convert_llama.go 6.2 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213
  1. package convert
  2. import (
  3. "cmp"
  4. "fmt"
  5. "math"
  6. "strings"
  7. "github.com/pdevine/tensor"
  8. "github.com/pdevine/tensor/native"
  9. "github.com/ollama/ollama/fs/ggml"
  10. )
  11. type llamaModel struct {
  12. ModelParameters
  13. NLayers uint32 `json:"n_layers"`
  14. NumHiddenLayers uint32 `json:"num_hidden_layers"`
  15. NLayer uint32 `json:"n_layer"`
  16. MaxPositionEmbeddings uint32 `json:"max_position_embeddings"`
  17. NCtx uint32 `json:"n_ctx"`
  18. HiddenSize uint32 `json:"hidden_size"`
  19. NEmbd uint32 `json:"n_embd"`
  20. IntermediateSize uint32 `json:"intermediate_size"`
  21. NInner uint32 `json:"n_inner"`
  22. NumAttentionHeads uint32 `json:"num_attention_heads"`
  23. NHead uint32 `json:"n_head"`
  24. NumKeyValueHeads uint32 `json:"num_key_value_heads"`
  25. RopeTheta float32 `json:"rope_theta"`
  26. RopeScaling struct {
  27. Type string `json:"type"`
  28. RopeType string `json:"rope_type"`
  29. Factor float32 `json:"factor"`
  30. LowFrequencyFactor float32 `json:"low_freq_factor"`
  31. HighFrequencyFactor float32 `json:"high_freq_factor"`
  32. OriginalMaxPositionalEmbeddings uint32 `json:"original_max_positional_embeddings"`
  33. factors ropeFactor
  34. } `json:"rope_scaling"`
  35. RMSNormEPS float32 `json:"rms_norm_eps"`
  36. LayerNormEPS float32 `json:"layer_norm_eps"`
  37. LayerNormEpsilon float32 `json:"layer_norm_epsilon"`
  38. NormEpsilon float32 `json:"norm_epsilon"`
  39. HeadDim uint32 `json:"head_dim"`
  40. }
  41. var _ ModelConverter = (*llamaModel)(nil)
  42. func (p *llamaModel) KV(t *Tokenizer) ggml.KV {
  43. kv := p.ModelParameters.KV(t)
  44. kv["general.architecture"] = "llama"
  45. kv["llama.vocab_size"] = p.VocabSize
  46. kv["llama.block_count"] = cmp.Or(p.NLayers, p.NumHiddenLayers, p.NLayer)
  47. if contextLength := cmp.Or(p.MaxPositionEmbeddings, p.NCtx); contextLength > 0 {
  48. kv["llama.context_length"] = contextLength
  49. }
  50. if embeddingLength := cmp.Or(p.HiddenSize, p.NEmbd); embeddingLength > 0 {
  51. kv["llama.embedding_length"] = cmp.Or(p.HiddenSize, p.NEmbd)
  52. }
  53. if feedForwardLength := cmp.Or(p.IntermediateSize, p.NInner); feedForwardLength > 0 {
  54. kv["llama.feed_forward_length"] = cmp.Or(p.IntermediateSize, p.NInner)
  55. }
  56. if headCount := cmp.Or(p.NumAttentionHeads, p.NHead); headCount > 0 {
  57. kv["llama.attention.head_count"] = cmp.Or(p.NumAttentionHeads, p.NHead)
  58. kv["llama.rope.dimension_count"] = p.HiddenSize / headCount
  59. }
  60. if p.RopeTheta > 0 {
  61. kv["llama.rope.freq_base"] = p.RopeTheta
  62. }
  63. if p.RopeScaling.Type == "linear" {
  64. kv["llama.rope.scaling.type"] = p.RopeScaling.Type
  65. kv["llama.rope.scaling.factor"] = p.RopeScaling.Factor
  66. } else if p.RopeScaling.RopeType == "llama3" {
  67. dim := p.HiddenSize / p.NumAttentionHeads
  68. for i := uint32(0); i < dim; i += 2 {
  69. factor := cmp.Or(p.RopeScaling.Factor, 8.0)
  70. factorLow := cmp.Or(p.RopeScaling.LowFrequencyFactor, 1.0)
  71. factorHigh := cmp.Or(p.RopeScaling.HighFrequencyFactor, 4.0)
  72. original := cmp.Or(p.RopeScaling.OriginalMaxPositionalEmbeddings, 8192)
  73. lambdaLow := float32(original) / factorLow
  74. lambdaHigh := float32(original) / factorHigh
  75. lambda := 2 * math.Pi * math.Pow(float64(p.RopeTheta), float64(i)/float64(dim))
  76. if lambda < float64(lambdaHigh) {
  77. p.RopeScaling.factors = append(p.RopeScaling.factors, 1.0)
  78. } else if lambda > float64(lambdaLow) {
  79. p.RopeScaling.factors = append(p.RopeScaling.factors, factor)
  80. } else {
  81. smooth := (float32(original)/float32(lambda) - factorLow) / (factorHigh - factorLow)
  82. p.RopeScaling.factors = append(p.RopeScaling.factors, 1.0/((1-smooth)/factor+smooth))
  83. }
  84. }
  85. }
  86. if p.NumKeyValueHeads > 0 {
  87. kv["llama.attention.head_count_kv"] = p.NumKeyValueHeads
  88. }
  89. if p.RMSNormEPS > 0 {
  90. kv["llama.attention.layer_norm_rms_epsilon"] = p.RMSNormEPS
  91. }
  92. if layerNormEpsilon := cmp.Or(p.LayerNormEPS, p.LayerNormEpsilon, p.NormEpsilon); layerNormEpsilon > 0 {
  93. kv["llama.attention.layer_norm_epsilon"] = layerNormEpsilon
  94. }
  95. if p.HeadDim > 0 {
  96. kv["llama.attention.key_length"] = p.HeadDim
  97. kv["llama.attention.value_length"] = p.HeadDim
  98. }
  99. return kv
  100. }
  101. func (p *llamaModel) Tensors(ts []Tensor) []ggml.Tensor {
  102. var out []ggml.Tensor
  103. if p.RopeScaling.factors != nil {
  104. out = append(out, ggml.Tensor{
  105. Name: "rope_freqs.weight",
  106. Kind: 0,
  107. Shape: []uint64{uint64(len(p.RopeScaling.factors))},
  108. WriterTo: p.RopeScaling.factors,
  109. })
  110. }
  111. for _, t := range ts {
  112. if strings.HasSuffix(t.Name(), "attn_q.weight") ||
  113. strings.HasSuffix(t.Name(), "attn_k.weight") {
  114. t.SetRepacker(p.repack)
  115. }
  116. out = append(out, ggml.Tensor{
  117. Name: t.Name(),
  118. Kind: t.Kind(),
  119. Shape: t.Shape(),
  120. WriterTo: t,
  121. })
  122. }
  123. return out
  124. }
  125. func (p *llamaModel) Replacements() []string {
  126. return []string{
  127. "lm_head", "output",
  128. "model.embed_tokens", "token_embd",
  129. "model.norm", "output_norm",
  130. "model.layers", "blk",
  131. "input_layernorm", "attn_norm",
  132. "self_attn.q_proj", "attn_q",
  133. "self_attn.k_proj", "attn_k",
  134. "self_attn.v_proj", "attn_v",
  135. "self_attn.o_proj", "attn_output",
  136. "mlp.gate_proj", "ffn_gate",
  137. "mlp.down_proj", "ffn_down",
  138. "mlp.up_proj", "ffn_up",
  139. "post_attention_layernorm", "ffn_norm",
  140. }
  141. }
  142. func (p *llamaModel) repack(name string, data []float32, shape []uint64) ([]float32, error) {
  143. var dims []int
  144. for _, dim := range shape {
  145. dims = append(dims, int(dim))
  146. }
  147. var heads uint32
  148. if strings.HasSuffix(name, "attn_q.weight") {
  149. heads = p.NumAttentionHeads
  150. } else if strings.HasSuffix(name, "attn_k.weight") {
  151. heads = cmp.Or(p.NumKeyValueHeads, p.NumAttentionHeads)
  152. } else {
  153. return nil, fmt.Errorf("unknown tensor for repack: %s", name)
  154. }
  155. n := tensor.New(tensor.WithShape(dims...), tensor.WithBacking(data))
  156. if err := n.Reshape(append([]int{int(heads), 2, dims[0] / int(heads) / 2}, dims[1:]...)...); err != nil {
  157. return nil, err
  158. }
  159. if err := n.T(0, 2, 1, 3); err != nil {
  160. return nil, err
  161. }
  162. if err := n.Reshape(dims...); err != nil {
  163. return nil, err
  164. }
  165. if err := n.Transpose(); err != nil {
  166. return nil, err
  167. }
  168. ts, err := native.SelectF32(n, 1)
  169. if err != nil {
  170. return nil, err
  171. }
  172. var f32s []float32
  173. for _, t := range ts {
  174. f32s = append(f32s, t...)
  175. }
  176. return f32s, nil
  177. }