convert_gemma2.go 1.8 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051
  1. package convert
  2. import "github.com/ollama/ollama/fs/ggml"
  3. type gemma2Model struct {
  4. gemmaModel
  5. SlidingWindow uint32 `json:"sliding_window"`
  6. AttentionLogitSoftcap float32 `json:"attn_logit_softcapping"`
  7. FinalLogitSoftcap float32 `json:"final_logit_softcapping"`
  8. }
  9. func (p *gemma2Model) KV(t *Tokenizer) ggml.KV {
  10. kv := p.ModelParameters.KV(t)
  11. kv["general.architecture"] = "gemma2"
  12. kv["gemma2.context_length"] = p.MaxPositionEmbeddings
  13. kv["gemma2.embedding_length"] = p.HiddenSize
  14. kv["gemma2.block_count"] = p.HiddenLayers
  15. kv["gemma2.feed_forward_length"] = p.IntermediateSize
  16. kv["gemma2.attention.head_count"] = p.NumAttentionHeads
  17. kv["gemma2.attention.head_count_kv"] = p.NumKeyValueHeads
  18. kv["gemma2.attention.layer_norm_rms_epsilon"] = p.RMSNormEPS
  19. kv["gemma2.attention.key_length"] = p.HeadDim
  20. kv["gemma2.attention.value_length"] = p.HeadDim
  21. kv["gemma2.attention.sliding_window"] = p.SlidingWindow
  22. kv["gemma2.attn_logit_softcapping"] = p.AttentionLogitSoftcap
  23. kv["gemma2.final_logit_softcapping"] = p.FinalLogitSoftcap
  24. kv["tokenizer.ggml.eot_token_id"] = uint32(107)
  25. kv["tokenizer.ggml.middle_token_id"] = uint32(68)
  26. kv["tokenizer.ggml.prefix_token_id"] = uint32(67)
  27. kv["tokenizer.ggml.suffix_token_id"] = uint32(69)
  28. return kv
  29. }
  30. func (p *gemma2Model) Replacements() []string {
  31. return []string{
  32. "model.embed_tokens", "token_embd",
  33. "model.norm", "output_norm",
  34. "model.layers", "blk",
  35. "input_layernorm", "attn_norm",
  36. "self_attn.q_proj", "attn_q",
  37. "self_attn.k_proj", "attn_k",
  38. "self_attn.v_proj", "attn_v",
  39. "self_attn.o_proj", "attn_output",
  40. "mlp.gate_proj", "ffn_gate",
  41. "mlp.down_proj", "ffn_down",
  42. "mlp.up_proj", "ffn_up",
  43. "post_attention_layernorm", "post_attention_norm",
  44. "pre_feedforward_layernorm", "ffn_norm",
  45. "post_feedforward_layernorm", "post_ffw_norm",
  46. }
  47. }