12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576 |
- package convert
- import (
- "cmp"
- "github.com/ollama/ollama/fs/ggml"
- )
- type commandrModel struct {
- ModelParameters
- MaxPositionEmbeddings uint32 `json:"max_position_embeddings"`
- HiddenSize uint32 `json:"hidden_size"`
- HiddenLayers uint32 `json:"num_hidden_layers"`
- IntermediateSize uint32 `json:"intermediate_size"`
- NumAttentionHeads uint32 `json:"num_attention_heads"`
- NumKeyValueHeads uint32 `json:"num_key_value_heads"`
- LayerNormEPS float32 `json:"layer_norm_eps"`
- RopeTheta float32 `json:"rope_theta"`
- UseQKNorm bool `json:"use_qk_norm"`
- MaxLength uint32 `json:"model_max_length"`
- LogitScale float32 `json:"logit_scale"`
- NCtx uint32 `json:"n_ctx"`
- }
- var _ ModelConverter = (*commandrModel)(nil)
- func (p *commandrModel) KV(t *Tokenizer) ggml.KV {
- kv := p.ModelParameters.KV(t)
- kv["general.architecture"] = "command-r"
- kv["general.name"] = "command-r"
- kv["command-r.context_length"] = cmp.Or(p.MaxLength, p.MaxPositionEmbeddings, p.NCtx)
- kv["command-r.embedding_length"] = p.HiddenSize
- kv["command-r.block_count"] = p.HiddenLayers
- kv["command-r.feed_forward_length"] = p.IntermediateSize
- kv["command-r.attention.head_count"] = p.NumAttentionHeads
- kv["command-r.attention.head_count_kv"] = p.NumKeyValueHeads
- kv["command-r.attention.layer_norm_epsilon"] = p.LayerNormEPS
- kv["command-r.rope.freq_base"] = p.RopeTheta
- kv["command-r.max_position_embeddings"] = cmp.Or(p.MaxLength, p.MaxPositionEmbeddings)
- kv["command-r.logit_scale"] = p.LogitScale
- kv["command-r.rope.scaling.type"] = "none"
- return kv
- }
- func (p *commandrModel) Tensors(ts []Tensor) []ggml.Tensor {
- var out []ggml.Tensor
- for _, t := range ts {
- out = append(out, ggml.Tensor{
- Name: t.Name(),
- Kind: t.Kind(),
- Shape: t.Shape(),
- WriterTo: t,
- })
- }
- return out
- }
- func (p *commandrModel) Replacements() []string {
- return []string{
- "self_attn.q_norm", "attn_q_norm",
- "self_attn.k_norm", "attn_k_norm",
- "model.layers", "blk",
- "input_layernorm", "attn_norm",
- "mlp.down_proj", "ffn_down",
- "mlp.gate_proj", "ffn_gate",
- "mlp.up_proj", "ffn_up",
- "self_attn.k_proj", "attn_k",
- "self_attn.o_proj", "attn_output",
- "self_attn.q_proj", "attn_q",
- "self_attn.v_proj", "attn_v",
- "model.norm", "output_norm",
- "model.embed_tokens", "token_embd",
- }
- }
|