buffer);
  487. fclose(file);
  488. return false;
  489. }
  490. fclose(file); // Close the file
  491. *bytesOut = buffer;
  492. *sizeOut = fileSize;
  493. return true;
  494. }
  495. struct llava_image_embed * llava_image_embed_make_with_filename(struct clip_ctx * ctx_clip, int n_threads, const char * image_path) {
  496. unsigned char* image_bytes;
  497. long image_bytes_length;
  498. auto loaded = load_file_to_bytes(image_path, &image_bytes, &image_bytes_length);
  499. if (!loaded) {
  500. LOG_ERR("%s: failed to load %s\n", __func__, image_path);
  501. return NULL;
  502. }
  503. llava_image_embed *embed = llava_image_embed_make_with_bytes(ctx_clip, n_threads, image_bytes, image_bytes_length);
  504. free(image_bytes);
  505. return embed;
  506. }
  507. void llava_image_embed_free(struct llava_image_embed * embed) {
  508. free(embed->embed);
  509. free(embed);
  510. }