123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887 |
- // NOTE: This is modified from clip.cpp for Mllama only
- #include "mllama.h"
- #include "ggml-alloc.h"
- #include "ggml-backend.h"
- #include "ggml-cpu.h"
- #include "ggml.h"
- #include "gguf.h"
- #ifdef GGML_USE_CUDA
- #include "ggml-cuda.h"
- #endif
- #ifdef GGML_USE_METAL
- #include "ggml-metal.h"
- #endif
- #ifdef GGML_USE_CANN
- #include "ggml-cann.h"
- #endif
- #ifdef GGML_USE_VULKAN
- #include "ggml-vulkan.h"
- #endif
- #include <algorithm>
- #include <cmath>
- #include <cstdarg>
- #include <cstdlib>
- #include <cstring>
- #include <fstream>
- #include <stdexcept>
- #include <vector>
- #define REQUIRE(x) \
- do { \
- if (!(x)) { \
- throw std::runtime_error("REQUIRE failed: " #x); \
- } \
- } while (0)
- #define LOG(fmt, ...) fprintf(stderr, "%s: " fmt "\n", __func__, ##__VA_ARGS__)
- #if defined(_WIN32)
- #define WIN32_LEAN_AND_MEAN
- #ifndef NOMINMAX
- #define NOMINMAX
- #endif
- #include <windows.h>
- #if __GLIBCXX__
- #include <cstdio>
- #include <ext/stdio_filebuf.h>
- #include <fcntl.h>
- #endif
- #endif
- struct mllama_image {
- int width;
- int height;
- int num_channels = 3;
- int num_tiles = 4;
- int aspect_ratio_id;
- std::vector<float> data;
- };
- static std::string format(const char *fmt, ...) {
- va_list args;
- va_start(args, fmt);
- std::vector<char> b(128);
- int n = vsnprintf(b.data(), b.size(), fmt, args);
- REQUIRE(n >= 0 && n < b.size());
- va_end(args);
- return std::string(b.data(), b.size());
- }
- //
- // utilities to get data from a gguf file
- //
- static int get_key_index(const gguf_context *ctx, const char *key) {
- int key_index = gguf_find_key(ctx, key);
- REQUIRE(key_index != -1);
- return key_index;
- }
- static std::vector<uint32_t> get_u32_array(const gguf_context *ctx, const std::string &key) {
- const int i = get_key_index(ctx, key.c_str());
- const int n = gguf_get_arr_n(ctx, i);
- const uint32_t *data = (uint32_t *)gguf_get_arr_data(ctx, i);
- std::vector<uint32_t> s(n);
- for (size_t j = 0; j < s.size(); j++) {
- s[j] = data[j];
- }
- return s;
- }
- static uint32_t get_u32(const gguf_context *ctx, const std::string &key) {
- return gguf_get_val_u32(ctx, get_key_index(ctx, key.c_str()));
- }
- static float get_f32(const gguf_context *ctx, const std::string &key) {
- return gguf_get_val_f32(ctx, get_key_index(ctx, key.c_str()));
- }
- static std::string get_ftype(int ftype) {
- return ggml_type_name(static_cast<ggml_type>(ftype));
- }
- //
- // mllama layers
- //
- struct mllama_hparams {
- uint32_t image_size;
- uint32_t patch_size;
- uint32_t hidden_size;
- uint32_t n_intermediate;
- uint32_t projection_dim;
- uint32_t n_head;
- uint32_t n_layer;
- uint32_t n_global_layer;
- uint32_t n_tiles;
- float eps;
- std::vector<bool> intermediate_layers;
- };
- struct mllama_layer {
- // attention
- struct ggml_tensor *k_w;
- struct ggml_tensor *k_b;
- struct ggml_tensor *q_w;
- struct ggml_tensor *q_b;
- struct ggml_tensor *v_w;
- struct ggml_tensor *v_b;
- struct ggml_tensor *o_w;
- struct ggml_tensor *o_b;
- struct ggml_tensor *attn_gate;
- // layernorm 1
- struct ggml_tensor *ln_1_w;
- struct ggml_tensor *ln_1_b;
- // ff
- struct ggml_tensor *ff_i_w;
- struct ggml_tensor *ff_i_b;
- struct ggml_tensor *ff_o_w;
- struct ggml_tensor *ff_o_b;
- struct ggml_tensor *ff_gate;
- // layernorm 2
- struct ggml_tensor *ln_2_w;
- struct ggml_tensor *ln_2_b;
- };
- struct mllama_vision_model {
- struct mllama_hparams hparams;
- // embeddings
- struct ggml_tensor *class_embedding;
- struct ggml_tensor *patch_embeddings;
- struct ggml_tensor *position_embeddings;
- struct ggml_tensor *position_embeddings_gate;
- struct ggml_tensor *tile_position_embeddings;
- struct ggml_tensor *tile_position_embeddings_gate;
- struct ggml_tensor *pre_tile_position_embeddings;
- struct ggml_tensor *pre_tile_position_embeddings_gate;
- struct ggml_tensor *post_tile_position_embeddings;
- struct ggml_tensor *post_tile_position_embeddings_gate;
- struct ggml_tensor *pre_ln_w;
- struct ggml_tensor *pre_ln_b;
- std::vector<mllama_layer> layers;
- std::vector<mllama_layer> global_layers;
- struct ggml_tensor *post_ln_w;
- struct ggml_tensor *post_ln_b;
- struct ggml_tensor *mm_0_w;
- struct ggml_tensor *mm_0_b;
- };
- struct mllama_ctx {
- struct mllama_vision_model vision_model;
- uint32_t ftype = 1;
- struct gguf_context *ctx_gguf;
- struct ggml_context *ctx_data;
- std::vector<uint8_t> buf_compute_meta;
- // memory buffers to evaluate the model
- ggml_backend_buffer_t params_buffer = nullptr;
- ggml_backend_t backend = nullptr;
- ggml_gallocr_t compute_alloc = nullptr;
- };
- static ggml_tensor *mllama_image_build_encoder_layer(
- struct ggml_context *ctx0, const size_t il, const struct mllama_layer &layer, struct ggml_tensor *embeddings,
- const float eps, const int hidden_size, const int batch_size, const int n_head, const int d_head) {
- struct ggml_tensor *cur = embeddings;
- {
- // layernorm1
- cur = ggml_norm(ctx0, cur, eps);
- cur = ggml_add(ctx0, ggml_mul(ctx0, cur, layer.ln_1_w), layer.ln_1_b);
- ggml_set_name(cur, format("%d pre layernorm", il).c_str());
- }
- {
- // self-attention
- struct ggml_tensor *Q = ggml_mul_mat(ctx0, layer.q_w, cur);
- if (layer.q_b != nullptr) {
- Q = ggml_add(ctx0, Q, layer.q_b);
- }
- Q = ggml_reshape_4d(ctx0, Q, d_head, n_head, Q->ne[1], batch_size);
- Q = ggml_cont(ctx0, ggml_permute(ctx0, Q, 0, 2, 1, 3));
- ggml_set_name(Q, format("%d query", il).c_str());
- struct ggml_tensor *K = ggml_mul_mat(ctx0, layer.k_w, cur);
- if (layer.k_b != nullptr) {
- K = ggml_add(ctx0, K, layer.k_b);
- }
- K = ggml_reshape_4d(ctx0, K, d_head, n_head, K->ne[1], batch_size);
- K = ggml_cont(ctx0, ggml_permute(ctx0, K, 0, 2, 1, 3));
- ggml_set_name(K, format("%d key", il).c_str());
- struct ggml_tensor *V = ggml_mul_mat(ctx0, layer.v_w, cur);
- if (layer.v_b != nullptr) {
- V = ggml_add(ctx0, V, layer.v_b);
- }
- V = ggml_reshape_4d(ctx0, V, d_head, n_head, V->ne[1], batch_size);
- V = ggml_cont(ctx0, ggml_permute(ctx0, V, 1, 2, 0, 3));
- ggml_set_name(V, format("%d value", il).c_str());
- struct ggml_tensor *KQ = ggml_mul_mat(ctx0, K, Q);
- KQ = ggml_scale_inplace(ctx0, KQ, 1.0f / sqrtf((float)d_head));
- KQ = ggml_soft_max_inplace(ctx0, KQ);
- ggml_set_name(KQ, format("%d KQ", il).c_str());
- struct ggml_tensor *KQV = ggml_mul_mat(ctx0, V, KQ);
- KQV = ggml_reshape_4d(ctx0, KQV, d_head, KQV->ne[1], n_head, batch_size);
- KQV = ggml_permute(ctx0, KQV, 0, 2, 1, 3);
- KQV = ggml_cont_3d(ctx0, KQV, hidden_size, KQV->ne[2], batch_size);
- ggml_set_name(KQV, format("%d KQV", il).c_str());
- cur = ggml_mul_mat(ctx0, layer.o_w, KQV);
- if (layer.o_b != nullptr) {
- cur = ggml_add(ctx0, cur, layer.o_b);
- }
- ggml_set_name(cur, format("%d self attention", il).c_str());
- if (layer.attn_gate != nullptr) {
- cur = ggml_mul_inplace(ctx0, cur, layer.attn_gate);
- ggml_set_name(cur, format("%d self attention gate", il).c_str());
- }
- }
- cur = ggml_add(ctx0, cur, embeddings);
- ggml_set_name(cur, format("%d residual", il).c_str());
- embeddings = cur;
- {
- // layernorm2
- cur = ggml_norm(ctx0, cur, eps);
- cur = ggml_add(ctx0, ggml_mul(ctx0, cur, layer.ln_2_w), layer.ln_2_b);
- ggml_set_name(cur, format("%d post layernorm", il).c_str());
- }
- {
- // feed forward
- cur = ggml_add(ctx0, ggml_mul_mat(ctx0, layer.ff_i_w, cur), layer.ff_i_b);
- cur = ggml_gelu_inplace(ctx0, cur);
- cur = ggml_add(ctx0, ggml_mul_mat(ctx0, layer.ff_o_w, cur), layer.ff_o_b);
- ggml_set_name(cur, format("%d feed forward", il).c_str());
- if (layer.ff_gate != nullptr) {
- cur = ggml_mul_inplace(ctx0, cur, layer.ff_gate);
- ggml_set_name(cur, format("%d feed forward gate", il).c_str());
- }
- }
- // residual 2
- cur = ggml_add(ctx0, cur, embeddings);
- ggml_set_name(cur, format("%d residual", il).c_str());
- embeddings = cur;
- return embeddings;
- }
- static ggml_cgraph *mllama_image_build_graph(mllama_ctx *ctx, const mllama_image_batch *imgs) {
- const auto &model = ctx->vision_model;
- const auto &hparams = model.hparams;
- const int image_size = hparams.image_size;
- const int image_size_width = image_size;
- const int image_size_height = image_size;
- const int patch_size = hparams.patch_size;
- const int num_patches = ((image_size_width / patch_size) * (image_size_height / patch_size));
- const int num_positions = num_patches + (model.class_embedding == nullptr ? 0 : 1);
- const int hidden_size = hparams.hidden_size;
- const int n_head = hparams.n_head;
- const int d_head = hidden_size / n_head;
- const int batch_size = imgs->size;
- REQUIRE(batch_size == 1);
- int num_tiles = 4;
- int num_channels = 3;
- if (imgs->data != nullptr) {
- num_tiles = imgs->data[0].num_tiles > 0 ? imgs->data[0].num_tiles : num_tiles;
- num_channels = imgs->data[0].num_channels > 0 ? imgs->data[0].num_channels : num_channels;
- }
- struct ggml_init_params params = {
- ctx->buf_compute_meta.size(), // mem_size
- ctx->buf_compute_meta.data(), // mem_buffer
- true, // no_alloc
- };
- struct ggml_context *ctx0 = ggml_init(params);
- struct ggml_cgraph *gf = ggml_new_graph(ctx0);
- struct ggml_tensor *inp_raw = ggml_new_tensor_4d(ctx0, GGML_TYPE_F32, image_size_width, image_size_height, num_channels, num_tiles);
- ggml_set_name(inp_raw, "inp_raw");
- ggml_set_input(inp_raw);
- struct ggml_tensor *inp = ggml_conv_2d(ctx0, model.patch_embeddings, inp_raw, patch_size, patch_size, 0, 0, 1, 1);
- inp = ggml_reshape_3d(ctx0, inp, num_patches, hidden_size, num_tiles);
- inp = ggml_cont(ctx0, ggml_permute(ctx0, inp, 1, 0, 2, 3));
- struct ggml_tensor *aspect_ratios = ggml_new_tensor_1d(ctx0, GGML_TYPE_I32, imgs->size);
- ggml_set_name(aspect_ratios, "aspect_ratios");
- ggml_set_input(aspect_ratios);
- if (model.pre_tile_position_embeddings != nullptr) {
- struct ggml_tensor *pre_tile_position_embeddings = ggml_get_rows(ctx0, model.pre_tile_position_embeddings, aspect_ratios);
- ggml_set_name(pre_tile_position_embeddings, "pre_tile_position_embeddings");
- pre_tile_position_embeddings = ggml_reshape_3d(ctx0, pre_tile_position_embeddings, hidden_size, 1, num_tiles);
- if (model.pre_tile_position_embeddings_gate != nullptr) {
- pre_tile_position_embeddings = ggml_mul_inplace(ctx0, pre_tile_position_embeddings, model.pre_tile_position_embeddings_gate);
- }
- inp = ggml_add(ctx0, inp, pre_tile_position_embeddings);
- }
- struct ggml_tensor *embeddings = inp;
- if (model.class_embedding != nullptr) {
- // concat class_embeddings and patch_embeddings
- embeddings = ggml_new_tensor_3d(ctx0, GGML_TYPE_F32, hidden_size, num_positions, num_tiles);
- ggml_set_name(embeddings, "embeddings");
- ggml_set_input(embeddings);
- for (int i = 0; i < num_tiles; ++i) {
- // repeat class embeddings for each tile
- embeddings = ggml_acc_inplace(ctx0, embeddings, model.class_embedding, embeddings->nb[1], embeddings->nb[2], embeddings->nb[3], i * embeddings->nb[2]);
- }
- embeddings = ggml_acc_inplace(ctx0, embeddings, inp, embeddings->nb[1], embeddings->nb[2], embeddings->nb[3], model.class_embedding->nb[1]);
- }
- struct ggml_tensor *positions = ggml_new_tensor_1d(ctx0, GGML_TYPE_I32, num_positions);
- ggml_set_name(positions, "positions");
- ggml_set_input(positions);
- struct ggml_tensor *position_embd = ggml_get_rows(ctx0, model.position_embeddings, positions);
- if (model.position_embeddings_gate != nullptr) {
- position_embd = ggml_mul_inplace(ctx0, position_embd, model.position_embeddings_gate);
- }
- embeddings = ggml_add(ctx0, embeddings, position_embd);
- if (model.tile_position_embeddings != nullptr) {
- struct ggml_tensor *tile_position_embeddings = ggml_get_rows(ctx0, model.tile_position_embeddings, aspect_ratios);
- ggml_set_name(tile_position_embeddings, "tile_position_embeddings");
- tile_position_embeddings = ggml_reshape_3d(ctx0, tile_position_embeddings, hidden_size, num_positions, num_tiles);
- if (model.tile_position_embeddings_gate != nullptr) {
- tile_position_embeddings = ggml_mul_inplace(ctx0, tile_position_embeddings, model.tile_position_embeddings_gate);
- }
- embeddings = ggml_add(ctx0, embeddings, tile_position_embeddings);
- }
- // pre-layernorm
- if (model.pre_ln_w != nullptr) {
- embeddings = ggml_mul(ctx0, ggml_norm(ctx0, embeddings, hparams.eps), model.pre_ln_w);
- if (model.pre_ln_b != nullptr) {
- embeddings = ggml_add(ctx0, embeddings, model.pre_ln_b);
- }
- ggml_set_name(embeddings, "pre layernorm");
- }
- const int num_padding_patches = 8 - (embeddings->ne[1] % 8) % 8;
- embeddings = ggml_pad(ctx0, embeddings, 0, num_padding_patches, 0, 0);
- embeddings = ggml_view_3d(ctx0, embeddings, embeddings->ne[0], embeddings->ne[1] * embeddings->ne[2], batch_size, embeddings->nb[1], embeddings->nb[2] * embeddings->ne[3], 0);
- std::vector<struct ggml_tensor *> intermediate_embeddings;
- // encoder
- for (size_t il = 0; il < model.layers.size(); il++) {
- if (hparams.intermediate_layers[il]) {
- intermediate_embeddings.push_back(embeddings);
- }
- embeddings = mllama_image_build_encoder_layer(
- ctx0, il, model.layers[il], embeddings,
- hparams.eps, hidden_size, batch_size, n_head, d_head);
- }
- // post-layernorm
- if (model.post_ln_w != nullptr) {
- embeddings = ggml_mul(ctx0, ggml_norm(ctx0, embeddings, hparams.eps), model.post_ln_w);
- if (model.post_ln_b != nullptr) {
- embeddings = ggml_add(ctx0, embeddings, model.post_ln_b);
- }
- ggml_set_name(embeddings, "post layernorm");
- }
- embeddings = ggml_reshape_3d(ctx0, embeddings, hidden_size, num_positions + num_padding_patches, num_tiles);
- if (model.post_tile_position_embeddings != nullptr) {
- struct ggml_tensor *post_tile_position_embeddings = ggml_get_rows(ctx0, model.post_tile_position_embeddings, aspect_ratios);
- ggml_set_name(post_tile_position_embeddings, "post_tile_position_embeddings");
- post_tile_position_embeddings = ggml_reshape_3d(ctx0, post_tile_position_embeddings, hidden_size, 1, num_tiles);
- if (model.post_tile_position_embeddings_gate != nullptr) {
- post_tile_position_embeddings = ggml_mul(ctx0, post_tile_position_embeddings, model.post_tile_position_embeddings_gate);
- }
- embeddings = ggml_add(ctx0, embeddings, post_tile_position_embeddings);
- }
- embeddings = ggml_reshape_3d(ctx0, embeddings, hidden_size, num_tiles * (num_positions + num_padding_patches), 1);
- // global encoder
- for (size_t il = 0; il < model.global_layers.size(); il++) {
- embeddings = mllama_image_build_encoder_layer(
- ctx0, il, model.global_layers[il], embeddings,
- hparams.eps, hidden_size, batch_size, n_head, d_head);
- }
- struct ggml_tensor *stacked_embeddings = ggml_new_tensor_3d(ctx0, GGML_TYPE_F32, 0, hidden_size, (num_positions + num_padding_patches) * num_tiles);
- for (size_t i = 0; i < intermediate_embeddings.size(); ++i) {
- stacked_embeddings = ggml_concat(ctx0, stacked_embeddings, ggml_reshape_3d(ctx0, intermediate_embeddings[i], 1, intermediate_embeddings[i]->ne[0], intermediate_embeddings[i]->ne[1]), 0);
- }
- stacked_embeddings = ggml_reshape_4d(ctx0, stacked_embeddings, intermediate_embeddings.size() * hidden_size, num_positions + num_padding_patches, num_tiles, batch_size);
- stacked_embeddings = ggml_unpad(ctx0, stacked_embeddings, 0, num_padding_patches, 0, 0);
- embeddings = ggml_reshape_3d(ctx0, embeddings, hidden_size, num_positions + num_padding_patches, num_tiles);
- embeddings = ggml_unpad(ctx0, embeddings, 0, num_padding_patches, 0, 0);
- embeddings = ggml_concat(ctx0, embeddings, stacked_embeddings, 0);
- // mllama projector
- embeddings = ggml_add(ctx0, ggml_mul_mat(ctx0, model.mm_0_w, embeddings), model.mm_0_b);
- ggml_set_name(embeddings, "multi modal projector");
- // build the graph
- ggml_build_forward_expand(gf, embeddings);
- ggml_free(ctx0);
- return gf;
- }
- static struct ggml_tensor *mllama_tensor_load(struct ggml_context *ctx, const char *name, const bool optional) {
- struct ggml_tensor *cur = ggml_get_tensor(ctx, name);
- REQUIRE(cur != nullptr || optional);
- return cur;
- }
- static std::vector<struct mllama_layer> mllama_layers_load(struct ggml_context *ctx, const char *prefix, const int n) {
- std::vector<struct mllama_layer> layers(n);
- for (size_t i = 0; i < layers.size(); i++) {
- auto &layer = layers[i];
- layer.ln_1_w = mllama_tensor_load(ctx, format("%s.blk.%d.ln1.weight", prefix, i).c_str(), false);
- layer.ln_1_b = mllama_tensor_load(ctx, format("%s.blk.%d.ln1.bias", prefix, i).c_str(), false);
- layer.ln_2_w = mllama_tensor_load(ctx, format("%s.blk.%d.ln2.weight", prefix, i).c_str(), false);
- layer.ln_2_b = mllama_tensor_load(ctx, format("%s.blk.%d.ln2.bias", prefix, i).c_str(), false);
- layer.k_w = mllama_tensor_load(ctx, format("%s.blk.%d.attn_k.weight", prefix, i).c_str(), false);
- layer.k_b = mllama_tensor_load(ctx, format("%s.blk.%d.attn_k.bias", prefix, i).c_str(), true);
- layer.q_w = mllama_tensor_load(ctx, format("%s.blk.%d.attn_q.weight", prefix, i).c_str(), false);
- layer.q_b = mllama_tensor_load(ctx, format("%s.blk.%d.attn_q.bias", prefix, i).c_str(), true);
- layer.v_w = mllama_tensor_load(ctx, format("%s.blk.%d.attn_v.weight", prefix, i).c_str(), false);
- layer.v_b = mllama_tensor_load(ctx, format("%s.blk.%d.attn_v.bias", prefix, i).c_str(), true);
- layer.o_w = mllama_tensor_load(ctx, format("%s.blk.%d.attn_out.weight", prefix, i).c_str(), false);
- layer.o_b = mllama_tensor_load(ctx, format("%s.blk.%d.attn_out.bias", prefix, i).c_str(), true);
- layer.ff_i_w = mllama_tensor_load(ctx, format("%s.blk.%d.ffn_down.weight", prefix, i).c_str(), false);
- layer.ff_i_b = mllama_tensor_load(ctx, format("%s.blk.%d.ffn_down.bias", prefix, i).c_str(), false);
- layer.ff_o_w = mllama_tensor_load(ctx, format("%s.blk.%d.ffn_up.weight", prefix, i).c_str(), false);
- layer.ff_o_b = mllama_tensor_load(ctx, format("%s.blk.%d.ffn_up.bias", prefix, i).c_str(), false);
- layer.attn_gate = mllama_tensor_load(ctx, format("%s.blk.%d.attn_gate", prefix, i).c_str(), true);
- layer.ff_gate = mllama_tensor_load(ctx, format("%s.blk.%d.ffn_gate", prefix, i).c_str(), true);
- }
- return layers;
- }
- // read and create ggml_context containing the tensors and their data
- struct mllama_ctx *mllama_model_load(const char *fname, const int verbosity = 1) {
- struct ggml_context *meta = nullptr;
- struct gguf_init_params params = {
- true, // no_alloc
- &meta, // ctx
- };
- struct gguf_context *ctx = gguf_init_from_file(fname, params);
- REQUIRE(ctx != nullptr);
- if (verbosity >= 1) {
- const int n_tensors = gguf_get_n_tensors(ctx);
- const int n_kv = gguf_get_n_kv(ctx);
- const std::string ftype = get_ftype(get_u32(ctx, "general.file_type"));
- const int idx_desc = get_key_index(ctx, "general.description");
- const std::string description = gguf_get_val_str(ctx, idx_desc);
- const int idx_name = gguf_find_key(ctx, "general.name");
- if (idx_name != -1) { // make name optional temporarily as some of the uploaded models missing it due to a bug
- const std::string name = gguf_get_val_str(ctx, idx_name);
- LOG("model name: %s", name.c_str());
- }
- LOG("description: %s", description.c_str());
- LOG("GGUF version: %d", gguf_get_version(ctx));
- LOG("alignment: %zu", gguf_get_alignment(ctx));
- LOG("n_tensors: %d", n_tensors);
- LOG("n_kv: %d", n_kv);
- LOG("ftype: %s", ftype.c_str());
- LOG("");
- }
- const int n_tensors = gguf_get_n_tensors(ctx);
- mllama_ctx *new_mllama = new mllama_ctx{};
- ggml_backend_t backend = ggml_backend_init_best();
- if (backend == nullptr) {
- LOG("%s: failed to initialize backend\n", __func__);
- mllama_free(new_mllama);
- gguf_free(ctx);
- return nullptr;
- }
- LOG("%s: using %s backend\n", __func__, ggml_backend_name(backend));
- new_mllama->backend = backend;
- // load tensors
- {
- std::vector<uint8_t> read_buf;
- struct ggml_init_params params = {
- (n_tensors + 1) * ggml_tensor_overhead(), // mem_size
- nullptr, // mem_buffer
- true, // no_alloc
- };
- new_mllama->ctx_data = ggml_init(params);
- if (!new_mllama->ctx_data) {
- LOG("ggml_init() failed");
- mllama_free(new_mllama);
- gguf_free(ctx);
- return nullptr;
- }
- #ifdef _WIN32
- int wlen = MultiByteToWideChar(CP_UTF8, 0, fname, -1, NULL, 0);
- if (!wlen) {
- return NULL;
- }
- wchar_t * wbuf = (wchar_t *) malloc(wlen * sizeof(wchar_t));
- wlen = MultiByteToWideChar(CP_UTF8, 0, fname, -1, wbuf, wlen);
- if (!wlen) {
- free(wbuf);
- return NULL;
- }
- #if __GLIBCXX__
- int fd = _wopen(wbuf, _O_RDONLY | _O_BINARY);
- __gnu_cxx::stdio_filebuf<char> buffer(fd, std::ios_base::in);
- std::istream fin(&buffer);
- #else // MSVC
- // unused in our current build
- auto fin = std::ifstream(wbuf, std::ios::binary);
- #endif
- free(wbuf);
- #else
- auto fin = std::ifstream(fname, std::ios::binary);
- #endif
- if (!fin) {
- LOG("cannot open model file for loading tensors\n");
- mllama_free(new_mllama);
- gguf_free(ctx);
- return nullptr;
- }
- // add tensors to context
- for (int i = 0; i < n_tensors; ++i) {
- const char *name = gguf_get_tensor_name(ctx, i);
- struct ggml_tensor *t = ggml_get_tensor(meta, name);
- struct ggml_tensor *cur = ggml_dup_tensor(new_mllama->ctx_data, t);
- ggml_set_name(cur, name);
- }
- // alloc memory and offload data
- new_mllama->params_buffer = ggml_backend_alloc_ctx_tensors(new_mllama->ctx_data, new_mllama->backend);
- for (int i = 0; i < n_tensors; ++i) {
- const char *name = gguf_get_tensor_name(ctx, i);
- struct ggml_tensor *cur = ggml_get_tensor(new_mllama->ctx_data, name);
- const size_t offset = gguf_get_data_offset(ctx) + gguf_get_tensor_offset(ctx, i);
- fin.seekg(offset, std::ios::beg);
- if (!fin) {
- LOG("failed to seek for tensor %s\n", name);
- mllama_free(new_mllama);
- gguf_free(ctx);
- return nullptr;
- }
- int num_bytes = ggml_nbytes(cur);
- if (ggml_backend_buffer_is_host(new_mllama->params_buffer)) {
- // for the CPU and Metal backend, we can read directly into the tensor
- fin.read(reinterpret_cast<char *>(cur->data), num_bytes);
- } else {
- // read into a temporary buffer first, then copy to device memory
- read_buf.resize(num_bytes);
- fin.read(reinterpret_cast<char *>(read_buf.data()), num_bytes);
- ggml_backend_tensor_set(cur, read_buf.data(), 0, num_bytes);
- }
- }
- #if defined(_WIN32) && defined(__GLIBCXX__)
- close(fd);
- #else
- fin.close();
- #endif
- }
- // vision model
- // load vision model
- auto &vision_model = new_mllama->vision_model;
- auto &hparams = vision_model.hparams;
- hparams.hidden_size = get_u32(ctx, "mllama.vision.embedding_length");
- hparams.n_head = get_u32(ctx, "mllama.vision.attention.head_count");
- hparams.n_intermediate = get_u32(ctx, "mllama.vision.feed_forward_length");
- hparams.n_layer = get_u32(ctx, "mllama.vision.block_count");
- hparams.n_global_layer = get_u32(ctx, "mllama.vision.global.block_count");
- hparams.n_tiles = get_u32(ctx, "mllama.vision.max_num_tiles");
- hparams.image_size = get_u32(ctx, "mllama.vision.image_size");
- hparams.patch_size = get_u32(ctx, "mllama.vision.patch_size");
- hparams.projection_dim = get_u32(ctx, "mllama.vision.projection_dim");
- hparams.eps = get_f32(ctx, "mllama.vision.attention.layer_norm_epsilon");
- std::vector<uint32_t> intermediate_layers_indices = get_u32_array(ctx, "mllama.vision.intermediate_layers_indices");
- hparams.intermediate_layers.resize(hparams.n_layer);
- for (size_t i = 0; i < intermediate_layers_indices.size(); i++) {
- hparams.intermediate_layers[intermediate_layers_indices[i]] = true;
- }
- if (verbosity >= 2) {
- LOG("");
- LOG("vision model hparams");
- LOG("image_size %d", hparams.image_size);
- LOG("patch_size %d", hparams.patch_size);
- LOG("v_hidden_size %d", hparams.hidden_size);
- LOG("v_n_intermediate %d", hparams.n_intermediate);
- LOG("v_projection_dim %d", hparams.projection_dim);
- LOG("v_n_head %d", hparams.n_head);
- LOG("v_n_layer %d", hparams.n_layer);
- LOG("v_n_global_layer %d", hparams.n_global_layer);
- LOG("v_eps %f", hparams.eps);
- }
- vision_model.class_embedding = mllama_tensor_load(new_mllama->ctx_data, "v.class_embd", true);
- vision_model.patch_embeddings = mllama_tensor_load(new_mllama->ctx_data, "v.patch_embd.weight", true);
- vision_model.position_embeddings = mllama_tensor_load(new_mllama->ctx_data, "v.position_embd.weight", true);
- vision_model.position_embeddings_gate = mllama_tensor_load(new_mllama->ctx_data, "v.position_embd.gate", true);
- vision_model.pre_ln_w = mllama_tensor_load(new_mllama->ctx_data, "v.pre_ln.weight", true);
- vision_model.pre_ln_b = mllama_tensor_load(new_mllama->ctx_data, "v.pre_ln.bias", true);
- vision_model.post_ln_w = mllama_tensor_load(new_mllama->ctx_data, "v.post_ln.weight", true);
- vision_model.post_ln_b = mllama_tensor_load(new_mllama->ctx_data, "v.post_ln.bias", true);
- vision_model.tile_position_embeddings = mllama_tensor_load(new_mllama->ctx_data, "v.tile_position_embd.weight", true);
- vision_model.tile_position_embeddings_gate = mllama_tensor_load(new_mllama->ctx_data, "v.tile_position_embd.gate", true);
- vision_model.pre_tile_position_embeddings = mllama_tensor_load(new_mllama->ctx_data, "v.pre_tile_position_embd.weight", true);
- vision_model.pre_tile_position_embeddings_gate = mllama_tensor_load(new_mllama->ctx_data, "v.pre_tile_position_embd.gate", true);
- vision_model.post_tile_position_embeddings = mllama_tensor_load(new_mllama->ctx_data, "v.post_tile_position_embd.weight", true);
- vision_model.post_tile_position_embeddings_gate = mllama_tensor_load(new_mllama->ctx_data, "v.post_tile_position_embd.gate", true);
- vision_model.mm_0_w = mllama_tensor_load(new_mllama->ctx_data, "mm.0.weight", false);
- vision_model.mm_0_b = mllama_tensor_load(new_mllama->ctx_data, "mm.0.bias", false);
- vision_model.layers = mllama_layers_load(new_mllama->ctx_data, "v", hparams.n_layer);
- vision_model.global_layers = mllama_layers_load(new_mllama->ctx_data, "v.global", hparams.n_global_layer);
- ggml_free(meta);
- new_mllama->ctx_gguf = ctx;
- {
- // measure mem requirement and allocate
- new_mllama->buf_compute_meta.resize(GGML_DEFAULT_GRAPH_SIZE * ggml_tensor_overhead() + ggml_graph_overhead());
- new_mllama->compute_alloc = ggml_gallocr_new(ggml_backend_get_default_buffer_type(new_mllama->backend));
- struct mllama_image_batch batch;
- batch.size = 1;
- ggml_cgraph *gf = mllama_image_build_graph(new_mllama, &batch);
- ggml_gallocr_reserve(new_mllama->compute_alloc, gf);
- size_t compute_memory_buffer_size = ggml_gallocr_get_buffer_size(new_mllama->compute_alloc, 0);
- LOG("compute allocated memory: %.2f MB", compute_memory_buffer_size / 1024.0 / 1024.0);
- }
- return new_mllama;
- }
- struct mllama_image *mllama_image_init() {
- return new mllama_image();
- }
- void mllama_image_free(struct mllama_image *img) { delete img; }
- void mllama_image_batch_free(struct mllama_image_batch *batch) {
- if (batch->size > 0) {
- delete[] batch->data;
- batch->size = 0;
- }
- }
- bool mllama_image_load_from_data(const void *data, const int n, const int width, const int height, const int num_channels, const int num_tiles, const int aspect_ratio_id, struct mllama_image *img) {
- img->width = width;
- img->height = height;
- img->num_channels = num_channels;
- img->num_tiles = num_tiles;
- img->aspect_ratio_id = aspect_ratio_id;
- img->data.resize(n);
- memcpy(img->data.data(), data, n);
- return true;
- }
- inline int mllama(int x, int lower, int upper) {
- return std::max(lower, std::min(x, upper));
- }
- void mllama_free(mllama_ctx *ctx) {
- ggml_free(ctx->ctx_data);
- gguf_free(ctx->ctx_gguf);
- ggml_backend_buffer_free(ctx->params_buffer);
- ggml_backend_free(ctx->backend);
- ggml_gallocr_free(ctx->compute_alloc);
- delete ctx;
- }
- bool mllama_image_encode(struct mllama_ctx *ctx, const int n_threads, mllama_image *img, float *vec) {
- mllama_image_batch imgs{};
- imgs.size = 1;
- imgs.data = img;
- return mllama_image_batch_encode(ctx, n_threads, &imgs, vec);
- }
- bool mllama_image_batch_encode(mllama_ctx *ctx, const int n_threads, const mllama_image_batch *imgs, float *vec) {
- int batch_size = imgs->size;
- REQUIRE(batch_size == 1);
- // build the inference graph
- ggml_cgraph *gf = mllama_image_build_graph(ctx, imgs);
- ggml_gallocr_alloc_graph(ctx->compute_alloc, gf);
- // set inputs
- const auto &model = ctx->vision_model;
- const auto &hparams = model.hparams;
- const int image_size = hparams.image_size;
- int image_size_width = image_size;
- int image_size_height = image_size;
- const int patch_size = hparams.patch_size;
- const int num_patches = ((image_size_width / patch_size) * (image_size_height / patch_size));
- const int num_positions = num_patches + (model.class_embedding == nullptr ? 0 : 1);
- {
- struct ggml_tensor *inp_raw = ggml_graph_get_tensor(gf, "inp_raw");
- ggml_backend_tensor_set(inp_raw, imgs->data[0].data.data(), 0, ggml_nbytes(inp_raw));
- }
- {
- struct ggml_tensor *embeddings = ggml_graph_get_tensor(gf, "embeddings");
- if (embeddings != nullptr) {
- void *zeros = malloc(ggml_nbytes(embeddings));
- memset(zeros, 0, ggml_nbytes(embeddings));
- ggml_backend_tensor_set(embeddings, zeros, 0, ggml_nbytes(embeddings));
- free(zeros);
- }
- }
- {
- struct ggml_tensor *positions = ggml_graph_get_tensor(gf, "positions");
- if (positions != nullptr) {
- int *positions_data = (int *)malloc(ggml_nbytes(positions));
- for (int i = 0; i < num_positions; i++) {
- positions_data[i] = i;
- }
- ggml_backend_tensor_set(positions, positions_data, 0, ggml_nbytes(positions));
- free(positions_data);
- }
- }
- {
- struct ggml_tensor *aspect_ratios = ggml_graph_get_tensor(gf, "aspect_ratios");
- if (aspect_ratios != nullptr) {
- int *aspect_ratios_data = (int *)malloc(ggml_nbytes(aspect_ratios));
- aspect_ratios_data[0] = imgs->data[0].aspect_ratio_id;
- ggml_backend_tensor_set(aspect_ratios, aspect_ratios_data, 0, ggml_nbytes(aspect_ratios));
- free(aspect_ratios_data);
- }
- }
- if (ggml_backend_is_cpu(ctx->backend)) {
- ggml_backend_cpu_set_n_threads(ctx->backend, n_threads);
- }
- ggml_backend_graph_compute(ctx->backend, gf);
- // the last node is the embedding tensor
- struct ggml_tensor *embeddings = ggml_graph_node(gf, ggml_graph_n_nodes(gf) - 1);
- // copy the embeddings to the location passed by the user
- ggml_backend_tensor_get(embeddings, vec, 0, ggml_nbytes(embeddings));
- return true;
- }
- int32_t mllama_image_size(const struct mllama_ctx *ctx) {
- return ctx->vision_model.hparams.image_size;
- }
- int32_t mllama_patch_size(const struct mllama_ctx *ctx) {
- return ctx->vision_model.hparams.patch_size;
- }
- int32_t mllama_hidden_size(const struct mllama_ctx *ctx) {
- return ctx->vision_model.hparams.hidden_size;
- }
- int mllama_n_patches(const struct mllama_ctx *ctx) {
- const auto &hparams = ctx->vision_model.hparams;
- return (hparams.image_size / hparams.patch_size) * (hparams.image_size / hparams.patch_size);
- }
- int mllama_n_positions(const struct mllama_ctx *ctx) {
- return mllama_n_patches(ctx) + (ctx->vision_model.class_embedding == nullptr ? 0 : 1);
- }
- int mllama_n_tiles(const struct mllama_ctx *ctx) {
- return ctx->vision_model.hparams.n_tiles;
- }
- int mllama_n_embd(const struct mllama_ctx *ctx) {
- return ctx->vision_model.hparams.projection_dim;
- }
- size_t mllama_n_embd_bytes(const struct mllama_ctx *ctx) {
- return mllama_n_positions(ctx) * mllama_n_embd(ctx) * mllama_n_tiles(ctx) * sizeof(float);
- }
|