Nenhuma descrição

Daniel Hiltgen b662e4706e Remove default auto from help message 10 meses atrás
.github a12283e2ff Implement custom github release action 10 meses atrás
api 7e7749224c Fix use_mmap parsing for modelfiles 10 meses atrás
app 9d8a4988e8 Implement log rotation for tray app 10 meses atrás
auth 0a7fdbe533 prompt to display and add local ollama keys to account (#3717) 1 ano atrás
cmd 42574d3b11 Include Show Info in Interactive (#5342) 10 meses atrás
convert e40145a39d lint 11 meses atrás
docs 02ba11b614 Document concurrent behavior and settings 10 meses atrás
envconfig b662e4706e Remove default auto from help message 10 meses atrás
examples 94d37fdcae fix: examples/langchain-python-rag-privategpt/requirements.txt (#3382) 10 meses atrás
format e40145a39d lint 11 meses atrás
gpu 976fc86978 Disable concurrency for AMD + Windows 10 meses atrás
integration 6f351bf586 review comments and coverage 10 meses atrás
llm 1f4f46800c Do not shift context for sliding window models (#5368) 10 meses atrás
macapp 8aadad9c72 updated updateURL 11 meses atrás
openai 6b800aa7b7 openai: do not set temperature to 0 when setting seed (#5045) 10 meses atrás
parser d528e1af75 fix utf16 for multibyte runes 10 meses atrás
progress e40145a39d lint 11 meses atrás
readline 8ce4032e72 more lint 11 meses atrás
scripts 54a79d6a8a Merge pull request #5125 from dhiltgen/fedora39 10 meses atrás
server be31611ff1 Fix case for NumCtx 10 meses atrás
templates 030e765e76 fix create model when template detection errors 10 meses atrás
types 380e06e5be types/model: remove Digest 10 meses atrás
util cb42e607c5 llm: speed up gguf decoding by a lot (#5246) 10 meses atrás
version 2c7f956b38 add version 1 ano atrás
.dockerignore 5017a15bcb add `macapp` to `.dockerignore` 1 ano atrás
.gitattributes f7dc7dcc64 Update .gitattributes 1 ano atrás
.gitignore 34a4a94f13 ignore debug bin files 1 ano atrás
.gitmodules fac9060da5 Init submodule with new path 1 ano atrás
.golangci.yaml 6297f85606 gofmt, goimports 11 meses atrás
.prettierrc.json 8685a5ad18 move .prettierrc.json to root 1 ano atrás
Dockerfile 26ab67732b Bump ROCm linux to 6.1.1 10 meses atrás
LICENSE df5fdd6647 `proto` -> `ollama` 1 ano atrás
README.md 7add3e5267 Update README.md (#5214) 10 meses atrás
go.mod 9b6c2e6eb6 detect chat template from KV 10 meses atrás
go.sum 9b6c2e6eb6 detect chat template from KV 10 meses atrás
main.go 1b272d5bcd change `github.com/jmorganca/ollama` to `github.com/ollama/ollama` (#3347) 1 ano atrás

README.md

 ollama

Ollama

Discord

Get up and running with large language models.

macOS

Download

Windows preview

Download

Linux

curl -fsSL https://ollama.com/install.sh | sh

Manual install instructions

Docker

The official Ollama Docker image ollama/ollama is available on Docker Hub.

Libraries

Quickstart

To run and chat with Llama 3:

ollama run llama3

Model library

Ollama supports a list of models available on ollama.com/library

Here are some example models that can be downloaded:

Model Parameters Size Download
Llama 3 8B 4.7GB ollama run llama3
Llama 3 70B 40GB ollama run llama3:70b
Phi 3 Mini 3.8B 2.3GB ollama run phi3
Phi 3 Medium 14B 7.9GB ollama run phi3:medium
Gemma 2 9B 5.5GB ollama run gemma2
Gemma 2 27B 16GB ollama run gemma2:27b
Mistral 7B 4.1GB ollama run mistral
Moondream 2 1.4B 829MB ollama run moondream
Neural Chat 7B 4.1GB ollama run neural-chat
Starling 7B 4.1GB ollama run starling-lm
Code Llama 7B 3.8GB ollama run codellama
Llama 2 Uncensored 7B 3.8GB ollama run llama2-uncensored
LLaVA 7B 4.5GB ollama run llava
Solar 10.7B 6.1GB ollama run solar

Note: You should have at least 8 GB of RAM available to run the 7B models, 16 GB to run the 13B models, and 32 GB to run the 33B models.

Customize a model

Import from GGUF

Ollama supports importing GGUF models in the Modelfile:

  1. Create a file named Modelfile, with a FROM instruction with the local filepath to the model you want to import.

    FROM ./vicuna-33b.Q4_0.gguf
    
  2. Create the model in Ollama

    ollama create example -f Modelfile
    
  3. Run the model

    ollama run example
    

Import from PyTorch or Safetensors

See the guide on importing models for more information.

Customize a prompt

Models from the Ollama library can be customized with a prompt. For example, to customize the llama3 model:

ollama pull llama3

Create a Modelfile:

FROM llama3

# set the temperature to 1 [higher is more creative, lower is more coherent]
PARAMETER temperature 1

# set the system message
SYSTEM """
You are Mario from Super Mario Bros. Answer as Mario, the assistant, only.
"""

Next, create and run the model:

ollama create mario -f ./Modelfile
ollama run mario
>>> hi
Hello! It's your friend Mario.

For more examples, see the examples directory. For more information on working with a Modelfile, see the Modelfile documentation.

CLI Reference

Create a model

ollama create is used to create a model from a Modelfile.

ollama create mymodel -f ./Modelfile

Pull a model

ollama pull llama3

This command can also be used to update a local model. Only the diff will be pulled.

Remove a model

ollama rm llama3

Copy a model

ollama cp llama3 my-model

Multiline input

For multiline input, you can wrap text with """:

>>> """Hello,
... world!
... """
I'm a basic program that prints the famous "Hello, world!" message to the console.

Multimodal models

>>> What's in this image? /Users/jmorgan/Desktop/smile.png
The image features a yellow smiley face, which is likely the central focus of the picture.

Pass the prompt as an argument

$ ollama run llama3 "Summarize this file: $(cat README.md)"
 Ollama is a lightweight, extensible framework for building and running language models on the local machine. It provides a simple API for creating, running, and managing models, as well as a library of pre-built models that can be easily used in a variety of applications.

Show model information

ollama show llama3

List models on your computer

ollama list

Start Ollama

ollama serve is used when you want to start ollama without running the desktop application.

Building

See the developer guide

Running local builds

Next, start the server:

./ollama serve

Finally, in a separate shell, run a model:

./ollama run llama3

REST API

Ollama has a REST API for running and managing models.

Generate a response

curl http://localhost:11434/api/generate -d '{
  "model": "llama3",
  "prompt":"Why is the sky blue?"
}'

Chat with a model

curl http://localhost:11434/api/chat -d '{
  "model": "llama3",
  "messages": [
    { "role": "user", "content": "why is the sky blue?" }
  ]
}'

See the API documentation for all endpoints.

Community Integrations

Web & Desktop

Terminal

Database

Package managers

Libraries

Mobile

Extensions & Plugins

Supported backends

  • llama.cpp project founded by Georgi Gerganov.