ggml.go 11 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475
  1. package llm
  2. import (
  3. "encoding/binary"
  4. "errors"
  5. "fmt"
  6. "io"
  7. "strings"
  8. "github.com/ollama/ollama/util/bufioutil"
  9. )
  10. type GGML struct {
  11. container
  12. model
  13. }
  14. type model interface {
  15. KV() KV
  16. Tensors() Tensors
  17. }
  18. type KV map[string]any
  19. func (kv KV) u64(key string) uint64 {
  20. switch v := kv[key].(type) {
  21. case uint64:
  22. return v
  23. case uint32:
  24. return uint64(v)
  25. case float64:
  26. return uint64(v)
  27. default:
  28. return 0
  29. }
  30. }
  31. func (kv KV) Architecture() string {
  32. if s, ok := kv["general.architecture"].(string); ok {
  33. return s
  34. }
  35. return "unknown"
  36. }
  37. func (kv KV) Kind() string {
  38. if s, ok := kv["general.type"].(string); ok {
  39. return s
  40. }
  41. return "unknown"
  42. }
  43. func (kv KV) ParameterCount() uint64 {
  44. return kv.u64("general.parameter_count")
  45. }
  46. func (kv KV) FileType() fileType {
  47. if u64 := kv.u64("general.file_type"); u64 > 0 {
  48. return fileType(uint32(u64))
  49. }
  50. return fileTypeUnknown
  51. }
  52. func (kv KV) BlockCount() uint64 {
  53. return kv.u64(fmt.Sprintf("%s.block_count", kv.Architecture()))
  54. }
  55. func (kv KV) HeadCount() uint64 {
  56. return kv.u64(fmt.Sprintf("%s.attention.head_count", kv.Architecture()))
  57. }
  58. func (kv KV) HeadCountKV() uint64 {
  59. if headCountKV := kv.u64(fmt.Sprintf("%s.attention.head_count_kv", kv.Architecture())); headCountKV > 0 {
  60. return headCountKV
  61. }
  62. return 1
  63. }
  64. func (kv KV) EmbeddingHeadCount() uint64 {
  65. if heads := kv.HeadCount(); heads > 0 {
  66. return kv.EmbeddingLength() / kv.HeadCount()
  67. }
  68. return 0
  69. }
  70. func (kv KV) EmbeddingHeadCountK() uint64 {
  71. if k := kv.u64(fmt.Sprintf("%s.attention.key_length", kv.Architecture())); k > 0 {
  72. return k
  73. }
  74. return kv.EmbeddingHeadCount()
  75. }
  76. func (kv KV) EmbeddingHeadCountV() uint64 {
  77. if v := kv.u64(fmt.Sprintf("%s.attention.value_length", kv.Architecture())); v > 0 {
  78. return v
  79. }
  80. return kv.EmbeddingHeadCount()
  81. }
  82. func (kv KV) GQA() uint64 {
  83. return kv.HeadCount() / kv.HeadCountKV()
  84. }
  85. func (kv KV) EmbeddingLength() uint64 {
  86. return kv.u64(fmt.Sprintf("%s.embedding_length", kv.Architecture()))
  87. }
  88. func (kv KV) ContextLength() uint64 {
  89. return kv.u64(fmt.Sprintf("%s.context_length", kv.Architecture()))
  90. }
  91. func (kv KV) ChatTemplate() string {
  92. s, _ := kv["tokenizer.chat_template"].(string)
  93. return s
  94. }
  95. type Tensors struct {
  96. Items []*Tensor
  97. Offset uint64
  98. }
  99. func (ts Tensors) Layers() map[string]Layer {
  100. layers := make(map[string]Layer)
  101. for _, t := range ts.Items {
  102. parts := strings.Split(t.Name, ".")
  103. if parts[0] == "blk" {
  104. // join first and second part, e.g. blk.%d
  105. parts = append([]string{fmt.Sprintf("%s.%s", parts[0], parts[1])}, parts[2:]...)
  106. }
  107. if _, ok := layers[parts[0]]; !ok {
  108. layers[parts[0]] = make(Layer)
  109. }
  110. layers[parts[0]][strings.Join(parts[1:], ".")] = t
  111. }
  112. return layers
  113. }
  114. type Layer map[string]*Tensor
  115. func (l Layer) size() (size uint64) {
  116. for _, t := range l {
  117. size += t.Size()
  118. }
  119. return size
  120. }
  121. type Tensor struct {
  122. Name string `json:"name"`
  123. Kind uint32 `json:"kind"`
  124. Offset uint64 `json:"-"`
  125. // Shape is the number of elements in each dimension
  126. Shape []uint64 `json:"shape"`
  127. io.WriterTo `json:"-"`
  128. }
  129. func (t Tensor) block() (n int) {
  130. if _, err := fmt.Sscanf(t.Name, "blk.%d.", &n); err != nil {
  131. return -1
  132. }
  133. return
  134. }
  135. func (t Tensor) blockSize() uint64 {
  136. switch t.Kind {
  137. case 0, 1, 24, 25, 26, 27, 28, 30: // F32, F16, I8, I16, I32, I64, F64, BF16
  138. return 1
  139. case 2, 3, 4, 5, 6, 7, 8, 9, 20: // Q4_0, Q4_1, Q5_0, Q5_1, Q8_0, Q8_1, IQ4_NL
  140. return 32
  141. default: // All others
  142. return 256
  143. }
  144. }
  145. func (t Tensor) typeSize() uint64 {
  146. blockSize := t.blockSize()
  147. switch t.Kind {
  148. case 0: // FP32
  149. return 4
  150. case 1: // FP16
  151. return 2
  152. case 2: // Q4_0
  153. return 2 + blockSize/2
  154. case 3: // Q4_1
  155. return 2 + 2 + blockSize/2
  156. case 6: // Q5_0
  157. return 2 + 4 + blockSize/2
  158. case 7: // Q5_1
  159. return 2 + 2 + 4 + blockSize/2
  160. case 8: // Q8_0
  161. return 2 + blockSize
  162. case 9: // Q8_1
  163. return 4 + 4 + blockSize
  164. case 10: // Q2_K
  165. return blockSize/16 + blockSize/4 + 2 + 2
  166. case 11: // Q3_K
  167. return blockSize/8 + blockSize/4 + 12 + 2
  168. case 12: // Q4_K
  169. return 2 + 2 + 12 + blockSize/2
  170. case 13: // Q5_K
  171. return 2 + 2 + 12 + blockSize/8 + blockSize/2
  172. case 14: // Q6_K
  173. return blockSize/2 + blockSize/4 + blockSize/16 + 2
  174. case 15: // Q8_K
  175. return 2 + blockSize + 2*blockSize/16
  176. case 16: // IQ2_XXS
  177. return 2 + 2*blockSize/8
  178. case 17: // IQ2_XS
  179. return 2 + 2*blockSize/8 + blockSize/32
  180. case 18: // IQ3_XXS
  181. return 2 + blockSize/4 + blockSize/8
  182. case 19: // IQ1_S
  183. return 2 + blockSize/8 + blockSize/16
  184. case 20: // IQ4_NL
  185. return 2 + blockSize/2
  186. case 21: // IQ3_S
  187. return 2 + blockSize/4 + blockSize/8 + blockSize/32 + 4
  188. case 22: // IQ2_S
  189. return 2 + blockSize/4 + blockSize/16
  190. case 23: // IQ4_XS
  191. return 2 + 2 + blockSize/2 + blockSize/64
  192. case 24: // I8
  193. return 1
  194. case 25: // I16
  195. return 2
  196. case 26: // I32
  197. return 4
  198. case 27: // I64
  199. return 8
  200. case 28: // F64
  201. return 8
  202. case 29: // IQ1_M
  203. return blockSize/8 + blockSize/16 + blockSize/32
  204. default:
  205. return 0
  206. }
  207. }
  208. func (t Tensor) parameters() uint64 {
  209. var count uint64 = 1
  210. for _, n := range t.Shape {
  211. count *= n
  212. }
  213. return count
  214. }
  215. func (t Tensor) Size() uint64 {
  216. return t.parameters() * t.typeSize() / t.blockSize()
  217. }
  218. type container interface {
  219. Name() string
  220. Decode(io.ReadSeeker) (model, error)
  221. }
  222. const (
  223. // Magic constant for `ggml` files (unversioned).
  224. FILE_MAGIC_GGML = 0x67676d6c
  225. // Magic constant for `ggml` files (versioned, ggmf).
  226. FILE_MAGIC_GGMF = 0x67676d66
  227. // Magic constant for `ggml` files (versioned, ggjt).
  228. FILE_MAGIC_GGJT = 0x67676a74
  229. // Magic constant for `ggla` files (LoRA adapter).
  230. FILE_MAGIC_GGLA = 0x67676C61
  231. // Magic constant for `gguf` files (versioned, gguf)
  232. FILE_MAGIC_GGUF_LE = 0x46554747
  233. FILE_MAGIC_GGUF_BE = 0x47475546
  234. )
  235. var ErrUnsupportedFormat = errors.New("unsupported model format")
  236. func DetectGGMLType(b []byte) string {
  237. switch binary.LittleEndian.Uint32(b[:4]) {
  238. case FILE_MAGIC_GGML:
  239. return "ggml"
  240. case FILE_MAGIC_GGMF:
  241. return "ggmf"
  242. case FILE_MAGIC_GGJT:
  243. return "ggjt"
  244. case FILE_MAGIC_GGLA:
  245. return "ggla"
  246. case FILE_MAGIC_GGUF_LE, FILE_MAGIC_GGUF_BE:
  247. return "gguf"
  248. default:
  249. return ""
  250. }
  251. }
  252. // DecodeGGML decodes a GGML model from the given reader.
  253. //
  254. // It collects array values for arrays with a size less than or equal to
  255. // maxArraySize. If maxArraySize is 0, the default value of 1024 is used. If
  256. // the maxArraySize is negative, all arrays are collected.
  257. func DecodeGGML(rs io.ReadSeeker, maxArraySize int) (*GGML, int64, error) {
  258. if maxArraySize == 0 {
  259. maxArraySize = 1024
  260. }
  261. rs = bufioutil.NewBufferedSeeker(rs, 32<<10)
  262. var magic uint32
  263. if err := binary.Read(rs, binary.LittleEndian, &magic); err != nil {
  264. return nil, 0, err
  265. }
  266. var c container
  267. switch magic {
  268. case FILE_MAGIC_GGML, FILE_MAGIC_GGMF, FILE_MAGIC_GGJT:
  269. return nil, 0, ErrUnsupportedFormat
  270. case FILE_MAGIC_GGLA:
  271. c = &containerGGLA{}
  272. case FILE_MAGIC_GGUF_LE:
  273. c = &containerGGUF{ByteOrder: binary.LittleEndian, maxArraySize: maxArraySize}
  274. case FILE_MAGIC_GGUF_BE:
  275. c = &containerGGUF{ByteOrder: binary.BigEndian, maxArraySize: maxArraySize}
  276. default:
  277. return nil, 0, errors.New("invalid file magic")
  278. }
  279. model, err := c.Decode(rs)
  280. if err != nil {
  281. return nil, 0, err
  282. }
  283. offset, err := rs.Seek(0, io.SeekCurrent)
  284. if err != nil {
  285. return nil, 0, err
  286. }
  287. // final model type
  288. return &GGML{
  289. container: c,
  290. model: model,
  291. }, offset, nil
  292. }
  293. func (llm GGML) GraphSize(context, batch uint64) (partialOffload, fullOffload uint64) {
  294. embedding := llm.KV().EmbeddingLength()
  295. heads := llm.KV().HeadCount()
  296. headsKV := llm.KV().HeadCountKV()
  297. vocab := uint64(llm.KV()["tokenizer.ggml.tokens"].(*array).size)
  298. embeddingHeads := llm.KV().EmbeddingHeadCount()
  299. embeddingHeadsK := llm.KV().EmbeddingHeadCountK()
  300. layers := llm.Tensors().Layers()
  301. switch llm.KV().Architecture() {
  302. case "llama":
  303. fullOffload = 4 * batch * (1 + 4*embedding + context*(1+heads))
  304. partialOffload = 4 * batch * embedding
  305. partialOffload += max(
  306. // 4*batch*(4+6*embedding+context*(2*heads)+llm.KV().GQA()),
  307. 4*batch*(1+embedding+max(context, embedding))+embedding*embedding*9/16+4*context*(batch*heads+embeddingHeads*headsKV),
  308. 4*batch*(embedding+vocab)+embedding*vocab*105/128,
  309. )
  310. if ffnGateExpsWeight, ok := layers["blk.0"]["ffn_gate_exps.weight"]; ok {
  311. // mixtral 8x22b
  312. ff := uint64(llm.KV()["llama.feed_forward_length"].(uint32))
  313. partialOffload = max(
  314. 3*ffnGateExpsWeight.Size()+4*batch*(2*ff+headsKV+embedding+context+embeddingHeads*headsKV),
  315. 4*(context*batch*heads+context*embeddingHeads*headsKV+batch*1024+embeddingHeads*headsKV*batch),
  316. )
  317. } else if ffnGateWeight, ok := layers["blk.0"]["ffn_gate.0.weight"]; ok {
  318. // mixtral 8x7b
  319. ffnGateWeight1 := ffnGateWeight.Shape[1]
  320. fullOffload = 4 * batch * (2 + 3*embedding + context*(1+heads) + 2*headsKV + ffnGateWeight1)
  321. partialOffload = max(
  322. 4*batch*(3+embeddingHeads*headsKV+embedding+context*(1+heads)+ffnGateWeight1)+(embedding*embedding+3*embedding*headsKV*ffnGateWeight1)*9/16,
  323. 4*batch*(1+2*embedding+context*(1+heads))+embedding*(6*context*headsKV/heads+embedding*9/16),
  324. )
  325. }
  326. case "gemma", "gemma2":
  327. fullOffload = max(
  328. 4*batch*(embedding+vocab),
  329. 4*batch*(2+context+context*heads+2*embedding+2*embeddingHeadsK*heads),
  330. )
  331. partialOffload = max(
  332. 4*embedding*batch+embedding*vocab*105/128+4*vocab*batch,
  333. 4*batch*(2*embedding+1+2*embeddingHeadsK*heads+context+context*heads)+
  334. 4*embeddingHeadsK*context*8+
  335. embedding*embeddingHeadsK*heads*9/16,
  336. )
  337. case "command-r":
  338. fullOffload = max(
  339. 4*batch*(embedding+vocab),
  340. 4*batch*(2+4*embedding+context*(1+heads)),
  341. )
  342. partialOffload = max(
  343. 4*batch*(embedding+vocab)+embedding*vocab*105/128,
  344. 4*batch*(1+2*embedding+context*(1+heads))+4*embedding*context+embedding*embedding*9/16,
  345. )
  346. case "qwen2":
  347. fullOffload = max(
  348. 4*batch*(embedding+vocab),
  349. 4*batch*(1+2*embedding+context+context*heads),
  350. )
  351. partialOffload = max(
  352. 4*batch*(embedding+vocab)+embedding*vocab*105/128,
  353. 4*(batch*(1+2*embedding+context*(1+heads))+embedding*(1+context)),
  354. )
  355. case "phi2":
  356. fullOffload = max(
  357. 4*batch*(embedding+vocab),
  358. 4*batch*(1+4*embedding+context+context*heads),
  359. )
  360. partialOffload = max(
  361. 4*batch*(2*embedding+vocab)+embedding*vocab*105/128,
  362. 4*batch*(2+3*embedding+context+context*heads),
  363. )
  364. case "stablelm":
  365. fullOffload = 4 * batch * (context*(1+heads) + 3*embedding + 2)
  366. partialOffload = max(
  367. 4*batch*(vocab+2*embedding),
  368. fullOffload,
  369. )
  370. case "deepseek2":
  371. fullOffload = max(
  372. 4*batch*(3*embedding+vocab),
  373. 4*batch*(3*embedding+2+context*(1+headsKV)+2*embeddingHeadsK*headsKV),
  374. )
  375. partialOffload = max(
  376. 4*batch*(3*embedding+vocab)+embedding*vocab*105/128,
  377. 4*batch*(2*embedding+1+2*embeddingHeadsK*headsKV+context+context*headsKV)+4*embeddingHeadsK*context*headsKV+embedding*embeddingHeadsK*headsKV*9/16,
  378. )
  379. case "chatglm":
  380. fullOffload = 4 * batch * (embedding + vocab)
  381. partialOffload = 4*batch*(embedding+vocab) + embedding*vocab*105/128
  382. if qkvBias, ok := layers["blk.0"]["attn_qkv.bias"]; ok {
  383. fullOffload = max(
  384. fullOffload,
  385. 4*batch*(2+
  386. 2*embedding+
  387. context+
  388. context*heads+
  389. embeddingHeadsK*heads+
  390. qkvBias.Shape[0]),
  391. )
  392. partialOffload = max(
  393. partialOffload,
  394. 4*batch*(1+
  395. 2*embedding+
  396. embeddingHeadsK*heads+
  397. context+
  398. context*heads)+
  399. 4*embeddingHeadsK*context+
  400. 4*context*embeddingHeadsK+
  401. 4*qkvBias.Shape[0],
  402. )
  403. }
  404. }
  405. return
  406. }