ggml.go 8.5 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367
  1. package llm
  2. import (
  3. "encoding/binary"
  4. "errors"
  5. "fmt"
  6. "io"
  7. "strings"
  8. )
  9. type GGML struct {
  10. container
  11. model
  12. }
  13. type model interface {
  14. KV() KV
  15. Tensors() Tensors
  16. }
  17. type KV map[string]any
  18. func (kv KV) u64(key string) uint64 {
  19. switch v := kv[key].(type) {
  20. case uint64:
  21. return v
  22. case uint32:
  23. return uint64(v)
  24. case float64:
  25. return uint64(v)
  26. default:
  27. return 0
  28. }
  29. }
  30. func (kv KV) Architecture() string {
  31. if s, ok := kv["general.architecture"].(string); ok {
  32. return s
  33. }
  34. return "unknown"
  35. }
  36. func (kv KV) ParameterCount() uint64 {
  37. return kv.u64("general.parameter_count")
  38. }
  39. func (kv KV) FileType() fileType {
  40. if u64 := kv.u64("general.file_type"); u64 > 0 {
  41. return fileType(uint32(u64))
  42. }
  43. return fileTypeUnknown
  44. }
  45. func (kv KV) BlockCount() uint64 {
  46. return kv.u64(fmt.Sprintf("%s.block_count", kv.Architecture()))
  47. }
  48. func (kv KV) HeadCount() uint64 {
  49. return kv.u64(fmt.Sprintf("%s.attention.head_count", kv.Architecture()))
  50. }
  51. func (kv KV) HeadCountKV() uint64 {
  52. if headCountKV := kv.u64(fmt.Sprintf("%s.attention.head_count_kv", kv.Architecture())); headCountKV > 0 {
  53. return headCountKV
  54. }
  55. return 1
  56. }
  57. func (kv KV) GQA() uint64 {
  58. return kv.HeadCount() / kv.HeadCountKV()
  59. }
  60. func (kv KV) EmbeddingLength() uint64 {
  61. return kv.u64(fmt.Sprintf("%s.embedding_length", kv.Architecture()))
  62. }
  63. func (kv KV) ContextLength() uint64 {
  64. return kv.u64(fmt.Sprintf("%s.context_length", kv.Architecture()))
  65. }
  66. type Tensors []*Tensor
  67. func (ts Tensors) Layers() map[string]Layer {
  68. layers := make(map[string]Layer)
  69. for _, t := range ts {
  70. parts := strings.Split(t.Name, ".")
  71. if parts[0] == "blk" {
  72. // join first and second part, e.g. blk.%d
  73. parts = append([]string{fmt.Sprintf("%s.%s", parts[0], parts[1])}, parts[2:]...)
  74. }
  75. if _, ok := layers[parts[0]]; !ok {
  76. layers[parts[0]] = make(Layer)
  77. }
  78. layers[parts[0]][strings.Join(parts[1:], ".")] = t
  79. }
  80. return layers
  81. }
  82. type Layer map[string]*Tensor
  83. func (l Layer) size() (size uint64) {
  84. for _, t := range l {
  85. size += t.Size()
  86. }
  87. return size
  88. }
  89. type Tensor struct {
  90. Name string `json:"name"`
  91. Kind uint32 `json:"kind"`
  92. Offset uint64 `json:"-"`
  93. // Shape is the number of elements in each dimension
  94. Shape []uint64 `json:"shape"`
  95. io.WriterTo `json:"-"`
  96. }
  97. func (t Tensor) blockSize() uint64 {
  98. switch t.Kind {
  99. case 0, 1, 24, 25, 26, 27, 28, 30: // F32, F16, I8, I16, I32, I64, F64, BF16
  100. return 1
  101. case 2, 3, 4, 5, 6, 7, 8, 9, 20: // Q4_0, Q4_1, Q5_0, Q5_1, Q8_0, Q8_1, IQ4_NL
  102. return 32
  103. default: // All others
  104. return 256
  105. }
  106. }
  107. func (t Tensor) typeSize() uint64 {
  108. blockSize := t.blockSize()
  109. switch t.Kind {
  110. case 0: // FP32
  111. return 4
  112. case 1: // FP16
  113. return 2
  114. case 2: // Q4_0
  115. return 2 + blockSize/2
  116. case 3: // Q4_1
  117. return 2 + 2 + blockSize/2
  118. case 6: // Q5_0
  119. return 2 + 4 + blockSize/2
  120. case 7: // Q5_1
  121. return 2 + 2 + 4 + blockSize/2
  122. case 8: // Q8_0
  123. return 2 + blockSize
  124. case 9: // Q8_1
  125. return 4 + 4 + blockSize
  126. case 10: // Q2_K
  127. return blockSize/16 + blockSize/4 + 2 + 2
  128. case 11: // Q3_K
  129. return blockSize/8 + blockSize/4 + 12 + 2
  130. case 12: // Q4_K
  131. return 2 + 2 + 12 + blockSize/2
  132. case 13: // Q5_K
  133. return 2 + 2 + 12 + blockSize/8 + blockSize/2
  134. case 14: // Q6_K
  135. return blockSize/2 + blockSize/4 + blockSize/16 + 2
  136. case 15: // Q8_K
  137. return 2 + blockSize + 2*blockSize/16
  138. case 16: // IQ2_XXS
  139. return 2 + 2*blockSize/8
  140. case 17: // IQ2_XS
  141. return 2 + 2*blockSize/8 + blockSize/32
  142. case 18: // IQ3_XXS
  143. return 2 + blockSize/4 + blockSize/8
  144. case 19: // IQ1_S
  145. return 2 + blockSize/8 + blockSize/16
  146. case 20: // IQ4_NL
  147. return 2 + blockSize/2
  148. case 21: // IQ3_S
  149. return 2 + blockSize/4 + blockSize/8 + blockSize/32 + 4
  150. case 22: // IQ2_S
  151. return 2 + blockSize/4 + blockSize/16
  152. case 23: // IQ4_XS
  153. return 2 + 2 + blockSize/2 + blockSize/64
  154. case 24: // I8
  155. return 1
  156. case 25: // I16
  157. return 2
  158. case 26: // I32
  159. return 4
  160. case 27: // I64
  161. return 8
  162. case 28: // F64
  163. return 8
  164. case 29: // IQ1_M
  165. return blockSize/8 + blockSize/16 + blockSize/32
  166. default:
  167. return 0
  168. }
  169. }
  170. func (t Tensor) parameters() uint64 {
  171. var count uint64 = 1
  172. for _, n := range t.Shape {
  173. count *= n
  174. }
  175. return count
  176. }
  177. func (t Tensor) Size() uint64 {
  178. return t.parameters() * t.typeSize() / t.blockSize()
  179. }
  180. type container interface {
  181. Name() string
  182. Decode(io.ReadSeeker) (model, error)
  183. }
  184. const (
  185. // Magic constant for `ggml` files (unversioned).
  186. FILE_MAGIC_GGML = 0x67676d6c
  187. // Magic constant for `ggml` files (versioned, ggmf).
  188. FILE_MAGIC_GGMF = 0x67676d66
  189. // Magic constant for `ggml` files (versioned, ggjt).
  190. FILE_MAGIC_GGJT = 0x67676a74
  191. // Magic constant for `ggla` files (LoRA adapter).
  192. FILE_MAGIC_GGLA = 0x67676C61
  193. // Magic constant for `gguf` files (versioned, gguf)
  194. FILE_MAGIC_GGUF_LE = 0x46554747
  195. FILE_MAGIC_GGUF_BE = 0x47475546
  196. )
  197. var ErrUnsupportedFormat = errors.New("unsupported model format")
  198. func DetectGGMLType(b []byte) string {
  199. switch binary.LittleEndian.Uint32(b[:4]) {
  200. case FILE_MAGIC_GGML:
  201. return "ggml"
  202. case FILE_MAGIC_GGMF:
  203. return "ggmf"
  204. case FILE_MAGIC_GGJT:
  205. return "ggjt"
  206. case FILE_MAGIC_GGLA:
  207. return "ggla"
  208. case FILE_MAGIC_GGUF_LE, FILE_MAGIC_GGUF_BE:
  209. return "gguf"
  210. default:
  211. return ""
  212. }
  213. }
  214. func DecodeGGML(rs io.ReadSeeker) (*GGML, int64, error) {
  215. var magic uint32
  216. if err := binary.Read(rs, binary.LittleEndian, &magic); err != nil {
  217. return nil, 0, err
  218. }
  219. var c container
  220. switch magic {
  221. case FILE_MAGIC_GGML, FILE_MAGIC_GGMF, FILE_MAGIC_GGJT:
  222. return nil, 0, ErrUnsupportedFormat
  223. case FILE_MAGIC_GGLA:
  224. c = &containerGGLA{}
  225. case FILE_MAGIC_GGUF_LE:
  226. c = &containerGGUF{ByteOrder: binary.LittleEndian}
  227. case FILE_MAGIC_GGUF_BE:
  228. c = &containerGGUF{ByteOrder: binary.BigEndian}
  229. default:
  230. return nil, 0, errors.New("invalid file magic")
  231. }
  232. model, err := c.Decode(rs)
  233. if errors.Is(err, io.EOF) {
  234. // noop
  235. } else if err != nil {
  236. return nil, 0, err
  237. }
  238. offset, err := rs.Seek(0, io.SeekCurrent)
  239. if err != nil {
  240. return nil, 0, err
  241. }
  242. // final model type
  243. return &GGML{
  244. container: c,
  245. model: model,
  246. }, offset, nil
  247. }
  248. func (llm GGML) GraphSize(context, batch uint64) (partialOffload, fullOffload uint64) {
  249. embedding := llm.KV().EmbeddingLength()
  250. heads := llm.KV().HeadCount()
  251. headsKV := llm.KV().HeadCountKV()
  252. vocab := uint64(len(llm.KV()["tokenizer.ggml.tokens"].([]any)))
  253. layers := llm.Tensors().Layers()
  254. switch llm.KV().Architecture() {
  255. case "llama":
  256. fullOffload = 4 * batch * (1 + 4*embedding + context*(1+heads))
  257. partialOffload = 4 * batch * embedding
  258. partialOffload += max(
  259. 4*batch*(1+embedding+max(context, embedding))+embedding*embedding*9/16+4*context*(batch*heads+embedding/heads*headsKV),
  260. 4*batch*(embedding+vocab)+embedding*vocab*105/128,
  261. )
  262. if ffnGateExpsWeight, ok := layers["blk.0"]["ffn_gate_exps.weight"]; ok {
  263. // mixtral 8x22b
  264. ff := uint64(llm.KV()["llama.feed_forward_length"].(uint32))
  265. partialOffload = max(
  266. 3*ffnGateExpsWeight.Size()+4*batch*(2*ff+headsKV+embedding+context+embedding/heads*headsKV),
  267. 4*(context*batch*heads+context*embedding/heads*headsKV+batch*1024+embedding/heads*headsKV*batch),
  268. )
  269. } else if ffnGateWeight, ok := layers["blk.0"]["ffn_gate.0.weight"]; ok {
  270. // mixtral 8x7b
  271. ffnGateWeight1 := ffnGateWeight.Shape[1]
  272. fullOffload = 4 * batch * (2 + 3*embedding + context*(1+heads) + 2*headsKV + ffnGateWeight1)
  273. partialOffload = max(
  274. 4*batch*(3+embedding/heads*headsKV+embedding+context*(1+heads)+ffnGateWeight1)+(embedding*embedding+3*embedding*headsKV*ffnGateWeight1)*9/16,
  275. 4*batch*(1+2*embedding+context*(1+heads))+embedding*(6*context*headsKV/heads+embedding*9/16),
  276. )
  277. }
  278. case "gemma":
  279. fullOffload = 4 * batch * (embedding + vocab)
  280. partialOffload = 4*batch*(2*embedding+vocab+1) + embedding*vocab*105/128
  281. case "command-r":
  282. fullOffload = max(
  283. 4*batch*(embedding+vocab),
  284. 4*batch*(2+4*embedding+context*(1+heads)),
  285. )
  286. partialOffload = max(
  287. 4*batch*(embedding+vocab)+embedding*vocab*105/128,
  288. 4*batch*(1+2*embedding+context*(1+heads))+4*embedding*context+embedding*embedding*9/16,
  289. )
  290. case "qwen2":
  291. fullOffload = max(
  292. 4*batch*(embedding+vocab),
  293. 4*batch*(1+2*embedding+context+context*heads),
  294. )
  295. partialOffload = max(
  296. 4*batch*(embedding+vocab)+embedding*vocab*105/128,
  297. 4*(batch*(1+2*embedding+context*(1+heads))+embedding*(1+context)),
  298. )
  299. case "phi2":
  300. fullOffload = max(
  301. 4*batch*(embedding+vocab),
  302. 4*batch*(1+4*embedding+context+context*heads),
  303. )
  304. partialOffload = max(
  305. 4*batch*(2*embedding+vocab)+embedding*vocab*105/128,
  306. 4*batch*(2+3*embedding+context+context*heads),
  307. )
  308. case "stablelm":
  309. fullOffload = 4 * batch * (context*(1+heads) + 3*embedding + 2)
  310. partialOffload = max(
  311. 4*batch*(vocab+2*embedding),
  312. fullOffload,
  313. )
  314. }
  315. return
  316. }