ggml.c 585 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365236623672368236923702371237223732374237523762377237823792380238123822383238423852386238723882389239023912392239323942395239623972398239924002401240224032404240524062407240824092410241124122413241424152416241724182419242024212422242324242425242624272428242924302431243224332434243524362437243824392440244124422443244424452446244724482449245024512452245324542455245624572458245924602461246224632464246524662467246824692470247124722473247424752476247724782479248024812482248324842485248624872488248924902491249224932494249524962497249824992500250125022503250425052506250725082509251025112512251325142515251625172518251925202521252225232524252525262527252825292530253125322533253425352536253725382539254025412542254325442545254625472548254925502551255225532554255525562557255825592560256125622563256425652566256725682569257025712572257325742575257625772578257925802581258225832584258525862587258825892590259125922593259425952596259725982599260026012602260326042605260626072608260926102611261226132614261526162617261826192620262126222623262426252626262726282629263026312632263326342635263626372638263926402641264226432644264526462647264826492650265126522653265426552656265726582659266026612662266326642665266626672668266926702671267226732674267526762677267826792680268126822683268426852686268726882689269026912692269326942695269626972698269927002701270227032704270527062707270827092710271127122713271427152716271727182719272027212722272327242725272627272728272927302731273227332734273527362737273827392740274127422743274427452746274727482749275027512752275327542755275627572758275927602761276227632764276527662767276827692770277127722773277427752776277727782779278027812782278327842785278627872788278927902791279227932794279527962797279827992800280128022803280428052806280728082809281028112812281328142815281628172818281928202821282228232824282528262827282828292830283128322833283428352836283728382839284028412842284328442845284628472848284928502851285228532854285528562857285828592860286128622863286428652866286728682869287028712872287328742875287628772878287928802881288228832884288528862887288828892890289128922893289428952896289728982899290029012902290329042905290629072908290929102911291229132914291529162917291829192920292129222923292429252926292729282929293029312932293329342935293629372938293929402941294229432944294529462947294829492950295129522953295429552956295729582959296029612962296329642965296629672968296929702971297229732974297529762977297829792980298129822983298429852986298729882989299029912992299329942995299629972998299930003001300230033004300530063007300830093010301130123013301430153016301730183019302030213022302330243025302630273028302930303031303230333034303530363037303830393040304130423043304430453046304730483049305030513052305330543055305630573058305930603061306230633064306530663067306830693070307130723073307430753076307730783079308030813082308330843085308630873088308930903091309230933094309530963097309830993100310131023103310431053106310731083109311031113112311331143115311631173118311931203121312231233124312531263127312831293130313131323133313431353136313731383139314031413142314331443145314631473148314931503151315231533154315531563157315831593160316131623163316431653166316731683169317031713172317331743175317631773178317931803181318231833184318531863187318831893190319131923193319431953196319731983199320032013202320332043205320632073208320932103211321232133214321532163217321832193220322132223223322432253226322732283229323032313232323332343235323632373238323932403241324232433244324532463247324832493250325132523253325432553256325732583259326032613262326332643265326632673268326932703271327232733274327532763277327832793280328132823283328432853286328732883289329032913292329332943295329632973298329933003301330233033304330533063307330833093310331133123313331433153316331733183319332033213322332333243325332633273328332933303331333233333334333533363337333833393340334133423343334433453346334733483349335033513352335333543355335633573358335933603361336233633364336533663367336833693370337133723373337433753376337733783379338033813382338333843385338633873388338933903391339233933394339533963397339833993400340134023403340434053406340734083409341034113412341334143415341634173418341934203421342234233424342534263427342834293430343134323433343434353436343734383439344034413442344334443445344634473448344934503451345234533454345534563457345834593460346134623463346434653466346734683469347034713472347334743475347634773478347934803481348234833484348534863487348834893490349134923493349434953496349734983499350035013502350335043505350635073508350935103511351235133514351535163517351835193520352135223523352435253526352735283529353035313532353335343535353635373538353935403541354235433544354535463547354835493550355135523553355435553556355735583559356035613562356335643565356635673568356935703571357235733574357535763577357835793580358135823583358435853586358735883589359035913592359335943595359635973598359936003601360236033604360536063607360836093610361136123613361436153616361736183619362036213622362336243625362636273628362936303631363236333634363536363637363836393640364136423643364436453646364736483649365036513652365336543655365636573658365936603661366236633664366536663667366836693670367136723673367436753676367736783679368036813682368336843685368636873688368936903691369236933694369536963697369836993700370137023703370437053706370737083709371037113712371337143715371637173718371937203721372237233724372537263727372837293730373137323733373437353736373737383739374037413742374337443745374637473748374937503751375237533754375537563757375837593760376137623763376437653766376737683769377037713772377337743775377637773778377937803781378237833784378537863787378837893790379137923793379437953796379737983799380038013802380338043805380638073808380938103811381238133814381538163817381838193820382138223823382438253826382738283829383038313832383338343835383638373838383938403841384238433844384538463847384838493850385138523853385438553856385738583859386038613862386338643865386638673868386938703871387238733874387538763877387838793880388138823883388438853886388738883889389038913892389338943895389638973898389939003901390239033904390539063907390839093910391139123913391439153916391739183919392039213922392339243925392639273928392939303931393239333934393539363937393839393940394139423943394439453946394739483949395039513952395339543955395639573958395939603961396239633964396539663967396839693970397139723973397439753976397739783979398039813982398339843985398639873988398939903991399239933994399539963997399839994000400140024003400440054006400740084009401040114012401340144015401640174018401940204021402240234024402540264027402840294030403140324033403440354036403740384039404040414042404340444045404640474048404940504051405240534054405540564057405840594060406140624063406440654066406740684069407040714072407340744075407640774078407940804081408240834084408540864087408840894090409140924093409440954096409740984099410041014102410341044105410641074108410941104111411241134114411541164117411841194120412141224123412441254126412741284129413041314132413341344135413641374138413941404141414241434144414541464147414841494150415141524153415441554156415741584159416041614162416341644165416641674168416941704171417241734174417541764177417841794180418141824183418441854186418741884189419041914192419341944195419641974198419942004201420242034204420542064207420842094210421142124213421442154216421742184219422042214222422342244225422642274228422942304231423242334234423542364237423842394240424142424243424442454246424742484249425042514252425342544255425642574258425942604261426242634264426542664267426842694270427142724273427442754276427742784279428042814282428342844285428642874288428942904291429242934294429542964297429842994300430143024303430443054306430743084309431043114312431343144315431643174318431943204321432243234324432543264327432843294330433143324333433443354336433743384339434043414342434343444345434643474348434943504351435243534354435543564357435843594360436143624363436443654366436743684369437043714372437343744375437643774378437943804381438243834384438543864387438843894390439143924393439443954396439743984399440044014402440344044405440644074408440944104411441244134414441544164417441844194420442144224423442444254426442744284429443044314432443344344435443644374438443944404441444244434444444544464447444844494450445144524453445444554456445744584459446044614462446344644465446644674468446944704471447244734474447544764477447844794480448144824483448444854486448744884489449044914492449344944495449644974498449945004501450245034504450545064507450845094510451145124513451445154516451745184519452045214522452345244525452645274528452945304531453245334534453545364537453845394540454145424543454445454546454745484549455045514552455345544555455645574558455945604561456245634564456545664567456845694570457145724573457445754576457745784579458045814582458345844585458645874588458945904591459245934594459545964597459845994600460146024603460446054606460746084609461046114612461346144615461646174618461946204621462246234624462546264627462846294630463146324633463446354636463746384639464046414642464346444645464646474648464946504651465246534654465546564657465846594660466146624663466446654666466746684669467046714672467346744675467646774678467946804681468246834684468546864687468846894690469146924693469446954696469746984699470047014702470347044705470647074708470947104711471247134714471547164717471847194720472147224723472447254726472747284729473047314732473347344735473647374738473947404741474247434744474547464747474847494750475147524753475447554756475747584759476047614762476347644765476647674768476947704771477247734774477547764777477847794780478147824783478447854786478747884789479047914792479347944795479647974798479948004801480248034804480548064807480848094810481148124813481448154816481748184819482048214822482348244825482648274828482948304831483248334834483548364837483848394840484148424843484448454846484748484849485048514852485348544855485648574858485948604861486248634864486548664867486848694870487148724873487448754876487748784879488048814882488348844885488648874888488948904891489248934894489548964897489848994900490149024903490449054906490749084909491049114912491349144915491649174918491949204921492249234924492549264927492849294930493149324933493449354936493749384939494049414942494349444945494649474948494949504951495249534954495549564957495849594960496149624963496449654966496749684969497049714972497349744975497649774978497949804981498249834984498549864987498849894990499149924993499449954996499749984999500050015002500350045005500650075008500950105011501250135014501550165017501850195020502150225023502450255026502750285029503050315032503350345035503650375038503950405041504250435044504550465047504850495050505150525053505450555056505750585059506050615062506350645065506650675068506950705071507250735074507550765077507850795080508150825083508450855086508750885089509050915092509350945095509650975098509951005101510251035104510551065107510851095110511151125113511451155116511751185119512051215122512351245125512651275128512951305131513251335134513551365137513851395140514151425143514451455146514751485149515051515152515351545155515651575158515951605161516251635164516551665167516851695170517151725173517451755176517751785179518051815182518351845185518651875188518951905191519251935194519551965197519851995200520152025203520452055206520752085209521052115212521352145215521652175218521952205221522252235224522552265227522852295230523152325233523452355236523752385239524052415242524352445245524652475248524952505251525252535254525552565257525852595260526152625263526452655266526752685269527052715272527352745275527652775278527952805281528252835284528552865287528852895290529152925293529452955296529752985299530053015302530353045305530653075308530953105311531253135314531553165317531853195320532153225323532453255326532753285329533053315332533353345335533653375338533953405341534253435344534553465347534853495350535153525353535453555356535753585359536053615362536353645365536653675368536953705371537253735374537553765377537853795380538153825383538453855386538753885389539053915392539353945395539653975398539954005401540254035404540554065407540854095410541154125413541454155416541754185419542054215422542354245425542654275428542954305431543254335434543554365437543854395440544154425443544454455446544754485449545054515452545354545455545654575458545954605461546254635464546554665467546854695470547154725473547454755476547754785479548054815482548354845485548654875488548954905491549254935494549554965497549854995500550155025503550455055506550755085509551055115512551355145515551655175518551955205521552255235524552555265527552855295530553155325533553455355536553755385539554055415542554355445545554655475548554955505551555255535554555555565557555855595560556155625563556455655566556755685569557055715572557355745575557655775578557955805581558255835584558555865587558855895590559155925593559455955596559755985599560056015602560356045605560656075608560956105611561256135614561556165617561856195620562156225623562456255626562756285629563056315632563356345635563656375638563956405641564256435644564556465647564856495650565156525653565456555656565756585659566056615662566356645665566656675668566956705671567256735674567556765677567856795680568156825683568456855686568756885689569056915692569356945695569656975698569957005701570257035704570557065707570857095710571157125713571457155716571757185719572057215722572357245725572657275728572957305731573257335734573557365737573857395740574157425743574457455746574757485749575057515752575357545755575657575758575957605761576257635764576557665767576857695770577157725773577457755776577757785779578057815782578357845785578657875788578957905791579257935794579557965797579857995800580158025803580458055806580758085809581058115812581358145815581658175818581958205821582258235824582558265827582858295830583158325833583458355836583758385839584058415842584358445845584658475848584958505851585258535854585558565857585858595860586158625863586458655866586758685869587058715872587358745875587658775878587958805881588258835884588558865887588858895890589158925893589458955896589758985899590059015902590359045905590659075908590959105911591259135914591559165917591859195920592159225923592459255926592759285929593059315932593359345935593659375938593959405941594259435944594559465947594859495950595159525953595459555956595759585959596059615962596359645965596659675968596959705971597259735974597559765977597859795980598159825983598459855986598759885989599059915992599359945995599659975998599960006001600260036004600560066007600860096010601160126013601460156016601760186019602060216022602360246025602660276028602960306031603260336034603560366037603860396040604160426043604460456046604760486049605060516052605360546055605660576058605960606061606260636064606560666067606860696070607160726073607460756076607760786079608060816082608360846085608660876088608960906091609260936094609560966097609860996100610161026103610461056106610761086109611061116112611361146115611661176118611961206121612261236124612561266127612861296130613161326133613461356136613761386139614061416142614361446145614661476148614961506151615261536154615561566157615861596160616161626163616461656166616761686169617061716172617361746175617661776178617961806181618261836184618561866187618861896190619161926193619461956196619761986199620062016202620362046205620662076208620962106211621262136214621562166217621862196220622162226223622462256226622762286229623062316232623362346235623662376238623962406241624262436244624562466247624862496250625162526253625462556256625762586259626062616262626362646265626662676268626962706271627262736274627562766277627862796280628162826283628462856286628762886289629062916292629362946295629662976298629963006301630263036304630563066307630863096310631163126313631463156316631763186319632063216322632363246325632663276328632963306331633263336334633563366337633863396340634163426343634463456346634763486349635063516352635363546355635663576358635963606361636263636364636563666367636863696370637163726373637463756376637763786379638063816382638363846385638663876388638963906391639263936394639563966397639863996400640164026403640464056406640764086409641064116412641364146415641664176418641964206421642264236424642564266427642864296430643164326433643464356436643764386439644064416442644364446445644664476448644964506451645264536454645564566457645864596460646164626463646464656466646764686469647064716472647364746475647664776478647964806481648264836484648564866487648864896490649164926493649464956496649764986499650065016502650365046505650665076508650965106511651265136514651565166517651865196520652165226523652465256526652765286529653065316532653365346535653665376538653965406541654265436544654565466547654865496550655165526553655465556556655765586559656065616562656365646565656665676568656965706571657265736574657565766577657865796580658165826583658465856586658765886589659065916592659365946595659665976598659966006601660266036604660566066607660866096610661166126613661466156616661766186619662066216622662366246625662666276628662966306631663266336634663566366637663866396640664166426643664466456646664766486649665066516652665366546655665666576658665966606661666266636664666566666667666866696670667166726673667466756676667766786679668066816682668366846685668666876688668966906691669266936694669566966697669866996700670167026703670467056706670767086709671067116712671367146715671667176718671967206721672267236724672567266727672867296730673167326733673467356736673767386739674067416742674367446745674667476748674967506751675267536754675567566757675867596760676167626763676467656766676767686769677067716772677367746775677667776778677967806781678267836784678567866787678867896790679167926793679467956796679767986799680068016802680368046805680668076808680968106811681268136814681568166817681868196820682168226823682468256826682768286829683068316832683368346835683668376838683968406841684268436844684568466847684868496850685168526853685468556856685768586859686068616862686368646865686668676868686968706871687268736874687568766877687868796880688168826883688468856886688768886889689068916892689368946895689668976898689969006901690269036904690569066907690869096910691169126913691469156916691769186919692069216922692369246925692669276928692969306931693269336934693569366937693869396940694169426943694469456946694769486949695069516952695369546955695669576958695969606961696269636964696569666967696869696970697169726973697469756976697769786979698069816982698369846985698669876988698969906991699269936994699569966997699869997000700170027003700470057006700770087009701070117012701370147015701670177018701970207021702270237024702570267027702870297030703170327033703470357036703770387039704070417042704370447045704670477048704970507051705270537054705570567057705870597060706170627063706470657066706770687069707070717072707370747075707670777078707970807081708270837084708570867087708870897090709170927093709470957096709770987099710071017102710371047105710671077108710971107111711271137114711571167117711871197120712171227123712471257126712771287129713071317132713371347135713671377138713971407141714271437144714571467147714871497150715171527153715471557156715771587159716071617162716371647165716671677168716971707171717271737174717571767177717871797180718171827183718471857186718771887189719071917192719371947195719671977198719972007201720272037204720572067207720872097210721172127213721472157216721772187219722072217222722372247225722672277228722972307231723272337234723572367237723872397240724172427243724472457246724772487249725072517252725372547255725672577258725972607261726272637264726572667267726872697270727172727273727472757276727772787279728072817282728372847285728672877288728972907291729272937294729572967297729872997300730173027303730473057306730773087309731073117312731373147315731673177318731973207321732273237324732573267327732873297330733173327333733473357336733773387339734073417342734373447345734673477348734973507351735273537354735573567357735873597360736173627363736473657366736773687369737073717372737373747375737673777378737973807381738273837384738573867387738873897390739173927393739473957396739773987399740074017402740374047405740674077408740974107411741274137414741574167417741874197420742174227423742474257426742774287429743074317432743374347435743674377438743974407441744274437444744574467447744874497450745174527453745474557456745774587459746074617462746374647465746674677468746974707471747274737474747574767477747874797480748174827483748474857486748774887489749074917492749374947495749674977498749975007501750275037504750575067507750875097510751175127513751475157516751775187519752075217522752375247525752675277528752975307531753275337534753575367537753875397540754175427543754475457546754775487549755075517552755375547555755675577558755975607561756275637564756575667567756875697570757175727573757475757576757775787579758075817582758375847585758675877588758975907591759275937594759575967597759875997600760176027603760476057606760776087609761076117612761376147615761676177618761976207621762276237624762576267627762876297630763176327633763476357636763776387639764076417642764376447645764676477648764976507651765276537654765576567657765876597660766176627663766476657666766776687669767076717672767376747675767676777678767976807681768276837684768576867687768876897690769176927693769476957696769776987699770077017702770377047705770677077708770977107711771277137714771577167717771877197720772177227723772477257726772777287729773077317732773377347735773677377738773977407741774277437744774577467747774877497750775177527753775477557756775777587759776077617762776377647765776677677768776977707771777277737774777577767777777877797780778177827783778477857786778777887789779077917792779377947795779677977798779978007801780278037804780578067807780878097810781178127813781478157816781778187819782078217822782378247825782678277828782978307831783278337834783578367837783878397840784178427843784478457846784778487849785078517852785378547855785678577858785978607861786278637864786578667867786878697870787178727873787478757876787778787879788078817882788378847885788678877888788978907891789278937894789578967897789878997900790179027903790479057906790779087909791079117912791379147915791679177918791979207921792279237924792579267927792879297930793179327933793479357936793779387939794079417942794379447945794679477948794979507951795279537954795579567957795879597960796179627963796479657966796779687969797079717972797379747975797679777978797979807981798279837984798579867987798879897990799179927993799479957996799779987999800080018002800380048005800680078008800980108011801280138014801580168017801880198020802180228023802480258026802780288029803080318032803380348035803680378038803980408041804280438044804580468047804880498050805180528053805480558056805780588059806080618062806380648065806680678068806980708071807280738074807580768077807880798080808180828083808480858086808780888089809080918092809380948095809680978098809981008101810281038104810581068107810881098110811181128113811481158116811781188119812081218122812381248125812681278128812981308131813281338134813581368137813881398140814181428143814481458146814781488149815081518152815381548155815681578158815981608161816281638164816581668167816881698170817181728173817481758176817781788179818081818182818381848185818681878188818981908191819281938194819581968197819881998200820182028203820482058206820782088209821082118212821382148215821682178218821982208221822282238224822582268227822882298230823182328233823482358236823782388239824082418242824382448245824682478248824982508251825282538254825582568257825882598260826182628263826482658266826782688269827082718272827382748275827682778278827982808281828282838284828582868287828882898290829182928293829482958296829782988299830083018302830383048305830683078308830983108311831283138314831583168317831883198320832183228323832483258326832783288329833083318332833383348335833683378338833983408341834283438344834583468347834883498350835183528353835483558356835783588359836083618362836383648365836683678368836983708371837283738374837583768377837883798380838183828383838483858386838783888389839083918392839383948395839683978398839984008401840284038404840584068407840884098410841184128413841484158416841784188419842084218422842384248425842684278428842984308431843284338434843584368437843884398440844184428443844484458446844784488449845084518452845384548455845684578458845984608461846284638464846584668467846884698470847184728473847484758476847784788479848084818482848384848485848684878488848984908491849284938494849584968497849884998500850185028503850485058506850785088509851085118512851385148515851685178518851985208521852285238524852585268527852885298530853185328533853485358536853785388539854085418542854385448545854685478548854985508551855285538554855585568557855885598560856185628563856485658566856785688569857085718572857385748575857685778578857985808581858285838584858585868587858885898590859185928593859485958596859785988599860086018602860386048605860686078608860986108611861286138614861586168617861886198620862186228623862486258626862786288629863086318632863386348635863686378638863986408641864286438644864586468647864886498650865186528653865486558656865786588659866086618662866386648665866686678668866986708671867286738674867586768677867886798680868186828683868486858686868786888689869086918692869386948695869686978698869987008701870287038704870587068707870887098710871187128713871487158716871787188719872087218722872387248725872687278728872987308731873287338734873587368737873887398740874187428743874487458746874787488749875087518752875387548755875687578758875987608761876287638764876587668767876887698770877187728773877487758776877787788779878087818782878387848785878687878788878987908791879287938794879587968797879887998800880188028803880488058806880788088809881088118812881388148815881688178818881988208821882288238824882588268827882888298830883188328833883488358836883788388839884088418842884388448845884688478848884988508851885288538854885588568857885888598860886188628863886488658866886788688869887088718872887388748875887688778878887988808881888288838884888588868887888888898890889188928893889488958896889788988899890089018902890389048905890689078908890989108911891289138914891589168917891889198920892189228923892489258926892789288929893089318932893389348935893689378938893989408941894289438944894589468947894889498950895189528953895489558956895789588959896089618962896389648965896689678968896989708971897289738974897589768977897889798980898189828983898489858986898789888989899089918992899389948995899689978998899990009001900290039004900590069007900890099010901190129013901490159016901790189019902090219022902390249025902690279028902990309031903290339034903590369037903890399040904190429043904490459046904790489049905090519052905390549055905690579058905990609061906290639064906590669067906890699070907190729073907490759076907790789079908090819082908390849085908690879088908990909091909290939094909590969097909890999100910191029103910491059106910791089109911091119112911391149115911691179118911991209121912291239124912591269127912891299130913191329133913491359136913791389139914091419142914391449145914691479148914991509151915291539154915591569157915891599160916191629163916491659166916791689169917091719172917391749175917691779178917991809181918291839184918591869187918891899190919191929193919491959196919791989199920092019202920392049205920692079208920992109211921292139214921592169217921892199220922192229223922492259226922792289229923092319232923392349235923692379238923992409241924292439244924592469247924892499250925192529253925492559256925792589259926092619262926392649265926692679268926992709271927292739274927592769277927892799280928192829283928492859286928792889289929092919292929392949295929692979298929993009301930293039304930593069307930893099310931193129313931493159316931793189319932093219322932393249325932693279328932993309331933293339334933593369337933893399340934193429343934493459346934793489349935093519352935393549355935693579358935993609361936293639364936593669367936893699370937193729373937493759376937793789379938093819382938393849385938693879388938993909391939293939394939593969397939893999400940194029403940494059406940794089409941094119412941394149415941694179418941994209421942294239424942594269427942894299430943194329433943494359436943794389439944094419442944394449445944694479448944994509451945294539454945594569457945894599460946194629463946494659466946794689469947094719472947394749475947694779478947994809481948294839484948594869487948894899490949194929493949494959496949794989499950095019502950395049505950695079508950995109511951295139514951595169517951895199520952195229523952495259526952795289529953095319532953395349535953695379538953995409541954295439544954595469547954895499550955195529553955495559556955795589559956095619562956395649565956695679568956995709571957295739574957595769577957895799580958195829583958495859586958795889589959095919592959395949595959695979598959996009601960296039604960596069607960896099610961196129613961496159616961796189619962096219622962396249625962696279628962996309631963296339634963596369637963896399640964196429643964496459646964796489649965096519652965396549655965696579658965996609661966296639664966596669667966896699670967196729673967496759676967796789679968096819682968396849685968696879688968996909691969296939694969596969697969896999700970197029703970497059706970797089709971097119712971397149715971697179718971997209721972297239724972597269727972897299730973197329733973497359736973797389739974097419742974397449745974697479748974997509751975297539754975597569757975897599760976197629763976497659766976797689769977097719772977397749775977697779778977997809781978297839784978597869787978897899790979197929793979497959796979797989799980098019802980398049805980698079808980998109811981298139814981598169817981898199820982198229823982498259826982798289829983098319832983398349835983698379838983998409841984298439844984598469847984898499850985198529853985498559856985798589859986098619862986398649865986698679868986998709871987298739874987598769877987898799880988198829883988498859886988798889889989098919892989398949895989698979898989999009901990299039904990599069907990899099910991199129913991499159916991799189919992099219922992399249925992699279928992999309931993299339934993599369937993899399940994199429943994499459946994799489949995099519952995399549955995699579958995999609961996299639964996599669967996899699970997199729973997499759976997799789979998099819982998399849985998699879988998999909991999299939994999599969997999899991000010001100021000310004100051000610007100081000910010100111001210013100141001510016100171001810019100201002110022100231002410025100261002710028100291003010031100321003310034100351003610037100381003910040100411004210043100441004510046100471004810049100501005110052100531005410055100561005710058100591006010061100621006310064100651006610067100681006910070100711007210073100741007510076100771007810079100801008110082100831008410085100861008710088100891009010091100921009310094100951009610097100981009910100101011010210103101041010510106101071010810109101101011110112101131011410115101161011710118101191012010121101221012310124101251012610127101281012910130101311013210133101341013510136101371013810139101401014110142101431014410145101461014710148101491015010151101521015310154101551015610157101581015910160101611016210163101641016510166101671016810169101701017110172101731017410175101761017710178101791018010181101821018310184101851018610187101881018910190101911019210193101941019510196101971019810199102001020110202102031020410205102061020710208102091021010211102121021310214102151021610217102181021910220102211022210223102241022510226102271022810229102301023110232102331023410235102361023710238102391024010241102421024310244102451024610247102481024910250102511025210253102541025510256102571025810259102601026110262102631026410265102661026710268102691027010271102721027310274102751027610277102781027910280102811028210283102841028510286102871028810289102901029110292102931029410295102961029710298102991030010301103021030310304103051030610307103081030910310103111031210313103141031510316103171031810319103201032110322103231032410325103261032710328103291033010331103321033310334103351033610337103381033910340103411034210343103441034510346103471034810349103501035110352103531035410355103561035710358103591036010361103621036310364103651036610367103681036910370103711037210373103741037510376103771037810379103801038110382103831038410385103861038710388103891039010391103921039310394103951039610397103981039910400104011040210403104041040510406104071040810409104101041110412104131041410415104161041710418104191042010421104221042310424104251042610427104281042910430104311043210433104341043510436104371043810439104401044110442104431044410445104461044710448104491045010451104521045310454104551045610457104581045910460104611046210463104641046510466104671046810469104701047110472104731047410475104761047710478104791048010481104821048310484104851048610487104881048910490104911049210493104941049510496104971049810499105001050110502105031050410505105061050710508105091051010511105121051310514105151051610517105181051910520105211052210523105241052510526105271052810529105301053110532105331053410535105361053710538105391054010541105421054310544105451054610547105481054910550105511055210553105541055510556105571055810559105601056110562105631056410565105661056710568105691057010571105721057310574105751057610577105781057910580105811058210583105841058510586105871058810589105901059110592105931059410595105961059710598105991060010601106021060310604106051060610607106081060910610106111061210613106141061510616106171061810619106201062110622106231062410625106261062710628106291063010631106321063310634106351063610637106381063910640106411064210643106441064510646106471064810649106501065110652106531065410655106561065710658106591066010661106621066310664106651066610667106681066910670106711067210673106741067510676106771067810679106801068110682106831068410685106861068710688106891069010691106921069310694106951069610697106981069910700107011070210703107041070510706107071070810709107101071110712107131071410715107161071710718107191072010721107221072310724107251072610727107281072910730107311073210733107341073510736107371073810739107401074110742107431074410745107461074710748107491075010751107521075310754107551075610757107581075910760107611076210763107641076510766107671076810769107701077110772107731077410775107761077710778107791078010781107821078310784107851078610787107881078910790107911079210793107941079510796107971079810799108001080110802108031080410805108061080710808108091081010811108121081310814108151081610817108181081910820108211082210823108241082510826108271082810829108301083110832108331083410835108361083710838108391084010841108421084310844108451084610847108481084910850108511085210853108541085510856108571085810859108601086110862108631086410865108661086710868108691087010871108721087310874108751087610877108781087910880108811088210883108841088510886108871088810889108901089110892108931089410895108961089710898108991090010901109021090310904109051090610907109081090910910109111091210913109141091510916109171091810919109201092110922109231092410925109261092710928109291093010931109321093310934109351093610937109381093910940109411094210943109441094510946109471094810949109501095110952109531095410955109561095710958109591096010961109621096310964109651096610967109681096910970109711097210973109741097510976109771097810979109801098110982109831098410985109861098710988109891099010991109921099310994109951099610997109981099911000110011100211003110041100511006110071100811009110101101111012110131101411015110161101711018110191102011021110221102311024110251102611027110281102911030110311103211033110341103511036110371103811039110401104111042110431104411045110461104711048110491105011051110521105311054110551105611057110581105911060110611106211063110641106511066110671106811069110701107111072110731107411075110761107711078110791108011081110821108311084110851108611087110881108911090110911109211093110941109511096110971109811099111001110111102111031110411105111061110711108111091111011111111121111311114111151111611117111181111911120111211112211123111241112511126111271112811129111301113111132111331113411135111361113711138111391114011141111421114311144111451114611147111481114911150111511115211153111541115511156111571115811159111601116111162111631116411165111661116711168111691117011171111721117311174111751117611177111781117911180111811118211183111841118511186111871118811189111901119111192111931119411195111961119711198111991120011201112021120311204112051120611207112081120911210112111121211213112141121511216112171121811219112201122111222112231122411225112261122711228112291123011231112321123311234112351123611237112381123911240112411124211243112441124511246112471124811249112501125111252112531125411255112561125711258112591126011261112621126311264112651126611267112681126911270112711127211273112741127511276112771127811279112801128111282112831128411285112861128711288112891129011291112921129311294112951129611297112981129911300113011130211303113041130511306113071130811309113101131111312113131131411315113161131711318113191132011321113221132311324113251132611327113281132911330113311133211333113341133511336113371133811339113401134111342113431134411345113461134711348113491135011351113521135311354113551135611357113581135911360113611136211363113641136511366113671136811369113701137111372113731137411375113761137711378113791138011381113821138311384113851138611387113881138911390113911139211393113941139511396113971139811399114001140111402114031140411405114061140711408114091141011411114121141311414114151141611417114181141911420114211142211423114241142511426114271142811429114301143111432114331143411435114361143711438114391144011441114421144311444114451144611447114481144911450114511145211453114541145511456114571145811459114601146111462114631146411465114661146711468114691147011471114721147311474114751147611477114781147911480114811148211483114841148511486114871148811489114901149111492114931149411495114961149711498114991150011501115021150311504115051150611507115081150911510115111151211513115141151511516115171151811519115201152111522115231152411525115261152711528115291153011531115321153311534115351153611537115381153911540115411154211543115441154511546115471154811549115501155111552115531155411555115561155711558115591156011561115621156311564115651156611567115681156911570115711157211573115741157511576115771157811579115801158111582115831158411585115861158711588115891159011591115921159311594115951159611597115981159911600116011160211603116041160511606116071160811609116101161111612116131161411615116161161711618116191162011621116221162311624116251162611627116281162911630116311163211633116341163511636116371163811639116401164111642116431164411645116461164711648116491165011651116521165311654116551165611657116581165911660116611166211663116641166511666116671166811669116701167111672116731167411675116761167711678116791168011681116821168311684116851168611687116881168911690116911169211693116941169511696116971169811699117001170111702117031170411705117061170711708117091171011711117121171311714117151171611717117181171911720117211172211723117241172511726117271172811729117301173111732117331173411735117361173711738117391174011741117421174311744117451174611747117481174911750117511175211753117541175511756117571175811759117601176111762117631176411765117661176711768117691177011771117721177311774117751177611777117781177911780117811178211783117841178511786117871178811789117901179111792117931179411795117961179711798117991180011801118021180311804118051180611807118081180911810118111181211813118141181511816118171181811819118201182111822118231182411825118261182711828118291183011831118321183311834118351183611837118381183911840118411184211843118441184511846118471184811849118501185111852118531185411855118561185711858118591186011861118621186311864118651186611867118681186911870118711187211873118741187511876118771187811879118801188111882118831188411885118861188711888118891189011891118921189311894118951189611897118981189911900119011190211903119041190511906119071190811909119101191111912119131191411915119161191711918119191192011921119221192311924119251192611927119281192911930119311193211933119341193511936119371193811939119401194111942119431194411945119461194711948119491195011951119521195311954119551195611957119581195911960119611196211963119641196511966119671196811969119701197111972119731197411975119761197711978119791198011981119821198311984119851198611987119881198911990119911199211993119941199511996119971199811999120001200112002120031200412005120061200712008120091201012011120121201312014120151201612017120181201912020120211202212023120241202512026120271202812029120301203112032120331203412035120361203712038120391204012041120421204312044120451204612047120481204912050120511205212053120541205512056120571205812059120601206112062120631206412065120661206712068120691207012071120721207312074120751207612077120781207912080120811208212083120841208512086120871208812089120901209112092120931209412095120961209712098120991210012101121021210312104121051210612107121081210912110121111211212113121141211512116121171211812119121201212112122121231212412125121261212712128121291213012131121321213312134121351213612137121381213912140121411214212143121441214512146121471214812149121501215112152121531215412155121561215712158121591216012161121621216312164121651216612167121681216912170121711217212173121741217512176121771217812179121801218112182121831218412185121861218712188121891219012191121921219312194121951219612197121981219912200122011220212203122041220512206122071220812209122101221112212122131221412215122161221712218122191222012221122221222312224122251222612227122281222912230122311223212233122341223512236122371223812239122401224112242122431224412245122461224712248122491225012251122521225312254122551225612257122581225912260122611226212263122641226512266122671226812269122701227112272122731227412275122761227712278122791228012281122821228312284122851228612287122881228912290122911229212293122941229512296122971229812299123001230112302123031230412305123061230712308123091231012311123121231312314123151231612317123181231912320123211232212323123241232512326123271232812329123301233112332123331233412335123361233712338123391234012341123421234312344123451234612347123481234912350123511235212353123541235512356123571235812359123601236112362123631236412365123661236712368123691237012371123721237312374123751237612377123781237912380123811238212383123841238512386123871238812389123901239112392123931239412395123961239712398123991240012401124021240312404124051240612407124081240912410124111241212413124141241512416124171241812419124201242112422124231242412425124261242712428124291243012431124321243312434124351243612437124381243912440124411244212443124441244512446124471244812449124501245112452124531245412455124561245712458124591246012461124621246312464124651246612467124681246912470124711247212473124741247512476124771247812479124801248112482124831248412485124861248712488124891249012491124921249312494124951249612497124981249912500125011250212503125041250512506125071250812509125101251112512125131251412515125161251712518125191252012521125221252312524125251252612527125281252912530125311253212533125341253512536125371253812539125401254112542125431254412545125461254712548125491255012551125521255312554125551255612557125581255912560125611256212563125641256512566125671256812569125701257112572125731257412575125761257712578125791258012581125821258312584125851258612587125881258912590125911259212593125941259512596125971259812599126001260112602126031260412605126061260712608126091261012611126121261312614126151261612617126181261912620126211262212623126241262512626126271262812629126301263112632126331263412635126361263712638126391264012641126421264312644126451264612647126481264912650126511265212653126541265512656126571265812659126601266112662126631266412665126661266712668126691267012671126721267312674126751267612677126781267912680126811268212683126841268512686126871268812689126901269112692126931269412695126961269712698126991270012701127021270312704127051270612707127081270912710127111271212713127141271512716127171271812719127201272112722127231272412725127261272712728127291273012731127321273312734127351273612737127381273912740127411274212743127441274512746127471274812749127501275112752127531275412755127561275712758127591276012761127621276312764127651276612767127681276912770127711277212773127741277512776127771277812779127801278112782127831278412785127861278712788127891279012791127921279312794127951279612797127981279912800128011280212803128041280512806128071280812809128101281112812128131281412815128161281712818128191282012821128221282312824128251282612827128281282912830128311283212833128341283512836128371283812839128401284112842128431284412845128461284712848128491285012851128521285312854128551285612857128581285912860128611286212863128641286512866128671286812869128701287112872128731287412875128761287712878128791288012881128821288312884128851288612887128881288912890128911289212893128941289512896128971289812899129001290112902129031290412905129061290712908129091291012911129121291312914129151291612917129181291912920129211292212923129241292512926129271292812929129301293112932129331293412935129361293712938129391294012941129421294312944129451294612947129481294912950129511295212953129541295512956129571295812959129601296112962129631296412965129661296712968129691297012971129721297312974129751297612977129781297912980129811298212983129841298512986129871298812989129901299112992129931299412995129961299712998129991300013001130021300313004130051300613007130081300913010130111301213013130141301513016130171301813019130201302113022130231302413025130261302713028130291303013031130321303313034130351303613037130381303913040130411304213043130441304513046130471304813049130501305113052130531305413055130561305713058130591306013061130621306313064130651306613067130681306913070130711307213073130741307513076130771307813079130801308113082130831308413085130861308713088130891309013091130921309313094130951309613097130981309913100131011310213103131041310513106131071310813109131101311113112131131311413115131161311713118131191312013121131221312313124131251312613127131281312913130131311313213133131341313513136131371313813139131401314113142131431314413145131461314713148131491315013151131521315313154131551315613157131581315913160131611316213163131641316513166131671316813169131701317113172131731317413175131761317713178131791318013181131821318313184131851318613187131881318913190131911319213193131941319513196131971319813199132001320113202132031320413205132061320713208132091321013211132121321313214132151321613217132181321913220132211322213223132241322513226132271322813229132301323113232132331323413235132361323713238132391324013241132421324313244132451324613247132481324913250132511325213253132541325513256132571325813259132601326113262132631326413265132661326713268132691327013271132721327313274132751327613277132781327913280132811328213283132841328513286132871328813289132901329113292132931329413295132961329713298132991330013301133021330313304133051330613307133081330913310133111331213313133141331513316133171331813319133201332113322133231332413325133261332713328133291333013331133321333313334133351333613337133381333913340133411334213343133441334513346133471334813349133501335113352133531335413355133561335713358133591336013361133621336313364133651336613367133681336913370133711337213373133741337513376133771337813379133801338113382133831338413385133861338713388133891339013391133921339313394133951339613397133981339913400134011340213403134041340513406134071340813409134101341113412134131341413415134161341713418134191342013421134221342313424134251342613427134281342913430134311343213433134341343513436134371343813439134401344113442134431344413445134461344713448134491345013451134521345313454134551345613457134581345913460134611346213463134641346513466134671346813469134701347113472134731347413475134761347713478134791348013481134821348313484134851348613487134881348913490134911349213493134941349513496134971349813499135001350113502135031350413505135061350713508135091351013511135121351313514135151351613517135181351913520135211352213523135241352513526135271352813529135301353113532135331353413535135361353713538135391354013541135421354313544135451354613547135481354913550135511355213553135541355513556135571355813559135601356113562135631356413565135661356713568135691357013571135721357313574135751357613577135781357913580135811358213583135841358513586135871358813589135901359113592135931359413595135961359713598135991360013601136021360313604136051360613607136081360913610136111361213613136141361513616136171361813619136201362113622136231362413625136261362713628136291363013631136321363313634136351363613637136381363913640136411364213643136441364513646136471364813649136501365113652136531365413655136561365713658136591366013661136621366313664136651366613667136681366913670136711367213673136741367513676136771367813679136801368113682136831368413685136861368713688136891369013691136921369313694136951369613697136981369913700137011370213703137041370513706137071370813709137101371113712137131371413715137161371713718137191372013721137221372313724137251372613727137281372913730137311373213733137341373513736137371373813739137401374113742137431374413745137461374713748137491375013751137521375313754137551375613757137581375913760137611376213763137641376513766137671376813769137701377113772137731377413775137761377713778137791378013781137821378313784137851378613787137881378913790137911379213793137941379513796137971379813799138001380113802138031380413805138061380713808138091381013811138121381313814138151381613817138181381913820138211382213823138241382513826138271382813829138301383113832138331383413835138361383713838138391384013841138421384313844138451384613847138481384913850138511385213853138541385513856138571385813859138601386113862138631386413865138661386713868138691387013871138721387313874138751387613877138781387913880138811388213883138841388513886138871388813889138901389113892138931389413895138961389713898138991390013901139021390313904139051390613907139081390913910139111391213913139141391513916139171391813919139201392113922139231392413925139261392713928139291393013931139321393313934139351393613937139381393913940139411394213943139441394513946139471394813949139501395113952139531395413955139561395713958139591396013961139621396313964139651396613967139681396913970139711397213973139741397513976139771397813979139801398113982139831398413985139861398713988139891399013991139921399313994139951399613997139981399914000140011400214003140041400514006140071400814009140101401114012140131401414015140161401714018140191402014021140221402314024140251402614027140281402914030140311403214033140341403514036140371403814039140401404114042140431404414045140461404714048140491405014051140521405314054140551405614057140581405914060140611406214063140641406514066140671406814069140701407114072140731407414075140761407714078140791408014081140821408314084140851408614087140881408914090140911409214093140941409514096140971409814099141001410114102141031410414105141061410714108141091411014111141121411314114141151411614117141181411914120141211412214123141241412514126141271412814129141301413114132141331413414135141361413714138141391414014141141421414314144141451414614147141481414914150141511415214153141541415514156141571415814159141601416114162141631416414165141661416714168141691417014171141721417314174141751417614177141781417914180141811418214183141841418514186141871418814189141901419114192141931419414195141961419714198141991420014201142021420314204142051420614207142081420914210142111421214213142141421514216142171421814219142201422114222142231422414225142261422714228142291423014231142321423314234142351423614237142381423914240142411424214243142441424514246142471424814249142501425114252142531425414255142561425714258142591426014261142621426314264142651426614267142681426914270142711427214273142741427514276142771427814279142801428114282142831428414285142861428714288142891429014291142921429314294142951429614297142981429914300143011430214303143041430514306143071430814309143101431114312143131431414315143161431714318143191432014321143221432314324143251432614327143281432914330143311433214333143341433514336143371433814339143401434114342143431434414345143461434714348143491435014351143521435314354143551435614357143581435914360143611436214363143641436514366143671436814369143701437114372143731437414375143761437714378143791438014381143821438314384143851438614387143881438914390143911439214393143941439514396143971439814399144001440114402144031440414405144061440714408144091441014411144121441314414144151441614417144181441914420144211442214423144241442514426144271442814429144301443114432144331443414435144361443714438144391444014441144421444314444144451444614447144481444914450144511445214453144541445514456144571445814459144601446114462144631446414465144661446714468144691447014471144721447314474144751447614477144781447914480144811448214483144841448514486144871448814489144901449114492144931449414495144961449714498144991450014501145021450314504145051450614507145081450914510145111451214513145141451514516145171451814519145201452114522145231452414525145261452714528145291453014531145321453314534145351453614537145381453914540145411454214543145441454514546145471454814549145501455114552145531455414555145561455714558145591456014561145621456314564145651456614567145681456914570145711457214573145741457514576145771457814579145801458114582145831458414585145861458714588145891459014591145921459314594145951459614597145981459914600146011460214603146041460514606146071460814609146101461114612146131461414615146161461714618146191462014621146221462314624146251462614627146281462914630146311463214633146341463514636146371463814639146401464114642146431464414645146461464714648146491465014651146521465314654146551465614657146581465914660146611466214663146641466514666146671466814669146701467114672146731467414675146761467714678146791468014681146821468314684146851468614687146881468914690146911469214693146941469514696146971469814699147001470114702147031470414705147061470714708147091471014711147121471314714147151471614717147181471914720147211472214723147241472514726147271472814729147301473114732147331473414735147361473714738147391474014741147421474314744147451474614747147481474914750147511475214753147541475514756147571475814759147601476114762147631476414765147661476714768147691477014771147721477314774147751477614777147781477914780147811478214783147841478514786147871478814789147901479114792147931479414795147961479714798147991480014801148021480314804148051480614807148081480914810148111481214813148141481514816148171481814819148201482114822148231482414825148261482714828148291483014831148321483314834148351483614837148381483914840148411484214843148441484514846148471484814849148501485114852148531485414855148561485714858148591486014861148621486314864148651486614867148681486914870148711487214873148741487514876148771487814879148801488114882148831488414885148861488714888148891489014891148921489314894148951489614897148981489914900149011490214903149041490514906149071490814909149101491114912149131491414915149161491714918149191492014921149221492314924149251492614927149281492914930149311493214933149341493514936149371493814939149401494114942149431494414945149461494714948149491495014951149521495314954149551495614957149581495914960149611496214963149641496514966149671496814969149701497114972149731497414975149761497714978149791498014981149821498314984149851498614987149881498914990149911499214993149941499514996149971499814999150001500115002150031500415005150061500715008150091501015011150121501315014150151501615017150181501915020150211502215023150241502515026150271502815029150301503115032150331503415035150361503715038150391504015041150421504315044150451504615047150481504915050150511505215053150541505515056150571505815059150601506115062150631506415065150661506715068150691507015071150721507315074150751507615077150781507915080150811508215083150841508515086150871508815089150901509115092150931509415095150961509715098150991510015101151021510315104151051510615107151081510915110151111511215113151141511515116151171511815119151201512115122151231512415125151261512715128151291513015131151321513315134151351513615137151381513915140151411514215143151441514515146151471514815149151501515115152151531515415155151561515715158151591516015161151621516315164151651516615167151681516915170151711517215173151741517515176151771517815179151801518115182151831518415185151861518715188151891519015191151921519315194151951519615197151981519915200152011520215203152041520515206152071520815209152101521115212152131521415215152161521715218152191522015221152221522315224152251522615227152281522915230152311523215233152341523515236152371523815239152401524115242152431524415245152461524715248152491525015251152521525315254152551525615257152581525915260152611526215263152641526515266152671526815269152701527115272152731527415275152761527715278152791528015281152821528315284152851528615287152881528915290152911529215293152941529515296152971529815299153001530115302153031530415305153061530715308153091531015311153121531315314153151531615317153181531915320153211532215323153241532515326153271532815329153301533115332153331533415335153361533715338153391534015341153421534315344153451534615347153481534915350153511535215353153541535515356153571535815359153601536115362153631536415365153661536715368153691537015371153721537315374153751537615377153781537915380153811538215383153841538515386153871538815389153901539115392153931539415395153961539715398153991540015401154021540315404154051540615407154081540915410154111541215413154141541515416154171541815419154201542115422154231542415425154261542715428154291543015431154321543315434154351543615437154381543915440154411544215443154441544515446154471544815449154501545115452154531545415455154561545715458154591546015461154621546315464154651546615467154681546915470154711547215473154741547515476154771547815479154801548115482154831548415485154861548715488154891549015491154921549315494154951549615497154981549915500155011550215503155041550515506155071550815509155101551115512155131551415515155161551715518155191552015521155221552315524155251552615527155281552915530155311553215533155341553515536155371553815539155401554115542155431554415545155461554715548155491555015551155521555315554155551555615557155581555915560155611556215563155641556515566155671556815569155701557115572155731557415575155761557715578155791558015581155821558315584155851558615587155881558915590155911559215593155941559515596155971559815599156001560115602156031560415605156061560715608156091561015611156121561315614156151561615617156181561915620156211562215623156241562515626156271562815629156301563115632156331563415635156361563715638156391564015641156421564315644156451564615647156481564915650156511565215653156541565515656156571565815659156601566115662156631566415665156661566715668156691567015671156721567315674156751567615677156781567915680156811568215683156841568515686156871568815689156901569115692156931569415695156961569715698156991570015701157021570315704157051570615707157081570915710157111571215713157141571515716157171571815719157201572115722157231572415725157261572715728157291573015731157321573315734157351573615737157381573915740157411574215743157441574515746157471574815749157501575115752157531575415755157561575715758157591576015761157621576315764157651576615767157681576915770157711577215773157741577515776157771577815779157801578115782157831578415785157861578715788157891579015791157921579315794157951579615797157981579915800158011580215803158041580515806158071580815809158101581115812158131581415815158161581715818158191582015821158221582315824158251582615827158281582915830158311583215833158341583515836158371583815839158401584115842158431584415845158461584715848158491585015851158521585315854158551585615857158581585915860158611586215863158641586515866158671586815869158701587115872158731587415875158761587715878158791588015881158821588315884158851588615887158881588915890158911589215893158941589515896158971589815899159001590115902159031590415905159061590715908159091591015911159121591315914159151591615917159181591915920159211592215923159241592515926159271592815929159301593115932159331593415935159361593715938159391594015941159421594315944159451594615947159481594915950159511595215953159541595515956159571595815959159601596115962159631596415965159661596715968159691597015971159721597315974159751597615977159781597915980159811598215983159841598515986159871598815989159901599115992159931599415995159961599715998159991600016001160021600316004160051600616007160081600916010160111601216013160141601516016160171601816019160201602116022160231602416025160261602716028160291603016031160321603316034160351603616037160381603916040160411604216043160441604516046160471604816049160501605116052160531605416055160561605716058160591606016061160621606316064160651606616067160681606916070160711607216073160741607516076160771607816079160801608116082160831608416085160861608716088160891609016091160921609316094160951609616097160981609916100161011610216103161041610516106161071610816109161101611116112161131611416115161161611716118161191612016121161221612316124161251612616127161281612916130161311613216133161341613516136161371613816139161401614116142161431614416145161461614716148161491615016151161521615316154161551615616157161581615916160161611616216163161641616516166161671616816169161701617116172161731617416175161761617716178161791618016181161821618316184161851618616187161881618916190161911619216193161941619516196161971619816199162001620116202162031620416205162061620716208162091621016211162121621316214162151621616217162181621916220162211622216223162241622516226162271622816229162301623116232162331623416235162361623716238162391624016241162421624316244162451624616247162481624916250162511625216253162541625516256162571625816259162601626116262162631626416265162661626716268162691627016271162721627316274162751627616277162781627916280162811628216283162841628516286162871628816289162901629116292162931629416295162961629716298162991630016301163021630316304163051630616307163081630916310163111631216313163141631516316163171631816319163201632116322163231632416325163261632716328163291633016331163321633316334163351633616337163381633916340163411634216343163441634516346163471634816349163501635116352163531635416355163561635716358163591636016361163621636316364163651636616367163681636916370163711637216373163741637516376163771637816379163801638116382163831638416385163861638716388163891639016391163921639316394163951639616397163981639916400164011640216403164041640516406164071640816409164101641116412164131641416415164161641716418164191642016421164221642316424164251642616427164281642916430164311643216433164341643516436164371643816439164401644116442164431644416445164461644716448164491645016451164521645316454164551645616457164581645916460164611646216463164641646516466164671646816469164701647116472164731647416475164761647716478164791648016481164821648316484164851648616487164881648916490164911649216493164941649516496164971649816499165001650116502165031650416505165061650716508165091651016511165121651316514165151651616517165181651916520165211652216523165241652516526165271652816529165301653116532165331653416535165361653716538165391654016541165421654316544165451654616547165481654916550165511655216553165541655516556165571655816559165601656116562165631656416565165661656716568165691657016571165721657316574165751657616577165781657916580165811658216583165841658516586165871658816589165901659116592165931659416595165961659716598165991660016601166021660316604166051660616607166081660916610166111661216613166141661516616166171661816619166201662116622166231662416625166261662716628166291663016631166321663316634166351663616637166381663916640166411664216643166441664516646166471664816649166501665116652166531665416655166561665716658166591666016661166621666316664166651666616667166681666916670166711667216673166741667516676166771667816679166801668116682166831668416685166861668716688166891669016691166921669316694166951669616697166981669916700167011670216703167041670516706167071670816709167101671116712167131671416715167161671716718167191672016721167221672316724167251672616727167281672916730167311673216733167341673516736167371673816739167401674116742167431674416745167461674716748167491675016751167521675316754167551675616757167581675916760167611676216763167641676516766167671676816769167701677116772167731677416775167761677716778167791678016781167821678316784167851678616787167881678916790167911679216793167941679516796167971679816799168001680116802168031680416805168061680716808168091681016811168121681316814168151681616817168181681916820168211682216823168241682516826168271682816829168301683116832168331683416835168361683716838168391684016841168421684316844168451684616847168481684916850168511685216853168541685516856168571685816859168601686116862168631686416865168661686716868168691687016871168721687316874168751687616877168781687916880168811688216883168841688516886168871688816889168901689116892168931689416895168961689716898168991690016901169021690316904169051690616907169081690916910169111691216913169141691516916169171691816919169201692116922169231692416925169261692716928169291693016931169321693316934169351693616937169381693916940169411694216943169441694516946169471694816949169501695116952169531695416955169561695716958169591696016961169621696316964169651696616967169681696916970169711697216973169741697516976169771697816979169801698116982169831698416985169861698716988169891699016991169921699316994169951699616997169981699917000170011700217003170041700517006170071700817009170101701117012170131701417015170161701717018170191702017021170221702317024170251702617027170281702917030170311703217033170341703517036170371703817039170401704117042170431704417045170461704717048170491705017051170521705317054170551705617057170581705917060170611706217063170641706517066170671706817069170701707117072170731707417075170761707717078170791708017081170821708317084170851708617087170881708917090170911709217093170941709517096170971709817099171001710117102171031710417105171061710717108171091711017111171121711317114171151711617117171181711917120171211712217123171241712517126171271712817129171301713117132171331713417135171361713717138171391714017141171421714317144171451714617147171481714917150171511715217153171541715517156171571715817159171601716117162171631716417165171661716717168171691717017171171721717317174171751717617177171781717917180171811718217183171841718517186171871718817189171901719117192171931719417195171961719717198171991720017201172021720317204172051720617207172081720917210172111721217213172141721517216172171721817219172201722117222172231722417225172261722717228172291723017231172321723317234172351723617237172381723917240172411724217243172441724517246172471724817249172501725117252172531725417255172561725717258172591726017261172621726317264172651726617267172681726917270172711727217273172741727517276172771727817279172801728117282172831728417285172861728717288172891729017291172921729317294172951729617297172981729917300173011730217303173041730517306173071730817309173101731117312173131731417315173161731717318173191732017321173221732317324173251732617327173281732917330173311733217333173341733517336173371733817339173401734117342173431734417345173461734717348173491735017351173521735317354173551735617357173581735917360173611736217363173641736517366173671736817369173701737117372173731737417375173761737717378173791738017381173821738317384173851738617387173881738917390173911739217393173941739517396173971739817399174001740117402174031740417405174061740717408174091741017411174121741317414174151741617417174181741917420174211742217423174241742517426174271742817429174301743117432174331743417435174361743717438174391744017441174421744317444174451744617447174481744917450174511745217453174541745517456174571745817459174601746117462174631746417465174661746717468174691747017471174721747317474174751747617477174781747917480174811748217483174841748517486174871748817489174901749117492174931749417495174961749717498174991750017501175021750317504175051750617507175081750917510175111751217513175141751517516175171751817519175201752117522175231752417525175261752717528175291753017531175321753317534175351753617537175381753917540175411754217543175441754517546175471754817549175501755117552175531755417555175561755717558175591756017561175621756317564175651756617567175681756917570175711757217573175741757517576175771757817579175801758117582175831758417585175861758717588175891759017591175921759317594175951759617597175981759917600176011760217603176041760517606176071760817609176101761117612176131761417615176161761717618176191762017621176221762317624176251762617627176281762917630176311763217633176341763517636176371763817639176401764117642176431764417645176461764717648176491765017651176521765317654176551765617657176581765917660176611766217663176641766517666176671766817669176701767117672176731767417675176761767717678176791768017681176821768317684176851768617687176881768917690176911769217693176941769517696176971769817699177001770117702177031770417705177061770717708177091771017711177121771317714177151771617717177181771917720177211772217723177241772517726177271772817729177301773117732177331773417735177361773717738177391774017741177421774317744177451774617747177481774917750177511775217753177541775517756177571775817759177601776117762177631776417765177661776717768177691777017771177721777317774177751777617777177781777917780177811778217783177841778517786177871778817789177901779117792177931779417795177961779717798177991780017801178021780317804178051780617807178081780917810178111781217813178141781517816178171781817819178201782117822178231782417825178261782717828178291783017831178321783317834178351783617837178381783917840178411784217843178441784517846178471784817849178501785117852178531785417855178561785717858178591786017861178621786317864178651786617867178681786917870178711787217873178741787517876178771787817879178801788117882178831788417885178861788717888178891789017891178921789317894178951789617897178981789917900179011790217903179041790517906179071790817909179101791117912179131791417915179161791717918179191792017921179221792317924179251792617927179281792917930179311793217933179341793517936179371793817939179401794117942179431794417945179461794717948179491795017951179521795317954179551795617957179581795917960179611796217963179641796517966179671796817969179701797117972179731797417975179761797717978179791798017981179821798317984179851798617987179881798917990179911799217993179941799517996179971799817999180001800118002180031800418005180061800718008180091801018011180121801318014180151801618017180181801918020180211802218023180241802518026180271802818029180301803118032180331803418035180361803718038180391804018041180421804318044180451804618047180481804918050180511805218053180541805518056180571805818059180601806118062180631806418065180661806718068180691807018071180721807318074180751807618077180781807918080180811808218083180841808518086180871808818089180901809118092180931809418095180961809718098180991810018101181021810318104181051810618107181081810918110181111811218113181141811518116181171811818119181201812118122181231812418125181261812718128181291813018131181321813318134181351813618137181381813918140181411814218143181441814518146181471814818149181501815118152181531815418155181561815718158181591816018161181621816318164181651816618167181681816918170181711817218173181741817518176181771817818179181801818118182181831818418185181861818718188181891819018191181921819318194181951819618197181981819918200182011820218203182041820518206182071820818209182101821118212182131821418215182161821718218182191822018221182221822318224182251822618227182281822918230182311823218233182341823518236182371823818239182401824118242182431824418245182461824718248182491825018251182521825318254182551825618257182581825918260182611826218263182641826518266182671826818269182701827118272182731827418275182761827718278182791828018281182821828318284182851828618287182881828918290182911829218293182941829518296182971829818299183001830118302183031830418305183061830718308183091831018311183121831318314183151831618317183181831918320183211832218323183241832518326183271832818329183301833118332183331833418335183361833718338183391834018341183421834318344183451834618347183481834918350183511835218353183541835518356183571835818359183601836118362183631836418365183661836718368183691837018371183721837318374183751837618377183781837918380
  1. /**
  2. * llama.cpp - git 5bf2a2771886ee86137e01dbc7492f78fb392066
  3. *
  4. * MIT License
  5. *
  6. * Copyright (c) 2023 Georgi Gerganov
  7. *
  8. * Permission is hereby granted, free of charge, to any person obtaining a copy
  9. * of this software and associated documentation files (the "Software"), to deal
  10. * in the Software without restriction, including without limitation the rights
  11. * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
  12. * copies of the Software, and to permit persons to whom the Software is
  13. * furnished to do so, subject to the following conditions:
  14. *
  15. * The above copyright notice and this permission notice shall be included in all
  16. * copies or substantial portions of the Software.
  17. *
  18. * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
  19. * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
  20. * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
  21. * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
  22. * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
  23. * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
  24. * SOFTWARE.
  25. */
  26. #define _GNU_SOURCE // Defines CLOCK_MONOTONIC on Linux
  27. #define _CRT_SECURE_NO_DEPRECATE // Disables ridiculous "unsafe" warnigns on Windows
  28. #include "ggml.h"
  29. #ifdef GGML_USE_K_QUANTS
  30. #include "k_quants.h"
  31. #endif
  32. #if defined(_MSC_VER) || defined(__MINGW32__)
  33. #include <malloc.h> // using malloc.h with MSC/MINGW
  34. #elif !defined(__FreeBSD__) && !defined(__NetBSD__) && !defined(__OpenBSD__)
  35. #include <alloca.h>
  36. #endif
  37. #include <assert.h>
  38. #include <errno.h>
  39. #include <time.h>
  40. #include <math.h>
  41. #include <stdlib.h>
  42. #include <string.h>
  43. #include <stdint.h>
  44. #include <inttypes.h>
  45. #include <stdio.h>
  46. #include <float.h>
  47. #include <limits.h>
  48. #include <stdarg.h>
  49. #ifdef GGML_USE_METAL
  50. #include <unistd.h>
  51. #endif
  52. // if C99 - static_assert is noop
  53. // ref: https://stackoverflow.com/a/53923785/4039976
  54. #ifndef static_assert
  55. #define static_assert(cond, msg) struct global_scope_noop_trick
  56. #endif
  57. #if defined(_MSC_VER)
  58. // disable "possible loss of data" to avoid hundreds of casts
  59. // we should just be careful :)
  60. #pragma warning(disable: 4244 4267)
  61. #endif
  62. #if defined(_WIN32)
  63. #include <windows.h>
  64. typedef volatile LONG atomic_int;
  65. typedef atomic_int atomic_bool;
  66. static void atomic_store(atomic_int* ptr, LONG val) {
  67. InterlockedExchange(ptr, val);
  68. }
  69. static LONG atomic_load(atomic_int* ptr) {
  70. return InterlockedCompareExchange(ptr, 0, 0);
  71. }
  72. static LONG atomic_fetch_add(atomic_int* ptr, LONG inc) {
  73. return InterlockedExchangeAdd(ptr, inc);
  74. }
  75. static LONG atomic_fetch_sub(atomic_int* ptr, LONG dec) {
  76. return atomic_fetch_add(ptr, -(dec));
  77. }
  78. typedef HANDLE pthread_t;
  79. typedef DWORD thread_ret_t;
  80. static int pthread_create(pthread_t* out, void* unused, thread_ret_t(*func)(void*), void* arg) {
  81. (void) unused;
  82. HANDLE handle = CreateThread(NULL, 0, (LPTHREAD_START_ROUTINE) func, arg, 0, NULL);
  83. if (handle == NULL)
  84. {
  85. return EAGAIN;
  86. }
  87. *out = handle;
  88. return 0;
  89. }
  90. static int pthread_join(pthread_t thread, void* unused) {
  91. (void) unused;
  92. return (int) WaitForSingleObject(thread, INFINITE);
  93. }
  94. static int sched_yield (void) {
  95. Sleep (0);
  96. return 0;
  97. }
  98. #else
  99. #include <pthread.h>
  100. #include <stdatomic.h>
  101. typedef void* thread_ret_t;
  102. #include <sys/types.h>
  103. #include <sys/stat.h>
  104. #include <unistd.h>
  105. #endif
  106. // __FMA__ and __F16C__ are not defined in MSVC, however they are implied with AVX2/AVX512
  107. #if defined(_MSC_VER) && (defined(__AVX2__) || defined(__AVX512F__))
  108. #ifndef __FMA__
  109. #define __FMA__
  110. #endif
  111. #ifndef __F16C__
  112. #define __F16C__
  113. #endif
  114. #ifndef __SSE3__
  115. #define __SSE3__
  116. #endif
  117. #endif
  118. #ifdef __HAIKU__
  119. #define static_assert(cond, msg) _Static_assert(cond, msg)
  120. #endif
  121. /*#define GGML_PERF*/
  122. #define GGML_DEBUG 0
  123. #define GGML_GELU_FP16
  124. #define GGML_GELU_QUICK_FP16
  125. #define GGML_SILU_FP16
  126. #define GGML_SOFT_MAX_UNROLL 4
  127. #define GGML_VEC_DOT_UNROLL 2
  128. //
  129. // logging
  130. //
  131. #if (GGML_DEBUG >= 1)
  132. #define GGML_PRINT_DEBUG(...) printf(__VA_ARGS__)
  133. #else
  134. #define GGML_PRINT_DEBUG(...)
  135. #endif
  136. #if (GGML_DEBUG >= 5)
  137. #define GGML_PRINT_DEBUG_5(...) printf(__VA_ARGS__)
  138. #else
  139. #define GGML_PRINT_DEBUG_5(...)
  140. #endif
  141. #if (GGML_DEBUG >= 10)
  142. #define GGML_PRINT_DEBUG_10(...) printf(__VA_ARGS__)
  143. #else
  144. #define GGML_PRINT_DEBUG_10(...)
  145. #endif
  146. #define GGML_PRINT(...) printf(__VA_ARGS__)
  147. #ifdef GGML_USE_ACCELERATE
  148. // uncomment to use vDSP for soft max computation
  149. // note: not sure if it is actually faster
  150. //#define GGML_SOFT_MAX_ACCELERATE
  151. #endif
  152. #if UINTPTR_MAX == 0xFFFFFFFF
  153. #define GGML_MEM_ALIGN 4
  154. #else
  155. #define GGML_MEM_ALIGN 16
  156. #endif
  157. //
  158. // logging
  159. //
  160. #if (GGML_DEBUG >= 1)
  161. #define GGML_PRINT_DEBUG(...) printf(__VA_ARGS__)
  162. #else
  163. #define GGML_PRINT_DEBUG(...)
  164. #endif
  165. #if (GGML_DEBUG >= 5)
  166. #define GGML_PRINT_DEBUG_5(...) printf(__VA_ARGS__)
  167. #else
  168. #define GGML_PRINT_DEBUG_5(...)
  169. #endif
  170. #if (GGML_DEBUG >= 10)
  171. #define GGML_PRINT_DEBUG_10(...) printf(__VA_ARGS__)
  172. #else
  173. #define GGML_PRINT_DEBUG_10(...)
  174. #endif
  175. #define GGML_PRINT(...) printf(__VA_ARGS__)
  176. //
  177. // end of logging block
  178. //
  179. #if defined(_MSC_VER) || defined(__MINGW32__)
  180. #define GGML_ALIGNED_MALLOC(size) _aligned_malloc(size, GGML_MEM_ALIGN)
  181. #define GGML_ALIGNED_FREE(ptr) _aligned_free(ptr)
  182. #else
  183. inline static void* ggml_aligned_malloc(size_t size) {
  184. void* aligned_memory = NULL;
  185. #ifdef GGML_USE_METAL
  186. int result = posix_memalign(&aligned_memory, getpagesize(), size);
  187. #else
  188. int result = posix_memalign(&aligned_memory, GGML_MEM_ALIGN, size);
  189. #endif
  190. if (result != 0) {
  191. // Handle allocation failure
  192. const char *error_desc = "unknown allocation error";
  193. switch (result) {
  194. case EINVAL:
  195. error_desc = "invalid alignment value";
  196. break;
  197. case ENOMEM:
  198. error_desc = "insufficient memory";
  199. break;
  200. }
  201. GGML_PRINT("%s: %s (attempted to allocate %6.2f MB)\n",
  202. __func__, error_desc, size/(1024.0*1024.0));
  203. return NULL;
  204. }
  205. return aligned_memory;
  206. }
  207. #define GGML_ALIGNED_MALLOC(size) ggml_aligned_malloc(size)
  208. #define GGML_ALIGNED_FREE(ptr) free(ptr)
  209. #endif
  210. #define UNUSED GGML_UNUSED
  211. #define SWAP(x, y, T) do { T SWAP = x; x = y; y = SWAP; } while (0)
  212. //
  213. // tensor access macros
  214. //
  215. #define GGML_TENSOR_UNARY_OP_LOCALS \
  216. GGML_TENSOR_LOCALS(int64_t, ne0, src0, ne); \
  217. GGML_TENSOR_LOCALS(size_t, nb0, src0, nb); \
  218. GGML_TENSOR_LOCALS(int64_t, ne, dst, ne); \
  219. GGML_TENSOR_LOCALS(size_t, nb, dst, nb);
  220. #define GGML_TENSOR_BINARY_OP_LOCALS \
  221. GGML_TENSOR_LOCALS(int64_t, ne0, src0, ne); \
  222. GGML_TENSOR_LOCALS(size_t, nb0, src0, nb); \
  223. GGML_TENSOR_LOCALS(int64_t, ne1, src1, ne); \
  224. GGML_TENSOR_LOCALS(size_t, nb1, src1, nb); \
  225. GGML_TENSOR_LOCALS(int64_t, ne, dst, ne); \
  226. GGML_TENSOR_LOCALS(size_t, nb, dst, nb);
  227. #if defined(GGML_USE_ACCELERATE)
  228. #include <Accelerate/Accelerate.h>
  229. #if defined(GGML_USE_CLBLAST) // allow usage of CLBlast alongside Accelerate functions
  230. #include "ggml-opencl.h"
  231. #endif
  232. #elif defined(GGML_USE_OPENBLAS)
  233. #if defined(GGML_BLAS_USE_MKL)
  234. #include <mkl.h>
  235. #else
  236. #include <cblas.h>
  237. #endif
  238. #elif defined(GGML_USE_CUBLAS)
  239. #include "ggml-cuda.h"
  240. #elif defined(GGML_USE_CLBLAST)
  241. #include "ggml-opencl.h"
  242. #endif
  243. #undef MIN
  244. #undef MAX
  245. #define MIN(a, b) ((a) < (b) ? (a) : (b))
  246. #define MAX(a, b) ((a) > (b) ? (a) : (b))
  247. // floating point type used to accumulate sums
  248. typedef double ggml_float;
  249. // 16-bit float
  250. // on Arm, we use __fp16
  251. // on x86, we use uint16_t
  252. #ifdef __ARM_NEON
  253. // if YCM cannot find <arm_neon.h>, make a symbolic link to it, for example:
  254. //
  255. // $ ln -sfn /Library/Developer/CommandLineTools/usr/lib/clang/13.1.6/include/arm_neon.h ./src/
  256. //
  257. #include <arm_neon.h>
  258. #define GGML_COMPUTE_FP16_TO_FP32(x) ((float) (x))
  259. #define GGML_COMPUTE_FP32_TO_FP16(x) (x)
  260. #define GGML_FP16_TO_FP32(x) ((float) (x))
  261. #define GGML_FP32_TO_FP16(x) (x)
  262. #else
  263. #ifdef __wasm_simd128__
  264. #include <wasm_simd128.h>
  265. #else
  266. #ifdef __POWER9_VECTOR__
  267. #include <altivec.h>
  268. #undef bool
  269. #define bool _Bool
  270. #else
  271. #if defined(_MSC_VER) || defined(__MINGW32__)
  272. #include <intrin.h>
  273. #else
  274. #if !defined(__riscv)
  275. #include <immintrin.h>
  276. #endif
  277. #endif
  278. #endif
  279. #endif
  280. #ifdef __F16C__
  281. #ifdef _MSC_VER
  282. #define GGML_COMPUTE_FP16_TO_FP32(x) _mm_cvtss_f32(_mm_cvtph_ps(_mm_cvtsi32_si128(x)))
  283. #define GGML_COMPUTE_FP32_TO_FP16(x) _mm_extract_epi16(_mm_cvtps_ph(_mm_set_ss(x), 0), 0)
  284. #else
  285. #define GGML_COMPUTE_FP16_TO_FP32(x) _cvtsh_ss(x)
  286. #define GGML_COMPUTE_FP32_TO_FP16(x) _cvtss_sh(x, 0)
  287. #endif
  288. #elif defined(__POWER9_VECTOR__)
  289. #define GGML_COMPUTE_FP16_TO_FP32(x) ggml_compute_fp16_to_fp32(x)
  290. #define GGML_COMPUTE_FP32_TO_FP16(x) ggml_compute_fp32_to_fp16(x)
  291. /* the inline asm below is about 12% faster than the lookup method */
  292. #define GGML_FP16_TO_FP32(x) GGML_COMPUTE_FP16_TO_FP32(x)
  293. #define GGML_FP32_TO_FP16(x) GGML_COMPUTE_FP32_TO_FP16(x)
  294. static inline float ggml_compute_fp16_to_fp32(ggml_fp16_t h) {
  295. register float f;
  296. register double d;
  297. __asm__(
  298. "mtfprd %0,%2\n"
  299. "xscvhpdp %0,%0\n"
  300. "frsp %1,%0\n" :
  301. /* temp */ "=d"(d),
  302. /* out */ "=f"(f):
  303. /* in */ "r"(h));
  304. return f;
  305. }
  306. static inline ggml_fp16_t ggml_compute_fp32_to_fp16(float f) {
  307. register double d;
  308. register ggml_fp16_t r;
  309. __asm__( /* xscvdphp can work on double or single precision */
  310. "xscvdphp %0,%2\n"
  311. "mffprd %1,%0\n" :
  312. /* temp */ "=d"(d),
  313. /* out */ "=r"(r):
  314. /* in */ "f"(f));
  315. return r;
  316. }
  317. #else
  318. // FP16 <-> FP32
  319. // ref: https://github.com/Maratyszcza/FP16
  320. static inline float fp32_from_bits(uint32_t w) {
  321. union {
  322. uint32_t as_bits;
  323. float as_value;
  324. } fp32;
  325. fp32.as_bits = w;
  326. return fp32.as_value;
  327. }
  328. static inline uint32_t fp32_to_bits(float f) {
  329. union {
  330. float as_value;
  331. uint32_t as_bits;
  332. } fp32;
  333. fp32.as_value = f;
  334. return fp32.as_bits;
  335. }
  336. static inline float ggml_compute_fp16_to_fp32(ggml_fp16_t h) {
  337. const uint32_t w = (uint32_t) h << 16;
  338. const uint32_t sign = w & UINT32_C(0x80000000);
  339. const uint32_t two_w = w + w;
  340. const uint32_t exp_offset = UINT32_C(0xE0) << 23;
  341. #if defined(__STDC_VERSION__) && (__STDC_VERSION__ >= 199901L) || defined(__GNUC__) && !defined(__STRICT_ANSI__)
  342. const float exp_scale = 0x1.0p-112f;
  343. #else
  344. const float exp_scale = fp32_from_bits(UINT32_C(0x7800000));
  345. #endif
  346. const float normalized_value = fp32_from_bits((two_w >> 4) + exp_offset) * exp_scale;
  347. const uint32_t magic_mask = UINT32_C(126) << 23;
  348. const float magic_bias = 0.5f;
  349. const float denormalized_value = fp32_from_bits((two_w >> 17) | magic_mask) - magic_bias;
  350. const uint32_t denormalized_cutoff = UINT32_C(1) << 27;
  351. const uint32_t result = sign |
  352. (two_w < denormalized_cutoff ? fp32_to_bits(denormalized_value) : fp32_to_bits(normalized_value));
  353. return fp32_from_bits(result);
  354. }
  355. static inline ggml_fp16_t ggml_compute_fp32_to_fp16(float f) {
  356. #if defined(__STDC_VERSION__) && (__STDC_VERSION__ >= 199901L) || defined(__GNUC__) && !defined(__STRICT_ANSI__)
  357. const float scale_to_inf = 0x1.0p+112f;
  358. const float scale_to_zero = 0x1.0p-110f;
  359. #else
  360. const float scale_to_inf = fp32_from_bits(UINT32_C(0x77800000));
  361. const float scale_to_zero = fp32_from_bits(UINT32_C(0x08800000));
  362. #endif
  363. float base = (fabsf(f) * scale_to_inf) * scale_to_zero;
  364. const uint32_t w = fp32_to_bits(f);
  365. const uint32_t shl1_w = w + w;
  366. const uint32_t sign = w & UINT32_C(0x80000000);
  367. uint32_t bias = shl1_w & UINT32_C(0xFF000000);
  368. if (bias < UINT32_C(0x71000000)) {
  369. bias = UINT32_C(0x71000000);
  370. }
  371. base = fp32_from_bits((bias >> 1) + UINT32_C(0x07800000)) + base;
  372. const uint32_t bits = fp32_to_bits(base);
  373. const uint32_t exp_bits = (bits >> 13) & UINT32_C(0x00007C00);
  374. const uint32_t mantissa_bits = bits & UINT32_C(0x00000FFF);
  375. const uint32_t nonsign = exp_bits + mantissa_bits;
  376. return (sign >> 16) | (shl1_w > UINT32_C(0xFF000000) ? UINT16_C(0x7E00) : nonsign);
  377. }
  378. #define GGML_COMPUTE_FP16_TO_FP32(x) ggml_compute_fp16_to_fp32(x)
  379. #define GGML_COMPUTE_FP32_TO_FP16(x) ggml_compute_fp32_to_fp16(x)
  380. #endif // __F16C__
  381. #endif // __ARM_NEON
  382. //
  383. // global data
  384. //
  385. // precomputed gelu table for f16 (128 KB)
  386. static ggml_fp16_t table_gelu_f16[1 << 16];
  387. // precomputed quick gelu table for f16 (128 KB)
  388. static ggml_fp16_t table_gelu_quick_f16[1 << 16];
  389. // precomputed silu table for f16 (128 KB)
  390. static ggml_fp16_t table_silu_f16[1 << 16];
  391. // precomputed exp table for f16 (128 KB)
  392. static ggml_fp16_t table_exp_f16[1 << 16];
  393. // precomputed f32 table for f16 (256 KB)
  394. static float table_f32_f16[1 << 16];
  395. #if defined(__ARM_NEON) || defined(__wasm_simd128__)
  396. #define B1(c,s,n) 0x ## n ## c , 0x ## n ## s
  397. #define B2(c,s,n) B1(c,s,n ## c), B1(c,s,n ## s)
  398. #define B3(c,s,n) B2(c,s,n ## c), B2(c,s,n ## s)
  399. #define B4(c,s,n) B3(c,s,n ## c), B3(c,s,n ## s)
  400. #define B5(c,s,n) B4(c,s,n ## c), B4(c,s,n ## s)
  401. #define B6(c,s,n) B5(c,s,n ## c), B5(c,s,n ## s)
  402. #define B7(c,s,n) B6(c,s,n ## c), B6(c,s,n ## s)
  403. #define B8(c,s ) B7(c,s, c), B7(c,s, s)
  404. // precomputed tables for expanding 8bits to 8 bytes:
  405. static const uint64_t table_b2b_0[1 << 8] = { B8(00, 10) }; // ( b) << 4
  406. static const uint64_t table_b2b_1[1 << 8] = { B8(10, 00) }; // (!b) << 4
  407. #endif
  408. // On ARM NEON, it's quicker to directly convert x -> x instead of calling into ggml_lookup_fp16_to_fp32,
  409. // so we define GGML_FP16_TO_FP32 and GGML_FP32_TO_FP16 elsewhere for NEON.
  410. // This is also true for POWER9.
  411. #if !defined(GGML_FP16_TO_FP32) || !defined(GGML_FP32_TO_FP16)
  412. inline static float ggml_lookup_fp16_to_fp32(ggml_fp16_t f) {
  413. uint16_t s;
  414. memcpy(&s, &f, sizeof(uint16_t));
  415. return table_f32_f16[s];
  416. }
  417. #define GGML_FP16_TO_FP32(x) ggml_lookup_fp16_to_fp32(x)
  418. #define GGML_FP32_TO_FP16(x) GGML_COMPUTE_FP32_TO_FP16(x)
  419. #endif
  420. // note: do not use these inside ggml.c
  421. // these are meant to be used via the ggml.h API
  422. float ggml_fp16_to_fp32(ggml_fp16_t x) {
  423. return (float) GGML_FP16_TO_FP32(x);
  424. }
  425. ggml_fp16_t ggml_fp32_to_fp16(float x) {
  426. return GGML_FP32_TO_FP16(x);
  427. }
  428. void ggml_fp16_to_fp32_row(const ggml_fp16_t * x, float * y, int n) {
  429. for (int i = 0; i < n; i++) {
  430. y[i] = GGML_FP16_TO_FP32(x[i]);
  431. }
  432. }
  433. void ggml_fp32_to_fp16_row(const float * x, ggml_fp16_t * y, int n) {
  434. int i = 0;
  435. #if defined(__F16C__)
  436. for (; i + 7 < n; i += 8) {
  437. __m256 x_vec = _mm256_loadu_ps(x + i);
  438. __m128i y_vec = _mm256_cvtps_ph(x_vec, _MM_FROUND_TO_NEAREST_INT);
  439. _mm_storeu_si128((__m128i *)(y + i), y_vec);
  440. }
  441. for(; i + 3 < n; i += 4) {
  442. __m128 x_vec = _mm_loadu_ps(x + i);
  443. __m128i y_vec = _mm_cvtps_ph(x_vec, _MM_FROUND_TO_NEAREST_INT);
  444. _mm_storel_epi64((__m128i *)(y + i), y_vec);
  445. }
  446. #endif
  447. for (; i < n; i++) {
  448. y[i] = GGML_FP32_TO_FP16(x[i]);
  449. }
  450. }
  451. //
  452. // timing
  453. //
  454. #if defined(_MSC_VER) || defined(__MINGW32__)
  455. static int64_t timer_freq, timer_start;
  456. void ggml_time_init(void) {
  457. LARGE_INTEGER t;
  458. QueryPerformanceFrequency(&t);
  459. timer_freq = t.QuadPart;
  460. // The multiplication by 1000 or 1000000 below can cause an overflow if timer_freq
  461. // and the uptime is high enough.
  462. // We subtract the program start time to reduce the likelihood of that happening.
  463. QueryPerformanceCounter(&t);
  464. timer_start = t.QuadPart;
  465. }
  466. int64_t ggml_time_ms(void) {
  467. LARGE_INTEGER t;
  468. QueryPerformanceCounter(&t);
  469. return ((t.QuadPart-timer_start) * 1000) / timer_freq;
  470. }
  471. int64_t ggml_time_us(void) {
  472. LARGE_INTEGER t;
  473. QueryPerformanceCounter(&t);
  474. return ((t.QuadPart-timer_start) * 1000000) / timer_freq;
  475. }
  476. #else
  477. void ggml_time_init(void) {}
  478. int64_t ggml_time_ms(void) {
  479. struct timespec ts;
  480. clock_gettime(CLOCK_MONOTONIC, &ts);
  481. return (int64_t)ts.tv_sec*1000 + (int64_t)ts.tv_nsec/1000000;
  482. }
  483. int64_t ggml_time_us(void) {
  484. struct timespec ts;
  485. clock_gettime(CLOCK_MONOTONIC, &ts);
  486. return (int64_t)ts.tv_sec*1000000 + (int64_t)ts.tv_nsec/1000;
  487. }
  488. #endif
  489. int64_t ggml_cycles(void) {
  490. return clock();
  491. }
  492. int64_t ggml_cycles_per_ms(void) {
  493. return CLOCKS_PER_SEC/1000;
  494. }
  495. #ifdef GGML_PERF
  496. #define ggml_perf_time_ms() ggml_time_ms()
  497. #define ggml_perf_time_us() ggml_time_us()
  498. #define ggml_perf_cycles() ggml_cycles()
  499. #define ggml_perf_cycles_per_ms() ggml_cycles_per_ms()
  500. #else
  501. #define ggml_perf_time_ms() 0
  502. #define ggml_perf_time_us() 0
  503. #define ggml_perf_cycles() 0
  504. #define ggml_perf_cycles_per_ms() 0
  505. #endif
  506. //
  507. // cache line
  508. //
  509. #if defined(__cpp_lib_hardware_interference_size)
  510. #define CACHE_LINE_SIZE hardware_destructive_interference_size
  511. #else
  512. #if defined(__POWER9_VECTOR__)
  513. #define CACHE_LINE_SIZE 128
  514. #else
  515. #define CACHE_LINE_SIZE 64
  516. #endif
  517. #endif
  518. static const size_t CACHE_LINE_SIZE_F32 = CACHE_LINE_SIZE/sizeof(float);
  519. //
  520. // quantization
  521. //
  522. #define MM256_SET_M128I(a, b) _mm256_insertf128_si256(_mm256_castsi128_si256(b), (a), 1)
  523. #if defined(__AVX__) || defined(__AVX2__) || defined(__AVX512F__) || defined(__SSSE3__)
  524. // multiply int8_t, add results pairwise twice
  525. static inline __m128i mul_sum_i8_pairs(const __m128i x, const __m128i y) {
  526. // Get absolute values of x vectors
  527. const __m128i ax = _mm_sign_epi8(x, x);
  528. // Sign the values of the y vectors
  529. const __m128i sy = _mm_sign_epi8(y, x);
  530. // Perform multiplication and create 16-bit values
  531. const __m128i dot = _mm_maddubs_epi16(ax, sy);
  532. const __m128i ones = _mm_set1_epi16(1);
  533. return _mm_madd_epi16(ones, dot);
  534. }
  535. #if __AVX__ || __AVX2__ || __AVX512F__
  536. // horizontally add 8 floats
  537. static inline float hsum_float_8(const __m256 x) {
  538. __m128 res = _mm256_extractf128_ps(x, 1);
  539. res = _mm_add_ps(res, _mm256_castps256_ps128(x));
  540. res = _mm_add_ps(res, _mm_movehl_ps(res, res));
  541. res = _mm_add_ss(res, _mm_movehdup_ps(res));
  542. return _mm_cvtss_f32(res);
  543. }
  544. // horizontally add 8 int32_t
  545. static inline int hsum_i32_8(const __m256i a) {
  546. const __m128i sum128 = _mm_add_epi32(_mm256_castsi256_si128(a), _mm256_extractf128_si256(a, 1));
  547. const __m128i hi64 = _mm_unpackhi_epi64(sum128, sum128);
  548. const __m128i sum64 = _mm_add_epi32(hi64, sum128);
  549. const __m128i hi32 = _mm_shuffle_epi32(sum64, _MM_SHUFFLE(2, 3, 0, 1));
  550. return _mm_cvtsi128_si32(_mm_add_epi32(sum64, hi32));
  551. }
  552. // horizontally add 4 int32_t
  553. static inline int hsum_i32_4(const __m128i a) {
  554. const __m128i hi64 = _mm_unpackhi_epi64(a, a);
  555. const __m128i sum64 = _mm_add_epi32(hi64, a);
  556. const __m128i hi32 = _mm_shuffle_epi32(sum64, _MM_SHUFFLE(2, 3, 0, 1));
  557. return _mm_cvtsi128_si32(_mm_add_epi32(sum64, hi32));
  558. }
  559. #if defined(__AVX2__) || defined(__AVX512F__)
  560. // spread 32 bits to 32 bytes { 0x00, 0xFF }
  561. static inline __m256i bytes_from_bits_32(const uint8_t * x) {
  562. uint32_t x32;
  563. memcpy(&x32, x, sizeof(uint32_t));
  564. const __m256i shuf_mask = _mm256_set_epi64x(
  565. 0x0303030303030303, 0x0202020202020202,
  566. 0x0101010101010101, 0x0000000000000000);
  567. __m256i bytes = _mm256_shuffle_epi8(_mm256_set1_epi32(x32), shuf_mask);
  568. const __m256i bit_mask = _mm256_set1_epi64x(0x7fbfdfeff7fbfdfe);
  569. bytes = _mm256_or_si256(bytes, bit_mask);
  570. return _mm256_cmpeq_epi8(bytes, _mm256_set1_epi64x(-1));
  571. }
  572. // Unpack 32 4-bit fields into 32 bytes
  573. // The output vector contains 32 bytes, each one in [ 0 .. 15 ] interval
  574. static inline __m256i bytes_from_nibbles_32(const uint8_t * rsi)
  575. {
  576. const __m128i tmp = _mm_loadu_si128((const __m128i *)rsi);
  577. const __m256i bytes = MM256_SET_M128I(_mm_srli_epi16(tmp, 4), tmp);
  578. const __m256i lowMask = _mm256_set1_epi8( 0xF );
  579. return _mm256_and_si256(lowMask, bytes);
  580. }
  581. // add int16_t pairwise and return as float vector
  582. static inline __m256 sum_i16_pairs_float(const __m256i x) {
  583. const __m256i ones = _mm256_set1_epi16(1);
  584. const __m256i summed_pairs = _mm256_madd_epi16(ones, x);
  585. return _mm256_cvtepi32_ps(summed_pairs);
  586. }
  587. static inline __m256 mul_sum_us8_pairs_float(const __m256i ax, const __m256i sy) {
  588. #if __AVXVNNI__
  589. const __m256i zero = _mm256_setzero_si256();
  590. const __m256i summed_pairs = _mm256_dpbusd_epi32(zero, ax, sy);
  591. return _mm256_cvtepi32_ps(summed_pairs);
  592. #else
  593. // Perform multiplication and create 16-bit values
  594. const __m256i dot = _mm256_maddubs_epi16(ax, sy);
  595. return sum_i16_pairs_float(dot);
  596. #endif
  597. }
  598. // multiply int8_t, add results pairwise twice and return as float vector
  599. static inline __m256 mul_sum_i8_pairs_float(const __m256i x, const __m256i y) {
  600. #if __AVXVNNIINT8__
  601. const __m256i zero = _mm256_setzero_si256();
  602. const __m256i summed_pairs = _mm256_dpbssd_epi32(zero, x, y);
  603. return _mm256_cvtepi32_ps(summed_pairs);
  604. #else
  605. // Get absolute values of x vectors
  606. const __m256i ax = _mm256_sign_epi8(x, x);
  607. // Sign the values of the y vectors
  608. const __m256i sy = _mm256_sign_epi8(y, x);
  609. return mul_sum_us8_pairs_float(ax, sy);
  610. #endif
  611. }
  612. static inline __m128i packNibbles( __m256i bytes )
  613. {
  614. // Move bits within 16-bit lanes from 0000_abcd_0000_efgh into 0000_0000_abcd_efgh
  615. #if __AVX512F__
  616. const __m256i bytes_srli_4 = _mm256_srli_epi16(bytes, 4); // 0000_0000_abcd_0000
  617. bytes = _mm256_or_si256(bytes, bytes_srli_4); // 0000_abcd_abcd_efgh
  618. return _mm256_cvtepi16_epi8(bytes); // abcd_efgh
  619. #else
  620. const __m256i lowByte = _mm256_set1_epi16( 0xFF );
  621. __m256i high = _mm256_andnot_si256( lowByte, bytes );
  622. __m256i low = _mm256_and_si256( lowByte, bytes );
  623. high = _mm256_srli_epi16( high, 4 );
  624. bytes = _mm256_or_si256( low, high );
  625. // Compress uint16_t lanes into bytes
  626. __m128i r0 = _mm256_castsi256_si128( bytes );
  627. __m128i r1 = _mm256_extracti128_si256( bytes, 1 );
  628. return _mm_packus_epi16( r0, r1 );
  629. #endif
  630. }
  631. #elif defined(__AVX__)
  632. // spread 32 bits to 32 bytes { 0x00, 0xFF }
  633. static inline __m256i bytes_from_bits_32(const uint8_t * x) {
  634. uint32_t x32;
  635. memcpy(&x32, x, sizeof(uint32_t));
  636. const __m128i shuf_maskl = _mm_set_epi64x(0x0101010101010101, 0x0000000000000000);
  637. const __m128i shuf_maskh = _mm_set_epi64x(0x0303030303030303, 0x0202020202020202);
  638. __m128i bytesl = _mm_shuffle_epi8(_mm_set1_epi32(x32), shuf_maskl);
  639. __m128i bytesh = _mm_shuffle_epi8(_mm_set1_epi32(x32), shuf_maskh);
  640. const __m128i bit_mask = _mm_set1_epi64x(0x7fbfdfeff7fbfdfe);
  641. bytesl = _mm_or_si128(bytesl, bit_mask);
  642. bytesh = _mm_or_si128(bytesh, bit_mask);
  643. bytesl = _mm_cmpeq_epi8(bytesl, _mm_set1_epi64x(-1));
  644. bytesh = _mm_cmpeq_epi8(bytesh, _mm_set1_epi64x(-1));
  645. return MM256_SET_M128I(bytesh, bytesl);
  646. }
  647. // Unpack 32 4-bit fields into 32 bytes
  648. // The output vector contains 32 bytes, each one in [ 0 .. 15 ] interval
  649. static inline __m256i bytes_from_nibbles_32(const uint8_t * rsi)
  650. {
  651. // Load 16 bytes from memory
  652. __m128i tmpl = _mm_loadu_si128((const __m128i *)rsi);
  653. __m128i tmph = _mm_srli_epi16(tmpl, 4);
  654. const __m128i lowMask = _mm_set1_epi8(0xF);
  655. tmpl = _mm_and_si128(lowMask, tmpl);
  656. tmph = _mm_and_si128(lowMask, tmph);
  657. return MM256_SET_M128I(tmph, tmpl);
  658. }
  659. // add int16_t pairwise and return as float vector
  660. static inline __m256 sum_i16_pairs_float(const __m128i xh, const __m128i xl) {
  661. const __m128i ones = _mm_set1_epi16(1);
  662. const __m128i summed_pairsl = _mm_madd_epi16(ones, xl);
  663. const __m128i summed_pairsh = _mm_madd_epi16(ones, xh);
  664. const __m256i summed_pairs = MM256_SET_M128I(summed_pairsh, summed_pairsl);
  665. return _mm256_cvtepi32_ps(summed_pairs);
  666. }
  667. static inline __m256 mul_sum_us8_pairs_float(const __m256i ax, const __m256i sy) {
  668. const __m128i axl = _mm256_castsi256_si128(ax);
  669. const __m128i axh = _mm256_extractf128_si256(ax, 1);
  670. const __m128i syl = _mm256_castsi256_si128(sy);
  671. const __m128i syh = _mm256_extractf128_si256(sy, 1);
  672. // Perform multiplication and create 16-bit values
  673. const __m128i dotl = _mm_maddubs_epi16(axl, syl);
  674. const __m128i doth = _mm_maddubs_epi16(axh, syh);
  675. return sum_i16_pairs_float(doth, dotl);
  676. }
  677. // multiply int8_t, add results pairwise twice and return as float vector
  678. static inline __m256 mul_sum_i8_pairs_float(const __m256i x, const __m256i y) {
  679. const __m128i xl = _mm256_castsi256_si128(x);
  680. const __m128i xh = _mm256_extractf128_si256(x, 1);
  681. const __m128i yl = _mm256_castsi256_si128(y);
  682. const __m128i yh = _mm256_extractf128_si256(y, 1);
  683. // Get absolute values of x vectors
  684. const __m128i axl = _mm_sign_epi8(xl, xl);
  685. const __m128i axh = _mm_sign_epi8(xh, xh);
  686. // Sign the values of the y vectors
  687. const __m128i syl = _mm_sign_epi8(yl, xl);
  688. const __m128i syh = _mm_sign_epi8(yh, xh);
  689. // Perform multiplication and create 16-bit values
  690. const __m128i dotl = _mm_maddubs_epi16(axl, syl);
  691. const __m128i doth = _mm_maddubs_epi16(axh, syh);
  692. return sum_i16_pairs_float(doth, dotl);
  693. }
  694. static inline __m128i packNibbles( __m128i bytes1, __m128i bytes2 )
  695. {
  696. // Move bits within 16-bit lanes from 0000_abcd_0000_efgh into 0000_0000_abcd_efgh
  697. const __m128i lowByte = _mm_set1_epi16( 0xFF );
  698. __m128i high = _mm_andnot_si128( lowByte, bytes1 );
  699. __m128i low = _mm_and_si128( lowByte, bytes1 );
  700. high = _mm_srli_epi16( high, 4 );
  701. bytes1 = _mm_or_si128( low, high );
  702. high = _mm_andnot_si128( lowByte, bytes2 );
  703. low = _mm_and_si128( lowByte, bytes2 );
  704. high = _mm_srli_epi16( high, 4 );
  705. bytes2 = _mm_or_si128( low, high );
  706. return _mm_packus_epi16( bytes1, bytes2);
  707. }
  708. #endif
  709. #elif defined(__SSSE3__)
  710. // horizontally add 4x4 floats
  711. static inline float hsum_float_4x4(const __m128 a, const __m128 b, const __m128 c, const __m128 d) {
  712. __m128 res_0 =_mm_hadd_ps(a, b);
  713. __m128 res_1 =_mm_hadd_ps(c, d);
  714. __m128 res =_mm_hadd_ps(res_0, res_1);
  715. res =_mm_hadd_ps(res, res);
  716. res =_mm_hadd_ps(res, res);
  717. return _mm_cvtss_f32(res);
  718. }
  719. #endif // __AVX__ || __AVX2__ || __AVX512F__
  720. #endif // defined(__AVX__) || defined(__AVX2__) || defined(__AVX512F__) || defined(__SSSE3__)
  721. #if defined(__ARM_NEON)
  722. #if !defined(__aarch64__)
  723. inline static uint16_t vaddvq_u8(uint8x16_t v) {
  724. return
  725. (uint16_t)vgetq_lane_u8(v, 0) + (uint16_t)vgetq_lane_u8(v, 1) +
  726. (uint16_t)vgetq_lane_u8(v, 2) + (uint16_t)vgetq_lane_u8(v, 3) +
  727. (uint16_t)vgetq_lane_u8(v, 4) + (uint16_t)vgetq_lane_u8(v, 5) +
  728. (uint16_t)vgetq_lane_u8(v, 6) + (uint16_t)vgetq_lane_u8(v, 7) +
  729. (uint16_t)vgetq_lane_u8(v, 8) + (uint16_t)vgetq_lane_u8(v, 9) +
  730. (uint16_t)vgetq_lane_u8(v, 10) + (uint16_t)vgetq_lane_u8(v, 11) +
  731. (uint16_t)vgetq_lane_u8(v, 12) + (uint16_t)vgetq_lane_u8(v, 13) +
  732. (uint16_t)vgetq_lane_u8(v, 14) + (uint16_t)vgetq_lane_u8(v, 15);
  733. }
  734. inline static int16_t vaddvq_s8(int8x16_t v) {
  735. return
  736. (int16_t)vgetq_lane_s8(v, 0) + (int16_t)vgetq_lane_s8(v, 1) +
  737. (int16_t)vgetq_lane_s8(v, 2) + (int16_t)vgetq_lane_s8(v, 3) +
  738. (int16_t)vgetq_lane_s8(v, 4) + (int16_t)vgetq_lane_s8(v, 5) +
  739. (int16_t)vgetq_lane_s8(v, 6) + (int16_t)vgetq_lane_s8(v, 7) +
  740. (int16_t)vgetq_lane_s8(v, 8) + (int16_t)vgetq_lane_s8(v, 9) +
  741. (int16_t)vgetq_lane_s8(v, 10) + (int16_t)vgetq_lane_s8(v, 11) +
  742. (int16_t)vgetq_lane_s8(v, 12) + (int16_t)vgetq_lane_s8(v, 13) +
  743. (int16_t)vgetq_lane_s8(v, 14) + (int16_t)vgetq_lane_s8(v, 15);
  744. }
  745. inline static int32_t vaddvq_s16(int16x8_t v) {
  746. return
  747. (int32_t)vgetq_lane_s16(v, 0) + (int32_t)vgetq_lane_s16(v, 1) +
  748. (int32_t)vgetq_lane_s16(v, 2) + (int32_t)vgetq_lane_s16(v, 3) +
  749. (int32_t)vgetq_lane_s16(v, 4) + (int32_t)vgetq_lane_s16(v, 5) +
  750. (int32_t)vgetq_lane_s16(v, 6) + (int32_t)vgetq_lane_s16(v, 7);
  751. }
  752. inline static uint32_t vaddvq_u16(uint16x8_t v) {
  753. return
  754. (uint32_t)vgetq_lane_u16(v, 0) + (uint32_t)vgetq_lane_u16(v, 1) +
  755. (uint32_t)vgetq_lane_u16(v, 2) + (uint32_t)vgetq_lane_u16(v, 3) +
  756. (uint32_t)vgetq_lane_u16(v, 4) + (uint32_t)vgetq_lane_u16(v, 5) +
  757. (uint32_t)vgetq_lane_u16(v, 6) + (uint32_t)vgetq_lane_u16(v, 7);
  758. }
  759. inline static int32_t vaddvq_s32(int32x4_t v) {
  760. return vgetq_lane_s32(v, 0) + vgetq_lane_s32(v, 1) + vgetq_lane_s32(v, 2) + vgetq_lane_s32(v, 3);
  761. }
  762. inline static float vaddvq_f32(float32x4_t v) {
  763. return vgetq_lane_f32(v, 0) + vgetq_lane_f32(v, 1) + vgetq_lane_f32(v, 2) + vgetq_lane_f32(v, 3);
  764. }
  765. inline static float vminvq_f32(float32x4_t v) {
  766. return
  767. MIN(MIN(vgetq_lane_f32(v, 0), vgetq_lane_f32(v, 1)),
  768. MIN(vgetq_lane_f32(v, 2), vgetq_lane_f32(v, 3)));
  769. }
  770. inline static float vmaxvq_f32(float32x4_t v) {
  771. return
  772. MAX(MAX(vgetq_lane_f32(v, 0), vgetq_lane_f32(v, 1)),
  773. MAX(vgetq_lane_f32(v, 2), vgetq_lane_f32(v, 3)));
  774. }
  775. inline static int32x4_t vcvtnq_s32_f32(float32x4_t v) {
  776. int32x4_t res;
  777. res[0] = roundf(vgetq_lane_f32(v, 0));
  778. res[1] = roundf(vgetq_lane_f32(v, 1));
  779. res[2] = roundf(vgetq_lane_f32(v, 2));
  780. res[3] = roundf(vgetq_lane_f32(v, 3));
  781. return res;
  782. }
  783. #endif
  784. #endif
  785. #define QK4_0 32
  786. typedef struct {
  787. ggml_fp16_t d; // delta
  788. uint8_t qs[QK4_0 / 2]; // nibbles / quants
  789. } block_q4_0;
  790. static_assert(sizeof(block_q4_0) == sizeof(ggml_fp16_t) + QK4_0 / 2, "wrong q4_0 block size/padding");
  791. #define QK4_1 32
  792. typedef struct {
  793. ggml_fp16_t d; // delta
  794. ggml_fp16_t m; // min
  795. uint8_t qs[QK4_1 / 2]; // nibbles / quants
  796. } block_q4_1;
  797. static_assert(sizeof(block_q4_1) == 2 * sizeof(ggml_fp16_t) + QK4_1 / 2, "wrong q4_1 block size/padding");
  798. #define QK5_0 32
  799. typedef struct {
  800. ggml_fp16_t d; // delta
  801. uint8_t qh[4]; // 5-th bit of quants
  802. uint8_t qs[QK5_0 / 2]; // nibbles / quants
  803. } block_q5_0;
  804. static_assert(sizeof(block_q5_0) == sizeof(ggml_fp16_t) + sizeof(uint32_t) + QK5_0 / 2, "wrong q5_0 block size/padding");
  805. #define QK5_1 32
  806. typedef struct {
  807. ggml_fp16_t d; // delta
  808. ggml_fp16_t m; // min
  809. uint8_t qh[4]; // 5-th bit of quants
  810. uint8_t qs[QK5_1 / 2]; // nibbles / quants
  811. } block_q5_1;
  812. static_assert(sizeof(block_q5_1) == 2 * sizeof(ggml_fp16_t) + sizeof(uint32_t) + QK5_1 / 2, "wrong q5_1 block size/padding");
  813. #define QK8_0 32
  814. typedef struct {
  815. ggml_fp16_t d; // delta
  816. int8_t qs[QK8_0]; // quants
  817. } block_q8_0;
  818. static_assert(sizeof(block_q8_0) == sizeof(ggml_fp16_t) + QK8_0, "wrong q8_0 block size/padding");
  819. #define QK8_1 32
  820. typedef struct {
  821. float d; // delta
  822. float s; // d * sum(qs[i])
  823. int8_t qs[QK8_1]; // quants
  824. } block_q8_1;
  825. static_assert(sizeof(block_q8_1) == 2*sizeof(float) + QK8_1, "wrong q8_1 block size/padding");
  826. // reference implementation for deterministic creation of model files
  827. static void quantize_row_q4_0_reference(const float * restrict x, block_q4_0 * restrict y, int k) {
  828. static const int qk = QK4_0;
  829. assert(k % qk == 0);
  830. const int nb = k / qk;
  831. for (int i = 0; i < nb; i++) {
  832. float amax = 0.0f; // absolute max
  833. float max = 0.0f;
  834. for (int j = 0; j < qk; j++) {
  835. const float v = x[i*qk + j];
  836. if (amax < fabsf(v)) {
  837. amax = fabsf(v);
  838. max = v;
  839. }
  840. }
  841. const float d = max / -8;
  842. const float id = d ? 1.0f/d : 0.0f;
  843. y[i].d = GGML_FP32_TO_FP16(d);
  844. for (int j = 0; j < qk/2; ++j) {
  845. const float x0 = x[i*qk + 0 + j]*id;
  846. const float x1 = x[i*qk + qk/2 + j]*id;
  847. const uint8_t xi0 = MIN(15, (int8_t)(x0 + 8.5f));
  848. const uint8_t xi1 = MIN(15, (int8_t)(x1 + 8.5f));
  849. y[i].qs[j] = xi0;
  850. y[i].qs[j] |= xi1 << 4;
  851. }
  852. }
  853. }
  854. static void quantize_row_q4_0(const float * restrict x, void * restrict y, int k) {
  855. quantize_row_q4_0_reference(x, y, k);
  856. }
  857. static void quantize_row_q4_1_reference(const float * restrict x, block_q4_1 * restrict y, int k) {
  858. const int qk = QK4_1;
  859. assert(k % qk == 0);
  860. const int nb = k / qk;
  861. for (int i = 0; i < nb; i++) {
  862. float min = FLT_MAX;
  863. float max = -FLT_MAX;
  864. for (int j = 0; j < qk; j++) {
  865. const float v = x[i*qk + j];
  866. if (v < min) min = v;
  867. if (v > max) max = v;
  868. }
  869. const float d = (max - min) / ((1 << 4) - 1);
  870. const float id = d ? 1.0f/d : 0.0f;
  871. y[i].d = GGML_FP32_TO_FP16(d);
  872. y[i].m = GGML_FP32_TO_FP16(min);
  873. for (int j = 0; j < qk/2; ++j) {
  874. const float x0 = (x[i*qk + 0 + j] - min)*id;
  875. const float x1 = (x[i*qk + qk/2 + j] - min)*id;
  876. const uint8_t xi0 = MIN(15, (int8_t)(x0 + 0.5f));
  877. const uint8_t xi1 = MIN(15, (int8_t)(x1 + 0.5f));
  878. y[i].qs[j] = xi0;
  879. y[i].qs[j] |= xi1 << 4;
  880. }
  881. }
  882. }
  883. static void quantize_row_q4_1(const float * restrict x, void * restrict y, int k) {
  884. quantize_row_q4_1_reference(x, y, k);
  885. }
  886. static void quantize_row_q5_0_reference(const float * restrict x, block_q5_0 * restrict y, int k) {
  887. static const int qk = QK5_0;
  888. assert(k % qk == 0);
  889. const int nb = k / qk;
  890. for (int i = 0; i < nb; i++) {
  891. float amax = 0.0f; // absolute max
  892. float max = 0.0f;
  893. for (int j = 0; j < qk; j++) {
  894. const float v = x[i*qk + j];
  895. if (amax < fabsf(v)) {
  896. amax = fabsf(v);
  897. max = v;
  898. }
  899. }
  900. const float d = max / -16;
  901. const float id = d ? 1.0f/d : 0.0f;
  902. y[i].d = GGML_FP32_TO_FP16(d);
  903. uint32_t qh = 0;
  904. for (int j = 0; j < qk/2; ++j) {
  905. const float x0 = x[i*qk + 0 + j]*id;
  906. const float x1 = x[i*qk + qk/2 + j]*id;
  907. const uint8_t xi0 = MIN(31, (int8_t)(x0 + 16.5f));
  908. const uint8_t xi1 = MIN(31, (int8_t)(x1 + 16.5f));
  909. y[i].qs[j] = (xi0 & 0x0F) | ((xi1 & 0x0F) << 4);
  910. // get the 5-th bit and store it in qh at the right position
  911. qh |= ((xi0 & 0x10) >> 4) << (j + 0);
  912. qh |= ((xi1 & 0x10) >> 4) << (j + qk/2);
  913. }
  914. memcpy(&y[i].qh, &qh, sizeof(qh));
  915. }
  916. }
  917. static void quantize_row_q5_0(const float * restrict x, void * restrict y, int k) {
  918. quantize_row_q5_0_reference(x, y, k);
  919. }
  920. static void quantize_row_q5_1_reference(const float * restrict x, block_q5_1 * restrict y, int k) {
  921. const int qk = QK5_1;
  922. assert(k % qk == 0);
  923. const int nb = k / qk;
  924. for (int i = 0; i < nb; i++) {
  925. float min = FLT_MAX;
  926. float max = -FLT_MAX;
  927. for (int j = 0; j < qk; j++) {
  928. const float v = x[i*qk + j];
  929. if (v < min) min = v;
  930. if (v > max) max = v;
  931. }
  932. const float d = (max - min) / ((1 << 5) - 1);
  933. const float id = d ? 1.0f/d : 0.0f;
  934. y[i].d = GGML_FP32_TO_FP16(d);
  935. y[i].m = GGML_FP32_TO_FP16(min);
  936. uint32_t qh = 0;
  937. for (int j = 0; j < qk/2; ++j) {
  938. const float x0 = (x[i*qk + 0 + j] - min)*id;
  939. const float x1 = (x[i*qk + qk/2 + j] - min)*id;
  940. const uint8_t xi0 = (uint8_t)(x0 + 0.5f);
  941. const uint8_t xi1 = (uint8_t)(x1 + 0.5f);
  942. y[i].qs[j] = (xi0 & 0x0F) | ((xi1 & 0x0F) << 4);
  943. // get the 5-th bit and store it in qh at the right position
  944. qh |= ((xi0 & 0x10) >> 4) << (j + 0);
  945. qh |= ((xi1 & 0x10) >> 4) << (j + qk/2);
  946. }
  947. memcpy(&y[i].qh, &qh, sizeof(y[i].qh));
  948. }
  949. }
  950. static void quantize_row_q5_1(const float * restrict x, void * restrict y, int k) {
  951. quantize_row_q5_1_reference(x, y, k);
  952. }
  953. // reference implementation for deterministic creation of model files
  954. static void quantize_row_q8_0_reference(const float * restrict x, block_q8_0 * restrict y, int k) {
  955. assert(k % QK8_0 == 0);
  956. const int nb = k / QK8_0;
  957. for (int i = 0; i < nb; i++) {
  958. float amax = 0.0f; // absolute max
  959. for (int j = 0; j < QK8_0; j++) {
  960. const float v = x[i*QK8_0 + j];
  961. amax = MAX(amax, fabsf(v));
  962. }
  963. const float d = amax / ((1 << 7) - 1);
  964. const float id = d ? 1.0f/d : 0.0f;
  965. y[i].d = GGML_FP32_TO_FP16(d);
  966. for (int j = 0; j < QK8_0; ++j) {
  967. const float x0 = x[i*QK8_0 + j]*id;
  968. y[i].qs[j] = roundf(x0);
  969. }
  970. }
  971. }
  972. static void quantize_row_q8_0(const float * restrict x, void * restrict vy, int k) {
  973. assert(QK8_0 == 32);
  974. assert(k % QK8_0 == 0);
  975. const int nb = k / QK8_0;
  976. block_q8_0 * restrict y = vy;
  977. #if defined(__ARM_NEON)
  978. for (int i = 0; i < nb; i++) {
  979. float32x4_t srcv [8];
  980. float32x4_t asrcv[8];
  981. float32x4_t amaxv[8];
  982. for (int j = 0; j < 8; j++) srcv[j] = vld1q_f32(x + i*32 + 4*j);
  983. for (int j = 0; j < 8; j++) asrcv[j] = vabsq_f32(srcv[j]);
  984. for (int j = 0; j < 4; j++) amaxv[2*j] = vmaxq_f32(asrcv[2*j], asrcv[2*j+1]);
  985. for (int j = 0; j < 2; j++) amaxv[4*j] = vmaxq_f32(amaxv[4*j], amaxv[4*j+2]);
  986. for (int j = 0; j < 1; j++) amaxv[8*j] = vmaxq_f32(amaxv[8*j], amaxv[8*j+4]);
  987. const float amax = vmaxvq_f32(amaxv[0]);
  988. const float d = amax / ((1 << 7) - 1);
  989. const float id = d ? 1.0f/d : 0.0f;
  990. y[i].d = GGML_FP32_TO_FP16(d);
  991. for (int j = 0; j < 8; j++) {
  992. const float32x4_t v = vmulq_n_f32(srcv[j], id);
  993. const int32x4_t vi = vcvtnq_s32_f32(v);
  994. y[i].qs[4*j + 0] = vgetq_lane_s32(vi, 0);
  995. y[i].qs[4*j + 1] = vgetq_lane_s32(vi, 1);
  996. y[i].qs[4*j + 2] = vgetq_lane_s32(vi, 2);
  997. y[i].qs[4*j + 3] = vgetq_lane_s32(vi, 3);
  998. }
  999. }
  1000. #elif defined(__wasm_simd128__)
  1001. for (int i = 0; i < nb; i++) {
  1002. v128_t srcv [8];
  1003. v128_t asrcv[8];
  1004. v128_t amaxv[8];
  1005. for (int j = 0; j < 8; j++) srcv[j] = wasm_v128_load(x + i*32 + 4*j);
  1006. for (int j = 0; j < 8; j++) asrcv[j] = wasm_f32x4_abs(srcv[j]);
  1007. for (int j = 0; j < 4; j++) amaxv[2*j] = wasm_f32x4_max(asrcv[2*j], asrcv[2*j+1]);
  1008. for (int j = 0; j < 2; j++) amaxv[4*j] = wasm_f32x4_max(amaxv[4*j], amaxv[4*j+2]);
  1009. for (int j = 0; j < 1; j++) amaxv[8*j] = wasm_f32x4_max(amaxv[8*j], amaxv[8*j+4]);
  1010. const float amax = MAX(MAX(wasm_f32x4_extract_lane(amaxv[0], 0),
  1011. wasm_f32x4_extract_lane(amaxv[0], 1)),
  1012. MAX(wasm_f32x4_extract_lane(amaxv[0], 2),
  1013. wasm_f32x4_extract_lane(amaxv[0], 3)));
  1014. const float d = amax / ((1 << 7) - 1);
  1015. const float id = d ? 1.0f/d : 0.0f;
  1016. y[i].d = GGML_FP32_TO_FP16(d);
  1017. for (int j = 0; j < 8; j++) {
  1018. const v128_t v = wasm_f32x4_mul(srcv[j], wasm_f32x4_splat(id));
  1019. const v128_t vi = wasm_i32x4_trunc_sat_f32x4(v);
  1020. y[i].qs[4*j + 0] = wasm_i32x4_extract_lane(vi, 0);
  1021. y[i].qs[4*j + 1] = wasm_i32x4_extract_lane(vi, 1);
  1022. y[i].qs[4*j + 2] = wasm_i32x4_extract_lane(vi, 2);
  1023. y[i].qs[4*j + 3] = wasm_i32x4_extract_lane(vi, 3);
  1024. }
  1025. }
  1026. #elif defined(__AVX2__) || defined(__AVX__)
  1027. for (int i = 0; i < nb; i++) {
  1028. // Load elements into 4 AVX vectors
  1029. __m256 v0 = _mm256_loadu_ps( x );
  1030. __m256 v1 = _mm256_loadu_ps( x + 8 );
  1031. __m256 v2 = _mm256_loadu_ps( x + 16 );
  1032. __m256 v3 = _mm256_loadu_ps( x + 24 );
  1033. x += 32;
  1034. // Compute max(abs(e)) for the block
  1035. const __m256 signBit = _mm256_set1_ps( -0.0f );
  1036. __m256 maxAbs = _mm256_andnot_ps( signBit, v0 );
  1037. maxAbs = _mm256_max_ps( maxAbs, _mm256_andnot_ps( signBit, v1 ) );
  1038. maxAbs = _mm256_max_ps( maxAbs, _mm256_andnot_ps( signBit, v2 ) );
  1039. maxAbs = _mm256_max_ps( maxAbs, _mm256_andnot_ps( signBit, v3 ) );
  1040. __m128 max4 = _mm_max_ps( _mm256_extractf128_ps( maxAbs, 1 ), _mm256_castps256_ps128( maxAbs ) );
  1041. max4 = _mm_max_ps( max4, _mm_movehl_ps( max4, max4 ) );
  1042. max4 = _mm_max_ss( max4, _mm_movehdup_ps( max4 ) );
  1043. const float maxScalar = _mm_cvtss_f32( max4 );
  1044. // Quantize these floats
  1045. const float d = maxScalar / 127.f;
  1046. y[i].d = GGML_FP32_TO_FP16(d);
  1047. const float id = ( maxScalar != 0.0f ) ? 127.f / maxScalar : 0.0f;
  1048. const __m256 mul = _mm256_set1_ps( id );
  1049. // Apply the multiplier
  1050. v0 = _mm256_mul_ps( v0, mul );
  1051. v1 = _mm256_mul_ps( v1, mul );
  1052. v2 = _mm256_mul_ps( v2, mul );
  1053. v3 = _mm256_mul_ps( v3, mul );
  1054. // Round to nearest integer
  1055. v0 = _mm256_round_ps( v0, _MM_ROUND_NEAREST );
  1056. v1 = _mm256_round_ps( v1, _MM_ROUND_NEAREST );
  1057. v2 = _mm256_round_ps( v2, _MM_ROUND_NEAREST );
  1058. v3 = _mm256_round_ps( v3, _MM_ROUND_NEAREST );
  1059. // Convert floats to integers
  1060. __m256i i0 = _mm256_cvtps_epi32( v0 );
  1061. __m256i i1 = _mm256_cvtps_epi32( v1 );
  1062. __m256i i2 = _mm256_cvtps_epi32( v2 );
  1063. __m256i i3 = _mm256_cvtps_epi32( v3 );
  1064. #if defined(__AVX2__)
  1065. // Convert int32 to int16
  1066. i0 = _mm256_packs_epi32( i0, i1 ); // 0, 1, 2, 3, 8, 9, 10, 11, 4, 5, 6, 7, 12, 13, 14, 15
  1067. i2 = _mm256_packs_epi32( i2, i3 ); // 16, 17, 18, 19, 24, 25, 26, 27, 20, 21, 22, 23, 28, 29, 30, 31
  1068. // Convert int16 to int8
  1069. i0 = _mm256_packs_epi16( i0, i2 ); // 0, 1, 2, 3, 8, 9, 10, 11, 16, 17, 18, 19, 24, 25, 26, 27, 4, 5, 6, 7, 12, 13, 14, 15, 20, 21, 22, 23, 28, 29, 30, 31
  1070. // We got our precious signed bytes, but the order is now wrong
  1071. // These AVX2 pack instructions process 16-byte pieces independently
  1072. // The following instruction is fixing the order
  1073. const __m256i perm = _mm256_setr_epi32( 0, 4, 1, 5, 2, 6, 3, 7 );
  1074. i0 = _mm256_permutevar8x32_epi32( i0, perm );
  1075. _mm256_storeu_si256((__m256i *)y[i].qs, i0);
  1076. #else
  1077. // Since we don't have in AVX some necessary functions,
  1078. // we split the registers in half and call AVX2 analogs from SSE
  1079. __m128i ni0 = _mm256_castsi256_si128( i0 );
  1080. __m128i ni1 = _mm256_extractf128_si256( i0, 1);
  1081. __m128i ni2 = _mm256_castsi256_si128( i1 );
  1082. __m128i ni3 = _mm256_extractf128_si256( i1, 1);
  1083. __m128i ni4 = _mm256_castsi256_si128( i2 );
  1084. __m128i ni5 = _mm256_extractf128_si256( i2, 1);
  1085. __m128i ni6 = _mm256_castsi256_si128( i3 );
  1086. __m128i ni7 = _mm256_extractf128_si256( i3, 1);
  1087. // Convert int32 to int16
  1088. ni0 = _mm_packs_epi32( ni0, ni1 );
  1089. ni2 = _mm_packs_epi32( ni2, ni3 );
  1090. ni4 = _mm_packs_epi32( ni4, ni5 );
  1091. ni6 = _mm_packs_epi32( ni6, ni7 );
  1092. // Convert int16 to int8
  1093. ni0 = _mm_packs_epi16( ni0, ni2 );
  1094. ni4 = _mm_packs_epi16( ni4, ni6 );
  1095. _mm_storeu_si128((__m128i *)(y[i].qs + 0), ni0);
  1096. _mm_storeu_si128((__m128i *)(y[i].qs + 16), ni4);
  1097. #endif
  1098. }
  1099. #else
  1100. // scalar
  1101. quantize_row_q8_0_reference(x, y, k);
  1102. #endif
  1103. }
  1104. // reference implementation for deterministic creation of model files
  1105. static void quantize_row_q8_1_reference(const float * restrict x, block_q8_1 * restrict y, int k) {
  1106. assert(QK8_1 == 32);
  1107. assert(k % QK8_1 == 0);
  1108. const int nb = k / QK8_1;
  1109. for (int i = 0; i < nb; i++) {
  1110. float amax = 0.0f; // absolute max
  1111. for (int j = 0; j < QK8_1; j++) {
  1112. const float v = x[i*QK8_1 + j];
  1113. amax = MAX(amax, fabsf(v));
  1114. }
  1115. const float d = amax / ((1 << 7) - 1);
  1116. const float id = d ? 1.0f/d : 0.0f;
  1117. y[i].d = d;
  1118. int sum = 0;
  1119. for (int j = 0; j < QK8_1/2; ++j) {
  1120. const float v0 = x[i*QK8_1 + j]*id;
  1121. const float v1 = x[i*QK8_1 + QK8_1/2 + j]*id;
  1122. y[i].qs[ j] = roundf(v0);
  1123. y[i].qs[QK8_1/2 + j] = roundf(v1);
  1124. sum += y[i].qs[ j];
  1125. sum += y[i].qs[QK8_1/2 + j];
  1126. }
  1127. y[i].s = sum*d;
  1128. }
  1129. }
  1130. static void quantize_row_q8_1(const float * restrict x, void * restrict vy, int k) {
  1131. assert(k % QK8_1 == 0);
  1132. const int nb = k / QK8_1;
  1133. block_q8_1 * restrict y = vy;
  1134. #if defined(__ARM_NEON)
  1135. for (int i = 0; i < nb; i++) {
  1136. float32x4_t srcv [8];
  1137. float32x4_t asrcv[8];
  1138. float32x4_t amaxv[8];
  1139. for (int j = 0; j < 8; j++) srcv[j] = vld1q_f32(x + i*32 + 4*j);
  1140. for (int j = 0; j < 8; j++) asrcv[j] = vabsq_f32(srcv[j]);
  1141. for (int j = 0; j < 4; j++) amaxv[2*j] = vmaxq_f32(asrcv[2*j], asrcv[2*j+1]);
  1142. for (int j = 0; j < 2; j++) amaxv[4*j] = vmaxq_f32(amaxv[4*j], amaxv[4*j+2]);
  1143. for (int j = 0; j < 1; j++) amaxv[8*j] = vmaxq_f32(amaxv[8*j], amaxv[8*j+4]);
  1144. const float amax = vmaxvq_f32(amaxv[0]);
  1145. const float d = amax / ((1 << 7) - 1);
  1146. const float id = d ? 1.0f/d : 0.0f;
  1147. y[i].d = d;
  1148. int32x4_t accv = vdupq_n_s32(0);
  1149. for (int j = 0; j < 8; j++) {
  1150. const float32x4_t v = vmulq_n_f32(srcv[j], id);
  1151. const int32x4_t vi = vcvtnq_s32_f32(v);
  1152. y[i].qs[4*j + 0] = vgetq_lane_s32(vi, 0);
  1153. y[i].qs[4*j + 1] = vgetq_lane_s32(vi, 1);
  1154. y[i].qs[4*j + 2] = vgetq_lane_s32(vi, 2);
  1155. y[i].qs[4*j + 3] = vgetq_lane_s32(vi, 3);
  1156. accv = vaddq_s32(accv, vi);
  1157. }
  1158. y[i].s = d * vaddvq_s32(accv);
  1159. }
  1160. #elif defined(__wasm_simd128__)
  1161. for (int i = 0; i < nb; i++) {
  1162. v128_t srcv [8];
  1163. v128_t asrcv[8];
  1164. v128_t amaxv[8];
  1165. for (int j = 0; j < 8; j++) srcv[j] = wasm_v128_load(x + i*32 + 4*j);
  1166. for (int j = 0; j < 8; j++) asrcv[j] = wasm_f32x4_abs(srcv[j]);
  1167. for (int j = 0; j < 4; j++) amaxv[2*j] = wasm_f32x4_max(asrcv[2*j], asrcv[2*j+1]);
  1168. for (int j = 0; j < 2; j++) amaxv[4*j] = wasm_f32x4_max(amaxv[4*j], amaxv[4*j+2]);
  1169. for (int j = 0; j < 1; j++) amaxv[8*j] = wasm_f32x4_max(amaxv[8*j], amaxv[8*j+4]);
  1170. const float amax = MAX(MAX(wasm_f32x4_extract_lane(amaxv[0], 0),
  1171. wasm_f32x4_extract_lane(amaxv[0], 1)),
  1172. MAX(wasm_f32x4_extract_lane(amaxv[0], 2),
  1173. wasm_f32x4_extract_lane(amaxv[0], 3)));
  1174. const float d = amax / ((1 << 7) - 1);
  1175. const float id = d ? 1.0f/d : 0.0f;
  1176. y[i].d = d;
  1177. v128_t accv = wasm_i32x4_splat(0);
  1178. for (int j = 0; j < 8; j++) {
  1179. const v128_t v = wasm_f32x4_mul(srcv[j], wasm_f32x4_splat(id));
  1180. const v128_t vi = wasm_i32x4_trunc_sat_f32x4(v);
  1181. y[i].qs[4*j + 0] = wasm_i32x4_extract_lane(vi, 0);
  1182. y[i].qs[4*j + 1] = wasm_i32x4_extract_lane(vi, 1);
  1183. y[i].qs[4*j + 2] = wasm_i32x4_extract_lane(vi, 2);
  1184. y[i].qs[4*j + 3] = wasm_i32x4_extract_lane(vi, 3);
  1185. accv = wasm_i32x4_add(accv, vi);
  1186. }
  1187. y[i].s = d * (wasm_i32x4_extract_lane(accv, 0) +
  1188. wasm_i32x4_extract_lane(accv, 1) +
  1189. wasm_i32x4_extract_lane(accv, 2) +
  1190. wasm_i32x4_extract_lane(accv, 3));
  1191. }
  1192. #elif defined(__AVX2__) || defined(__AVX__)
  1193. for (int i = 0; i < nb; i++) {
  1194. // Load elements into 4 AVX vectors
  1195. __m256 v0 = _mm256_loadu_ps( x );
  1196. __m256 v1 = _mm256_loadu_ps( x + 8 );
  1197. __m256 v2 = _mm256_loadu_ps( x + 16 );
  1198. __m256 v3 = _mm256_loadu_ps( x + 24 );
  1199. x += 32;
  1200. // Compute max(abs(e)) for the block
  1201. const __m256 signBit = _mm256_set1_ps( -0.0f );
  1202. __m256 maxAbs = _mm256_andnot_ps( signBit, v0 );
  1203. maxAbs = _mm256_max_ps( maxAbs, _mm256_andnot_ps( signBit, v1 ) );
  1204. maxAbs = _mm256_max_ps( maxAbs, _mm256_andnot_ps( signBit, v2 ) );
  1205. maxAbs = _mm256_max_ps( maxAbs, _mm256_andnot_ps( signBit, v3 ) );
  1206. __m128 max4 = _mm_max_ps( _mm256_extractf128_ps( maxAbs, 1 ), _mm256_castps256_ps128( maxAbs ) );
  1207. max4 = _mm_max_ps( max4, _mm_movehl_ps( max4, max4 ) );
  1208. max4 = _mm_max_ss( max4, _mm_movehdup_ps( max4 ) );
  1209. const float maxScalar = _mm_cvtss_f32( max4 );
  1210. // Quantize these floats
  1211. const float d = maxScalar / 127.f;
  1212. y[i].d = d;
  1213. const float id = ( maxScalar != 0.0f ) ? 127.f / maxScalar : 0.0f;
  1214. const __m256 mul = _mm256_set1_ps( id );
  1215. // Apply the multiplier
  1216. v0 = _mm256_mul_ps( v0, mul );
  1217. v1 = _mm256_mul_ps( v1, mul );
  1218. v2 = _mm256_mul_ps( v2, mul );
  1219. v3 = _mm256_mul_ps( v3, mul );
  1220. // Round to nearest integer
  1221. v0 = _mm256_round_ps( v0, _MM_ROUND_NEAREST );
  1222. v1 = _mm256_round_ps( v1, _MM_ROUND_NEAREST );
  1223. v2 = _mm256_round_ps( v2, _MM_ROUND_NEAREST );
  1224. v3 = _mm256_round_ps( v3, _MM_ROUND_NEAREST );
  1225. // Convert floats to integers
  1226. __m256i i0 = _mm256_cvtps_epi32( v0 );
  1227. __m256i i1 = _mm256_cvtps_epi32( v1 );
  1228. __m256i i2 = _mm256_cvtps_epi32( v2 );
  1229. __m256i i3 = _mm256_cvtps_epi32( v3 );
  1230. #if defined(__AVX2__)
  1231. // Compute the sum of the quants and set y[i].s
  1232. y[i].s = d * hsum_i32_8(_mm256_add_epi32(_mm256_add_epi32(i0, i1), _mm256_add_epi32(i2, i3)));
  1233. // Convert int32 to int16
  1234. i0 = _mm256_packs_epi32( i0, i1 ); // 0, 1, 2, 3, 8, 9, 10, 11, 4, 5, 6, 7, 12, 13, 14, 15
  1235. i2 = _mm256_packs_epi32( i2, i3 ); // 16, 17, 18, 19, 24, 25, 26, 27, 20, 21, 22, 23, 28, 29, 30, 31
  1236. // Convert int16 to int8
  1237. i0 = _mm256_packs_epi16( i0, i2 ); // 0, 1, 2, 3, 8, 9, 10, 11, 16, 17, 18, 19, 24, 25, 26, 27, 4, 5, 6, 7, 12, 13, 14, 15, 20, 21, 22, 23, 28, 29, 30, 31
  1238. // We got our precious signed bytes, but the order is now wrong
  1239. // These AVX2 pack instructions process 16-byte pieces independently
  1240. // The following instruction is fixing the order
  1241. const __m256i perm = _mm256_setr_epi32( 0, 4, 1, 5, 2, 6, 3, 7 );
  1242. i0 = _mm256_permutevar8x32_epi32( i0, perm );
  1243. _mm256_storeu_si256((__m256i *)y[i].qs, i0);
  1244. #else
  1245. // Since we don't have in AVX some necessary functions,
  1246. // we split the registers in half and call AVX2 analogs from SSE
  1247. __m128i ni0 = _mm256_castsi256_si128( i0 );
  1248. __m128i ni1 = _mm256_extractf128_si256( i0, 1);
  1249. __m128i ni2 = _mm256_castsi256_si128( i1 );
  1250. __m128i ni3 = _mm256_extractf128_si256( i1, 1);
  1251. __m128i ni4 = _mm256_castsi256_si128( i2 );
  1252. __m128i ni5 = _mm256_extractf128_si256( i2, 1);
  1253. __m128i ni6 = _mm256_castsi256_si128( i3 );
  1254. __m128i ni7 = _mm256_extractf128_si256( i3, 1);
  1255. // Compute the sum of the quants and set y[i].s
  1256. const __m128i s0 = _mm_add_epi32(_mm_add_epi32(ni0, ni1), _mm_add_epi32(ni2, ni3));
  1257. const __m128i s1 = _mm_add_epi32(_mm_add_epi32(ni4, ni5), _mm_add_epi32(ni6, ni7));
  1258. y[i].s = d * hsum_i32_4(_mm_add_epi32(s0, s1));
  1259. // Convert int32 to int16
  1260. ni0 = _mm_packs_epi32( ni0, ni1 );
  1261. ni2 = _mm_packs_epi32( ni2, ni3 );
  1262. ni4 = _mm_packs_epi32( ni4, ni5 );
  1263. ni6 = _mm_packs_epi32( ni6, ni7 );
  1264. // Convert int16 to int8
  1265. ni0 = _mm_packs_epi16( ni0, ni2 );
  1266. ni4 = _mm_packs_epi16( ni4, ni6 );
  1267. _mm_storeu_si128((__m128i *)(y[i].qs + 0), ni0);
  1268. _mm_storeu_si128((__m128i *)(y[i].qs + 16), ni4);
  1269. #endif
  1270. }
  1271. #else
  1272. // scalar
  1273. quantize_row_q8_1_reference(x, y, k);
  1274. #endif
  1275. }
  1276. static void dequantize_row_q4_0(const block_q4_0 * restrict x, float * restrict y, int k) {
  1277. static const int qk = QK4_0;
  1278. assert(k % qk == 0);
  1279. const int nb = k / qk;
  1280. for (int i = 0; i < nb; i++) {
  1281. const float d = GGML_FP16_TO_FP32(x[i].d);
  1282. for (int j = 0; j < qk/2; ++j) {
  1283. const int x0 = (x[i].qs[j] & 0x0F) - 8;
  1284. const int x1 = (x[i].qs[j] >> 4) - 8;
  1285. y[i*qk + j + 0 ] = x0*d;
  1286. y[i*qk + j + qk/2] = x1*d;
  1287. }
  1288. }
  1289. }
  1290. static void dequantize_row_q4_1(const block_q4_1 * restrict x, float * restrict y, int k) {
  1291. static const int qk = QK4_1;
  1292. assert(k % qk == 0);
  1293. const int nb = k / qk;
  1294. for (int i = 0; i < nb; i++) {
  1295. const float d = GGML_FP16_TO_FP32(x[i].d);
  1296. const float m = GGML_FP16_TO_FP32(x[i].m);
  1297. for (int j = 0; j < qk/2; ++j) {
  1298. const int x0 = (x[i].qs[j] & 0x0F);
  1299. const int x1 = (x[i].qs[j] >> 4);
  1300. y[i*qk + j + 0 ] = x0*d + m;
  1301. y[i*qk + j + qk/2] = x1*d + m;
  1302. }
  1303. }
  1304. }
  1305. static void dequantize_row_q5_0(const block_q5_0 * restrict x, float * restrict y, int k) {
  1306. static const int qk = QK5_0;
  1307. assert(k % qk == 0);
  1308. const int nb = k / qk;
  1309. for (int i = 0; i < nb; i++) {
  1310. const float d = GGML_FP16_TO_FP32(x[i].d);
  1311. uint32_t qh;
  1312. memcpy(&qh, x[i].qh, sizeof(qh));
  1313. for (int j = 0; j < qk/2; ++j) {
  1314. const uint8_t xh_0 = ((qh >> (j + 0)) << 4) & 0x10;
  1315. const uint8_t xh_1 = ((qh >> (j + 12)) ) & 0x10;
  1316. const int32_t x0 = ((x[i].qs[j] & 0x0F) | xh_0) - 16;
  1317. const int32_t x1 = ((x[i].qs[j] >> 4) | xh_1) - 16;
  1318. y[i*qk + j + 0 ] = x0*d;
  1319. y[i*qk + j + qk/2] = x1*d;
  1320. }
  1321. }
  1322. }
  1323. static void dequantize_row_q5_1(const block_q5_1 * restrict x, float * restrict y, int k) {
  1324. static const int qk = QK5_1;
  1325. assert(k % qk == 0);
  1326. const int nb = k / qk;
  1327. for (int i = 0; i < nb; i++) {
  1328. const float d = GGML_FP16_TO_FP32(x[i].d);
  1329. const float m = GGML_FP16_TO_FP32(x[i].m);
  1330. uint32_t qh;
  1331. memcpy(&qh, x[i].qh, sizeof(qh));
  1332. for (int j = 0; j < qk/2; ++j) {
  1333. const uint8_t xh_0 = ((qh >> (j + 0)) << 4) & 0x10;
  1334. const uint8_t xh_1 = ((qh >> (j + 12)) ) & 0x10;
  1335. const int x0 = (x[i].qs[j] & 0x0F) | xh_0;
  1336. const int x1 = (x[i].qs[j] >> 4) | xh_1;
  1337. y[i*qk + j + 0 ] = x0*d + m;
  1338. y[i*qk + j + qk/2] = x1*d + m;
  1339. }
  1340. }
  1341. }
  1342. static void dequantize_row_q8_0(const void * restrict vx, float * restrict y, int k) {
  1343. static const int qk = QK8_0;
  1344. assert(k % qk == 0);
  1345. const int nb = k / qk;
  1346. const block_q8_0 * restrict x = vx;
  1347. for (int i = 0; i < nb; i++) {
  1348. const float d = GGML_FP16_TO_FP32(x[i].d);
  1349. for (int j = 0; j < qk; ++j) {
  1350. y[i*qk + j] = x[i].qs[j]*d;
  1351. }
  1352. }
  1353. }
  1354. static void ggml_vec_dot_f32(const int n, float * restrict s, const float * restrict x, const float * restrict y);
  1355. static void ggml_vec_dot_f16(const int n, float * restrict s, ggml_fp16_t * restrict x, ggml_fp16_t * restrict y);
  1356. static void ggml_vec_dot_q4_0_q8_0(const int n, float * restrict s, const void * restrict vx, const void * restrict vy);
  1357. static void ggml_vec_dot_q4_1_q8_1(const int n, float * restrict s, const void * restrict vx, const void * restrict vy);
  1358. static void ggml_vec_dot_q5_0_q8_0(const int n, float * restrict s, const void * restrict vx, const void * restrict vy);
  1359. static void ggml_vec_dot_q5_1_q8_1(const int n, float * restrict s, const void * restrict vx, const void * restrict vy);
  1360. static void ggml_vec_dot_q8_0_q8_0(const int n, float * restrict s, const void * restrict vx, const void * restrict vy);
  1361. static const ggml_type_traits_t type_traits[GGML_TYPE_COUNT] = {
  1362. [GGML_TYPE_F32] = {
  1363. .vec_dot = (ggml_vec_dot_t) ggml_vec_dot_f32,
  1364. .vec_dot_type = GGML_TYPE_F32,
  1365. },
  1366. [GGML_TYPE_F16] = {
  1367. .to_float = (ggml_to_float_t) ggml_fp16_to_fp32_row,
  1368. .from_float = (ggml_from_float_t) ggml_fp32_to_fp16_row,
  1369. .from_float_reference = (ggml_from_float_t) ggml_fp32_to_fp16_row,
  1370. .vec_dot = (ggml_vec_dot_t) ggml_vec_dot_f16,
  1371. .vec_dot_type = GGML_TYPE_F16,
  1372. },
  1373. [GGML_TYPE_Q4_0] = {
  1374. .to_float = (ggml_to_float_t) dequantize_row_q4_0,
  1375. .from_float = quantize_row_q4_0,
  1376. .from_float_reference = (ggml_from_float_t) quantize_row_q4_0_reference,
  1377. .vec_dot = ggml_vec_dot_q4_0_q8_0,
  1378. .vec_dot_type = GGML_TYPE_Q8_0,
  1379. },
  1380. [GGML_TYPE_Q4_1] = {
  1381. .to_float = (ggml_to_float_t) dequantize_row_q4_1,
  1382. .from_float = quantize_row_q4_1,
  1383. .from_float_reference = (ggml_from_float_t) quantize_row_q4_1_reference,
  1384. .vec_dot = ggml_vec_dot_q4_1_q8_1,
  1385. .vec_dot_type = GGML_TYPE_Q8_1,
  1386. },
  1387. [GGML_TYPE_Q5_0] = {
  1388. .to_float = (ggml_to_float_t) dequantize_row_q5_0,
  1389. .from_float = quantize_row_q5_0,
  1390. .from_float_reference = (ggml_from_float_t) quantize_row_q5_0_reference,
  1391. .vec_dot = ggml_vec_dot_q5_0_q8_0,
  1392. .vec_dot_type = GGML_TYPE_Q8_0,
  1393. },
  1394. [GGML_TYPE_Q5_1] = {
  1395. .to_float = (ggml_to_float_t) dequantize_row_q5_1,
  1396. .from_float = quantize_row_q5_1,
  1397. .from_float_reference = (ggml_from_float_t) quantize_row_q5_1_reference,
  1398. .vec_dot = ggml_vec_dot_q5_1_q8_1,
  1399. .vec_dot_type = GGML_TYPE_Q8_1,
  1400. },
  1401. [GGML_TYPE_Q8_0] = {
  1402. .to_float = dequantize_row_q8_0,
  1403. .from_float = quantize_row_q8_0,
  1404. .from_float_reference = (ggml_from_float_t) quantize_row_q8_0_reference,
  1405. .vec_dot = ggml_vec_dot_q8_0_q8_0,
  1406. .vec_dot_type = GGML_TYPE_Q8_0,
  1407. },
  1408. [GGML_TYPE_Q8_1] = {
  1409. .from_float = quantize_row_q8_1,
  1410. .from_float_reference = (ggml_from_float_t) quantize_row_q8_1_reference,
  1411. .vec_dot_type = GGML_TYPE_Q8_1,
  1412. },
  1413. #ifdef GGML_USE_K_QUANTS
  1414. [GGML_TYPE_Q2_K] = {
  1415. .to_float = (ggml_to_float_t) dequantize_row_q2_K,
  1416. .from_float = quantize_row_q2_K,
  1417. .from_float_reference = (ggml_from_float_t) quantize_row_q2_K_reference,
  1418. .vec_dot = ggml_vec_dot_q2_K_q8_K,
  1419. .vec_dot_type = GGML_TYPE_Q8_K,
  1420. },
  1421. [GGML_TYPE_Q3_K] = {
  1422. .to_float = (ggml_to_float_t) dequantize_row_q3_K,
  1423. .from_float = quantize_row_q3_K,
  1424. .from_float_reference = (ggml_from_float_t) quantize_row_q3_K_reference,
  1425. .vec_dot = ggml_vec_dot_q3_K_q8_K,
  1426. .vec_dot_type = GGML_TYPE_Q8_K,
  1427. },
  1428. [GGML_TYPE_Q4_K] = {
  1429. .to_float = (ggml_to_float_t) dequantize_row_q4_K,
  1430. .from_float = quantize_row_q4_K,
  1431. .from_float_reference = (ggml_from_float_t) quantize_row_q4_K_reference,
  1432. .vec_dot = ggml_vec_dot_q4_K_q8_K,
  1433. .vec_dot_type = GGML_TYPE_Q8_K,
  1434. },
  1435. [GGML_TYPE_Q5_K] = {
  1436. .to_float = (ggml_to_float_t) dequantize_row_q5_K,
  1437. .from_float = quantize_row_q5_K,
  1438. .from_float_reference = (ggml_from_float_t) quantize_row_q5_K_reference,
  1439. .vec_dot = ggml_vec_dot_q5_K_q8_K,
  1440. .vec_dot_type = GGML_TYPE_Q8_K,
  1441. },
  1442. [GGML_TYPE_Q6_K] = {
  1443. .to_float = (ggml_to_float_t) dequantize_row_q6_K,
  1444. .from_float = quantize_row_q6_K,
  1445. .from_float_reference = (ggml_from_float_t) quantize_row_q6_K_reference,
  1446. .vec_dot = ggml_vec_dot_q6_K_q8_K,
  1447. .vec_dot_type = GGML_TYPE_Q8_K,
  1448. },
  1449. [GGML_TYPE_Q8_K] = {
  1450. .from_float = quantize_row_q8_K,
  1451. }
  1452. #endif
  1453. };
  1454. // For internal test use
  1455. ggml_type_traits_t ggml_internal_get_type_traits(enum ggml_type i) {
  1456. GGML_ASSERT(i < GGML_TYPE_COUNT);
  1457. return type_traits[i];
  1458. }
  1459. //
  1460. // simd mappings
  1461. //
  1462. // we define a common set of C macros which map to specific intrinsics based on the current architecture
  1463. // we then implement the fundamental computation operations below using only these macros
  1464. // adding support for new architectures requires to define the corresponding SIMD macros
  1465. //
  1466. // GGML_F32_STEP / GGML_F16_STEP
  1467. // number of elements to process in a single step
  1468. //
  1469. // GGML_F32_EPR / GGML_F16_EPR
  1470. // number of elements to fit in a single register
  1471. //
  1472. #if defined(__ARM_NEON) && defined(__ARM_FEATURE_FMA)
  1473. #define GGML_SIMD
  1474. // F32 NEON
  1475. #define GGML_F32_STEP 16
  1476. #define GGML_F32_EPR 4
  1477. #define GGML_F32x4 float32x4_t
  1478. #define GGML_F32x4_ZERO vdupq_n_f32(0.0f)
  1479. #define GGML_F32x4_SET1(x) vdupq_n_f32(x)
  1480. #define GGML_F32x4_LOAD vld1q_f32
  1481. #define GGML_F32x4_STORE vst1q_f32
  1482. #define GGML_F32x4_FMA(a, b, c) vfmaq_f32(a, b, c)
  1483. #define GGML_F32x4_ADD vaddq_f32
  1484. #define GGML_F32x4_MUL vmulq_f32
  1485. #define GGML_F32x4_REDUCE_ONE(x) vaddvq_f32(x)
  1486. #define GGML_F32x4_REDUCE(res, x) \
  1487. { \
  1488. int offset = GGML_F32_ARR >> 1; \
  1489. for (int i = 0; i < offset; ++i) { \
  1490. x[i] = vaddq_f32(x[i], x[offset+i]); \
  1491. } \
  1492. offset >>= 1; \
  1493. for (int i = 0; i < offset; ++i) { \
  1494. x[i] = vaddq_f32(x[i], x[offset+i]); \
  1495. } \
  1496. offset >>= 1; \
  1497. for (int i = 0; i < offset; ++i) { \
  1498. x[i] = vaddq_f32(x[i], x[offset+i]); \
  1499. } \
  1500. res = GGML_F32x4_REDUCE_ONE(x[0]); \
  1501. }
  1502. #define GGML_F32_VEC GGML_F32x4
  1503. #define GGML_F32_VEC_ZERO GGML_F32x4_ZERO
  1504. #define GGML_F32_VEC_SET1 GGML_F32x4_SET1
  1505. #define GGML_F32_VEC_LOAD GGML_F32x4_LOAD
  1506. #define GGML_F32_VEC_STORE GGML_F32x4_STORE
  1507. #define GGML_F32_VEC_FMA GGML_F32x4_FMA
  1508. #define GGML_F32_VEC_ADD GGML_F32x4_ADD
  1509. #define GGML_F32_VEC_MUL GGML_F32x4_MUL
  1510. #define GGML_F32_VEC_REDUCE GGML_F32x4_REDUCE
  1511. // F16 NEON
  1512. #if defined(__ARM_FEATURE_FP16_VECTOR_ARITHMETIC)
  1513. #define GGML_F16_STEP 32
  1514. #define GGML_F16_EPR 8
  1515. #define GGML_F16x8 float16x8_t
  1516. #define GGML_F16x8_ZERO vdupq_n_f16(0.0f)
  1517. #define GGML_F16x8_SET1(x) vdupq_n_f16(x)
  1518. #define GGML_F16x8_LOAD vld1q_f16
  1519. #define GGML_F16x8_STORE vst1q_f16
  1520. #define GGML_F16x8_FMA(a, b, c) vfmaq_f16(a, b, c)
  1521. #define GGML_F16x8_ADD vaddq_f16
  1522. #define GGML_F16x8_MUL vmulq_f16
  1523. #define GGML_F16x8_REDUCE(res, x) \
  1524. { \
  1525. int offset = GGML_F16_ARR >> 1; \
  1526. for (int i = 0; i < offset; ++i) { \
  1527. x[i] = vaddq_f16(x[i], x[offset+i]); \
  1528. } \
  1529. offset >>= 1; \
  1530. for (int i = 0; i < offset; ++i) { \
  1531. x[i] = vaddq_f16(x[i], x[offset+i]); \
  1532. } \
  1533. offset >>= 1; \
  1534. for (int i = 0; i < offset; ++i) { \
  1535. x[i] = vaddq_f16(x[i], x[offset+i]); \
  1536. } \
  1537. const float32x4_t t0 = vcvt_f32_f16(vget_low_f16 (x[0])); \
  1538. const float32x4_t t1 = vcvt_f32_f16(vget_high_f16(x[0])); \
  1539. res = (ggml_float) vaddvq_f32(vaddq_f32(t0, t1)); \
  1540. }
  1541. #define GGML_F16_VEC GGML_F16x8
  1542. #define GGML_F16_VEC_ZERO GGML_F16x8_ZERO
  1543. #define GGML_F16_VEC_SET1 GGML_F16x8_SET1
  1544. #define GGML_F16_VEC_LOAD(p, i) GGML_F16x8_LOAD(p)
  1545. #define GGML_F16_VEC_STORE(p, r, i) GGML_F16x8_STORE(p, r[i])
  1546. #define GGML_F16_VEC_FMA GGML_F16x8_FMA
  1547. #define GGML_F16_VEC_ADD GGML_F16x8_ADD
  1548. #define GGML_F16_VEC_MUL GGML_F16x8_MUL
  1549. #define GGML_F16_VEC_REDUCE GGML_F16x8_REDUCE
  1550. #else
  1551. // if FP16 vector arithmetic is not supported, we use FP32 instead
  1552. // and take advantage of the vcvt_ functions to convert to/from FP16
  1553. #define GGML_F16_STEP 16
  1554. #define GGML_F16_EPR 4
  1555. #define GGML_F32Cx4 float32x4_t
  1556. #define GGML_F32Cx4_ZERO vdupq_n_f32(0.0f)
  1557. #define GGML_F32Cx4_SET1(x) vdupq_n_f32(x)
  1558. #define GGML_F32Cx4_LOAD(x) vcvt_f32_f16(vld1_f16(x))
  1559. #define GGML_F32Cx4_STORE(x, y) vst1_f16(x, vcvt_f16_f32(y))
  1560. #define GGML_F32Cx4_FMA(a, b, c) vfmaq_f32(a, b, c)
  1561. #define GGML_F32Cx4_ADD vaddq_f32
  1562. #define GGML_F32Cx4_MUL vmulq_f32
  1563. #define GGML_F32Cx4_REDUCE GGML_F32x4_REDUCE
  1564. #define GGML_F16_VEC GGML_F32Cx4
  1565. #define GGML_F16_VEC_ZERO GGML_F32Cx4_ZERO
  1566. #define GGML_F16_VEC_SET1 GGML_F32Cx4_SET1
  1567. #define GGML_F16_VEC_LOAD(p, i) GGML_F32Cx4_LOAD(p)
  1568. #define GGML_F16_VEC_STORE(p, r, i) GGML_F32Cx4_STORE(p, r[i])
  1569. #define GGML_F16_VEC_FMA GGML_F32Cx4_FMA
  1570. #define GGML_F16_VEC_ADD GGML_F32Cx4_ADD
  1571. #define GGML_F16_VEC_MUL GGML_F32Cx4_MUL
  1572. #define GGML_F16_VEC_REDUCE GGML_F32Cx4_REDUCE
  1573. #endif
  1574. #elif defined(__AVX__)
  1575. #define GGML_SIMD
  1576. // F32 AVX
  1577. #define GGML_F32_STEP 32
  1578. #define GGML_F32_EPR 8
  1579. #define GGML_F32x8 __m256
  1580. #define GGML_F32x8_ZERO _mm256_setzero_ps()
  1581. #define GGML_F32x8_SET1(x) _mm256_set1_ps(x)
  1582. #define GGML_F32x8_LOAD _mm256_loadu_ps
  1583. #define GGML_F32x8_STORE _mm256_storeu_ps
  1584. #if defined(__FMA__)
  1585. #define GGML_F32x8_FMA(a, b, c) _mm256_fmadd_ps(b, c, a)
  1586. #else
  1587. #define GGML_F32x8_FMA(a, b, c) _mm256_add_ps(_mm256_mul_ps(b, c), a)
  1588. #endif
  1589. #define GGML_F32x8_ADD _mm256_add_ps
  1590. #define GGML_F32x8_MUL _mm256_mul_ps
  1591. #define GGML_F32x8_REDUCE(res, x) \
  1592. { \
  1593. int offset = GGML_F32_ARR >> 1; \
  1594. for (int i = 0; i < offset; ++i) { \
  1595. x[i] = _mm256_add_ps(x[i], x[offset+i]); \
  1596. } \
  1597. offset >>= 1; \
  1598. for (int i = 0; i < offset; ++i) { \
  1599. x[i] = _mm256_add_ps(x[i], x[offset+i]); \
  1600. } \
  1601. offset >>= 1; \
  1602. for (int i = 0; i < offset; ++i) { \
  1603. x[i] = _mm256_add_ps(x[i], x[offset+i]); \
  1604. } \
  1605. const __m128 t0 = _mm_add_ps(_mm256_castps256_ps128(x[0]), \
  1606. _mm256_extractf128_ps(x[0], 1)); \
  1607. const __m128 t1 = _mm_hadd_ps(t0, t0); \
  1608. res = _mm_cvtss_f32(_mm_hadd_ps(t1, t1)); \
  1609. }
  1610. // TODO: is this optimal ?
  1611. #define GGML_F32_VEC GGML_F32x8
  1612. #define GGML_F32_VEC_ZERO GGML_F32x8_ZERO
  1613. #define GGML_F32_VEC_SET1 GGML_F32x8_SET1
  1614. #define GGML_F32_VEC_LOAD GGML_F32x8_LOAD
  1615. #define GGML_F32_VEC_STORE GGML_F32x8_STORE
  1616. #define GGML_F32_VEC_FMA GGML_F32x8_FMA
  1617. #define GGML_F32_VEC_ADD GGML_F32x8_ADD
  1618. #define GGML_F32_VEC_MUL GGML_F32x8_MUL
  1619. #define GGML_F32_VEC_REDUCE GGML_F32x8_REDUCE
  1620. // F16 AVX
  1621. #define GGML_F16_STEP 32
  1622. #define GGML_F16_EPR 8
  1623. // F16 arithmetic is not supported by AVX, so we use F32 instead
  1624. #define GGML_F32Cx8 __m256
  1625. #define GGML_F32Cx8_ZERO _mm256_setzero_ps()
  1626. #define GGML_F32Cx8_SET1(x) _mm256_set1_ps(x)
  1627. #if defined(__F16C__)
  1628. // the _mm256_cvt intrinsics require F16C
  1629. #define GGML_F32Cx8_LOAD(x) _mm256_cvtph_ps(_mm_loadu_si128((__m128i *)(x)))
  1630. #define GGML_F32Cx8_STORE(x, y) _mm_storeu_si128((__m128i *)(x), _mm256_cvtps_ph(y, 0))
  1631. #else
  1632. static inline __m256 __avx_f32cx8_load(ggml_fp16_t *x) {
  1633. float tmp[8];
  1634. for (int i = 0; i < 8; i++) {
  1635. tmp[i] = GGML_FP16_TO_FP32(x[i]);
  1636. }
  1637. return _mm256_loadu_ps(tmp);
  1638. }
  1639. static inline void __avx_f32cx8_store(ggml_fp16_t *x, __m256 y) {
  1640. float arr[8];
  1641. _mm256_storeu_ps(arr, y);
  1642. for (int i = 0; i < 8; i++)
  1643. x[i] = GGML_FP32_TO_FP16(arr[i]);
  1644. }
  1645. #define GGML_F32Cx8_LOAD(x) __avx_f32cx8_load(x)
  1646. #define GGML_F32Cx8_STORE(x, y) __avx_f32cx8_store(x, y)
  1647. #endif
  1648. #define GGML_F32Cx8_FMA GGML_F32x8_FMA
  1649. #define GGML_F32Cx8_ADD _mm256_add_ps
  1650. #define GGML_F32Cx8_MUL _mm256_mul_ps
  1651. #define GGML_F32Cx8_REDUCE GGML_F32x8_REDUCE
  1652. #define GGML_F16_VEC GGML_F32Cx8
  1653. #define GGML_F16_VEC_ZERO GGML_F32Cx8_ZERO
  1654. #define GGML_F16_VEC_SET1 GGML_F32Cx8_SET1
  1655. #define GGML_F16_VEC_LOAD(p, i) GGML_F32Cx8_LOAD(p)
  1656. #define GGML_F16_VEC_STORE(p, r, i) GGML_F32Cx8_STORE(p, r[i])
  1657. #define GGML_F16_VEC_FMA GGML_F32Cx8_FMA
  1658. #define GGML_F16_VEC_ADD GGML_F32Cx8_ADD
  1659. #define GGML_F16_VEC_MUL GGML_F32Cx8_MUL
  1660. #define GGML_F16_VEC_REDUCE GGML_F32Cx8_REDUCE
  1661. #elif defined(__POWER9_VECTOR__)
  1662. #define GGML_SIMD
  1663. // F32 POWER9
  1664. #define GGML_F32_STEP 32
  1665. #define GGML_F32_EPR 4
  1666. #define GGML_F32x4 vector float
  1667. #define GGML_F32x4_ZERO 0.0f
  1668. #define GGML_F32x4_SET1 vec_splats
  1669. #define GGML_F32x4_LOAD(p) vec_xl(0, p)
  1670. #define GGML_F32x4_STORE(p, r) vec_xst(r, 0, p)
  1671. #define GGML_F32x4_FMA(a, b, c) vec_madd(b, c, a)
  1672. #define GGML_F32x4_ADD vec_add
  1673. #define GGML_F32x4_MUL vec_mul
  1674. #define GGML_F32x4_REDUCE(res, x) \
  1675. { \
  1676. int offset = GGML_F32_ARR >> 1; \
  1677. for (int i = 0; i < offset; ++i) { \
  1678. x[i] = vec_add(x[i], x[offset+i]); \
  1679. } \
  1680. offset >>= 1; \
  1681. for (int i = 0; i < offset; ++i) { \
  1682. x[i] = vec_add(x[i], x[offset+i]); \
  1683. } \
  1684. offset >>= 1; \
  1685. for (int i = 0; i < offset; ++i) { \
  1686. x[i] = vec_add(x[i], x[offset+i]); \
  1687. } \
  1688. res = vec_extract(x[0], 0) + \
  1689. vec_extract(x[0], 1) + \
  1690. vec_extract(x[0], 2) + \
  1691. vec_extract(x[0], 3); \
  1692. }
  1693. #define GGML_F32_VEC GGML_F32x4
  1694. #define GGML_F32_VEC_ZERO GGML_F32x4_ZERO
  1695. #define GGML_F32_VEC_SET1 GGML_F32x4_SET1
  1696. #define GGML_F32_VEC_LOAD GGML_F32x4_LOAD
  1697. #define GGML_F32_VEC_STORE GGML_F32x4_STORE
  1698. #define GGML_F32_VEC_FMA GGML_F32x4_FMA
  1699. #define GGML_F32_VEC_ADD GGML_F32x4_ADD
  1700. #define GGML_F32_VEC_MUL GGML_F32x4_MUL
  1701. #define GGML_F32_VEC_REDUCE GGML_F32x4_REDUCE
  1702. // F16 POWER9
  1703. #define GGML_F16_STEP GGML_F32_STEP
  1704. #define GGML_F16_EPR GGML_F32_EPR
  1705. #define GGML_F16_VEC GGML_F32x4
  1706. #define GGML_F16_VEC_ZERO GGML_F32x4_ZERO
  1707. #define GGML_F16_VEC_SET1 GGML_F32x4_SET1
  1708. #define GGML_F16_VEC_FMA GGML_F32x4_FMA
  1709. #define GGML_F16_VEC_REDUCE GGML_F32x4_REDUCE
  1710. // Use vec_xl, not vec_ld, in case the load address is not aligned.
  1711. #define GGML_F16_VEC_LOAD(p, i) (i & 0x1) ? \
  1712. vec_extract_fp32_from_shorth(vec_xl(0, p - GGML_F16_EPR)) : \
  1713. vec_extract_fp32_from_shortl(vec_xl(0, p))
  1714. #define GGML_ENDIAN_BYTE(i) ((unsigned char *)&(uint16_t){1})[i]
  1715. #define GGML_F16_VEC_STORE(p, r, i) \
  1716. if (i & 0x1) \
  1717. vec_xst(vec_pack_to_short_fp32(r[i - GGML_ENDIAN_BYTE(1)], \
  1718. r[i - GGML_ENDIAN_BYTE(0)]), \
  1719. 0, p - GGML_F16_EPR)
  1720. #elif defined(__wasm_simd128__)
  1721. #define GGML_SIMD
  1722. // F32 WASM
  1723. #define GGML_F32_STEP 16
  1724. #define GGML_F32_EPR 4
  1725. #define GGML_F32x4 v128_t
  1726. #define GGML_F32x4_ZERO wasm_f32x4_splat(0.0f)
  1727. #define GGML_F32x4_SET1(x) wasm_f32x4_splat(x)
  1728. #define GGML_F32x4_LOAD wasm_v128_load
  1729. #define GGML_F32x4_STORE wasm_v128_store
  1730. #define GGML_F32x4_FMA(a, b, c) wasm_f32x4_add(wasm_f32x4_mul(b, c), a)
  1731. #define GGML_F32x4_ADD wasm_f32x4_add
  1732. #define GGML_F32x4_MUL wasm_f32x4_mul
  1733. #define GGML_F32x4_REDUCE(res, x) \
  1734. { \
  1735. int offset = GGML_F32_ARR >> 1; \
  1736. for (int i = 0; i < offset; ++i) { \
  1737. x[i] = wasm_f32x4_add(x[i], x[offset+i]); \
  1738. } \
  1739. offset >>= 1; \
  1740. for (int i = 0; i < offset; ++i) { \
  1741. x[i] = wasm_f32x4_add(x[i], x[offset+i]); \
  1742. } \
  1743. offset >>= 1; \
  1744. for (int i = 0; i < offset; ++i) { \
  1745. x[i] = wasm_f32x4_add(x[i], x[offset+i]); \
  1746. } \
  1747. res = wasm_f32x4_extract_lane(x[0], 0) + \
  1748. wasm_f32x4_extract_lane(x[0], 1) + \
  1749. wasm_f32x4_extract_lane(x[0], 2) + \
  1750. wasm_f32x4_extract_lane(x[0], 3); \
  1751. }
  1752. #define GGML_F32_VEC GGML_F32x4
  1753. #define GGML_F32_VEC_ZERO GGML_F32x4_ZERO
  1754. #define GGML_F32_VEC_SET1 GGML_F32x4_SET1
  1755. #define GGML_F32_VEC_LOAD GGML_F32x4_LOAD
  1756. #define GGML_F32_VEC_STORE GGML_F32x4_STORE
  1757. #define GGML_F32_VEC_FMA GGML_F32x4_FMA
  1758. #define GGML_F32_VEC_ADD GGML_F32x4_ADD
  1759. #define GGML_F32_VEC_MUL GGML_F32x4_MUL
  1760. #define GGML_F32_VEC_REDUCE GGML_F32x4_REDUCE
  1761. // F16 WASM
  1762. #define GGML_F16_STEP 16
  1763. #define GGML_F16_EPR 4
  1764. inline static v128_t __wasm_f16x4_load(const ggml_fp16_t * p) {
  1765. float tmp[4];
  1766. tmp[0] = GGML_FP16_TO_FP32(p[0]);
  1767. tmp[1] = GGML_FP16_TO_FP32(p[1]);
  1768. tmp[2] = GGML_FP16_TO_FP32(p[2]);
  1769. tmp[3] = GGML_FP16_TO_FP32(p[3]);
  1770. return wasm_v128_load(tmp);
  1771. }
  1772. inline static void __wasm_f16x4_store(ggml_fp16_t * p, v128_t x) {
  1773. float tmp[4];
  1774. wasm_v128_store(tmp, x);
  1775. p[0] = GGML_FP32_TO_FP16(tmp[0]);
  1776. p[1] = GGML_FP32_TO_FP16(tmp[1]);
  1777. p[2] = GGML_FP32_TO_FP16(tmp[2]);
  1778. p[3] = GGML_FP32_TO_FP16(tmp[3]);
  1779. }
  1780. #define GGML_F16x4 v128_t
  1781. #define GGML_F16x4_ZERO wasm_f32x4_splat(0.0f)
  1782. #define GGML_F16x4_SET1(x) wasm_f32x4_splat(x)
  1783. #define GGML_F16x4_LOAD(x) __wasm_f16x4_load(x)
  1784. #define GGML_F16x4_STORE(x, y) __wasm_f16x4_store(x, y)
  1785. #define GGML_F16x4_FMA GGML_F32x4_FMA
  1786. #define GGML_F16x4_ADD wasm_f32x4_add
  1787. #define GGML_F16x4_MUL wasm_f32x4_mul
  1788. #define GGML_F16x4_REDUCE(res, x) \
  1789. { \
  1790. int offset = GGML_F16_ARR >> 1; \
  1791. for (int i = 0; i < offset; ++i) { \
  1792. x[i] = wasm_f32x4_add(x[i], x[offset+i]); \
  1793. } \
  1794. offset >>= 1; \
  1795. for (int i = 0; i < offset; ++i) { \
  1796. x[i] = wasm_f32x4_add(x[i], x[offset+i]); \
  1797. } \
  1798. offset >>= 1; \
  1799. for (int i = 0; i < offset; ++i) { \
  1800. x[i] = wasm_f32x4_add(x[i], x[offset+i]); \
  1801. } \
  1802. res = wasm_f32x4_extract_lane(x[0], 0) + \
  1803. wasm_f32x4_extract_lane(x[0], 1) + \
  1804. wasm_f32x4_extract_lane(x[0], 2) + \
  1805. wasm_f32x4_extract_lane(x[0], 3); \
  1806. }
  1807. #define GGML_F16_VEC GGML_F16x4
  1808. #define GGML_F16_VEC_ZERO GGML_F16x4_ZERO
  1809. #define GGML_F16_VEC_SET1 GGML_F16x4_SET1
  1810. #define GGML_F16_VEC_LOAD(p, i) GGML_F16x4_LOAD(p)
  1811. #define GGML_F16_VEC_STORE(p, r, i) GGML_F16x4_STORE(p, r[i])
  1812. #define GGML_F16_VEC_FMA GGML_F16x4_FMA
  1813. #define GGML_F16_VEC_ADD GGML_F16x4_ADD
  1814. #define GGML_F16_VEC_MUL GGML_F16x4_MUL
  1815. #define GGML_F16_VEC_REDUCE GGML_F16x4_REDUCE
  1816. #elif defined(__SSE3__)
  1817. #define GGML_SIMD
  1818. // F32 SSE
  1819. #define GGML_F32_STEP 32
  1820. #define GGML_F32_EPR 4
  1821. #define GGML_F32x4 __m128
  1822. #define GGML_F32x4_ZERO _mm_setzero_ps()
  1823. #define GGML_F32x4_SET1(x) _mm_set1_ps(x)
  1824. #define GGML_F32x4_LOAD _mm_loadu_ps
  1825. #define GGML_F32x4_STORE _mm_storeu_ps
  1826. #if defined(__FMA__)
  1827. // TODO: Does this work?
  1828. #define GGML_F32x4_FMA(a, b, c) _mm_fmadd_ps(b, c, a)
  1829. #else
  1830. #define GGML_F32x4_FMA(a, b, c) _mm_add_ps(_mm_mul_ps(b, c), a)
  1831. #endif
  1832. #define GGML_F32x4_ADD _mm_add_ps
  1833. #define GGML_F32x4_MUL _mm_mul_ps
  1834. #define GGML_F32x4_REDUCE(res, x) \
  1835. { \
  1836. int offset = GGML_F32_ARR >> 1; \
  1837. for (int i = 0; i < offset; ++i) { \
  1838. x[i] = _mm_add_ps(x[i], x[offset+i]); \
  1839. } \
  1840. offset >>= 1; \
  1841. for (int i = 0; i < offset; ++i) { \
  1842. x[i] = _mm_add_ps(x[i], x[offset+i]); \
  1843. } \
  1844. offset >>= 1; \
  1845. for (int i = 0; i < offset; ++i) { \
  1846. x[i] = _mm_add_ps(x[i], x[offset+i]); \
  1847. } \
  1848. const __m128 t0 = _mm_hadd_ps(x[0], x[0]); \
  1849. res = _mm_cvtss_f32(_mm_hadd_ps(t0, t0)); \
  1850. }
  1851. // TODO: is this optimal ?
  1852. #define GGML_F32_VEC GGML_F32x4
  1853. #define GGML_F32_VEC_ZERO GGML_F32x4_ZERO
  1854. #define GGML_F32_VEC_SET1 GGML_F32x4_SET1
  1855. #define GGML_F32_VEC_LOAD GGML_F32x4_LOAD
  1856. #define GGML_F32_VEC_STORE GGML_F32x4_STORE
  1857. #define GGML_F32_VEC_FMA GGML_F32x4_FMA
  1858. #define GGML_F32_VEC_ADD GGML_F32x4_ADD
  1859. #define GGML_F32_VEC_MUL GGML_F32x4_MUL
  1860. #define GGML_F32_VEC_REDUCE GGML_F32x4_REDUCE
  1861. // F16 SSE
  1862. #define GGML_F16_STEP 32
  1863. #define GGML_F16_EPR 4
  1864. static inline __m128 __sse_f16x4_load(ggml_fp16_t *x) {
  1865. float tmp[4];
  1866. tmp[0] = GGML_FP16_TO_FP32(x[0]);
  1867. tmp[1] = GGML_FP16_TO_FP32(x[1]);
  1868. tmp[2] = GGML_FP16_TO_FP32(x[2]);
  1869. tmp[3] = GGML_FP16_TO_FP32(x[3]);
  1870. return _mm_loadu_ps(tmp);
  1871. }
  1872. static inline void __sse_f16x4_store(ggml_fp16_t *x, __m128 y) {
  1873. float arr[4];
  1874. _mm_storeu_ps(arr, y);
  1875. x[0] = GGML_FP32_TO_FP16(arr[0]);
  1876. x[1] = GGML_FP32_TO_FP16(arr[1]);
  1877. x[2] = GGML_FP32_TO_FP16(arr[2]);
  1878. x[3] = GGML_FP32_TO_FP16(arr[3]);
  1879. }
  1880. #define GGML_F32Cx4 __m128
  1881. #define GGML_F32Cx4_ZERO _mm_setzero_ps()
  1882. #define GGML_F32Cx4_SET1(x) _mm_set1_ps(x)
  1883. #define GGML_F32Cx4_LOAD(x) __sse_f16x4_load(x)
  1884. #define GGML_F32Cx4_STORE(x, y) __sse_f16x4_store(x, y)
  1885. #define GGML_F32Cx4_FMA GGML_F32x4_FMA
  1886. #define GGML_F32Cx4_ADD _mm_add_ps
  1887. #define GGML_F32Cx4_MUL _mm_mul_ps
  1888. #define GGML_F32Cx4_REDUCE GGML_F32x4_REDUCE
  1889. #define GGML_F16_VEC GGML_F32Cx4
  1890. #define GGML_F16_VEC_ZERO GGML_F32Cx4_ZERO
  1891. #define GGML_F16_VEC_SET1 GGML_F32Cx4_SET1
  1892. #define GGML_F16_VEC_LOAD(p, i) GGML_F32Cx4_LOAD(p)
  1893. #define GGML_F16_VEC_STORE(p, r, i) GGML_F32Cx4_STORE(p, r[i])
  1894. #define GGML_F16_VEC_FMA GGML_F32Cx4_FMA
  1895. #define GGML_F16_VEC_ADD GGML_F32Cx4_ADD
  1896. #define GGML_F16_VEC_MUL GGML_F32Cx4_MUL
  1897. #define GGML_F16_VEC_REDUCE GGML_F32Cx4_REDUCE
  1898. #endif
  1899. // GGML_F32_ARR / GGML_F16_ARR
  1900. // number of registers to use per step
  1901. #ifdef GGML_SIMD
  1902. #define GGML_F32_ARR (GGML_F32_STEP/GGML_F32_EPR)
  1903. #define GGML_F16_ARR (GGML_F16_STEP/GGML_F16_EPR)
  1904. #endif
  1905. //
  1906. // fundamental operations
  1907. //
  1908. inline static void ggml_vec_set_i8(const int n, int8_t * x, const int8_t v) { for (int i = 0; i < n; ++i) x[i] = v; }
  1909. inline static void ggml_vec_set_i16(const int n, int16_t * x, const int16_t v) { for (int i = 0; i < n; ++i) x[i] = v; }
  1910. inline static void ggml_vec_set_i32(const int n, int32_t * x, const int32_t v) { for (int i = 0; i < n; ++i) x[i] = v; }
  1911. inline static void ggml_vec_set_f16(const int n, ggml_fp16_t * x, const int32_t v) { for (int i = 0; i < n; ++i) x[i] = v; }
  1912. inline static void ggml_vec_add_f32 (const int n, float * z, const float * x, const float * y) { for (int i = 0; i < n; ++i) z[i] = x[i] + y[i]; }
  1913. inline static void ggml_vec_add1_f32(const int n, float * z, const float * x, const float v) { for (int i = 0; i < n; ++i) z[i] = x[i] + v; }
  1914. inline static void ggml_vec_acc_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] += x[i]; }
  1915. inline static void ggml_vec_acc1_f32(const int n, float * y, const float v) { for (int i = 0; i < n; ++i) y[i] += v; }
  1916. inline static void ggml_vec_sub_f32 (const int n, float * z, const float * x, const float * y) { for (int i = 0; i < n; ++i) z[i] = x[i] - y[i]; }
  1917. inline static void ggml_vec_set_f32 (const int n, float * x, const float v) { for (int i = 0; i < n; ++i) x[i] = v; }
  1918. inline static void ggml_vec_cpy_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = x[i]; }
  1919. inline static void ggml_vec_neg_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = -x[i]; }
  1920. inline static void ggml_vec_mul_f32 (const int n, float * z, const float * x, const float * y) { for (int i = 0; i < n; ++i) z[i] = x[i]*y[i]; }
  1921. inline static void ggml_vec_div_f32 (const int n, float * z, const float * x, const float * y) { for (int i = 0; i < n; ++i) z[i] = x[i]/y[i]; }
  1922. static void ggml_vec_dot_f32(const int n, float * restrict s, const float * restrict x, const float * restrict y) {
  1923. #ifdef GGML_SIMD
  1924. float sumf = 0.0f;
  1925. const int np = (n & ~(GGML_F32_STEP - 1));
  1926. GGML_F32_VEC sum[GGML_F32_ARR] = { GGML_F32_VEC_ZERO };
  1927. GGML_F32_VEC ax[GGML_F32_ARR];
  1928. GGML_F32_VEC ay[GGML_F32_ARR];
  1929. for (int i = 0; i < np; i += GGML_F32_STEP) {
  1930. for (int j = 0; j < GGML_F32_ARR; j++) {
  1931. ax[j] = GGML_F32_VEC_LOAD(x + i + j*GGML_F32_EPR);
  1932. ay[j] = GGML_F32_VEC_LOAD(y + i + j*GGML_F32_EPR);
  1933. sum[j] = GGML_F32_VEC_FMA(sum[j], ax[j], ay[j]);
  1934. }
  1935. }
  1936. // reduce sum0..sum3 to sum0
  1937. GGML_F32_VEC_REDUCE(sumf, sum);
  1938. // leftovers
  1939. for (int i = np; i < n; ++i) {
  1940. sumf += x[i]*y[i];
  1941. }
  1942. #else
  1943. // scalar
  1944. ggml_float sumf = 0.0;
  1945. for (int i = 0; i < n; ++i) {
  1946. sumf += (ggml_float)(x[i]*y[i]);
  1947. }
  1948. #endif
  1949. *s = sumf;
  1950. }
  1951. static void ggml_vec_dot_f16(const int n, float * restrict s, ggml_fp16_t * restrict x, ggml_fp16_t * restrict y) {
  1952. ggml_float sumf = 0.0;
  1953. #if defined(GGML_SIMD)
  1954. const int np = (n & ~(GGML_F16_STEP - 1));
  1955. GGML_F16_VEC sum[GGML_F16_ARR] = { GGML_F16_VEC_ZERO };
  1956. GGML_F16_VEC ax[GGML_F16_ARR];
  1957. GGML_F16_VEC ay[GGML_F16_ARR];
  1958. for (int i = 0; i < np; i += GGML_F16_STEP) {
  1959. for (int j = 0; j < GGML_F16_ARR; j++) {
  1960. ax[j] = GGML_F16_VEC_LOAD(x + i + j*GGML_F16_EPR, j);
  1961. ay[j] = GGML_F16_VEC_LOAD(y + i + j*GGML_F16_EPR, j);
  1962. sum[j] = GGML_F16_VEC_FMA(sum[j], ax[j], ay[j]);
  1963. }
  1964. }
  1965. // reduce sum0..sum3 to sum0
  1966. GGML_F16_VEC_REDUCE(sumf, sum);
  1967. // leftovers
  1968. for (int i = np; i < n; ++i) {
  1969. sumf += (ggml_float)(GGML_FP16_TO_FP32(x[i])*GGML_FP16_TO_FP32(y[i]));
  1970. }
  1971. #else
  1972. for (int i = 0; i < n; ++i) {
  1973. sumf += (ggml_float)(GGML_FP16_TO_FP32(x[i])*GGML_FP16_TO_FP32(y[i]));
  1974. }
  1975. #endif
  1976. *s = sumf;
  1977. }
  1978. static void ggml_vec_dot_q4_0_q8_0(const int n, float * restrict s, const void * restrict vx, const void * restrict vy) {
  1979. const int qk = QK8_0;
  1980. const int nb = n / qk;
  1981. assert(n % qk == 0);
  1982. assert(nb % 2 == 0);
  1983. const block_q4_0 * restrict x = vx;
  1984. const block_q8_0 * restrict y = vy;
  1985. #if defined(__ARM_NEON)
  1986. float32x4_t sumv0 = vdupq_n_f32(0.0f);
  1987. float32x4_t sumv1 = vdupq_n_f32(0.0f);
  1988. for (int i = 0; i < nb; i += 2) {
  1989. const block_q4_0 * restrict x0 = &x[i + 0];
  1990. const block_q4_0 * restrict x1 = &x[i + 1];
  1991. const block_q8_0 * restrict y0 = &y[i + 0];
  1992. const block_q8_0 * restrict y1 = &y[i + 1];
  1993. const uint8x16_t m4b = vdupq_n_u8(0x0F);
  1994. const int8x16_t s8b = vdupq_n_s8(0x8);
  1995. const uint8x16_t v0_0 = vld1q_u8(x0->qs);
  1996. const uint8x16_t v0_1 = vld1q_u8(x1->qs);
  1997. // 4-bit -> 8-bit
  1998. const int8x16_t v0_0l = vreinterpretq_s8_u8(vandq_u8 (v0_0, m4b));
  1999. const int8x16_t v0_0h = vreinterpretq_s8_u8(vshrq_n_u8(v0_0, 4));
  2000. const int8x16_t v0_1l = vreinterpretq_s8_u8(vandq_u8 (v0_1, m4b));
  2001. const int8x16_t v0_1h = vreinterpretq_s8_u8(vshrq_n_u8(v0_1, 4));
  2002. // sub 8
  2003. const int8x16_t v0_0ls = vsubq_s8(v0_0l, s8b);
  2004. const int8x16_t v0_0hs = vsubq_s8(v0_0h, s8b);
  2005. const int8x16_t v0_1ls = vsubq_s8(v0_1l, s8b);
  2006. const int8x16_t v0_1hs = vsubq_s8(v0_1h, s8b);
  2007. // load y
  2008. const int8x16_t v1_0l = vld1q_s8(y0->qs);
  2009. const int8x16_t v1_0h = vld1q_s8(y0->qs + 16);
  2010. const int8x16_t v1_1l = vld1q_s8(y1->qs);
  2011. const int8x16_t v1_1h = vld1q_s8(y1->qs + 16);
  2012. #if defined(__ARM_FEATURE_DOTPROD)
  2013. // dot product into int32x4_t
  2014. const int32x4_t p_0 = vdotq_s32(vdotq_s32(vdupq_n_s32(0), v0_0ls, v1_0l), v0_0hs, v1_0h);
  2015. const int32x4_t p_1 = vdotq_s32(vdotq_s32(vdupq_n_s32(0), v0_1ls, v1_1l), v0_1hs, v1_1h);
  2016. sumv0 = vmlaq_n_f32(sumv0, vcvtq_f32_s32(p_0), GGML_FP16_TO_FP32(x0->d)*GGML_FP16_TO_FP32(y0->d));
  2017. sumv1 = vmlaq_n_f32(sumv1, vcvtq_f32_s32(p_1), GGML_FP16_TO_FP32(x1->d)*GGML_FP16_TO_FP32(y1->d));
  2018. #else
  2019. const int16x8_t pl0l = vmull_s8(vget_low_s8 (v0_0ls), vget_low_s8 (v1_0l));
  2020. const int16x8_t pl0h = vmull_s8(vget_high_s8(v0_0ls), vget_high_s8(v1_0l));
  2021. const int16x8_t ph0l = vmull_s8(vget_low_s8 (v0_0hs), vget_low_s8 (v1_0h));
  2022. const int16x8_t ph0h = vmull_s8(vget_high_s8(v0_0hs), vget_high_s8(v1_0h));
  2023. const int16x8_t pl1l = vmull_s8(vget_low_s8 (v0_1ls), vget_low_s8 (v1_1l));
  2024. const int16x8_t pl1h = vmull_s8(vget_high_s8(v0_1ls), vget_high_s8(v1_1l));
  2025. const int16x8_t ph1l = vmull_s8(vget_low_s8 (v0_1hs), vget_low_s8 (v1_1h));
  2026. const int16x8_t ph1h = vmull_s8(vget_high_s8(v0_1hs), vget_high_s8(v1_1h));
  2027. const int32x4_t pl0 = vaddq_s32(vpaddlq_s16(pl0l), vpaddlq_s16(pl0h));
  2028. const int32x4_t ph0 = vaddq_s32(vpaddlq_s16(ph0l), vpaddlq_s16(ph0h));
  2029. const int32x4_t pl1 = vaddq_s32(vpaddlq_s16(pl1l), vpaddlq_s16(pl1h));
  2030. const int32x4_t ph1 = vaddq_s32(vpaddlq_s16(ph1l), vpaddlq_s16(ph1h));
  2031. sumv0 = vmlaq_n_f32(sumv0, vcvtq_f32_s32(vaddq_s32(pl0, ph0)), GGML_FP16_TO_FP32(x0->d)*GGML_FP16_TO_FP32(y0->d));
  2032. sumv1 = vmlaq_n_f32(sumv1, vcvtq_f32_s32(vaddq_s32(pl1, ph1)), GGML_FP16_TO_FP32(x1->d)*GGML_FP16_TO_FP32(y1->d));
  2033. #endif
  2034. }
  2035. *s = vaddvq_f32(sumv0) + vaddvq_f32(sumv1);
  2036. #elif defined(__AVX2__)
  2037. // Initialize accumulator with zeros
  2038. __m256 acc = _mm256_setzero_ps();
  2039. // Main loop
  2040. for (int i = 0; i < nb; ++i) {
  2041. /* Compute combined scale for the block */
  2042. const __m256 d = _mm256_set1_ps( GGML_FP16_TO_FP32(x[i].d) * GGML_FP16_TO_FP32(y[i].d) );
  2043. __m256i bx = bytes_from_nibbles_32(x[i].qs);
  2044. // Now we have a vector with bytes in [ 0 .. 15 ] interval. Offset them into [ -8 .. +7 ] interval.
  2045. const __m256i off = _mm256_set1_epi8( 8 );
  2046. bx = _mm256_sub_epi8( bx, off );
  2047. __m256i by = _mm256_loadu_si256((const __m256i *)y[i].qs);
  2048. const __m256 q = mul_sum_i8_pairs_float(bx, by);
  2049. /* Multiply q with scale and accumulate */
  2050. acc = _mm256_fmadd_ps( d, q, acc );
  2051. }
  2052. *s = hsum_float_8(acc);
  2053. #elif defined(__AVX__)
  2054. // Initialize accumulator with zeros
  2055. __m256 acc = _mm256_setzero_ps();
  2056. // Main loop
  2057. for (int i = 0; i < nb; ++i) {
  2058. // Compute combined scale for the block
  2059. const __m256 d = _mm256_set1_ps( GGML_FP16_TO_FP32(x[i].d) * GGML_FP16_TO_FP32(y[i].d) );
  2060. const __m128i lowMask = _mm_set1_epi8(0xF);
  2061. const __m128i off = _mm_set1_epi8(8);
  2062. const __m128i tmp = _mm_loadu_si128((const __m128i *)x[i].qs);
  2063. __m128i bx = _mm_and_si128(lowMask, tmp);
  2064. __m128i by = _mm_loadu_si128((const __m128i *)y[i].qs);
  2065. bx = _mm_sub_epi8(bx, off);
  2066. const __m128i i32_0 = mul_sum_i8_pairs(bx, by);
  2067. bx = _mm_and_si128(lowMask, _mm_srli_epi64(tmp, 4));
  2068. by = _mm_loadu_si128((const __m128i *)(y[i].qs + 16));
  2069. bx = _mm_sub_epi8(bx, off);
  2070. const __m128i i32_1 = mul_sum_i8_pairs(bx, by);
  2071. // Convert int32_t to float
  2072. __m256 p = _mm256_cvtepi32_ps(MM256_SET_M128I(i32_0, i32_1));
  2073. // Apply the scale, and accumulate
  2074. acc = _mm256_add_ps(_mm256_mul_ps( d, p ), acc);
  2075. }
  2076. *s = hsum_float_8(acc);
  2077. #elif defined(__SSSE3__)
  2078. // set constants
  2079. const __m128i lowMask = _mm_set1_epi8(0xF);
  2080. const __m128i off = _mm_set1_epi8(8);
  2081. // Initialize accumulator with zeros
  2082. __m128 acc_0 = _mm_setzero_ps();
  2083. __m128 acc_1 = _mm_setzero_ps();
  2084. __m128 acc_2 = _mm_setzero_ps();
  2085. __m128 acc_3 = _mm_setzero_ps();
  2086. // First round without accumulation
  2087. {
  2088. _mm_prefetch(&x[0] + sizeof(block_q4_0), _MM_HINT_T0);
  2089. _mm_prefetch(&y[0] + sizeof(block_q8_0), _MM_HINT_T0);
  2090. // Compute combined scale for the block 0 and 1
  2091. const __m128 d_0_1 = _mm_set1_ps( GGML_FP16_TO_FP32(x[0].d) * GGML_FP16_TO_FP32(y[0].d) );
  2092. const __m128i tmp_0_1 = _mm_loadu_si128((const __m128i *)x[0].qs);
  2093. __m128i bx_0 = _mm_and_si128(lowMask, tmp_0_1);
  2094. __m128i by_0 = _mm_loadu_si128((const __m128i *)y[0].qs);
  2095. bx_0 = _mm_sub_epi8(bx_0, off);
  2096. const __m128i i32_0 = mul_sum_i8_pairs(bx_0, by_0);
  2097. __m128i bx_1 = _mm_and_si128(lowMask, _mm_srli_epi64(tmp_0_1, 4));
  2098. __m128i by_1 = _mm_loadu_si128((const __m128i *)(y[0].qs + 16));
  2099. bx_1 = _mm_sub_epi8(bx_1, off);
  2100. const __m128i i32_1 = mul_sum_i8_pairs(bx_1, by_1);
  2101. _mm_prefetch(&x[1] + sizeof(block_q4_0), _MM_HINT_T0);
  2102. _mm_prefetch(&y[1] + sizeof(block_q8_0), _MM_HINT_T0);
  2103. // Compute combined scale for the block 2 and 3
  2104. const __m128 d_2_3 = _mm_set1_ps( GGML_FP16_TO_FP32(x[1].d) * GGML_FP16_TO_FP32(y[1].d) );
  2105. const __m128i tmp_2_3 = _mm_loadu_si128((const __m128i *)x[1].qs);
  2106. __m128i bx_2 = _mm_and_si128(lowMask, tmp_2_3);
  2107. __m128i by_2 = _mm_loadu_si128((const __m128i *)y[1].qs);
  2108. bx_2 = _mm_sub_epi8(bx_2, off);
  2109. const __m128i i32_2 = mul_sum_i8_pairs(bx_2, by_2);
  2110. __m128i bx_3 = _mm_and_si128(lowMask, _mm_srli_epi64(tmp_2_3, 4));
  2111. __m128i by_3 = _mm_loadu_si128((const __m128i *)(y[1].qs + 16));
  2112. bx_3 = _mm_sub_epi8(bx_3, off);
  2113. const __m128i i32_3 = mul_sum_i8_pairs(bx_3, by_3);
  2114. // Convert int32_t to float
  2115. __m128 p0 = _mm_cvtepi32_ps(i32_0);
  2116. __m128 p1 = _mm_cvtepi32_ps(i32_1);
  2117. __m128 p2 = _mm_cvtepi32_ps(i32_2);
  2118. __m128 p3 = _mm_cvtepi32_ps(i32_3);
  2119. // Apply the scale
  2120. acc_0 = _mm_mul_ps( d_0_1, p0 );
  2121. acc_1 = _mm_mul_ps( d_0_1, p1 );
  2122. acc_2 = _mm_mul_ps( d_2_3, p2 );
  2123. acc_3 = _mm_mul_ps( d_2_3, p3 );
  2124. }
  2125. // Main loop
  2126. for (int i = 2; i < nb; i+=2) {
  2127. _mm_prefetch(&x[i] + sizeof(block_q4_0), _MM_HINT_T0);
  2128. _mm_prefetch(&y[i] + sizeof(block_q8_0), _MM_HINT_T0);
  2129. // Compute combined scale for the block 0 and 1
  2130. const __m128 d_0_1 = _mm_set1_ps( GGML_FP16_TO_FP32(x[i].d) * GGML_FP16_TO_FP32(y[i].d) );
  2131. const __m128i tmp_0_1 = _mm_loadu_si128((const __m128i *)x[i].qs);
  2132. __m128i bx_0 = _mm_and_si128(lowMask, tmp_0_1);
  2133. __m128i by_0 = _mm_loadu_si128((const __m128i *)y[i].qs);
  2134. bx_0 = _mm_sub_epi8(bx_0, off);
  2135. const __m128i i32_0 = mul_sum_i8_pairs(bx_0, by_0);
  2136. __m128i bx_1 = _mm_and_si128(lowMask, _mm_srli_epi64(tmp_0_1, 4));
  2137. __m128i by_1 = _mm_loadu_si128((const __m128i *)(y[i].qs + 16));
  2138. bx_1 = _mm_sub_epi8(bx_1, off);
  2139. const __m128i i32_1 = mul_sum_i8_pairs(bx_1, by_1);
  2140. _mm_prefetch(&x[i] + 2 * sizeof(block_q4_0), _MM_HINT_T0);
  2141. _mm_prefetch(&y[i] + 2 * sizeof(block_q8_0), _MM_HINT_T0);
  2142. // Compute combined scale for the block 2 and 3
  2143. const __m128 d_2_3 = _mm_set1_ps( GGML_FP16_TO_FP32(x[i + 1].d) * GGML_FP16_TO_FP32(y[i + 1].d) );
  2144. const __m128i tmp_2_3 = _mm_loadu_si128((const __m128i *)x[i + 1].qs);
  2145. __m128i bx_2 = _mm_and_si128(lowMask, tmp_2_3);
  2146. __m128i by_2 = _mm_loadu_si128((const __m128i *)y[i + 1].qs);
  2147. bx_2 = _mm_sub_epi8(bx_2, off);
  2148. const __m128i i32_2 = mul_sum_i8_pairs(bx_2, by_2);
  2149. __m128i bx_3 = _mm_and_si128(lowMask, _mm_srli_epi64(tmp_2_3, 4));
  2150. __m128i by_3 = _mm_loadu_si128((const __m128i *)(y[i + 1].qs + 16));
  2151. bx_3 = _mm_sub_epi8(bx_3, off);
  2152. const __m128i i32_3 = mul_sum_i8_pairs(bx_3, by_3);
  2153. // Convert int32_t to float
  2154. __m128 p0 = _mm_cvtepi32_ps(i32_0);
  2155. __m128 p1 = _mm_cvtepi32_ps(i32_1);
  2156. __m128 p2 = _mm_cvtepi32_ps(i32_2);
  2157. __m128 p3 = _mm_cvtepi32_ps(i32_3);
  2158. // Apply the scale
  2159. __m128 p0_d = _mm_mul_ps( d_0_1, p0 );
  2160. __m128 p1_d = _mm_mul_ps( d_0_1, p1 );
  2161. __m128 p2_d = _mm_mul_ps( d_2_3, p2 );
  2162. __m128 p3_d = _mm_mul_ps( d_2_3, p3 );
  2163. // Acummulate
  2164. acc_0 = _mm_add_ps(p0_d, acc_0);
  2165. acc_1 = _mm_add_ps(p1_d, acc_1);
  2166. acc_2 = _mm_add_ps(p2_d, acc_2);
  2167. acc_3 = _mm_add_ps(p3_d, acc_3);
  2168. }
  2169. *s = hsum_float_4x4(acc_0, acc_1, acc_2, acc_3);
  2170. #else
  2171. // scalar
  2172. float sumf = 0.0;
  2173. for (int i = 0; i < nb; i++) {
  2174. int sumi = 0;
  2175. for (int j = 0; j < qk/2; ++j) {
  2176. const int v0 = (x[i].qs[j] & 0x0F) - 8;
  2177. const int v1 = (x[i].qs[j] >> 4) - 8;
  2178. sumi += (v0 * y[i].qs[j]) + (v1 * y[i].qs[j + qk/2]);
  2179. }
  2180. sumf += sumi*GGML_FP16_TO_FP32(x[i].d)*GGML_FP16_TO_FP32(y[i].d);
  2181. }
  2182. *s = sumf;
  2183. #endif
  2184. }
  2185. static void ggml_vec_dot_q4_1_q8_1(const int n, float * restrict s, const void * restrict vx, const void * restrict vy) {
  2186. const int qk = QK8_1;
  2187. const int nb = n / qk;
  2188. assert(n % qk == 0);
  2189. assert(nb % 2 == 0);
  2190. const block_q4_1 * restrict x = vx;
  2191. const block_q8_1 * restrict y = vy;
  2192. // TODO: add WASM SIMD
  2193. #if defined(__ARM_NEON)
  2194. float32x4_t sumv0 = vdupq_n_f32(0.0f);
  2195. float32x4_t sumv1 = vdupq_n_f32(0.0f);
  2196. float summs = 0;
  2197. for (int i = 0; i < nb; i += 2) {
  2198. const block_q4_1 * restrict x0 = &x[i + 0];
  2199. const block_q4_1 * restrict x1 = &x[i + 1];
  2200. const block_q8_1 * restrict y0 = &y[i + 0];
  2201. const block_q8_1 * restrict y1 = &y[i + 1];
  2202. summs += GGML_FP16_TO_FP32(x0->m) * y0->s + GGML_FP16_TO_FP32(x1->m) * y1->s;
  2203. const uint8x16_t m4b = vdupq_n_u8(0x0F);
  2204. const uint8x16_t v0_0 = vld1q_u8(x0->qs);
  2205. const uint8x16_t v0_1 = vld1q_u8(x1->qs);
  2206. // 4-bit -> 8-bit
  2207. const int8x16_t v0_0l = vreinterpretq_s8_u8(vandq_u8 (v0_0, m4b));
  2208. const int8x16_t v0_0h = vreinterpretq_s8_u8(vshrq_n_u8(v0_0, 4));
  2209. const int8x16_t v0_1l = vreinterpretq_s8_u8(vandq_u8 (v0_1, m4b));
  2210. const int8x16_t v0_1h = vreinterpretq_s8_u8(vshrq_n_u8(v0_1, 4));
  2211. // load y
  2212. const int8x16_t v1_0l = vld1q_s8(y0->qs);
  2213. const int8x16_t v1_0h = vld1q_s8(y0->qs + 16);
  2214. const int8x16_t v1_1l = vld1q_s8(y1->qs);
  2215. const int8x16_t v1_1h = vld1q_s8(y1->qs + 16);
  2216. #if defined(__ARM_FEATURE_DOTPROD)
  2217. // dot product into int32x4_t
  2218. const int32x4_t p_0 = vdotq_s32(vdotq_s32(vdupq_n_s32(0), v0_0l, v1_0l), v0_0h, v1_0h);
  2219. const int32x4_t p_1 = vdotq_s32(vdotq_s32(vdupq_n_s32(0), v0_1l, v1_1l), v0_1h, v1_1h);
  2220. sumv0 = vmlaq_n_f32(sumv0, vcvtq_f32_s32(p_0), GGML_FP16_TO_FP32(x0->d)*y0->d);
  2221. sumv1 = vmlaq_n_f32(sumv1, vcvtq_f32_s32(p_1), GGML_FP16_TO_FP32(x1->d)*y1->d);
  2222. #else
  2223. const int16x8_t pl0l = vmull_s8(vget_low_s8 (v0_0l), vget_low_s8 (v1_0l));
  2224. const int16x8_t pl0h = vmull_s8(vget_high_s8(v0_0l), vget_high_s8(v1_0l));
  2225. const int16x8_t ph0l = vmull_s8(vget_low_s8 (v0_0h), vget_low_s8 (v1_0h));
  2226. const int16x8_t ph0h = vmull_s8(vget_high_s8(v0_0h), vget_high_s8(v1_0h));
  2227. const int16x8_t pl1l = vmull_s8(vget_low_s8 (v0_1l), vget_low_s8 (v1_1l));
  2228. const int16x8_t pl1h = vmull_s8(vget_high_s8(v0_1l), vget_high_s8(v1_1l));
  2229. const int16x8_t ph1l = vmull_s8(vget_low_s8 (v0_1h), vget_low_s8 (v1_1h));
  2230. const int16x8_t ph1h = vmull_s8(vget_high_s8(v0_1h), vget_high_s8(v1_1h));
  2231. const int32x4_t pl0 = vaddq_s32(vpaddlq_s16(pl0l), vpaddlq_s16(pl0h));
  2232. const int32x4_t ph0 = vaddq_s32(vpaddlq_s16(ph0l), vpaddlq_s16(ph0h));
  2233. const int32x4_t pl1 = vaddq_s32(vpaddlq_s16(pl1l), vpaddlq_s16(pl1h));
  2234. const int32x4_t ph1 = vaddq_s32(vpaddlq_s16(ph1l), vpaddlq_s16(ph1h));
  2235. sumv0 = vmlaq_n_f32(sumv0, vcvtq_f32_s32(vaddq_s32(pl0, ph0)), GGML_FP16_TO_FP32(x0->d)*y0->d);
  2236. sumv1 = vmlaq_n_f32(sumv1, vcvtq_f32_s32(vaddq_s32(pl1, ph1)), GGML_FP16_TO_FP32(x1->d)*y1->d);
  2237. #endif
  2238. }
  2239. *s = vaddvq_f32(sumv0) + vaddvq_f32(sumv1) + summs;
  2240. #elif defined(__AVX2__) || defined(__AVX__)
  2241. // Initialize accumulator with zeros
  2242. __m256 acc = _mm256_setzero_ps();
  2243. float summs = 0;
  2244. // Main loop
  2245. for (int i = 0; i < nb; ++i) {
  2246. const float d0 = GGML_FP16_TO_FP32(x[i].d);
  2247. const float d1 = y[i].d;
  2248. summs += GGML_FP16_TO_FP32(x[i].m) * y[i].s;
  2249. const __m256 d0v = _mm256_set1_ps( d0 );
  2250. const __m256 d1v = _mm256_set1_ps( d1 );
  2251. // Compute combined scales
  2252. const __m256 d0d1 = _mm256_mul_ps( d0v, d1v );
  2253. // Load 16 bytes, and unpack 4 bit fields into bytes, making 32 bytes
  2254. const __m256i bx = bytes_from_nibbles_32(x[i].qs);
  2255. const __m256i by = _mm256_loadu_si256( (const __m256i *)y[i].qs );
  2256. const __m256 xy = mul_sum_us8_pairs_float(bx, by);
  2257. // Accumulate d0*d1*x*y
  2258. #if defined(__AVX2__)
  2259. acc = _mm256_fmadd_ps( d0d1, xy, acc );
  2260. #else
  2261. acc = _mm256_add_ps( _mm256_mul_ps( d0d1, xy ), acc );
  2262. #endif
  2263. }
  2264. *s = hsum_float_8(acc) + summs;
  2265. #else
  2266. // scalar
  2267. float sumf = 0.0;
  2268. for (int i = 0; i < nb; i++) {
  2269. int sumi = 0;
  2270. for (int j = 0; j < qk/2; ++j) {
  2271. const int v0 = (x[i].qs[j] & 0x0F);
  2272. const int v1 = (x[i].qs[j] >> 4);
  2273. sumi += (v0 * y[i].qs[j]) + (v1 * y[i].qs[j + qk/2]);
  2274. }
  2275. sumf += (GGML_FP16_TO_FP32(x[i].d)*y[i].d)*sumi + GGML_FP16_TO_FP32(x[i].m)*y[i].s;
  2276. }
  2277. *s = sumf;
  2278. #endif
  2279. }
  2280. static void ggml_vec_dot_q5_0_q8_0(const int n, float * restrict s, const void * restrict vx, const void * restrict vy) {
  2281. const int qk = QK8_0;
  2282. const int nb = n / qk;
  2283. assert(n % qk == 0);
  2284. assert(nb % 2 == 0);
  2285. assert(qk == QK5_0);
  2286. const block_q5_0 * restrict x = vx;
  2287. const block_q8_0 * restrict y = vy;
  2288. #if defined(__ARM_NEON)
  2289. float32x4_t sumv0 = vdupq_n_f32(0.0f);
  2290. float32x4_t sumv1 = vdupq_n_f32(0.0f);
  2291. uint32_t qh0;
  2292. uint32_t qh1;
  2293. uint64_t tmp0[4];
  2294. uint64_t tmp1[4];
  2295. for (int i = 0; i < nb; i += 2) {
  2296. const block_q5_0 * restrict x0 = &x[i];
  2297. const block_q5_0 * restrict x1 = &x[i + 1];
  2298. const block_q8_0 * restrict y0 = &y[i];
  2299. const block_q8_0 * restrict y1 = &y[i + 1];
  2300. const uint8x16_t m4b = vdupq_n_u8(0x0F);
  2301. // extract the 5th bit via lookup table ((!b) << 4)
  2302. memcpy(&qh0, x0->qh, sizeof(qh0));
  2303. memcpy(&qh1, x1->qh, sizeof(qh1));
  2304. tmp0[0] = table_b2b_1[(qh0 >> 0) & 0xFF];
  2305. tmp0[1] = table_b2b_1[(qh0 >> 8) & 0xFF];
  2306. tmp0[2] = table_b2b_1[(qh0 >> 16) & 0xFF];
  2307. tmp0[3] = table_b2b_1[(qh0 >> 24) ];
  2308. tmp1[0] = table_b2b_1[(qh1 >> 0) & 0xFF];
  2309. tmp1[1] = table_b2b_1[(qh1 >> 8) & 0xFF];
  2310. tmp1[2] = table_b2b_1[(qh1 >> 16) & 0xFF];
  2311. tmp1[3] = table_b2b_1[(qh1 >> 24) ];
  2312. const int8x16_t qhl0 = vld1q_s8((const int8_t *)(tmp0 + 0));
  2313. const int8x16_t qhh0 = vld1q_s8((const int8_t *)(tmp0 + 2));
  2314. const int8x16_t qhl1 = vld1q_s8((const int8_t *)(tmp1 + 0));
  2315. const int8x16_t qhh1 = vld1q_s8((const int8_t *)(tmp1 + 2));
  2316. const uint8x16_t v0_0 = vld1q_u8(x0->qs);
  2317. const uint8x16_t v0_1 = vld1q_u8(x1->qs);
  2318. // 4-bit -> 8-bit
  2319. int8x16_t v0_0l = vreinterpretq_s8_u8(vandq_u8 (v0_0, m4b));
  2320. int8x16_t v0_0h = vreinterpretq_s8_u8(vshrq_n_u8(v0_0, 4));
  2321. int8x16_t v0_1l = vreinterpretq_s8_u8(vandq_u8 (v0_1, m4b));
  2322. int8x16_t v0_1h = vreinterpretq_s8_u8(vshrq_n_u8(v0_1, 4));
  2323. // add high bit and sub 16 (equivalent to sub 0x10 when bit is zero)
  2324. const int8x16_t v0_0lf = vsubq_s8(v0_0l, qhl0);
  2325. const int8x16_t v0_0hf = vsubq_s8(v0_0h, qhh0);
  2326. const int8x16_t v0_1lf = vsubq_s8(v0_1l, qhl1);
  2327. const int8x16_t v0_1hf = vsubq_s8(v0_1h, qhh1);
  2328. // load y
  2329. const int8x16_t v1_0l = vld1q_s8(y0->qs);
  2330. const int8x16_t v1_0h = vld1q_s8(y0->qs + 16);
  2331. const int8x16_t v1_1l = vld1q_s8(y1->qs);
  2332. const int8x16_t v1_1h = vld1q_s8(y1->qs + 16);
  2333. #if defined(__ARM_FEATURE_DOTPROD)
  2334. sumv0 = vmlaq_n_f32(sumv0, vcvtq_f32_s32(vaddq_s32(
  2335. vdotq_s32(vdupq_n_s32(0), v0_0lf, v1_0l),
  2336. vdotq_s32(vdupq_n_s32(0), v0_0hf, v1_0h))), GGML_FP16_TO_FP32(x0->d)*GGML_FP16_TO_FP32(y0->d));
  2337. sumv1 = vmlaq_n_f32(sumv1, vcvtq_f32_s32(vaddq_s32(
  2338. vdotq_s32(vdupq_n_s32(0), v0_1lf, v1_1l),
  2339. vdotq_s32(vdupq_n_s32(0), v0_1hf, v1_1h))), GGML_FP16_TO_FP32(x1->d)*GGML_FP16_TO_FP32(y1->d));
  2340. #else
  2341. const int16x8_t pl0l = vmull_s8(vget_low_s8 (v0_0lf), vget_low_s8 (v1_0l));
  2342. const int16x8_t pl0h = vmull_s8(vget_high_s8(v0_0lf), vget_high_s8(v1_0l));
  2343. const int16x8_t ph0l = vmull_s8(vget_low_s8 (v0_0hf), vget_low_s8 (v1_0h));
  2344. const int16x8_t ph0h = vmull_s8(vget_high_s8(v0_0hf), vget_high_s8(v1_0h));
  2345. const int16x8_t pl1l = vmull_s8(vget_low_s8 (v0_1lf), vget_low_s8 (v1_1l));
  2346. const int16x8_t pl1h = vmull_s8(vget_high_s8(v0_1lf), vget_high_s8(v1_1l));
  2347. const int16x8_t ph1l = vmull_s8(vget_low_s8 (v0_1hf), vget_low_s8 (v1_1h));
  2348. const int16x8_t ph1h = vmull_s8(vget_high_s8(v0_1hf), vget_high_s8(v1_1h));
  2349. const int32x4_t pl0 = vaddq_s32(vpaddlq_s16(pl0l), vpaddlq_s16(pl0h));
  2350. const int32x4_t ph0 = vaddq_s32(vpaddlq_s16(ph0l), vpaddlq_s16(ph0h));
  2351. const int32x4_t pl1 = vaddq_s32(vpaddlq_s16(pl1l), vpaddlq_s16(pl1h));
  2352. const int32x4_t ph1 = vaddq_s32(vpaddlq_s16(ph1l), vpaddlq_s16(ph1h));
  2353. sumv0 = vmlaq_n_f32(sumv0, vcvtq_f32_s32(vaddq_s32(pl0, ph0)), GGML_FP16_TO_FP32(x0->d)*GGML_FP16_TO_FP32(y0->d));
  2354. sumv1 = vmlaq_n_f32(sumv1, vcvtq_f32_s32(vaddq_s32(pl1, ph1)), GGML_FP16_TO_FP32(x1->d)*GGML_FP16_TO_FP32(y1->d));
  2355. #endif
  2356. }
  2357. *s = vaddvq_f32(sumv0) + vaddvq_f32(sumv1);
  2358. #elif defined(__wasm_simd128__)
  2359. v128_t sumv = wasm_f32x4_splat(0.0f);
  2360. uint32_t qh;
  2361. uint64_t tmp[4];
  2362. // TODO: check if unrolling this is better
  2363. for (int i = 0; i < nb; ++i) {
  2364. const block_q5_0 * restrict x0 = &x[i];
  2365. const block_q8_0 * restrict y0 = &y[i];
  2366. const v128_t m4b = wasm_i8x16_splat(0x0F);
  2367. // extract the 5th bit
  2368. memcpy(&qh, x0->qh, sizeof(qh));
  2369. tmp[0] = table_b2b_1[(qh >> 0) & 0xFF];
  2370. tmp[1] = table_b2b_1[(qh >> 8) & 0xFF];
  2371. tmp[2] = table_b2b_1[(qh >> 16) & 0xFF];
  2372. tmp[3] = table_b2b_1[(qh >> 24) ];
  2373. const v128_t qhl = wasm_v128_load(tmp + 0);
  2374. const v128_t qhh = wasm_v128_load(tmp + 2);
  2375. const v128_t v0 = wasm_v128_load(x0->qs);
  2376. // 4-bit -> 8-bit
  2377. const v128_t v0l = wasm_v128_and (v0, m4b);
  2378. const v128_t v0h = wasm_u8x16_shr(v0, 4);
  2379. // add high bit and sub 16 (equivalent to sub 0x10 when bit is zero)
  2380. const v128_t v0lf = wasm_i8x16_sub(v0l, qhl);
  2381. const v128_t v0hf = wasm_i8x16_sub(v0h, qhh);
  2382. // load y
  2383. const v128_t v1l = wasm_v128_load(y0->qs);
  2384. const v128_t v1h = wasm_v128_load(y0->qs + 16);
  2385. // int8x16 -> int16x8
  2386. const v128_t v0lfl = wasm_i16x8_extend_low_i8x16 (v0lf);
  2387. const v128_t v0lfh = wasm_i16x8_extend_high_i8x16(v0lf);
  2388. const v128_t v0hfl = wasm_i16x8_extend_low_i8x16 (v0hf);
  2389. const v128_t v0hfh = wasm_i16x8_extend_high_i8x16(v0hf);
  2390. const v128_t v1ll = wasm_i16x8_extend_low_i8x16 (v1l);
  2391. const v128_t v1lh = wasm_i16x8_extend_high_i8x16(v1l);
  2392. const v128_t v1hl = wasm_i16x8_extend_low_i8x16 (v1h);
  2393. const v128_t v1hh = wasm_i16x8_extend_high_i8x16(v1h);
  2394. // dot product
  2395. sumv = wasm_f32x4_add(sumv, wasm_f32x4_mul(wasm_f32x4_convert_i32x4(
  2396. wasm_i32x4_add(
  2397. wasm_i32x4_add(wasm_i32x4_dot_i16x8(v0lfl, v1ll),
  2398. wasm_i32x4_dot_i16x8(v0lfh, v1lh)),
  2399. wasm_i32x4_add(wasm_i32x4_dot_i16x8(v0hfl, v1hl),
  2400. wasm_i32x4_dot_i16x8(v0hfh, v1hh)))),
  2401. wasm_f32x4_splat(GGML_FP16_TO_FP32(x0->d) * GGML_FP16_TO_FP32(y0->d))));
  2402. }
  2403. *s = wasm_f32x4_extract_lane(sumv, 0) + wasm_f32x4_extract_lane(sumv, 1) +
  2404. wasm_f32x4_extract_lane(sumv, 2) + wasm_f32x4_extract_lane(sumv, 3);
  2405. #elif defined(__AVX2__)
  2406. // Initialize accumulator with zeros
  2407. __m256 acc = _mm256_setzero_ps();
  2408. // Main loop
  2409. for (int i = 0; i < nb; i++) {
  2410. /* Compute combined scale for the block */
  2411. const __m256 d = _mm256_set1_ps(GGML_FP16_TO_FP32(x[i].d) * GGML_FP16_TO_FP32(y[i].d));
  2412. __m256i bx = bytes_from_nibbles_32(x[i].qs);
  2413. __m256i bxhi = bytes_from_bits_32(x[i].qh);
  2414. bxhi = _mm256_andnot_si256(bxhi, _mm256_set1_epi8((char)0xF0));
  2415. bx = _mm256_or_si256(bx, bxhi);
  2416. __m256i by = _mm256_loadu_si256((const __m256i *)y[i].qs);
  2417. const __m256 q = mul_sum_i8_pairs_float(bx, by);
  2418. /* Multiply q with scale and accumulate */
  2419. acc = _mm256_fmadd_ps(d, q, acc);
  2420. }
  2421. *s = hsum_float_8(acc);
  2422. #elif defined(__AVX__)
  2423. // Initialize accumulator with zeros
  2424. __m256 acc = _mm256_setzero_ps();
  2425. __m128i mask = _mm_set1_epi8((char)0xF0);
  2426. // Main loop
  2427. for (int i = 0; i < nb; i++) {
  2428. /* Compute combined scale for the block */
  2429. const __m256 d = _mm256_set1_ps(GGML_FP16_TO_FP32(x[i].d) * GGML_FP16_TO_FP32(y[i].d));
  2430. __m256i bx = bytes_from_nibbles_32(x[i].qs);
  2431. const __m256i bxhi = bytes_from_bits_32(x[i].qh);
  2432. __m128i bxhil = _mm256_castsi256_si128(bxhi);
  2433. __m128i bxhih = _mm256_extractf128_si256(bxhi, 1);
  2434. bxhil = _mm_andnot_si128(bxhil, mask);
  2435. bxhih = _mm_andnot_si128(bxhih, mask);
  2436. __m128i bxl = _mm256_castsi256_si128(bx);
  2437. __m128i bxh = _mm256_extractf128_si256(bx, 1);
  2438. bxl = _mm_or_si128(bxl, bxhil);
  2439. bxh = _mm_or_si128(bxh, bxhih);
  2440. bx = MM256_SET_M128I(bxh, bxl);
  2441. const __m256i by = _mm256_loadu_si256((const __m256i *)y[i].qs);
  2442. const __m256 q = mul_sum_i8_pairs_float(bx, by);
  2443. /* Multiply q with scale and accumulate */
  2444. acc = _mm256_add_ps(_mm256_mul_ps(d, q), acc);
  2445. }
  2446. *s = hsum_float_8(acc);
  2447. #else
  2448. // scalar
  2449. float sumf = 0.0;
  2450. for (int i = 0; i < nb; i++) {
  2451. uint32_t qh;
  2452. memcpy(&qh, x[i].qh, sizeof(qh));
  2453. int sumi = 0;
  2454. for (int j = 0; j < qk/2; ++j) {
  2455. const uint8_t xh_0 = ((qh & (1u << (j + 0 ))) >> (j + 0 )) << 4;
  2456. const uint8_t xh_1 = ((qh & (1u << (j + 16))) >> (j + 12));
  2457. const int32_t x0 = ((x[i].qs[j] & 0x0F) | xh_0) - 16;
  2458. const int32_t x1 = ((x[i].qs[j] >> 4) | xh_1) - 16;
  2459. sumi += (x0 * y[i].qs[j]) + (x1 * y[i].qs[j + qk/2]);
  2460. }
  2461. sumf += (GGML_FP16_TO_FP32(x[i].d)*GGML_FP16_TO_FP32(y[i].d)) * sumi;
  2462. }
  2463. *s = sumf;
  2464. #endif
  2465. }
  2466. static void ggml_vec_dot_q5_1_q8_1(const int n, float * restrict s, const void * restrict vx, const void * restrict vy) {
  2467. const int qk = QK8_1;
  2468. const int nb = n / qk;
  2469. assert(n % qk == 0);
  2470. assert(nb % 2 == 0);
  2471. assert(qk == QK5_1);
  2472. const block_q5_1 * restrict x = vx;
  2473. const block_q8_1 * restrict y = vy;
  2474. #if defined(__ARM_NEON)
  2475. float32x4_t sumv0 = vdupq_n_f32(0.0f);
  2476. float32x4_t sumv1 = vdupq_n_f32(0.0f);
  2477. float summs0 = 0.0f;
  2478. float summs1 = 0.0f;
  2479. uint32_t qh0;
  2480. uint32_t qh1;
  2481. uint64_t tmp0[4];
  2482. uint64_t tmp1[4];
  2483. for (int i = 0; i < nb; i += 2) {
  2484. const block_q5_1 * restrict x0 = &x[i];
  2485. const block_q5_1 * restrict x1 = &x[i + 1];
  2486. const block_q8_1 * restrict y0 = &y[i];
  2487. const block_q8_1 * restrict y1 = &y[i + 1];
  2488. const uint8x16_t m4b = vdupq_n_u8(0x0F);
  2489. summs0 += GGML_FP16_TO_FP32(x0->m) * y0->s;
  2490. summs1 += GGML_FP16_TO_FP32(x1->m) * y1->s;
  2491. // extract the 5th bit via lookup table ((b) << 4)
  2492. memcpy(&qh0, x0->qh, sizeof(qh0));
  2493. memcpy(&qh1, x1->qh, sizeof(qh1));
  2494. tmp0[0] = table_b2b_0[(qh0 >> 0) & 0xFF];
  2495. tmp0[1] = table_b2b_0[(qh0 >> 8) & 0xFF];
  2496. tmp0[2] = table_b2b_0[(qh0 >> 16) & 0xFF];
  2497. tmp0[3] = table_b2b_0[(qh0 >> 24) ];
  2498. tmp1[0] = table_b2b_0[(qh1 >> 0) & 0xFF];
  2499. tmp1[1] = table_b2b_0[(qh1 >> 8) & 0xFF];
  2500. tmp1[2] = table_b2b_0[(qh1 >> 16) & 0xFF];
  2501. tmp1[3] = table_b2b_0[(qh1 >> 24) ];
  2502. const int8x16_t qhl0 = vld1q_s8((const int8_t *)(tmp0 + 0));
  2503. const int8x16_t qhh0 = vld1q_s8((const int8_t *)(tmp0 + 2));
  2504. const int8x16_t qhl1 = vld1q_s8((const int8_t *)(tmp1 + 0));
  2505. const int8x16_t qhh1 = vld1q_s8((const int8_t *)(tmp1 + 2));
  2506. const uint8x16_t v0_0 = vld1q_u8(x0->qs);
  2507. const uint8x16_t v0_1 = vld1q_u8(x1->qs);
  2508. // 4-bit -> 8-bit
  2509. const int8x16_t v0_0l = vreinterpretq_s8_u8(vandq_u8 (v0_0, m4b));
  2510. const int8x16_t v0_0h = vreinterpretq_s8_u8(vshrq_n_u8(v0_0, 4));
  2511. const int8x16_t v0_1l = vreinterpretq_s8_u8(vandq_u8 (v0_1, m4b));
  2512. const int8x16_t v0_1h = vreinterpretq_s8_u8(vshrq_n_u8(v0_1, 4));
  2513. // add high bit
  2514. const int8x16_t v0_0lf = vorrq_s8(v0_0l, qhl0);
  2515. const int8x16_t v0_0hf = vorrq_s8(v0_0h, qhh0);
  2516. const int8x16_t v0_1lf = vorrq_s8(v0_1l, qhl1);
  2517. const int8x16_t v0_1hf = vorrq_s8(v0_1h, qhh1);
  2518. // load y
  2519. const int8x16_t v1_0l = vld1q_s8(y0->qs);
  2520. const int8x16_t v1_0h = vld1q_s8(y0->qs + 16);
  2521. const int8x16_t v1_1l = vld1q_s8(y1->qs);
  2522. const int8x16_t v1_1h = vld1q_s8(y1->qs + 16);
  2523. #if defined(__ARM_FEATURE_DOTPROD)
  2524. sumv0 = vmlaq_n_f32(sumv0, vcvtq_f32_s32(vaddq_s32(
  2525. vdotq_s32(vdupq_n_s32(0), v0_0lf, v1_0l),
  2526. vdotq_s32(vdupq_n_s32(0), v0_0hf, v1_0h))), GGML_FP16_TO_FP32(x0->d)*y0->d);
  2527. sumv1 = vmlaq_n_f32(sumv1, vcvtq_f32_s32(vaddq_s32(
  2528. vdotq_s32(vdupq_n_s32(0), v0_1lf, v1_1l),
  2529. vdotq_s32(vdupq_n_s32(0), v0_1hf, v1_1h))), GGML_FP16_TO_FP32(x1->d)*y1->d);
  2530. #else
  2531. const int16x8_t pl0l = vmull_s8(vget_low_s8 (v0_0lf), vget_low_s8 (v1_0l));
  2532. const int16x8_t pl0h = vmull_s8(vget_high_s8(v0_0lf), vget_high_s8(v1_0l));
  2533. const int16x8_t ph0l = vmull_s8(vget_low_s8 (v0_0hf), vget_low_s8 (v1_0h));
  2534. const int16x8_t ph0h = vmull_s8(vget_high_s8(v0_0hf), vget_high_s8(v1_0h));
  2535. const int16x8_t pl1l = vmull_s8(vget_low_s8 (v0_1lf), vget_low_s8 (v1_1l));
  2536. const int16x8_t pl1h = vmull_s8(vget_high_s8(v0_1lf), vget_high_s8(v1_1l));
  2537. const int16x8_t ph1l = vmull_s8(vget_low_s8 (v0_1hf), vget_low_s8 (v1_1h));
  2538. const int16x8_t ph1h = vmull_s8(vget_high_s8(v0_1hf), vget_high_s8(v1_1h));
  2539. const int32x4_t pl0 = vaddq_s32(vpaddlq_s16(pl0l), vpaddlq_s16(pl0h));
  2540. const int32x4_t ph0 = vaddq_s32(vpaddlq_s16(ph0l), vpaddlq_s16(ph0h));
  2541. const int32x4_t pl1 = vaddq_s32(vpaddlq_s16(pl1l), vpaddlq_s16(pl1h));
  2542. const int32x4_t ph1 = vaddq_s32(vpaddlq_s16(ph1l), vpaddlq_s16(ph1h));
  2543. sumv0 = vmlaq_n_f32(sumv0, vcvtq_f32_s32(vaddq_s32(pl0, ph0)), GGML_FP16_TO_FP32(x0->d)*y0->d);
  2544. sumv1 = vmlaq_n_f32(sumv1, vcvtq_f32_s32(vaddq_s32(pl1, ph1)), GGML_FP16_TO_FP32(x1->d)*y1->d);
  2545. #endif
  2546. }
  2547. *s = vaddvq_f32(sumv0) + vaddvq_f32(sumv1) + summs0 + summs1;
  2548. #elif defined(__wasm_simd128__)
  2549. v128_t sumv = wasm_f32x4_splat(0.0f);
  2550. float summs = 0.0f;
  2551. uint32_t qh;
  2552. uint64_t tmp[4];
  2553. // TODO: check if unrolling this is better
  2554. for (int i = 0; i < nb; ++i) {
  2555. const block_q5_1 * restrict x0 = &x[i];
  2556. const block_q8_1 * restrict y0 = &y[i];
  2557. summs += GGML_FP16_TO_FP32(x0->m) * y0->s;
  2558. const v128_t m4b = wasm_i8x16_splat(0x0F);
  2559. // extract the 5th bit
  2560. memcpy(&qh, x0->qh, sizeof(qh));
  2561. tmp[0] = table_b2b_0[(qh >> 0) & 0xFF];
  2562. tmp[1] = table_b2b_0[(qh >> 8) & 0xFF];
  2563. tmp[2] = table_b2b_0[(qh >> 16) & 0xFF];
  2564. tmp[3] = table_b2b_0[(qh >> 24) ];
  2565. const v128_t qhl = wasm_v128_load(tmp + 0);
  2566. const v128_t qhh = wasm_v128_load(tmp + 2);
  2567. const v128_t v0 = wasm_v128_load(x0->qs);
  2568. // 4-bit -> 8-bit
  2569. const v128_t v0l = wasm_v128_and (v0, m4b);
  2570. const v128_t v0h = wasm_u8x16_shr(v0, 4);
  2571. // add high bit
  2572. const v128_t v0lf = wasm_v128_or(v0l, qhl);
  2573. const v128_t v0hf = wasm_v128_or(v0h, qhh);
  2574. // load y
  2575. const v128_t v1l = wasm_v128_load(y0->qs);
  2576. const v128_t v1h = wasm_v128_load(y0->qs + 16);
  2577. // int8x16 -> int16x8
  2578. const v128_t v0lfl = wasm_i16x8_extend_low_i8x16 (v0lf);
  2579. const v128_t v0lfh = wasm_i16x8_extend_high_i8x16(v0lf);
  2580. const v128_t v0hfl = wasm_i16x8_extend_low_i8x16 (v0hf);
  2581. const v128_t v0hfh = wasm_i16x8_extend_high_i8x16(v0hf);
  2582. const v128_t v1ll = wasm_i16x8_extend_low_i8x16 (v1l);
  2583. const v128_t v1lh = wasm_i16x8_extend_high_i8x16(v1l);
  2584. const v128_t v1hl = wasm_i16x8_extend_low_i8x16 (v1h);
  2585. const v128_t v1hh = wasm_i16x8_extend_high_i8x16(v1h);
  2586. // dot product
  2587. sumv = wasm_f32x4_add(sumv,
  2588. wasm_f32x4_mul(wasm_f32x4_convert_i32x4(wasm_i32x4_add(
  2589. wasm_i32x4_add(wasm_i32x4_dot_i16x8(v0lfl, v1ll),
  2590. wasm_i32x4_dot_i16x8(v0lfh, v1lh)),
  2591. wasm_i32x4_add(wasm_i32x4_dot_i16x8(v0hfl, v1hl),
  2592. wasm_i32x4_dot_i16x8(v0hfh, v1hh)))),
  2593. wasm_f32x4_splat(GGML_FP16_TO_FP32(x0->d) * y0->d)));
  2594. }
  2595. *s = wasm_f32x4_extract_lane(sumv, 0) + wasm_f32x4_extract_lane(sumv, 1) +
  2596. wasm_f32x4_extract_lane(sumv, 2) + wasm_f32x4_extract_lane(sumv, 3) + summs;
  2597. #elif defined(__AVX2__)
  2598. // Initialize accumulator with zeros
  2599. __m256 acc = _mm256_setzero_ps();
  2600. float summs = 0.0f;
  2601. // Main loop
  2602. for (int i = 0; i < nb; i++) {
  2603. const __m256 dx = _mm256_set1_ps(GGML_FP16_TO_FP32(x[i].d));
  2604. summs += GGML_FP16_TO_FP32(x[i].m) * y[i].s;
  2605. __m256i bx = bytes_from_nibbles_32(x[i].qs);
  2606. __m256i bxhi = bytes_from_bits_32(x[i].qh);
  2607. bxhi = _mm256_and_si256(bxhi, _mm256_set1_epi8(0x10));
  2608. bx = _mm256_or_si256(bx, bxhi);
  2609. const __m256 dy = _mm256_set1_ps(y[i].d);
  2610. const __m256i by = _mm256_loadu_si256((const __m256i *)y[i].qs);
  2611. const __m256 q = mul_sum_us8_pairs_float(bx, by);
  2612. acc = _mm256_fmadd_ps(q, _mm256_mul_ps(dx, dy), acc);
  2613. }
  2614. *s = hsum_float_8(acc) + summs;
  2615. #elif defined(__AVX__)
  2616. // Initialize accumulator with zeros
  2617. __m256 acc = _mm256_setzero_ps();
  2618. __m128i mask = _mm_set1_epi8(0x10);
  2619. float summs = 0.0f;
  2620. // Main loop
  2621. for (int i = 0; i < nb; i++) {
  2622. const __m256 dx = _mm256_set1_ps(GGML_FP16_TO_FP32(x[i].d));
  2623. summs += GGML_FP16_TO_FP32(x[i].m) * y[i].s;
  2624. __m256i bx = bytes_from_nibbles_32(x[i].qs);
  2625. const __m256i bxhi = bytes_from_bits_32(x[i].qh);
  2626. __m128i bxhil = _mm256_castsi256_si128(bxhi);
  2627. __m128i bxhih = _mm256_extractf128_si256(bxhi, 1);
  2628. bxhil = _mm_and_si128(bxhil, mask);
  2629. bxhih = _mm_and_si128(bxhih, mask);
  2630. __m128i bxl = _mm256_castsi256_si128(bx);
  2631. __m128i bxh = _mm256_extractf128_si256(bx, 1);
  2632. bxl = _mm_or_si128(bxl, bxhil);
  2633. bxh = _mm_or_si128(bxh, bxhih);
  2634. bx = MM256_SET_M128I(bxh, bxl);
  2635. const __m256 dy = _mm256_set1_ps(y[i].d);
  2636. const __m256i by = _mm256_loadu_si256((const __m256i *)y[i].qs);
  2637. const __m256 q = mul_sum_us8_pairs_float(bx, by);
  2638. acc = _mm256_add_ps(_mm256_mul_ps(q, _mm256_mul_ps(dx, dy)), acc);
  2639. }
  2640. *s = hsum_float_8(acc) + summs;
  2641. #else
  2642. // scalar
  2643. float sumf = 0.0;
  2644. for (int i = 0; i < nb; i++) {
  2645. uint32_t qh;
  2646. memcpy(&qh, x[i].qh, sizeof(qh));
  2647. int sumi = 0;
  2648. for (int j = 0; j < qk/2; ++j) {
  2649. const uint8_t xh_0 = ((qh >> (j + 0)) << 4) & 0x10;
  2650. const uint8_t xh_1 = ((qh >> (j + 12)) ) & 0x10;
  2651. const int32_t x0 = (x[i].qs[j] & 0xF) | xh_0;
  2652. const int32_t x1 = (x[i].qs[j] >> 4) | xh_1;
  2653. sumi += (x0 * y[i].qs[j]) + (x1 * y[i].qs[j + qk/2]);
  2654. }
  2655. sumf += (GGML_FP16_TO_FP32(x[i].d)*y[i].d)*sumi + GGML_FP16_TO_FP32(x[i].m)*y[i].s;
  2656. }
  2657. *s = sumf;
  2658. #endif
  2659. }
  2660. static void ggml_vec_dot_q8_0_q8_0(const int n, float * restrict s, const void * restrict vx, const void * restrict vy) {
  2661. const int qk = QK8_0;
  2662. const int nb = n / qk;
  2663. assert(n % qk == 0);
  2664. assert(nb % 2 == 0);
  2665. const block_q8_0 * restrict x = vx;
  2666. const block_q8_0 * restrict y = vy;
  2667. #if defined(__ARM_NEON)
  2668. float32x4_t sumv0 = vdupq_n_f32(0.0f);
  2669. float32x4_t sumv1 = vdupq_n_f32(0.0f);
  2670. for (int i = 0; i < nb; i += 2) {
  2671. const block_q8_0 * restrict x0 = &x[i + 0];
  2672. const block_q8_0 * restrict x1 = &x[i + 1];
  2673. const block_q8_0 * restrict y0 = &y[i + 0];
  2674. const block_q8_0 * restrict y1 = &y[i + 1];
  2675. const int8x16_t x0_0 = vld1q_s8(x0->qs);
  2676. const int8x16_t x0_1 = vld1q_s8(x0->qs + 16);
  2677. const int8x16_t x1_0 = vld1q_s8(x1->qs);
  2678. const int8x16_t x1_1 = vld1q_s8(x1->qs + 16);
  2679. // load y
  2680. const int8x16_t y0_0 = vld1q_s8(y0->qs);
  2681. const int8x16_t y0_1 = vld1q_s8(y0->qs + 16);
  2682. const int8x16_t y1_0 = vld1q_s8(y1->qs);
  2683. const int8x16_t y1_1 = vld1q_s8(y1->qs + 16);
  2684. #if defined(__ARM_FEATURE_DOTPROD)
  2685. sumv0 = vmlaq_n_f32(sumv0, vcvtq_f32_s32(vaddq_s32(
  2686. vdotq_s32(vdupq_n_s32(0), x0_0, y0_0),
  2687. vdotq_s32(vdupq_n_s32(0), x0_1, y0_1))), GGML_FP16_TO_FP32(x0->d)*GGML_FP16_TO_FP32(y0->d));
  2688. sumv1 = vmlaq_n_f32(sumv1, vcvtq_f32_s32(vaddq_s32(
  2689. vdotq_s32(vdupq_n_s32(0), x1_0, y1_0),
  2690. vdotq_s32(vdupq_n_s32(0), x1_1, y1_1))), GGML_FP16_TO_FP32(x1->d)*GGML_FP16_TO_FP32(y1->d));
  2691. #else
  2692. const int16x8_t p0_0 = vmull_s8(vget_low_s8 (x0_0), vget_low_s8 (y0_0));
  2693. const int16x8_t p0_1 = vmull_s8(vget_high_s8(x0_0), vget_high_s8(y0_0));
  2694. const int16x8_t p0_2 = vmull_s8(vget_low_s8 (x0_1), vget_low_s8 (y0_1));
  2695. const int16x8_t p0_3 = vmull_s8(vget_high_s8(x0_1), vget_high_s8(y0_1));
  2696. const int16x8_t p1_0 = vmull_s8(vget_low_s8 (x1_0), vget_low_s8 (y1_0));
  2697. const int16x8_t p1_1 = vmull_s8(vget_high_s8(x1_0), vget_high_s8(y1_0));
  2698. const int16x8_t p1_2 = vmull_s8(vget_low_s8 (x1_1), vget_low_s8 (y1_1));
  2699. const int16x8_t p1_3 = vmull_s8(vget_high_s8(x1_1), vget_high_s8(y1_1));
  2700. const int32x4_t p0 = vaddq_s32(vpaddlq_s16(p0_0), vpaddlq_s16(p0_1));
  2701. const int32x4_t p1 = vaddq_s32(vpaddlq_s16(p0_2), vpaddlq_s16(p0_3));
  2702. const int32x4_t p2 = vaddq_s32(vpaddlq_s16(p1_0), vpaddlq_s16(p1_1));
  2703. const int32x4_t p3 = vaddq_s32(vpaddlq_s16(p1_2), vpaddlq_s16(p1_3));
  2704. sumv0 = vmlaq_n_f32(sumv0, vcvtq_f32_s32(vaddq_s32(p0, p1)), GGML_FP16_TO_FP32(x0->d)*GGML_FP16_TO_FP32(y0->d));
  2705. sumv1 = vmlaq_n_f32(sumv1, vcvtq_f32_s32(vaddq_s32(p2, p3)), GGML_FP16_TO_FP32(x1->d)*GGML_FP16_TO_FP32(y1->d));
  2706. #endif
  2707. }
  2708. *s = vaddvq_f32(sumv0) + vaddvq_f32(sumv1);
  2709. #elif defined(__AVX2__) || defined(__AVX__)
  2710. // Initialize accumulator with zeros
  2711. __m256 acc = _mm256_setzero_ps();
  2712. // Main loop
  2713. for (int i = 0; i < nb; ++i) {
  2714. // Compute combined scale for the block
  2715. const __m256 d = _mm256_set1_ps(GGML_FP16_TO_FP32(x[i].d) * GGML_FP16_TO_FP32(y[i].d));
  2716. __m256i bx = _mm256_loadu_si256((const __m256i *)x[i].qs);
  2717. __m256i by = _mm256_loadu_si256((const __m256i *)y[i].qs);
  2718. const __m256 q = mul_sum_i8_pairs_float(bx, by);
  2719. // Multiply q with scale and accumulate
  2720. #if defined(__AVX2__)
  2721. acc = _mm256_fmadd_ps( d, q, acc );
  2722. #else
  2723. acc = _mm256_add_ps( _mm256_mul_ps( d, q ), acc );
  2724. #endif
  2725. }
  2726. *s = hsum_float_8(acc);
  2727. #else
  2728. // scalar
  2729. float sumf = 0.0;
  2730. for (int i = 0; i < nb; i++) {
  2731. int sumi = 0;
  2732. for (int j = 0; j < qk; j++) {
  2733. sumi += x[i].qs[j]*y[i].qs[j];
  2734. }
  2735. sumf += sumi*(GGML_FP16_TO_FP32(x[i].d)*GGML_FP16_TO_FP32(y[i].d));
  2736. }
  2737. *s = sumf;
  2738. #endif
  2739. }
  2740. // compute GGML_VEC_DOT_UNROLL dot products at once
  2741. // xs - x row stride in bytes
  2742. inline static void ggml_vec_dot_f16_unroll(const int n, const int xs, float * restrict s, void * restrict xv, ggml_fp16_t * restrict y) {
  2743. ggml_float sumf[GGML_VEC_DOT_UNROLL] = { 0.0 };
  2744. ggml_fp16_t * restrict x[GGML_VEC_DOT_UNROLL];
  2745. for (int i = 0; i < GGML_VEC_DOT_UNROLL; ++i) {
  2746. x[i] = (ggml_fp16_t *) ((char *) xv + i*xs);
  2747. }
  2748. #if defined(GGML_SIMD)
  2749. const int np = (n & ~(GGML_F16_STEP - 1));
  2750. GGML_F16_VEC sum[GGML_VEC_DOT_UNROLL][GGML_F16_ARR] = { { GGML_F16_VEC_ZERO } };
  2751. GGML_F16_VEC ax[GGML_F16_ARR];
  2752. GGML_F16_VEC ay[GGML_F16_ARR];
  2753. for (int i = 0; i < np; i += GGML_F16_STEP) {
  2754. for (int j = 0; j < GGML_F16_ARR; j++) {
  2755. ay[j] = GGML_F16_VEC_LOAD(y + i + j*GGML_F16_EPR, j);
  2756. for (int k = 0; k < GGML_VEC_DOT_UNROLL; ++k) {
  2757. ax[j] = GGML_F16_VEC_LOAD(x[k] + i + j*GGML_F16_EPR, j);
  2758. sum[k][j] = GGML_F16_VEC_FMA(sum[k][j], ax[j], ay[j]);
  2759. }
  2760. }
  2761. }
  2762. // reduce sum0..sum3 to sum0
  2763. for (int k = 0; k < GGML_VEC_DOT_UNROLL; ++k) {
  2764. GGML_F16_VEC_REDUCE(sumf[k], sum[k]);
  2765. }
  2766. // leftovers
  2767. for (int i = np; i < n; ++i) {
  2768. for (int j = 0; j < GGML_VEC_DOT_UNROLL; ++j) {
  2769. sumf[j] += (ggml_float)(GGML_FP16_TO_FP32(x[j][i])*GGML_FP16_TO_FP32(y[i]));
  2770. }
  2771. }
  2772. #else
  2773. for (int i = 0; i < n; ++i) {
  2774. for (int j = 0; j < GGML_VEC_DOT_UNROLL; ++j) {
  2775. sumf[j] += (ggml_float)(GGML_FP16_TO_FP32(x[j][i])*GGML_FP16_TO_FP32(y[i]));
  2776. }
  2777. }
  2778. #endif
  2779. for (int i = 0; i < GGML_VEC_DOT_UNROLL; ++i) {
  2780. s[i] = sumf[i];
  2781. }
  2782. }
  2783. inline static void ggml_vec_mad_f32(const int n, float * restrict y, const float * restrict x, const float v) {
  2784. #if defined(GGML_SIMD)
  2785. const int np = (n & ~(GGML_F32_STEP - 1));
  2786. GGML_F32_VEC vx = GGML_F32_VEC_SET1(v);
  2787. GGML_F32_VEC ax[GGML_F32_ARR];
  2788. GGML_F32_VEC ay[GGML_F32_ARR];
  2789. for (int i = 0; i < np; i += GGML_F32_STEP) {
  2790. for (int j = 0; j < GGML_F32_ARR; j++) {
  2791. ax[j] = GGML_F32_VEC_LOAD(x + i + j*GGML_F32_EPR);
  2792. ay[j] = GGML_F32_VEC_LOAD(y + i + j*GGML_F32_EPR);
  2793. ay[j] = GGML_F32_VEC_FMA(ay[j], ax[j], vx);
  2794. GGML_F32_VEC_STORE(y + i + j*GGML_F32_EPR, ay[j]);
  2795. }
  2796. }
  2797. // leftovers
  2798. for (int i = np; i < n; ++i) {
  2799. y[i] += x[i]*v;
  2800. }
  2801. #else
  2802. // scalar
  2803. for (int i = 0; i < n; ++i) {
  2804. y[i] += x[i]*v;
  2805. }
  2806. #endif
  2807. }
  2808. //inline static void ggml_vec_scale_f32(const int n, float * y, const float v) { for (int i = 0; i < n; ++i) y[i] *= v; }
  2809. inline static void ggml_vec_scale_f32(const int n, float * y, const float v) {
  2810. #if defined(GGML_SIMD)
  2811. const int np = (n & ~(GGML_F32_STEP - 1));
  2812. GGML_F32_VEC vx = GGML_F32_VEC_SET1(v);
  2813. GGML_F32_VEC ay[GGML_F32_ARR];
  2814. for (int i = 0; i < np; i += GGML_F32_STEP) {
  2815. for (int j = 0; j < GGML_F32_ARR; j++) {
  2816. ay[j] = GGML_F32_VEC_LOAD(y + i + j*GGML_F32_EPR);
  2817. ay[j] = GGML_F32_VEC_MUL(ay[j], vx);
  2818. GGML_F32_VEC_STORE(y + i + j*GGML_F32_EPR, ay[j]);
  2819. }
  2820. }
  2821. // leftovers
  2822. for (int i = np; i < n; ++i) {
  2823. y[i] *= v;
  2824. }
  2825. #else
  2826. // scalar
  2827. for (int i = 0; i < n; ++i) {
  2828. y[i] *= v;
  2829. }
  2830. #endif
  2831. }
  2832. inline static void ggml_vec_norm_f32 (const int n, float * s, const float * x) { ggml_vec_dot_f32(n, s, x, x); *s = sqrtf(*s); }
  2833. inline static void ggml_vec_sqr_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = x[i]*x[i]; }
  2834. inline static void ggml_vec_sqrt_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = sqrtf(x[i]); }
  2835. inline static void ggml_vec_log_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = logf(x[i]); }
  2836. inline static void ggml_vec_abs_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = fabsf(x[i]); }
  2837. inline static void ggml_vec_sgn_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = (x[i] > 0.f) ? 1.f : ((x[i] < 0.f) ? -1.f : 0.f); }
  2838. inline static void ggml_vec_step_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = (x[i] > 0.f) ? 1.f : 0.f; }
  2839. inline static void ggml_vec_tanh_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = tanhf(x[i]); }
  2840. inline static void ggml_vec_elu_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = (x[i] > 0.f) ? x[i] : expf(x[i])-1; }
  2841. inline static void ggml_vec_relu_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = (x[i] > 0.f) ? x[i] : 0.f; }
  2842. static const float GELU_COEF_A = 0.044715f;
  2843. static const float GELU_QUICK_COEF = -1.702f;
  2844. static const float SQRT_2_OVER_PI = 0.79788456080286535587989211986876f;
  2845. inline static float ggml_gelu_f32(float x) {
  2846. return 0.5f*x*(1.0f + tanhf(SQRT_2_OVER_PI*x*(1.0f + GELU_COEF_A*x*x)));
  2847. }
  2848. inline static void ggml_vec_gelu_f16(const int n, ggml_fp16_t * y, const ggml_fp16_t * x) {
  2849. const uint16_t * i16 = (const uint16_t *) x;
  2850. for (int i = 0; i < n; ++i) {
  2851. y[i] = table_gelu_f16[i16[i]];
  2852. }
  2853. }
  2854. #ifdef GGML_GELU_FP16
  2855. inline static void ggml_vec_gelu_f32(const int n, float * y, const float * x) {
  2856. uint16_t t;
  2857. for (int i = 0; i < n; ++i) {
  2858. ggml_fp16_t fp16 = GGML_FP32_TO_FP16(x[i]);
  2859. memcpy(&t, &fp16, sizeof(uint16_t));
  2860. y[i] = GGML_FP16_TO_FP32(table_gelu_f16[t]);
  2861. }
  2862. }
  2863. #else
  2864. inline static void ggml_vec_gelu_f32(const int n, float * y, const float * x) {
  2865. for (int i = 0; i < n; ++i) {
  2866. y[i] = ggml_gelu_f32(x[i]);
  2867. }
  2868. }
  2869. #endif
  2870. inline static float ggml_gelu_quick_f32(float x) {
  2871. return x*(1.0f/(1.0f+expf(GELU_QUICK_COEF*x)));
  2872. }
  2873. //inline static void ggml_vec_gelu_quick_f16(const int n, ggml_fp16_t * y, const ggml_fp16_t * x) {
  2874. // const uint16_t * i16 = (const uint16_t *) x;
  2875. // for (int i = 0; i < n; ++i) {
  2876. // y[i] = table_gelu_quick_f16[i16[i]];
  2877. // }
  2878. //}
  2879. #ifdef GGML_GELU_QUICK_FP16
  2880. inline static void ggml_vec_gelu_quick_f32(const int n, float * y, const float * x) {
  2881. uint16_t t;
  2882. for (int i = 0; i < n; ++i) {
  2883. ggml_fp16_t fp16 = GGML_FP32_TO_FP16(x[i]);
  2884. memcpy(&t, &fp16, sizeof(uint16_t));
  2885. y[i] = GGML_FP16_TO_FP32(table_gelu_quick_f16[t]);
  2886. }
  2887. }
  2888. #else
  2889. inline static void ggml_vec_gelu_quick_f32(const int n, float * y, const float * x) {
  2890. for (int i = 0; i < n; ++i) {
  2891. y[i] = ggml_gelu_quick_f32(x[i]);
  2892. }
  2893. }
  2894. #endif
  2895. // Sigmoid Linear Unit (SiLU) function
  2896. inline static float ggml_silu_f32(float x) {
  2897. return x/(1.0f + expf(-x));
  2898. }
  2899. //inline static void ggml_vec_silu_f16(const int n, ggml_fp16_t * y, const ggml_fp16_t * x) {
  2900. // const uint16_t * i16 = (const uint16_t *) x;
  2901. // for (int i = 0; i < n; ++i) {
  2902. // y[i] = table_silu_f16[i16[i]];
  2903. // }
  2904. //}
  2905. #ifdef GGML_SILU_FP16
  2906. inline static void ggml_vec_silu_f32(const int n, float * y, const float * x) {
  2907. uint16_t t;
  2908. for (int i = 0; i < n; ++i) {
  2909. ggml_fp16_t fp16 = GGML_FP32_TO_FP16(x[i]);
  2910. memcpy(&t, &fp16, sizeof(uint16_t));
  2911. y[i] = GGML_FP16_TO_FP32(table_silu_f16[t]);
  2912. }
  2913. }
  2914. #else
  2915. inline static void ggml_vec_silu_f32(const int n, float * y, const float * x) {
  2916. for (int i = 0; i < n; ++i) {
  2917. y[i] = ggml_silu_f32(x[i]);
  2918. }
  2919. }
  2920. #endif
  2921. inline static float ggml_silu_backward_f32(float x, float dy) {
  2922. const float s = 1.0f/(1.0f + expf(-x));
  2923. return dy*s*(1.0f + x*(1.0f - s));
  2924. }
  2925. #ifdef GGML_SILU_FP16
  2926. inline static void ggml_vec_silu_backward_f32(const int n, float * dx, const float * x, const float * dy) {
  2927. for (int i = 0; i < n; ++i) {
  2928. // we did not use x[i] to compute forward silu but its f16 equivalent
  2929. // take derivative at f16 of x[i]:
  2930. ggml_fp16_t fp16 = GGML_FP32_TO_FP16(x[i]);
  2931. float usedx = GGML_FP16_TO_FP32(fp16);
  2932. dx[i] = ggml_silu_backward_f32(usedx, dy[i]);
  2933. }
  2934. }
  2935. #else
  2936. inline static void ggml_vec_silu_backward_f32(const int n, float * dx, const float * x, const float * dy) {
  2937. for (int i = 0; i < n; ++i) {
  2938. dx[i] = ggml_silu_backward_f32(x[i], dy[i]);
  2939. }
  2940. }
  2941. #endif
  2942. inline static void ggml_vec_sum_f32(const int n, float * s, const float * x) {
  2943. #ifndef GGML_USE_ACCELERATE
  2944. ggml_float sum = 0.0;
  2945. for (int i = 0; i < n; ++i) {
  2946. sum += (ggml_float)x[i];
  2947. }
  2948. *s = sum;
  2949. #else
  2950. vDSP_sve(x, 1, s, n);
  2951. #endif
  2952. }
  2953. inline static void ggml_vec_sum_ggf(const int n, ggml_float * s, const float * x) {
  2954. ggml_float sum = 0.0;
  2955. for (int i = 0; i < n; ++i) {
  2956. sum += (ggml_float)x[i];
  2957. }
  2958. *s = sum;
  2959. }
  2960. inline static void ggml_vec_max_f32(const int n, float * s, const float * x) {
  2961. #ifndef GGML_USE_ACCELERATE
  2962. float max = -INFINITY;
  2963. for (int i = 0; i < n; ++i) {
  2964. max = MAX(max, x[i]);
  2965. }
  2966. *s = max;
  2967. #else
  2968. vDSP_maxv(x, 1, s, n);
  2969. #endif
  2970. }
  2971. inline static void ggml_vec_norm_inv_f32(const int n, float * s, const float * x) {
  2972. ggml_vec_norm_f32(n, s, x);
  2973. *s = 1.f/(*s);
  2974. }
  2975. inline static void ggml_vec_argmax_f32(const int n, int * s, const float * x) {
  2976. float max = -INFINITY;
  2977. int idx = 0;
  2978. for (int i = 0; i < n; ++i) {
  2979. max = MAX(max, x[i]);
  2980. if (max == x[i]) { idx = i; }
  2981. }
  2982. *s = idx;
  2983. }
  2984. //
  2985. // data types
  2986. //
  2987. static const int GGML_BLCK_SIZE[GGML_TYPE_COUNT] = {
  2988. [GGML_TYPE_F32] = 1,
  2989. [GGML_TYPE_F16] = 1,
  2990. [GGML_TYPE_Q4_0] = QK4_0,
  2991. [GGML_TYPE_Q4_1] = QK4_1,
  2992. [GGML_TYPE_Q5_0] = QK5_0,
  2993. [GGML_TYPE_Q5_1] = QK5_1,
  2994. [GGML_TYPE_Q8_0] = QK8_0,
  2995. [GGML_TYPE_Q8_1] = QK8_1,
  2996. #ifdef GGML_USE_K_QUANTS
  2997. [GGML_TYPE_Q2_K] = QK_K,
  2998. [GGML_TYPE_Q3_K] = QK_K,
  2999. [GGML_TYPE_Q4_K] = QK_K,
  3000. [GGML_TYPE_Q5_K] = QK_K,
  3001. [GGML_TYPE_Q6_K] = QK_K,
  3002. [GGML_TYPE_Q8_K] = QK_K,
  3003. #endif
  3004. [GGML_TYPE_I8] = 1,
  3005. [GGML_TYPE_I16] = 1,
  3006. [GGML_TYPE_I32] = 1,
  3007. };
  3008. static_assert(GGML_TYPE_COUNT == 19, "GGML_BLCK_SIZE is outdated");
  3009. static const size_t GGML_TYPE_SIZE[GGML_TYPE_COUNT] = {
  3010. [GGML_TYPE_F32] = sizeof(float),
  3011. [GGML_TYPE_F16] = sizeof(ggml_fp16_t),
  3012. [GGML_TYPE_Q4_0] = sizeof(block_q4_0),
  3013. [GGML_TYPE_Q4_1] = sizeof(block_q4_1),
  3014. [GGML_TYPE_Q5_0] = sizeof(block_q5_0),
  3015. [GGML_TYPE_Q5_1] = sizeof(block_q5_1),
  3016. [GGML_TYPE_Q8_0] = sizeof(block_q8_0),
  3017. [GGML_TYPE_Q8_1] = sizeof(block_q8_1),
  3018. #ifdef GGML_USE_K_QUANTS
  3019. [GGML_TYPE_Q2_K] = sizeof(block_q2_K),
  3020. [GGML_TYPE_Q3_K] = sizeof(block_q3_K),
  3021. [GGML_TYPE_Q4_K] = sizeof(block_q4_K),
  3022. [GGML_TYPE_Q5_K] = sizeof(block_q5_K),
  3023. [GGML_TYPE_Q6_K] = sizeof(block_q6_K),
  3024. [GGML_TYPE_Q8_K] = sizeof(block_q8_K),
  3025. #endif
  3026. [GGML_TYPE_I8] = sizeof(int8_t),
  3027. [GGML_TYPE_I16] = sizeof(int16_t),
  3028. [GGML_TYPE_I32] = sizeof(int32_t),
  3029. };
  3030. static_assert(GGML_TYPE_COUNT == 19, "GGML_TYPE_SIZE is outdated");
  3031. static const char * GGML_TYPE_NAME[GGML_TYPE_COUNT] = {
  3032. [GGML_TYPE_F32] = "f32",
  3033. [GGML_TYPE_F16] = "f16",
  3034. [GGML_TYPE_Q4_0] = "q4_0",
  3035. [GGML_TYPE_Q4_1] = "q4_1",
  3036. [GGML_TYPE_Q5_0] = "q5_0",
  3037. [GGML_TYPE_Q5_1] = "q5_1",
  3038. [GGML_TYPE_Q8_0] = "q8_0",
  3039. [GGML_TYPE_Q8_1] = "q8_1",
  3040. [GGML_TYPE_Q2_K] = "q2_K",
  3041. [GGML_TYPE_Q3_K] = "q3_K",
  3042. [GGML_TYPE_Q4_K] = "q4_K",
  3043. [GGML_TYPE_Q5_K] = "q5_K",
  3044. [GGML_TYPE_Q6_K] = "q6_K",
  3045. [GGML_TYPE_Q8_K] = "q8_K",
  3046. [GGML_TYPE_I8] = "i8",
  3047. [GGML_TYPE_I16] = "i16",
  3048. [GGML_TYPE_I32] = "i32",
  3049. };
  3050. static_assert(GGML_TYPE_COUNT == 19, "GGML_TYPE_NAME is outdated");
  3051. static bool GGML_IS_QUANTIZED[GGML_TYPE_COUNT] = {
  3052. [GGML_TYPE_F32] = false,
  3053. [GGML_TYPE_F16] = false,
  3054. [GGML_TYPE_Q4_0] = true,
  3055. [GGML_TYPE_Q4_1] = true,
  3056. [GGML_TYPE_Q5_0] = true,
  3057. [GGML_TYPE_Q5_1] = true,
  3058. [GGML_TYPE_Q8_0] = true,
  3059. [GGML_TYPE_Q8_1] = true,
  3060. [GGML_TYPE_Q2_K] = true,
  3061. [GGML_TYPE_Q3_K] = true,
  3062. [GGML_TYPE_Q4_K] = true,
  3063. [GGML_TYPE_Q5_K] = true,
  3064. [GGML_TYPE_Q6_K] = true,
  3065. [GGML_TYPE_Q8_K] = true,
  3066. [GGML_TYPE_I8] = false,
  3067. [GGML_TYPE_I16] = false,
  3068. [GGML_TYPE_I32] = false,
  3069. };
  3070. static_assert(GGML_TYPE_COUNT == 19, "GGML_IS_QUANTIZED is outdated");
  3071. static const char * GGML_OP_NAME[GGML_OP_COUNT] = {
  3072. "NONE",
  3073. "DUP",
  3074. "ADD",
  3075. "ADD1",
  3076. "ACC",
  3077. "SUB",
  3078. "MUL",
  3079. "DIV",
  3080. "SQR",
  3081. "SQRT",
  3082. "LOG",
  3083. "SUM",
  3084. "SUM_ROWS",
  3085. "MEAN",
  3086. "ARGMAX",
  3087. "REPEAT",
  3088. "REPEAT_BACK",
  3089. "ABS",
  3090. "SGN",
  3091. "NEG",
  3092. "STEP",
  3093. "TANH",
  3094. "ELU",
  3095. "RELU",
  3096. "GELU",
  3097. "GELU_QUICK",
  3098. "SILU",
  3099. "SILU_BACK",
  3100. "NORM",
  3101. "RMS_NORM",
  3102. "RMS_NORM_BACK",
  3103. "MUL_MAT",
  3104. "OUT_PROD",
  3105. "SCALE",
  3106. "SET",
  3107. "CPY",
  3108. "CONT",
  3109. "RESHAPE",
  3110. "VIEW",
  3111. "PERMUTE",
  3112. "TRANSPOSE",
  3113. "GET_ROWS",
  3114. "GET_ROWS_BACK",
  3115. "DIAG",
  3116. "DIAG_MASK_INF",
  3117. "DIAG_MASK_ZERO",
  3118. "SOFT_MAX",
  3119. "SOFT_MAX_BACK",
  3120. "ROPE",
  3121. "ROPE_BACK",
  3122. "ALIBI",
  3123. "CLAMP",
  3124. "CONV_1D",
  3125. "CONV_2D",
  3126. "FLASH_ATTN",
  3127. "FLASH_FF",
  3128. "FLASH_ATTN_BACK",
  3129. "WIN_PART",
  3130. "WIN_UNPART",
  3131. "MAP_UNARY",
  3132. "MAP_BINARY",
  3133. "MAP_CUSTOM1",
  3134. "MAP_CUSTOM2",
  3135. "MAP_CUSTOM3",
  3136. "CROSS_ENTROPY_LOSS",
  3137. "CROSS_ENTROPY_LOSS_BACK",
  3138. };
  3139. static_assert(GGML_OP_COUNT == 66, "GGML_OP_COUNT != 66");
  3140. static const char * GGML_OP_SYMBOL[GGML_OP_COUNT] = {
  3141. "none",
  3142. "x",
  3143. "x+y",
  3144. "x+y",
  3145. "view(x,nb,offset)+=y->x",
  3146. "x-y",
  3147. "x*y",
  3148. "x/y",
  3149. "x^2",
  3150. "√x",
  3151. "log(x)",
  3152. "Σx",
  3153. "Σx_k",
  3154. "Σx/n",
  3155. "argmax(x)",
  3156. "repeat(x)",
  3157. "repeat_back(x)",
  3158. "abs(x)",
  3159. "sgn(x)",
  3160. "-x",
  3161. "step(x)",
  3162. "tanh(x)",
  3163. "elu(x)",
  3164. "relu(x)",
  3165. "gelu(x)",
  3166. "gelu_quick(x)",
  3167. "silu(x)",
  3168. "silu_back(x)",
  3169. "norm(x)",
  3170. "rms_norm(x)",
  3171. "rms_norm_back(x)",
  3172. "X*Y",
  3173. "X*Y",
  3174. "x*v",
  3175. "y-\\>view(x)",
  3176. "x-\\>y",
  3177. "cont(x)",
  3178. "reshape(x)",
  3179. "view(x)",
  3180. "permute(x)",
  3181. "transpose(x)",
  3182. "get_rows(x)",
  3183. "get_rows_back(x)",
  3184. "diag(x)",
  3185. "diag_mask_inf(x)",
  3186. "diag_mask_zero(x)",
  3187. "soft_max(x)",
  3188. "soft_max_back(x)",
  3189. "rope(x)",
  3190. "rope_back(x)",
  3191. "alibi(x)",
  3192. "clamp(x)",
  3193. "conv_1d(x)",
  3194. "conv_2d(x)",
  3195. "flash_attn(x)",
  3196. "flash_ff(x)",
  3197. "flash_attn_back(x)",
  3198. "win_part(x)",
  3199. "win_unpart(x)",
  3200. "f(x)",
  3201. "f(x,y)",
  3202. "custom(x)",
  3203. "custom(x,y)",
  3204. "custom(x,y,z)",
  3205. "cross_entropy_loss(x,y)",
  3206. "cross_entropy_loss_back(x,y)",
  3207. };
  3208. static_assert(GGML_OP_COUNT == 66, "GGML_OP_COUNT != 66");
  3209. static_assert(sizeof(struct ggml_object)%GGML_MEM_ALIGN == 0, "ggml_object size must be a multiple of GGML_MEM_ALIGN");
  3210. static_assert(sizeof(struct ggml_tensor)%GGML_MEM_ALIGN == 0, "ggml_tensor size must be a multiple of GGML_MEM_ALIGN");
  3211. // WARN:
  3212. // Mis-confguration can lead to problem that's hard to reason about:
  3213. // * At best it crash or talks nosense.
  3214. // * At worst it talks slightly difference but hard to perceive.
  3215. //
  3216. // An op has to enable INIT or FINALIZE when any of it's branch needs that pass.
  3217. // Take care about compile options (e.g., GGML_USE_xxx).
  3218. static bool GGML_OP_HAS_INIT [GGML_OP_COUNT] = { 0 };
  3219. static bool GGML_OP_HAS_FINALIZE[GGML_OP_COUNT] = { 0 };
  3220. static void ggml_setup_op_has_task_pass(void) {
  3221. { // INIT
  3222. bool * p = GGML_OP_HAS_INIT;
  3223. p[GGML_OP_ACC ] = true;
  3224. p[GGML_OP_MUL_MAT ] = true;
  3225. p[GGML_OP_OUT_PROD ] = true;
  3226. p[GGML_OP_SET ] = true;
  3227. p[GGML_OP_GET_ROWS_BACK ] = true;
  3228. p[GGML_OP_DIAG_MASK_INF ] = true;
  3229. p[GGML_OP_DIAG_MASK_ZERO ] = true;
  3230. p[GGML_OP_CONV_1D ] = true;
  3231. p[GGML_OP_CONV_2D ] = true;
  3232. p[GGML_OP_FLASH_ATTN_BACK ] = true;
  3233. p[GGML_OP_CROSS_ENTROPY_LOSS ] = true;
  3234. }
  3235. { // FINALIZE
  3236. bool * p = GGML_OP_HAS_FINALIZE;
  3237. p[GGML_OP_CROSS_ENTROPY_LOSS ] = true;
  3238. }
  3239. }
  3240. //
  3241. // ggml context
  3242. //
  3243. struct ggml_context {
  3244. size_t mem_size;
  3245. void * mem_buffer;
  3246. bool mem_buffer_owned;
  3247. bool no_alloc;
  3248. bool no_alloc_save; // this is used to save the no_alloc state when using scratch buffers
  3249. int n_objects;
  3250. struct ggml_object * objects_begin;
  3251. struct ggml_object * objects_end;
  3252. struct ggml_scratch scratch;
  3253. struct ggml_scratch scratch_save;
  3254. };
  3255. struct ggml_context_container {
  3256. bool used;
  3257. struct ggml_context context;
  3258. };
  3259. //
  3260. // NUMA support
  3261. //
  3262. #define GGML_NUMA_MAX_NODES 8
  3263. #define GGML_NUMA_MAX_CPUS 512
  3264. struct ggml_numa_node {
  3265. uint32_t cpus[GGML_NUMA_MAX_CPUS]; // hardware threads on this node
  3266. uint32_t n_cpus;
  3267. };
  3268. struct ggml_numa_nodes {
  3269. struct ggml_numa_node nodes[GGML_NUMA_MAX_NODES];
  3270. uint32_t n_nodes;
  3271. uint32_t total_cpus; // hardware threads on system
  3272. };
  3273. //
  3274. // ggml state
  3275. //
  3276. struct ggml_state {
  3277. struct ggml_context_container contexts[GGML_MAX_CONTEXTS];
  3278. struct ggml_numa_nodes numa;
  3279. };
  3280. // global state
  3281. static struct ggml_state g_state;
  3282. static atomic_int g_state_barrier = 0;
  3283. // barrier via spin lock
  3284. inline static void ggml_critical_section_start(void) {
  3285. int processing = atomic_fetch_add(&g_state_barrier, 1);
  3286. while (processing > 0) {
  3287. // wait for other threads to finish
  3288. atomic_fetch_sub(&g_state_barrier, 1);
  3289. sched_yield(); // TODO: reconsider this
  3290. processing = atomic_fetch_add(&g_state_barrier, 1);
  3291. }
  3292. }
  3293. // TODO: make this somehow automatically executed
  3294. // some sort of "sentry" mechanism
  3295. inline static void ggml_critical_section_end(void) {
  3296. atomic_fetch_sub(&g_state_barrier, 1);
  3297. }
  3298. void ggml_numa_init(void) {
  3299. if (g_state.numa.n_nodes > 0) {
  3300. fprintf(stderr, "ggml_numa_init: NUMA already initialized\n");
  3301. return;
  3302. }
  3303. #ifdef __linux__
  3304. struct stat st;
  3305. char path[256];
  3306. int rv;
  3307. // enumerate nodes
  3308. while (g_state.numa.n_nodes < GGML_NUMA_MAX_NODES) {
  3309. rv = snprintf(path, sizeof(path), "/sys/devices/system/node/node%u", g_state.numa.n_nodes);
  3310. GGML_ASSERT(rv > 0 && (unsigned)rv < sizeof(path));
  3311. if (stat(path, &st) != 0) { break; }
  3312. ++g_state.numa.n_nodes;
  3313. }
  3314. // enumerate CPUs
  3315. while (g_state.numa.total_cpus < GGML_NUMA_MAX_CPUS) {
  3316. rv = snprintf(path, sizeof(path), "/sys/devices/system/cpu/cpu%u", g_state.numa.total_cpus);
  3317. GGML_ASSERT(rv > 0 && (unsigned)rv < sizeof(path));
  3318. if (stat(path, &st) != 0) { break; }
  3319. ++g_state.numa.total_cpus;
  3320. }
  3321. GGML_PRINT_DEBUG("found %u numa nodes, %u CPUs\n", g_state.numa.n_nodes, g_state.numa.total_cpus);
  3322. if (g_state.numa.n_nodes < 1 || g_state.numa.total_cpus < 1) {
  3323. g_state.numa.n_nodes = 0;
  3324. return;
  3325. }
  3326. for (uint32_t n = 0; n < g_state.numa.n_nodes; ++n) {
  3327. struct ggml_numa_node * node = &g_state.numa.nodes[n];
  3328. GGML_PRINT_DEBUG("CPUs on node %u:", n);
  3329. node->n_cpus = 0;
  3330. for (uint32_t c = 0; c < g_state.numa.total_cpus; ++c) {
  3331. rv = snprintf(path, sizeof(path), "/sys/devices/system/node/node%u/cpu%u", n, c);
  3332. GGML_ASSERT(rv > 0 && (unsigned)rv < sizeof(path));
  3333. if (stat(path, &st) == 0) {
  3334. node->cpus[node->n_cpus++] = c;
  3335. GGML_PRINT_DEBUG(" %u", c);
  3336. }
  3337. }
  3338. GGML_PRINT_DEBUG("\n");
  3339. }
  3340. if (ggml_is_numa()) {
  3341. FILE *fptr = fopen("/proc/sys/kernel/numa_balancing", "r");
  3342. if (fptr != NULL) {
  3343. char buf[42];
  3344. if (fgets(buf, sizeof(buf), fptr) && strncmp(buf, "0\n", sizeof(buf)) != 0) {
  3345. GGML_PRINT("WARNING: /proc/sys/kernel/numa_balancing is enabled, this has been observed to impair performance\n");
  3346. }
  3347. fclose(fptr);
  3348. }
  3349. }
  3350. #else
  3351. // TODO
  3352. #endif
  3353. }
  3354. bool ggml_is_numa(void) {
  3355. return g_state.numa.n_nodes > 1;
  3356. }
  3357. ////////////////////////////////////////////////////////////////////////////////
  3358. void ggml_print_object(const struct ggml_object * obj) {
  3359. GGML_PRINT(" - ggml_object: offset = %zu, size = %zu, next = %p\n",
  3360. obj->offs, obj->size, (const void *) obj->next);
  3361. }
  3362. void ggml_print_objects(const struct ggml_context * ctx) {
  3363. struct ggml_object * obj = ctx->objects_begin;
  3364. GGML_PRINT("%s: objects in context %p:\n", __func__, (const void *) ctx);
  3365. while (obj != NULL) {
  3366. ggml_print_object(obj);
  3367. obj = obj->next;
  3368. }
  3369. GGML_PRINT("%s: --- end ---\n", __func__);
  3370. }
  3371. int64_t ggml_nelements(const struct ggml_tensor * tensor) {
  3372. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  3373. return tensor->ne[0]*tensor->ne[1]*tensor->ne[2]*tensor->ne[3];
  3374. }
  3375. int64_t ggml_nrows(const struct ggml_tensor * tensor) {
  3376. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  3377. return tensor->ne[1]*tensor->ne[2]*tensor->ne[3];
  3378. }
  3379. size_t ggml_nbytes(const struct ggml_tensor * tensor) {
  3380. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  3381. // this should handle cases where the tensor is not contiguous in memory
  3382. // probaby just:
  3383. //
  3384. // return tensor->ne[3]*tensor->nb[3]
  3385. //
  3386. // is enough, but just in case, adding the second part
  3387. return MAX(tensor->ne[3]*tensor->nb[3], (ggml_nelements(tensor)*GGML_TYPE_SIZE[tensor->type])/GGML_BLCK_SIZE[tensor->type]);
  3388. }
  3389. size_t ggml_nbytes_split(const struct ggml_tensor * tensor, int nrows_split) {
  3390. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  3391. return (nrows_split*tensor->ne[0]*GGML_TYPE_SIZE[tensor->type])/GGML_BLCK_SIZE[tensor->type];
  3392. }
  3393. int ggml_blck_size(enum ggml_type type) {
  3394. return GGML_BLCK_SIZE[type];
  3395. }
  3396. size_t ggml_type_size(enum ggml_type type) {
  3397. return GGML_TYPE_SIZE[type];
  3398. }
  3399. float ggml_type_sizef(enum ggml_type type) {
  3400. return ((float)(GGML_TYPE_SIZE[type]))/GGML_BLCK_SIZE[type];
  3401. }
  3402. const char * ggml_type_name(enum ggml_type type) {
  3403. return GGML_TYPE_NAME[type];
  3404. }
  3405. const char * ggml_op_name(enum ggml_op op) {
  3406. return GGML_OP_NAME[op];
  3407. }
  3408. size_t ggml_element_size(const struct ggml_tensor * tensor) {
  3409. return GGML_TYPE_SIZE[tensor->type];
  3410. }
  3411. static inline bool ggml_is_scalar(const struct ggml_tensor * tensor) {
  3412. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  3413. return tensor->ne[0] == 1 && tensor->ne[1] == 1 && tensor->ne[2] == 1 && tensor->ne[3] == 1;
  3414. }
  3415. static inline bool ggml_is_vector(const struct ggml_tensor * tensor) {
  3416. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  3417. return tensor->ne[1] == 1 && tensor->ne[2] == 1 && tensor->ne[3] == 1;
  3418. }
  3419. static inline bool ggml_is_matrix(const struct ggml_tensor * tensor) {
  3420. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  3421. return tensor->ne[2] == 1 && tensor->ne[3] == 1;
  3422. }
  3423. static inline bool ggml_can_mul_mat(const struct ggml_tensor * t0, const struct ggml_tensor * t1) {
  3424. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  3425. return
  3426. (t0->ne[0] == t1->ne[0]) &&
  3427. (t0->ne[2] == t1->ne[2]) &&
  3428. (t0->ne[3] == t1->ne[3]);
  3429. }
  3430. static inline bool ggml_can_out_prod(const struct ggml_tensor * t0, const struct ggml_tensor * t1) {
  3431. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  3432. return
  3433. (t0->ne[1] == t1->ne[1]) &&
  3434. (t0->ne[2] == t1->ne[2]) &&
  3435. (t0->ne[3] == t1->ne[3]);
  3436. }
  3437. bool ggml_is_quantized(enum ggml_type type) {
  3438. return GGML_IS_QUANTIZED[type];
  3439. }
  3440. enum ggml_type ggml_ftype_to_ggml_type(enum ggml_ftype ftype) {
  3441. enum ggml_type wtype = GGML_TYPE_COUNT;
  3442. switch (ftype) {
  3443. case GGML_FTYPE_ALL_F32: wtype = GGML_TYPE_F32; break;
  3444. case GGML_FTYPE_MOSTLY_F16: wtype = GGML_TYPE_F16; break;
  3445. case GGML_FTYPE_MOSTLY_Q4_0: wtype = GGML_TYPE_Q4_0; break;
  3446. case GGML_FTYPE_MOSTLY_Q4_1: wtype = GGML_TYPE_Q4_1; break;
  3447. case GGML_FTYPE_MOSTLY_Q5_0: wtype = GGML_TYPE_Q5_0; break;
  3448. case GGML_FTYPE_MOSTLY_Q5_1: wtype = GGML_TYPE_Q5_1; break;
  3449. case GGML_FTYPE_MOSTLY_Q8_0: wtype = GGML_TYPE_Q8_0; break;
  3450. case GGML_FTYPE_MOSTLY_Q2_K: wtype = GGML_TYPE_Q2_K; break;
  3451. case GGML_FTYPE_MOSTLY_Q3_K: wtype = GGML_TYPE_Q3_K; break;
  3452. case GGML_FTYPE_MOSTLY_Q4_K: wtype = GGML_TYPE_Q4_K; break;
  3453. case GGML_FTYPE_MOSTLY_Q5_K: wtype = GGML_TYPE_Q5_K; break;
  3454. case GGML_FTYPE_MOSTLY_Q6_K: wtype = GGML_TYPE_Q6_K; break;
  3455. case GGML_FTYPE_UNKNOWN: wtype = GGML_TYPE_COUNT; break;
  3456. case GGML_FTYPE_MOSTLY_Q4_1_SOME_F16: wtype = GGML_TYPE_COUNT; break;
  3457. }
  3458. GGML_ASSERT(wtype != GGML_TYPE_COUNT);
  3459. return wtype;
  3460. }
  3461. size_t ggml_tensor_overhead(void) {
  3462. return GGML_OBJECT_SIZE + GGML_TENSOR_SIZE + 16;
  3463. }
  3464. bool ggml_is_transposed(const struct ggml_tensor * tensor) {
  3465. return tensor->nb[0] > tensor->nb[1];
  3466. }
  3467. bool ggml_is_contiguous(const struct ggml_tensor * tensor) {
  3468. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  3469. return
  3470. tensor->nb[0] == GGML_TYPE_SIZE[tensor->type] &&
  3471. tensor->nb[1] == (tensor->nb[0]*tensor->ne[0])/GGML_BLCK_SIZE[tensor->type] &&
  3472. tensor->nb[2] == tensor->nb[1]*tensor->ne[1] &&
  3473. tensor->nb[3] == tensor->nb[2]*tensor->ne[2];
  3474. }
  3475. bool ggml_is_permuted(const struct ggml_tensor * tensor) {
  3476. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  3477. return tensor->nb[0] > tensor->nb[1] || tensor->nb[1] > tensor->nb[2] || tensor->nb[2] > tensor->nb[3];
  3478. }
  3479. static inline bool ggml_is_padded_1d(const struct ggml_tensor * tensor) {
  3480. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  3481. return
  3482. tensor->nb[0] == GGML_TYPE_SIZE[tensor->type] &&
  3483. tensor->nb[2] == tensor->nb[1]*tensor->ne[1] &&
  3484. tensor->nb[3] == tensor->nb[2]*tensor->ne[2];
  3485. }
  3486. static inline bool ggml_are_same_shape(const struct ggml_tensor * t0, const struct ggml_tensor * t1) {
  3487. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  3488. return
  3489. (t0->ne[0] == t1->ne[0] ) &&
  3490. (t0->ne[1] == t1->ne[1] ) &&
  3491. (t0->ne[2] == t1->ne[2] ) &&
  3492. (t0->ne[3] == t1->ne[3] );
  3493. }
  3494. // check if t1 can be represented as a repeatition of t0
  3495. static inline bool ggml_can_repeat(const struct ggml_tensor * t0, const struct ggml_tensor * t1) {
  3496. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  3497. return
  3498. (t1->ne[0]%t0->ne[0] == 0) &&
  3499. (t1->ne[1]%t0->ne[1] == 0) &&
  3500. (t1->ne[2]%t0->ne[2] == 0) &&
  3501. (t1->ne[3]%t0->ne[3] == 0);
  3502. }
  3503. static inline bool ggml_can_repeat_rows(const struct ggml_tensor * t0, const struct ggml_tensor * t1) {
  3504. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  3505. return (t0->ne[0] == t1->ne[0]) && ggml_can_repeat(t0, t1);
  3506. }
  3507. static inline int ggml_up32(int n) {
  3508. return (n + 31) & ~31;
  3509. }
  3510. //static inline int ggml_up64(int n) {
  3511. // return (n + 63) & ~63;
  3512. //}
  3513. static inline int ggml_up(int n, int m) {
  3514. // assert m is a power of 2
  3515. GGML_ASSERT((m & (m - 1)) == 0);
  3516. return (n + m - 1) & ~(m - 1);
  3517. }
  3518. // assert that pointer is aligned to GGML_MEM_ALIGN
  3519. #define ggml_assert_aligned(ptr) \
  3520. GGML_ASSERT(((uintptr_t) (ptr))%GGML_MEM_ALIGN == 0)
  3521. ////////////////////////////////////////////////////////////////////////////////
  3522. struct ggml_context * ggml_init(struct ggml_init_params params) {
  3523. // make this function thread safe
  3524. ggml_critical_section_start();
  3525. static bool is_first_call = true;
  3526. if (is_first_call) {
  3527. // initialize time system (required on Windows)
  3528. ggml_time_init();
  3529. // initialize GELU, Quick GELU, SILU and EXP F32 tables
  3530. {
  3531. const uint64_t t_start = ggml_time_us(); UNUSED(t_start);
  3532. ggml_fp16_t ii;
  3533. for (int i = 0; i < (1 << 16); ++i) {
  3534. uint16_t ui = i;
  3535. memcpy(&ii, &ui, sizeof(ii));
  3536. const float f = table_f32_f16[i] = GGML_COMPUTE_FP16_TO_FP32(ii);
  3537. table_gelu_f16[i] = GGML_FP32_TO_FP16(ggml_gelu_f32(f));
  3538. table_gelu_quick_f16[i] = GGML_FP32_TO_FP16(ggml_gelu_quick_f32(f));
  3539. table_silu_f16[i] = GGML_FP32_TO_FP16(ggml_silu_f32(f));
  3540. table_exp_f16[i] = GGML_FP32_TO_FP16(expf(f));
  3541. }
  3542. const uint64_t t_end = ggml_time_us(); UNUSED(t_end);
  3543. GGML_PRINT_DEBUG("%s: GELU, Quick GELU, SILU and EXP tables initialized in %f ms\n", __func__, (t_end - t_start)/1000.0f);
  3544. }
  3545. // initialize g_state
  3546. {
  3547. const uint64_t t_start = ggml_time_us(); UNUSED(t_start);
  3548. g_state = (struct ggml_state) {
  3549. /*.contexts =*/ { { 0 } },
  3550. /*.numa =*/ {
  3551. .n_nodes = 0,
  3552. .total_cpus = 0,
  3553. },
  3554. };
  3555. for (int i = 0; i < GGML_MAX_CONTEXTS; ++i) {
  3556. g_state.contexts[i].used = false;
  3557. }
  3558. const uint64_t t_end = ggml_time_us(); UNUSED(t_end);
  3559. GGML_PRINT_DEBUG("%s: g_state initialized in %f ms\n", __func__, (t_end - t_start)/1000.0f);
  3560. }
  3561. #if defined(GGML_USE_CUBLAS)
  3562. ggml_init_cublas();
  3563. #elif defined(GGML_USE_CLBLAST)
  3564. ggml_cl_init();
  3565. #endif
  3566. ggml_setup_op_has_task_pass();
  3567. is_first_call = false;
  3568. }
  3569. // find non-used context in g_state
  3570. struct ggml_context * ctx = NULL;
  3571. for (int i = 0; i < GGML_MAX_CONTEXTS; i++) {
  3572. if (!g_state.contexts[i].used) {
  3573. g_state.contexts[i].used = true;
  3574. ctx = &g_state.contexts[i].context;
  3575. GGML_PRINT_DEBUG("%s: found unused context %d\n", __func__, i);
  3576. break;
  3577. }
  3578. }
  3579. if (ctx == NULL) {
  3580. GGML_PRINT_DEBUG("%s: no unused context found\n", __func__);
  3581. ggml_critical_section_end();
  3582. return NULL;
  3583. }
  3584. const size_t mem_size = (params.mem_size + GGML_MEM_ALIGN - 1) & ~(GGML_MEM_ALIGN - 1);
  3585. *ctx = (struct ggml_context) {
  3586. /*.mem_size =*/ mem_size,
  3587. /*.mem_buffer =*/ params.mem_buffer ? params.mem_buffer : GGML_ALIGNED_MALLOC(mem_size),
  3588. /*.mem_buffer_owned =*/ params.mem_buffer ? false : true,
  3589. /*.no_alloc =*/ params.no_alloc,
  3590. /*.no_alloc_save =*/ params.no_alloc,
  3591. /*.n_objects =*/ 0,
  3592. /*.objects_begin =*/ NULL,
  3593. /*.objects_end =*/ NULL,
  3594. /*.scratch =*/ { 0, 0, NULL, },
  3595. /*.scratch_save =*/ { 0, 0, NULL, },
  3596. };
  3597. GGML_ASSERT(ctx->mem_buffer != NULL);
  3598. ggml_assert_aligned(ctx->mem_buffer);
  3599. GGML_PRINT_DEBUG("%s: context initialized\n", __func__);
  3600. ggml_critical_section_end();
  3601. return ctx;
  3602. }
  3603. void ggml_free(struct ggml_context * ctx) {
  3604. // make this function thread safe
  3605. ggml_critical_section_start();
  3606. bool found = false;
  3607. for (int i = 0; i < GGML_MAX_CONTEXTS; i++) {
  3608. if (&g_state.contexts[i].context == ctx) {
  3609. g_state.contexts[i].used = false;
  3610. GGML_PRINT_DEBUG("%s: context %d with %d objects has been freed. memory used = %zu\n",
  3611. __func__, i, ctx->n_objects, ctx->objects_end->offs + ctx->objects_end->size);
  3612. if (ctx->mem_buffer_owned) {
  3613. GGML_ALIGNED_FREE(ctx->mem_buffer);
  3614. }
  3615. found = true;
  3616. break;
  3617. }
  3618. }
  3619. if (!found) {
  3620. GGML_PRINT_DEBUG("%s: context not found\n", __func__);
  3621. }
  3622. ggml_critical_section_end();
  3623. }
  3624. size_t ggml_used_mem(const struct ggml_context * ctx) {
  3625. return ctx->objects_end == NULL ? 0 : ctx->objects_end->offs + ctx->objects_end->size;
  3626. }
  3627. size_t ggml_set_scratch(struct ggml_context * ctx, struct ggml_scratch scratch) {
  3628. const size_t result = ctx->scratch.data ? ctx->scratch.offs : 0;
  3629. ctx->scratch = scratch;
  3630. return result;
  3631. }
  3632. void ggml_set_no_alloc(struct ggml_context * ctx, bool no_alloc) {
  3633. ctx->no_alloc = no_alloc;
  3634. }
  3635. void * ggml_get_mem_buffer(const struct ggml_context * ctx) {
  3636. return ctx->mem_buffer;
  3637. }
  3638. size_t ggml_get_mem_size(const struct ggml_context * ctx) {
  3639. return ctx->mem_size;
  3640. }
  3641. size_t ggml_get_max_tensor_size(const struct ggml_context * ctx) {
  3642. size_t max_size = 0;
  3643. struct ggml_object * obj = ctx->objects_begin;
  3644. while (obj != NULL) {
  3645. struct ggml_tensor * tensor = (struct ggml_tensor *) ((char *) ctx->mem_buffer + obj->offs);
  3646. const size_t size = ggml_nbytes(tensor);
  3647. if (max_size < size) {
  3648. max_size = size;
  3649. }
  3650. obj = obj->next;
  3651. }
  3652. return max_size;
  3653. }
  3654. // IMPORTANT:
  3655. // when creating "opt" tensors, always save and load the scratch buffer
  3656. // this is an error prone process, but it is necessary to support inplace
  3657. // operators when using scratch buffers
  3658. // TODO: implement a better way
  3659. void ggml_scratch_save(struct ggml_context * ctx) {
  3660. // this is needed to allow opt tensors to store their data
  3661. // TODO: again, need to find a better way
  3662. ctx->no_alloc_save = ctx->no_alloc;
  3663. ctx->no_alloc = false;
  3664. ctx->scratch_save = ctx->scratch;
  3665. ctx->scratch.data = NULL;
  3666. }
  3667. void ggml_scratch_load(struct ggml_context * ctx) {
  3668. ctx->no_alloc = ctx->no_alloc_save;
  3669. ctx->scratch = ctx->scratch_save;
  3670. }
  3671. ////////////////////////////////////////////////////////////////////////////////
  3672. struct ggml_tensor * ggml_new_tensor_impl(
  3673. struct ggml_context * ctx,
  3674. enum ggml_type type,
  3675. int n_dims,
  3676. const int64_t* ne,
  3677. void* data) {
  3678. // always insert objects at the end of the context's memory pool
  3679. struct ggml_object * obj_cur = ctx->objects_end;
  3680. const size_t cur_offs = obj_cur == NULL ? 0 : obj_cur->offs;
  3681. const size_t cur_size = obj_cur == NULL ? 0 : obj_cur->size;
  3682. const size_t cur_end = cur_offs + cur_size;
  3683. size_t size_needed = 0;
  3684. if (data == NULL && !ctx->no_alloc) {
  3685. size_needed += GGML_TYPE_SIZE[type]*(ne[0]/GGML_BLCK_SIZE[type]);
  3686. for (int i = 1; i < n_dims; i++) {
  3687. size_needed *= ne[i];
  3688. }
  3689. // align to GGML_MEM_ALIGN
  3690. size_needed = ((size_needed + GGML_MEM_ALIGN - 1)/GGML_MEM_ALIGN)*GGML_MEM_ALIGN;
  3691. }
  3692. char * const mem_buffer = ctx->mem_buffer;
  3693. struct ggml_object * const obj_new = (struct ggml_object *)(mem_buffer + cur_end);
  3694. if (ctx->scratch.data == NULL || data != NULL) {
  3695. size_needed += GGML_TENSOR_SIZE;
  3696. if (cur_end + size_needed + GGML_OBJECT_SIZE > ctx->mem_size) {
  3697. GGML_PRINT("%s: not enough space in the context's memory pool (needed %zu, available %zu)\n",
  3698. __func__, cur_end + size_needed + GGML_OBJECT_SIZE, ctx->mem_size);
  3699. assert(false);
  3700. return NULL;
  3701. }
  3702. *obj_new = (struct ggml_object) {
  3703. .offs = cur_end + GGML_OBJECT_SIZE,
  3704. .size = size_needed,
  3705. .next = NULL,
  3706. };
  3707. } else {
  3708. if (ctx->scratch.offs + size_needed > ctx->scratch.size) {
  3709. GGML_PRINT("%s: not enough space in the scratch memory pool (needed %zu, available %zu)\n",
  3710. __func__, ctx->scratch.offs + size_needed, ctx->scratch.size);
  3711. assert(false);
  3712. return NULL;
  3713. }
  3714. if (cur_end + GGML_TENSOR_SIZE + GGML_OBJECT_SIZE > ctx->mem_size) {
  3715. GGML_PRINT("%s: not enough space in the context's memory pool (needed %zu, available %zu)\n",
  3716. __func__, cur_end + GGML_TENSOR_SIZE + GGML_OBJECT_SIZE, ctx->mem_size);
  3717. assert(false);
  3718. return NULL;
  3719. }
  3720. data = (char * const) ctx->scratch.data + ctx->scratch.offs;
  3721. *obj_new = (struct ggml_object) {
  3722. .offs = cur_end + GGML_OBJECT_SIZE,
  3723. .size = GGML_TENSOR_SIZE,
  3724. .next = NULL,
  3725. };
  3726. //printf("scratch offs = %zu, size_needed = %zu\n", ctx->scratch.offs, size_needed);
  3727. ctx->scratch.offs += size_needed;
  3728. }
  3729. if (obj_cur != NULL) {
  3730. obj_cur->next = obj_new;
  3731. } else {
  3732. // this is the first object in this context
  3733. ctx->objects_begin = obj_new;
  3734. }
  3735. ctx->objects_end = obj_new;
  3736. //printf("%s: inserted new object at %zu, size = %zu\n", __func__, cur_end, obj_new->size);
  3737. struct ggml_tensor * const result = (struct ggml_tensor *)(mem_buffer + obj_new->offs);
  3738. ggml_assert_aligned(result);
  3739. *result = (struct ggml_tensor) {
  3740. /*.type =*/ type,
  3741. /*.backend =*/ GGML_BACKEND_CPU,
  3742. /*.n_dims =*/ n_dims,
  3743. /*.ne =*/ { 1, 1, 1, 1 },
  3744. /*.nb =*/ { 0, 0, 0, 0 },
  3745. /*.op =*/ GGML_OP_NONE,
  3746. /*.is_param =*/ false,
  3747. /*.grad =*/ NULL,
  3748. /*.src =*/ { NULL },
  3749. /*.perf_runs =*/ 0,
  3750. /*.perf_cycles =*/ 0,
  3751. /*.perf_time_us =*/ 0,
  3752. /*.data =*/ (data == NULL && !ctx->no_alloc) ? (void *)(result + 1) : data,
  3753. /*.name =*/ { 0 },
  3754. /*.extra =*/ NULL,
  3755. /*.padding =*/ { 0 },
  3756. };
  3757. // TODO: this should not be needed as long as we don't rely on aligned SIMD loads
  3758. //ggml_assert_aligned(result->data);
  3759. for (int i = 0; i < n_dims; i++) {
  3760. result->ne[i] = ne[i];
  3761. }
  3762. result->nb[0] = GGML_TYPE_SIZE[type];
  3763. result->nb[1] = result->nb[0]*(result->ne[0]/GGML_BLCK_SIZE[type]);
  3764. for (int i = 2; i < GGML_MAX_DIMS; i++) {
  3765. result->nb[i] = result->nb[i - 1]*result->ne[i - 1];
  3766. }
  3767. ctx->n_objects++;
  3768. return result;
  3769. }
  3770. struct ggml_tensor * ggml_new_tensor(
  3771. struct ggml_context * ctx,
  3772. enum ggml_type type,
  3773. int n_dims,
  3774. const int64_t * ne) {
  3775. return ggml_new_tensor_impl(ctx, type, n_dims, ne, NULL);
  3776. }
  3777. struct ggml_tensor * ggml_new_tensor_1d(
  3778. struct ggml_context * ctx,
  3779. enum ggml_type type,
  3780. int64_t ne0) {
  3781. return ggml_new_tensor(ctx, type, 1, &ne0);
  3782. }
  3783. struct ggml_tensor * ggml_new_tensor_2d(
  3784. struct ggml_context * ctx,
  3785. enum ggml_type type,
  3786. int64_t ne0,
  3787. int64_t ne1) {
  3788. const int64_t ne[2] = { ne0, ne1 };
  3789. return ggml_new_tensor(ctx, type, 2, ne);
  3790. }
  3791. struct ggml_tensor * ggml_new_tensor_3d(
  3792. struct ggml_context * ctx,
  3793. enum ggml_type type,
  3794. int64_t ne0,
  3795. int64_t ne1,
  3796. int64_t ne2) {
  3797. const int64_t ne[3] = { ne0, ne1, ne2 };
  3798. return ggml_new_tensor(ctx, type, 3, ne);
  3799. }
  3800. struct ggml_tensor * ggml_new_tensor_4d(
  3801. struct ggml_context * ctx,
  3802. enum ggml_type type,
  3803. int64_t ne0,
  3804. int64_t ne1,
  3805. int64_t ne2,
  3806. int64_t ne3) {
  3807. const int64_t ne[4] = { ne0, ne1, ne2, ne3 };
  3808. return ggml_new_tensor(ctx, type, 4, ne);
  3809. }
  3810. struct ggml_tensor * ggml_new_i32(struct ggml_context * ctx, int32_t value) {
  3811. ggml_scratch_save(ctx);
  3812. struct ggml_tensor * result = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, 1);
  3813. ggml_scratch_load(ctx);
  3814. ggml_set_i32(result, value);
  3815. return result;
  3816. }
  3817. struct ggml_tensor * ggml_new_f32(struct ggml_context * ctx, float value) {
  3818. ggml_scratch_save(ctx);
  3819. struct ggml_tensor * result = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, 1);
  3820. ggml_scratch_load(ctx);
  3821. ggml_set_f32(result, value);
  3822. return result;
  3823. }
  3824. struct ggml_tensor * ggml_dup_tensor(struct ggml_context * ctx, const struct ggml_tensor * src) {
  3825. return ggml_new_tensor_impl(ctx, src->type, src->n_dims, src->ne, NULL);
  3826. }
  3827. struct ggml_tensor * ggml_set_zero(struct ggml_tensor * tensor) {
  3828. memset(tensor->data, 0, ggml_nbytes(tensor));
  3829. return tensor;
  3830. }
  3831. struct ggml_tensor * ggml_set_i32 (struct ggml_tensor * tensor, int32_t value) {
  3832. const int n = ggml_nrows(tensor);
  3833. const int nc = tensor->ne[0];
  3834. const size_t n1 = tensor->nb[1];
  3835. char * const data = tensor->data;
  3836. switch (tensor->type) {
  3837. case GGML_TYPE_I8:
  3838. {
  3839. assert(tensor->nb[0] == sizeof(int8_t));
  3840. for (int i = 0; i < n; i++) {
  3841. ggml_vec_set_i8(nc, (int8_t *)(data + i*n1), value);
  3842. }
  3843. } break;
  3844. case GGML_TYPE_I16:
  3845. {
  3846. assert(tensor->nb[0] == sizeof(int16_t));
  3847. for (int i = 0; i < n; i++) {
  3848. ggml_vec_set_i16(nc, (int16_t *)(data + i*n1), value);
  3849. }
  3850. } break;
  3851. case GGML_TYPE_I32:
  3852. {
  3853. assert(tensor->nb[0] == sizeof(int32_t));
  3854. for (int i = 0; i < n; i++) {
  3855. ggml_vec_set_i32(nc, (int32_t *)(data + i*n1), value);
  3856. }
  3857. } break;
  3858. case GGML_TYPE_F16:
  3859. {
  3860. assert(tensor->nb[0] == sizeof(ggml_fp16_t));
  3861. for (int i = 0; i < n; i++) {
  3862. ggml_vec_set_f16(nc, (ggml_fp16_t *)(data + i*n1), value);
  3863. }
  3864. } break;
  3865. case GGML_TYPE_F32:
  3866. {
  3867. assert(tensor->nb[0] == sizeof(float));
  3868. for (int i = 0; i < n; i++) {
  3869. ggml_vec_set_f32(nc, (float *)(data + i*n1), value);
  3870. }
  3871. } break;
  3872. default:
  3873. {
  3874. GGML_ASSERT(false);
  3875. } break;
  3876. }
  3877. return tensor;
  3878. }
  3879. struct ggml_tensor * ggml_set_f32(struct ggml_tensor * tensor, float value) {
  3880. const int n = ggml_nrows(tensor);
  3881. const int nc = tensor->ne[0];
  3882. const size_t n1 = tensor->nb[1];
  3883. char * const data = tensor->data;
  3884. switch (tensor->type) {
  3885. case GGML_TYPE_I8:
  3886. {
  3887. assert(tensor->nb[0] == sizeof(int8_t));
  3888. for (int i = 0; i < n; i++) {
  3889. ggml_vec_set_i8(nc, (int8_t *)(data + i*n1), value);
  3890. }
  3891. } break;
  3892. case GGML_TYPE_I16:
  3893. {
  3894. assert(tensor->nb[0] == sizeof(int16_t));
  3895. for (int i = 0; i < n; i++) {
  3896. ggml_vec_set_i16(nc, (int16_t *)(data + i*n1), value);
  3897. }
  3898. } break;
  3899. case GGML_TYPE_I32:
  3900. {
  3901. assert(tensor->nb[0] == sizeof(int32_t));
  3902. for (int i = 0; i < n; i++) {
  3903. ggml_vec_set_i32(nc, (int32_t *)(data + i*n1), value);
  3904. }
  3905. } break;
  3906. case GGML_TYPE_F16:
  3907. {
  3908. assert(tensor->nb[0] == sizeof(ggml_fp16_t));
  3909. for (int i = 0; i < n; i++) {
  3910. ggml_vec_set_f16(nc, (ggml_fp16_t *)(data + i*n1), value);
  3911. }
  3912. } break;
  3913. case GGML_TYPE_F32:
  3914. {
  3915. assert(tensor->nb[0] == sizeof(float));
  3916. for (int i = 0; i < n; i++) {
  3917. ggml_vec_set_f32(nc, (float *)(data + i*n1), value);
  3918. }
  3919. } break;
  3920. default:
  3921. {
  3922. GGML_ASSERT(false);
  3923. } break;
  3924. }
  3925. return tensor;
  3926. }
  3927. int32_t ggml_get_i32_1d(const struct ggml_tensor * tensor, int i) {
  3928. switch (tensor->type) {
  3929. case GGML_TYPE_I8:
  3930. {
  3931. GGML_ASSERT(tensor->nb[0] == sizeof(int8_t));
  3932. return ((int8_t *)(tensor->data))[i];
  3933. } break;
  3934. case GGML_TYPE_I16:
  3935. {
  3936. GGML_ASSERT(tensor->nb[0] == sizeof(int16_t));
  3937. return ((int16_t *)(tensor->data))[i];
  3938. } break;
  3939. case GGML_TYPE_I32:
  3940. {
  3941. GGML_ASSERT(tensor->nb[0] == sizeof(int32_t));
  3942. return ((int32_t *)(tensor->data))[i];
  3943. } break;
  3944. case GGML_TYPE_F16:
  3945. {
  3946. GGML_ASSERT(tensor->nb[0] == sizeof(ggml_fp16_t));
  3947. return GGML_FP16_TO_FP32(((ggml_fp16_t *)(tensor->data))[i]);
  3948. } break;
  3949. case GGML_TYPE_F32:
  3950. {
  3951. GGML_ASSERT(tensor->nb[0] == sizeof(float));
  3952. return ((float *)(tensor->data))[i];
  3953. } break;
  3954. default:
  3955. {
  3956. GGML_ASSERT(false);
  3957. } break;
  3958. }
  3959. return 0.0f;
  3960. }
  3961. void ggml_set_i32_1d(const struct ggml_tensor * tensor, int i, int32_t value) {
  3962. switch (tensor->type) {
  3963. case GGML_TYPE_I8:
  3964. {
  3965. GGML_ASSERT(tensor->nb[0] == sizeof(int8_t));
  3966. ((int8_t *)(tensor->data))[i] = value;
  3967. } break;
  3968. case GGML_TYPE_I16:
  3969. {
  3970. GGML_ASSERT(tensor->nb[0] == sizeof(int16_t));
  3971. ((int16_t *)(tensor->data))[i] = value;
  3972. } break;
  3973. case GGML_TYPE_I32:
  3974. {
  3975. GGML_ASSERT(tensor->nb[0] == sizeof(int32_t));
  3976. ((int32_t *)(tensor->data))[i] = value;
  3977. } break;
  3978. case GGML_TYPE_F16:
  3979. {
  3980. GGML_ASSERT(tensor->nb[0] == sizeof(ggml_fp16_t));
  3981. ((ggml_fp16_t *)(tensor->data))[i] = GGML_FP32_TO_FP16(value);
  3982. } break;
  3983. case GGML_TYPE_F32:
  3984. {
  3985. GGML_ASSERT(tensor->nb[0] == sizeof(float));
  3986. ((float *)(tensor->data))[i] = value;
  3987. } break;
  3988. default:
  3989. {
  3990. GGML_ASSERT(false);
  3991. } break;
  3992. }
  3993. }
  3994. float ggml_get_f32_1d(const struct ggml_tensor * tensor, int i) {
  3995. switch (tensor->type) {
  3996. case GGML_TYPE_I8:
  3997. {
  3998. GGML_ASSERT(tensor->nb[0] == sizeof(int8_t));
  3999. return ((int8_t *)(tensor->data))[i];
  4000. } break;
  4001. case GGML_TYPE_I16:
  4002. {
  4003. GGML_ASSERT(tensor->nb[0] == sizeof(int16_t));
  4004. return ((int16_t *)(tensor->data))[i];
  4005. } break;
  4006. case GGML_TYPE_I32:
  4007. {
  4008. GGML_ASSERT(tensor->nb[0] == sizeof(int32_t));
  4009. return ((int32_t *)(tensor->data))[i];
  4010. } break;
  4011. case GGML_TYPE_F16:
  4012. {
  4013. GGML_ASSERT(tensor->nb[0] == sizeof(ggml_fp16_t));
  4014. return GGML_FP16_TO_FP32(((ggml_fp16_t *)(tensor->data))[i]);
  4015. } break;
  4016. case GGML_TYPE_F32:
  4017. {
  4018. GGML_ASSERT(tensor->nb[0] == sizeof(float));
  4019. return ((float *)(tensor->data))[i];
  4020. } break;
  4021. default:
  4022. {
  4023. GGML_ASSERT(false);
  4024. } break;
  4025. }
  4026. return 0.0f;
  4027. }
  4028. void ggml_set_f32_1d(const struct ggml_tensor * tensor, int i, float value) {
  4029. switch (tensor->type) {
  4030. case GGML_TYPE_I8:
  4031. {
  4032. GGML_ASSERT(tensor->nb[0] == sizeof(int8_t));
  4033. ((int8_t *)(tensor->data))[i] = value;
  4034. } break;
  4035. case GGML_TYPE_I16:
  4036. {
  4037. GGML_ASSERT(tensor->nb[0] == sizeof(int16_t));
  4038. ((int16_t *)(tensor->data))[i] = value;
  4039. } break;
  4040. case GGML_TYPE_I32:
  4041. {
  4042. GGML_ASSERT(tensor->nb[0] == sizeof(int32_t));
  4043. ((int32_t *)(tensor->data))[i] = value;
  4044. } break;
  4045. case GGML_TYPE_F16:
  4046. {
  4047. GGML_ASSERT(tensor->nb[0] == sizeof(ggml_fp16_t));
  4048. ((ggml_fp16_t *)(tensor->data))[i] = GGML_FP32_TO_FP16(value);
  4049. } break;
  4050. case GGML_TYPE_F32:
  4051. {
  4052. GGML_ASSERT(tensor->nb[0] == sizeof(float));
  4053. ((float *)(tensor->data))[i] = value;
  4054. } break;
  4055. default:
  4056. {
  4057. GGML_ASSERT(false);
  4058. } break;
  4059. }
  4060. }
  4061. void * ggml_get_data(const struct ggml_tensor * tensor) {
  4062. return tensor->data;
  4063. }
  4064. float * ggml_get_data_f32(const struct ggml_tensor * tensor) {
  4065. assert(tensor->type == GGML_TYPE_F32);
  4066. return (float *)(tensor->data);
  4067. }
  4068. const char * ggml_get_name(const struct ggml_tensor * tensor) {
  4069. return tensor->name;
  4070. }
  4071. struct ggml_tensor * ggml_set_name(struct ggml_tensor * tensor, const char * name) {
  4072. strncpy(tensor->name, name, sizeof(tensor->name));
  4073. tensor->name[sizeof(tensor->name) - 1] = '\0';
  4074. return tensor;
  4075. }
  4076. struct ggml_tensor * ggml_format_name(struct ggml_tensor * tensor, const char * fmt, ...) {
  4077. va_list args;
  4078. va_start(args, fmt);
  4079. vsnprintf(tensor->name, sizeof(tensor->name), fmt, args);
  4080. va_end(args);
  4081. return tensor;
  4082. }
  4083. struct ggml_tensor * ggml_view_tensor(
  4084. struct ggml_context * ctx,
  4085. const struct ggml_tensor * src) {
  4086. struct ggml_tensor * result = ggml_new_tensor_impl(ctx, src->type, src->n_dims, src->ne, src->data);
  4087. ggml_format_name(result, "%s (view)", src->name);
  4088. result->nb[0] = src->nb[0];
  4089. result->nb[1] = src->nb[1];
  4090. result->nb[2] = src->nb[2];
  4091. result->nb[3] = src->nb[3];
  4092. return result;
  4093. }
  4094. struct ggml_tensor * ggml_get_tensor(struct ggml_context * ctx, const char * name) {
  4095. struct ggml_object * obj = ctx->objects_begin;
  4096. char * const mem_buffer = ctx->mem_buffer;
  4097. while (obj != NULL) {
  4098. struct ggml_tensor * cur = (struct ggml_tensor *)(mem_buffer + obj->offs);
  4099. if (strcmp(cur->name, name) == 0) {
  4100. return cur;
  4101. }
  4102. obj = obj->next;
  4103. }
  4104. return NULL;
  4105. }
  4106. ////////////////////////////////////////////////////////////////////////////////
  4107. // ggml_dup
  4108. struct ggml_tensor * ggml_dup_impl(
  4109. struct ggml_context * ctx,
  4110. struct ggml_tensor * a,
  4111. bool inplace) {
  4112. bool is_node = false;
  4113. if (!inplace && (a->grad)) {
  4114. is_node = true;
  4115. }
  4116. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4117. result->op = GGML_OP_DUP;
  4118. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4119. result->src[0] = a;
  4120. result->src[1] = NULL;
  4121. return result;
  4122. }
  4123. struct ggml_tensor * ggml_dup(
  4124. struct ggml_context * ctx,
  4125. struct ggml_tensor * a) {
  4126. return ggml_dup_impl(ctx, a, false);
  4127. }
  4128. struct ggml_tensor * ggml_dup_inplace(
  4129. struct ggml_context * ctx,
  4130. struct ggml_tensor * a) {
  4131. return ggml_dup_impl(ctx, a, true);
  4132. }
  4133. // ggml_add
  4134. struct ggml_tensor * ggml_add_impl(
  4135. struct ggml_context * ctx,
  4136. struct ggml_tensor * a,
  4137. struct ggml_tensor * b,
  4138. bool inplace) {
  4139. GGML_ASSERT(ggml_are_same_shape(a, b));
  4140. bool is_node = false;
  4141. if (a->grad || b->grad) {
  4142. is_node = true;
  4143. }
  4144. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4145. result->op = GGML_OP_ADD;
  4146. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4147. result->src[0] = a;
  4148. result->src[1] = b;
  4149. return result;
  4150. }
  4151. struct ggml_tensor * ggml_add(
  4152. struct ggml_context * ctx,
  4153. struct ggml_tensor * a,
  4154. struct ggml_tensor * b) {
  4155. return ggml_add_impl(ctx, a, b, false);
  4156. }
  4157. struct ggml_tensor * ggml_add_inplace(
  4158. struct ggml_context * ctx,
  4159. struct ggml_tensor * a,
  4160. struct ggml_tensor * b) {
  4161. return ggml_add_impl(ctx, a, b, true);
  4162. }
  4163. // ggml_add1
  4164. struct ggml_tensor * ggml_add1_impl(
  4165. struct ggml_context * ctx,
  4166. struct ggml_tensor * a,
  4167. struct ggml_tensor * b,
  4168. bool inplace) {
  4169. GGML_ASSERT(ggml_is_scalar(b));
  4170. GGML_ASSERT(ggml_is_padded_1d(a));
  4171. bool is_node = false;
  4172. if (a->grad || b->grad) {
  4173. is_node = true;
  4174. }
  4175. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4176. result->op = GGML_OP_ADD1;
  4177. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4178. result->src[0] = a;
  4179. result->src[1] = b;
  4180. return result;
  4181. }
  4182. struct ggml_tensor * ggml_add1(
  4183. struct ggml_context * ctx,
  4184. struct ggml_tensor * a,
  4185. struct ggml_tensor * b) {
  4186. return ggml_add1_impl(ctx, a, b, false);
  4187. }
  4188. struct ggml_tensor * ggml_add1_inplace(
  4189. struct ggml_context * ctx,
  4190. struct ggml_tensor * a,
  4191. struct ggml_tensor * b) {
  4192. return ggml_add1_impl(ctx, a, b, true);
  4193. }
  4194. // ggml_acc
  4195. struct ggml_tensor * ggml_acc_impl(
  4196. struct ggml_context * ctx,
  4197. struct ggml_tensor * a,
  4198. struct ggml_tensor * b,
  4199. size_t nb1,
  4200. size_t nb2,
  4201. size_t nb3,
  4202. size_t offset,
  4203. bool inplace) {
  4204. GGML_ASSERT(ggml_nelements(b) <= ggml_nelements(a));
  4205. GGML_ASSERT(ggml_is_contiguous(a));
  4206. GGML_ASSERT(a->type == GGML_TYPE_F32);
  4207. GGML_ASSERT(b->type == GGML_TYPE_F32);
  4208. bool is_node = false;
  4209. if (!inplace && (a->grad || b->grad)) {
  4210. is_node = true;
  4211. }
  4212. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4213. ggml_scratch_save(ctx);
  4214. struct ggml_tensor * c = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, 5);
  4215. ((int32_t *) c->data)[0] = nb1;
  4216. ((int32_t *) c->data)[1] = nb2;
  4217. ((int32_t *) c->data)[2] = nb3;
  4218. ((int32_t *) c->data)[3] = offset;
  4219. ((int32_t *) c->data)[4] = inplace ? 1 : 0;
  4220. ggml_scratch_load(ctx);
  4221. result->op = GGML_OP_ACC;
  4222. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4223. result->src[0] = a;
  4224. result->src[1] = b;
  4225. result->src[2] = c;
  4226. return result;
  4227. }
  4228. struct ggml_tensor * ggml_acc(
  4229. struct ggml_context * ctx,
  4230. struct ggml_tensor * a,
  4231. struct ggml_tensor * b,
  4232. size_t nb1,
  4233. size_t nb2,
  4234. size_t nb3,
  4235. size_t offset) {
  4236. return ggml_acc_impl(ctx, a, b, nb1, nb2, nb3, offset, false);
  4237. }
  4238. struct ggml_tensor * ggml_acc_inplace(
  4239. struct ggml_context * ctx,
  4240. struct ggml_tensor * a,
  4241. struct ggml_tensor * b,
  4242. size_t nb1,
  4243. size_t nb2,
  4244. size_t nb3,
  4245. size_t offset) {
  4246. return ggml_acc_impl(ctx, a, b, nb1, nb2, nb3, offset, true);
  4247. }
  4248. // ggml_sub
  4249. struct ggml_tensor * ggml_sub_impl(
  4250. struct ggml_context * ctx,
  4251. struct ggml_tensor * a,
  4252. struct ggml_tensor * b,
  4253. bool inplace) {
  4254. GGML_ASSERT(ggml_are_same_shape(a, b));
  4255. bool is_node = false;
  4256. if (!inplace && (a->grad || b->grad)) {
  4257. is_node = true;
  4258. }
  4259. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4260. result->op = GGML_OP_SUB;
  4261. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4262. result->src[0] = a;
  4263. result->src[1] = b;
  4264. return result;
  4265. }
  4266. struct ggml_tensor * ggml_sub(
  4267. struct ggml_context * ctx,
  4268. struct ggml_tensor * a,
  4269. struct ggml_tensor * b) {
  4270. return ggml_sub_impl(ctx, a, b, false);
  4271. }
  4272. struct ggml_tensor * ggml_sub_inplace(
  4273. struct ggml_context * ctx,
  4274. struct ggml_tensor * a,
  4275. struct ggml_tensor * b) {
  4276. return ggml_sub_impl(ctx, a, b, true);
  4277. }
  4278. // ggml_mul
  4279. struct ggml_tensor * ggml_mul_impl(
  4280. struct ggml_context * ctx,
  4281. struct ggml_tensor * a,
  4282. struct ggml_tensor * b,
  4283. bool inplace) {
  4284. // TODO: support less-strict constraint
  4285. // GGML_ASSERT(ggml_can_repeat(b, a));
  4286. GGML_ASSERT(ggml_can_repeat_rows(b, a));
  4287. bool is_node = false;
  4288. if (!inplace && (a->grad || b->grad)) {
  4289. // TODO: support backward pass for broadcasting
  4290. GGML_ASSERT(ggml_are_same_shape(a, b));
  4291. is_node = true;
  4292. }
  4293. if (inplace) {
  4294. GGML_ASSERT(is_node == false);
  4295. }
  4296. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4297. result->op = GGML_OP_MUL;
  4298. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4299. result->src[0] = a;
  4300. result->src[1] = b;
  4301. return result;
  4302. }
  4303. struct ggml_tensor * ggml_mul(
  4304. struct ggml_context * ctx,
  4305. struct ggml_tensor * a,
  4306. struct ggml_tensor * b) {
  4307. return ggml_mul_impl(ctx, a, b, false);
  4308. }
  4309. struct ggml_tensor * ggml_mul_inplace(
  4310. struct ggml_context * ctx,
  4311. struct ggml_tensor * a,
  4312. struct ggml_tensor * b) {
  4313. return ggml_mul_impl(ctx, a, b, true);
  4314. }
  4315. // ggml_div
  4316. struct ggml_tensor * ggml_div_impl(
  4317. struct ggml_context * ctx,
  4318. struct ggml_tensor * a,
  4319. struct ggml_tensor * b,
  4320. bool inplace) {
  4321. GGML_ASSERT(ggml_are_same_shape(a, b));
  4322. bool is_node = false;
  4323. if (!inplace && (a->grad || b->grad)) {
  4324. is_node = true;
  4325. }
  4326. if (inplace) {
  4327. GGML_ASSERT(is_node == false);
  4328. }
  4329. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4330. result->op = GGML_OP_DIV;
  4331. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4332. result->src[0] = a;
  4333. result->src[1] = b;
  4334. return result;
  4335. }
  4336. struct ggml_tensor * ggml_div(
  4337. struct ggml_context * ctx,
  4338. struct ggml_tensor * a,
  4339. struct ggml_tensor * b) {
  4340. return ggml_div_impl(ctx, a, b, false);
  4341. }
  4342. struct ggml_tensor * ggml_div_inplace(
  4343. struct ggml_context * ctx,
  4344. struct ggml_tensor * a,
  4345. struct ggml_tensor * b) {
  4346. return ggml_div_impl(ctx, a, b, true);
  4347. }
  4348. // ggml_sqr
  4349. struct ggml_tensor * ggml_sqr_impl(
  4350. struct ggml_context * ctx,
  4351. struct ggml_tensor * a,
  4352. bool inplace) {
  4353. bool is_node = false;
  4354. if (!inplace && (a->grad)) {
  4355. is_node = true;
  4356. }
  4357. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4358. result->op = GGML_OP_SQR;
  4359. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4360. result->src[0] = a;
  4361. result->src[1] = NULL;
  4362. return result;
  4363. }
  4364. struct ggml_tensor * ggml_sqr(
  4365. struct ggml_context * ctx,
  4366. struct ggml_tensor * a) {
  4367. return ggml_sqr_impl(ctx, a, false);
  4368. }
  4369. struct ggml_tensor * ggml_sqr_inplace(
  4370. struct ggml_context * ctx,
  4371. struct ggml_tensor * a) {
  4372. return ggml_sqr_impl(ctx, a, true);
  4373. }
  4374. // ggml_sqrt
  4375. struct ggml_tensor * ggml_sqrt_impl(
  4376. struct ggml_context * ctx,
  4377. struct ggml_tensor * a,
  4378. bool inplace) {
  4379. bool is_node = false;
  4380. if (!inplace && (a->grad)) {
  4381. is_node = true;
  4382. }
  4383. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4384. result->op = GGML_OP_SQRT;
  4385. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4386. result->src[0] = a;
  4387. result->src[1] = NULL;
  4388. return result;
  4389. }
  4390. struct ggml_tensor * ggml_sqrt(
  4391. struct ggml_context * ctx,
  4392. struct ggml_tensor * a) {
  4393. return ggml_sqrt_impl(ctx, a, false);
  4394. }
  4395. struct ggml_tensor * ggml_sqrt_inplace(
  4396. struct ggml_context * ctx,
  4397. struct ggml_tensor * a) {
  4398. return ggml_sqrt_impl(ctx, a, true);
  4399. }
  4400. // ggml_log
  4401. struct ggml_tensor * ggml_log_impl(
  4402. struct ggml_context * ctx,
  4403. struct ggml_tensor * a,
  4404. bool inplace) {
  4405. bool is_node = false;
  4406. if (!inplace && (a->grad)) {
  4407. is_node = true;
  4408. }
  4409. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4410. result->op = GGML_OP_LOG;
  4411. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4412. result->src[0] = a;
  4413. result->src[1] = NULL;
  4414. return result;
  4415. }
  4416. struct ggml_tensor * ggml_log(
  4417. struct ggml_context * ctx,
  4418. struct ggml_tensor * a) {
  4419. return ggml_log_impl(ctx, a, false);
  4420. }
  4421. struct ggml_tensor * ggml_log_inplace(
  4422. struct ggml_context * ctx,
  4423. struct ggml_tensor * a) {
  4424. return ggml_log_impl(ctx, a, true);
  4425. }
  4426. // ggml_sum
  4427. struct ggml_tensor * ggml_sum(
  4428. struct ggml_context * ctx,
  4429. struct ggml_tensor * a) {
  4430. bool is_node = false;
  4431. if (a->grad) {
  4432. is_node = true;
  4433. }
  4434. struct ggml_tensor * result = ggml_new_tensor_1d(ctx, a->type, 1);
  4435. result->op = GGML_OP_SUM;
  4436. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4437. result->src[0] = a;
  4438. result->src[1] = NULL;
  4439. return result;
  4440. }
  4441. // ggml_sum_rows
  4442. struct ggml_tensor * ggml_sum_rows(
  4443. struct ggml_context * ctx,
  4444. struct ggml_tensor * a) {
  4445. bool is_node = false;
  4446. if (a->grad) {
  4447. is_node = true;
  4448. }
  4449. int64_t ne[4] = {1,1,1,1};
  4450. for (int i=1; i<a->n_dims; ++i) {
  4451. ne[i] = a->ne[i];
  4452. }
  4453. struct ggml_tensor * result = ggml_new_tensor(ctx, a->type, a->n_dims, ne);
  4454. result->op = GGML_OP_SUM_ROWS;
  4455. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4456. result->src[0] = a;
  4457. result->src[1] = NULL;
  4458. return result;
  4459. }
  4460. // ggml_mean
  4461. struct ggml_tensor * ggml_mean(
  4462. struct ggml_context * ctx,
  4463. struct ggml_tensor * a) {
  4464. bool is_node = false;
  4465. if (a->grad) {
  4466. GGML_ASSERT(false); // TODO: implement
  4467. is_node = true;
  4468. }
  4469. int64_t ne[GGML_MAX_DIMS] = { 1, a->ne[1], a->ne[2], a->ne[3] };
  4470. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, a->n_dims, ne);
  4471. result->op = GGML_OP_MEAN;
  4472. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4473. result->src[0] = a;
  4474. result->src[1] = NULL;
  4475. return result;
  4476. }
  4477. // ggml_argmax
  4478. struct ggml_tensor * ggml_argmax(
  4479. struct ggml_context * ctx,
  4480. struct ggml_tensor * a) {
  4481. GGML_ASSERT(ggml_is_matrix(a));
  4482. bool is_node = false;
  4483. if (a->grad) {
  4484. GGML_ASSERT(false);
  4485. is_node = true;
  4486. }
  4487. int64_t ne[GGML_MAX_DIMS] = { a->ne[1], 1, 1, 1 };
  4488. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_I32, a->n_dims, ne);
  4489. result->op = GGML_OP_ARGMAX;
  4490. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4491. result->src[0] = a;
  4492. result->src[1] = NULL;
  4493. return result;
  4494. }
  4495. // ggml_repeat
  4496. struct ggml_tensor * ggml_repeat(
  4497. struct ggml_context * ctx,
  4498. struct ggml_tensor * a,
  4499. struct ggml_tensor * b) {
  4500. GGML_ASSERT(ggml_can_repeat(a, b));
  4501. bool is_node = false;
  4502. if (a->grad) {
  4503. is_node = true;
  4504. }
  4505. if (ggml_are_same_shape(a, b) && !is_node) {
  4506. return a;
  4507. }
  4508. struct ggml_tensor * result = ggml_new_tensor(ctx, a->type, b->n_dims, b->ne);
  4509. result->op = GGML_OP_REPEAT;
  4510. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4511. result->src[0] = a;
  4512. result->src[1] = b;
  4513. return result;
  4514. }
  4515. // ggml_repeat_back
  4516. struct ggml_tensor * ggml_repeat_back(
  4517. struct ggml_context * ctx,
  4518. struct ggml_tensor * a,
  4519. struct ggml_tensor * b) {
  4520. GGML_ASSERT(ggml_can_repeat(b, a));
  4521. bool is_node = false;
  4522. if (a->grad) {
  4523. is_node = true;
  4524. }
  4525. if (ggml_are_same_shape(a, b) && !is_node) {
  4526. return a;
  4527. }
  4528. struct ggml_tensor * result = ggml_new_tensor(ctx, a->type, b->n_dims, b->ne);
  4529. result->op = GGML_OP_REPEAT_BACK;
  4530. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4531. result->src[0] = a;
  4532. result->src[1] = b;
  4533. return result;
  4534. }
  4535. // ggml_abs
  4536. struct ggml_tensor * ggml_abs_impl(
  4537. struct ggml_context * ctx,
  4538. struct ggml_tensor * a,
  4539. bool inplace) {
  4540. bool is_node = false;
  4541. if (!inplace && (a->grad)) {
  4542. is_node = true;
  4543. }
  4544. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4545. result->op = GGML_OP_ABS;
  4546. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4547. result->src[0] = a;
  4548. result->src[1] = NULL;
  4549. return result;
  4550. }
  4551. struct ggml_tensor * ggml_abs(
  4552. struct ggml_context * ctx,
  4553. struct ggml_tensor * a) {
  4554. return ggml_abs_impl(ctx, a, false);
  4555. }
  4556. struct ggml_tensor * ggml_abs_inplace(
  4557. struct ggml_context * ctx,
  4558. struct ggml_tensor * a) {
  4559. return ggml_abs_impl(ctx, a, true);
  4560. }
  4561. // ggml_sgn
  4562. struct ggml_tensor * ggml_sgn_impl(
  4563. struct ggml_context * ctx,
  4564. struct ggml_tensor * a,
  4565. bool inplace) {
  4566. bool is_node = false;
  4567. if (!inplace && (a->grad)) {
  4568. is_node = true;
  4569. }
  4570. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4571. result->op = GGML_OP_SGN;
  4572. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4573. result->src[0] = a;
  4574. result->src[1] = NULL;
  4575. return result;
  4576. }
  4577. struct ggml_tensor * ggml_sgn(
  4578. struct ggml_context * ctx,
  4579. struct ggml_tensor * a) {
  4580. return ggml_sgn_impl(ctx, a, false);
  4581. }
  4582. struct ggml_tensor * ggml_sgn_inplace(
  4583. struct ggml_context * ctx,
  4584. struct ggml_tensor * a) {
  4585. return ggml_sgn_impl(ctx, a, true);
  4586. }
  4587. // ggml_neg
  4588. struct ggml_tensor * ggml_neg_impl(
  4589. struct ggml_context * ctx,
  4590. struct ggml_tensor * a,
  4591. bool inplace) {
  4592. bool is_node = false;
  4593. if (!inplace && (a->grad)) {
  4594. is_node = true;
  4595. }
  4596. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4597. result->op = GGML_OP_NEG;
  4598. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4599. result->src[0] = a;
  4600. result->src[1] = NULL;
  4601. return result;
  4602. }
  4603. struct ggml_tensor * ggml_neg(
  4604. struct ggml_context * ctx,
  4605. struct ggml_tensor * a) {
  4606. return ggml_neg_impl(ctx, a, false);
  4607. }
  4608. struct ggml_tensor * ggml_neg_inplace(
  4609. struct ggml_context * ctx,
  4610. struct ggml_tensor * a) {
  4611. return ggml_neg_impl(ctx, a, true);
  4612. }
  4613. // ggml_step
  4614. struct ggml_tensor * ggml_step_impl(
  4615. struct ggml_context * ctx,
  4616. struct ggml_tensor * a,
  4617. bool inplace) {
  4618. bool is_node = false;
  4619. if (!inplace && (a->grad)) {
  4620. is_node = true;
  4621. }
  4622. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4623. result->op = GGML_OP_STEP;
  4624. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4625. result->src[0] = a;
  4626. result->src[1] = NULL;
  4627. return result;
  4628. }
  4629. struct ggml_tensor * ggml_step(
  4630. struct ggml_context * ctx,
  4631. struct ggml_tensor * a) {
  4632. return ggml_step_impl(ctx, a, false);
  4633. }
  4634. struct ggml_tensor * ggml_step_inplace(
  4635. struct ggml_context * ctx,
  4636. struct ggml_tensor * a) {
  4637. return ggml_step_impl(ctx, a, true);
  4638. }
  4639. // ggml_tanh
  4640. struct ggml_tensor * ggml_tanh_impl(
  4641. struct ggml_context * ctx,
  4642. struct ggml_tensor * a,
  4643. bool inplace) {
  4644. bool is_node = false;
  4645. if (!inplace && (a->grad)) {
  4646. is_node = true;
  4647. }
  4648. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4649. result->op = GGML_OP_TANH;
  4650. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4651. result->src[0] = a;
  4652. result->src[1] = NULL;
  4653. return result;
  4654. }
  4655. struct ggml_tensor * ggml_tanh(
  4656. struct ggml_context * ctx,
  4657. struct ggml_tensor * a) {
  4658. return ggml_tanh_impl(ctx, a, false);
  4659. }
  4660. struct ggml_tensor * ggml_tanh_inplace(
  4661. struct ggml_context * ctx,
  4662. struct ggml_tensor * a) {
  4663. return ggml_tanh_impl(ctx, a, true);
  4664. }
  4665. // ggml_elu
  4666. struct ggml_tensor * ggml_elu_impl(
  4667. struct ggml_context * ctx,
  4668. struct ggml_tensor * a,
  4669. bool inplace) {
  4670. bool is_node = false;
  4671. if (!inplace && (a->grad)) {
  4672. is_node = true;
  4673. }
  4674. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4675. result->op = GGML_OP_ELU;
  4676. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4677. result->src[0] = a;
  4678. result->src[1] = NULL;
  4679. return result;
  4680. }
  4681. struct ggml_tensor * ggml_elu(
  4682. struct ggml_context * ctx,
  4683. struct ggml_tensor * a) {
  4684. return ggml_elu_impl(ctx, a, false);
  4685. }
  4686. struct ggml_tensor * ggml_elu_inplace(
  4687. struct ggml_context * ctx,
  4688. struct ggml_tensor * a) {
  4689. return ggml_elu_impl(ctx, a, true);
  4690. }
  4691. // ggml_relu
  4692. struct ggml_tensor * ggml_relu_impl(
  4693. struct ggml_context * ctx,
  4694. struct ggml_tensor * a,
  4695. bool inplace) {
  4696. bool is_node = false;
  4697. if (!inplace && (a->grad)) {
  4698. is_node = true;
  4699. }
  4700. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4701. result->op = GGML_OP_RELU;
  4702. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4703. result->src[0] = a;
  4704. result->src[1] = NULL;
  4705. return result;
  4706. }
  4707. struct ggml_tensor * ggml_relu(
  4708. struct ggml_context * ctx,
  4709. struct ggml_tensor * a) {
  4710. return ggml_relu_impl(ctx, a, false);
  4711. }
  4712. struct ggml_tensor * ggml_relu_inplace(
  4713. struct ggml_context * ctx,
  4714. struct ggml_tensor * a) {
  4715. return ggml_relu_impl(ctx, a, true);
  4716. }
  4717. // ggml_gelu
  4718. struct ggml_tensor * ggml_gelu_impl(
  4719. struct ggml_context * ctx,
  4720. struct ggml_tensor * a,
  4721. bool inplace) {
  4722. bool is_node = false;
  4723. if (!inplace && (a->grad)) {
  4724. is_node = true;
  4725. }
  4726. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4727. result->op = GGML_OP_GELU;
  4728. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4729. result->src[0] = a;
  4730. result->src[1] = NULL;
  4731. return result;
  4732. }
  4733. struct ggml_tensor * ggml_gelu(
  4734. struct ggml_context * ctx,
  4735. struct ggml_tensor * a) {
  4736. return ggml_gelu_impl(ctx, a, false);
  4737. }
  4738. struct ggml_tensor * ggml_gelu_inplace(
  4739. struct ggml_context * ctx,
  4740. struct ggml_tensor * a) {
  4741. return ggml_gelu_impl(ctx, a, true);
  4742. }
  4743. // ggml_gelu_quick
  4744. struct ggml_tensor * ggml_gelu_quick_impl(
  4745. struct ggml_context * ctx,
  4746. struct ggml_tensor * a,
  4747. bool inplace) {
  4748. bool is_node = false;
  4749. if (!inplace && (a->grad)) {
  4750. is_node = true;
  4751. }
  4752. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4753. result->op = GGML_OP_GELU_QUICK;
  4754. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4755. result->src[0] = a;
  4756. result->src[1] = NULL;
  4757. return result;
  4758. }
  4759. struct ggml_tensor * ggml_gelu_quick(
  4760. struct ggml_context * ctx,
  4761. struct ggml_tensor * a) {
  4762. return ggml_gelu_quick_impl(ctx, a, false);
  4763. }
  4764. struct ggml_tensor * ggml_gelu_quick_inplace(
  4765. struct ggml_context * ctx,
  4766. struct ggml_tensor * a) {
  4767. return ggml_gelu_quick_impl(ctx, a, true);
  4768. }
  4769. // ggml_silu
  4770. struct ggml_tensor * ggml_silu_impl(
  4771. struct ggml_context * ctx,
  4772. struct ggml_tensor * a,
  4773. bool inplace) {
  4774. bool is_node = false;
  4775. if (!inplace && (a->grad)) {
  4776. is_node = true;
  4777. }
  4778. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4779. result->op = GGML_OP_SILU;
  4780. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4781. result->src[0] = a;
  4782. result->src[1] = NULL;
  4783. return result;
  4784. }
  4785. struct ggml_tensor * ggml_silu(
  4786. struct ggml_context * ctx,
  4787. struct ggml_tensor * a) {
  4788. return ggml_silu_impl(ctx, a, false);
  4789. }
  4790. struct ggml_tensor * ggml_silu_inplace(
  4791. struct ggml_context * ctx,
  4792. struct ggml_tensor * a) {
  4793. return ggml_silu_impl(ctx, a, true);
  4794. }
  4795. // ggml_silu_back
  4796. struct ggml_tensor * ggml_silu_back(
  4797. struct ggml_context * ctx,
  4798. struct ggml_tensor * a,
  4799. struct ggml_tensor * b) {
  4800. bool is_node = false;
  4801. if (a->grad || b->grad) {
  4802. // TODO: implement backward
  4803. is_node = true;
  4804. }
  4805. struct ggml_tensor * result = ggml_dup_tensor(ctx, a);
  4806. result->op = GGML_OP_SILU_BACK;
  4807. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4808. result->src[0] = a;
  4809. result->src[1] = b;
  4810. return result;
  4811. }
  4812. // ggml_norm
  4813. struct ggml_tensor * ggml_norm_impl(
  4814. struct ggml_context * ctx,
  4815. struct ggml_tensor * a,
  4816. bool inplace) {
  4817. bool is_node = false;
  4818. if (!inplace && (a->grad)) {
  4819. GGML_ASSERT(false); // TODO: implement backward
  4820. is_node = true;
  4821. }
  4822. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4823. result->op = GGML_OP_NORM;
  4824. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4825. result->src[0] = a;
  4826. result->src[1] = NULL; // TODO: maybe store epsilon here?
  4827. return result;
  4828. }
  4829. struct ggml_tensor * ggml_norm(
  4830. struct ggml_context * ctx,
  4831. struct ggml_tensor * a) {
  4832. return ggml_norm_impl(ctx, a, false);
  4833. }
  4834. struct ggml_tensor * ggml_norm_inplace(
  4835. struct ggml_context * ctx,
  4836. struct ggml_tensor * a) {
  4837. return ggml_norm_impl(ctx, a, true);
  4838. }
  4839. struct ggml_tensor * ggml_rms_norm_impl(
  4840. struct ggml_context * ctx,
  4841. struct ggml_tensor * a,
  4842. bool inplace) {
  4843. bool is_node = false;
  4844. if (!inplace && (a->grad)) {
  4845. is_node = true;
  4846. }
  4847. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4848. result->op = GGML_OP_RMS_NORM;
  4849. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4850. result->src[0] = a;
  4851. result->src[1] = NULL; // TODO: maybe store epsilon here?
  4852. return result;
  4853. }
  4854. struct ggml_tensor * ggml_rms_norm(
  4855. struct ggml_context * ctx,
  4856. struct ggml_tensor * a) {
  4857. return ggml_rms_norm_impl(ctx, a, false);
  4858. }
  4859. struct ggml_tensor * ggml_rms_norm_inplace(
  4860. struct ggml_context * ctx,
  4861. struct ggml_tensor * a) {
  4862. return ggml_rms_norm_impl(ctx, a, true);
  4863. }
  4864. struct ggml_tensor * ggml_rms_norm_back(
  4865. struct ggml_context * ctx,
  4866. struct ggml_tensor * a,
  4867. struct ggml_tensor * b) {
  4868. bool is_node = false;
  4869. if (a->grad) {
  4870. // TODO: implement backward
  4871. is_node = true;
  4872. }
  4873. struct ggml_tensor * result = ggml_dup_tensor(ctx, a);
  4874. result->op = GGML_OP_RMS_NORM_BACK;
  4875. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4876. result->src[0] = a;
  4877. result->src[1] = b;
  4878. return result;
  4879. }
  4880. // ggml_mul_mat
  4881. struct ggml_tensor * ggml_mul_mat(
  4882. struct ggml_context * ctx,
  4883. struct ggml_tensor * a,
  4884. struct ggml_tensor * b) {
  4885. GGML_ASSERT(ggml_can_mul_mat(a, b));
  4886. GGML_ASSERT(!ggml_is_transposed(a));
  4887. bool is_node = false;
  4888. if (a->grad || b->grad) {
  4889. is_node = true;
  4890. }
  4891. const int64_t ne[4] = { a->ne[1], b->ne[1], a->ne[2], b->ne[3] };
  4892. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, MIN(a->n_dims, b->n_dims), ne);
  4893. result->op = GGML_OP_MUL_MAT;
  4894. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4895. result->src[0] = a;
  4896. result->src[1] = b;
  4897. return result;
  4898. }
  4899. // ggml_out_prod
  4900. struct ggml_tensor * ggml_out_prod(
  4901. struct ggml_context * ctx,
  4902. struct ggml_tensor * a,
  4903. struct ggml_tensor * b) {
  4904. GGML_ASSERT(ggml_can_out_prod(a, b));
  4905. GGML_ASSERT(!ggml_is_transposed(a));
  4906. bool is_node = false;
  4907. if (a->grad || b->grad) {
  4908. is_node = true;
  4909. }
  4910. const int64_t ne[4] = { a->ne[0], b->ne[0], a->ne[2], b->ne[3] };
  4911. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, MIN(a->n_dims, b->n_dims), ne);
  4912. result->op = GGML_OP_OUT_PROD;
  4913. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4914. result->src[0] = a;
  4915. result->src[1] = b;
  4916. return result;
  4917. }
  4918. // ggml_scale
  4919. struct ggml_tensor * ggml_scale_impl(
  4920. struct ggml_context * ctx,
  4921. struct ggml_tensor * a,
  4922. struct ggml_tensor * b,
  4923. bool inplace) {
  4924. GGML_ASSERT(ggml_is_scalar(b));
  4925. GGML_ASSERT(ggml_is_padded_1d(a));
  4926. bool is_node = false;
  4927. if (a->grad || b->grad) {
  4928. is_node = true;
  4929. }
  4930. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4931. result->op = GGML_OP_SCALE;
  4932. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4933. result->src[0] = a;
  4934. result->src[1] = b;
  4935. return result;
  4936. }
  4937. struct ggml_tensor * ggml_scale(
  4938. struct ggml_context * ctx,
  4939. struct ggml_tensor * a,
  4940. struct ggml_tensor * b) {
  4941. return ggml_scale_impl(ctx, a, b, false);
  4942. }
  4943. struct ggml_tensor * ggml_scale_inplace(
  4944. struct ggml_context * ctx,
  4945. struct ggml_tensor * a,
  4946. struct ggml_tensor * b) {
  4947. return ggml_scale_impl(ctx, a, b, true);
  4948. }
  4949. // ggml_set
  4950. struct ggml_tensor * ggml_set_impl(
  4951. struct ggml_context * ctx,
  4952. struct ggml_tensor * a,
  4953. struct ggml_tensor * b,
  4954. size_t nb1,
  4955. size_t nb2,
  4956. size_t nb3,
  4957. size_t offset,
  4958. bool inplace) {
  4959. GGML_ASSERT(ggml_nelements(a) >= ggml_nelements(b));
  4960. bool is_node = false;
  4961. if (a->grad || b->grad) {
  4962. is_node = true;
  4963. }
  4964. // make a view of the destination
  4965. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4966. ggml_scratch_save(ctx);
  4967. struct ggml_tensor * c = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, 5);
  4968. (( int32_t * ) c->data)[0] = nb1;
  4969. (( int32_t * ) c->data)[1] = nb2;
  4970. (( int32_t * ) c->data)[2] = nb3;
  4971. (( int32_t * ) c->data)[3] = offset;
  4972. (( int32_t * ) c->data)[4] = inplace ? 1 : 0;
  4973. ggml_scratch_load(ctx);
  4974. result->op = GGML_OP_SET;
  4975. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4976. result->src[0] = a;
  4977. result->src[1] = b;
  4978. result->src[2] = c;
  4979. return result;
  4980. }
  4981. struct ggml_tensor * ggml_set(
  4982. struct ggml_context * ctx,
  4983. struct ggml_tensor * a,
  4984. struct ggml_tensor * b,
  4985. size_t nb1,
  4986. size_t nb2,
  4987. size_t nb3,
  4988. size_t offset) {
  4989. return ggml_set_impl(ctx, a, b, nb1, nb2, nb3, offset, false);
  4990. }
  4991. struct ggml_tensor * ggml_set_inplace(
  4992. struct ggml_context * ctx,
  4993. struct ggml_tensor * a,
  4994. struct ggml_tensor * b,
  4995. size_t nb1,
  4996. size_t nb2,
  4997. size_t nb3,
  4998. size_t offset) {
  4999. return ggml_set_impl(ctx, a, b, nb1, nb2, nb3, offset, true);
  5000. }
  5001. struct ggml_tensor * ggml_set_1d(
  5002. struct ggml_context * ctx,
  5003. struct ggml_tensor * a,
  5004. struct ggml_tensor * b,
  5005. size_t offset) {
  5006. return ggml_set_impl(ctx, a, b, a->nb[1], a->nb[2], a->nb[3], offset, false);
  5007. }
  5008. struct ggml_tensor * ggml_set_1d_inplace(
  5009. struct ggml_context * ctx,
  5010. struct ggml_tensor * a,
  5011. struct ggml_tensor * b,
  5012. size_t offset) {
  5013. return ggml_set_impl(ctx, a, b, a->nb[1], a->nb[2], a->nb[3], offset, true);
  5014. }
  5015. struct ggml_tensor * ggml_set_2d(
  5016. struct ggml_context * ctx,
  5017. struct ggml_tensor * a,
  5018. struct ggml_tensor * b,
  5019. size_t nb1,
  5020. size_t offset) {
  5021. return ggml_set_impl(ctx, a, b, nb1, a->nb[2], a->nb[3], offset, false);
  5022. }
  5023. struct ggml_tensor * ggml_set_2d_inplace(
  5024. struct ggml_context * ctx,
  5025. struct ggml_tensor * a,
  5026. struct ggml_tensor * b,
  5027. size_t nb1,
  5028. size_t offset) {
  5029. return ggml_set_impl(ctx, a, b, nb1, a->nb[2], a->nb[3], offset, false);
  5030. }
  5031. // ggml_cpy
  5032. struct ggml_tensor * ggml_cpy_impl(
  5033. struct ggml_context * ctx,
  5034. struct ggml_tensor * a,
  5035. struct ggml_tensor * b,
  5036. bool inplace) {
  5037. GGML_ASSERT(ggml_nelements(a) == ggml_nelements(b));
  5038. bool is_node = false;
  5039. if (!inplace && (a->grad || b->grad)) {
  5040. is_node = true;
  5041. }
  5042. // make a view of the destination
  5043. struct ggml_tensor * result = ggml_view_tensor(ctx, b);
  5044. if (strlen(b->name) > 0) {
  5045. ggml_format_name(result, "%s (copy of %s)", b->name, a->name);
  5046. } else {
  5047. ggml_format_name(result, "%s (copy)", a->name);
  5048. }
  5049. result->op = GGML_OP_CPY;
  5050. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5051. result->src[0] = a;
  5052. result->src[1] = b;
  5053. return result;
  5054. }
  5055. struct ggml_tensor * ggml_cpy(
  5056. struct ggml_context * ctx,
  5057. struct ggml_tensor * a,
  5058. struct ggml_tensor * b) {
  5059. return ggml_cpy_impl(ctx, a, b, false);
  5060. }
  5061. struct ggml_tensor * ggml_cpy_inplace(
  5062. struct ggml_context * ctx,
  5063. struct ggml_tensor * a,
  5064. struct ggml_tensor * b) {
  5065. return ggml_cpy_impl(ctx, a, b, true);
  5066. }
  5067. // ggml_cont
  5068. struct ggml_tensor * ggml_cont_impl(
  5069. struct ggml_context * ctx,
  5070. struct ggml_tensor * a,
  5071. bool inplace) {
  5072. bool is_node = false;
  5073. if (!inplace && a->grad) {
  5074. is_node = true;
  5075. }
  5076. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  5077. ggml_format_name(result, "%s (cont)", a->name);
  5078. result->op = GGML_OP_CONT;
  5079. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5080. result->src[0] = a;
  5081. result->src[1] = NULL;
  5082. return result;
  5083. }
  5084. struct ggml_tensor * ggml_cont(
  5085. struct ggml_context * ctx,
  5086. struct ggml_tensor * a) {
  5087. return ggml_cont_impl(ctx, a, false);
  5088. }
  5089. struct ggml_tensor * ggml_cont_inplace(
  5090. struct ggml_context * ctx,
  5091. struct ggml_tensor * a) {
  5092. return ggml_cont_impl(ctx, a, true);
  5093. }
  5094. // ggml_reshape
  5095. struct ggml_tensor * ggml_reshape(
  5096. struct ggml_context * ctx,
  5097. struct ggml_tensor * a,
  5098. struct ggml_tensor * b) {
  5099. GGML_ASSERT(ggml_is_contiguous(a));
  5100. GGML_ASSERT(ggml_is_contiguous(b));
  5101. GGML_ASSERT(ggml_nelements(a) == ggml_nelements(b));
  5102. bool is_node = false;
  5103. if (a->grad) {
  5104. is_node = true;
  5105. }
  5106. if (b->grad) {
  5107. // gradient propagation is not supported
  5108. //GGML_ASSERT(false);
  5109. }
  5110. struct ggml_tensor * result = ggml_new_tensor_impl(ctx, a->type, b->n_dims, b->ne, a->data);
  5111. ggml_format_name(result, "%s (reshaped)", a->name);
  5112. result->op = GGML_OP_RESHAPE;
  5113. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5114. result->src[0] = a;
  5115. result->src[1] = NULL;
  5116. return result;
  5117. }
  5118. struct ggml_tensor * ggml_reshape_1d(
  5119. struct ggml_context * ctx,
  5120. struct ggml_tensor * a,
  5121. int64_t ne0) {
  5122. GGML_ASSERT(ggml_is_contiguous(a));
  5123. GGML_ASSERT(ggml_nelements(a) == ne0);
  5124. bool is_node = false;
  5125. if (a->grad) {
  5126. is_node = true;
  5127. }
  5128. const int64_t ne[1] = { ne0 };
  5129. struct ggml_tensor * result = ggml_new_tensor_impl(ctx, a->type, 1, ne, a->data);
  5130. ggml_format_name(result, "%s (reshaped)", a->name);
  5131. result->op = GGML_OP_RESHAPE;
  5132. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5133. result->src[0] = a;
  5134. result->src[1] = NULL;
  5135. return result;
  5136. }
  5137. struct ggml_tensor * ggml_reshape_2d(
  5138. struct ggml_context * ctx,
  5139. struct ggml_tensor * a,
  5140. int64_t ne0,
  5141. int64_t ne1) {
  5142. GGML_ASSERT(ggml_is_contiguous(a));
  5143. GGML_ASSERT(ggml_nelements(a) == ne0*ne1);
  5144. bool is_node = false;
  5145. if (a->grad) {
  5146. is_node = true;
  5147. }
  5148. const int64_t ne[2] = { ne0, ne1 };
  5149. struct ggml_tensor * result = ggml_new_tensor_impl(ctx, a->type, 2, ne, a->data);
  5150. ggml_format_name(result, "%s (reshaped)", a->name);
  5151. result->op = GGML_OP_RESHAPE;
  5152. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5153. result->src[0] = a;
  5154. result->src[1] = NULL;
  5155. return result;
  5156. }
  5157. struct ggml_tensor * ggml_reshape_3d(
  5158. struct ggml_context * ctx,
  5159. struct ggml_tensor * a,
  5160. int64_t ne0,
  5161. int64_t ne1,
  5162. int64_t ne2) {
  5163. GGML_ASSERT(ggml_is_contiguous(a));
  5164. GGML_ASSERT(ggml_nelements(a) == ne0*ne1*ne2);
  5165. bool is_node = false;
  5166. if (a->grad) {
  5167. is_node = true;
  5168. }
  5169. const int64_t ne[3] = { ne0, ne1, ne2 };
  5170. struct ggml_tensor * result = ggml_new_tensor_impl(ctx, a->type, 3, ne, a->data);
  5171. ggml_format_name(result, "%s (reshaped)", a->name);
  5172. result->op = GGML_OP_RESHAPE;
  5173. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5174. result->src[0] = a;
  5175. result->src[1] = NULL;
  5176. return result;
  5177. }
  5178. struct ggml_tensor * ggml_reshape_4d(
  5179. struct ggml_context * ctx,
  5180. struct ggml_tensor * a,
  5181. int64_t ne0,
  5182. int64_t ne1,
  5183. int64_t ne2,
  5184. int64_t ne3) {
  5185. GGML_ASSERT(ggml_is_contiguous(a));
  5186. GGML_ASSERT(ggml_nelements(a) == ne0*ne1*ne2*ne3);
  5187. bool is_node = false;
  5188. if (a->grad) {
  5189. is_node = true;
  5190. }
  5191. const int64_t ne[4] = { ne0, ne1, ne2, ne3 };
  5192. struct ggml_tensor * result = ggml_new_tensor_impl(ctx, a->type, 4, ne, a->data);
  5193. ggml_format_name(result, "%s (reshaped)", a->name);
  5194. result->op = GGML_OP_RESHAPE;
  5195. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5196. result->src[0] = a;
  5197. result->src[1] = NULL;
  5198. return result;
  5199. }
  5200. // ggml_view_1d
  5201. struct ggml_tensor * ggml_view_1d(
  5202. struct ggml_context * ctx,
  5203. struct ggml_tensor * a,
  5204. int64_t ne0,
  5205. size_t offset) {
  5206. bool is_node = false;
  5207. if (a->grad) {
  5208. is_node = true;
  5209. }
  5210. struct ggml_tensor * result = ggml_new_tensor_impl(ctx, a->type, 1, &ne0, (char *) a->data + offset);
  5211. ggml_format_name(result, "%s (view)", a->name);
  5212. ggml_scratch_save(ctx);
  5213. struct ggml_tensor * offs = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, 2);
  5214. ggml_set_name(offs, "offset");
  5215. memcpy(offs->data, &offset, 2*sizeof(int32_t));
  5216. ggml_scratch_load(ctx);
  5217. result->op = GGML_OP_VIEW;
  5218. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5219. result->src[0] = a;
  5220. result->src[1] = NULL;
  5221. result->src[2] = offs;
  5222. return result;
  5223. }
  5224. // ggml_view_2d
  5225. struct ggml_tensor * ggml_view_2d(
  5226. struct ggml_context * ctx,
  5227. struct ggml_tensor * a,
  5228. int64_t ne0,
  5229. int64_t ne1,
  5230. size_t nb1,
  5231. size_t offset) {
  5232. bool is_node = false;
  5233. if (a->grad) {
  5234. is_node = true;
  5235. }
  5236. const int64_t ne[GGML_MAX_DIMS] = { ne0, ne1, 1, 1 };
  5237. struct ggml_tensor * result = ggml_new_tensor_impl(ctx, a->type, 2, ne, (char *) a->data + offset);
  5238. ggml_format_name(result, "%s (view)", a->name);
  5239. ggml_scratch_save(ctx);
  5240. struct ggml_tensor * offs = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, 2);
  5241. ggml_set_name(offs, "offset");
  5242. memcpy(offs->data, &offset, 2*sizeof(int32_t));
  5243. ggml_scratch_load(ctx);
  5244. result->nb[1] = nb1;
  5245. result->nb[2] = result->nb[1]*ne1;
  5246. result->nb[3] = result->nb[2];
  5247. result->op = GGML_OP_VIEW;
  5248. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5249. result->src[0] = a;
  5250. result->src[1] = NULL;
  5251. result->src[2] = offs;
  5252. return result;
  5253. }
  5254. // ggml_view_3d
  5255. struct ggml_tensor * ggml_view_3d(
  5256. struct ggml_context * ctx,
  5257. struct ggml_tensor * a,
  5258. int64_t ne0,
  5259. int64_t ne1,
  5260. int64_t ne2,
  5261. size_t nb1,
  5262. size_t nb2,
  5263. size_t offset) {
  5264. bool is_node = false;
  5265. if (a->grad) {
  5266. is_node = true;
  5267. }
  5268. const int64_t ne[GGML_MAX_DIMS] = { ne0, ne1, ne2, 1 };
  5269. struct ggml_tensor * result = ggml_new_tensor_impl(ctx, a->type, 3, ne, (char *) a->data + offset);
  5270. ggml_format_name(result, "%s (view)", a->name);
  5271. ggml_scratch_save(ctx);
  5272. struct ggml_tensor * offs = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, 2);
  5273. ggml_set_name(offs, "offset");
  5274. memcpy(offs->data, &offset, 2*sizeof(int32_t));
  5275. ggml_scratch_load(ctx);
  5276. result->nb[1] = nb1;
  5277. result->nb[2] = nb2;
  5278. result->nb[3] = result->nb[2]*ne2;
  5279. result->op = GGML_OP_VIEW;
  5280. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5281. result->src[0] = a;
  5282. result->src[1] = NULL;
  5283. result->src[2] = offs;
  5284. return result;
  5285. }
  5286. // ggml_view_4d
  5287. struct ggml_tensor * ggml_view_4d(
  5288. struct ggml_context * ctx,
  5289. struct ggml_tensor * a,
  5290. int64_t ne0,
  5291. int64_t ne1,
  5292. int64_t ne2,
  5293. int64_t ne3,
  5294. size_t nb1,
  5295. size_t nb2,
  5296. size_t nb3,
  5297. size_t offset) {
  5298. bool is_node = false;
  5299. if (a->grad) {
  5300. is_node = true;
  5301. }
  5302. const int64_t ne[GGML_MAX_DIMS] = { ne0, ne1, ne2, ne3 };
  5303. struct ggml_tensor * result = ggml_new_tensor_impl(ctx, a->type, 4, ne, (char *) a->data + offset);
  5304. ggml_format_name(result, "%s (view)", a->name);
  5305. ggml_scratch_save(ctx);
  5306. struct ggml_tensor * offs = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, 2);
  5307. ggml_set_name(offs, "offset");
  5308. memcpy(offs->data, &offset, 2*sizeof(int32_t));
  5309. ggml_scratch_load(ctx);
  5310. result->nb[1] = nb1;
  5311. result->nb[2] = nb2;
  5312. result->nb[3] = nb3;
  5313. result->op = GGML_OP_VIEW;
  5314. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5315. result->src[0] = a;
  5316. result->src[1] = NULL;
  5317. result->src[2] = offs;
  5318. return result;
  5319. }
  5320. // ggml_permute
  5321. struct ggml_tensor * ggml_permute(
  5322. struct ggml_context * ctx,
  5323. struct ggml_tensor * a,
  5324. int axis0,
  5325. int axis1,
  5326. int axis2,
  5327. int axis3) {
  5328. GGML_ASSERT(axis0 >= 0 && axis0 < GGML_MAX_DIMS);
  5329. GGML_ASSERT(axis1 >= 0 && axis1 < GGML_MAX_DIMS);
  5330. GGML_ASSERT(axis2 >= 0 && axis2 < GGML_MAX_DIMS);
  5331. GGML_ASSERT(axis3 >= 0 && axis3 < GGML_MAX_DIMS);
  5332. GGML_ASSERT(axis0 != axis1);
  5333. GGML_ASSERT(axis0 != axis2);
  5334. GGML_ASSERT(axis0 != axis3);
  5335. GGML_ASSERT(axis1 != axis2);
  5336. GGML_ASSERT(axis1 != axis3);
  5337. GGML_ASSERT(axis2 != axis3);
  5338. bool is_node = false;
  5339. if (a->grad) {
  5340. is_node = true;
  5341. }
  5342. struct ggml_tensor * result = ggml_view_tensor(ctx, a);
  5343. ggml_format_name(result, "%s (permuted)", a->name);
  5344. int ne[GGML_MAX_DIMS];
  5345. int nb[GGML_MAX_DIMS];
  5346. ne[axis0] = a->ne[0];
  5347. ne[axis1] = a->ne[1];
  5348. ne[axis2] = a->ne[2];
  5349. ne[axis3] = a->ne[3];
  5350. nb[axis0] = a->nb[0];
  5351. nb[axis1] = a->nb[1];
  5352. nb[axis2] = a->nb[2];
  5353. nb[axis3] = a->nb[3];
  5354. result->ne[0] = ne[0];
  5355. result->ne[1] = ne[1];
  5356. result->ne[2] = ne[2];
  5357. result->ne[3] = ne[3];
  5358. result->nb[0] = nb[0];
  5359. result->nb[1] = nb[1];
  5360. result->nb[2] = nb[2];
  5361. result->nb[3] = nb[3];
  5362. result->op = GGML_OP_PERMUTE;
  5363. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5364. result->src[0] = a;
  5365. result->src[1] = NULL;
  5366. if (is_node) {
  5367. ggml_scratch_save(ctx);
  5368. struct ggml_tensor * b = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, 4);
  5369. ((int32_t *) b->data)[0] = axis0;
  5370. ((int32_t *) b->data)[1] = axis1;
  5371. ((int32_t *) b->data)[2] = axis2;
  5372. ((int32_t *) b->data)[3] = axis3;
  5373. ggml_scratch_load(ctx);
  5374. result->src[2] = b;
  5375. }
  5376. return result;
  5377. }
  5378. // ggml_transpose
  5379. struct ggml_tensor * ggml_transpose(
  5380. struct ggml_context * ctx,
  5381. struct ggml_tensor * a) {
  5382. bool is_node = false;
  5383. if (a->grad) {
  5384. is_node = true;
  5385. }
  5386. struct ggml_tensor * result = ggml_view_tensor(ctx, a);
  5387. ggml_format_name(result, "%s (transposed)", a->name);
  5388. result->ne[0] = a->ne[1];
  5389. result->ne[1] = a->ne[0];
  5390. result->nb[0] = a->nb[1];
  5391. result->nb[1] = a->nb[0];
  5392. result->op = GGML_OP_TRANSPOSE;
  5393. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5394. result->src[0] = a;
  5395. result->src[1] = NULL;
  5396. return result;
  5397. }
  5398. // ggml_get_rows
  5399. struct ggml_tensor * ggml_get_rows(
  5400. struct ggml_context * ctx,
  5401. struct ggml_tensor * a,
  5402. struct ggml_tensor * b) {
  5403. GGML_ASSERT(ggml_is_matrix(a) && ggml_is_vector(b) && b->type == GGML_TYPE_I32);
  5404. bool is_node = false;
  5405. if (a->grad || b->grad) {
  5406. is_node = true;
  5407. }
  5408. // TODO: implement non F32 return
  5409. //struct ggml_tensor * result = ggml_new_tensor_2d(ctx, a->type, a->ne[0], b->ne[0]);
  5410. struct ggml_tensor * result = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, a->ne[0], b->ne[0]);
  5411. result->op = GGML_OP_GET_ROWS;
  5412. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5413. result->src[0] = a;
  5414. result->src[1] = b;
  5415. return result;
  5416. }
  5417. // ggml_get_rows_back
  5418. struct ggml_tensor * ggml_get_rows_back(
  5419. struct ggml_context * ctx,
  5420. struct ggml_tensor * a,
  5421. struct ggml_tensor * b,
  5422. struct ggml_tensor * c) {
  5423. GGML_ASSERT(ggml_is_matrix(a) && ggml_is_vector(b) && b->type == GGML_TYPE_I32);
  5424. GGML_ASSERT(ggml_is_matrix(c) && (a->ne[0] == c->ne[0]));
  5425. bool is_node = false;
  5426. if (a->grad || b->grad) {
  5427. is_node = true;
  5428. }
  5429. // TODO: implement non F32 return
  5430. //struct ggml_tensor * result = ggml_new_tensor_2d(ctx, a->type, a->ne[0], b->ne[0]);
  5431. struct ggml_tensor * result = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, c->ne[0], c->ne[1]);
  5432. result->op = GGML_OP_GET_ROWS_BACK;
  5433. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5434. result->src[0] = a;
  5435. result->src[1] = b;
  5436. result->src[2] = c;
  5437. return result;
  5438. }
  5439. // ggml_diag
  5440. struct ggml_tensor * ggml_diag(
  5441. struct ggml_context * ctx,
  5442. struct ggml_tensor * a) {
  5443. GGML_ASSERT(a->ne[1] == 1);
  5444. bool is_node = false;
  5445. if (a->grad) {
  5446. is_node = true;
  5447. }
  5448. const int64_t ne[4] = { a->ne[0], a->ne[0], a->ne[2], a->ne[3] };
  5449. struct ggml_tensor * result = ggml_new_tensor(ctx, a->type, MAX(a->n_dims, 2), ne);
  5450. result->op = GGML_OP_DIAG;
  5451. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5452. result->src[0] = a;
  5453. result->src[1] = NULL;
  5454. return result;
  5455. }
  5456. // ggml_diag_mask_inf
  5457. struct ggml_tensor * ggml_diag_mask_inf_impl(
  5458. struct ggml_context * ctx,
  5459. struct ggml_tensor * a,
  5460. int n_past,
  5461. bool inplace) {
  5462. bool is_node = false;
  5463. if (a->grad) {
  5464. is_node = true;
  5465. }
  5466. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  5467. ggml_scratch_save(ctx);
  5468. struct ggml_tensor * b = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, 2);
  5469. ((int32_t *) b->data)[0] = n_past;
  5470. ((int32_t *) b->data)[1] = inplace ? 1 : 0;
  5471. ggml_scratch_load(ctx);
  5472. result->op = GGML_OP_DIAG_MASK_INF;
  5473. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5474. result->src[0] = a;
  5475. result->src[1] = b;
  5476. return result;
  5477. }
  5478. struct ggml_tensor * ggml_diag_mask_inf(
  5479. struct ggml_context * ctx,
  5480. struct ggml_tensor * a,
  5481. int n_past) {
  5482. return ggml_diag_mask_inf_impl(ctx, a, n_past, false);
  5483. }
  5484. struct ggml_tensor * ggml_diag_mask_inf_inplace(
  5485. struct ggml_context * ctx,
  5486. struct ggml_tensor * a,
  5487. int n_past) {
  5488. return ggml_diag_mask_inf_impl(ctx, a, n_past, true);
  5489. }
  5490. // ggml_diag_mask_zero
  5491. struct ggml_tensor * ggml_diag_mask_zero_impl(
  5492. struct ggml_context * ctx,
  5493. struct ggml_tensor * a,
  5494. int n_past,
  5495. bool inplace) {
  5496. bool is_node = false;
  5497. if (a->grad) {
  5498. is_node = true;
  5499. }
  5500. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  5501. ggml_scratch_save(ctx);
  5502. struct ggml_tensor * b = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, 2);
  5503. ggml_set_name(b, "n_past, inplace");
  5504. ((int32_t *) b->data)[0] = n_past;
  5505. ((int32_t *) b->data)[1] = inplace ? 1 : 0;
  5506. ggml_scratch_load(ctx);
  5507. result->op = GGML_OP_DIAG_MASK_ZERO;
  5508. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5509. result->src[0] = a;
  5510. result->src[1] = b;
  5511. return result;
  5512. }
  5513. struct ggml_tensor * ggml_diag_mask_zero(
  5514. struct ggml_context * ctx,
  5515. struct ggml_tensor * a,
  5516. int n_past) {
  5517. return ggml_diag_mask_zero_impl(ctx, a, n_past, false);
  5518. }
  5519. struct ggml_tensor * ggml_diag_mask_zero_inplace(
  5520. struct ggml_context * ctx,
  5521. struct ggml_tensor * a,
  5522. int n_past) {
  5523. return ggml_diag_mask_zero_impl(ctx, a, n_past, true);
  5524. }
  5525. // ggml_soft_max
  5526. struct ggml_tensor * ggml_soft_max_impl(
  5527. struct ggml_context * ctx,
  5528. struct ggml_tensor * a,
  5529. bool inplace) {
  5530. bool is_node = false;
  5531. if (a->grad) {
  5532. is_node = true;
  5533. }
  5534. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  5535. result->op = GGML_OP_SOFT_MAX;
  5536. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5537. result->src[0] = a;
  5538. result->src[1] = NULL;
  5539. return result;
  5540. }
  5541. struct ggml_tensor * ggml_soft_max(
  5542. struct ggml_context * ctx,
  5543. struct ggml_tensor * a) {
  5544. return ggml_soft_max_impl(ctx, a, false);
  5545. }
  5546. struct ggml_tensor * ggml_soft_max_inplace(
  5547. struct ggml_context * ctx,
  5548. struct ggml_tensor * a) {
  5549. return ggml_soft_max_impl(ctx, a, true);
  5550. }
  5551. // ggml_soft_max_back
  5552. struct ggml_tensor * ggml_soft_max_back_impl(
  5553. struct ggml_context * ctx,
  5554. struct ggml_tensor * a,
  5555. struct ggml_tensor * b,
  5556. bool inplace) {
  5557. bool is_node = false;
  5558. if (a->grad || b->grad) {
  5559. is_node = true; // TODO : implement backward pass
  5560. }
  5561. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  5562. result->op = GGML_OP_SOFT_MAX_BACK;
  5563. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5564. result->src[0] = a;
  5565. result->src[1] = b;
  5566. return result;
  5567. }
  5568. struct ggml_tensor * ggml_soft_max_back(
  5569. struct ggml_context * ctx,
  5570. struct ggml_tensor * a,
  5571. struct ggml_tensor * b) {
  5572. return ggml_soft_max_back_impl(ctx, a, b, false);
  5573. }
  5574. struct ggml_tensor * ggml_soft_max_back_inplace(
  5575. struct ggml_context * ctx,
  5576. struct ggml_tensor * a,
  5577. struct ggml_tensor * b) {
  5578. return ggml_soft_max_back_impl(ctx, a, b, true);
  5579. }
  5580. // ggml_rope
  5581. struct ggml_tensor * ggml_rope_impl(
  5582. struct ggml_context * ctx,
  5583. struct ggml_tensor * a,
  5584. int n_past,
  5585. int n_dims,
  5586. int mode,
  5587. int n_ctx,
  5588. bool inplace) {
  5589. GGML_ASSERT(n_past >= 0);
  5590. bool is_node = false;
  5591. if (a->grad) {
  5592. is_node = true;
  5593. }
  5594. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  5595. ggml_scratch_save(ctx);
  5596. struct ggml_tensor * b = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, 4);
  5597. ((int32_t *) b->data)[0] = n_past;
  5598. ((int32_t *) b->data)[1] = n_dims;
  5599. ((int32_t *) b->data)[2] = mode;
  5600. ((int32_t *) b->data)[3] = n_ctx;
  5601. ggml_scratch_load(ctx);
  5602. result->op = GGML_OP_ROPE;
  5603. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5604. result->src[0] = a;
  5605. result->src[1] = b;
  5606. return result;
  5607. }
  5608. struct ggml_tensor * ggml_rope(
  5609. struct ggml_context * ctx,
  5610. struct ggml_tensor * a,
  5611. int n_past,
  5612. int n_dims,
  5613. int mode,
  5614. int n_ctx) {
  5615. return ggml_rope_impl(ctx, a, n_past, n_dims, mode, n_ctx, false);
  5616. }
  5617. struct ggml_tensor * ggml_rope_inplace(
  5618. struct ggml_context * ctx,
  5619. struct ggml_tensor * a,
  5620. int n_past,
  5621. int n_dims,
  5622. int mode,
  5623. int n_ctx) {
  5624. return ggml_rope_impl(ctx, a, n_past, n_dims, mode, n_ctx, true);
  5625. }
  5626. // ggml_rope_back
  5627. struct ggml_tensor * ggml_rope_back(
  5628. struct ggml_context * ctx,
  5629. struct ggml_tensor * a,
  5630. int n_past,
  5631. int n_dims,
  5632. int mode) {
  5633. GGML_ASSERT(n_past >= 0);
  5634. GGML_ASSERT((mode & 4) == 0 && "ggml_rope_back() for ChatGLM not implemented yet");
  5635. bool is_node = false;
  5636. if (a->grad) {
  5637. is_node = false; // TODO: implement backward
  5638. }
  5639. struct ggml_tensor * result = ggml_dup_tensor(ctx, a);
  5640. ggml_scratch_save(ctx);
  5641. struct ggml_tensor * b = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, 3);
  5642. ggml_set_name(b, "n_past, n_dims, mode");
  5643. ((int32_t *) b->data)[0] = n_past;
  5644. ((int32_t *) b->data)[1] = n_dims;
  5645. ((int32_t *) b->data)[2] = mode;
  5646. ggml_scratch_load(ctx);
  5647. result->op = GGML_OP_ROPE_BACK;
  5648. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5649. result->src[0] = a;
  5650. result->src[1] = b;
  5651. return result;
  5652. }
  5653. // ggml_alibi
  5654. struct ggml_tensor * ggml_alibi(
  5655. struct ggml_context * ctx,
  5656. struct ggml_tensor * a,
  5657. int n_past,
  5658. int n_head,
  5659. float bias_max) {
  5660. GGML_ASSERT(n_past >= 0);
  5661. bool is_node = false;
  5662. if (a->grad) {
  5663. GGML_ASSERT(false); // TODO: implement backward
  5664. is_node = true;
  5665. }
  5666. // TODO: when implement backward, fix this:
  5667. //struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  5668. struct ggml_tensor * result = ggml_view_tensor(ctx, a);
  5669. ggml_scratch_save(ctx);
  5670. struct ggml_tensor * b = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, 3);
  5671. ((int32_t *) b->data)[0] = n_past;
  5672. ((int32_t *) b->data)[1] = n_head;
  5673. GGML_ASSERT(sizeof(float) == sizeof(int32_t));
  5674. (((float *) b->data)[2]) = bias_max;
  5675. ggml_scratch_load(ctx);
  5676. result->op = GGML_OP_ALIBI;
  5677. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5678. result->src[0] = a;
  5679. result->src[1] = b;
  5680. return result;
  5681. }
  5682. // ggml_clamp
  5683. struct ggml_tensor * ggml_clamp(
  5684. struct ggml_context * ctx,
  5685. struct ggml_tensor * a,
  5686. float min,
  5687. float max) {
  5688. bool is_node = false;
  5689. if (a->grad) {
  5690. GGML_ASSERT(false); // TODO: implement backward
  5691. is_node = true;
  5692. }
  5693. // TODO: when implement backward, fix this:
  5694. struct ggml_tensor * result = ggml_view_tensor(ctx, a);
  5695. ggml_scratch_save(ctx);
  5696. struct ggml_tensor * b = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, 2);
  5697. ((float *) b->data)[0] = min;
  5698. ((float *) b->data)[1] = max;
  5699. ggml_scratch_load(ctx);
  5700. result->op = GGML_OP_CLAMP;
  5701. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5702. result->src[0] = a;
  5703. result->src[1] = b;
  5704. return result;
  5705. }
  5706. // ggml_conv_1d
  5707. static int64_t ggml_calc_conv_output_size(int64_t ins, int64_t ks, int s, int p, int d) {
  5708. return (ins + 2 * p - d * (ks - 1) - 1) / s + 1;
  5709. }
  5710. GGML_API struct ggml_tensor * ggml_conv_1d(
  5711. struct ggml_context * ctx,
  5712. struct ggml_tensor * a,
  5713. struct ggml_tensor * b,
  5714. int s0,
  5715. int p0,
  5716. int d0) {
  5717. GGML_ASSERT(ggml_is_matrix(b));
  5718. GGML_ASSERT(a->ne[1] == b->ne[1]);
  5719. bool is_node = false;
  5720. if (a->grad || b->grad) {
  5721. GGML_ASSERT(false); // TODO: implement backward
  5722. is_node = true;
  5723. }
  5724. const int64_t ne[4] = {
  5725. ggml_calc_conv_output_size(b->ne[0], a->ne[0], s0, p0, d0),
  5726. a->ne[2], 1, 1,
  5727. };
  5728. struct ggml_tensor* result = ggml_new_tensor(ctx, GGML_TYPE_F32, 2, ne);
  5729. ggml_scratch_save(ctx);
  5730. struct ggml_tensor* c = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, 3);
  5731. ((int32_t*)c->data)[0] = s0;
  5732. ((int32_t*)c->data)[1] = p0;
  5733. ((int32_t*)c->data)[2] = d0;
  5734. ggml_scratch_load(ctx);
  5735. result->op = GGML_OP_CONV_1D;
  5736. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5737. result->src[0] = a;
  5738. result->src[1] = b;
  5739. result->src[2] = c;
  5740. return result;
  5741. }
  5742. // ggml_conv_2d
  5743. struct ggml_tensor* ggml_conv_2d(
  5744. struct ggml_context* ctx,
  5745. struct ggml_tensor * a,
  5746. struct ggml_tensor * b,
  5747. int s0,
  5748. int s1,
  5749. int p0,
  5750. int p1,
  5751. int d0,
  5752. int d1) {
  5753. GGML_ASSERT(b->ne[3] == 1);
  5754. GGML_ASSERT(a->ne[2] == b->ne[2]);
  5755. bool is_node = false;
  5756. if (a->grad || b->grad) {
  5757. GGML_ASSERT(false); // TODO: implement backward
  5758. is_node = true;
  5759. }
  5760. const int64_t ne[4] = {
  5761. ggml_calc_conv_output_size(b->ne[0], a->ne[0], s0, p0, d0),
  5762. ggml_calc_conv_output_size(b->ne[1], a->ne[1], s1, p1, d1),
  5763. a->ne[3], 1,
  5764. };
  5765. struct ggml_tensor* result = ggml_new_tensor(ctx, GGML_TYPE_F32, 4, ne);
  5766. ggml_scratch_save(ctx);
  5767. struct ggml_tensor* c = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, 6);
  5768. ((int32_t*)c->data)[0] = s0;
  5769. ((int32_t*)c->data)[1] = s1;
  5770. ((int32_t*)c->data)[2] = p0;
  5771. ((int32_t*)c->data)[3] = p1;
  5772. ((int32_t*)c->data)[4] = d0;
  5773. ((int32_t*)c->data)[5] = d1;
  5774. ggml_scratch_load(ctx);
  5775. result->op = GGML_OP_CONV_2D;
  5776. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5777. result->src[0] = a;
  5778. result->src[1] = b;
  5779. result->src[2] = c;
  5780. return result;
  5781. }
  5782. // ggml_conv_1d_ph
  5783. struct ggml_tensor* ggml_conv_1d_ph(
  5784. struct ggml_context * ctx,
  5785. struct ggml_tensor * a,
  5786. struct ggml_tensor * b,
  5787. int s,
  5788. int d) {
  5789. return ggml_conv_1d(ctx, a, b, s, a->ne[0] / 2, d);
  5790. }
  5791. // ggml_flash_attn
  5792. struct ggml_tensor * ggml_flash_attn(
  5793. struct ggml_context * ctx,
  5794. struct ggml_tensor * q,
  5795. struct ggml_tensor * k,
  5796. struct ggml_tensor * v,
  5797. bool masked) {
  5798. GGML_ASSERT(ggml_can_mul_mat(k, q));
  5799. // TODO: check if vT can be multiplied by (k*qT)
  5800. bool is_node = false;
  5801. if (q->grad || k->grad || v->grad) {
  5802. is_node = true;
  5803. }
  5804. //struct ggml_tensor * result = ggml_dup_tensor(ctx, q);
  5805. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, 4, q->ne);
  5806. result->op = GGML_OP_FLASH_ATTN;
  5807. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5808. result->src[0] = q;
  5809. result->src[1] = k;
  5810. result->src[2] = v;
  5811. result->src[3] = ggml_new_i32(ctx, masked ? 1 : 0);
  5812. return result;
  5813. }
  5814. // ggml_flash_ff
  5815. struct ggml_tensor * ggml_flash_ff(
  5816. struct ggml_context * ctx,
  5817. struct ggml_tensor * a,
  5818. struct ggml_tensor * b0,
  5819. struct ggml_tensor * b1,
  5820. struct ggml_tensor * c0,
  5821. struct ggml_tensor * c1) {
  5822. GGML_ASSERT(ggml_can_mul_mat(b0, a));
  5823. // TODO: more checks
  5824. bool is_node = false;
  5825. if (a->grad || b0->grad || b1->grad || c0->grad || c1->grad) {
  5826. is_node = true;
  5827. }
  5828. //struct ggml_tensor * result = ggml_dup_tensor(ctx, a);
  5829. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, 4, a->ne);
  5830. result->op = GGML_OP_FLASH_FF;
  5831. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5832. result->src[0] = a;
  5833. result->src[1] = b0;
  5834. result->src[2] = b1;
  5835. result->src[3] = c0;
  5836. result->src[4] = c1;
  5837. return result;
  5838. }
  5839. // ggml_flash_attn_back
  5840. struct ggml_tensor * ggml_flash_attn_back(
  5841. struct ggml_context * ctx,
  5842. struct ggml_tensor * q,
  5843. struct ggml_tensor * k,
  5844. struct ggml_tensor * v,
  5845. struct ggml_tensor * d,
  5846. bool masked) {
  5847. GGML_ASSERT(ggml_can_mul_mat(k, q));
  5848. // TODO: check if vT can be multiplied by (k*qT)
  5849. // d shape [D,N,ne2,ne3]
  5850. // q shape [D,N,ne2,ne3]
  5851. // k shape [D,M,ne2,ne3]
  5852. // v shape [M,D,ne2,ne3]
  5853. const int64_t D = q->ne[0];
  5854. const int64_t N = q->ne[1];
  5855. const int64_t M = k->ne[1];
  5856. const int64_t ne2 = q->ne[2];
  5857. const int64_t ne3 = q->ne[3];
  5858. GGML_ASSERT(k->ne[0] == D);
  5859. GGML_ASSERT(v->ne[0] == M);
  5860. GGML_ASSERT(v->ne[1] == D);
  5861. GGML_ASSERT(d->ne[0] == D);
  5862. GGML_ASSERT(d->ne[1] == N);
  5863. GGML_ASSERT(k->ne[2] == ne2);
  5864. GGML_ASSERT(k->ne[3] == ne3);
  5865. GGML_ASSERT(v->ne[2] == ne2);
  5866. GGML_ASSERT(v->ne[3] == ne3);
  5867. GGML_ASSERT(d->ne[2] == ne2);
  5868. GGML_ASSERT(d->ne[3] == ne3);
  5869. bool is_node = false;
  5870. if (q->grad || k->grad || v->grad) {
  5871. // when using this operation (in backwards pass) these grads are set.
  5872. // we don't want to create (big) grad of our result, so is_node is false.
  5873. is_node = false;
  5874. }
  5875. // store gradients of q, k and v as continuous tensors concatenated in result.
  5876. // q shape[D,N,ne2,ne3] ; k shape [D,M,ne2,ne3] ; v shape [M,D,ne2,ne3]
  5877. // gradq->data = result->data
  5878. // gradk->data = result->data + nb0*D*N*ne2*ne3
  5879. // gradv->data = result->data + nb0*D*N*ne2*ne3 + nb0*D*M*ne2*ne3
  5880. // note: v and gradv are actually transposed, i.e. v->ne[0] != D.
  5881. int64_t ne[4] = {D,M+N+M,ne2,ne3};
  5882. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, 4, ne);
  5883. result->op = GGML_OP_FLASH_ATTN_BACK;
  5884. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5885. result->src[0] = q;
  5886. result->src[1] = k;
  5887. result->src[2] = v;
  5888. result->src[3] = d;
  5889. result->src[4] = ggml_new_i32(ctx, masked ? 1 : 0);
  5890. return result;
  5891. }
  5892. // ggml_win_part
  5893. struct ggml_tensor * ggml_win_part(
  5894. struct ggml_context * ctx,
  5895. struct ggml_tensor * a,
  5896. int w) {
  5897. GGML_ASSERT(a->ne[3] == 1);
  5898. GGML_ASSERT(a->type == GGML_TYPE_F32);
  5899. bool is_node = false;
  5900. if (a->grad) {
  5901. GGML_ASSERT(false); // TODO: implement backward
  5902. is_node = true;
  5903. }
  5904. // padding
  5905. const int px = (w - a->ne[1]%w)%w;
  5906. const int py = (w - a->ne[2]%w)%w;
  5907. const int npx = (px + a->ne[1])/w;
  5908. const int npy = (py + a->ne[2])/w;
  5909. const int np = npx*npy;
  5910. const int64_t ne[4] = { a->ne[0], w, w, np, };
  5911. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, 4, ne);
  5912. ggml_scratch_save(ctx);
  5913. struct ggml_tensor * b = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, 3);
  5914. ((int32_t *) b->data)[0] = npx;
  5915. ((int32_t *) b->data)[1] = npy;
  5916. ((int32_t *) b->data)[2] = w;
  5917. ggml_scratch_load(ctx);
  5918. result->op = GGML_OP_WIN_PART;
  5919. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5920. result->src[0] = a;
  5921. result->src[1] = NULL;
  5922. result->src[2] = b;
  5923. return result;
  5924. }
  5925. // ggml_win_unpart
  5926. struct ggml_tensor * ggml_win_unpart(
  5927. struct ggml_context * ctx,
  5928. struct ggml_tensor * a,
  5929. int w0,
  5930. int h0,
  5931. int w) {
  5932. GGML_ASSERT(a->type == GGML_TYPE_F32);
  5933. bool is_node = false;
  5934. if (a->grad) {
  5935. GGML_ASSERT(false); // TODO: implement backward
  5936. is_node = true;
  5937. }
  5938. const int64_t ne[4] = { a->ne[0], w0, h0, 1, };
  5939. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, 3, ne);
  5940. ggml_scratch_save(ctx);
  5941. struct ggml_tensor * b = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, 1);
  5942. ((int32_t *) b->data)[0] = w;
  5943. ggml_scratch_load(ctx);
  5944. result->op = GGML_OP_WIN_UNPART;
  5945. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5946. result->src[0] = a;
  5947. result->src[1] = NULL;
  5948. result->src[2] = b;
  5949. return result;
  5950. }
  5951. // ggml_map_unary
  5952. struct ggml_tensor * ggml_map_unary_impl_f32(
  5953. struct ggml_context * ctx,
  5954. struct ggml_tensor * a,
  5955. const ggml_unary_op_f32_t fun,
  5956. bool inplace) {
  5957. bool is_node = false;
  5958. if (!inplace && a->grad) {
  5959. is_node = true;
  5960. }
  5961. struct ggml_tensor *result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  5962. ggml_scratch_save(ctx);
  5963. struct ggml_tensor * addr_tensor = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, sizeof(void *) / sizeof(int32_t));
  5964. *((void (**)(void))addr_tensor->data) = (void (*)(void))fun;
  5965. ggml_scratch_load(ctx);
  5966. result->op = GGML_OP_MAP_UNARY;
  5967. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5968. result->src[0] = a;
  5969. result->src[2] = addr_tensor;
  5970. return result;
  5971. }
  5972. struct ggml_tensor * ggml_map_unary_f32(
  5973. struct ggml_context * ctx,
  5974. struct ggml_tensor * a,
  5975. const ggml_unary_op_f32_t fun) {
  5976. return ggml_map_unary_impl_f32(ctx, a, fun, false);
  5977. }
  5978. struct ggml_tensor * ggml_map_unary_inplace_f32(
  5979. struct ggml_context * ctx,
  5980. struct ggml_tensor * a,
  5981. const ggml_unary_op_f32_t fun) {
  5982. return ggml_map_unary_impl_f32(ctx, a, fun, true);
  5983. }
  5984. // ggml_map_binary
  5985. struct ggml_tensor * ggml_map_binary_impl_f32(
  5986. struct ggml_context * ctx,
  5987. struct ggml_tensor * a,
  5988. struct ggml_tensor * b,
  5989. const ggml_binary_op_f32_t fun,
  5990. bool inplace) {
  5991. GGML_ASSERT(ggml_are_same_shape(a, b));
  5992. bool is_node = false;
  5993. if (!inplace && (a->grad || b->grad)) {
  5994. is_node = true;
  5995. }
  5996. struct ggml_tensor *result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  5997. ggml_scratch_save(ctx);
  5998. struct ggml_tensor * addr_tensor = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, sizeof(void *) / sizeof(int32_t));
  5999. *((void (**)(void))addr_tensor->data) = (void (*)(void))fun;
  6000. ggml_scratch_load(ctx);
  6001. result->op = GGML_OP_MAP_BINARY;
  6002. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  6003. result->src[0] = a;
  6004. result->src[1] = b;
  6005. result->src[2] = addr_tensor;
  6006. return result;
  6007. }
  6008. struct ggml_tensor * ggml_map_binary_f32(
  6009. struct ggml_context * ctx,
  6010. struct ggml_tensor * a,
  6011. struct ggml_tensor * b,
  6012. const ggml_binary_op_f32_t fun) {
  6013. return ggml_map_binary_impl_f32(ctx, a, b, fun, false);
  6014. }
  6015. struct ggml_tensor * ggml_map_binary_inplace_f32(
  6016. struct ggml_context * ctx,
  6017. struct ggml_tensor * a,
  6018. struct ggml_tensor * b,
  6019. const ggml_binary_op_f32_t fun) {
  6020. return ggml_map_binary_impl_f32(ctx, a, b, fun, true);
  6021. }
  6022. // ggml_map_custom1
  6023. struct ggml_tensor * ggml_map_custom1_impl_f32(
  6024. struct ggml_context * ctx,
  6025. struct ggml_tensor * a,
  6026. const ggml_custom1_op_f32_t fun,
  6027. bool inplace) {
  6028. bool is_node = false;
  6029. if (!inplace && a->grad) {
  6030. is_node = true;
  6031. }
  6032. struct ggml_tensor *result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  6033. ggml_scratch_save(ctx);
  6034. struct ggml_tensor * addr_tensor = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, sizeof(void *) / sizeof(int32_t));
  6035. *((void (**)(void))addr_tensor->data) = (void (*)(void))fun;
  6036. ggml_scratch_load(ctx);
  6037. result->op = GGML_OP_MAP_CUSTOM1;
  6038. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  6039. result->src[0] = a;
  6040. result->src[2] = addr_tensor;
  6041. return result;
  6042. }
  6043. struct ggml_tensor * ggml_map_custom1_f32(
  6044. struct ggml_context * ctx,
  6045. struct ggml_tensor * a,
  6046. const ggml_custom1_op_f32_t fun) {
  6047. return ggml_map_custom1_impl_f32(ctx, a, fun, false);
  6048. }
  6049. struct ggml_tensor * ggml_map_custom1_inplace_f32(
  6050. struct ggml_context * ctx,
  6051. struct ggml_tensor * a,
  6052. const ggml_custom1_op_f32_t fun) {
  6053. return ggml_map_custom1_impl_f32(ctx, a, fun, true);
  6054. }
  6055. // ggml_map_custom2
  6056. struct ggml_tensor * ggml_map_custom2_impl_f32(
  6057. struct ggml_context * ctx,
  6058. struct ggml_tensor * a,
  6059. struct ggml_tensor * b,
  6060. const ggml_custom2_op_f32_t fun,
  6061. bool inplace) {
  6062. bool is_node = false;
  6063. if (!inplace && (a->grad || b->grad)) {
  6064. is_node = true;
  6065. }
  6066. struct ggml_tensor *result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  6067. ggml_scratch_save(ctx);
  6068. struct ggml_tensor * addr_tensor = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, sizeof(void *) / sizeof(int32_t));
  6069. *((void (**)(void))addr_tensor->data) = (void (*)(void))fun;
  6070. ggml_scratch_load(ctx);
  6071. result->op = GGML_OP_MAP_CUSTOM2;
  6072. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  6073. result->src[0] = a;
  6074. result->src[1] = b;
  6075. result->src[2] = addr_tensor;
  6076. return result;
  6077. }
  6078. struct ggml_tensor * ggml_map_custom2_f32(
  6079. struct ggml_context * ctx,
  6080. struct ggml_tensor * a,
  6081. struct ggml_tensor * b,
  6082. const ggml_custom2_op_f32_t fun) {
  6083. return ggml_map_custom2_impl_f32(ctx, a, b, fun, false);
  6084. }
  6085. struct ggml_tensor * ggml_map_custom2_inplace_f32(
  6086. struct ggml_context * ctx,
  6087. struct ggml_tensor * a,
  6088. struct ggml_tensor * b,
  6089. const ggml_custom2_op_f32_t fun) {
  6090. return ggml_map_custom2_impl_f32(ctx, a, b, fun, true);
  6091. }
  6092. // ggml_map_custom3
  6093. struct ggml_tensor * ggml_map_custom3_impl_f32(
  6094. struct ggml_context * ctx,
  6095. struct ggml_tensor * a,
  6096. struct ggml_tensor * b,
  6097. struct ggml_tensor * c,
  6098. const ggml_custom3_op_f32_t fun,
  6099. bool inplace) {
  6100. bool is_node = false;
  6101. if (!inplace && (a->grad || b->grad || c->grad)) {
  6102. is_node = true;
  6103. }
  6104. struct ggml_tensor *result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  6105. ggml_scratch_save(ctx);
  6106. struct ggml_tensor * addr_tensor = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, sizeof(void *) / sizeof(int32_t));
  6107. *((void (**)(void))addr_tensor->data) = (void (*)(void))fun;
  6108. ggml_scratch_load(ctx);
  6109. result->op = GGML_OP_MAP_CUSTOM3;
  6110. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  6111. result->src[0] = a;
  6112. result->src[1] = b;
  6113. result->src[2] = addr_tensor;
  6114. result->src[3] = c;
  6115. return result;
  6116. }
  6117. struct ggml_tensor * ggml_map_custom3_f32(
  6118. struct ggml_context * ctx,
  6119. struct ggml_tensor * a,
  6120. struct ggml_tensor * b,
  6121. struct ggml_tensor * c,
  6122. const ggml_custom3_op_f32_t fun) {
  6123. return ggml_map_custom3_impl_f32(ctx, a, b, c, fun, false);
  6124. }
  6125. struct ggml_tensor * ggml_map_custom3_inplace_f32(
  6126. struct ggml_context * ctx,
  6127. struct ggml_tensor * a,
  6128. struct ggml_tensor * b,
  6129. struct ggml_tensor * c,
  6130. const ggml_custom3_op_f32_t fun) {
  6131. return ggml_map_custom3_impl_f32(ctx, a, b, c, fun, true);
  6132. }
  6133. // ggml_cross_entropy_loss
  6134. struct ggml_tensor * ggml_cross_entropy_loss(
  6135. struct ggml_context * ctx,
  6136. struct ggml_tensor * a,
  6137. struct ggml_tensor * b) {
  6138. GGML_ASSERT(ggml_are_same_shape(a, b));
  6139. bool is_node = false;
  6140. if (a->grad || b->grad) {
  6141. is_node = true;
  6142. }
  6143. struct ggml_tensor * result = ggml_new_tensor_1d(ctx, a->type, 1);
  6144. result->op = GGML_OP_CROSS_ENTROPY_LOSS;
  6145. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  6146. result->src[0] = a;
  6147. result->src[1] = b;
  6148. return result;
  6149. }
  6150. // ggml_cross_entropy_loss_back
  6151. struct ggml_tensor * ggml_cross_entropy_loss_back(
  6152. struct ggml_context * ctx,
  6153. struct ggml_tensor * a,
  6154. struct ggml_tensor * b,
  6155. struct ggml_tensor * c) {
  6156. GGML_ASSERT(ggml_are_same_shape(a, b));
  6157. GGML_ASSERT(ggml_is_scalar(c));
  6158. struct ggml_tensor * result = ggml_dup_tensor(ctx, a);
  6159. result->op = GGML_OP_CROSS_ENTROPY_LOSS_BACK;
  6160. result->grad = NULL;
  6161. result->src[0] = a;
  6162. result->src[1] = b;
  6163. result->src[2] = c;
  6164. return result;
  6165. }
  6166. ////////////////////////////////////////////////////////////////////////////////
  6167. void ggml_set_param(
  6168. struct ggml_context * ctx,
  6169. struct ggml_tensor * tensor) {
  6170. tensor->is_param = true;
  6171. GGML_ASSERT(tensor->grad == NULL);
  6172. tensor->grad = ggml_dup_tensor(ctx, tensor);
  6173. }
  6174. // ggml_compute_forward_dup
  6175. static void ggml_compute_forward_dup_same_cont(
  6176. const struct ggml_compute_params * params,
  6177. const struct ggml_tensor * src0,
  6178. struct ggml_tensor * dst) {
  6179. GGML_ASSERT(ggml_nelements(dst) == ggml_nelements(src0));
  6180. GGML_ASSERT(ggml_is_contiguous(dst) && ggml_is_contiguous(src0));
  6181. GGML_ASSERT(src0->type == dst->type);
  6182. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  6183. return;
  6184. }
  6185. const size_t nb00 = src0->nb[0];
  6186. const size_t nb0 = dst->nb[0];
  6187. const int ith = params->ith; // thread index
  6188. const int nth = params->nth; // number of threads
  6189. // parallelize by elements
  6190. const int ne = ggml_nelements(dst);
  6191. const int dr = (ne + nth - 1) / nth;
  6192. const int ie0 = dr * ith;
  6193. const int ie1 = MIN(ie0 + dr, ne);
  6194. if (ie0 < ie1) {
  6195. memcpy(
  6196. ((char *) dst->data + ie0*nb0),
  6197. ((char *) src0->data + ie0*nb00),
  6198. (ie1 - ie0) * GGML_TYPE_SIZE[src0->type]);
  6199. }
  6200. }
  6201. static void ggml_compute_forward_dup_f16(
  6202. const struct ggml_compute_params * params,
  6203. const struct ggml_tensor * src0,
  6204. struct ggml_tensor * dst) {
  6205. GGML_ASSERT(ggml_nelements(dst) == ggml_nelements(src0));
  6206. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  6207. return;
  6208. }
  6209. GGML_TENSOR_UNARY_OP_LOCALS;
  6210. const int ith = params->ith; // thread index
  6211. const int nth = params->nth; // number of threads
  6212. if (ggml_is_contiguous(src0) && ggml_is_contiguous(dst) && src0->type == dst->type) {
  6213. ggml_compute_forward_dup_same_cont(params, src0, dst);
  6214. return;
  6215. }
  6216. // parallelize by rows
  6217. const int nr = ne01;
  6218. // number of rows per thread
  6219. const int dr = (nr + nth - 1) / nth;
  6220. // row range for this thread
  6221. const int ir0 = dr * ith;
  6222. const int ir1 = MIN(ir0 + dr, nr);
  6223. if (src0->type == dst->type &&
  6224. ne00 == ne0 &&
  6225. nb00 == GGML_TYPE_SIZE[src0->type] && nb0 == GGML_TYPE_SIZE[dst->type]) {
  6226. // copy by rows
  6227. const size_t rs = ne00*nb00;
  6228. for (int64_t i03 = 0; i03 < ne03; i03++) {
  6229. for (int64_t i02 = 0; i02 < ne02; i02++) {
  6230. for (int64_t i01 = ir0; i01 < ir1; i01++) {
  6231. memcpy(
  6232. ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3),
  6233. ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03),
  6234. rs);
  6235. }
  6236. }
  6237. }
  6238. return;
  6239. }
  6240. // TODO: add more special-case implementations for tensor shapes/strides that can benefit from memcpy
  6241. if (ggml_is_contiguous(dst)) {
  6242. if (nb00 == sizeof(ggml_fp16_t)) {
  6243. if (dst->type == GGML_TYPE_F16) {
  6244. size_t id = 0;
  6245. const size_t rs = ne00 * nb00;
  6246. char * dst_ptr = (char *) dst->data;
  6247. for (int i03 = 0; i03 < ne03; i03++) {
  6248. for (int i02 = 0; i02 < ne02; i02++) {
  6249. id += rs * ir0;
  6250. for (int i01 = ir0; i01 < ir1; i01++) {
  6251. const char * src0_ptr = (char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03;
  6252. memcpy(dst_ptr + id, src0_ptr, rs);
  6253. id += rs;
  6254. }
  6255. id += rs * (ne01 - ir1);
  6256. }
  6257. }
  6258. } else if (dst->type == GGML_TYPE_F32) {
  6259. size_t id = 0;
  6260. float * dst_ptr = (float *) dst->data;
  6261. for (int i03 = 0; i03 < ne03; i03++) {
  6262. for (int i02 = 0; i02 < ne02; i02++) {
  6263. id += ne00 * ir0;
  6264. for (int i01 = ir0; i01 < ir1; i01++) {
  6265. const ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03);
  6266. for (int i00 = 0; i00 < ne00; i00++) {
  6267. dst_ptr[id] = GGML_FP16_TO_FP32(src0_ptr[i00]);
  6268. id++;
  6269. }
  6270. }
  6271. id += ne00 * (ne01 - ir1);
  6272. }
  6273. }
  6274. } else if (type_traits[dst->type].from_float) {
  6275. ggml_from_float_t const quantize_row_q = type_traits[dst->type].from_float;
  6276. float * src0_f32 = (float *) params->wdata + (ne00 + CACHE_LINE_SIZE_F32) * ith;
  6277. size_t id = 0;
  6278. size_t rs = nb0 * (ne00 / GGML_BLCK_SIZE[dst->type]);
  6279. char * dst_ptr = (char *) dst->data;
  6280. for (int i03 = 0; i03 < ne03; i03++) {
  6281. for (int i02 = 0; i02 < ne02; i02++) {
  6282. id += rs * ir0;
  6283. for (int i01 = ir0; i01 < ir1; i01++) {
  6284. const ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03);
  6285. for (int i00 = 0; i00 < ne00; i00++) {
  6286. src0_f32[i00] = GGML_FP16_TO_FP32(src0_ptr[i00]);
  6287. }
  6288. quantize_row_q(src0_f32, dst_ptr + id, ne00);
  6289. id += rs;
  6290. }
  6291. id += rs * (ne01 - ir1);
  6292. }
  6293. }
  6294. } else {
  6295. GGML_ASSERT(false); // TODO: implement
  6296. }
  6297. } else {
  6298. //printf("%s: this is not optimal - fix me\n", __func__);
  6299. if (dst->type == GGML_TYPE_F32) {
  6300. size_t id = 0;
  6301. float * dst_ptr = (float *) dst->data;
  6302. for (int i03 = 0; i03 < ne03; i03++) {
  6303. for (int i02 = 0; i02 < ne02; i02++) {
  6304. id += ne00 * ir0;
  6305. for (int i01 = ir0; i01 < ir1; i01++) {
  6306. for (int i00 = 0; i00 < ne00; i00++) {
  6307. const ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  6308. dst_ptr[id] = GGML_FP16_TO_FP32(*src0_ptr);
  6309. id++;
  6310. }
  6311. }
  6312. id += ne00 * (ne01 - ir1);
  6313. }
  6314. }
  6315. } else if (dst->type == GGML_TYPE_F16) {
  6316. size_t id = 0;
  6317. ggml_fp16_t * dst_ptr = (ggml_fp16_t *) dst->data;
  6318. for (int i03 = 0; i03 < ne03; i03++) {
  6319. for (int i02 = 0; i02 < ne02; i02++) {
  6320. id += ne00 * ir0;
  6321. for (int i01 = ir0; i01 < ir1; i01++) {
  6322. for (int i00 = 0; i00 < ne00; i00++) {
  6323. const ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  6324. dst_ptr[id] = *src0_ptr;
  6325. id++;
  6326. }
  6327. }
  6328. id += ne00 * (ne01 - ir1);
  6329. }
  6330. }
  6331. } else {
  6332. GGML_ASSERT(false); // TODO: implement
  6333. }
  6334. }
  6335. return;
  6336. }
  6337. // dst counters
  6338. int64_t i10 = 0;
  6339. int64_t i11 = 0;
  6340. int64_t i12 = 0;
  6341. int64_t i13 = 0;
  6342. if (dst->type == GGML_TYPE_F16) {
  6343. for (int64_t i03 = 0; i03 < ne03; i03++) {
  6344. for (int64_t i02 = 0; i02 < ne02; i02++) {
  6345. i10 += ne00 * ir0;
  6346. while (i10 >= ne0) {
  6347. i10 -= ne0;
  6348. if (++i11 == ne1) {
  6349. i11 = 0;
  6350. if (++i12 == ne2) {
  6351. i12 = 0;
  6352. if (++i13 == ne3) {
  6353. i13 = 0;
  6354. }
  6355. }
  6356. }
  6357. }
  6358. for (int64_t i01 = ir0; i01 < ir1; i01++) {
  6359. for (int64_t i00 = 0; i00 < ne00; i00++) {
  6360. const char * src0_ptr = ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  6361. char * dst_ptr = ((char *) dst->data + i10*nb0 + i11*nb1 + i12*nb2 + i13*nb3);
  6362. memcpy(dst_ptr, src0_ptr, sizeof(ggml_fp16_t));
  6363. if (++i10 == ne00) {
  6364. i10 = 0;
  6365. if (++i11 == ne01) {
  6366. i11 = 0;
  6367. if (++i12 == ne02) {
  6368. i12 = 0;
  6369. if (++i13 == ne03) {
  6370. i13 = 0;
  6371. }
  6372. }
  6373. }
  6374. }
  6375. }
  6376. }
  6377. i10 += ne00 * (ne01 - ir1);
  6378. while (i10 >= ne0) {
  6379. i10 -= ne0;
  6380. if (++i11 == ne1) {
  6381. i11 = 0;
  6382. if (++i12 == ne2) {
  6383. i12 = 0;
  6384. if (++i13 == ne3) {
  6385. i13 = 0;
  6386. }
  6387. }
  6388. }
  6389. }
  6390. }
  6391. }
  6392. } else if (dst->type == GGML_TYPE_F32) {
  6393. for (int64_t i03 = 0; i03 < ne03; i03++) {
  6394. for (int64_t i02 = 0; i02 < ne02; i02++) {
  6395. i10 += ne00 * ir0;
  6396. while (i10 >= ne0) {
  6397. i10 -= ne0;
  6398. if (++i11 == ne1) {
  6399. i11 = 0;
  6400. if (++i12 == ne2) {
  6401. i12 = 0;
  6402. if (++i13 == ne3) {
  6403. i13 = 0;
  6404. }
  6405. }
  6406. }
  6407. }
  6408. for (int64_t i01 = ir0; i01 < ir1; i01++) {
  6409. for (int64_t i00 = 0; i00 < ne00; i00++) {
  6410. const char * src0_ptr = ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  6411. char * dst_ptr = ((char *) dst->data + i10*nb0 + i11*nb1 + i12*nb2 + i13*nb3);
  6412. *(float *) dst_ptr = GGML_FP16_TO_FP32(*(const ggml_fp16_t *) src0_ptr);
  6413. if (++i10 == ne0) {
  6414. i10 = 0;
  6415. if (++i11 == ne1) {
  6416. i11 = 0;
  6417. if (++i12 == ne2) {
  6418. i12 = 0;
  6419. if (++i13 == ne3) {
  6420. i13 = 0;
  6421. }
  6422. }
  6423. }
  6424. }
  6425. }
  6426. }
  6427. i10 += ne00 * (ne01 - ir1);
  6428. while (i10 >= ne0) {
  6429. i10 -= ne0;
  6430. if (++i11 == ne1) {
  6431. i11 = 0;
  6432. if (++i12 == ne2) {
  6433. i12 = 0;
  6434. if (++i13 == ne3) {
  6435. i13 = 0;
  6436. }
  6437. }
  6438. }
  6439. }
  6440. }
  6441. }
  6442. } else {
  6443. GGML_ASSERT(false); // TODO: implement
  6444. }
  6445. }
  6446. static void ggml_compute_forward_dup_f32(
  6447. const struct ggml_compute_params * params,
  6448. const struct ggml_tensor * src0,
  6449. struct ggml_tensor * dst) {
  6450. GGML_ASSERT(ggml_nelements(dst) == ggml_nelements(src0));
  6451. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  6452. return;
  6453. }
  6454. GGML_TENSOR_UNARY_OP_LOCALS;
  6455. const int ith = params->ith; // thread index
  6456. const int nth = params->nth; // number of threads
  6457. if (ggml_is_contiguous(src0) && ggml_is_contiguous(dst) && src0->type == dst->type) {
  6458. ggml_compute_forward_dup_same_cont(params, src0, dst);
  6459. return;
  6460. }
  6461. // parallelize by rows
  6462. const int nr = ne01;
  6463. // number of rows per thread
  6464. const int dr = (nr + nth - 1) / nth;
  6465. // row range for this thread
  6466. const int ir0 = dr * ith;
  6467. const int ir1 = MIN(ir0 + dr, nr);
  6468. if (src0->type == dst->type &&
  6469. ne00 == ne0 &&
  6470. nb00 == GGML_TYPE_SIZE[src0->type] && nb0 == GGML_TYPE_SIZE[dst->type]) {
  6471. // copy by rows
  6472. const size_t rs = ne00*nb00;
  6473. for (int64_t i03 = 0; i03 < ne03; i03++) {
  6474. for (int64_t i02 = 0; i02 < ne02; i02++) {
  6475. for (int64_t i01 = ir0; i01 < ir1; i01++) {
  6476. memcpy(
  6477. ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3),
  6478. ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03),
  6479. rs);
  6480. }
  6481. }
  6482. }
  6483. return;
  6484. }
  6485. if (ggml_is_contiguous(dst)) {
  6486. // TODO: simplify
  6487. if (nb00 == sizeof(float)) {
  6488. if (dst->type == GGML_TYPE_F32) {
  6489. size_t id = 0;
  6490. const size_t rs = ne00 * nb00;
  6491. char * dst_ptr = (char *) dst->data;
  6492. for (int i03 = 0; i03 < ne03; i03++) {
  6493. for (int i02 = 0; i02 < ne02; i02++) {
  6494. id += rs * ir0;
  6495. for (int i01 = ir0; i01 < ir1; i01++) {
  6496. const char * src0_ptr = (char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03;
  6497. memcpy(dst_ptr + id, src0_ptr, rs);
  6498. id += rs;
  6499. }
  6500. id += rs * (ne01 - ir1);
  6501. }
  6502. }
  6503. } else if (type_traits[dst->type].from_float) {
  6504. ggml_from_float_t const quantize_row_q = type_traits[dst->type].from_float;
  6505. size_t id = 0;
  6506. size_t rs = nb0 * (ne00 / GGML_BLCK_SIZE[dst->type]);
  6507. char * dst_ptr = (char *) dst->data;
  6508. for (int i03 = 0; i03 < ne03; i03++) {
  6509. for (int i02 = 0; i02 < ne02; i02++) {
  6510. id += rs * ir0;
  6511. for (int i01 = ir0; i01 < ir1; i01++) {
  6512. const float * src0_ptr = (float *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03);
  6513. quantize_row_q(src0_ptr, dst_ptr + id, ne00);
  6514. id += rs;
  6515. }
  6516. id += rs * (ne01 - ir1);
  6517. }
  6518. }
  6519. } else {
  6520. GGML_ASSERT(false); // TODO: implement
  6521. }
  6522. } else {
  6523. //printf("%s: this is not optimal - fix me\n", __func__);
  6524. if (dst->type == GGML_TYPE_F32) {
  6525. size_t id = 0;
  6526. float * dst_ptr = (float *) dst->data;
  6527. for (int i03 = 0; i03 < ne03; i03++) {
  6528. for (int i02 = 0; i02 < ne02; i02++) {
  6529. id += ne00 * ir0;
  6530. for (int i01 = ir0; i01 < ir1; i01++) {
  6531. for (int i00 = 0; i00 < ne00; i00++) {
  6532. const float * src0_ptr = (float *) ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  6533. dst_ptr[id] = *src0_ptr;
  6534. id++;
  6535. }
  6536. }
  6537. id += ne00 * (ne01 - ir1);
  6538. }
  6539. }
  6540. } else if (dst->type == GGML_TYPE_F16) {
  6541. size_t id = 0;
  6542. ggml_fp16_t * dst_ptr = (ggml_fp16_t *) dst->data;
  6543. for (int i03 = 0; i03 < ne03; i03++) {
  6544. for (int i02 = 0; i02 < ne02; i02++) {
  6545. id += ne00 * ir0;
  6546. for (int i01 = ir0; i01 < ir1; i01++) {
  6547. for (int i00 = 0; i00 < ne00; i00++) {
  6548. const float * src0_ptr = (float *) ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  6549. dst_ptr[id] = GGML_FP32_TO_FP16(*src0_ptr);
  6550. id++;
  6551. }
  6552. }
  6553. id += ne00 * (ne01 - ir1);
  6554. }
  6555. }
  6556. } else {
  6557. GGML_ASSERT(false); // TODO: implement
  6558. }
  6559. }
  6560. return;
  6561. }
  6562. // dst counters
  6563. int64_t i10 = 0;
  6564. int64_t i11 = 0;
  6565. int64_t i12 = 0;
  6566. int64_t i13 = 0;
  6567. if (dst->type == GGML_TYPE_F32) {
  6568. for (int64_t i03 = 0; i03 < ne03; i03++) {
  6569. for (int64_t i02 = 0; i02 < ne02; i02++) {
  6570. i10 += ne00 * ir0;
  6571. while (i10 >= ne0) {
  6572. i10 -= ne0;
  6573. if (++i11 == ne1) {
  6574. i11 = 0;
  6575. if (++i12 == ne2) {
  6576. i12 = 0;
  6577. if (++i13 == ne3) {
  6578. i13 = 0;
  6579. }
  6580. }
  6581. }
  6582. }
  6583. for (int64_t i01 = ir0; i01 < ir1; i01++) {
  6584. for (int64_t i00 = 0; i00 < ne00; i00++) {
  6585. const char * src0_ptr = ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  6586. char * dst_ptr = ((char *) dst->data + i10*nb0 + i11*nb1 + i12*nb2 + i13*nb3);
  6587. memcpy(dst_ptr, src0_ptr, sizeof(float));
  6588. if (++i10 == ne0) {
  6589. i10 = 0;
  6590. if (++i11 == ne1) {
  6591. i11 = 0;
  6592. if (++i12 == ne2) {
  6593. i12 = 0;
  6594. if (++i13 == ne3) {
  6595. i13 = 0;
  6596. }
  6597. }
  6598. }
  6599. }
  6600. }
  6601. }
  6602. i10 += ne00 * (ne01 - ir1);
  6603. while (i10 >= ne0) {
  6604. i10 -= ne0;
  6605. if (++i11 == ne1) {
  6606. i11 = 0;
  6607. if (++i12 == ne2) {
  6608. i12 = 0;
  6609. if (++i13 == ne3) {
  6610. i13 = 0;
  6611. }
  6612. }
  6613. }
  6614. }
  6615. }
  6616. }
  6617. } else if (dst->type == GGML_TYPE_F16) {
  6618. for (int64_t i03 = 0; i03 < ne03; i03++) {
  6619. for (int64_t i02 = 0; i02 < ne02; i02++) {
  6620. i10 += ne00 * ir0;
  6621. while (i10 >= ne0) {
  6622. i10 -= ne0;
  6623. if (++i11 == ne1) {
  6624. i11 = 0;
  6625. if (++i12 == ne2) {
  6626. i12 = 0;
  6627. if (++i13 == ne3) {
  6628. i13 = 0;
  6629. }
  6630. }
  6631. }
  6632. }
  6633. for (int64_t i01 = ir0; i01 < ir1; i01++) {
  6634. for (int64_t i00 = 0; i00 < ne00; i00++) {
  6635. const char * src0_ptr = ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  6636. char * dst_ptr = ((char *) dst->data + i10*nb0 + i11*nb1 + i12*nb2 + i13*nb3);
  6637. *(ggml_fp16_t *) dst_ptr = GGML_FP32_TO_FP16(*(const float *) src0_ptr);
  6638. if (++i10 == ne0) {
  6639. i10 = 0;
  6640. if (++i11 == ne1) {
  6641. i11 = 0;
  6642. if (++i12 == ne2) {
  6643. i12 = 0;
  6644. if (++i13 == ne3) {
  6645. i13 = 0;
  6646. }
  6647. }
  6648. }
  6649. }
  6650. }
  6651. }
  6652. i10 += ne00 * (ne01 - ir1);
  6653. while (i10 >= ne0) {
  6654. i10 -= ne0;
  6655. if (++i11 == ne1) {
  6656. i11 = 0;
  6657. if (++i12 == ne2) {
  6658. i12 = 0;
  6659. if (++i13 == ne3) {
  6660. i13 = 0;
  6661. }
  6662. }
  6663. }
  6664. }
  6665. }
  6666. }
  6667. } else {
  6668. GGML_ASSERT(false); // TODO: implement
  6669. }
  6670. }
  6671. static void ggml_compute_forward_dup(
  6672. const struct ggml_compute_params * params,
  6673. const struct ggml_tensor * src0,
  6674. struct ggml_tensor * dst) {
  6675. if (ggml_is_contiguous(src0) && ggml_is_contiguous(dst) && src0->type == dst->type) {
  6676. ggml_compute_forward_dup_same_cont(params, src0, dst);
  6677. return;
  6678. }
  6679. switch (src0->type) {
  6680. case GGML_TYPE_F16:
  6681. {
  6682. ggml_compute_forward_dup_f16(params, src0, dst);
  6683. } break;
  6684. case GGML_TYPE_F32:
  6685. {
  6686. ggml_compute_forward_dup_f32(params, src0, dst);
  6687. } break;
  6688. default:
  6689. {
  6690. GGML_ASSERT(false);
  6691. } break;
  6692. }
  6693. }
  6694. // ggml_compute_forward_add
  6695. static void ggml_compute_forward_add_f32(
  6696. const struct ggml_compute_params * params,
  6697. const struct ggml_tensor * src0,
  6698. const struct ggml_tensor * src1,
  6699. struct ggml_tensor * dst) {
  6700. GGML_ASSERT(ggml_are_same_shape(src0, src1) && ggml_are_same_shape(src0, dst));
  6701. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  6702. return;
  6703. }
  6704. const int ith = params->ith;
  6705. const int nth = params->nth;
  6706. const int nr = ggml_nrows(src0);
  6707. GGML_TENSOR_BINARY_OP_LOCALS;
  6708. GGML_ASSERT( nb0 == sizeof(float));
  6709. GGML_ASSERT(nb00 == sizeof(float));
  6710. // rows per thread
  6711. const int dr = (nr + nth - 1)/nth;
  6712. // row range for this thread
  6713. const int ir0 = dr*ith;
  6714. const int ir1 = MIN(ir0 + dr, nr);
  6715. if (nb10 == sizeof(float)) {
  6716. for (int ir = ir0; ir < ir1; ++ir) {
  6717. // src0, src1 and dst are same shape => same indices
  6718. const int i3 = ir/(ne2*ne1);
  6719. const int i2 = (ir - i3*ne2*ne1)/ne1;
  6720. const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
  6721. #ifdef GGML_USE_ACCELERATE
  6722. vDSP_vadd(
  6723. (float *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01), 1,
  6724. (float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11), 1,
  6725. (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 ), 1,
  6726. ne0);
  6727. #else
  6728. ggml_vec_add_f32(ne0,
  6729. (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 ),
  6730. (float *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01),
  6731. (float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11));
  6732. #endif
  6733. // }
  6734. // }
  6735. }
  6736. } else {
  6737. // src1 is not contiguous
  6738. for (int ir = ir0; ir < ir1; ++ir) {
  6739. // src0, src1 and dst are same shape => same indices
  6740. const int i3 = ir/(ne2*ne1);
  6741. const int i2 = (ir - i3*ne2*ne1)/ne1;
  6742. const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
  6743. float * dst_ptr = (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 );
  6744. float * src0_ptr = (float *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01);
  6745. for (int i0 = 0; i0 < ne0; i0++) {
  6746. float * src1_ptr = (float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11 + i0*nb10);
  6747. dst_ptr[i0] = src0_ptr[i0] + *src1_ptr;
  6748. }
  6749. }
  6750. }
  6751. }
  6752. static void ggml_compute_forward_add_f16_f32(
  6753. const struct ggml_compute_params * params,
  6754. const struct ggml_tensor * src0,
  6755. const struct ggml_tensor * src1,
  6756. struct ggml_tensor * dst) {
  6757. GGML_ASSERT(ggml_are_same_shape(src0, src1) && ggml_are_same_shape(src0, dst));
  6758. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  6759. return;
  6760. }
  6761. const int ith = params->ith;
  6762. const int nth = params->nth;
  6763. const int nr = ggml_nrows(src0);
  6764. GGML_TENSOR_BINARY_OP_LOCALS;
  6765. GGML_ASSERT(src0->type == GGML_TYPE_F16);
  6766. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  6767. GGML_ASSERT(dst->type == GGML_TYPE_F16);
  6768. GGML_ASSERT( nb0 == sizeof(ggml_fp16_t));
  6769. GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
  6770. // rows per thread
  6771. const int dr = (nr + nth - 1)/nth;
  6772. // row range for this thread
  6773. const int ir0 = dr*ith;
  6774. const int ir1 = MIN(ir0 + dr, nr);
  6775. if (nb10 == sizeof(float)) {
  6776. for (int ir = ir0; ir < ir1; ++ir) {
  6777. // src0, src1 and dst are same shape => same indices
  6778. const int i3 = ir/(ne2*ne1);
  6779. const int i2 = (ir - i3*ne2*ne1)/ne1;
  6780. const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
  6781. ggml_fp16_t * dst_ptr = (ggml_fp16_t *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1);
  6782. ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01);
  6783. float * src1_ptr = (float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11);
  6784. for (int i = 0; i < ne0; i++) {
  6785. dst_ptr[i] = GGML_FP32_TO_FP16(GGML_FP16_TO_FP32(src0_ptr[i]) + src1_ptr[i]);
  6786. }
  6787. }
  6788. }
  6789. else {
  6790. // src1 is not contiguous
  6791. GGML_ASSERT(false);
  6792. }
  6793. }
  6794. static void ggml_compute_forward_add_f16_f16(
  6795. const struct ggml_compute_params * params,
  6796. const struct ggml_tensor * src0,
  6797. const struct ggml_tensor * src1,
  6798. struct ggml_tensor * dst) {
  6799. GGML_ASSERT(ggml_are_same_shape(src0, src1) && ggml_are_same_shape(src0, dst));
  6800. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  6801. return;
  6802. }
  6803. const int ith = params->ith;
  6804. const int nth = params->nth;
  6805. const int nr = ggml_nrows(src0);
  6806. GGML_TENSOR_BINARY_OP_LOCALS;
  6807. GGML_ASSERT(src0->type == GGML_TYPE_F16);
  6808. GGML_ASSERT(src1->type == GGML_TYPE_F16);
  6809. GGML_ASSERT(dst->type == GGML_TYPE_F16);
  6810. GGML_ASSERT( nb0 == sizeof(ggml_fp16_t));
  6811. GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
  6812. // rows per thread
  6813. const int dr = (nr + nth - 1)/nth;
  6814. // row range for this thread
  6815. const int ir0 = dr*ith;
  6816. const int ir1 = MIN(ir0 + dr, nr);
  6817. if (nb10 == sizeof(ggml_fp16_t)) {
  6818. for (int ir = ir0; ir < ir1; ++ir) {
  6819. // src0, src1 and dst are same shape => same indices
  6820. const int i3 = ir/(ne2*ne1);
  6821. const int i2 = (ir - i3*ne2*ne1)/ne1;
  6822. const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
  6823. ggml_fp16_t * dst_ptr = (ggml_fp16_t *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1);
  6824. ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01);
  6825. ggml_fp16_t * src1_ptr = (ggml_fp16_t *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11);
  6826. for (int i = 0; i < ne0; i++) {
  6827. dst_ptr[i] = GGML_FP32_TO_FP16(GGML_FP16_TO_FP32(src0_ptr[i]) + GGML_FP16_TO_FP32(src1_ptr[i]));
  6828. }
  6829. }
  6830. }
  6831. else {
  6832. // src1 is not contiguous
  6833. GGML_ASSERT(false);
  6834. }
  6835. }
  6836. static void ggml_compute_forward_add_q_f32(
  6837. const struct ggml_compute_params * params,
  6838. const struct ggml_tensor * src0,
  6839. const struct ggml_tensor * src1,
  6840. struct ggml_tensor * dst) {
  6841. GGML_ASSERT(ggml_are_same_shape(src0, src1) && ggml_are_same_shape(src0, dst));
  6842. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  6843. return;
  6844. }
  6845. const int nr = ggml_nrows(src0);
  6846. GGML_TENSOR_BINARY_OP_LOCALS;
  6847. const int ith = params->ith;
  6848. const int nth = params->nth;
  6849. const enum ggml_type type = src0->type;
  6850. ggml_to_float_t const dequantize_row_q = type_traits[type].to_float;
  6851. ggml_from_float_t const quantize_row_q = type_traits[type].from_float;
  6852. // we don't support permuted src0 or src1
  6853. GGML_ASSERT(nb00 == GGML_TYPE_SIZE[type]);
  6854. GGML_ASSERT(nb10 == sizeof(float));
  6855. // dst cannot be transposed or permuted
  6856. GGML_ASSERT(nb0 <= nb1);
  6857. GGML_ASSERT(nb1 <= nb2);
  6858. GGML_ASSERT(nb2 <= nb3);
  6859. GGML_ASSERT(ggml_is_quantized(src0->type));
  6860. GGML_ASSERT(dst->type == src0->type);
  6861. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  6862. // rows per thread
  6863. const int dr = (nr + nth - 1)/nth;
  6864. // row range for this thread
  6865. const int ir0 = dr*ith;
  6866. const int ir1 = MIN(ir0 + dr, nr);
  6867. float * wdata = (float *) params->wdata + (ne00 + CACHE_LINE_SIZE_F32) * ith;
  6868. for (int ir = ir0; ir < ir1; ++ir) {
  6869. // src0 indices
  6870. const int i03 = ir/(ne02*ne01);
  6871. const int i02 = (ir - i03*ne02*ne01)/ne01;
  6872. const int i01 = (ir - i03*ne02*ne01 - i02*ne01);
  6873. // src1 and dst are same shape as src0 => same indices
  6874. const int i13 = i03;
  6875. const int i12 = i02;
  6876. const int i11 = i01;
  6877. const int i3 = i03;
  6878. const int i2 = i02;
  6879. const int i1 = i01;
  6880. void * src0_row = (void *) ((char *) src0->data + (i01*nb01 + i02*nb02 + i03*nb03));
  6881. float * src1_row = (float *)((char *) src1->data + (i11*nb11 + i12*nb12 + i13*nb13));
  6882. void * dst_row = (void *) ((char *) dst->data + ( i1*nb1 + i2*nb2 + i3*nb3));
  6883. assert(ne00 % 32 == 0);
  6884. // unquantize row from src0 to temp buffer
  6885. dequantize_row_q(src0_row, wdata, ne00);
  6886. // add src1
  6887. ggml_vec_acc_f32(ne00, wdata, src1_row);
  6888. // quantize row to dst
  6889. quantize_row_q(wdata, dst_row, ne00);
  6890. }
  6891. }
  6892. static void ggml_compute_forward_add(
  6893. const struct ggml_compute_params * params,
  6894. const struct ggml_tensor * src0,
  6895. const struct ggml_tensor * src1,
  6896. struct ggml_tensor * dst) {
  6897. switch (src0->type) {
  6898. case GGML_TYPE_F32:
  6899. {
  6900. ggml_compute_forward_add_f32(params, src0, src1, dst);
  6901. } break;
  6902. case GGML_TYPE_F16:
  6903. {
  6904. if (src1->type == GGML_TYPE_F16) {
  6905. ggml_compute_forward_add_f16_f16(params, src0, src1, dst);
  6906. }
  6907. else if (src1->type == GGML_TYPE_F32) {
  6908. ggml_compute_forward_add_f16_f32(params, src0, src1, dst);
  6909. }
  6910. else {
  6911. GGML_ASSERT(false);
  6912. }
  6913. } break;
  6914. case GGML_TYPE_Q4_0:
  6915. case GGML_TYPE_Q4_1:
  6916. case GGML_TYPE_Q5_0:
  6917. case GGML_TYPE_Q5_1:
  6918. case GGML_TYPE_Q8_0:
  6919. case GGML_TYPE_Q2_K:
  6920. case GGML_TYPE_Q3_K:
  6921. case GGML_TYPE_Q4_K:
  6922. case GGML_TYPE_Q5_K:
  6923. case GGML_TYPE_Q6_K:
  6924. {
  6925. ggml_compute_forward_add_q_f32(params, src0, src1, dst);
  6926. } break;
  6927. default:
  6928. {
  6929. GGML_ASSERT(false);
  6930. } break;
  6931. }
  6932. }
  6933. // ggml_compute_forward_add1
  6934. static void ggml_compute_forward_add1_f32(
  6935. const struct ggml_compute_params * params,
  6936. const struct ggml_tensor * src0,
  6937. const struct ggml_tensor * src1,
  6938. struct ggml_tensor * dst) {
  6939. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  6940. GGML_ASSERT(ggml_is_scalar(src1));
  6941. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  6942. return;
  6943. }
  6944. const int ith = params->ith;
  6945. const int nth = params->nth;
  6946. const int nr = ggml_nrows(src0);
  6947. GGML_TENSOR_UNARY_OP_LOCALS;
  6948. GGML_ASSERT( nb0 == sizeof(float));
  6949. GGML_ASSERT(nb00 == sizeof(float));
  6950. // rows per thread
  6951. const int dr = (nr + nth - 1)/nth;
  6952. // row range for this thread
  6953. const int ir0 = dr*ith;
  6954. const int ir1 = MIN(ir0 + dr, nr);
  6955. for (int ir = ir0; ir < ir1; ++ir) {
  6956. // src0 and dst are same shape => same indices
  6957. const int i3 = ir/(ne2*ne1);
  6958. const int i2 = (ir - i3*ne2*ne1)/ne1;
  6959. const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
  6960. #ifdef GGML_USE_ACCELERATE
  6961. UNUSED(ggml_vec_add1_f32);
  6962. vDSP_vadd(
  6963. (float *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01), 1,
  6964. (float *) ((char *) src1->data), 0,
  6965. (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 ), 1,
  6966. ne0);
  6967. #else
  6968. ggml_vec_add1_f32(ne0,
  6969. (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 ),
  6970. (float *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01),
  6971. *(float *) src1->data);
  6972. #endif
  6973. }
  6974. }
  6975. static void ggml_compute_forward_add1_f16_f32(
  6976. const struct ggml_compute_params * params,
  6977. const struct ggml_tensor * src0,
  6978. const struct ggml_tensor * src1,
  6979. struct ggml_tensor * dst) {
  6980. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  6981. GGML_ASSERT(ggml_is_scalar(src1));
  6982. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  6983. return;
  6984. }
  6985. // scalar to add
  6986. const float v = *(float *) src1->data;
  6987. const int ith = params->ith;
  6988. const int nth = params->nth;
  6989. const int nr = ggml_nrows(src0);
  6990. GGML_TENSOR_UNARY_OP_LOCALS;
  6991. GGML_ASSERT(src0->type == GGML_TYPE_F16);
  6992. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  6993. GGML_ASSERT(dst->type == GGML_TYPE_F16);
  6994. GGML_ASSERT( nb0 == sizeof(ggml_fp16_t));
  6995. GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
  6996. // rows per thread
  6997. const int dr = (nr + nth - 1)/nth;
  6998. // row range for this thread
  6999. const int ir0 = dr*ith;
  7000. const int ir1 = MIN(ir0 + dr, nr);
  7001. for (int ir = ir0; ir < ir1; ++ir) {
  7002. // src0 and dst are same shape => same indices
  7003. const int i3 = ir/(ne2*ne1);
  7004. const int i2 = (ir - i3*ne2*ne1)/ne1;
  7005. const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
  7006. ggml_fp16_t * dst_ptr = (ggml_fp16_t *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 );
  7007. ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01);
  7008. for (int i = 0; i < ne0; i++) {
  7009. dst_ptr[i] = GGML_FP32_TO_FP16(GGML_FP16_TO_FP32(src0_ptr[i]) + v);
  7010. }
  7011. }
  7012. }
  7013. static void ggml_compute_forward_add1_f16_f16(
  7014. const struct ggml_compute_params * params,
  7015. const struct ggml_tensor * src0,
  7016. const struct ggml_tensor * src1,
  7017. struct ggml_tensor * dst) {
  7018. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  7019. GGML_ASSERT(ggml_is_scalar(src1));
  7020. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7021. return;
  7022. }
  7023. // scalar to add
  7024. const float v = GGML_FP16_TO_FP32(*(ggml_fp16_t *) src1->data);
  7025. const int ith = params->ith;
  7026. const int nth = params->nth;
  7027. const int nr = ggml_nrows(src0);
  7028. GGML_TENSOR_UNARY_OP_LOCALS;
  7029. GGML_ASSERT(src0->type == GGML_TYPE_F16);
  7030. GGML_ASSERT(src1->type == GGML_TYPE_F16);
  7031. GGML_ASSERT(dst->type == GGML_TYPE_F16);
  7032. GGML_ASSERT( nb0 == sizeof(ggml_fp16_t));
  7033. GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
  7034. // rows per thread
  7035. const int dr = (nr + nth - 1)/nth;
  7036. // row range for this thread
  7037. const int ir0 = dr*ith;
  7038. const int ir1 = MIN(ir0 + dr, nr);
  7039. for (int ir = ir0; ir < ir1; ++ir) {
  7040. // src0 and dst are same shape => same indices
  7041. const int i3 = ir/(ne2*ne1);
  7042. const int i2 = (ir - i3*ne2*ne1)/ne1;
  7043. const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
  7044. ggml_fp16_t * dst_ptr = (ggml_fp16_t *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 );
  7045. ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01);
  7046. for (int i = 0; i < ne0; i++) {
  7047. dst_ptr[i] = GGML_FP32_TO_FP16(GGML_FP16_TO_FP32(src0_ptr[i]) + v);
  7048. }
  7049. }
  7050. }
  7051. static void ggml_compute_forward_add1_q_f32(
  7052. const struct ggml_compute_params * params,
  7053. const struct ggml_tensor * src0,
  7054. const struct ggml_tensor * src1,
  7055. struct ggml_tensor * dst) {
  7056. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  7057. GGML_ASSERT(ggml_is_scalar(src1));
  7058. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7059. return;
  7060. }
  7061. // scalar to add
  7062. const float v = *(float *) src1->data;
  7063. const int ith = params->ith;
  7064. const int nth = params->nth;
  7065. const int nr = ggml_nrows(src0);
  7066. GGML_TENSOR_UNARY_OP_LOCALS;
  7067. const enum ggml_type type = src0->type;
  7068. ggml_to_float_t const dequantize_row_q = type_traits[type].to_float;
  7069. ggml_from_float_t const quantize_row_q = type_traits[type].from_float;
  7070. // we don't support permuted src0
  7071. GGML_ASSERT(nb00 == GGML_TYPE_SIZE[type]);
  7072. // dst cannot be transposed or permuted
  7073. GGML_ASSERT(nb0 <= nb1);
  7074. GGML_ASSERT(nb1 <= nb2);
  7075. GGML_ASSERT(nb2 <= nb3);
  7076. GGML_ASSERT(ggml_is_quantized(src0->type));
  7077. GGML_ASSERT(dst->type == src0->type);
  7078. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  7079. // rows per thread
  7080. const int dr = (nr + nth - 1)/nth;
  7081. // row range for this thread
  7082. const int ir0 = dr*ith;
  7083. const int ir1 = MIN(ir0 + dr, nr);
  7084. float * wdata = (float *) params->wdata + (ne0 + CACHE_LINE_SIZE_F32) * ith;
  7085. for (int ir = ir0; ir < ir1; ++ir) {
  7086. // src0 and dst are same shape => same indices
  7087. const int i3 = ir/(ne2*ne1);
  7088. const int i2 = (ir - i3*ne2*ne1)/ne1;
  7089. const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
  7090. void * src0_row = (void *) ((char *) src0->data + (i1*nb01 + i2*nb02 + i3*nb03));
  7091. void * dst_row = (void *) ((char *) dst->data + (i1*nb1 + i2*nb2 + i3*nb0 ));
  7092. assert(ne0 % 32 == 0);
  7093. // unquantize row from src0 to temp buffer
  7094. dequantize_row_q(src0_row, wdata, ne0);
  7095. // add src1
  7096. ggml_vec_acc1_f32(ne0, wdata, v);
  7097. // quantize row to dst
  7098. quantize_row_q(wdata, dst_row, ne0);
  7099. }
  7100. }
  7101. static void ggml_compute_forward_add1(
  7102. const struct ggml_compute_params * params,
  7103. const struct ggml_tensor * src0,
  7104. const struct ggml_tensor * src1,
  7105. struct ggml_tensor * dst) {
  7106. switch (src0->type) {
  7107. case GGML_TYPE_F32:
  7108. {
  7109. ggml_compute_forward_add1_f32(params, src0, src1, dst);
  7110. } break;
  7111. case GGML_TYPE_F16:
  7112. {
  7113. if (src1->type == GGML_TYPE_F16) {
  7114. ggml_compute_forward_add1_f16_f16(params, src0, src1, dst);
  7115. }
  7116. else if (src1->type == GGML_TYPE_F32) {
  7117. ggml_compute_forward_add1_f16_f32(params, src0, src1, dst);
  7118. }
  7119. else {
  7120. GGML_ASSERT(false);
  7121. }
  7122. } break;
  7123. case GGML_TYPE_Q4_0:
  7124. case GGML_TYPE_Q4_1:
  7125. case GGML_TYPE_Q5_0:
  7126. case GGML_TYPE_Q5_1:
  7127. case GGML_TYPE_Q8_0:
  7128. case GGML_TYPE_Q8_1:
  7129. case GGML_TYPE_Q2_K:
  7130. case GGML_TYPE_Q3_K:
  7131. case GGML_TYPE_Q4_K:
  7132. case GGML_TYPE_Q5_K:
  7133. case GGML_TYPE_Q6_K:
  7134. {
  7135. ggml_compute_forward_add1_q_f32(params, src0, src1, dst);
  7136. } break;
  7137. default:
  7138. {
  7139. GGML_ASSERT(false);
  7140. } break;
  7141. }
  7142. }
  7143. // ggml_compute_forward_acc
  7144. static void ggml_compute_forward_acc_f32(
  7145. const struct ggml_compute_params * params,
  7146. const struct ggml_tensor * src0,
  7147. const struct ggml_tensor * src1,
  7148. const struct ggml_tensor * opt0,
  7149. struct ggml_tensor * dst) {
  7150. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  7151. GGML_ASSERT(ggml_is_contiguous(dst) && ggml_is_contiguous(src0));
  7152. GGML_ASSERT(opt0->type == GGML_TYPE_I32);
  7153. GGML_ASSERT(ggml_nelements(opt0) == 5);
  7154. // view src0 and dst with these strides and data offset inbytes during acc
  7155. // nb0 is implicitely element_size because src0 and dst are contiguous
  7156. size_t nb1 = ((int32_t *) opt0->data)[0];
  7157. size_t nb2 = ((int32_t *) opt0->data)[1];
  7158. size_t nb3 = ((int32_t *) opt0->data)[2];
  7159. size_t offset = ((int32_t *) opt0->data)[3];
  7160. bool inplace = (bool) ((int32_t *) opt0->data)[4];
  7161. if (!inplace && (params->type == GGML_TASK_INIT)) {
  7162. // memcpy needs to be synchronized across threads to avoid race conditions.
  7163. // => do it in INIT phase
  7164. memcpy(
  7165. ((char *) dst->data),
  7166. ((char *) src0->data),
  7167. ggml_nbytes(dst));
  7168. }
  7169. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7170. return;
  7171. }
  7172. const int ith = params->ith;
  7173. const int nth = params->nth;
  7174. const int nr = ggml_nrows(src1);
  7175. const int nc = src1->ne[0];
  7176. GGML_TENSOR_LOCALS(int64_t, ne1, src1, ne);
  7177. GGML_TENSOR_LOCALS(size_t, nb1, src1, nb);
  7178. // src0 and dst as viewed during acc
  7179. const size_t nb0 = ggml_element_size(src0);
  7180. const size_t nb00 = nb0;
  7181. const size_t nb01 = nb1;
  7182. const size_t nb02 = nb2;
  7183. const size_t nb03 = nb3;
  7184. GGML_ASSERT(offset + (ne10 == 0 ? 0 : ne10-1)*nb0 + (ne11 == 0 ? 0 : ne11-1)*nb1 + (ne12 == 0 ? 0 : ne12-1)*nb2 + (ne13 == 0 ? 0 : ne13-1)*nb3 < ggml_nbytes(dst));
  7185. GGML_ASSERT(offset + (ne10 == 0 ? 0 : ne10-1)*nb00 + (ne11 == 0 ? 0 : ne11-1)*nb01 + (ne12 == 0 ? 0 : ne12-1)*nb02 + (ne13 == 0 ? 0 : ne13-1)*nb03 < ggml_nbytes(src0));
  7186. GGML_ASSERT(nb10 == sizeof(float));
  7187. // rows per thread
  7188. const int dr = (nr + nth - 1)/nth;
  7189. // row range for this thread
  7190. const int ir0 = dr*ith;
  7191. const int ir1 = MIN(ir0 + dr, nr);
  7192. for (int ir = ir0; ir < ir1; ++ir) {
  7193. // src0 and dst are viewed with shape of src1 and offset
  7194. // => same indices
  7195. const int i3 = ir/(ne12*ne11);
  7196. const int i2 = (ir - i3*ne12*ne11)/ne11;
  7197. const int i1 = (ir - i3*ne12*ne11 - i2*ne11);
  7198. #ifdef GGML_USE_ACCELERATE
  7199. vDSP_vadd(
  7200. (float *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + offset), 1,
  7201. (float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11), 1,
  7202. (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + offset), 1, nc);
  7203. #else
  7204. ggml_vec_add_f32(nc,
  7205. (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + offset),
  7206. (float *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + offset),
  7207. (float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11));
  7208. #endif
  7209. }
  7210. }
  7211. static void ggml_compute_forward_acc(
  7212. const struct ggml_compute_params * params,
  7213. const struct ggml_tensor * src0,
  7214. const struct ggml_tensor * src1,
  7215. const struct ggml_tensor * opt0,
  7216. struct ggml_tensor * dst) {
  7217. switch (src0->type) {
  7218. case GGML_TYPE_F32:
  7219. {
  7220. ggml_compute_forward_acc_f32(params, src0, src1, opt0, dst);
  7221. } break;
  7222. case GGML_TYPE_F16:
  7223. case GGML_TYPE_Q4_0:
  7224. case GGML_TYPE_Q4_1:
  7225. case GGML_TYPE_Q5_0:
  7226. case GGML_TYPE_Q5_1:
  7227. case GGML_TYPE_Q8_0:
  7228. case GGML_TYPE_Q8_1:
  7229. case GGML_TYPE_Q2_K:
  7230. case GGML_TYPE_Q3_K:
  7231. case GGML_TYPE_Q4_K:
  7232. case GGML_TYPE_Q5_K:
  7233. case GGML_TYPE_Q6_K:
  7234. default:
  7235. {
  7236. GGML_ASSERT(false);
  7237. } break;
  7238. }
  7239. }
  7240. // ggml_compute_forward_sub
  7241. static void ggml_compute_forward_sub_f32(
  7242. const struct ggml_compute_params * params,
  7243. const struct ggml_tensor * src0,
  7244. const struct ggml_tensor * src1,
  7245. struct ggml_tensor * dst) {
  7246. assert(params->ith == 0);
  7247. assert(ggml_are_same_shape(src0, src1) && ggml_are_same_shape(src0, dst));
  7248. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7249. return;
  7250. }
  7251. const int nr = ggml_nrows(src0);
  7252. GGML_TENSOR_BINARY_OP_LOCALS;
  7253. GGML_ASSERT( nb0 == sizeof(float));
  7254. GGML_ASSERT(nb00 == sizeof(float));
  7255. if (nb10 == sizeof(float)) {
  7256. for (int ir = 0; ir < nr; ++ir) {
  7257. // src0, src1 and dst are same shape => same indices
  7258. const int i3 = ir/(ne2*ne1);
  7259. const int i2 = (ir - i3*ne2*ne1)/ne1;
  7260. const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
  7261. #ifdef GGML_USE_ACCELERATE
  7262. vDSP_vsub(
  7263. (float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11), 1,
  7264. (float *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01), 1,
  7265. (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 ), 1,
  7266. ne0);
  7267. #else
  7268. ggml_vec_sub_f32(ne0,
  7269. (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 ),
  7270. (float *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01),
  7271. (float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11));
  7272. #endif
  7273. // }
  7274. // }
  7275. }
  7276. } else {
  7277. // src1 is not contiguous
  7278. for (int ir = 0; ir < nr; ++ir) {
  7279. // src0, src1 and dst are same shape => same indices
  7280. const int i3 = ir/(ne2*ne1);
  7281. const int i2 = (ir - i3*ne2*ne1)/ne1;
  7282. const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
  7283. float * dst_ptr = (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 );
  7284. float * src0_ptr = (float *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01);
  7285. for (int i0 = 0; i0 < ne0; i0++) {
  7286. float * src1_ptr = (float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11 + i0*nb10);
  7287. dst_ptr[i0] = src0_ptr[i0] - *src1_ptr;
  7288. }
  7289. }
  7290. }
  7291. }
  7292. static void ggml_compute_forward_sub(
  7293. const struct ggml_compute_params * params,
  7294. const struct ggml_tensor * src0,
  7295. const struct ggml_tensor * src1,
  7296. struct ggml_tensor * dst) {
  7297. switch (src0->type) {
  7298. case GGML_TYPE_F32:
  7299. {
  7300. ggml_compute_forward_sub_f32(params, src0, src1, dst);
  7301. } break;
  7302. default:
  7303. {
  7304. GGML_ASSERT(false);
  7305. } break;
  7306. }
  7307. }
  7308. // ggml_compute_forward_mul
  7309. static void ggml_compute_forward_mul_f32(
  7310. const struct ggml_compute_params * params,
  7311. const struct ggml_tensor * src0,
  7312. const struct ggml_tensor * src1,
  7313. struct ggml_tensor * dst) {
  7314. GGML_ASSERT(ggml_can_repeat_rows(src1, src0) && ggml_are_same_shape(src0, dst));
  7315. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7316. return;
  7317. }
  7318. const int ith = params->ith;
  7319. const int nth = params->nth;
  7320. #ifdef GGML_USE_CLBLAST
  7321. if (src1->backend == GGML_BACKEND_GPU) {
  7322. if (ith == 0) {
  7323. ggml_cl_mul(src0, src1, dst);
  7324. }
  7325. return;
  7326. }
  7327. #endif
  7328. const int64_t nr = ggml_nrows(src0);
  7329. GGML_TENSOR_BINARY_OP_LOCALS;
  7330. GGML_ASSERT( nb0 == sizeof(float));
  7331. GGML_ASSERT(nb00 == sizeof(float));
  7332. GGML_ASSERT(ne00 == ne10);
  7333. if (nb10 == sizeof(float)) {
  7334. for (int64_t ir = ith; ir < nr; ir += nth) {
  7335. // src0 and dst are same shape => same indices
  7336. const int64_t i03 = ir/(ne02*ne01);
  7337. const int64_t i02 = (ir - i03*ne02*ne01)/ne01;
  7338. const int64_t i01 = (ir - i03*ne02*ne01 - i02*ne01);
  7339. const int64_t i13 = i03 % ne13;
  7340. const int64_t i12 = i02 % ne12;
  7341. const int64_t i11 = i01 % ne11;
  7342. float * dst_ptr = (float *) ((char *) dst->data + i03*nb3 + i02*nb2 + i01*nb1 );
  7343. float * src0_ptr = (float *) ((char *) src0->data + i03*nb03 + i02*nb02 + i01*nb01);
  7344. float * src1_ptr = (float *) ((char *) src1->data + i13*nb13 + i12*nb12 + i11*nb11);
  7345. #ifdef GGML_USE_ACCELERATE
  7346. UNUSED(ggml_vec_mul_f32);
  7347. vDSP_vmul( src0_ptr, 1, src1_ptr, 1, dst_ptr, 1, ne00);
  7348. #else
  7349. ggml_vec_mul_f32(ne00, dst_ptr, src0_ptr, src1_ptr);
  7350. #endif
  7351. // }
  7352. // }
  7353. }
  7354. } else {
  7355. // src1 is not contiguous
  7356. for (int64_t ir = ith; ir < nr; ir += nth) {
  7357. // src0 and dst are same shape => same indices
  7358. // src1 is broadcastable across src0 and dst in i1, i2, i3
  7359. const int64_t i03 = ir/(ne02*ne01);
  7360. const int64_t i02 = (ir - i03*ne02*ne01)/ne01;
  7361. const int64_t i01 = (ir - i03*ne02*ne01 - i02*ne01);
  7362. const int64_t i13 = i03 % ne13;
  7363. const int64_t i12 = i02 % ne12;
  7364. const int64_t i11 = i01 % ne11;
  7365. float * dst_ptr = (float *) ((char *) dst->data + i03*nb3 + i02*nb2 + i01*nb1 );
  7366. float * src0_ptr = (float *) ((char *) src0->data + i03*nb03 + i02*nb02 + i01*nb01);
  7367. for (int64_t i0 = 0; i0 < ne00; i0++) {
  7368. float * src1_ptr = (float *) ((char *) src1->data + i13*nb13 + i12*nb12 + i11*nb11 + i0*nb10);
  7369. dst_ptr[i0] = src0_ptr[i0] * (*src1_ptr);
  7370. }
  7371. }
  7372. }
  7373. }
  7374. static void ggml_compute_forward_mul(
  7375. const struct ggml_compute_params * params,
  7376. const struct ggml_tensor * src0,
  7377. const struct ggml_tensor * src1,
  7378. struct ggml_tensor * dst) {
  7379. switch (src0->type) {
  7380. case GGML_TYPE_F32:
  7381. {
  7382. ggml_compute_forward_mul_f32(params, src0, src1, dst);
  7383. } break;
  7384. default:
  7385. {
  7386. GGML_ASSERT(false);
  7387. } break;
  7388. }
  7389. }
  7390. // ggml_compute_forward_div
  7391. static void ggml_compute_forward_div_f32(
  7392. const struct ggml_compute_params * params,
  7393. const struct ggml_tensor * src0,
  7394. const struct ggml_tensor * src1,
  7395. struct ggml_tensor * dst) {
  7396. assert(params->ith == 0);
  7397. assert(ggml_are_same_shape(src0, src1) && ggml_are_same_shape(src0, dst));
  7398. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7399. return;
  7400. }
  7401. const int nr = ggml_nrows(src0);
  7402. GGML_TENSOR_BINARY_OP_LOCALS;
  7403. GGML_ASSERT( nb0 == sizeof(float));
  7404. GGML_ASSERT(nb00 == sizeof(float));
  7405. if (nb10 == sizeof(float)) {
  7406. for (int ir = 0; ir < nr; ++ir) {
  7407. // src0, src1 and dst are same shape => same indices
  7408. const int i3 = ir/(ne2*ne1);
  7409. const int i2 = (ir - i3*ne2*ne1)/ne1;
  7410. const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
  7411. #ifdef GGML_USE_ACCELERATE
  7412. vDSP_vdiv(
  7413. (float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11), 1,
  7414. (float *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01), 1,
  7415. (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 ), 1,
  7416. ne0);
  7417. #else
  7418. ggml_vec_div_f32(ne0,
  7419. (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 ),
  7420. (float *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01),
  7421. (float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11));
  7422. #endif
  7423. // }
  7424. // }
  7425. }
  7426. } else {
  7427. // src1 is not contiguous
  7428. for (int ir = 0; ir < nr; ++ir) {
  7429. // src0, src1 and dst are same shape => same indices
  7430. const int i3 = ir/(ne2*ne1);
  7431. const int i2 = (ir - i3*ne2*ne1)/ne1;
  7432. const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
  7433. float * dst_ptr = (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 );
  7434. float * src0_ptr = (float *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01);
  7435. for (int i0 = 0; i0 < ne0; i0++) {
  7436. float * src1_ptr = (float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11 + i0*nb10);
  7437. dst_ptr[i0] = src0_ptr[i0] / (*src1_ptr);
  7438. }
  7439. }
  7440. }
  7441. }
  7442. static void ggml_compute_forward_div(
  7443. const struct ggml_compute_params * params,
  7444. const struct ggml_tensor * src0,
  7445. const struct ggml_tensor * src1,
  7446. struct ggml_tensor * dst) {
  7447. switch (src0->type) {
  7448. case GGML_TYPE_F32:
  7449. {
  7450. ggml_compute_forward_div_f32(params, src0, src1, dst);
  7451. } break;
  7452. default:
  7453. {
  7454. GGML_ASSERT(false);
  7455. } break;
  7456. }
  7457. }
  7458. // ggml_compute_forward_sqr
  7459. static void ggml_compute_forward_sqr_f32(
  7460. const struct ggml_compute_params * params,
  7461. const struct ggml_tensor * src0,
  7462. struct ggml_tensor * dst) {
  7463. assert(params->ith == 0);
  7464. assert(ggml_are_same_shape(src0, dst));
  7465. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7466. return;
  7467. }
  7468. const int n = ggml_nrows(src0);
  7469. const int nc = src0->ne[0];
  7470. assert( dst->nb[0] == sizeof(float));
  7471. assert(src0->nb[0] == sizeof(float));
  7472. for (int i = 0; i < n; i++) {
  7473. ggml_vec_sqr_f32(nc,
  7474. (float *) ((char *) dst->data + i*( dst->nb[1])),
  7475. (float *) ((char *) src0->data + i*(src0->nb[1])));
  7476. }
  7477. }
  7478. static void ggml_compute_forward_sqr(
  7479. const struct ggml_compute_params * params,
  7480. const struct ggml_tensor * src0,
  7481. struct ggml_tensor * dst) {
  7482. switch (src0->type) {
  7483. case GGML_TYPE_F32:
  7484. {
  7485. ggml_compute_forward_sqr_f32(params, src0, dst);
  7486. } break;
  7487. default:
  7488. {
  7489. GGML_ASSERT(false);
  7490. } break;
  7491. }
  7492. }
  7493. // ggml_compute_forward_sqrt
  7494. static void ggml_compute_forward_sqrt_f32(
  7495. const struct ggml_compute_params * params,
  7496. const struct ggml_tensor * src0,
  7497. struct ggml_tensor * dst) {
  7498. assert(params->ith == 0);
  7499. assert(ggml_are_same_shape(src0, dst));
  7500. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7501. return;
  7502. }
  7503. const int n = ggml_nrows(src0);
  7504. const int nc = src0->ne[0];
  7505. assert( dst->nb[0] == sizeof(float));
  7506. assert(src0->nb[0] == sizeof(float));
  7507. for (int i = 0; i < n; i++) {
  7508. ggml_vec_sqrt_f32(nc,
  7509. (float *) ((char *) dst->data + i*( dst->nb[1])),
  7510. (float *) ((char *) src0->data + i*(src0->nb[1])));
  7511. }
  7512. }
  7513. static void ggml_compute_forward_sqrt(
  7514. const struct ggml_compute_params * params,
  7515. const struct ggml_tensor * src0,
  7516. struct ggml_tensor * dst) {
  7517. switch (src0->type) {
  7518. case GGML_TYPE_F32:
  7519. {
  7520. ggml_compute_forward_sqrt_f32(params, src0, dst);
  7521. } break;
  7522. default:
  7523. {
  7524. GGML_ASSERT(false);
  7525. } break;
  7526. }
  7527. }
  7528. // ggml_compute_forward_log
  7529. static void ggml_compute_forward_log_f32(
  7530. const struct ggml_compute_params * params,
  7531. const struct ggml_tensor * src0,
  7532. struct ggml_tensor * dst) {
  7533. GGML_ASSERT(params->ith == 0);
  7534. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  7535. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7536. return;
  7537. }
  7538. const int n = ggml_nrows(src0);
  7539. const int nc = src0->ne[0];
  7540. GGML_ASSERT( dst->nb[0] == sizeof(float));
  7541. GGML_ASSERT(src0->nb[0] == sizeof(float));
  7542. for (int i = 0; i < n; i++) {
  7543. ggml_vec_log_f32(nc,
  7544. (float *) ((char *) dst->data + i*( dst->nb[1])),
  7545. (float *) ((char *) src0->data + i*(src0->nb[1])));
  7546. }
  7547. }
  7548. static void ggml_compute_forward_log(
  7549. const struct ggml_compute_params * params,
  7550. const struct ggml_tensor * src0,
  7551. struct ggml_tensor * dst) {
  7552. switch (src0->type) {
  7553. case GGML_TYPE_F32:
  7554. {
  7555. ggml_compute_forward_log_f32(params, src0, dst);
  7556. } break;
  7557. default:
  7558. {
  7559. GGML_ASSERT(false);
  7560. } break;
  7561. }
  7562. }
  7563. // ggml_compute_forward_sum
  7564. static void ggml_compute_forward_sum_f32(
  7565. const struct ggml_compute_params * params,
  7566. const struct ggml_tensor * src0,
  7567. struct ggml_tensor * dst) {
  7568. assert(params->ith == 0);
  7569. assert(ggml_is_scalar(dst));
  7570. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7571. return;
  7572. }
  7573. assert(ggml_is_scalar(dst));
  7574. assert(src0->nb[0] == sizeof(float));
  7575. GGML_TENSOR_LOCALS(int64_t, ne0, src0, ne);
  7576. GGML_TENSOR_LOCALS(size_t, nb0, src0, nb);
  7577. ggml_float sum = 0;
  7578. ggml_float row_sum = 0;
  7579. for (int64_t i03 = 0; i03 < ne03; i03++) {
  7580. for (int64_t i02 = 0; i02 < ne02; i02++) {
  7581. for (int64_t i01 = 0; i01 < ne01; i01++) {
  7582. ggml_vec_sum_ggf(ne00,
  7583. &row_sum,
  7584. (float *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03));
  7585. sum += row_sum;
  7586. }
  7587. }
  7588. }
  7589. ((float *) dst->data)[0] = sum;
  7590. }
  7591. static void ggml_compute_forward_sum(
  7592. const struct ggml_compute_params * params,
  7593. const struct ggml_tensor * src0,
  7594. struct ggml_tensor * dst) {
  7595. switch (src0->type) {
  7596. case GGML_TYPE_F32:
  7597. {
  7598. ggml_compute_forward_sum_f32(params, src0, dst);
  7599. } break;
  7600. default:
  7601. {
  7602. GGML_ASSERT(false);
  7603. } break;
  7604. }
  7605. }
  7606. // ggml_compute_forward_sum_rows
  7607. static void ggml_compute_forward_sum_rows_f32(
  7608. const struct ggml_compute_params * params,
  7609. const struct ggml_tensor * src0,
  7610. struct ggml_tensor * dst) {
  7611. GGML_ASSERT(params->ith == 0);
  7612. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7613. return;
  7614. }
  7615. GGML_ASSERT(src0->nb[0] == sizeof(float));
  7616. GGML_ASSERT(dst->nb[0] == sizeof(float));
  7617. GGML_TENSOR_UNARY_OP_LOCALS;
  7618. GGML_ASSERT(ne0 == 1);
  7619. GGML_ASSERT(ne1 == ne01);
  7620. GGML_ASSERT(ne2 == ne02);
  7621. GGML_ASSERT(ne3 == ne03);
  7622. for (int64_t i3 = 0; i3 < ne03; i3++) {
  7623. for (int64_t i2 = 0; i2 < ne02; i2++) {
  7624. for (int64_t i1 = 0; i1 < ne01; i1++) {
  7625. float* src_row = (float *) ((char *) src0->data + i1*nb01 + i2*nb02 + i3*nb03);
  7626. float* dst_row = (float *) ((char *) dst->data + i1*nb1 + i2*nb2 + i3*nb3);
  7627. float row_sum = 0;
  7628. ggml_vec_sum_f32(ne00, &row_sum, src_row);
  7629. dst_row[0] = row_sum;
  7630. }
  7631. }
  7632. }
  7633. }
  7634. static void ggml_compute_forward_sum_rows(
  7635. const struct ggml_compute_params * params,
  7636. const struct ggml_tensor * src0,
  7637. struct ggml_tensor * dst) {
  7638. switch (src0->type) {
  7639. case GGML_TYPE_F32:
  7640. {
  7641. ggml_compute_forward_sum_rows_f32(params, src0, dst);
  7642. } break;
  7643. default:
  7644. {
  7645. GGML_ASSERT(false);
  7646. } break;
  7647. }
  7648. }
  7649. // ggml_compute_forward_mean
  7650. static void ggml_compute_forward_mean_f32(
  7651. const struct ggml_compute_params * params,
  7652. const struct ggml_tensor * src0,
  7653. struct ggml_tensor * dst) {
  7654. assert(params->ith == 0);
  7655. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7656. return;
  7657. }
  7658. assert(src0->nb[0] == sizeof(float));
  7659. GGML_TENSOR_UNARY_OP_LOCALS;
  7660. assert(ne0 == 1);
  7661. assert(ne1 == ne01);
  7662. assert(ne2 == ne02);
  7663. assert(ne3 == ne03);
  7664. UNUSED(ne0);
  7665. UNUSED(ne1);
  7666. UNUSED(ne2);
  7667. UNUSED(ne3);
  7668. for (int64_t i03 = 0; i03 < ne03; i03++) {
  7669. for (int64_t i02 = 0; i02 < ne02; i02++) {
  7670. for (int64_t i01 = 0; i01 < ne01; i01++) {
  7671. ggml_vec_sum_f32(ne00,
  7672. (float *) ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3),
  7673. (float *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03));
  7674. *(float *) ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3) /= (float) ne00;
  7675. }
  7676. }
  7677. }
  7678. }
  7679. static void ggml_compute_forward_mean(
  7680. const struct ggml_compute_params * params,
  7681. const struct ggml_tensor * src0,
  7682. struct ggml_tensor * dst) {
  7683. switch (src0->type) {
  7684. case GGML_TYPE_F32:
  7685. {
  7686. ggml_compute_forward_mean_f32(params, src0, dst);
  7687. } break;
  7688. default:
  7689. {
  7690. GGML_ASSERT(false);
  7691. } break;
  7692. }
  7693. }
  7694. // ggml_compute_forward_argmax
  7695. static void ggml_compute_forward_argmax_f32(
  7696. const struct ggml_compute_params * params,
  7697. const struct ggml_tensor * src0,
  7698. struct ggml_tensor * dst) {
  7699. assert(params->ith == 0);
  7700. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7701. return;
  7702. }
  7703. assert(src0->nb[0] == sizeof(float));
  7704. assert(dst->nb[0] == sizeof(float));
  7705. const int64_t ne00 = src0->ne[0];
  7706. const int64_t ne01 = src0->ne[1];
  7707. const size_t nb01 = src0->nb[1];
  7708. const size_t nb0 = dst->nb[0];
  7709. for (int64_t i1 = 0; i1 < ne01; i1++) {
  7710. float * src = (float *) ((char *) src0->data + i1*nb01);
  7711. int32_t * dst_ = (int32_t *) ((char *) dst->data + i1*nb0);
  7712. int v = 0;
  7713. ggml_vec_argmax_f32(ne00, &v, src);
  7714. dst_[0] = v;
  7715. }
  7716. }
  7717. static void ggml_compute_forward_argmax(
  7718. const struct ggml_compute_params * params,
  7719. const struct ggml_tensor * src0,
  7720. struct ggml_tensor * dst) {
  7721. switch (src0->type) {
  7722. case GGML_TYPE_F32:
  7723. {
  7724. ggml_compute_forward_argmax_f32(params, src0, dst);
  7725. } break;
  7726. default:
  7727. {
  7728. GGML_ASSERT(false);
  7729. } break;
  7730. }
  7731. }
  7732. // ggml_compute_forward_repeat
  7733. static void ggml_compute_forward_repeat_f32(
  7734. const struct ggml_compute_params * params,
  7735. const struct ggml_tensor * src0,
  7736. struct ggml_tensor * dst) {
  7737. GGML_ASSERT(params->ith == 0);
  7738. GGML_ASSERT(ggml_can_repeat(src0, dst));
  7739. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7740. return;
  7741. }
  7742. GGML_TENSOR_UNARY_OP_LOCALS;
  7743. // guaranteed to be an integer due to the check in ggml_can_repeat
  7744. const int nr0 = (int)(ne0/ne00);
  7745. const int nr1 = (int)(ne1/ne01);
  7746. const int nr2 = (int)(ne2/ne02);
  7747. const int nr3 = (int)(ne3/ne03);
  7748. // TODO: support for transposed / permuted tensors
  7749. GGML_ASSERT(nb0 == sizeof(float));
  7750. GGML_ASSERT(nb00 == sizeof(float));
  7751. // TODO: maybe this is not optimal?
  7752. for (int i3 = 0; i3 < nr3; i3++) {
  7753. for (int k3 = 0; k3 < ne03; k3++) {
  7754. for (int i2 = 0; i2 < nr2; i2++) {
  7755. for (int k2 = 0; k2 < ne02; k2++) {
  7756. for (int i1 = 0; i1 < nr1; i1++) {
  7757. for (int k1 = 0; k1 < ne01; k1++) {
  7758. for (int i0 = 0; i0 < nr0; i0++) {
  7759. ggml_vec_cpy_f32(ne00,
  7760. (float *) ((char *) dst->data + (i3*ne03 + k3)*nb3 + (i2*ne02 + k2)*nb2 + (i1*ne01 + k1)*nb1 + (i0*ne00)*nb0),
  7761. (float *) ((char *) src0->data + ( k3)*nb03 + ( k2)*nb02 + ( k1)*nb01));
  7762. }
  7763. }
  7764. }
  7765. }
  7766. }
  7767. }
  7768. }
  7769. }
  7770. static void ggml_compute_forward_repeat(
  7771. const struct ggml_compute_params * params,
  7772. const struct ggml_tensor * src0,
  7773. struct ggml_tensor * dst) {
  7774. switch (src0->type) {
  7775. case GGML_TYPE_F32:
  7776. {
  7777. ggml_compute_forward_repeat_f32(params, src0, dst);
  7778. } break;
  7779. default:
  7780. {
  7781. GGML_ASSERT(false);
  7782. } break;
  7783. }
  7784. }
  7785. // ggml_compute_forward_repeat_back
  7786. static void ggml_compute_forward_repeat_back_f32(
  7787. const struct ggml_compute_params * params,
  7788. const struct ggml_tensor * src0,
  7789. struct ggml_tensor * dst) {
  7790. GGML_ASSERT(params->ith == 0);
  7791. GGML_ASSERT(ggml_can_repeat(dst, src0));
  7792. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7793. return;
  7794. }
  7795. GGML_TENSOR_UNARY_OP_LOCALS;
  7796. // guaranteed to be an integer due to the check in ggml_can_repeat
  7797. const int nr0 = (int)(ne00/ne0);
  7798. const int nr1 = (int)(ne01/ne1);
  7799. const int nr2 = (int)(ne02/ne2);
  7800. const int nr3 = (int)(ne03/ne3);
  7801. // TODO: support for transposed / permuted tensors
  7802. GGML_ASSERT(nb0 == sizeof(float));
  7803. GGML_ASSERT(nb00 == sizeof(float));
  7804. if (ggml_is_contiguous(dst)) {
  7805. ggml_vec_set_f32(ne0*ne1*ne2*ne3, dst->data, 0);
  7806. } else {
  7807. for (int k3 = 0; k3 < ne3; k3++) {
  7808. for (int k2 = 0; k2 < ne2; k2++) {
  7809. for (int k1 = 0; k1 < ne1; k1++) {
  7810. ggml_vec_set_f32(ne0,
  7811. (float *) ((char *) dst->data + k1*nb1 + k2*nb2 + k3*nb3),
  7812. 0);
  7813. }
  7814. }
  7815. }
  7816. }
  7817. // TODO: maybe this is not optimal?
  7818. for (int i3 = 0; i3 < nr3; i3++) {
  7819. for (int k3 = 0; k3 < ne3; k3++) {
  7820. for (int i2 = 0; i2 < nr2; i2++) {
  7821. for (int k2 = 0; k2 < ne2; k2++) {
  7822. for (int i1 = 0; i1 < nr1; i1++) {
  7823. for (int k1 = 0; k1 < ne1; k1++) {
  7824. for (int i0 = 0; i0 < nr0; i0++) {
  7825. ggml_vec_acc_f32(ne0,
  7826. (float *) ((char *) dst->data + ( k3)*nb3 + ( k2)*nb2 + ( k1)*nb1),
  7827. (float *) ((char *) src0->data + (i3*ne3 + k3)*nb03 + (i2*ne2 + k2)*nb02 + (i1*ne1 + k1)*nb01 + (i0*ne0)*nb00));
  7828. }
  7829. }
  7830. }
  7831. }
  7832. }
  7833. }
  7834. }
  7835. }
  7836. static void ggml_compute_forward_repeat_back(
  7837. const struct ggml_compute_params * params,
  7838. const struct ggml_tensor * src0,
  7839. struct ggml_tensor * dst) {
  7840. switch (src0->type) {
  7841. case GGML_TYPE_F32:
  7842. {
  7843. ggml_compute_forward_repeat_back_f32(params, src0, dst);
  7844. } break;
  7845. default:
  7846. {
  7847. GGML_ASSERT(false);
  7848. } break;
  7849. }
  7850. }
  7851. // ggml_compute_forward_abs
  7852. static void ggml_compute_forward_abs_f32(
  7853. const struct ggml_compute_params * params,
  7854. const struct ggml_tensor * src0,
  7855. struct ggml_tensor * dst) {
  7856. assert(params->ith == 0);
  7857. assert(ggml_are_same_shape(src0, dst));
  7858. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7859. return;
  7860. }
  7861. const int n = ggml_nrows(src0);
  7862. const int nc = src0->ne[0];
  7863. assert(dst->nb[0] == sizeof(float));
  7864. assert(src0->nb[0] == sizeof(float));
  7865. for (int i = 0; i < n; i++) {
  7866. ggml_vec_abs_f32(nc,
  7867. (float *) ((char *) dst->data + i*( dst->nb[1])),
  7868. (float *) ((char *) src0->data + i*(src0->nb[1])));
  7869. }
  7870. }
  7871. static void ggml_compute_forward_abs(
  7872. const struct ggml_compute_params * params,
  7873. const struct ggml_tensor * src0,
  7874. struct ggml_tensor * dst) {
  7875. switch (src0->type) {
  7876. case GGML_TYPE_F32:
  7877. {
  7878. ggml_compute_forward_abs_f32(params, src0, dst);
  7879. } break;
  7880. default:
  7881. {
  7882. GGML_ASSERT(false);
  7883. } break;
  7884. }
  7885. }
  7886. // ggml_compute_forward_sgn
  7887. static void ggml_compute_forward_sgn_f32(
  7888. const struct ggml_compute_params * params,
  7889. const struct ggml_tensor * src0,
  7890. struct ggml_tensor * dst) {
  7891. assert(params->ith == 0);
  7892. assert(ggml_are_same_shape(src0, dst));
  7893. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7894. return;
  7895. }
  7896. const int n = ggml_nrows(src0);
  7897. const int nc = src0->ne[0];
  7898. assert(dst->nb[0] == sizeof(float));
  7899. assert(src0->nb[0] == sizeof(float));
  7900. for (int i = 0; i < n; i++) {
  7901. ggml_vec_sgn_f32(nc,
  7902. (float *) ((char *) dst->data + i*( dst->nb[1])),
  7903. (float *) ((char *) src0->data + i*(src0->nb[1])));
  7904. }
  7905. }
  7906. static void ggml_compute_forward_sgn(
  7907. const struct ggml_compute_params * params,
  7908. const struct ggml_tensor * src0,
  7909. struct ggml_tensor * dst) {
  7910. switch (src0->type) {
  7911. case GGML_TYPE_F32:
  7912. {
  7913. ggml_compute_forward_sgn_f32(params, src0, dst);
  7914. } break;
  7915. default:
  7916. {
  7917. GGML_ASSERT(false);
  7918. } break;
  7919. }
  7920. }
  7921. // ggml_compute_forward_neg
  7922. static void ggml_compute_forward_neg_f32(
  7923. const struct ggml_compute_params * params,
  7924. const struct ggml_tensor * src0,
  7925. struct ggml_tensor * dst) {
  7926. assert(params->ith == 0);
  7927. assert(ggml_are_same_shape(src0, dst));
  7928. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7929. return;
  7930. }
  7931. const int n = ggml_nrows(src0);
  7932. const int nc = src0->ne[0];
  7933. assert(dst->nb[0] == sizeof(float));
  7934. assert(src0->nb[0] == sizeof(float));
  7935. for (int i = 0; i < n; i++) {
  7936. ggml_vec_neg_f32(nc,
  7937. (float *) ((char *) dst->data + i*( dst->nb[1])),
  7938. (float *) ((char *) src0->data + i*(src0->nb[1])));
  7939. }
  7940. }
  7941. static void ggml_compute_forward_neg(
  7942. const struct ggml_compute_params * params,
  7943. const struct ggml_tensor * src0,
  7944. struct ggml_tensor * dst) {
  7945. switch (src0->type) {
  7946. case GGML_TYPE_F32:
  7947. {
  7948. ggml_compute_forward_neg_f32(params, src0, dst);
  7949. } break;
  7950. default:
  7951. {
  7952. GGML_ASSERT(false);
  7953. } break;
  7954. }
  7955. }
  7956. // ggml_compute_forward_step
  7957. static void ggml_compute_forward_step_f32(
  7958. const struct ggml_compute_params * params,
  7959. const struct ggml_tensor * src0,
  7960. struct ggml_tensor * dst) {
  7961. assert(params->ith == 0);
  7962. assert(ggml_are_same_shape(src0, dst));
  7963. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7964. return;
  7965. }
  7966. const int n = ggml_nrows(src0);
  7967. const int nc = src0->ne[0];
  7968. assert(dst->nb[0] == sizeof(float));
  7969. assert(src0->nb[0] == sizeof(float));
  7970. for (int i = 0; i < n; i++) {
  7971. ggml_vec_step_f32(nc,
  7972. (float *) ((char *) dst->data + i*( dst->nb[1])),
  7973. (float *) ((char *) src0->data + i*(src0->nb[1])));
  7974. }
  7975. }
  7976. static void ggml_compute_forward_step(
  7977. const struct ggml_compute_params * params,
  7978. const struct ggml_tensor * src0,
  7979. struct ggml_tensor * dst) {
  7980. switch (src0->type) {
  7981. case GGML_TYPE_F32:
  7982. {
  7983. ggml_compute_forward_step_f32(params, src0, dst);
  7984. } break;
  7985. default:
  7986. {
  7987. GGML_ASSERT(false);
  7988. } break;
  7989. }
  7990. }
  7991. // ggml_compute_forward_tanh
  7992. static void ggml_compute_forward_tanh_f32(
  7993. const struct ggml_compute_params * params,
  7994. const struct ggml_tensor * src0,
  7995. struct ggml_tensor * dst) {
  7996. assert(params->ith == 0);
  7997. assert(ggml_are_same_shape(src0, dst));
  7998. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7999. return;
  8000. }
  8001. const int n = ggml_nrows(src0);
  8002. const int nc = src0->ne[0];
  8003. assert(dst->nb[0] == sizeof(float));
  8004. assert(src0->nb[0] == sizeof(float));
  8005. for (int i = 0; i < n; i++) {
  8006. ggml_vec_tanh_f32(nc,
  8007. (float *) ((char *) dst->data + i*( dst->nb[1])),
  8008. (float *) ((char *) src0->data + i*(src0->nb[1])));
  8009. }
  8010. }
  8011. static void ggml_compute_forward_tanh(
  8012. const struct ggml_compute_params * params,
  8013. const struct ggml_tensor * src0,
  8014. struct ggml_tensor * dst) {
  8015. switch (src0->type) {
  8016. case GGML_TYPE_F32:
  8017. {
  8018. ggml_compute_forward_tanh_f32(params, src0, dst);
  8019. } break;
  8020. default:
  8021. {
  8022. GGML_ASSERT(false);
  8023. } break;
  8024. }
  8025. }
  8026. // ggml_compute_forward_elu
  8027. static void ggml_compute_forward_elu_f32(
  8028. const struct ggml_compute_params * params,
  8029. const struct ggml_tensor * src0,
  8030. struct ggml_tensor * dst) {
  8031. assert(params->ith == 0);
  8032. assert(ggml_are_same_shape(src0, dst));
  8033. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  8034. return;
  8035. }
  8036. const int n = ggml_nrows(src0);
  8037. const int nc = src0->ne[0];
  8038. assert(dst->nb[0] == sizeof(float));
  8039. assert(src0->nb[0] == sizeof(float));
  8040. for (int i = 0; i < n; i++) {
  8041. ggml_vec_elu_f32(nc,
  8042. (float *) ((char *) dst->data + i*( dst->nb[1])),
  8043. (float *) ((char *) src0->data + i*(src0->nb[1])));
  8044. }
  8045. }
  8046. static void ggml_compute_forward_elu(
  8047. const struct ggml_compute_params * params,
  8048. const struct ggml_tensor * src0,
  8049. struct ggml_tensor * dst) {
  8050. switch (src0->type) {
  8051. case GGML_TYPE_F32:
  8052. {
  8053. ggml_compute_forward_elu_f32(params, src0, dst);
  8054. } break;
  8055. default:
  8056. {
  8057. GGML_ASSERT(false);
  8058. } break;
  8059. }
  8060. }
  8061. // ggml_compute_forward_relu
  8062. static void ggml_compute_forward_relu_f32(
  8063. const struct ggml_compute_params * params,
  8064. const struct ggml_tensor * src0,
  8065. struct ggml_tensor * dst) {
  8066. assert(params->ith == 0);
  8067. assert(ggml_are_same_shape(src0, dst));
  8068. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  8069. return;
  8070. }
  8071. const int n = ggml_nrows(src0);
  8072. const int nc = src0->ne[0];
  8073. assert(dst->nb[0] == sizeof(float));
  8074. assert(src0->nb[0] == sizeof(float));
  8075. for (int i = 0; i < n; i++) {
  8076. ggml_vec_relu_f32(nc,
  8077. (float *) ((char *) dst->data + i*( dst->nb[1])),
  8078. (float *) ((char *) src0->data + i*(src0->nb[1])));
  8079. }
  8080. }
  8081. static void ggml_compute_forward_relu(
  8082. const struct ggml_compute_params * params,
  8083. const struct ggml_tensor * src0,
  8084. struct ggml_tensor * dst) {
  8085. switch (src0->type) {
  8086. case GGML_TYPE_F32:
  8087. {
  8088. ggml_compute_forward_relu_f32(params, src0, dst);
  8089. } break;
  8090. default:
  8091. {
  8092. GGML_ASSERT(false);
  8093. } break;
  8094. }
  8095. }
  8096. // ggml_compute_forward_gelu
  8097. static void ggml_compute_forward_gelu_f32(
  8098. const struct ggml_compute_params * params,
  8099. const struct ggml_tensor * src0,
  8100. struct ggml_tensor * dst) {
  8101. GGML_ASSERT(ggml_is_contiguous(src0));
  8102. GGML_ASSERT(ggml_is_contiguous(dst));
  8103. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  8104. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  8105. return;
  8106. }
  8107. const int ith = params->ith;
  8108. const int nth = params->nth;
  8109. const int nc = src0->ne[0];
  8110. const int nr = ggml_nrows(src0);
  8111. // rows per thread
  8112. const int dr = (nr + nth - 1)/nth;
  8113. // row range for this thread
  8114. const int ir0 = dr*ith;
  8115. const int ir1 = MIN(ir0 + dr, nr);
  8116. for (int i1 = ir0; i1 < ir1; i1++) {
  8117. ggml_vec_gelu_f32(nc,
  8118. (float *) ((char *) dst->data + i1*( dst->nb[1])),
  8119. (float *) ((char *) src0->data + i1*(src0->nb[1])));
  8120. #ifndef NDEBUG
  8121. for (int k = 0; k < nc; k++) {
  8122. const float x = ((float *) ((char *) dst->data + i1*( dst->nb[1])))[k];
  8123. UNUSED(x);
  8124. assert(!isnan(x));
  8125. assert(!isinf(x));
  8126. }
  8127. #endif
  8128. }
  8129. }
  8130. static void ggml_compute_forward_gelu(
  8131. const struct ggml_compute_params * params,
  8132. const struct ggml_tensor * src0,
  8133. struct ggml_tensor * dst) {
  8134. switch (src0->type) {
  8135. case GGML_TYPE_F32:
  8136. {
  8137. ggml_compute_forward_gelu_f32(params, src0, dst);
  8138. } break;
  8139. default:
  8140. {
  8141. GGML_ASSERT(false);
  8142. } break;
  8143. }
  8144. }
  8145. // ggml_compute_forward_gelu_quick
  8146. static void ggml_compute_forward_gelu_quick_f32(
  8147. const struct ggml_compute_params * params,
  8148. const struct ggml_tensor * src0,
  8149. struct ggml_tensor * dst) {
  8150. GGML_ASSERT(ggml_is_contiguous(src0));
  8151. GGML_ASSERT(ggml_is_contiguous(dst));
  8152. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  8153. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  8154. return;
  8155. }
  8156. const int ith = params->ith;
  8157. const int nth = params->nth;
  8158. const int nc = src0->ne[0];
  8159. const int nr = ggml_nrows(src0);
  8160. // rows per thread
  8161. const int dr = (nr + nth - 1)/nth;
  8162. // row range for this thread
  8163. const int ir0 = dr*ith;
  8164. const int ir1 = MIN(ir0 + dr, nr);
  8165. for (int i1 = ir0; i1 < ir1; i1++) {
  8166. ggml_vec_gelu_quick_f32(nc,
  8167. (float *) ((char *) dst->data + i1*( dst->nb[1])),
  8168. (float *) ((char *) src0->data + i1*(src0->nb[1])));
  8169. #ifndef NDEBUG
  8170. for (int k = 0; k < nc; k++) {
  8171. const float x = ((float *) ((char *) dst->data + i1*( dst->nb[1])))[k];
  8172. UNUSED(x);
  8173. assert(!isnan(x));
  8174. assert(!isinf(x));
  8175. }
  8176. #endif
  8177. }
  8178. }
  8179. static void ggml_compute_forward_gelu_quick(
  8180. const struct ggml_compute_params * params,
  8181. const struct ggml_tensor * src0,
  8182. struct ggml_tensor * dst) {
  8183. switch (src0->type) {
  8184. case GGML_TYPE_F32:
  8185. {
  8186. ggml_compute_forward_gelu_quick_f32(params, src0, dst);
  8187. } break;
  8188. default:
  8189. {
  8190. GGML_ASSERT(false);
  8191. } break;
  8192. }
  8193. }
  8194. // ggml_compute_forward_silu
  8195. static void ggml_compute_forward_silu_f32(
  8196. const struct ggml_compute_params * params,
  8197. const struct ggml_tensor * src0,
  8198. struct ggml_tensor * dst) {
  8199. GGML_ASSERT(ggml_is_contiguous(src0));
  8200. GGML_ASSERT(ggml_is_contiguous(dst));
  8201. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  8202. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  8203. return;
  8204. }
  8205. const int ith = params->ith;
  8206. const int nth = params->nth;
  8207. const int nc = src0->ne[0];
  8208. const int nr = ggml_nrows(src0);
  8209. // rows per thread
  8210. const int dr = (nr + nth - 1)/nth;
  8211. // row range for this thread
  8212. const int ir0 = dr*ith;
  8213. const int ir1 = MIN(ir0 + dr, nr);
  8214. for (int i1 = ir0; i1 < ir1; i1++) {
  8215. ggml_vec_silu_f32(nc,
  8216. (float *) ((char *) dst->data + i1*( dst->nb[1])),
  8217. (float *) ((char *) src0->data + i1*(src0->nb[1])));
  8218. #ifndef NDEBUG
  8219. for (int k = 0; k < nc; k++) {
  8220. const float x = ((float *) ((char *) dst->data + i1*( dst->nb[1])))[k];
  8221. UNUSED(x);
  8222. assert(!isnan(x));
  8223. assert(!isinf(x));
  8224. }
  8225. #endif
  8226. }
  8227. }
  8228. static void ggml_compute_forward_silu(
  8229. const struct ggml_compute_params * params,
  8230. const struct ggml_tensor * src0,
  8231. struct ggml_tensor * dst) {
  8232. switch (src0->type) {
  8233. case GGML_TYPE_F32:
  8234. {
  8235. ggml_compute_forward_silu_f32(params, src0, dst);
  8236. } break;
  8237. default:
  8238. {
  8239. GGML_ASSERT(false);
  8240. } break;
  8241. }
  8242. }
  8243. // ggml_compute_forward_silu_back
  8244. static void ggml_compute_forward_silu_back_f32(
  8245. const struct ggml_compute_params * params,
  8246. const struct ggml_tensor * src0,
  8247. const struct ggml_tensor * grad,
  8248. struct ggml_tensor * dst) {
  8249. GGML_ASSERT(ggml_is_contiguous(grad));
  8250. GGML_ASSERT(ggml_is_contiguous(src0));
  8251. GGML_ASSERT(ggml_is_contiguous(dst));
  8252. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  8253. GGML_ASSERT(ggml_are_same_shape(src0, grad));
  8254. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  8255. return;
  8256. }
  8257. const int ith = params->ith;
  8258. const int nth = params->nth;
  8259. const int nc = src0->ne[0];
  8260. const int nr = ggml_nrows(src0);
  8261. // rows per thread
  8262. const int dr = (nr + nth - 1)/nth;
  8263. // row range for this thread
  8264. const int ir0 = dr*ith;
  8265. const int ir1 = MIN(ir0 + dr, nr);
  8266. for (int i1 = ir0; i1 < ir1; i1++) {
  8267. ggml_vec_silu_backward_f32(nc,
  8268. (float *) ((char *) dst->data + i1*( dst->nb[1])),
  8269. (float *) ((char *) src0->data + i1*(src0->nb[1])),
  8270. (float *) ((char *) grad->data + i1*(grad->nb[1])));
  8271. #ifndef NDEBUG
  8272. for (int k = 0; k < nc; k++) {
  8273. const float x = ((float *) ((char *) dst->data + i1*( dst->nb[1])))[k];
  8274. UNUSED(x);
  8275. assert(!isnan(x));
  8276. assert(!isinf(x));
  8277. }
  8278. #endif
  8279. }
  8280. }
  8281. static void ggml_compute_forward_silu_back(
  8282. const struct ggml_compute_params * params,
  8283. const struct ggml_tensor * src0,
  8284. const struct ggml_tensor * grad,
  8285. struct ggml_tensor * dst) {
  8286. switch (src0->type) {
  8287. case GGML_TYPE_F32:
  8288. {
  8289. ggml_compute_forward_silu_back_f32(params, src0, grad, dst);
  8290. } break;
  8291. default:
  8292. {
  8293. GGML_ASSERT(false);
  8294. } break;
  8295. }
  8296. }
  8297. // ggml_compute_forward_norm
  8298. static void ggml_compute_forward_norm_f32(
  8299. const struct ggml_compute_params * params,
  8300. const struct ggml_tensor * src0,
  8301. struct ggml_tensor * dst) {
  8302. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  8303. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  8304. return;
  8305. }
  8306. GGML_ASSERT(src0->nb[0] == sizeof(float));
  8307. const int ith = params->ith;
  8308. const int nth = params->nth;
  8309. GGML_TENSOR_UNARY_OP_LOCALS;
  8310. const float eps = 1e-5f; // TODO: make this a parameter
  8311. // TODO: optimize
  8312. for (int64_t i03 = 0; i03 < ne03; i03++) {
  8313. for (int64_t i02 = 0; i02 < ne02; i02++) {
  8314. for (int64_t i01 = ith; i01 < ne01; i01 += nth) {
  8315. const float * x = (float *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03);
  8316. ggml_float sum = 0.0;
  8317. for (int64_t i00 = 0; i00 < ne00; i00++) {
  8318. sum += (ggml_float)x[i00];
  8319. }
  8320. float mean = sum/ne00;
  8321. float * y = (float *) ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3);
  8322. ggml_float sum2 = 0.0;
  8323. for (int64_t i00 = 0; i00 < ne00; i00++) {
  8324. float v = x[i00] - mean;
  8325. y[i00] = v;
  8326. sum2 += (ggml_float)(v*v);
  8327. }
  8328. float variance = sum2/ne00;
  8329. const float scale = 1.0f/sqrtf(variance + eps);
  8330. ggml_vec_scale_f32(ne00, y, scale);
  8331. }
  8332. }
  8333. }
  8334. }
  8335. static void ggml_compute_forward_norm(
  8336. const struct ggml_compute_params * params,
  8337. const struct ggml_tensor * src0,
  8338. struct ggml_tensor * dst) {
  8339. switch (src0->type) {
  8340. case GGML_TYPE_F32:
  8341. {
  8342. ggml_compute_forward_norm_f32(params, src0, dst);
  8343. } break;
  8344. default:
  8345. {
  8346. GGML_ASSERT(false);
  8347. } break;
  8348. }
  8349. }
  8350. static void ggml_compute_forward_rms_norm_f32(
  8351. const struct ggml_compute_params * params,
  8352. const struct ggml_tensor * src0,
  8353. struct ggml_tensor * dst) {
  8354. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  8355. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  8356. return;
  8357. }
  8358. GGML_ASSERT(src0->nb[0] == sizeof(float));
  8359. const int ith = params->ith;
  8360. const int nth = params->nth;
  8361. GGML_TENSOR_UNARY_OP_LOCALS;
  8362. const float eps = 1e-6f; // TODO: make this a parameter
  8363. // TODO: optimize
  8364. for (int64_t i03 = 0; i03 < ne03; i03++) {
  8365. for (int64_t i02 = 0; i02 < ne02; i02++) {
  8366. for (int64_t i01 = ith; i01 < ne01; i01 += nth) {
  8367. const float * x = (float *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03);
  8368. ggml_float sum = 0.0;
  8369. for (int64_t i00 = 0; i00 < ne00; i00++) {
  8370. sum += (ggml_float)(x[i00] * x[i00]);
  8371. }
  8372. const float mean = sum/ne00;
  8373. float * y = (float *) ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3);
  8374. memcpy(y, x, ne00 * sizeof(float));
  8375. // for (int i00 = 0; i00 < ne00; i00++) {
  8376. // y[i00] = x[i00];
  8377. // }
  8378. const float scale = 1.0f/sqrtf(mean + eps);
  8379. ggml_vec_scale_f32(ne00, y, scale);
  8380. }
  8381. }
  8382. }
  8383. }
  8384. static void ggml_compute_forward_rms_norm(
  8385. const struct ggml_compute_params * params,
  8386. const struct ggml_tensor * src0,
  8387. struct ggml_tensor * dst) {
  8388. switch (src0->type) {
  8389. case GGML_TYPE_F32:
  8390. {
  8391. ggml_compute_forward_rms_norm_f32(params, src0, dst);
  8392. } break;
  8393. default:
  8394. {
  8395. GGML_ASSERT(false);
  8396. } break;
  8397. }
  8398. }
  8399. static void ggml_compute_forward_rms_norm_back_f32(
  8400. const struct ggml_compute_params * params,
  8401. const struct ggml_tensor * src0,
  8402. const struct ggml_tensor * src1,
  8403. struct ggml_tensor * dst) {
  8404. GGML_ASSERT(ggml_are_same_shape(src0, dst) && ggml_are_same_shape(src0, src1));
  8405. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  8406. return;
  8407. }
  8408. GGML_ASSERT(src0->nb[0] == sizeof(float));
  8409. const int ith = params->ith;
  8410. const int nth = params->nth;
  8411. GGML_TENSOR_BINARY_OP_LOCALS;
  8412. const float eps = 1e-6f; // TODO: make this a parameter
  8413. // TODO: optimize
  8414. for (int64_t i03 = 0; i03 < ne03; i03++) {
  8415. for (int64_t i02 = 0; i02 < ne02; i02++) {
  8416. for (int64_t i01 = ith; i01 < ne01; i01 += nth) {
  8417. // src1 is same shape as src0 => same indices
  8418. const int64_t i11 = i01;
  8419. const int64_t i12 = i02;
  8420. const int64_t i13 = i03;
  8421. const float * x = (float *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03);
  8422. const float * dz = (float *) ((char *) src1->data + i11*nb11 + i12*nb12 + i13*nb13);
  8423. ggml_float sum_xx = 0.0;
  8424. ggml_float sum_xdz = 0.0;
  8425. for (int64_t i00 = 0; i00 < ne00; i00++) {
  8426. sum_xx += (ggml_float)(x[i00] * x[i00]);
  8427. sum_xdz += (ggml_float)(x[i00] * dz[i00]);
  8428. }
  8429. //const float mean = (float)(sum_xx)/ne00;
  8430. const float mean_eps = (float)(sum_xx)/ne00 + eps;
  8431. const float sum_eps = (float)(sum_xx) + eps*ne00;
  8432. //const float mean_xdz = (float)(sum_xdz)/ne00;
  8433. // we could cache rms from forward pass to improve performance.
  8434. // to do this implement ggml_rms and compose ggml_rms_norm using ggml_rms.
  8435. //const float rms = sqrtf(mean_eps);
  8436. const float rrms = 1.0f / sqrtf(mean_eps);
  8437. //const float scale = -rrms/(ne00 * mean_eps); // -1/(n*rms**3)
  8438. {
  8439. // z = rms_norm(x)
  8440. //
  8441. // rms_norm(src0) =
  8442. // scale(
  8443. // src0,
  8444. // div(
  8445. // 1,
  8446. // sqrt(
  8447. // add(
  8448. // scale(
  8449. // sum(
  8450. // sqr(
  8451. // src0)),
  8452. // (1.0/N)),
  8453. // eps))));
  8454. // postorder:
  8455. // ## op args grad
  8456. // 00 param src0 grad[#00]
  8457. // 01 const 1
  8458. // 02 sqr (#00) grad[#02]
  8459. // 03 sum (#02) grad[#03]
  8460. // 04 const 1/N
  8461. // 05 scale (#03, #04) grad[#05]
  8462. // 06 const eps
  8463. // 07 add (#05, #06) grad[#07]
  8464. // 08 sqrt (#07) grad[#08]
  8465. // 09 div (#01,#08) grad[#09]
  8466. // 10 scale (#00,#09) grad[#10]
  8467. //
  8468. // backward pass, given grad[#10]
  8469. // #10: scale
  8470. // grad[#00] += scale(grad[#10],#09)
  8471. // grad[#09] += sum(mul(grad[#10],#00))
  8472. // #09: div
  8473. // grad[#08] += neg(mul(grad[#09], div(#09,#08)))
  8474. // #08: sqrt
  8475. // grad[#07] += mul(grad[#08], div(0.5, #08))
  8476. // #07: add
  8477. // grad[#05] += grad[#07]
  8478. // #05: scale
  8479. // grad[#03] += scale(grad[#05],#04)
  8480. // #03: sum
  8481. // grad[#02] += repeat(grad[#03], #02)
  8482. // #02:
  8483. // grad[#00] += scale(mul(#00, grad[#02]), 2.0)
  8484. //
  8485. // substitute and simplify:
  8486. // grad[#00] = scale(grad(#10), #09) + scale(mul(#00, grad[#02]), 2.0)
  8487. // grad[#02] = repeat(grad[#03], #02)
  8488. // grad[#02] = repeat(scale(grad[#05],#04), #02)
  8489. // grad[#02] = repeat(scale(grad[#07],#04), #02)
  8490. // grad[#02] = repeat(scale(mul(grad[#08], div(0.5, #08)),#04), #02)
  8491. // grad[#02] = repeat(scale(mul(neg(mul(grad[#09], div(#09,#08))), div(0.5, #08)),#04), #02)
  8492. // grad[#02] = repeat(scale(mul(neg(mul(sum(mul(grad[#10],#00)), div(#09,#08))), div(0.5, #08)),#04), #02)
  8493. // grad[#02] = repeat(-(sum(mul(grad[#10],#00)) * div(#09,#08) * div(0.5, #08) * (1/N)), #02)
  8494. // grad[#02] = repeat(-(sum(mul(grad[#10],#00)) * div(div(#01,#08),#08) * div(0.5, #08) * (1/N)), #02)
  8495. // grad[#02] = repeat(-(sum(mul(grad[#10],#00)) * div(1,#08*#08) * div(0.5, #08) * (1/N)), #02)
  8496. // grad[#02] = repeat(-(sum(mul(grad[#10],#00)) * div(1,#07) * div(0.5, #08) * (1/N)), #02)
  8497. // grad[#00] = scale(grad(#10), #09) + scale(mul(#00, grad[#02]), 2.0)
  8498. // grad[#00] = scale(grad(#10), #09) + scale(mul(#00, repeat(-(sum(mul(grad[#10],#00)) * div(1,#07) * div(0.5, #08) * (1/N)), #02)), 2.0)
  8499. // grad[#00] = scale(grad(#10), #09) + scale(scale(#00, -(sum(mul(grad[#10],#00)) * div(1,#07) * div(0.5, #08) * (1/N))), 2.0)
  8500. // grad[#00] = scale(grad(#10), #09) + scale(#00, -(sum(mul(grad[#10],#00)) * div(1,#07) * div(1,#08) * (1/N)))
  8501. // grad[#00] = scale(grad(#10), #09) + scale(#00, sum(mul(grad[#10],#00)) * div(1,#07*#08) * (-1/N))
  8502. // grad[#00] = scale(grad(#10), #09) + scale(#00, sum(mul(grad[#10],#00)) * div(1,#07*#08) * (-1/N))
  8503. // grad[#00] = scale(grad(#10), #09) + scale(#00, sum(mul(grad[#10],#00)) * div(1,mean_eps*rms) * (-1/N))
  8504. // grad[#00] = scale(grad(#10), #09) + scale(#00, sum(mul(grad[#10],#00)) * div(-1,rms*N*mean_eps))
  8505. // grad[#00] = scale(grad(#10), #09) + scale(#00, sum(mul(grad[#10],#00)) * div(-1,rms*N*(sum_xx/N+eps)))
  8506. // grad[#00] = scale(grad(#10), #09) + scale(#00, sum(mul(grad[#10],#00)) * div(-1,rms*N*sum_xx+rms*N*eps))
  8507. // grad[#00] = scale(dz, rrms) + scale(x, sum(mul(dz,x)) * div(-1,rms*N*mean_eps))
  8508. // grad[#00] = scale(dz, rrms) + scale(x, sum_xdz * div(-1,rms*N*mean_eps))
  8509. // a = b*c + d*e
  8510. // a = b*c*f/f + d*e*f/f
  8511. // a = (b*c*f + d*e*f)*(1/f)
  8512. // a = (b*c*(1/c) + d*e*(1/c))*(1/(1/c))
  8513. // a = (b + d*e/c)*c
  8514. // b = dz, c = rrms, d = x, e = sum_xdz * div(-1,rms*N*mean_eps)
  8515. // a = (dz + x*sum_xdz * div(-1,rms*N*mean_eps)/rrms)*rrms
  8516. // a = (dz + x*sum_xdz * div(-1,rms*N*mean_eps)*rms)*rrms
  8517. // a = (dz + x*sum_xdz * div(-rms,rms*N*mean_eps))*rrms
  8518. // a = (dz + x*sum_xdz * div(-1,N*mean_eps))*rrms
  8519. // a = (dz + x*div(-sum_xdz,N*mean_eps))*rrms
  8520. // a = (dz + x*div(-mean_xdz,mean_eps))*rrms
  8521. // grad[#00] = scale(dz + scale(x, div(-mean_xdz,mean_eps)),rrms)
  8522. // grad[#00] = scale(dz + scale(x, -mean_xdz/mean_eps),rrms)
  8523. // dx = scale(dz + scale(x, -mean_xdz/mean_eps),rrms)
  8524. }
  8525. // dx = scale(dz + scale(x, -mean_xdz/mean_eps),rrms)
  8526. // post-order:
  8527. // dx := x
  8528. // dx := scale(dx,-mean_xdz/mean_eps)
  8529. // dx := add(dx, dz)
  8530. // dx := scale(dx, rrms)
  8531. float * dx = (float *) ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3);
  8532. ggml_vec_cpy_f32 (ne00, dx, x);
  8533. // ggml_vec_scale_f32(ne00, dx, -mean_xdz/mean_eps);
  8534. ggml_vec_scale_f32(ne00, dx, (float)(-sum_xdz)/sum_eps);
  8535. ggml_vec_acc_f32 (ne00, dx, dz);
  8536. ggml_vec_scale_f32(ne00, dx, rrms);
  8537. }
  8538. }
  8539. }
  8540. }
  8541. static void ggml_compute_forward_rms_norm_back(
  8542. const struct ggml_compute_params * params,
  8543. const struct ggml_tensor * src0,
  8544. const struct ggml_tensor * src1,
  8545. struct ggml_tensor * dst) {
  8546. switch (src0->type) {
  8547. case GGML_TYPE_F32:
  8548. {
  8549. ggml_compute_forward_rms_norm_back_f32(params, src0, src1, dst);
  8550. } break;
  8551. default:
  8552. {
  8553. GGML_ASSERT(false);
  8554. } break;
  8555. }
  8556. }
  8557. // ggml_compute_forward_mul_mat
  8558. #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS)
  8559. // helper function to determine if it is better to use BLAS or not
  8560. // for large matrices, BLAS is faster
  8561. static bool ggml_compute_forward_mul_mat_use_blas(
  8562. const struct ggml_tensor * src0,
  8563. const struct ggml_tensor * src1,
  8564. struct ggml_tensor * dst) {
  8565. //const int64_t ne00 = src0->ne[0];
  8566. //const int64_t ne01 = src0->ne[1];
  8567. const int64_t ne10 = src1->ne[0];
  8568. const int64_t ne0 = dst->ne[0];
  8569. const int64_t ne1 = dst->ne[1];
  8570. // TODO: find the optimal values for these
  8571. if (ggml_is_contiguous(src0) &&
  8572. ggml_is_contiguous(src1) &&
  8573. (ne0 >= 32 && ne1 >= 32 && ne10 >= 32)) {
  8574. /*printf("BLAS: %d %d %d %d %d\n", ne0, ne1, ne10, ne00, ne01);*/
  8575. return true;
  8576. }
  8577. return false;
  8578. }
  8579. #endif
  8580. static void ggml_compute_forward_mul_mat(
  8581. const struct ggml_compute_params * params,
  8582. const struct ggml_tensor * src0,
  8583. const struct ggml_tensor * src1,
  8584. struct ggml_tensor * dst) {
  8585. int64_t t0 = ggml_perf_time_us();
  8586. UNUSED(t0);
  8587. GGML_TENSOR_BINARY_OP_LOCALS;
  8588. const int ith = params->ith;
  8589. const int nth = params->nth;
  8590. GGML_ASSERT(ne02 == ne12);
  8591. GGML_ASSERT(ne03 == ne13);
  8592. GGML_ASSERT(ne2 == ne12);
  8593. GGML_ASSERT(ne3 == ne13);
  8594. const enum ggml_type type = src0->type;
  8595. ggml_vec_dot_t const vec_dot = type_traits[type].vec_dot;
  8596. enum ggml_type const vec_dot_type = type_traits[type].vec_dot_type;
  8597. ggml_from_float_t const from_float_to_vec_dot = type_traits[vec_dot_type].from_float;
  8598. // we don't support permuted src0 or src1
  8599. GGML_ASSERT(nb00 == GGML_TYPE_SIZE[type]);
  8600. GGML_ASSERT(nb10 == sizeof(float));
  8601. // dst cannot be transposed or permuted
  8602. GGML_ASSERT(nb0 == sizeof(float));
  8603. GGML_ASSERT(nb0 <= nb1);
  8604. GGML_ASSERT(nb1 <= nb2);
  8605. GGML_ASSERT(nb2 <= nb3);
  8606. GGML_ASSERT(ne0 == ne01);
  8607. GGML_ASSERT(ne1 == ne11);
  8608. GGML_ASSERT(ne2 == ne02);
  8609. GGML_ASSERT(ne3 == ne03);
  8610. // nb01 >= nb00 - src0 is not transposed
  8611. // compute by src0 rows
  8612. #if defined(GGML_USE_CLBLAST)
  8613. if (ggml_cl_can_mul_mat(src0, src1, dst)) {
  8614. if (params->ith == 0 && params->type == GGML_TASK_COMPUTE) {
  8615. ggml_cl_mul_mat(src0, src1, dst, params->wdata, params->wsize);
  8616. }
  8617. return;
  8618. }
  8619. #endif
  8620. #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS)
  8621. if (ggml_compute_forward_mul_mat_use_blas(src0, src1, dst)) {
  8622. if (params->ith != 0) {
  8623. return;
  8624. }
  8625. if (params->type == GGML_TASK_INIT) {
  8626. return;
  8627. }
  8628. if (params->type == GGML_TASK_FINALIZE) {
  8629. return;
  8630. }
  8631. for (int64_t i03 = 0; i03 < ne03; i03++) {
  8632. for (int64_t i02 = 0; i02 < ne02; i02++) {
  8633. const void * x = (char *) src0->data + i03*nb03 + i02*nb02;
  8634. const float * y = (float *) ((char *) src1->data + i02*nb12 + i03*nb13);
  8635. float * d = (float *) ((char *) dst->data + i02*nb2 + i03*nb3);
  8636. if (type != GGML_TYPE_F32) {
  8637. float * const wdata = params->wdata;
  8638. ggml_to_float_t const to_float = type_traits[type].to_float;
  8639. size_t id = 0;
  8640. for (int64_t i01 = 0; i01 < ne01; ++i01) {
  8641. to_float((char *) src0->data + i03*nb03 + i02*nb02 + i01*nb01, wdata + id, ne00);
  8642. id += ne00;
  8643. }
  8644. assert(id*sizeof(float) <= params->wsize);
  8645. x = wdata;
  8646. }
  8647. cblas_sgemm(CblasRowMajor, CblasNoTrans, CblasTrans,
  8648. ne11, ne01, ne10,
  8649. 1.0f, y, ne10,
  8650. x, ne00,
  8651. 0.0f, d, ne01);
  8652. }
  8653. }
  8654. //printf("CBLAS = %f ms, %d x %d x %d x %d\n", (ggml_perf_time_us() - t0)/1000.0, ne0, ne1, ne2, ne3);
  8655. return;
  8656. }
  8657. #endif
  8658. if (params->type == GGML_TASK_INIT) {
  8659. if (src1->type != vec_dot_type) {
  8660. char * wdata = params->wdata;
  8661. const size_t row_size = ne10*GGML_TYPE_SIZE[vec_dot_type]/GGML_BLCK_SIZE[vec_dot_type];
  8662. for (int64_t i13 = 0; i13 < ne13; ++i13) {
  8663. for (int64_t i12 = 0; i12 < ne12; ++i12) {
  8664. for (int64_t i11 = 0; i11 < ne11; ++i11) {
  8665. from_float_to_vec_dot((float *)((char *) src1->data + i13*nb13 + i12*nb12 + i11*nb11), (void *) wdata, ne10);
  8666. wdata += row_size;
  8667. }
  8668. }
  8669. }
  8670. }
  8671. return;
  8672. }
  8673. if (params->type == GGML_TASK_FINALIZE) {
  8674. return;
  8675. }
  8676. // parallelize by src0 rows using ggml_vec_dot_q
  8677. // total rows in src0
  8678. const int nr = ne01*ne02*ne03;
  8679. // rows per thread
  8680. const int dr = (nr + nth - 1)/nth;
  8681. // row range for this thread
  8682. const int ir0 = dr*ith;
  8683. const int ir1 = MIN(ir0 + dr, nr);
  8684. void * wdata = (src1->type == vec_dot_type) ? src1->data : params->wdata;
  8685. const size_t row_size = ne00*GGML_TYPE_SIZE[vec_dot_type]/GGML_BLCK_SIZE[vec_dot_type];
  8686. for (int ir = ir0; ir < ir1; ++ir) {
  8687. // src0 indices
  8688. const int i03 = ir/(ne02*ne01);
  8689. const int i02 = (ir - i03*ne02*ne01)/ne01;
  8690. const int i01 = (ir - i03*ne02*ne01 - i02*ne01);
  8691. const int i13 = i03;
  8692. const int i12 = i02;
  8693. const int i0 = i01;
  8694. const int i2 = i02;
  8695. const int i3 = i03;
  8696. void * src0_row = (void *) ((char *) src0->data + (i01*nb01 + i02*nb02 + i03*nb03));
  8697. char * src1_col = ((char *) wdata + ( (0 + i12*ne11 + i13*ne12*ne11)*row_size));
  8698. float * dst_col = (float *) ((char *) dst->data + (i0*nb0 + 0*nb1 + i2*nb2 + i3*nb3));
  8699. for (int64_t ic = 0; ic < ne11; ++ic) {
  8700. vec_dot(ne00, &dst_col[ic*ne0], src0_row, (void *) (src1_col + ic*row_size));
  8701. }
  8702. }
  8703. //int64_t t1 = ggml_time_us();
  8704. //static int64_t acc = 0;
  8705. //acc += t1 - t0;
  8706. //if (t1 - t0 > 10) {
  8707. // printf("\n");
  8708. // printf("ne00 = %5d, ne01 = %5d, ne02 = %5d, ne03 = %5d\n", ne00, ne01, ne02, ne03);
  8709. // printf("nb00 = %5d, nb01 = %5d, nb02 = %5d, nb03 = %5d\n", nb00, nb01, nb02, nb03);
  8710. // printf("ne10 = %5d, ne11 = %5d, ne12 = %5d, ne13 = %5d\n", ne10, ne11, ne12, ne13);
  8711. // printf("XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX task %d/%d: %d us, acc = %d\n", ith, nth, (int) (t1 - t0), (int) acc);
  8712. //}
  8713. }
  8714. // ggml_compute_forward_out_prod
  8715. static void ggml_compute_forward_out_prod_f32(
  8716. const struct ggml_compute_params * params,
  8717. const struct ggml_tensor * src0,
  8718. const struct ggml_tensor * src1,
  8719. struct ggml_tensor * dst) {
  8720. int64_t t0 = ggml_perf_time_us();
  8721. UNUSED(t0);
  8722. GGML_TENSOR_BINARY_OP_LOCALS;
  8723. const int ith = params->ith;
  8724. const int nth = params->nth;
  8725. GGML_ASSERT(ne02 == ne12);
  8726. GGML_ASSERT(ne03 == ne13);
  8727. GGML_ASSERT(ne2 == ne12);
  8728. GGML_ASSERT(ne3 == ne13);
  8729. // we don't support permuted src0 or src1
  8730. GGML_ASSERT(nb00 == sizeof(float));
  8731. // dst cannot be transposed or permuted
  8732. GGML_ASSERT(nb0 == sizeof(float));
  8733. // GGML_ASSERT(nb0 <= nb1);
  8734. // GGML_ASSERT(nb1 <= nb2);
  8735. // GGML_ASSERT(nb2 <= nb3);
  8736. GGML_ASSERT(ne0 == ne00);
  8737. GGML_ASSERT(ne1 == ne10);
  8738. GGML_ASSERT(ne2 == ne02);
  8739. GGML_ASSERT(ne3 == ne03);
  8740. // nb01 >= nb00 - src0 is not transposed
  8741. // compute by src0 rows
  8742. // TODO: #if defined(GGML_USE_CUBLAS) ggml_cuda_out_prod
  8743. // TODO: #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS) || defined(GGML_USE_CLBLAST)
  8744. if (params->type == GGML_TASK_INIT) {
  8745. ggml_vec_set_f32(ne0*ne1*ne2*ne3, dst->data, 0);
  8746. return;
  8747. }
  8748. if (params->type == GGML_TASK_FINALIZE) {
  8749. return;
  8750. }
  8751. // parallelize by last three dimensions
  8752. // total rows in dst
  8753. const int64_t nr = ne1*ne2*ne3;
  8754. // rows per thread
  8755. const int64_t dr = (nr + nth - 1)/nth;
  8756. // row range for this thread
  8757. const int64_t ir0 = dr*ith;
  8758. const int64_t ir1 = MIN(ir0 + dr, nr);
  8759. // dst[:,:,:,:] = 0
  8760. // for i2,i3:
  8761. // for i1:
  8762. // for i01:
  8763. // for i0:
  8764. // dst[i0,i1,i2,i3] += src0[i0,i01,i2,i3] * src1[i1,i01,i2,i3]
  8765. for (int64_t ir = ir0; ir < ir1; ++ir) {
  8766. // dst indices
  8767. const int64_t i3 = ir/(ne2*ne1);
  8768. const int64_t i2 = (ir - i3*ne2*ne1)/ne1;
  8769. const int64_t i1 = (ir - i3*ne2*ne1 - i2*ne1);
  8770. const int64_t i02 = i2;
  8771. const int64_t i03 = i3;
  8772. //const int64_t i10 = i1;
  8773. const int64_t i12 = i2;
  8774. const int64_t i13 = i3;
  8775. for (int64_t i01 = 0; i01 < ne01; ++i01) {
  8776. const int64_t i11 = i01;
  8777. float * s0 = (float *) ((char *) src0->data + ( i01*nb01 + i02*nb02 + i03*nb03));
  8778. float * s1 = (float *) ((char *) src1->data + (i1*nb10 + i11*nb11 + i12*nb12 + i13*nb13));
  8779. float * d = (float *) ((char *) dst->data + ( i1*nb1 + i2*nb2 + i3*nb3));
  8780. ggml_vec_mad_f32(ne0, d, s0, *s1);
  8781. // for (int64_t i0 = 0; i0 < ne0; ++i0) {
  8782. // d[i0] += s0[i0] * s1[i1];
  8783. // }
  8784. }
  8785. }
  8786. //int64_t t1 = ggml_perf_time_us();
  8787. //static int64_t acc = 0;
  8788. //acc += t1 - t0;
  8789. //if (t1 - t0 > 10) {
  8790. // printf("\n");
  8791. // printf("ne00 = %5d, ne01 = %5d, ne02 = %5d, ne03 = %5d\n", ne00, ne01, ne02, ne03);
  8792. // printf("nb00 = %5d, nb01 = %5d, nb02 = %5d, nb03 = %5d\n", nb00, nb01, nb02, nb03);
  8793. // printf("ne10 = %5d, ne11 = %5d, ne12 = %5d, ne13 = %5d\n", ne10, ne11, ne12, ne13);
  8794. // printf("nb10 = %5d, nb11 = %5d, nb12 = %5d, nb13 = %5d\n", nb10, nb11, nb12, nb13);
  8795. // printf("XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX task %d/%d: %d us, acc = %d\n", ith, nth, (int) (t1 - t0), (int) acc);
  8796. //}
  8797. }
  8798. static void ggml_compute_forward_out_prod(
  8799. const struct ggml_compute_params * params,
  8800. const struct ggml_tensor * src0,
  8801. const struct ggml_tensor * src1,
  8802. struct ggml_tensor * dst) {
  8803. switch (src0->type) {
  8804. case GGML_TYPE_Q4_0:
  8805. case GGML_TYPE_Q4_1:
  8806. case GGML_TYPE_Q5_0:
  8807. case GGML_TYPE_Q5_1:
  8808. case GGML_TYPE_Q8_0:
  8809. case GGML_TYPE_Q8_1:
  8810. {
  8811. GGML_ASSERT(false); // todo
  8812. // ggml_compute_forward_out_prod_q_f32(params, src0, src1, dst);
  8813. } break;
  8814. case GGML_TYPE_F16:
  8815. {
  8816. GGML_ASSERT(false); // todo
  8817. // ggml_compute_forward_out_prod_f16_f32(params, src0, src1, dst);
  8818. } break;
  8819. case GGML_TYPE_F32:
  8820. {
  8821. ggml_compute_forward_out_prod_f32(params, src0, src1, dst);
  8822. } break;
  8823. default:
  8824. {
  8825. GGML_ASSERT(false);
  8826. } break;
  8827. }
  8828. }
  8829. // ggml_compute_forward_scale
  8830. static void ggml_compute_forward_scale_f32(
  8831. const struct ggml_compute_params * params,
  8832. const struct ggml_tensor * src0,
  8833. const struct ggml_tensor * src1,
  8834. struct ggml_tensor * dst) {
  8835. GGML_ASSERT(ggml_is_contiguous(src0));
  8836. GGML_ASSERT(ggml_is_contiguous(dst));
  8837. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  8838. GGML_ASSERT(ggml_is_scalar(src1));
  8839. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  8840. return;
  8841. }
  8842. // scale factor
  8843. const float v = *(float *) src1->data;
  8844. const int ith = params->ith;
  8845. const int nth = params->nth;
  8846. const int nc = src0->ne[0];
  8847. const int nr = ggml_nrows(src0);
  8848. // rows per thread
  8849. const int dr = (nr + nth - 1)/nth;
  8850. // row range for this thread
  8851. const int ir0 = dr*ith;
  8852. const int ir1 = MIN(ir0 + dr, nr);
  8853. const size_t nb01 = src0->nb[1];
  8854. const size_t nb1 = dst->nb[1];
  8855. for (int i1 = ir0; i1 < ir1; i1++) {
  8856. if (dst->data != src0->data) {
  8857. // src0 is same shape as dst => same indices
  8858. memcpy((char *)dst->data + i1*nb1, (char *)src0->data + i1*nb01, nc * sizeof(float));
  8859. }
  8860. ggml_vec_scale_f32(nc, (float *) ((char *) dst->data + i1*nb1), v);
  8861. }
  8862. }
  8863. static void ggml_compute_forward_scale(
  8864. const struct ggml_compute_params * params,
  8865. const struct ggml_tensor * src0,
  8866. const struct ggml_tensor * src1,
  8867. struct ggml_tensor * dst) {
  8868. switch (src0->type) {
  8869. case GGML_TYPE_F32:
  8870. {
  8871. ggml_compute_forward_scale_f32(params, src0, src1, dst);
  8872. } break;
  8873. default:
  8874. {
  8875. GGML_ASSERT(false);
  8876. } break;
  8877. }
  8878. }
  8879. // ggml_compute_forward_set
  8880. static void ggml_compute_forward_set_f32(
  8881. const struct ggml_compute_params * params,
  8882. const struct ggml_tensor * src0,
  8883. const struct ggml_tensor * src1,
  8884. const struct ggml_tensor * opt0,
  8885. struct ggml_tensor * dst) {
  8886. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  8887. GGML_ASSERT(ggml_is_contiguous(dst) && ggml_is_contiguous(src0));
  8888. GGML_ASSERT(opt0->type == GGML_TYPE_I32);
  8889. GGML_ASSERT(ggml_nelements(opt0) == 5);
  8890. // view src0 and dst with these strides and data offset inbytes during set
  8891. // nb0 is implicitely element_size because src0 and dst are contiguous
  8892. size_t nb1 = ((int32_t *) opt0->data)[0];
  8893. size_t nb2 = ((int32_t *) opt0->data)[1];
  8894. size_t nb3 = ((int32_t *) opt0->data)[2];
  8895. size_t offset = ((int32_t *) opt0->data)[3];
  8896. bool inplace = (bool) ((int32_t *) opt0->data)[4];
  8897. if (!inplace && (params->type == GGML_TASK_INIT)) {
  8898. // memcpy needs to be synchronized across threads to avoid race conditions.
  8899. // => do it in INIT phase
  8900. memcpy(
  8901. ((char *) dst->data),
  8902. ((char *) src0->data),
  8903. ggml_nbytes(dst));
  8904. }
  8905. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  8906. return;
  8907. }
  8908. const int ith = params->ith;
  8909. const int nth = params->nth;
  8910. const int nr = ggml_nrows(src1);
  8911. const int nc = src1->ne[0];
  8912. GGML_TENSOR_LOCALS(int64_t, ne1, src1, ne);
  8913. GGML_TENSOR_LOCALS(size_t, nb1, src1, nb);
  8914. // src0 and dst as viewed during set
  8915. const size_t nb0 = ggml_element_size(src0);
  8916. const int im0 = (ne10 == 0 ? 0 : ne10-1);
  8917. const int im1 = (ne11 == 0 ? 0 : ne11-1);
  8918. const int im2 = (ne12 == 0 ? 0 : ne12-1);
  8919. const int im3 = (ne13 == 0 ? 0 : ne13-1);
  8920. GGML_ASSERT(offset + im0*nb0 + im1*nb1 + im2*nb2 + im3*nb3 <= ggml_nbytes(dst));
  8921. GGML_ASSERT(nb10 == sizeof(float));
  8922. // rows per thread
  8923. const int dr = (nr + nth - 1)/nth;
  8924. // row range for this thread
  8925. const int ir0 = dr*ith;
  8926. const int ir1 = MIN(ir0 + dr, nr);
  8927. for (int ir = ir0; ir < ir1; ++ir) {
  8928. // src0 and dst are viewed with shape of src1 and offset
  8929. // => same indices
  8930. const int i3 = ir/(ne12*ne11);
  8931. const int i2 = (ir - i3*ne12*ne11)/ne11;
  8932. const int i1 = (ir - i3*ne12*ne11 - i2*ne11);
  8933. ggml_vec_cpy_f32(nc,
  8934. (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + offset),
  8935. (float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11));
  8936. }
  8937. }
  8938. static void ggml_compute_forward_set(
  8939. const struct ggml_compute_params * params,
  8940. const struct ggml_tensor * src0,
  8941. const struct ggml_tensor * src1,
  8942. const struct ggml_tensor * opt0,
  8943. struct ggml_tensor * dst) {
  8944. switch (src0->type) {
  8945. case GGML_TYPE_F32:
  8946. {
  8947. ggml_compute_forward_set_f32(params, src0, src1, opt0, dst);
  8948. } break;
  8949. case GGML_TYPE_F16:
  8950. case GGML_TYPE_Q4_0:
  8951. case GGML_TYPE_Q4_1:
  8952. case GGML_TYPE_Q5_0:
  8953. case GGML_TYPE_Q5_1:
  8954. case GGML_TYPE_Q8_0:
  8955. case GGML_TYPE_Q8_1:
  8956. case GGML_TYPE_Q2_K:
  8957. case GGML_TYPE_Q3_K:
  8958. case GGML_TYPE_Q4_K:
  8959. case GGML_TYPE_Q5_K:
  8960. case GGML_TYPE_Q6_K:
  8961. default:
  8962. {
  8963. GGML_ASSERT(false);
  8964. } break;
  8965. }
  8966. }
  8967. // ggml_compute_forward_cpy
  8968. static void ggml_compute_forward_cpy(
  8969. const struct ggml_compute_params * params,
  8970. const struct ggml_tensor * src0,
  8971. struct ggml_tensor * dst) {
  8972. ggml_compute_forward_dup(params, src0, dst);
  8973. }
  8974. // ggml_compute_forward_cont
  8975. static void ggml_compute_forward_cont(
  8976. const struct ggml_compute_params * params,
  8977. const struct ggml_tensor * src0,
  8978. struct ggml_tensor * dst) {
  8979. ggml_compute_forward_dup(params, src0, dst);
  8980. }
  8981. // ggml_compute_forward_reshape
  8982. static void ggml_compute_forward_reshape(
  8983. const struct ggml_compute_params * params,
  8984. const struct ggml_tensor * src0,
  8985. struct ggml_tensor * dst) {
  8986. // NOP
  8987. UNUSED(params);
  8988. UNUSED(src0);
  8989. UNUSED(dst);
  8990. }
  8991. // ggml_compute_forward_view
  8992. static void ggml_compute_forward_view(
  8993. const struct ggml_compute_params * params,
  8994. const struct ggml_tensor * src0) {
  8995. // NOP
  8996. UNUSED(params);
  8997. UNUSED(src0);
  8998. }
  8999. // ggml_compute_forward_permute
  9000. static void ggml_compute_forward_permute(
  9001. const struct ggml_compute_params * params,
  9002. const struct ggml_tensor * src0) {
  9003. // NOP
  9004. UNUSED(params);
  9005. UNUSED(src0);
  9006. }
  9007. // ggml_compute_forward_transpose
  9008. static void ggml_compute_forward_transpose(
  9009. const struct ggml_compute_params * params,
  9010. const struct ggml_tensor * src0) {
  9011. // NOP
  9012. UNUSED(params);
  9013. UNUSED(src0);
  9014. }
  9015. // ggml_compute_forward_get_rows
  9016. static void ggml_compute_forward_get_rows_q(
  9017. const struct ggml_compute_params * params,
  9018. const struct ggml_tensor * src0,
  9019. const struct ggml_tensor * src1,
  9020. struct ggml_tensor * dst) {
  9021. assert(params->ith == 0);
  9022. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  9023. return;
  9024. }
  9025. const int nc = src0->ne[0];
  9026. const int nr = ggml_nelements(src1);
  9027. const enum ggml_type type = src0->type;
  9028. ggml_to_float_t const dequantize_row_q = type_traits[type].to_float;
  9029. assert( dst->ne[0] == nc);
  9030. assert( dst->ne[1] == nr);
  9031. assert(src0->nb[0] == GGML_TYPE_SIZE[type]);
  9032. for (int i = 0; i < nr; ++i) {
  9033. const int r = ((int32_t *) src1->data)[i];
  9034. dequantize_row_q(
  9035. (const void *) ((char *) src0->data + r*src0->nb[1]),
  9036. (float *) ((char *) dst->data + i*dst->nb[1]), nc);
  9037. }
  9038. }
  9039. static void ggml_compute_forward_get_rows_f16(
  9040. const struct ggml_compute_params * params,
  9041. const struct ggml_tensor * src0,
  9042. const struct ggml_tensor * src1,
  9043. struct ggml_tensor * dst) {
  9044. assert(params->ith == 0);
  9045. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  9046. return;
  9047. }
  9048. const int nc = src0->ne[0];
  9049. const int nr = ggml_nelements(src1);
  9050. assert( dst->ne[0] == nc);
  9051. assert( dst->ne[1] == nr);
  9052. assert(src0->nb[0] == sizeof(ggml_fp16_t));
  9053. for (int i = 0; i < nr; ++i) {
  9054. const int r = ((int32_t *) src1->data)[i];
  9055. for (int j = 0; j < nc; ++j) {
  9056. ggml_fp16_t v = ((ggml_fp16_t *) ((char *) src0->data + r*src0->nb[1]))[j];
  9057. ((float *) ((char *) dst->data + i*dst->nb[1]))[j] = GGML_FP16_TO_FP32(v);
  9058. }
  9059. }
  9060. }
  9061. static void ggml_compute_forward_get_rows_f32(
  9062. const struct ggml_compute_params * params,
  9063. const struct ggml_tensor * src0,
  9064. const struct ggml_tensor * src1,
  9065. struct ggml_tensor * dst) {
  9066. assert(params->ith == 0);
  9067. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  9068. return;
  9069. }
  9070. const int nc = src0->ne[0];
  9071. const int nr = ggml_nelements(src1);
  9072. assert( dst->ne[0] == nc);
  9073. assert( dst->ne[1] == nr);
  9074. assert(src0->nb[0] == sizeof(float));
  9075. for (int i = 0; i < nr; ++i) {
  9076. const int r = ((int32_t *) src1->data)[i];
  9077. ggml_vec_cpy_f32(nc,
  9078. (float *) ((char *) dst->data + i*dst->nb[1]),
  9079. (float *) ((char *) src0->data + r*src0->nb[1]));
  9080. }
  9081. }
  9082. static void ggml_compute_forward_get_rows(
  9083. const struct ggml_compute_params * params,
  9084. const struct ggml_tensor * src0,
  9085. const struct ggml_tensor * src1,
  9086. struct ggml_tensor * dst) {
  9087. switch (src0->type) {
  9088. case GGML_TYPE_Q4_0:
  9089. case GGML_TYPE_Q4_1:
  9090. case GGML_TYPE_Q5_0:
  9091. case GGML_TYPE_Q5_1:
  9092. case GGML_TYPE_Q8_0:
  9093. case GGML_TYPE_Q8_1:
  9094. case GGML_TYPE_Q2_K:
  9095. case GGML_TYPE_Q3_K:
  9096. case GGML_TYPE_Q4_K:
  9097. case GGML_TYPE_Q5_K:
  9098. case GGML_TYPE_Q6_K:
  9099. {
  9100. ggml_compute_forward_get_rows_q(params, src0, src1, dst);
  9101. } break;
  9102. case GGML_TYPE_F16:
  9103. {
  9104. ggml_compute_forward_get_rows_f16(params, src0, src1, dst);
  9105. } break;
  9106. case GGML_TYPE_F32:
  9107. {
  9108. ggml_compute_forward_get_rows_f32(params, src0, src1, dst);
  9109. } break;
  9110. default:
  9111. {
  9112. GGML_ASSERT(false);
  9113. } break;
  9114. }
  9115. //static bool first = true;
  9116. //printf("ne0 = %d, ne1 = %d, ne2 = %d\n", dst->ne[0], dst->ne[1], dst->ne[2]);
  9117. //if (first) {
  9118. // first = false;
  9119. //} else {
  9120. // for (int k = 0; k < dst->ne[1]; ++k) {
  9121. // for (int j = 0; j < dst->ne[0]/16; ++j) {
  9122. // for (int i = 0; i < 16; ++i) {
  9123. // printf("%8.4f ", ((float *) dst->data)[k*dst->ne[0] + j*16 + i]);
  9124. // }
  9125. // printf("\n");
  9126. // }
  9127. // printf("\n");
  9128. // }
  9129. // printf("\n");
  9130. // exit(0);
  9131. //}
  9132. }
  9133. // ggml_compute_forward_get_rows_back
  9134. static void ggml_compute_forward_get_rows_back_f32_f16(
  9135. const struct ggml_compute_params * params,
  9136. const struct ggml_tensor * src0,
  9137. const struct ggml_tensor * src1,
  9138. const struct ggml_tensor * opt0,
  9139. struct ggml_tensor * dst) {
  9140. GGML_ASSERT(params->ith == 0);
  9141. GGML_ASSERT(ggml_are_same_shape(opt0, dst));
  9142. GGML_ASSERT(ggml_is_contiguous(opt0));
  9143. GGML_ASSERT(ggml_is_contiguous(dst));
  9144. ggml_compute_forward_dup_same_cont(params, opt0, dst);
  9145. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  9146. return;
  9147. }
  9148. const int nc = src0->ne[0];
  9149. const int nr = ggml_nelements(src1);
  9150. GGML_ASSERT( dst->ne[0] == nc);
  9151. GGML_ASSERT(src0->nb[0] == sizeof(ggml_fp16_t));
  9152. for (int i = 0; i < nr; ++i) {
  9153. const int r = ((int32_t *) src1->data)[i];
  9154. for (int j = 0; j < nc; ++j) {
  9155. ggml_fp16_t v = ((ggml_fp16_t *) ((char *) src0->data + i*src0->nb[1]))[j];
  9156. ((float *) ((char *) dst->data + r*dst->nb[1]))[j] += GGML_FP16_TO_FP32(v);
  9157. }
  9158. }
  9159. }
  9160. static void ggml_compute_forward_get_rows_back_f32(
  9161. const struct ggml_compute_params * params,
  9162. const struct ggml_tensor * src0,
  9163. const struct ggml_tensor * src1,
  9164. const struct ggml_tensor * opt0,
  9165. struct ggml_tensor * dst) {
  9166. GGML_ASSERT(params->ith == 0);
  9167. GGML_ASSERT(ggml_are_same_shape(opt0, dst));
  9168. GGML_ASSERT(ggml_is_contiguous(opt0));
  9169. GGML_ASSERT(ggml_is_contiguous(dst));
  9170. // ggml_compute_forward_dup_same_cont(params, opt0, dst);
  9171. if (params->type == GGML_TASK_INIT) {
  9172. memset(dst->data, 0, ggml_nbytes(dst));
  9173. }
  9174. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  9175. return;
  9176. }
  9177. const int nc = src0->ne[0];
  9178. const int nr = ggml_nelements(src1);
  9179. GGML_ASSERT( dst->ne[0] == nc);
  9180. GGML_ASSERT(src0->nb[0] == sizeof(float));
  9181. for (int i = 0; i < nr; ++i) {
  9182. const int r = ((int32_t *) src1->data)[i];
  9183. ggml_vec_add_f32(nc,
  9184. (float *) ((char *) dst->data + r*dst->nb[1]),
  9185. (float *) ((char *) dst->data + r*dst->nb[1]),
  9186. (float *) ((char *) src0->data + i*src0->nb[1]));
  9187. }
  9188. }
  9189. static void ggml_compute_forward_get_rows_back(
  9190. const struct ggml_compute_params * params,
  9191. const struct ggml_tensor * src0,
  9192. const struct ggml_tensor * src1,
  9193. const struct ggml_tensor * opt0,
  9194. struct ggml_tensor * dst) {
  9195. switch (src0->type) {
  9196. case GGML_TYPE_F16:
  9197. {
  9198. ggml_compute_forward_get_rows_back_f32_f16(params, src0, src1, opt0, dst);
  9199. } break;
  9200. case GGML_TYPE_F32:
  9201. {
  9202. ggml_compute_forward_get_rows_back_f32(params, src0, src1, opt0, dst);
  9203. } break;
  9204. default:
  9205. {
  9206. GGML_ASSERT(false);
  9207. } break;
  9208. }
  9209. //static bool first = true;
  9210. //printf("ne0 = %d, ne1 = %d, ne2 = %d\n", dst->ne[0], dst->ne[1], dst->ne[2]);
  9211. //if (first) {
  9212. // first = false;
  9213. //} else {
  9214. // for (int k = 0; k < dst->ne[1]; ++k) {
  9215. // for (int j = 0; j < dst->ne[0]/16; ++j) {
  9216. // for (int i = 0; i < 16; ++i) {
  9217. // printf("%8.4f ", ((float *) dst->data)[k*dst->ne[0] + j*16 + i]);
  9218. // }
  9219. // printf("\n");
  9220. // }
  9221. // printf("\n");
  9222. // }
  9223. // printf("\n");
  9224. // exit(0);
  9225. //}
  9226. }
  9227. // ggml_compute_forward_diag
  9228. static void ggml_compute_forward_diag_f32(
  9229. const struct ggml_compute_params * params,
  9230. const struct ggml_tensor * src0,
  9231. struct ggml_tensor * dst) {
  9232. GGML_ASSERT(params->ith == 0);
  9233. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  9234. return;
  9235. }
  9236. // TODO: handle transposed/permuted matrices
  9237. GGML_TENSOR_UNARY_OP_LOCALS;
  9238. GGML_ASSERT(ne00 == ne0);
  9239. GGML_ASSERT(ne00 == ne1);
  9240. GGML_ASSERT(ne01 == 1);
  9241. GGML_ASSERT(ne02 == ne2);
  9242. GGML_ASSERT(ne03 == ne3);
  9243. GGML_ASSERT(nb00 == sizeof(float));
  9244. GGML_ASSERT(nb0 == sizeof(float));
  9245. for (int i3 = 0; i3 < ne3; i3++) {
  9246. for (int i2 = 0; i2 < ne2; i2++) {
  9247. for (int i1 = 0; i1 < ne1; i1++) {
  9248. float * d = (float *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1);
  9249. float * s = (float *)((char *) src0->data + i3*nb03 + i2*nb02);
  9250. for (int i0 = 0; i0 < i1; i0++) {
  9251. d[i0] = 0;
  9252. }
  9253. d[i1] = s[i1];
  9254. for (int i0 = i1+1; i0 < ne0; i0++) {
  9255. d[i0] = 0;
  9256. }
  9257. }
  9258. }
  9259. }
  9260. }
  9261. static void ggml_compute_forward_diag(
  9262. const struct ggml_compute_params * params,
  9263. const struct ggml_tensor * src0,
  9264. struct ggml_tensor * dst) {
  9265. switch (src0->type) {
  9266. case GGML_TYPE_F32:
  9267. {
  9268. ggml_compute_forward_diag_f32(params, src0, dst);
  9269. } break;
  9270. default:
  9271. {
  9272. GGML_ASSERT(false);
  9273. } break;
  9274. }
  9275. }
  9276. // ggml_compute_forward_diag_mask_inf
  9277. static void ggml_compute_forward_diag_mask_f32(
  9278. const struct ggml_compute_params * params,
  9279. const struct ggml_tensor * src0,
  9280. const struct ggml_tensor * src1,
  9281. struct ggml_tensor * dst,
  9282. const float value) {
  9283. GGML_ASSERT(src1->type == GGML_TYPE_I32);
  9284. GGML_ASSERT(ggml_nelements(src1) == 2);
  9285. const int ith = params->ith;
  9286. const int nth = params->nth;
  9287. const int n_past = ((int32_t *) src1->data)[0];
  9288. const bool inplace = (bool)((int32_t *) src1->data)[1];
  9289. GGML_ASSERT(n_past >= 0);
  9290. if (!inplace && (params->type == GGML_TASK_INIT)) {
  9291. // memcpy needs to be synchronized across threads to avoid race conditions.
  9292. // => do it in INIT phase
  9293. GGML_ASSERT(ggml_nelements(dst) == ggml_nelements(src0));
  9294. GGML_ASSERT(ggml_is_contiguous(dst) && ggml_is_contiguous(src0));
  9295. memcpy(
  9296. ((char *) dst->data),
  9297. ((char *) src0->data),
  9298. ggml_nbytes(dst));
  9299. }
  9300. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  9301. return;
  9302. }
  9303. // TODO: handle transposed/permuted matrices
  9304. const int n = ggml_nrows(src0);
  9305. const int nc = src0->ne[0];
  9306. const int nr = src0->ne[1];
  9307. const int nz = n/nr;
  9308. GGML_ASSERT( dst->nb[0] == sizeof(float));
  9309. GGML_ASSERT(src0->nb[0] == sizeof(float));
  9310. for (int k = 0; k < nz; k++) {
  9311. for (int j = ith; j < nr; j += nth) {
  9312. for (int i = n_past; i < nc; i++) {
  9313. if (i > n_past + j) {
  9314. *(float *)((char *) dst->data + k*dst->nb[2] + j*dst->nb[1] + i*dst->nb[0]) = value;
  9315. }
  9316. }
  9317. }
  9318. }
  9319. }
  9320. static void ggml_compute_forward_diag_mask_inf(
  9321. const struct ggml_compute_params * params,
  9322. const struct ggml_tensor * src0,
  9323. const struct ggml_tensor * src1,
  9324. struct ggml_tensor * dst) {
  9325. switch (src0->type) {
  9326. case GGML_TYPE_F32:
  9327. {
  9328. ggml_compute_forward_diag_mask_f32(params, src0, src1, dst, -INFINITY);
  9329. } break;
  9330. default:
  9331. {
  9332. GGML_ASSERT(false);
  9333. } break;
  9334. }
  9335. }
  9336. static void ggml_compute_forward_diag_mask_zero(
  9337. const struct ggml_compute_params * params,
  9338. const struct ggml_tensor * src0,
  9339. const struct ggml_tensor * src1,
  9340. struct ggml_tensor * dst) {
  9341. switch (src0->type) {
  9342. case GGML_TYPE_F32:
  9343. {
  9344. ggml_compute_forward_diag_mask_f32(params, src0, src1, dst, 0);
  9345. } break;
  9346. default:
  9347. {
  9348. GGML_ASSERT(false);
  9349. } break;
  9350. }
  9351. }
  9352. // ggml_compute_forward_soft_max
  9353. static void ggml_compute_forward_soft_max_f32(
  9354. const struct ggml_compute_params * params,
  9355. const struct ggml_tensor * src0,
  9356. struct ggml_tensor * dst) {
  9357. GGML_ASSERT(ggml_is_contiguous(src0));
  9358. GGML_ASSERT(ggml_is_contiguous(dst));
  9359. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  9360. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  9361. return;
  9362. }
  9363. // TODO: handle transposed/permuted matrices
  9364. const int ith = params->ith;
  9365. const int nth = params->nth;
  9366. const int nc = src0->ne[0];
  9367. const int nr = ggml_nrows(src0);
  9368. // rows per thread
  9369. const int dr = (nr + nth - 1)/nth;
  9370. // row range for this thread
  9371. const int ir0 = dr*ith;
  9372. const int ir1 = MIN(ir0 + dr, nr);
  9373. for (int i1 = ir0; i1 < ir1; i1++) {
  9374. float *sp = (float *)((char *) src0->data + i1*src0->nb[1]);
  9375. float *dp = (float *)((char *) dst->data + i1*dst->nb[1]);
  9376. #ifndef NDEBUG
  9377. for (int i = 0; i < nc; ++i) {
  9378. //printf("p[%d] = %f\n", i, p[i]);
  9379. assert(!isnan(sp[i]));
  9380. }
  9381. #endif
  9382. float max = -INFINITY;
  9383. ggml_vec_max_f32(nc, &max, sp);
  9384. ggml_float sum = 0.0;
  9385. uint16_t scvt;
  9386. for (int i = 0; i < nc; i++) {
  9387. if (sp[i] == -INFINITY) {
  9388. dp[i] = 0.0f;
  9389. } else {
  9390. // const float val = (sp[i] == -INFINITY) ? 0.0 : exp(sp[i] - max);
  9391. ggml_fp16_t s = GGML_FP32_TO_FP16(sp[i] - max);
  9392. memcpy(&scvt, &s, sizeof(scvt));
  9393. const float val = GGML_FP16_TO_FP32(table_exp_f16[scvt]);
  9394. sum += (ggml_float)val;
  9395. dp[i] = val;
  9396. }
  9397. }
  9398. assert(sum > 0.0);
  9399. sum = 1.0/sum;
  9400. ggml_vec_scale_f32(nc, dp, sum);
  9401. #ifndef NDEBUG
  9402. for (int i = 0; i < nc; ++i) {
  9403. assert(!isnan(dp[i]));
  9404. assert(!isinf(dp[i]));
  9405. }
  9406. #endif
  9407. }
  9408. }
  9409. static void ggml_compute_forward_soft_max(
  9410. const struct ggml_compute_params * params,
  9411. const struct ggml_tensor * src0,
  9412. struct ggml_tensor * dst) {
  9413. switch (src0->type) {
  9414. case GGML_TYPE_F32:
  9415. {
  9416. ggml_compute_forward_soft_max_f32(params, src0, dst);
  9417. } break;
  9418. default:
  9419. {
  9420. GGML_ASSERT(false);
  9421. } break;
  9422. }
  9423. }
  9424. // ggml_compute_forward_soft_max_back
  9425. static void ggml_compute_forward_soft_max_back_f32(
  9426. const struct ggml_compute_params * params,
  9427. const struct ggml_tensor * src0,
  9428. const struct ggml_tensor * src1,
  9429. struct ggml_tensor * dst) {
  9430. GGML_ASSERT(ggml_is_contiguous(src0));
  9431. GGML_ASSERT(ggml_is_contiguous(src1));
  9432. GGML_ASSERT(ggml_is_contiguous(dst));
  9433. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  9434. GGML_ASSERT(ggml_are_same_shape(src1, dst));
  9435. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  9436. return;
  9437. }
  9438. // TODO: handle transposed/permuted matrices
  9439. const int ith = params->ith;
  9440. const int nth = params->nth;
  9441. const int nc = src0->ne[0];
  9442. const int nr = ggml_nrows(src0);
  9443. // rows per thread
  9444. const int dr = (nr + nth - 1)/nth;
  9445. // row range for this thread
  9446. const int ir0 = dr*ith;
  9447. const int ir1 = MIN(ir0 + dr, nr);
  9448. for (int i1 = ir0; i1 < ir1; i1++) {
  9449. float *dy = (float *)((char *) src0->data + i1*src0->nb[1]);
  9450. float *y = (float *)((char *) src1->data + i1*src1->nb[1]);
  9451. float *dx = (float *)((char *) dst->data + i1*dst->nb[1]);
  9452. #ifndef NDEBUG
  9453. for (int i = 0; i < nc; ++i) {
  9454. //printf("p[%d] = %f\n", i, p[i]);
  9455. assert(!isnan(dy[i]));
  9456. assert(!isnan(y[i]));
  9457. }
  9458. #endif
  9459. // Jii = yi - yi*yi
  9460. // Jij = -yi*yj
  9461. // J = diag(y)-y.T*y
  9462. // dx = J * dy
  9463. // dxk = sum_i(Jki * dyi)
  9464. // dxk = sum_i(-yk*yi * dyi) - (-yk*yk)*dyk + (yk - yk*yk)*dyk
  9465. // dxk = sum_i(-yk*yi * dyi) + yk*dyk
  9466. // dxk = -yk * sum_i(yi * dyi) + yk*dyk
  9467. // dxk = -yk * dot(y, dy) + yk*dyk
  9468. // dxk = yk * (- dot(y, dy) + dyk)
  9469. // dxk = yk * (dyk - dot(y, dy))
  9470. //
  9471. // post-order:
  9472. // dot_y_dy := dot(y, dy)
  9473. // dx := dy
  9474. // dx := dx - dot_y_dy
  9475. // dx := dx * y
  9476. // linear runtime, no additional memory
  9477. float dot_y_dy = 0;
  9478. ggml_vec_dot_f32 (nc, &dot_y_dy, y, dy);
  9479. ggml_vec_cpy_f32 (nc, dx, dy);
  9480. ggml_vec_acc1_f32(nc, dx, -dot_y_dy);
  9481. ggml_vec_mul_f32 (nc, dx, dx, y);
  9482. #ifndef NDEBUG
  9483. for (int i = 0; i < nc; ++i) {
  9484. assert(!isnan(dx[i]));
  9485. assert(!isinf(dx[i]));
  9486. }
  9487. #endif
  9488. }
  9489. }
  9490. static void ggml_compute_forward_soft_max_back(
  9491. const struct ggml_compute_params * params,
  9492. const struct ggml_tensor * src0,
  9493. const struct ggml_tensor * src1,
  9494. struct ggml_tensor * dst) {
  9495. switch (src0->type) {
  9496. case GGML_TYPE_F32:
  9497. {
  9498. ggml_compute_forward_soft_max_back_f32(params, src0, src1, dst);
  9499. } break;
  9500. default:
  9501. {
  9502. GGML_ASSERT(false);
  9503. } break;
  9504. }
  9505. }
  9506. // ggml_compute_forward_alibi
  9507. static void ggml_compute_forward_alibi_f32(
  9508. const struct ggml_compute_params * params,
  9509. const struct ggml_tensor * src0,
  9510. const struct ggml_tensor * src1,
  9511. struct ggml_tensor * dst) {
  9512. assert(params->ith == 0);
  9513. GGML_ASSERT(src1->type == GGML_TYPE_I32);
  9514. GGML_ASSERT(ggml_nelements(src1) == 3);
  9515. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  9516. return;
  9517. }
  9518. const int n_past = ((int32_t *) src1->data)[0];
  9519. const int n_head = ((int32_t *) src1->data)[1];
  9520. const float max_bias = ((float *) src1->data)[2];
  9521. assert(n_past >= 0);
  9522. const int ne0 = src0->ne[0]; // all_seq_len = n_past + ne1
  9523. const int ne1 = src0->ne[1]; // seq_len_without_past
  9524. //const int ne2 = src0->ne[2]; // n_head -> this is k
  9525. //const int ne3 = src0->ne[3]; // 1 -> bsz
  9526. const int n = ggml_nrows(src0);
  9527. const int ne2_ne3 = n/ne1; // ne2*ne3
  9528. const int nb0 = src0->nb[0];
  9529. const int nb1 = src0->nb[1];
  9530. const int nb2 = src0->nb[2];
  9531. //const int nb3 = src0->nb[3];
  9532. assert(nb0 == sizeof(float));
  9533. assert(ne1 + n_past == ne0); (void) n_past;
  9534. // add alibi to src0 (KQ_scaled)
  9535. const int n_heads_log2_floor = 1 << (int) floor(log2(n_head));
  9536. const float m0 = powf(2.0f, -(max_bias) / n_heads_log2_floor);
  9537. const float m1 = powf(2.0f, -(max_bias / 2.0f) / n_heads_log2_floor);
  9538. for (int i = 0; i < ne0; i++) {
  9539. for (int j = 0; j < ne1; j++) {
  9540. for (int k = 0; k < ne2_ne3; k++) {
  9541. float * const src = (float *)((char *) src0->data + i*nb0 + j*nb1 + k*nb2);
  9542. float * pdst = (float *)((char *) dst->data + i*nb0 + j*nb1 + k*nb2);
  9543. // TODO: k*nb2 or k*nb3
  9544. float m_k;
  9545. if (k < n_heads_log2_floor) {
  9546. m_k = powf(m0, k + 1);
  9547. } else {
  9548. m_k = powf(m1, 2 * (k - n_heads_log2_floor) + 1);
  9549. }
  9550. pdst[0] = (i-ne0+1) * m_k + src[0];
  9551. }
  9552. }
  9553. }
  9554. }
  9555. static void ggml_compute_forward_alibi_f16(
  9556. const struct ggml_compute_params * params,
  9557. const struct ggml_tensor * src0,
  9558. const struct ggml_tensor * src1,
  9559. struct ggml_tensor * dst) {
  9560. assert(params->ith == 0);
  9561. GGML_ASSERT(src1->type == GGML_TYPE_I32);
  9562. GGML_ASSERT(ggml_nelements(src1) == 3);
  9563. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  9564. return;
  9565. }
  9566. const int n_past = ((int32_t *) src1->data)[0];
  9567. const int n_head = ((int32_t *) src1->data)[1];
  9568. const float max_bias = ((float *) src1->data)[2];
  9569. assert(n_past >= 0);
  9570. const int ne0 = src0->ne[0]; // all_seq_len = n_past + ne1
  9571. const int ne1 = src0->ne[1]; // seq_len_without_past
  9572. //const int ne2 = src0->ne[2]; // n_head -> this is k
  9573. //const int ne3 = src0->ne[3]; // 1 -> bsz
  9574. const int n = ggml_nrows(src0);
  9575. const int ne2_ne3 = n/ne1; // ne2*ne3
  9576. const int nb0 = src0->nb[0];
  9577. const int nb1 = src0->nb[1];
  9578. const int nb2 = src0->nb[2];
  9579. //const int nb3 = src0->nb[3];
  9580. assert(nb0 == sizeof(ggml_fp16_t));
  9581. assert(ne1 + n_past == ne0); (void) n_past;
  9582. // add alibi to src0 (KQ_scaled)
  9583. const int n_heads_log2_floor = 1 << (int) floor(log2(n_head));
  9584. const float m0 = powf(2.0f, -(max_bias) / n_heads_log2_floor);
  9585. const float m1 = powf(2.0f, -(max_bias / 2.0f) / n_heads_log2_floor);
  9586. for (int i = 0; i < ne0; i++) {
  9587. for (int j = 0; j < ne1; j++) {
  9588. for (int k = 0; k < ne2_ne3; k++) {
  9589. ggml_fp16_t * const src = (ggml_fp16_t *)((char *) src0->data + i*nb0 + j*nb1 + k*nb2);
  9590. float * pdst = (float *)((char *) dst->data + i*nb0 + j*nb1 + k*nb2);
  9591. // TODO: k*nb2 or k*nb3
  9592. float m_k;
  9593. if (k < n_heads_log2_floor) {
  9594. m_k = powf(m0, k + 1);
  9595. } else {
  9596. m_k = powf(m1, 2 * (k - n_heads_log2_floor) + 1);
  9597. }
  9598. // we return F32
  9599. pdst[0] = (i-ne0+1) * m_k + GGML_FP16_TO_FP32(src[0]);
  9600. }
  9601. }
  9602. }
  9603. }
  9604. static void ggml_compute_forward_alibi(
  9605. const struct ggml_compute_params * params,
  9606. const struct ggml_tensor * src0,
  9607. const struct ggml_tensor * src1,
  9608. struct ggml_tensor * dst) {
  9609. switch (src0->type) {
  9610. case GGML_TYPE_F16:
  9611. {
  9612. ggml_compute_forward_alibi_f16(params, src0, src1, dst);
  9613. } break;
  9614. case GGML_TYPE_F32:
  9615. {
  9616. ggml_compute_forward_alibi_f32(params, src0, src1, dst);
  9617. } break;
  9618. case GGML_TYPE_Q4_0:
  9619. case GGML_TYPE_Q4_1:
  9620. case GGML_TYPE_Q5_0:
  9621. case GGML_TYPE_Q5_1:
  9622. case GGML_TYPE_Q8_0:
  9623. case GGML_TYPE_Q8_1:
  9624. case GGML_TYPE_Q2_K:
  9625. case GGML_TYPE_Q3_K:
  9626. case GGML_TYPE_Q4_K:
  9627. case GGML_TYPE_Q5_K:
  9628. case GGML_TYPE_Q6_K:
  9629. case GGML_TYPE_Q8_K:
  9630. case GGML_TYPE_I8:
  9631. case GGML_TYPE_I16:
  9632. case GGML_TYPE_I32:
  9633. case GGML_TYPE_COUNT:
  9634. {
  9635. GGML_ASSERT(false);
  9636. } break;
  9637. }
  9638. }
  9639. // ggml_compute_forward_clamp
  9640. static void ggml_compute_forward_clamp_f32(
  9641. const struct ggml_compute_params * params,
  9642. const struct ggml_tensor * src0,
  9643. const struct ggml_tensor * src1,
  9644. struct ggml_tensor * dst) {
  9645. assert(params->ith == 0);
  9646. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  9647. GGML_ASSERT(ggml_nelements(src1) == 2);
  9648. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  9649. return;
  9650. }
  9651. const float min = ((float *) src1->data)[0];
  9652. const float max = ((float *) src1->data)[1];
  9653. const int ith = params->ith;
  9654. const int nth = params->nth;
  9655. const int n = ggml_nrows(src0);
  9656. const int nc = src0->ne[0];
  9657. const size_t nb00 = src0->nb[0];
  9658. const size_t nb01 = src0->nb[1];
  9659. const size_t nb0 = dst->nb[0];
  9660. const size_t nb1 = dst->nb[1];
  9661. GGML_ASSERT( nb0 == sizeof(float));
  9662. GGML_ASSERT(nb00 == sizeof(float));
  9663. for (int j = ith; j < n; j += nth) {
  9664. float * dst_ptr = (float *) ((char *) dst->data + j*nb1);
  9665. float * src0_ptr = (float *) ((char *) src0->data + j*nb01);
  9666. for (int i = 0; i < nc; i++) {
  9667. dst_ptr[i] = MAX(MIN(src0_ptr[i], max), min);
  9668. }
  9669. }
  9670. }
  9671. static void ggml_compute_forward_clamp(
  9672. const struct ggml_compute_params * params,
  9673. const struct ggml_tensor * src0,
  9674. const struct ggml_tensor * src1,
  9675. struct ggml_tensor * dst) {
  9676. switch (src0->type) {
  9677. case GGML_TYPE_F32:
  9678. {
  9679. ggml_compute_forward_clamp_f32(params, src0, src1, dst);
  9680. } break;
  9681. case GGML_TYPE_F16:
  9682. case GGML_TYPE_Q4_0:
  9683. case GGML_TYPE_Q4_1:
  9684. case GGML_TYPE_Q5_0:
  9685. case GGML_TYPE_Q5_1:
  9686. case GGML_TYPE_Q8_0:
  9687. case GGML_TYPE_Q8_1:
  9688. case GGML_TYPE_Q2_K:
  9689. case GGML_TYPE_Q3_K:
  9690. case GGML_TYPE_Q4_K:
  9691. case GGML_TYPE_Q5_K:
  9692. case GGML_TYPE_Q6_K:
  9693. case GGML_TYPE_Q8_K:
  9694. case GGML_TYPE_I8:
  9695. case GGML_TYPE_I16:
  9696. case GGML_TYPE_I32:
  9697. case GGML_TYPE_COUNT:
  9698. {
  9699. GGML_ASSERT(false);
  9700. } break;
  9701. }
  9702. }
  9703. // ggml_compute_forward_rope
  9704. static void ggml_compute_forward_rope_f32(
  9705. const struct ggml_compute_params * params,
  9706. const struct ggml_tensor * src0,
  9707. const struct ggml_tensor * src1,
  9708. struct ggml_tensor * dst) {
  9709. GGML_ASSERT(src1->type == GGML_TYPE_I32);
  9710. GGML_ASSERT(ggml_nelements(src1) == 4);
  9711. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  9712. return;
  9713. }
  9714. const int n_past = ((int32_t *) src1->data)[0];
  9715. const int n_dims = ((int32_t *) src1->data)[1];
  9716. const int mode = ((int32_t *) src1->data)[2];
  9717. const int n_ctx = ((int32_t *) src1->data)[3];
  9718. assert(n_past >= 0);
  9719. GGML_TENSOR_UNARY_OP_LOCALS;
  9720. //printf("ne0: %d, ne1: %d, ne2: %d, ne3: %d\n", ne0, ne1, ne2, ne3);
  9721. //printf("n_past = %d, ne2 = %d\n", n_past, ne2);
  9722. GGML_ASSERT(nb00 == sizeof(float));
  9723. const int ith = params->ith;
  9724. const int nth = params->nth;
  9725. const int nr = ggml_nrows(dst);
  9726. GGML_ASSERT(n_dims <= ne0);
  9727. GGML_ASSERT(n_dims % 2 == 0);
  9728. // rows per thread
  9729. const int dr = (nr + nth - 1)/nth;
  9730. // row range for this thread
  9731. const int ir0 = dr*ith;
  9732. const int ir1 = MIN(ir0 + dr, nr);
  9733. // row index used to determine which thread to use
  9734. int ir = 0;
  9735. const float theta_scale = powf(10000.0, -2.0f/n_dims);
  9736. const bool is_neox = mode & 2;
  9737. const bool is_glm = mode & 4;
  9738. for (int64_t i3 = 0; i3 < ne3; i3++) {
  9739. for (int64_t i2 = ((mode & 1) == 0 ? 0 : n_past); i2 < ne2; i2++) {
  9740. const int64_t p = ((mode & 1) == 0 ? n_past + i2 : i2);
  9741. for (int64_t i1 = 0; i1 < ne1; i1++) {
  9742. if (ir++ < ir0) continue;
  9743. if (ir > ir1) break;
  9744. float theta = (float)p;
  9745. if (is_glm) {
  9746. theta = MIN(p, n_ctx - 2);
  9747. float block_theta = MAX(p - (n_ctx - 2), 0);
  9748. for (int64_t i0 = 0; i0 < ne0 / 4; i0++) {
  9749. const float cos_theta = cosf(theta);
  9750. const float sin_theta = sinf(theta);
  9751. const float cos_block_theta = cosf(block_theta);
  9752. const float sin_block_theta = sinf(block_theta);
  9753. theta *= theta_scale;
  9754. block_theta *= theta_scale;
  9755. const float * const src = (float *)((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + i0*nb00);
  9756. float * dst_data = (float *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
  9757. const float x0 = src[0];
  9758. const float x1 = src[n_dims/2];
  9759. const float x2 = src[n_dims];
  9760. const float x3 = src[n_dims/2*3];
  9761. dst_data[0] = x0*cos_theta - x1*sin_theta;
  9762. dst_data[n_dims/2] = x0*sin_theta + x1*cos_theta;
  9763. dst_data[n_dims] = x2*cos_block_theta - x3*sin_block_theta;
  9764. dst_data[n_dims/2*3] = x2*sin_block_theta + x3*cos_block_theta;
  9765. }
  9766. } else if (!is_neox) {
  9767. for (int64_t i0 = 0; i0 < ne0; i0 += 2) {
  9768. const float cos_theta = cosf(theta);
  9769. const float sin_theta = sinf(theta);
  9770. theta *= theta_scale;
  9771. const float * const src = (float *)((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + i0*nb00);
  9772. float * dst_data = (float *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
  9773. const float x0 = src[0];
  9774. const float x1 = src[1];
  9775. dst_data[0] = x0*cos_theta - x1*sin_theta;
  9776. dst_data[1] = x0*sin_theta + x1*cos_theta;
  9777. }
  9778. } else {
  9779. // TODO: this is probably wrong, but I can't figure it out ..
  9780. // ref: https://github.com/huggingface/transformers/blob/main/src/transformers/models/gpt_neox/modeling_gpt_neox.py#LL251C1-L294C28
  9781. for (int64_t ib = 0; ib < ne0/n_dims; ++ib) {
  9782. for (int64_t ic = 0; ic < n_dims; ic += 2) {
  9783. const float cos_theta = cosf(theta);
  9784. const float sin_theta = sinf(theta);
  9785. theta *= theta_scale;
  9786. const int64_t i0 = ib*n_dims + ic/2;
  9787. const float * const src = (float *)((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + i0*nb00);
  9788. float * dst_data = (float *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
  9789. const float x0 = src[0];
  9790. const float x1 = src[n_dims/2];
  9791. dst_data[0] = x0*cos_theta - x1*sin_theta;
  9792. dst_data[n_dims/2] = x0*sin_theta + x1*cos_theta;
  9793. }
  9794. }
  9795. }
  9796. }
  9797. }
  9798. }
  9799. }
  9800. static void ggml_compute_forward_rope_f16(
  9801. const struct ggml_compute_params * params,
  9802. const struct ggml_tensor * src0,
  9803. const struct ggml_tensor * src1,
  9804. struct ggml_tensor * dst) {
  9805. GGML_ASSERT(src1->type == GGML_TYPE_I32);
  9806. GGML_ASSERT(ggml_nelements(src1) == 4);
  9807. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  9808. return;
  9809. }
  9810. const int n_past = ((int32_t *) src1->data)[0];
  9811. const int n_dims = ((int32_t *) src1->data)[1];
  9812. const int mode = ((int32_t *) src1->data)[2];
  9813. const int n_ctx = ((int32_t *) src1->data)[3];
  9814. assert(n_past >= 0);
  9815. GGML_TENSOR_UNARY_OP_LOCALS;
  9816. //printf("ne0: %d, ne1: %d, ne2: %d, ne3: %d\n", ne0, ne1, ne2, ne3);
  9817. //printf("n_past = %d, ne2 = %d\n", n_past, ne2);
  9818. GGML_ASSERT(nb0 == sizeof(ggml_fp16_t));
  9819. const int ith = params->ith;
  9820. const int nth = params->nth;
  9821. const int nr = ggml_nrows(dst);
  9822. GGML_ASSERT(n_dims <= ne0);
  9823. GGML_ASSERT(n_dims % 2 == 0);
  9824. // rows per thread
  9825. const int dr = (nr + nth - 1)/nth;
  9826. // row range for this thread
  9827. const int ir0 = dr*ith;
  9828. const int ir1 = MIN(ir0 + dr, nr);
  9829. // row index used to determine which thread to use
  9830. int ir = 0;
  9831. const float theta_scale = powf(10000.0, -2.0f/n_dims);
  9832. const bool is_neox = mode & 2;
  9833. const bool is_glm = mode & 4;
  9834. for (int64_t i3 = 0; i3 < ne3; i3++) {
  9835. for (int64_t i2 = ((mode & 1) == 0 ? 0 : n_past); i2 < ne2; i2++) {
  9836. const int64_t p = ((mode & 1) == 0 ? n_past + i2 : i2);
  9837. for (int64_t i1 = 0; i1 < ne1; i1++) {
  9838. if (ir++ < ir0) continue;
  9839. if (ir > ir1) break;
  9840. float theta = (float)p;
  9841. if (is_glm) {
  9842. theta = MIN(p, n_ctx - 2);
  9843. float block_theta = MAX(p - (n_ctx - 2), 0);
  9844. for (int64_t i0 = 0; i0 < ne0 / 4; i0++) {
  9845. const float cos_theta = cosf(theta);
  9846. const float sin_theta = sinf(theta);
  9847. const float cos_block_theta = cosf(block_theta);
  9848. const float sin_block_theta = sinf(block_theta);
  9849. theta *= theta_scale;
  9850. block_theta *= theta_scale;
  9851. const ggml_fp16_t * const src = (ggml_fp16_t *)((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + i0*nb00);
  9852. ggml_fp16_t * dst_data = (ggml_fp16_t *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
  9853. const float x0 = GGML_FP16_TO_FP32(src[0]);
  9854. const float x1 = GGML_FP16_TO_FP32(src[n_dims/2]);
  9855. const float x2 = GGML_FP16_TO_FP32(src[n_dims]);
  9856. const float x3 = GGML_FP16_TO_FP32(src[n_dims/2*3]);
  9857. dst_data[0] = GGML_FP32_TO_FP16(x0*cos_theta - x1*sin_theta);
  9858. dst_data[n_dims/2] = GGML_FP32_TO_FP16(x0*sin_theta + x1*cos_theta);
  9859. dst_data[n_dims] = GGML_FP32_TO_FP16(x2*cos_block_theta - x3*sin_block_theta);
  9860. dst_data[n_dims/2*3] = GGML_FP32_TO_FP16(x2*sin_block_theta + x3*cos_block_theta);
  9861. }
  9862. } if (!is_neox) {
  9863. for (int64_t i0 = 0; i0 < ne0; i0 += 2) {
  9864. const float cos_theta = cosf(theta);
  9865. const float sin_theta = sinf(theta);
  9866. theta *= theta_scale;
  9867. const ggml_fp16_t * const src = (ggml_fp16_t *)((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + i0*nb00);
  9868. ggml_fp16_t * dst_data = (ggml_fp16_t *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
  9869. const float x0 = GGML_FP16_TO_FP32(src[0]);
  9870. const float x1 = GGML_FP16_TO_FP32(src[1]);
  9871. dst_data[0] = GGML_FP32_TO_FP16(x0*cos_theta - x1*sin_theta);
  9872. dst_data[1] = GGML_FP32_TO_FP16(x0*sin_theta + x1*cos_theta);
  9873. }
  9874. } else {
  9875. // TODO: this is probably wrong, but I can't figure it out ..
  9876. // ref: https://github.com/huggingface/transformers/blob/main/src/transformers/models/gpt_neox/modeling_gpt_neox.py#LL251C1-L294C28
  9877. for (int64_t ib = 0; ib < ne0/n_dims; ++ib) {
  9878. for (int64_t ic = 0; ic < n_dims; ic += 2) {
  9879. const float cos_theta = cosf(theta);
  9880. const float sin_theta = sinf(theta);
  9881. theta *= theta_scale;
  9882. const int64_t i0 = ib*n_dims + ic/2;
  9883. const ggml_fp16_t * const src = (ggml_fp16_t *)((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + i0*nb00);
  9884. ggml_fp16_t * dst_data = (ggml_fp16_t *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
  9885. const float x0 = GGML_FP16_TO_FP32(src[0]);
  9886. const float x1 = GGML_FP16_TO_FP32(src[n_dims/2]);
  9887. dst_data[0] = GGML_FP32_TO_FP16(x0*cos_theta - x1*sin_theta);
  9888. dst_data[n_dims/2] = GGML_FP32_TO_FP16(x0*sin_theta + x1*cos_theta);
  9889. }
  9890. }
  9891. }
  9892. }
  9893. }
  9894. }
  9895. }
  9896. static void ggml_compute_forward_rope(
  9897. const struct ggml_compute_params * params,
  9898. const struct ggml_tensor * src0,
  9899. const struct ggml_tensor * src1,
  9900. struct ggml_tensor * dst) {
  9901. switch (src0->type) {
  9902. case GGML_TYPE_F16:
  9903. {
  9904. ggml_compute_forward_rope_f16(params, src0, src1, dst);
  9905. } break;
  9906. case GGML_TYPE_F32:
  9907. {
  9908. ggml_compute_forward_rope_f32(params, src0, src1, dst);
  9909. } break;
  9910. default:
  9911. {
  9912. GGML_ASSERT(false);
  9913. } break;
  9914. }
  9915. }
  9916. // ggml_compute_forward_rope_back
  9917. static void ggml_compute_forward_rope_back_f32(
  9918. const struct ggml_compute_params * params,
  9919. const struct ggml_tensor * src0,
  9920. const struct ggml_tensor * src1,
  9921. struct ggml_tensor * dst) {
  9922. assert(src1->type == GGML_TYPE_I32);
  9923. assert(ggml_nelements(src1) == 3);
  9924. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  9925. return;
  9926. }
  9927. // y = rope(x, src1)
  9928. // dx = rope_back(dy, src1)
  9929. // src0 is dy, src1 contains options
  9930. const int n_past = ((int32_t *) src1->data)[0];
  9931. const int n_dims = ((int32_t *) src1->data)[1];
  9932. const int mode = ((int32_t *) src1->data)[2];
  9933. assert(n_past >= 0);
  9934. GGML_TENSOR_UNARY_OP_LOCALS;
  9935. //printf("ne0: %d, ne1: %d, ne2: %d, ne3: %d\n", ne0, ne1, ne2, ne3);
  9936. //printf("n_past = %d, ne2 = %d\n", n_past, ne2);
  9937. assert(nb0 == sizeof(float));
  9938. const int ith = params->ith;
  9939. const int nth = params->nth;
  9940. const int nr = ggml_nrows(dst);
  9941. // rows per thread
  9942. const int dr = (nr + nth - 1)/nth;
  9943. // row range for this thread
  9944. const int ir0 = dr*ith;
  9945. const int ir1 = MIN(ir0 + dr, nr);
  9946. // row index used to determine which thread to use
  9947. int ir = 0;
  9948. const float theta_scale = powf(10000.0, -2.0f/n_dims);
  9949. const bool is_neox = mode & 2;
  9950. for (int64_t i3 = 0; i3 < ne3; i3++) {
  9951. for (int64_t i2 = ((mode & 1) == 0 ? 0 : n_past); i2 < ne2; i2++) {
  9952. const int64_t p = ((mode & 1) == 0 ? n_past + i2 : i2);
  9953. for (int64_t i1 = 0; i1 < ne1; i1++) {
  9954. if (ir++ < ir0) continue;
  9955. if (ir > ir1) break;
  9956. float theta = (float)p;
  9957. if (!is_neox) {
  9958. for (int64_t i0 = 0; i0 < ne0; i0 += 2) {
  9959. const float cos_theta = cosf(theta);
  9960. const float sin_theta = sinf(theta);
  9961. theta *= theta_scale;
  9962. const float * const dy = (float *)((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + i0*nb00);
  9963. float * dx = (float *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
  9964. const float dy0 = dy[0];
  9965. const float dy1 = dy[1];
  9966. dx[0] = dy0*cos_theta + dy1*sin_theta;
  9967. dx[1] = - dy0*sin_theta + dy1*cos_theta;
  9968. }
  9969. } else {
  9970. for (int64_t ib = 0; ib < ne0/n_dims; ++ib) {
  9971. for (int64_t ic = 0; ic < n_dims; ic += 2) {
  9972. const float cos_theta = cosf(theta);
  9973. const float sin_theta = sinf(theta);
  9974. theta *= theta_scale;
  9975. const int64_t i0 = ib*n_dims + ic/2;
  9976. const float * const dy = (float *)((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + i0*nb00);
  9977. float * dx = (float *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
  9978. const float dy0 = dy[0];
  9979. const float dy1 = dy[n_dims/2];
  9980. dx[0] = dy0*cos_theta + dy1*sin_theta;
  9981. dx[n_dims/2] = - dy0*sin_theta + dy1*cos_theta;
  9982. }
  9983. }
  9984. }
  9985. }
  9986. }
  9987. }
  9988. }
  9989. static void ggml_compute_forward_rope_back_f16(
  9990. const struct ggml_compute_params * params,
  9991. const struct ggml_tensor * src0,
  9992. const struct ggml_tensor * src1,
  9993. struct ggml_tensor * dst) {
  9994. assert(src1->type == GGML_TYPE_I32);
  9995. assert(ggml_nelements(src1) == 3);
  9996. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  9997. return;
  9998. }
  9999. // y = rope(x, src1)
  10000. // dx = rope_back(dy, src1)
  10001. // src0 is dy, src1 contains options
  10002. const int n_past = ((int32_t *) src1->data)[0];
  10003. const int n_dims = ((int32_t *) src1->data)[1];
  10004. const int mode = ((int32_t *) src1->data)[2];
  10005. assert(n_past >= 0);
  10006. GGML_TENSOR_UNARY_OP_LOCALS;
  10007. //printf("ne0: %d, ne1: %d, ne2: %d, ne3: %d\n", ne0, ne1, ne2, ne3);
  10008. //printf("n_past = %d, ne2 = %d\n", n_past, ne2);
  10009. assert(nb0 == sizeof(ggml_fp16_t));
  10010. const int ith = params->ith;
  10011. const int nth = params->nth;
  10012. const int nr = ggml_nrows(dst);
  10013. // rows per thread
  10014. const int dr = (nr + nth - 1)/nth;
  10015. // row range for this thread
  10016. const int ir0 = dr*ith;
  10017. const int ir1 = MIN(ir0 + dr, nr);
  10018. // row index used to determine which thread to use
  10019. int ir = 0;
  10020. const float theta_scale = powf(10000.0, -2.0f/n_dims);
  10021. const bool is_neox = mode & 2;
  10022. for (int64_t i3 = 0; i3 < ne3; i3++) {
  10023. for (int64_t i2 = ((mode & 1) == 0 ? 0 : n_past); i2 < ne2; i2++) {
  10024. const int64_t p = ((mode & 1) == 0 ? n_past + i2 : i2);
  10025. for (int64_t i1 = 0; i1 < ne1; i1++) {
  10026. if (ir++ < ir0) continue;
  10027. if (ir > ir1) break;
  10028. float theta = (float)p;
  10029. if (!is_neox) {
  10030. for (int64_t i0 = 0; i0 < ne0; i0 += 2) {
  10031. const float cos_theta = cosf(theta);
  10032. const float sin_theta = sinf(theta);
  10033. theta *= theta_scale;
  10034. const ggml_fp16_t * const dy = (ggml_fp16_t *)((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + i0*nb00);
  10035. ggml_fp16_t * dx = (ggml_fp16_t *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
  10036. const float dy0 = GGML_FP16_TO_FP32(dy[0]);
  10037. const float dy1 = GGML_FP16_TO_FP32(dy[1]);
  10038. dx[0] = GGML_FP32_TO_FP16( dy0*cos_theta + dy1*sin_theta);
  10039. dx[1] = GGML_FP32_TO_FP16(-dy0*sin_theta + dy1*cos_theta);
  10040. }
  10041. } else {
  10042. for (int64_t ib = 0; ib < ne0/n_dims; ++ib) {
  10043. for (int64_t ic = 0; ic < n_dims; ic += 2) {
  10044. const float cos_theta = cosf(theta);
  10045. const float sin_theta = sinf(theta);
  10046. theta *= theta_scale;
  10047. const int64_t i0 = ib*n_dims + ic/2;
  10048. const ggml_fp16_t * const dy = (ggml_fp16_t *)((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + i0*nb00);
  10049. ggml_fp16_t * dx = (ggml_fp16_t *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
  10050. const float dy0 = GGML_FP16_TO_FP32(dy[0]);
  10051. const float dy1 = GGML_FP16_TO_FP32(dy[n_dims/2]);
  10052. dx[0] = GGML_FP32_TO_FP16( dy0*cos_theta + dy1*sin_theta);
  10053. dx[n_dims/2] = GGML_FP32_TO_FP16(-dy0*sin_theta + dy1*cos_theta);
  10054. }
  10055. }
  10056. }
  10057. }
  10058. }
  10059. }
  10060. }
  10061. static void ggml_compute_forward_rope_back(
  10062. const struct ggml_compute_params * params,
  10063. const struct ggml_tensor * src0,
  10064. const struct ggml_tensor * src1,
  10065. struct ggml_tensor * dst) {
  10066. switch (src0->type) {
  10067. case GGML_TYPE_F16:
  10068. {
  10069. ggml_compute_forward_rope_back_f16(params, src0, src1, dst);
  10070. } break;
  10071. case GGML_TYPE_F32:
  10072. {
  10073. ggml_compute_forward_rope_back_f32(params, src0, src1, dst);
  10074. } break;
  10075. default:
  10076. {
  10077. GGML_ASSERT(false);
  10078. } break;
  10079. }
  10080. }
  10081. // ggml_compute_forward_conv_1d
  10082. static void ggml_compute_forward_conv_1d_s1_ph_f16_f32(
  10083. const struct ggml_compute_params * params,
  10084. const struct ggml_tensor * src0,
  10085. const struct ggml_tensor * src1,
  10086. struct ggml_tensor * dst) {
  10087. GGML_ASSERT(src0->type == GGML_TYPE_F16);
  10088. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  10089. GGML_ASSERT( dst->type == GGML_TYPE_F32);
  10090. int64_t t0 = ggml_perf_time_us();
  10091. UNUSED(t0);
  10092. GGML_TENSOR_BINARY_OP_LOCALS;
  10093. const int ith = params->ith;
  10094. const int nth = params->nth;
  10095. const int nk = ne00;
  10096. const int nh = nk/2;
  10097. const int ew0 = ggml_up32(ne01);
  10098. GGML_ASSERT(ne00 % 2 == 1); // TODO: support even kernel sizes
  10099. GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
  10100. GGML_ASSERT(nb10 == sizeof(float));
  10101. if (params->type == GGML_TASK_INIT) {
  10102. // TODO: fix this memset (wsize is overestimated)
  10103. memset(params->wdata, 0, params->wsize);
  10104. // prepare kernel data (src0)
  10105. {
  10106. ggml_fp16_t * const wdata = (ggml_fp16_t *) params->wdata + 0;
  10107. for (int64_t i02 = 0; i02 < ne02; i02++) {
  10108. for (int64_t i01 = 0; i01 < ne01; i01++) {
  10109. const ggml_fp16_t * const src = (ggml_fp16_t *)((char *) src0->data + i02*nb02 + i01*nb01);
  10110. ggml_fp16_t * dst_data = wdata + i02*ew0*ne00;
  10111. for (int64_t i00 = 0; i00 < ne00; i00++) {
  10112. dst_data[i00*ew0 + i01] = src[i00];
  10113. }
  10114. }
  10115. }
  10116. }
  10117. // prepare source data (src1)
  10118. {
  10119. ggml_fp16_t * const wdata = (ggml_fp16_t *) params->wdata + ne02*ew0*ne00;
  10120. for (int64_t i11 = 0; i11 < ne11; i11++) {
  10121. const float * const src = (float *)((char *) src1->data + i11*nb11);
  10122. ggml_fp16_t * dst_data = wdata;
  10123. for (int64_t i10 = 0; i10 < ne10; i10++) {
  10124. dst_data[(i10 + nh)*ew0 + i11] = GGML_FP32_TO_FP16(src[i10]);
  10125. }
  10126. }
  10127. }
  10128. return;
  10129. }
  10130. if (params->type == GGML_TASK_FINALIZE) {
  10131. return;
  10132. }
  10133. // total rows in dst
  10134. const int nr = ne02;
  10135. // rows per thread
  10136. const int dr = (nr + nth - 1)/nth;
  10137. // row range for this thread
  10138. const int ir0 = dr*ith;
  10139. const int ir1 = MIN(ir0 + dr, nr);
  10140. for (int i1 = ir0; i1 < ir1; i1++) {
  10141. float * dst_data = (float *)((char *) dst->data + i1*nb1);
  10142. for (int64_t i0 = 0; i0 < ne10; ++i0) {
  10143. dst_data[i0] = 0;
  10144. for (int k = -nh; k <= nh; k++) {
  10145. float v = 0.0f;
  10146. ggml_vec_dot_f16(ew0, &v,
  10147. (ggml_fp16_t *) params->wdata + i1*ew0*ne00 + (nh + k)*ew0,
  10148. (ggml_fp16_t *) params->wdata + ne02*ew0*ne00 + (i0 + nh + k)*ew0);
  10149. dst_data[i0] += v;
  10150. }
  10151. }
  10152. }
  10153. }
  10154. static void ggml_compute_forward_conv_1d_s1_ph_f32(
  10155. const struct ggml_compute_params * params,
  10156. const struct ggml_tensor * src0,
  10157. const struct ggml_tensor * src1,
  10158. struct ggml_tensor * dst) {
  10159. GGML_ASSERT(src0->type == GGML_TYPE_F32);
  10160. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  10161. GGML_ASSERT( dst->type == GGML_TYPE_F32);
  10162. int64_t t0 = ggml_perf_time_us();
  10163. UNUSED(t0);
  10164. GGML_TENSOR_BINARY_OP_LOCALS;
  10165. const int ith = params->ith;
  10166. const int nth = params->nth;
  10167. const int nk = ne00;
  10168. const int nh = nk/2;
  10169. const int ew0 = ggml_up32(ne01);
  10170. GGML_ASSERT(ne00 % 2 == 1); // TODO: support even kernel sizes
  10171. GGML_ASSERT(nb00 == sizeof(float));
  10172. GGML_ASSERT(nb10 == sizeof(float));
  10173. if (params->type == GGML_TASK_INIT) {
  10174. // TODO: fix this memset (wsize is overestimated)
  10175. memset(params->wdata, 0, params->wsize);
  10176. // prepare kernel data (src0)
  10177. {
  10178. float * const wdata = (float *) params->wdata + 0;
  10179. for (int64_t i02 = 0; i02 < ne02; i02++) {
  10180. for (int64_t i01 = 0; i01 < ne01; i01++) {
  10181. const float * const src = (float *)((char *) src0->data + i02*nb02 + i01*nb01);
  10182. float * dst_data = wdata + i02*ew0*ne00;
  10183. for (int64_t i00 = 0; i00 < ne00; i00++) {
  10184. dst_data[i00*ew0 + i01] = src[i00];
  10185. }
  10186. }
  10187. }
  10188. }
  10189. // prepare source data (src1)
  10190. {
  10191. float * const wdata = (float *) params->wdata + ne02*ew0*ne00;
  10192. for (int64_t i11 = 0; i11 < ne11; i11++) {
  10193. const float * const src = (float *)((char *) src1->data + i11*nb11);
  10194. float * dst_data = wdata;
  10195. for (int64_t i10 = 0; i10 < ne10; i10++) {
  10196. dst_data[(i10 + nh)*ew0 + i11] = src[i10];
  10197. }
  10198. }
  10199. }
  10200. return;
  10201. }
  10202. if (params->type == GGML_TASK_FINALIZE) {
  10203. return;
  10204. }
  10205. // total rows in dst
  10206. const int nr = ne02;
  10207. // rows per thread
  10208. const int dr = (nr + nth - 1)/nth;
  10209. // row range for this thread
  10210. const int ir0 = dr*ith;
  10211. const int ir1 = MIN(ir0 + dr, nr);
  10212. for (int i1 = ir0; i1 < ir1; i1++) {
  10213. float * dst_data = (float *)((char *) dst->data + i1*nb1);
  10214. for (int64_t i0 = 0; i0 < ne10; ++i0) {
  10215. dst_data[i0] = 0;
  10216. for (int k = -nh; k <= nh; k++) {
  10217. float v = 0.0f;
  10218. ggml_vec_dot_f32(ew0, &v,
  10219. (float *) params->wdata + i1*ew0*ne00 + (nh + k)*ew0,
  10220. (float *) params->wdata + ne02*ew0*ne00 + (i0 + nh + k)*ew0);
  10221. dst_data[i0] += v;
  10222. }
  10223. }
  10224. }
  10225. }
  10226. static void ggml_compute_forward_conv_1d_s1_ph(
  10227. const struct ggml_compute_params * params,
  10228. const struct ggml_tensor * src0,
  10229. const struct ggml_tensor * src1,
  10230. struct ggml_tensor * dst) {
  10231. switch (src0->type) {
  10232. case GGML_TYPE_F16:
  10233. {
  10234. ggml_compute_forward_conv_1d_s1_ph_f16_f32(params, src0, src1, dst);
  10235. } break;
  10236. case GGML_TYPE_F32:
  10237. {
  10238. ggml_compute_forward_conv_1d_s1_ph_f32(params, src0, src1, dst);
  10239. } break;
  10240. default:
  10241. {
  10242. GGML_ASSERT(false);
  10243. } break;
  10244. }
  10245. }
  10246. static void ggml_compute_forward_conv_1d_s2_ph_f16_f32(
  10247. const struct ggml_compute_params * params,
  10248. const struct ggml_tensor * src0,
  10249. const struct ggml_tensor * src1,
  10250. struct ggml_tensor * dst) {
  10251. GGML_ASSERT(src0->type == GGML_TYPE_F16);
  10252. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  10253. GGML_ASSERT( dst->type == GGML_TYPE_F32);
  10254. int64_t t0 = ggml_perf_time_us();
  10255. UNUSED(t0);
  10256. GGML_TENSOR_BINARY_OP_LOCALS;
  10257. const int ith = params->ith;
  10258. const int nth = params->nth;
  10259. const int nk = ne00;
  10260. const int nh = nk/2;
  10261. const int ew0 = ggml_up32(ne01);
  10262. GGML_ASSERT(ne00 % 2 == 1); // TODO: support even kernel sizes
  10263. GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
  10264. GGML_ASSERT(nb10 == sizeof(float));
  10265. if (params->type == GGML_TASK_INIT) {
  10266. // TODO: fix this memset (wsize is overestimated)
  10267. memset(params->wdata, 0, params->wsize);
  10268. // prepare kernel data (src0)
  10269. {
  10270. ggml_fp16_t * const wdata = (ggml_fp16_t *) params->wdata + 0;
  10271. for (int64_t i02 = 0; i02 < ne02; i02++) {
  10272. for (int64_t i01 = 0; i01 < ne01; i01++) {
  10273. const ggml_fp16_t * const src = (ggml_fp16_t *)((char *) src0->data + i02*nb02 + i01*nb01);
  10274. ggml_fp16_t * dst_data = wdata + i02*ew0*ne00;
  10275. for (int64_t i00 = 0; i00 < ne00; i00++) {
  10276. dst_data[i00*ew0 + i01] = src[i00];
  10277. }
  10278. }
  10279. }
  10280. }
  10281. // prepare source data (src1)
  10282. {
  10283. ggml_fp16_t * const wdata = (ggml_fp16_t *) params->wdata + ne02*ew0*ne00;
  10284. for (int64_t i11 = 0; i11 < ne11; i11++) {
  10285. const float * const src = (float *)((char *) src1->data + i11*nb11);
  10286. ggml_fp16_t * dst_data = wdata;
  10287. for (int64_t i10 = 0; i10 < ne10; i10++) {
  10288. dst_data[(i10 + nh)*ew0 + i11] = GGML_FP32_TO_FP16(src[i10]);
  10289. }
  10290. }
  10291. }
  10292. return;
  10293. }
  10294. if (params->type == GGML_TASK_FINALIZE) {
  10295. return;
  10296. }
  10297. // total rows in dst
  10298. const int nr = ne02;
  10299. // rows per thread
  10300. const int dr = (nr + nth - 1)/nth;
  10301. // row range for this thread
  10302. const int ir0 = dr*ith;
  10303. const int ir1 = MIN(ir0 + dr, nr);
  10304. for (int i1 = ir0; i1 < ir1; i1++) {
  10305. float * dst_data = (float *)((char *) dst->data + i1*nb1);
  10306. for (int64_t i0 = 0; i0 < ne10; i0 += 2) {
  10307. dst_data[i0/2] = 0;
  10308. for (int k = -nh; k <= nh; k++) {
  10309. float v = 0.0f;
  10310. ggml_vec_dot_f16(ew0, &v,
  10311. (ggml_fp16_t *) params->wdata + i1*ew0*ne00 + (nh + k)*ew0,
  10312. (ggml_fp16_t *) params->wdata + ne02*ew0*ne00 + (i0 + nh + k)*ew0);
  10313. dst_data[i0/2] += v;
  10314. }
  10315. }
  10316. }
  10317. }
  10318. static void ggml_compute_forward_conv_1d_s2_ph_f32(
  10319. const struct ggml_compute_params * params,
  10320. const struct ggml_tensor * src0,
  10321. const struct ggml_tensor * src1,
  10322. struct ggml_tensor * dst) {
  10323. GGML_ASSERT(src0->type == GGML_TYPE_F32);
  10324. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  10325. GGML_ASSERT( dst->type == GGML_TYPE_F32);
  10326. int64_t t0 = ggml_perf_time_us();
  10327. UNUSED(t0);
  10328. GGML_TENSOR_BINARY_OP_LOCALS;
  10329. const int ith = params->ith;
  10330. const int nth = params->nth;
  10331. const int nk = ne00;
  10332. const int nh = nk/2;
  10333. const int ew0 = ggml_up32(ne01);
  10334. GGML_ASSERT(ne00 % 2 == 1); // TODO: support even kernel sizes
  10335. GGML_ASSERT(nb00 == sizeof(float));
  10336. GGML_ASSERT(nb10 == sizeof(float));
  10337. if (params->type == GGML_TASK_INIT) {
  10338. // TODO: fix this memset (wsize is overestimated)
  10339. memset(params->wdata, 0, params->wsize);
  10340. // prepare kernel data (src0)
  10341. {
  10342. float * const wdata = (float *) params->wdata + 0;
  10343. for (int64_t i02 = 0; i02 < ne02; i02++) {
  10344. for (int64_t i01 = 0; i01 < ne01; i01++) {
  10345. const float * const src = (float *)((char *) src0->data + i02*nb02 + i01*nb01);
  10346. float * dst_data = wdata + i02*ew0*ne00;
  10347. for (int64_t i00 = 0; i00 < ne00; i00++) {
  10348. dst_data[i00*ew0 + i01] = src[i00];
  10349. }
  10350. }
  10351. }
  10352. }
  10353. // prepare source data (src1)
  10354. {
  10355. float * const wdata = (float *) params->wdata + ne02*ew0*ne00;
  10356. for (int64_t i11 = 0; i11 < ne11; i11++) {
  10357. const float * const src = (float *)((char *) src1->data + i11*nb11);
  10358. float * dst_data = wdata;
  10359. for (int64_t i10 = 0; i10 < ne10; i10++) {
  10360. dst_data[(i10 + nh)*ew0 + i11] = src[i10];
  10361. }
  10362. }
  10363. }
  10364. return;
  10365. }
  10366. if (params->type == GGML_TASK_FINALIZE) {
  10367. return;
  10368. }
  10369. // total rows in dst
  10370. const int nr = ne02;
  10371. // rows per thread
  10372. const int dr = (nr + nth - 1)/nth;
  10373. // row range for this thread
  10374. const int ir0 = dr*ith;
  10375. const int ir1 = MIN(ir0 + dr, nr);
  10376. for (int i1 = ir0; i1 < ir1; i1++) {
  10377. float * dst_data = (float *)((char *) dst->data + i1*nb1);
  10378. for (int64_t i0 = 0; i0 < ne10; i0 += 2) {
  10379. dst_data[i0/2] = 0;
  10380. for (int k = -nh; k <= nh; k++) {
  10381. float v = 0.0f;
  10382. ggml_vec_dot_f32(ew0, &v,
  10383. (float *) params->wdata + i1*ew0*ne00 + (nh + k)*ew0,
  10384. (float *) params->wdata + ne02*ew0*ne00 + (i0 + nh + k)*ew0);
  10385. dst_data[i0/2] += v;
  10386. }
  10387. }
  10388. }
  10389. }
  10390. static void ggml_compute_forward_conv_1d_s2_ph(
  10391. const struct ggml_compute_params * params,
  10392. const struct ggml_tensor * src0,
  10393. const struct ggml_tensor * src1,
  10394. struct ggml_tensor * dst) {
  10395. switch (src0->type) {
  10396. case GGML_TYPE_F16:
  10397. {
  10398. ggml_compute_forward_conv_1d_s2_ph_f16_f32(params, src0, src1, dst);
  10399. } break;
  10400. case GGML_TYPE_F32:
  10401. {
  10402. ggml_compute_forward_conv_1d_s2_ph_f32(params, src0, src1, dst);
  10403. } break;
  10404. default:
  10405. {
  10406. GGML_ASSERT(false);
  10407. } break;
  10408. }
  10409. }
  10410. // ggml_compute_forward_conv_1d
  10411. static void ggml_compute_forward_conv_1d(
  10412. const struct ggml_compute_params * params,
  10413. const struct ggml_tensor * src0,
  10414. const struct ggml_tensor * src1,
  10415. const struct ggml_tensor * opt0,
  10416. struct ggml_tensor * dst) {
  10417. const int32_t s0 = ((const int32_t*)(opt0->data))[0];
  10418. const int32_t p0 = ((const int32_t*)(opt0->data))[1];
  10419. const int32_t d0 = ((const int32_t*)(opt0->data))[2];
  10420. GGML_ASSERT(d0 == 1); // dilation not supported
  10421. GGML_ASSERT(p0 == src0->ne[0]/2); // only half padding supported
  10422. if (s0 == 1) {
  10423. ggml_compute_forward_conv_1d_s1_ph(params, src0, src1, dst);
  10424. } else if (s0 == 2) {
  10425. ggml_compute_forward_conv_1d_s2_ph(params, src0, src1, dst);
  10426. } else {
  10427. GGML_ASSERT(false); // only stride 1 and 2 supported
  10428. };
  10429. }
  10430. // ggml_compute_forward_conv_2d_sk_p0
  10431. static void ggml_compute_forward_conv_2d_sk_p0_f16_f32(
  10432. const struct ggml_compute_params * params,
  10433. const struct ggml_tensor * src0,
  10434. const struct ggml_tensor * src1,
  10435. struct ggml_tensor * dst) {
  10436. GGML_ASSERT(src0->type == GGML_TYPE_F16);
  10437. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  10438. GGML_ASSERT( dst->type == GGML_TYPE_F32);
  10439. int64_t t0 = ggml_perf_time_us();
  10440. UNUSED(t0);
  10441. GGML_TENSOR_BINARY_OP_LOCALS;
  10442. const int ith = params->ith;
  10443. const int nth = params->nth;
  10444. const int nk0 = ne00;
  10445. const int nk1 = ne01;
  10446. // size of the convolution row - the kernel size unrolled across all channels
  10447. const int ew0 = nk0*nk1*ne02;
  10448. GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
  10449. GGML_ASSERT(nb10 == sizeof(float));
  10450. if (params->type == GGML_TASK_INIT) {
  10451. // TODO: fix this memset (wsize is overestimated)
  10452. memset(params->wdata, 0, params->wsize);
  10453. // prepare source data (src1)
  10454. {
  10455. ggml_fp16_t * const wdata = (ggml_fp16_t *) params->wdata + 0;
  10456. for (int i12 = 0; i12 < ne12; i12++) {
  10457. const float * const src = (float *)((char *) src1->data + i12*nb12);
  10458. ggml_fp16_t * dst_data = wdata;
  10459. for (int i1 = 0; i1 < ne1; i1++) {
  10460. for (int i0 = 0; i0 < ne0; i0++) {
  10461. for (int ik1 = 0; ik1 < nk1; ik1++) {
  10462. for (int ik0 = 0; ik0 < nk0; ik0++) {
  10463. dst_data[(i1*ne0 + i0)*ew0 + i12*(nk0*nk1) + ik1*nk0 + ik0] =
  10464. GGML_FP32_TO_FP16(src[(i1*nk1 + ik1)*ne10 + (i0*nk0 + ik0)]);
  10465. }
  10466. }
  10467. }
  10468. }
  10469. }
  10470. }
  10471. return;
  10472. }
  10473. if (params->type == GGML_TASK_FINALIZE) {
  10474. return;
  10475. }
  10476. // total patches in dst
  10477. const int np = ne2;
  10478. // patches per thread
  10479. const int dp = (np + nth - 1)/nth;
  10480. // patch range for this thread
  10481. const int ip0 = dp*ith;
  10482. const int ip1 = MIN(ip0 + dp, np);
  10483. ggml_fp16_t * const wdata = (ggml_fp16_t *) params->wdata + 0;
  10484. for (int i2 = ip0; i2 < ip1; i2++) {
  10485. float * dst_data = (float *)((char *) dst->data + i2*nb2);
  10486. for (int i1 = 0; i1 < ne1; ++i1) {
  10487. for (int i0 = 0; i0 < ne0; ++i0) {
  10488. ggml_vec_dot_f16(ew0, dst_data + i1*ne0 + i0,
  10489. (ggml_fp16_t *) ((char *) src0->data + i2*nb03),
  10490. (ggml_fp16_t *) wdata + (i1*ne0 + i0)*ew0);
  10491. }
  10492. }
  10493. }
  10494. }
  10495. static void ggml_compute_forward_conv_2d_sk_p0(
  10496. const struct ggml_compute_params * params,
  10497. const struct ggml_tensor * src0,
  10498. const struct ggml_tensor * src1,
  10499. struct ggml_tensor * dst) {
  10500. switch (src0->type) {
  10501. case GGML_TYPE_F16:
  10502. {
  10503. ggml_compute_forward_conv_2d_sk_p0_f16_f32(params, src0, src1, dst);
  10504. } break;
  10505. case GGML_TYPE_F32:
  10506. {
  10507. //ggml_compute_forward_conv_2d_sk_p0_f32(params, src0, src1, dst);
  10508. GGML_ASSERT(false);
  10509. } break;
  10510. default:
  10511. {
  10512. GGML_ASSERT(false);
  10513. } break;
  10514. }
  10515. }
  10516. // ggml_compute_forward_conv_2d
  10517. static void ggml_compute_forward_conv_2d(
  10518. const struct ggml_compute_params* params,
  10519. const struct ggml_tensor* src0,
  10520. const struct ggml_tensor* src1,
  10521. const struct ggml_tensor* opt0,
  10522. struct ggml_tensor* dst) {
  10523. const int32_t s0 = ((const int32_t*)(opt0->data))[0];
  10524. const int32_t s1 = ((const int32_t*)(opt0->data))[1];
  10525. const int32_t p0 = ((const int32_t*)(opt0->data))[2];
  10526. const int32_t p1 = ((const int32_t*)(opt0->data))[3];
  10527. const int32_t d0 = ((const int32_t*)(opt0->data))[4];
  10528. const int32_t d1 = ((const int32_t*)(opt0->data))[5];
  10529. GGML_ASSERT(d0 == 1); // dilation not supported
  10530. GGML_ASSERT(d1 == 1);
  10531. GGML_ASSERT(p0 == 0); // padding not supported
  10532. GGML_ASSERT(p1 == 0);
  10533. if (s0 == src0->ne[0] && s1 == src0->ne[1]) {
  10534. ggml_compute_forward_conv_2d_sk_p0(params, src0, src1, dst);
  10535. }
  10536. else {
  10537. GGML_ASSERT(false); // only stride equal to kernel size is supported
  10538. };
  10539. }
  10540. // ggml_compute_forward_flash_attn
  10541. static void ggml_compute_forward_flash_attn_f32(
  10542. const struct ggml_compute_params * params,
  10543. const struct ggml_tensor * q,
  10544. const struct ggml_tensor * k,
  10545. const struct ggml_tensor * v,
  10546. const bool masked,
  10547. struct ggml_tensor * dst) {
  10548. int64_t t0 = ggml_perf_time_us();
  10549. UNUSED(t0);
  10550. GGML_TENSOR_LOCALS(int64_t, neq, q, ne);
  10551. GGML_TENSOR_LOCALS(size_t, nbq, q, nb);
  10552. GGML_TENSOR_LOCALS(int64_t, nek, k, ne);
  10553. GGML_TENSOR_LOCALS(size_t, nbk, k, nb);
  10554. GGML_TENSOR_LOCALS(int64_t, nev, v, ne);
  10555. GGML_TENSOR_LOCALS(size_t, nbv, v, nb);
  10556. GGML_TENSOR_LOCALS(int64_t, ne, dst, ne);
  10557. GGML_TENSOR_LOCALS(size_t, nb, dst, nb);
  10558. const int ith = params->ith;
  10559. const int nth = params->nth;
  10560. const int64_t D = neq0;
  10561. const int64_t N = neq1;
  10562. const int64_t P = nek1 - N;
  10563. const int64_t M = P + N;
  10564. const int Mup = ggml_up(M, GGML_SOFT_MAX_UNROLL);
  10565. GGML_ASSERT(ne0 == D);
  10566. GGML_ASSERT(ne1 == N);
  10567. GGML_ASSERT(P >= 0);
  10568. GGML_ASSERT(nbq0 == sizeof(float));
  10569. GGML_ASSERT(nbk0 == sizeof(float));
  10570. GGML_ASSERT(nbv0 == sizeof(float));
  10571. GGML_ASSERT(neq0 == D);
  10572. GGML_ASSERT(nek0 == D);
  10573. GGML_ASSERT(nev1 == D);
  10574. GGML_ASSERT(neq1 == N);
  10575. GGML_ASSERT(nek1 == N + P);
  10576. GGML_ASSERT(nev1 == D);
  10577. // dst cannot be transposed or permuted
  10578. GGML_ASSERT(nb0 == sizeof(float));
  10579. GGML_ASSERT(nb0 <= nb1);
  10580. GGML_ASSERT(nb1 <= nb2);
  10581. GGML_ASSERT(nb2 <= nb3);
  10582. if (params->type == GGML_TASK_INIT) {
  10583. return;
  10584. }
  10585. if (params->type == GGML_TASK_FINALIZE) {
  10586. return;
  10587. }
  10588. // parallelize by q rows using ggml_vec_dot_f32
  10589. // total rows in q
  10590. const int nr = neq1*neq2*neq3;
  10591. // rows per thread
  10592. const int dr = (nr + nth - 1)/nth;
  10593. // row range for this thread
  10594. const int ir0 = dr*ith;
  10595. const int ir1 = MIN(ir0 + dr, nr);
  10596. const float scale = 1.0f/sqrtf(D);
  10597. //printf("P=%d N=%d D=%d ir0=%d ir1=%d scale = %f\n", P, N, D, ir0, ir1, scale);
  10598. for (int ir = ir0; ir < ir1; ++ir) {
  10599. // q indices
  10600. const int iq3 = ir/(neq2*neq1);
  10601. const int iq2 = (ir - iq3*neq2*neq1)/neq1;
  10602. const int iq1 = (ir - iq3*neq2*neq1 - iq2*neq1);
  10603. float * S = (float *) params->wdata + ith*(Mup + CACHE_LINE_SIZE_F32);
  10604. for (int i = M; i < Mup; ++i) {
  10605. S[i] = -INFINITY;
  10606. }
  10607. for (int64_t ic = 0; ic < nek1; ++ic) {
  10608. // k indices
  10609. const int ik3 = iq3;
  10610. const int ik2 = iq2;
  10611. const int ik1 = ic;
  10612. // S indices
  10613. const int i1 = ik1;
  10614. ggml_vec_dot_f32(neq0,
  10615. S + i1,
  10616. (float *) ((char *) k->data + (ik1*nbk1 + ik2*nbk2 + ik3*nbk3)),
  10617. (float *) ((char *) q->data + (iq1*nbq1 + iq2*nbq2 + iq3*nbq3)));
  10618. }
  10619. // scale
  10620. ggml_vec_scale_f32(nek1, S, scale);
  10621. if (masked) {
  10622. for (int64_t i = P; i < M; i++) {
  10623. if (i > P + iq1) {
  10624. S[i] = -INFINITY;
  10625. }
  10626. }
  10627. }
  10628. // softmax
  10629. {
  10630. float max = -INFINITY;
  10631. ggml_vec_max_f32(M, &max, S);
  10632. ggml_float sum = 0.0;
  10633. {
  10634. #ifdef GGML_SOFT_MAX_ACCELERATE
  10635. max = -max;
  10636. vDSP_vsadd(S, 1, &max, S, 1, Mup);
  10637. vvexpf(S, S, &Mup);
  10638. ggml_vec_sum_f32(Mup, &sum, S);
  10639. #else
  10640. uint16_t scvt[GGML_SOFT_MAX_UNROLL];
  10641. ggml_float sump[GGML_SOFT_MAX_UNROLL] = { 0.0 };
  10642. for (int i = 0; i < Mup; i += GGML_SOFT_MAX_UNROLL) {
  10643. float * SS = S + i;
  10644. for (int j = 0; j < GGML_SOFT_MAX_UNROLL; ++j) {
  10645. if (SS[j] == -INFINITY) {
  10646. SS[j] = 0.0f;
  10647. } else {
  10648. ggml_fp16_t s = GGML_FP32_TO_FP16(SS[j] - max);
  10649. memcpy(&scvt[j], &s, sizeof(uint16_t));
  10650. const float val = GGML_FP16_TO_FP32(table_exp_f16[scvt[j]]);
  10651. sump[j] += (ggml_float)val;
  10652. SS[j] = val;
  10653. }
  10654. }
  10655. }
  10656. for (int i = 0; i < GGML_SOFT_MAX_UNROLL; i++) {
  10657. sum += sump[i];
  10658. }
  10659. #endif
  10660. }
  10661. assert(sum > 0.0);
  10662. sum = 1.0/sum;
  10663. ggml_vec_scale_f32(M, S, sum);
  10664. #ifndef NDEBUG
  10665. for (int i = 0; i < M; ++i) {
  10666. assert(!isnan(S[i]));
  10667. assert(!isinf(S[i]));
  10668. }
  10669. #endif
  10670. }
  10671. for (int64_t ic = 0; ic < nev1; ++ic) {
  10672. // dst indices
  10673. const int i1 = iq1;
  10674. const int i2 = iq2;
  10675. const int i3 = iq3;
  10676. ggml_vec_dot_f32(nek1,
  10677. (float *) ((char *) dst->data + (ic*nb0 + i1*nb1 + i2*nb2 + i3*nb3)),
  10678. (float *) ((char *) v->data + ( ic*nbv1 + i2*nbv2 + i3*nbv3)),
  10679. S);
  10680. }
  10681. }
  10682. }
  10683. static void ggml_compute_forward_flash_attn_f16(
  10684. const struct ggml_compute_params * params,
  10685. const struct ggml_tensor * q,
  10686. const struct ggml_tensor * k,
  10687. const struct ggml_tensor * v,
  10688. const bool masked,
  10689. struct ggml_tensor * dst) {
  10690. int64_t t0 = ggml_perf_time_us();
  10691. UNUSED(t0);
  10692. GGML_TENSOR_LOCALS(int64_t, neq, q, ne);
  10693. GGML_TENSOR_LOCALS(size_t, nbq, q, nb);
  10694. GGML_TENSOR_LOCALS(int64_t, nek, k, ne);
  10695. GGML_TENSOR_LOCALS(size_t, nbk, k, nb);
  10696. GGML_TENSOR_LOCALS(int64_t, nev, v, ne);
  10697. GGML_TENSOR_LOCALS(size_t, nbv, v, nb);
  10698. GGML_TENSOR_LOCALS(int64_t, ne, dst, ne);
  10699. GGML_TENSOR_LOCALS(size_t, nb, dst, nb);
  10700. const int ith = params->ith;
  10701. const int nth = params->nth;
  10702. const int64_t D = neq0;
  10703. const int64_t N = neq1;
  10704. const int64_t P = nek1 - N;
  10705. const int64_t M = P + N;
  10706. const int Mup = ggml_up(M, GGML_SOFT_MAX_UNROLL);
  10707. GGML_ASSERT(ne0 == D);
  10708. GGML_ASSERT(ne1 == N);
  10709. GGML_ASSERT(P >= 0);
  10710. GGML_ASSERT(nbq0 == sizeof(ggml_fp16_t));
  10711. GGML_ASSERT(nbk0 == sizeof(ggml_fp16_t));
  10712. GGML_ASSERT(nbv0 == sizeof(ggml_fp16_t));
  10713. GGML_ASSERT(neq0 == D);
  10714. GGML_ASSERT(nek0 == D);
  10715. GGML_ASSERT(nev1 == D);
  10716. GGML_ASSERT(neq1 == N);
  10717. GGML_ASSERT(nek1 == N + P);
  10718. GGML_ASSERT(nev1 == D);
  10719. // dst cannot be transposed or permuted
  10720. GGML_ASSERT(nb0 == sizeof(float));
  10721. GGML_ASSERT(nb0 <= nb1);
  10722. GGML_ASSERT(nb1 <= nb2);
  10723. GGML_ASSERT(nb2 <= nb3);
  10724. if (params->type == GGML_TASK_INIT) {
  10725. return;
  10726. }
  10727. if (params->type == GGML_TASK_FINALIZE) {
  10728. return;
  10729. }
  10730. // parallelize by q rows using ggml_vec_dot_f32
  10731. // total rows in q
  10732. const int nr = neq1*neq2*neq3;
  10733. // rows per thread
  10734. const int dr = (nr + nth - 1)/nth;
  10735. // row range for this thread
  10736. const int ir0 = dr*ith;
  10737. const int ir1 = MIN(ir0 + dr, nr);
  10738. const float scale = 1.0f/sqrtf(D);
  10739. //printf("P=%d N=%d D=%d ir0=%d ir1=%d scale = %f\n", P, N, D, ir0, ir1, scale);
  10740. for (int ir = ir0; ir < ir1; ++ir) {
  10741. // q indices
  10742. const int iq3 = ir/(neq2*neq1);
  10743. const int iq2 = (ir - iq3*neq2*neq1)/neq1;
  10744. const int iq1 = (ir - iq3*neq2*neq1 - iq2*neq1);
  10745. float * S = (float *) params->wdata + ith*(2*Mup + CACHE_LINE_SIZE_F32);
  10746. for (int i = M; i < Mup; ++i) {
  10747. S[i] = -INFINITY;
  10748. }
  10749. if (GGML_VEC_DOT_UNROLL > 2 || nek1 % GGML_VEC_DOT_UNROLL != 0) {
  10750. for (int64_t ic = 0; ic < nek1; ++ic) {
  10751. // k indices
  10752. const int ik3 = iq3;
  10753. const int ik2 = iq2;
  10754. const int ik1 = ic;
  10755. // S indices
  10756. const int i1 = ik1;
  10757. ggml_vec_dot_f16(neq0,
  10758. S + i1,
  10759. (ggml_fp16_t *) ((char *) k->data + (ik1*nbk1 + ik2*nbk2 + ik3*nbk3)),
  10760. (ggml_fp16_t *) ((char *) q->data + (iq1*nbq1 + iq2*nbq2 + iq3*nbq3)));
  10761. }
  10762. } else {
  10763. for (int64_t ic = 0; ic < nek1; ic += GGML_VEC_DOT_UNROLL) {
  10764. // k indices
  10765. const int ik3 = iq3;
  10766. const int ik2 = iq2;
  10767. const int ik1 = ic;
  10768. // S indices
  10769. const int i1 = ik1;
  10770. ggml_vec_dot_f16_unroll(neq0, nbk1,
  10771. S + i1,
  10772. ((char *) k->data + (ik1*nbk1 + ik2*nbk2 + ik3*nbk3)),
  10773. (ggml_fp16_t *) ((char *) q->data + (iq1*nbq1 + iq2*nbq2 + iq3*nbq3)));
  10774. }
  10775. }
  10776. // scale
  10777. ggml_vec_scale_f32(nek1, S, scale);
  10778. if (masked) {
  10779. for (int64_t i = P; i < M; i++) {
  10780. if (i > P + iq1) {
  10781. S[i] = -INFINITY;
  10782. }
  10783. }
  10784. }
  10785. // softmax
  10786. {
  10787. float max = -INFINITY;
  10788. ggml_vec_max_f32(M, &max, S);
  10789. ggml_float sum = 0.0;
  10790. {
  10791. #ifdef GGML_SOFT_MAX_ACCELERATE
  10792. max = -max;
  10793. vDSP_vsadd(S, 1, &max, S, 1, Mup);
  10794. vvexpf(S, S, &Mup);
  10795. ggml_vec_sum_f32(Mup, &sum, S);
  10796. #else
  10797. uint16_t scvt[GGML_SOFT_MAX_UNROLL];
  10798. ggml_float sump[GGML_SOFT_MAX_UNROLL] = { 0.0 };
  10799. for (int i = 0; i < Mup; i += GGML_SOFT_MAX_UNROLL) {
  10800. float * SS = S + i;
  10801. for (int j = 0; j < GGML_SOFT_MAX_UNROLL; ++j) {
  10802. if (SS[j] == -INFINITY) {
  10803. SS[j] = 0.0f;
  10804. } else {
  10805. ggml_fp16_t s = GGML_FP32_TO_FP16(SS[j] - max);
  10806. memcpy(&scvt[j], &s, sizeof(uint16_t));
  10807. const float val = GGML_FP16_TO_FP32(table_exp_f16[scvt[j]]);
  10808. sump[j] += (ggml_float)val;
  10809. SS[j] = val;
  10810. }
  10811. }
  10812. }
  10813. for (int i = 0; i < GGML_SOFT_MAX_UNROLL; i++) {
  10814. sum += sump[i];
  10815. }
  10816. #endif
  10817. }
  10818. assert(sum > 0.0);
  10819. sum = 1.0/sum;
  10820. ggml_vec_scale_f32(M, S, sum);
  10821. #ifndef NDEBUG
  10822. for (int i = 0; i < M; ++i) {
  10823. assert(!isnan(S[i]));
  10824. assert(!isinf(S[i]));
  10825. }
  10826. #endif
  10827. }
  10828. ggml_fp16_t * S16 = (ggml_fp16_t *) ((float *) params->wdata + ith*(2*Mup + CACHE_LINE_SIZE_F32) + Mup);
  10829. for (int64_t i = 0; i < M; i++) {
  10830. S16[i] = GGML_FP32_TO_FP16(S[i]);
  10831. }
  10832. if (GGML_VEC_DOT_UNROLL == 1 || (nev1 % GGML_VEC_DOT_UNROLL != 0)) {
  10833. for (int64_t ic = 0; ic < nev1; ++ic) {
  10834. // dst indices
  10835. const int i1 = iq1;
  10836. const int i2 = iq2;
  10837. const int i3 = iq3;
  10838. ggml_vec_dot_f16(nek1,
  10839. (float *) ((char *) dst->data + (ic*nb0 + i1*nb1 + i2*nb2 + i3*nb3)),
  10840. (ggml_fp16_t *) ((char *) v->data + ( ic*nbv1 + i2*nbv2 + i3*nbv3)),
  10841. S16);
  10842. }
  10843. } else {
  10844. for (int64_t ic = 0; ic < nev1; ic += GGML_VEC_DOT_UNROLL) {
  10845. // dst indices
  10846. const int i1 = iq1;
  10847. const int i2 = iq2;
  10848. const int i3 = iq3;
  10849. ggml_vec_dot_f16_unroll(nek1, nbv1,
  10850. (float *) ((char *) dst->data + (ic*nb0 + i1*nb1 + i2*nb2 + i3*nb3)),
  10851. ((char *) v->data + ( ic*nbv1 + i2*nbv2 + i3*nbv3)),
  10852. S16);
  10853. }
  10854. }
  10855. }
  10856. }
  10857. static void ggml_compute_forward_flash_attn(
  10858. const struct ggml_compute_params * params,
  10859. const struct ggml_tensor * q,
  10860. const struct ggml_tensor * k,
  10861. const struct ggml_tensor * v,
  10862. const bool masked,
  10863. struct ggml_tensor * dst) {
  10864. switch (q->type) {
  10865. case GGML_TYPE_F16:
  10866. {
  10867. ggml_compute_forward_flash_attn_f16(params, q, k, v, masked, dst);
  10868. } break;
  10869. case GGML_TYPE_F32:
  10870. {
  10871. ggml_compute_forward_flash_attn_f32(params, q, k, v, masked, dst);
  10872. } break;
  10873. default:
  10874. {
  10875. GGML_ASSERT(false);
  10876. } break;
  10877. }
  10878. }
  10879. // ggml_compute_forward_flash_ff
  10880. static void ggml_compute_forward_flash_ff_f16(
  10881. const struct ggml_compute_params * params,
  10882. const struct ggml_tensor * a, // F16
  10883. const struct ggml_tensor * b0, // F16 fc_w
  10884. const struct ggml_tensor * b1, // F32 fc_b
  10885. const struct ggml_tensor * c0, // F16 proj_w
  10886. const struct ggml_tensor * c1, // F32 proj_b
  10887. struct ggml_tensor * dst) {
  10888. int64_t t0 = ggml_perf_time_us();
  10889. UNUSED(t0);
  10890. GGML_TENSOR_LOCALS(int64_t, nea, a, ne);
  10891. GGML_TENSOR_LOCALS(size_t, nba, a, nb);
  10892. GGML_TENSOR_LOCALS(int64_t, neb0, b0, ne);
  10893. GGML_TENSOR_LOCALS(size_t, nbb0, b0, nb);
  10894. GGML_TENSOR_LOCALS(int64_t, neb1, b1, ne);
  10895. GGML_TENSOR_LOCALS(size_t, nbb1, b1, nb);
  10896. GGML_TENSOR_LOCALS(int64_t, nec0, c0, ne);
  10897. GGML_TENSOR_LOCALS(size_t, nbc0, c0, nb);
  10898. GGML_TENSOR_LOCALS(int64_t, nec1, c1, ne);
  10899. GGML_TENSOR_LOCALS(size_t, nbc1, c1, nb);
  10900. GGML_TENSOR_LOCALS(int64_t, ne, dst, ne);
  10901. GGML_TENSOR_LOCALS(size_t, nb, dst, nb);
  10902. const int ith = params->ith;
  10903. const int nth = params->nth;
  10904. const int64_t D = nea0;
  10905. //const int64_t N = nea1;
  10906. const int64_t M = neb01;
  10907. GGML_ASSERT(ne0 == nea0);
  10908. GGML_ASSERT(ne1 == nea1);
  10909. GGML_ASSERT(ne2 == nea2);
  10910. GGML_ASSERT(nba0 == sizeof(ggml_fp16_t));
  10911. GGML_ASSERT(nbb00 == sizeof(ggml_fp16_t));
  10912. GGML_ASSERT(nbb10 == sizeof(float));
  10913. GGML_ASSERT(nbc00 == sizeof(ggml_fp16_t));
  10914. GGML_ASSERT(nbc10 == sizeof(float));
  10915. GGML_ASSERT(neb00 == D);
  10916. GGML_ASSERT(neb01 == M);
  10917. GGML_ASSERT(neb10 == M);
  10918. GGML_ASSERT(neb11 == 1);
  10919. GGML_ASSERT(nec00 == M);
  10920. GGML_ASSERT(nec01 == D);
  10921. GGML_ASSERT(nec10 == D);
  10922. GGML_ASSERT(nec11 == 1);
  10923. // dst cannot be transposed or permuted
  10924. GGML_ASSERT(nb0 == sizeof(float));
  10925. GGML_ASSERT(nb0 <= nb1);
  10926. GGML_ASSERT(nb1 <= nb2);
  10927. GGML_ASSERT(nb2 <= nb3);
  10928. if (params->type == GGML_TASK_INIT) {
  10929. return;
  10930. }
  10931. if (params->type == GGML_TASK_FINALIZE) {
  10932. return;
  10933. }
  10934. // parallelize by a rows using ggml_vec_dot_f32
  10935. // total rows in a
  10936. const int nr = nea1*nea2*nea3;
  10937. // rows per thread
  10938. const int dr = (nr + nth - 1)/nth;
  10939. // row range for this thread
  10940. const int ir0 = dr*ith;
  10941. const int ir1 = MIN(ir0 + dr, nr);
  10942. for (int ir = ir0; ir < ir1; ++ir) {
  10943. // a indices
  10944. const int ia3 = ir/(nea2*nea1);
  10945. const int ia2 = (ir - ia3*nea2*nea1)/nea1;
  10946. const int ia1 = (ir - ia3*nea2*nea1 - ia2*nea1);
  10947. float * S = (float *) params->wdata + ith*(2*M + CACHE_LINE_SIZE_F32);
  10948. for (int64_t ic = 0; ic < neb01; ++ic) {
  10949. // b0 indices
  10950. const int ib03 = ia3;
  10951. const int ib02 = ia2;
  10952. const int ib01 = ic;
  10953. // S indices
  10954. const int i1 = ib01;
  10955. ggml_vec_dot_f16(nea0,
  10956. S + i1,
  10957. (ggml_fp16_t *) ((char *) b0->data + (ib01*nbb01 + ib02*nbb02 + ib03*nbb03)),
  10958. (ggml_fp16_t *) ((char *) a->data + ( ia1*nba1 + ia2*nba2 + ia3*nba3)));
  10959. }
  10960. ggml_vec_add_f32(neb01, S, S, (float *) b1->data);
  10961. //ggml_vec_gelu_f32(neb01, S, S);
  10962. ggml_fp16_t * S16 = (ggml_fp16_t *) ((float *) params->wdata + ith*(2*M + CACHE_LINE_SIZE_F32) + M);
  10963. for (int64_t i = 0; i < M; i++) {
  10964. S16[i] = GGML_FP32_TO_FP16(S[i]);
  10965. }
  10966. ggml_vec_gelu_f16(neb01, S16, S16);
  10967. {
  10968. // dst indices
  10969. const int i1 = ia1;
  10970. const int i2 = ia2;
  10971. const int i3 = ia3;
  10972. for (int64_t ic = 0; ic < nec01; ++ic) {
  10973. ggml_vec_dot_f16(neb01,
  10974. (float *) ((char *) dst->data + (ic*nb0 + i1*nb1 + i2*nb2 + i3*nb3)),
  10975. (ggml_fp16_t *) ((char *) c0->data + ( ic*nbc01 + i2*nbc02 + i3*nbc03)),
  10976. S16);
  10977. }
  10978. ggml_vec_add_f32(nec01,
  10979. (float *) ((char *) dst->data + (i1*nb1 + i2*nb2 + i3*nb3)),
  10980. (float *) ((char *) dst->data + (i1*nb1 + i2*nb2 + i3*nb3)),
  10981. (float *) c1->data);
  10982. }
  10983. }
  10984. }
  10985. static void ggml_compute_forward_flash_ff(
  10986. const struct ggml_compute_params * params,
  10987. const struct ggml_tensor * a,
  10988. const struct ggml_tensor * b0,
  10989. const struct ggml_tensor * b1,
  10990. const struct ggml_tensor * c0,
  10991. const struct ggml_tensor * c1,
  10992. struct ggml_tensor * dst) {
  10993. switch (b0->type) {
  10994. case GGML_TYPE_F16:
  10995. {
  10996. ggml_compute_forward_flash_ff_f16(params, a, b0, b1, c0, c1, dst);
  10997. } break;
  10998. case GGML_TYPE_F32:
  10999. {
  11000. GGML_ASSERT(false); // TODO
  11001. } break;
  11002. default:
  11003. {
  11004. GGML_ASSERT(false);
  11005. } break;
  11006. }
  11007. }
  11008. // ggml_compute_forward_flash_attn_back
  11009. static void ggml_compute_forward_flash_attn_back_f32(
  11010. const struct ggml_compute_params * params,
  11011. const struct ggml_tensor * q,
  11012. const struct ggml_tensor * k,
  11013. const struct ggml_tensor * v,
  11014. const struct ggml_tensor * d,
  11015. const bool masked,
  11016. struct ggml_tensor * dst) {
  11017. int64_t t0 = ggml_perf_time_us();
  11018. UNUSED(t0);
  11019. GGML_TENSOR_LOCALS(int64_t, neq, q, ne);
  11020. GGML_TENSOR_LOCALS(size_t, nbq, q, nb);
  11021. GGML_TENSOR_LOCALS(int64_t, nek, k, ne);
  11022. GGML_TENSOR_LOCALS(size_t, nbk, k, nb);
  11023. GGML_TENSOR_LOCALS(int64_t, nev, v, ne);
  11024. GGML_TENSOR_LOCALS(size_t, nbv, v, nb);
  11025. GGML_TENSOR_LOCALS(int64_t, ned, d, ne);
  11026. GGML_TENSOR_LOCALS(size_t, nbd, d, nb);
  11027. GGML_TENSOR_LOCALS(int64_t, ne, dst, ne);
  11028. GGML_TENSOR_LOCALS(size_t, nb, dst, nb);
  11029. const int ith = params->ith;
  11030. const int nth = params->nth;
  11031. const int64_t D = neq0;
  11032. const int64_t N = neq1;
  11033. const int64_t P = nek1 - N;
  11034. const int64_t M = P + N;
  11035. const int Mup = ggml_up(M, GGML_SOFT_MAX_UNROLL);
  11036. const int mxDM = MAX(D, Mup);
  11037. // GGML_ASSERT(ne0 == D);
  11038. // GGML_ASSERT(ne1 == N);
  11039. GGML_ASSERT(P >= 0);
  11040. GGML_ASSERT(nbq0 == sizeof(float));
  11041. GGML_ASSERT(nbk0 == sizeof(float));
  11042. GGML_ASSERT(nbv0 == sizeof(float));
  11043. GGML_ASSERT(neq0 == D);
  11044. GGML_ASSERT(nek0 == D);
  11045. GGML_ASSERT(nev1 == D);
  11046. GGML_ASSERT(ned0 == D);
  11047. GGML_ASSERT(neq1 == N);
  11048. GGML_ASSERT(nek1 == N + P);
  11049. GGML_ASSERT(nev1 == D);
  11050. GGML_ASSERT(ned1 == N);
  11051. // dst cannot be transposed or permuted
  11052. GGML_ASSERT(nb0 == sizeof(float));
  11053. GGML_ASSERT(nb0 <= nb1);
  11054. GGML_ASSERT(nb1 <= nb2);
  11055. GGML_ASSERT(nb2 <= nb3);
  11056. if (params->type == GGML_TASK_INIT) {
  11057. if (ith == 0) {
  11058. memset(dst->data, 0, nb0*ne0*ne1*ne2*ne3);
  11059. }
  11060. return;
  11061. }
  11062. if (params->type == GGML_TASK_FINALIZE) {
  11063. return;
  11064. }
  11065. // parallelize by q rows using ggml_vec_dot_f32
  11066. // total rows in q
  11067. const int nr = neq2*neq3;
  11068. // rows per thread
  11069. const int dr = (nr + nth - 1)/nth;
  11070. // row range for this thread
  11071. const int ir0 = dr*ith;
  11072. const int ir1 = MIN(ir0 + dr, nr);
  11073. const float scale = 1.0f/sqrtf(D);
  11074. //printf("P=%d N=%d D=%d ir0=%d ir1=%d scale = %f\n", P, N, D, ir0, ir1, scale);
  11075. for (int ir = ir0; ir < ir1; ++ir) {
  11076. // q indices
  11077. const int iq3 = ir/(neq2);
  11078. const int iq2 = ir - iq3*neq2;
  11079. for ( int iq1 = 0; iq1 < neq1; ++iq1) {
  11080. // not sure about CACHE_LINE_SIZE_F32..
  11081. // - maybe it must not be multiplied by 2 and excluded from .. in SM 1*(..) offset?
  11082. float * S = (float *) params->wdata + ith*2*(mxDM + CACHE_LINE_SIZE_F32) + 0*(mxDM+CACHE_LINE_SIZE_F32);
  11083. float * SM = (float *) params->wdata + ith*2*(mxDM + CACHE_LINE_SIZE_F32) + 1*(mxDM+CACHE_LINE_SIZE_F32);
  11084. for (int i = M; i < Mup; ++i) {
  11085. S[i] = -INFINITY;
  11086. }
  11087. for (int64_t ic = 0; ic < nek1; ++ic) {
  11088. // k indices
  11089. const int ik3 = iq3;
  11090. const int ik2 = iq2;
  11091. const int ik1 = ic;
  11092. // S indices
  11093. const int i1 = ik1;
  11094. ggml_vec_dot_f32(neq0,
  11095. S + i1,
  11096. (float *) ((char *) k->data + (ik1*nbk1 + ik2*nbk2 + ik3*nbk3)),
  11097. (float *) ((char *) q->data + (iq1*nbq1 + iq2*nbq2 + iq3*nbq3)));
  11098. }
  11099. // scale
  11100. ggml_vec_scale_f32(nek1, S, scale);
  11101. if (masked) {
  11102. for (int64_t i = P; i < M; i++) {
  11103. if (i > P + iq1) {
  11104. S[i] = -INFINITY;
  11105. }
  11106. }
  11107. }
  11108. // softmax
  11109. {
  11110. float max = -INFINITY;
  11111. ggml_vec_max_f32(M, &max, S);
  11112. ggml_float sum = 0.0;
  11113. {
  11114. #ifdef GGML_SOFT_MAX_ACCELERATE
  11115. max = -max;
  11116. vDSP_vsadd(SM, 1, &max, SM, 1, Mup);
  11117. vvexpf(SM, SM, &Mup);
  11118. ggml_vec_sum_f32(Mup, &sum, SM);
  11119. #else
  11120. uint16_t scvt[GGML_SOFT_MAX_UNROLL];
  11121. ggml_float sump[GGML_SOFT_MAX_UNROLL] = { 0.0 };
  11122. for (int i = 0; i < Mup; i += GGML_SOFT_MAX_UNROLL) {
  11123. float * SR = S + i;
  11124. float * SW = SM + i;
  11125. for (int j = 0; j < GGML_SOFT_MAX_UNROLL; ++j) {
  11126. if (SR[j] == -INFINITY) {
  11127. SW[j] = 0.0f;
  11128. } else {
  11129. ggml_fp16_t s = GGML_FP32_TO_FP16(SR[j] - max);
  11130. memcpy(&scvt[j], &s, sizeof(uint16_t));
  11131. const float val = GGML_FP16_TO_FP32(table_exp_f16[scvt[j]]);
  11132. sump[j] += (ggml_float)val;
  11133. SW[j] = val;
  11134. }
  11135. }
  11136. }
  11137. for (int i = 0; i < GGML_SOFT_MAX_UNROLL; i++) {
  11138. sum += sump[i];
  11139. }
  11140. #endif
  11141. }
  11142. assert(sum > 0.0);
  11143. sum = 1.0/sum;
  11144. ggml_vec_scale_f32(M, SM, sum);
  11145. }
  11146. // step-by-step explanation
  11147. {
  11148. // forward-process shape grads from backward process
  11149. // parallel_for iq2,iq3:
  11150. // k[:D,:M,:,:] [D,M,:,:] grad[k][:D,:M,iq2,iq3] += grad[kcur]
  11151. // q[:D,:N,:,:] [D,N,:,:] grad[q][:D,iq1,iq2,iq3] += grad[qcur]
  11152. // v[:M,:D,:,:] [M,D,:,:] grad[v][:M,:D,iq2,iq3] += grad[vcur]
  11153. // for iq1:
  11154. // kcur = k[:D,:M,iq2,iq3] [D,M,1,1] grad[kcur] = grad[S1].T @ qcur
  11155. // qcur = q[:D,iq1,iq2,iq3] [D,1,1,1] grad[qcur] = grad[S1] @ kcur
  11156. // vcur = v[:M,:D,iq2,iq3] [M,D,1,1] grad[vcur] = grad[S5].T @ S4
  11157. // S0 = -Inf [D,1,1,1]
  11158. // ~S1[i] = dot(kcur[:D,i], qcur)
  11159. // S1 = qcur @ kcur.T [M,1,1,1] grad[S1] = grad[S2] * scale
  11160. // S2 = S1 * scale [M,1,1,1] grad[S2] = diag_mask_zero(grad[S3], P)
  11161. // S3 = diag_mask_inf(S2, P) [M,1,1,1] grad[S3] = S4 * (grad[S4] - dot(S4, grad[S4]))
  11162. // S4 = softmax(S3) [M,1,1,1] grad[S4] = grad[S5] @ vcur
  11163. // ~S5[i] = dot(vcur[:,i], S4)
  11164. // S5 = S4 @ vcur.T [D,1,1,1] grad[S5] = d[:D,iq1,iq2,iq3]
  11165. // ~dst[i,iq1,iq2,iq3] = S5[i] ^
  11166. // dst[:D,iq1,iq2,iq3] = S5 | grad[dst[:D,iq1,iq2,iq3]] = d[:D,iq1,iq2,iq3]
  11167. // dst backward-/ grad[dst] = d
  11168. //
  11169. // output gradients with their dependencies:
  11170. //
  11171. // grad[kcur] = grad[S1].T @ qcur
  11172. // grad[S1] = diag_mask_zero(grad[S3], P) * scale
  11173. // grad[S3] = S4 * (grad[S4] - dot(S4, grad[S4]))
  11174. // grad[S4] = grad[S5] @ vcur
  11175. // grad[S4] = d[:D,iq1,iq2,iq3] @ vcur
  11176. // grad[qcur] = grad[S1] @ kcur
  11177. // grad[vcur] = grad[S5].T @ S4
  11178. // grad[vcur] = d[:D,iq1,iq2,iq3].T @ S4
  11179. //
  11180. // in post-order:
  11181. //
  11182. // S1 = qcur @ kcur.T
  11183. // S2 = S1 * scale
  11184. // S3 = diag_mask_inf(S2, P)
  11185. // S4 = softmax(S3)
  11186. // grad[S4] = d[:D,iq1,iq2,iq3] @ vcur
  11187. // grad[S3] = S4 * (grad[S4] - dot(S4, grad[S4]))
  11188. // grad[S1] = diag_mask_zero(grad[S3], P) * scale
  11189. // grad[qcur] = grad[S1] @ kcur
  11190. // grad[kcur] = grad[S1].T @ qcur
  11191. // grad[vcur] = d[:D,iq1,iq2,iq3].T @ S4
  11192. //
  11193. // using less variables (SM=S4):
  11194. //
  11195. // S = diag_mask_inf(qcur @ kcur.T * scale, P)
  11196. // SM = softmax(S)
  11197. // S = d[:D,iq1,iq2,iq3] @ vcur
  11198. // dot_SM_gradSM = dot(SM, S)
  11199. // S = SM * (S - dot(SM, S))
  11200. // S = diag_mask_zero(S, P) * scale
  11201. //
  11202. // grad[q][:D,iq1,iq2,iq3] += S @ kcur
  11203. // grad[k][:D,:M,iq2,iq3] += S.T @ qcur
  11204. // grad[v][:M,:D,iq2,iq3] += d[:D,iq1,iq2,iq3].T @ SM
  11205. }
  11206. // S = gradSM = d[:D,iq1,iq2,iq3] @ vcur
  11207. // S = d[:D,iq1,iq2,iq3] @ vcur
  11208. // S[:M] += vcur[:M,ic] * d[ic,iq1,iq2,iq3]
  11209. ggml_vec_set_f32(M, S, 0);
  11210. for (int64_t ic = 0; ic < D; ++ic) {
  11211. // dst indices
  11212. const int i1 = iq1;
  11213. const int i2 = iq2;
  11214. const int i3 = iq3;
  11215. ggml_vec_mad_f32(M,
  11216. S,
  11217. (float *) ((char *) v->data + ( ic*nbv1 + i2*nbv2 + i3*nbv3)),
  11218. *(float *) ((char *) d->data + (ic*nbd0 + i1*nbd1 + i2*nbd2 + i3*nbd3)));
  11219. }
  11220. // S = SM * (S - dot(SM, S))
  11221. float dot_SM_gradSM = 0;
  11222. ggml_vec_dot_f32 (M, &dot_SM_gradSM, SM, S);
  11223. ggml_vec_acc1_f32(M, S, -dot_SM_gradSM);
  11224. ggml_vec_mul_f32 (M, S, S, SM);
  11225. // S = diag_mask_zero(S, P) * scale
  11226. if (masked) {
  11227. // for (int64_t i = P + iq1 + 1; i < M; i++) {
  11228. // S[i] = 0;
  11229. // }
  11230. for (int64_t i = P; i < M; i++) {
  11231. if (i > P + iq1) {
  11232. S[i] = 0;
  11233. }
  11234. }
  11235. }
  11236. ggml_vec_scale_f32(M, S, scale);
  11237. void * grad_q = (char *) dst->data;
  11238. void * grad_k = (char *) dst->data + nb0*D*N*neq2*neq3;
  11239. void * grad_v = (char *) dst->data + nb0*D*N*neq2*neq3 + nb0*D*M*neq2*neq3;
  11240. const size_t nbgq1 = nb0*neq0;
  11241. const size_t nbgq2 = nb0*neq0*neq1;
  11242. const size_t nbgq3 = nb0*neq0*neq1*neq2;
  11243. const size_t nbgk1 = nb0*nek0;
  11244. const size_t nbgk2 = nb0*nek0*nek1;
  11245. const size_t nbgk3 = nb0*nek0*nek1*neq2;
  11246. const size_t nbgv1 = nb0*nev0;
  11247. const size_t nbgv2 = nb0*nev0*nev1;
  11248. const size_t nbgv3 = nb0*nev0*nev1*neq2;
  11249. // S shape [M,1]
  11250. // SM shape [M,1]
  11251. // kcur shape [D,M]
  11252. // qcur shape [D,1]
  11253. // vcur shape [M,D]
  11254. //
  11255. // grad[q][:D,iq1,iq2,iq3] += S @ kcur
  11256. // grad[q][:D,iq1,iq2,iq3] += shape[M,1] @ shape[D,M]
  11257. // grad[q][:D,iq1,iq2,iq3] += S[ic] * kcur[:D,ic]
  11258. //
  11259. //// grad[q][ic,iq1,iq2,iq3] += dot(kcur[:,ic],S.T)
  11260. //// grad[q][ic,iq1,iq2,iq3] += dot(k[:D,ic,iq2,iq3],S.T)
  11261. for (int64_t ic = 0; ic < M; ++ic) {
  11262. // dst indices
  11263. const int i1 = iq1;
  11264. const int i2 = iq2;
  11265. const int i3 = iq3;
  11266. ggml_vec_mad_f32(D,
  11267. (float *) ((char *) grad_q + (i1*nbgq1 + i2*nbgq2 + i3*nbgq3)),
  11268. (float *) ((char *) k->data + (ic*nbk1 + i2*nbk2 + i3*nbk3)),
  11269. S[ic]);
  11270. }
  11271. // grad[k][:D,:M,iq2,iq3] += S.T @ qcur
  11272. // grad[k][:D,ic,iq2,iq3] += S.T[0,ic] * qcur[:D,0]
  11273. // grad[k][:D,ic,iq2,iq3] += S[ic] * qcur[:D,0]
  11274. for (int64_t ic = 0; ic < M; ++ic) {
  11275. // dst indices
  11276. const int i1 = iq1;
  11277. const int i2 = iq2;
  11278. const int i3 = iq3;
  11279. // ggml_vec_set_f32(D,
  11280. // (float *) ((char *) grad_k + (ic*nbgk1 + i2*nbgk2 + i3*nbgk3)),
  11281. // 0);
  11282. ggml_vec_mad_f32(D,
  11283. (float *) ((char *) grad_k + (ic*nbgk1 + i2*nbgk2 + i3*nbgk3)),
  11284. (float *) ((char *) q->data + (i1*nbq1 + i2*nbq2 + i3*nbq3)),
  11285. S[ic]);
  11286. }
  11287. // grad[v][:M,:D,iq2,iq3] += d[:D,iq1,iq2,iq3].T @ SM
  11288. // grad[v][:M,ic,iq2,iq3] += d[:D,iq1,iq2,iq3].T[0,ic] * SM[:M]
  11289. // grad[v][:M,ic,iq2,iq3] += d[ic,iq1,iq2,iq3] * SM[:M]
  11290. for (int64_t ic = 0; ic < D; ++ic) {
  11291. // dst indices
  11292. const int i1 = iq1;
  11293. const int i2 = iq2;
  11294. const int i3 = iq3;
  11295. // ggml_vec_set_f32(M,
  11296. // (float *) ((char *) grad_v + ( ic*nbgv1 + i2*nbgv2 + i3*nbgv3)),
  11297. // 0);
  11298. ggml_vec_mad_f32(M,
  11299. (float *) ((char *) grad_v + ( ic*nbgv1 + i2*nbgv2 + i3*nbgv3)),
  11300. SM,
  11301. *(float *) ((char *) d->data + (ic*nbd0 + i1*nbd1 + i2*nbd2 + i3*nbd3)));
  11302. }
  11303. }
  11304. }
  11305. }
  11306. static void ggml_compute_forward_flash_attn_back(
  11307. const struct ggml_compute_params * params,
  11308. const struct ggml_tensor * q,
  11309. const struct ggml_tensor * k,
  11310. const struct ggml_tensor * v,
  11311. const struct ggml_tensor * d,
  11312. const bool masked,
  11313. struct ggml_tensor * dst) {
  11314. switch (q->type) {
  11315. case GGML_TYPE_F32:
  11316. {
  11317. ggml_compute_forward_flash_attn_back_f32(params, q, k, v, d, masked, dst);
  11318. } break;
  11319. default:
  11320. {
  11321. GGML_ASSERT(false);
  11322. } break;
  11323. }
  11324. }
  11325. // ggml_compute_forward_win_part
  11326. static void ggml_compute_forward_win_part_f32(
  11327. const struct ggml_compute_params * params,
  11328. const struct ggml_tensor * src0,
  11329. const struct ggml_tensor * opt0,
  11330. struct ggml_tensor * dst) {
  11331. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  11332. return;
  11333. }
  11334. GGML_TENSOR_LOCALS(int64_t, ne0, src0, ne);
  11335. GGML_TENSOR_LOCALS(int64_t, ne, dst, ne);
  11336. const int32_t nep0 = ((const int32_t *)(opt0->data))[0];
  11337. const int32_t nep1 = ((const int32_t *)(opt0->data))[1];
  11338. const int32_t w = ((const int32_t *)(opt0->data))[2];
  11339. assert(ne00 == ne0);
  11340. assert(ne3 == nep0*nep1);
  11341. // TODO: optimize / multi-thread
  11342. for (int py = 0; py < nep1; ++py) {
  11343. for (int px = 0; px < nep0; ++px) {
  11344. const int64_t i3 = py*nep0 + px;
  11345. for (int64_t i2 = 0; i2 < ne2; ++i2) {
  11346. for (int64_t i1 = 0; i1 < ne1; ++i1) {
  11347. for (int64_t i0 = 0; i0 < ne0; ++i0) {
  11348. const int64_t i02 = py*w + i2;
  11349. const int64_t i01 = px*w + i1;
  11350. const int64_t i00 = i0;
  11351. const int64_t i = i3*ne2*ne1*ne0 + i2*ne1*ne0 + i1*ne0 + i0;
  11352. const int64_t j = i02*ne01*ne00 + i01*ne00 + i00;
  11353. if (py*w + i2 >= ne02 || px*w + i1 >= ne01) {
  11354. ((float *) dst->data)[i] = 0.0f;
  11355. } else {
  11356. ((float *) dst->data)[i] = ((float *) src0->data)[j];
  11357. }
  11358. }
  11359. }
  11360. }
  11361. }
  11362. }
  11363. }
  11364. static void ggml_compute_forward_win_part(
  11365. const struct ggml_compute_params * params,
  11366. const struct ggml_tensor * src0,
  11367. const struct ggml_tensor * opt0,
  11368. struct ggml_tensor * dst) {
  11369. switch (src0->type) {
  11370. case GGML_TYPE_F32:
  11371. {
  11372. ggml_compute_forward_win_part_f32(params, src0, opt0, dst);
  11373. } break;
  11374. default:
  11375. {
  11376. GGML_ASSERT(false);
  11377. } break;
  11378. }
  11379. }
  11380. // ggml_compute_forward_win_unpart
  11381. static void ggml_compute_forward_win_unpart_f32(
  11382. const struct ggml_compute_params * params,
  11383. const struct ggml_tensor * src0,
  11384. const struct ggml_tensor * opt0,
  11385. struct ggml_tensor * dst) {
  11386. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  11387. return;
  11388. }
  11389. GGML_TENSOR_LOCALS(int64_t, ne0, src0, ne);
  11390. GGML_TENSOR_LOCALS(int64_t, ne, dst, ne);
  11391. const int32_t w = ((const int32_t *)(opt0->data))[0];
  11392. // padding
  11393. const int px = (w - ne1%w)%w;
  11394. //const int py = (w - ne2%w)%w;
  11395. const int npx = (px + ne1)/w;
  11396. //const int npy = (py + ne2)/w;
  11397. assert(ne0 == ne00);
  11398. // TODO: optimize / multi-thread
  11399. for (int64_t i2 = 0; i2 < ne2; ++i2) {
  11400. for (int64_t i1 = 0; i1 < ne1; ++i1) {
  11401. for (int64_t i0 = 0; i0 < ne0; ++i0) {
  11402. const int ip2 = i2/w;
  11403. const int ip1 = i1/w;
  11404. const int64_t i02 = i2%w;
  11405. const int64_t i01 = i1%w;
  11406. const int64_t i00 = i0;
  11407. const int64_t i = (ip2*npx + ip1)*ne02*ne01*ne00 + i02*ne01*ne00 + i01*ne00 + i00;
  11408. const int64_t j = i2*ne1*ne0 + i1*ne0 + i0;
  11409. ((float *) dst->data)[j] = ((float *) src0->data)[i];
  11410. }
  11411. }
  11412. }
  11413. }
  11414. static void ggml_compute_forward_win_unpart(
  11415. const struct ggml_compute_params * params,
  11416. const struct ggml_tensor * src0,
  11417. const struct ggml_tensor * opt0,
  11418. struct ggml_tensor * dst) {
  11419. switch (src0->type) {
  11420. case GGML_TYPE_F32:
  11421. {
  11422. ggml_compute_forward_win_unpart_f32(params, src0, opt0, dst);
  11423. } break;
  11424. default:
  11425. {
  11426. GGML_ASSERT(false);
  11427. } break;
  11428. }
  11429. }
  11430. // ggml_compute_forward_map_unary
  11431. static void ggml_compute_forward_map_unary_f32(
  11432. const struct ggml_compute_params * params,
  11433. const struct ggml_tensor * src0,
  11434. struct ggml_tensor * dst,
  11435. const ggml_unary_op_f32_t fun) {
  11436. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  11437. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  11438. return;
  11439. }
  11440. const int n = ggml_nrows(src0);
  11441. const int nc = src0->ne[0];
  11442. assert( dst->nb[0] == sizeof(float));
  11443. assert(src0->nb[0] == sizeof(float));
  11444. for (int i = 0; i < n; i++) {
  11445. fun(nc,
  11446. (float *) ((char *) dst->data + i*( dst->nb[1])),
  11447. (float *) ((char *) src0->data + i*(src0->nb[1])));
  11448. }
  11449. }
  11450. static void ggml_compute_forward_map_unary(
  11451. const struct ggml_compute_params * params,
  11452. const struct ggml_tensor * src0,
  11453. struct ggml_tensor * dst,
  11454. const ggml_unary_op_f32_t fun) {
  11455. switch (src0->type) {
  11456. case GGML_TYPE_F32:
  11457. {
  11458. ggml_compute_forward_map_unary_f32(params, src0, dst, fun);
  11459. } break;
  11460. default:
  11461. {
  11462. GGML_ASSERT(false);
  11463. } break;
  11464. }
  11465. }
  11466. // ggml_compute_forward_map_binary
  11467. static void ggml_compute_forward_map_binary_f32(
  11468. const struct ggml_compute_params * params,
  11469. const struct ggml_tensor * src0,
  11470. const struct ggml_tensor * src1,
  11471. struct ggml_tensor * dst,
  11472. const ggml_binary_op_f32_t fun) {
  11473. assert(params->ith == 0);
  11474. assert(ggml_are_same_shape(src0, src1) && ggml_are_same_shape(src0, dst));
  11475. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  11476. return;
  11477. }
  11478. const int n = ggml_nrows(src0);
  11479. const int nc = src0->ne[0];
  11480. assert( dst->nb[0] == sizeof(float));
  11481. assert(src0->nb[0] == sizeof(float));
  11482. assert(src1->nb[0] == sizeof(float));
  11483. for (int i = 0; i < n; i++) {
  11484. fun(nc,
  11485. (float *) ((char *) dst->data + i*( dst->nb[1])),
  11486. (float *) ((char *) src0->data + i*(src0->nb[1])),
  11487. (float *) ((char *) src1->data + i*(src1->nb[1])));
  11488. }
  11489. }
  11490. static void ggml_compute_forward_map_binary(
  11491. const struct ggml_compute_params * params,
  11492. const struct ggml_tensor * src0,
  11493. const struct ggml_tensor * src1,
  11494. struct ggml_tensor * dst,
  11495. const ggml_binary_op_f32_t fun) {
  11496. switch (src0->type) {
  11497. case GGML_TYPE_F32:
  11498. {
  11499. ggml_compute_forward_map_binary_f32(params, src0, src1, dst, fun);
  11500. } break;
  11501. default:
  11502. {
  11503. GGML_ASSERT(false);
  11504. } break;
  11505. }
  11506. }
  11507. // ggml_compute_forward_map_custom1
  11508. static void ggml_compute_forward_map_custom1_f32(
  11509. const struct ggml_compute_params * params,
  11510. const struct ggml_tensor * a,
  11511. struct ggml_tensor * dst,
  11512. const ggml_custom1_op_f32_t fun) {
  11513. assert(params->ith == 0);
  11514. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  11515. return;
  11516. }
  11517. fun(dst, a);
  11518. }
  11519. static void ggml_compute_forward_map_custom1(
  11520. const struct ggml_compute_params * params,
  11521. const struct ggml_tensor * a,
  11522. struct ggml_tensor * dst,
  11523. const ggml_custom1_op_f32_t fun) {
  11524. switch (a->type) {
  11525. case GGML_TYPE_F32:
  11526. {
  11527. ggml_compute_forward_map_custom1_f32(params, a, dst, fun);
  11528. } break;
  11529. default:
  11530. {
  11531. GGML_ASSERT(false);
  11532. } break;
  11533. }
  11534. }
  11535. // ggml_compute_forward_map_custom2
  11536. static void ggml_compute_forward_map_custom2_f32(
  11537. const struct ggml_compute_params * params,
  11538. const struct ggml_tensor * a,
  11539. const struct ggml_tensor * b,
  11540. struct ggml_tensor * dst,
  11541. const ggml_custom2_op_f32_t fun) {
  11542. assert(params->ith == 0);
  11543. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  11544. return;
  11545. }
  11546. fun(dst, a, b);
  11547. }
  11548. static void ggml_compute_forward_map_custom2(
  11549. const struct ggml_compute_params * params,
  11550. const struct ggml_tensor * a,
  11551. const struct ggml_tensor * b,
  11552. struct ggml_tensor * dst,
  11553. const ggml_custom2_op_f32_t fun) {
  11554. switch (a->type) {
  11555. case GGML_TYPE_F32:
  11556. {
  11557. ggml_compute_forward_map_custom2_f32(params, a, b, dst, fun);
  11558. } break;
  11559. default:
  11560. {
  11561. GGML_ASSERT(false);
  11562. } break;
  11563. }
  11564. }
  11565. // ggml_compute_forward_map_custom3
  11566. static void ggml_compute_forward_map_custom3_f32(
  11567. const struct ggml_compute_params * params,
  11568. const struct ggml_tensor * a,
  11569. const struct ggml_tensor * b,
  11570. const struct ggml_tensor * c,
  11571. struct ggml_tensor * dst,
  11572. const ggml_custom3_op_f32_t fun) {
  11573. assert(params->ith == 0);
  11574. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  11575. return;
  11576. }
  11577. fun(dst, a, b, c);
  11578. }
  11579. static void ggml_compute_forward_map_custom3(
  11580. const struct ggml_compute_params * params,
  11581. const struct ggml_tensor * a,
  11582. const struct ggml_tensor * b,
  11583. const struct ggml_tensor * c,
  11584. struct ggml_tensor * dst,
  11585. const ggml_custom3_op_f32_t fun) {
  11586. switch (a->type) {
  11587. case GGML_TYPE_F32:
  11588. {
  11589. ggml_compute_forward_map_custom3_f32(params, a, b, c, dst, fun);
  11590. } break;
  11591. default:
  11592. {
  11593. GGML_ASSERT(false);
  11594. } break;
  11595. }
  11596. }
  11597. // ggml_compute_forward_cross_entropy_loss
  11598. static void ggml_compute_forward_cross_entropy_loss_f32(
  11599. const struct ggml_compute_params * params,
  11600. const struct ggml_tensor * src0,
  11601. const struct ggml_tensor * src1,
  11602. struct ggml_tensor * dst) {
  11603. GGML_ASSERT(ggml_is_contiguous(src0));
  11604. GGML_ASSERT(ggml_is_contiguous(src1));
  11605. GGML_ASSERT(ggml_is_scalar(dst));
  11606. GGML_ASSERT(ggml_are_same_shape(src0, src1));
  11607. const int ith = params->ith;
  11608. const int nth = params->nth;
  11609. float * sums = (float *) params->wdata;
  11610. // TODO: handle transposed/permuted matrices
  11611. const int nc = src0->ne[0];
  11612. const int nr = ggml_nrows(src0);
  11613. if (params->type == GGML_TASK_INIT) {
  11614. if (ith == 0) {
  11615. memset(sums, 0, sizeof(float) * (nth + nth * nc));
  11616. }
  11617. return;
  11618. }
  11619. if (params->type == GGML_TASK_FINALIZE) {
  11620. if (ith == 0) {
  11621. float * dp = (float *) dst->data;
  11622. ggml_vec_sum_f32(nth, dp, sums);
  11623. dp[0] *= -1.0f;
  11624. }
  11625. return;
  11626. }
  11627. const double eps = 1e-9;
  11628. // rows per thread
  11629. const int dr = (nr + nth - 1)/nth;
  11630. // row range for this thread
  11631. const int ir0 = dr*ith;
  11632. const int ir1 = MIN(ir0 + dr, nr);
  11633. for (int i1 = ir0; i1 < ir1; i1++) {
  11634. float * s0 = (float *)((char *) src0->data + i1*src0->nb[1]);
  11635. float * s1 = (float *)((char *) src1->data + i1*src1->nb[1]);
  11636. float * st = (float *) params->wdata + nth + ith*nc;
  11637. #ifndef NDEBUG
  11638. for (int i = 0; i < nc; ++i) {
  11639. //printf("p[%d] = %f\n", i, p[i]);
  11640. assert(!isnan(s0[i]));
  11641. assert(!isnan(s1[i]));
  11642. }
  11643. #endif
  11644. // soft_max
  11645. ggml_float sum = 0.0;
  11646. {
  11647. float max = -INFINITY;
  11648. ggml_vec_max_f32(nc, &max, s0);
  11649. uint16_t scvt;
  11650. for (int i = 0; i < nc; i++) {
  11651. if (s0[i] == -INFINITY) {
  11652. st[i] = 0.0f;
  11653. } else {
  11654. // const float val = (s0[i] == -INFINITY) ? 0.0 : exp(s0[i] - max);
  11655. ggml_fp16_t s = GGML_FP32_TO_FP16(s0[i] - max);
  11656. memcpy(&scvt, &s, sizeof(scvt));
  11657. const float val = GGML_FP16_TO_FP32(table_exp_f16[scvt]);
  11658. sum += (ggml_float)val;
  11659. st[i] = val;
  11660. }
  11661. }
  11662. assert(sum > 0.0);
  11663. // sum = 1.0/sum;
  11664. }
  11665. // avoid log(0) by rescaling from [0..1] to [eps..1]
  11666. sum = (1.0 - eps) / sum;
  11667. ggml_vec_scale_f32(nc, st, sum);
  11668. ggml_vec_add1_f32(nc, st, st, eps);
  11669. ggml_vec_log_f32(nc, st, st);
  11670. ggml_vec_mul_f32(nc, st, st, s1);
  11671. ggml_vec_sum_f32(nc, sums + ith, st);
  11672. #ifndef NDEBUG
  11673. for (int i = 0; i < nc; ++i) {
  11674. assert(!isnan(st[i]));
  11675. assert(!isinf(st[i]));
  11676. }
  11677. #endif
  11678. }
  11679. }
  11680. static void ggml_compute_forward_cross_entropy_loss(
  11681. const struct ggml_compute_params * params,
  11682. const struct ggml_tensor * src0,
  11683. const struct ggml_tensor * src1,
  11684. struct ggml_tensor * dst) {
  11685. switch (src0->type) {
  11686. case GGML_TYPE_F32:
  11687. {
  11688. ggml_compute_forward_cross_entropy_loss_f32(params, src0, src1, dst);
  11689. } break;
  11690. default:
  11691. {
  11692. GGML_ASSERT(false);
  11693. } break;
  11694. }
  11695. }
  11696. // ggml_compute_forward_cross_entropy_loss_back
  11697. static void ggml_compute_forward_cross_entropy_loss_back_f32(
  11698. const struct ggml_compute_params * params,
  11699. const struct ggml_tensor * src0,
  11700. const struct ggml_tensor * src1,
  11701. const struct ggml_tensor * opt0,
  11702. struct ggml_tensor * dst) {
  11703. GGML_ASSERT(ggml_is_contiguous(dst));
  11704. GGML_ASSERT(ggml_is_contiguous(src0));
  11705. GGML_ASSERT(ggml_is_contiguous(src1));
  11706. GGML_ASSERT(ggml_is_contiguous(opt0));
  11707. GGML_ASSERT(ggml_are_same_shape(src0, src1) && ggml_are_same_shape(src0, dst));
  11708. const int64_t ith = params->ith;
  11709. const int64_t nth = params->nth;
  11710. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  11711. return;
  11712. }
  11713. const float eps = 1e-9f;
  11714. // TODO: handle transposed/permuted matrices
  11715. const int64_t nc = src0->ne[0];
  11716. const int64_t nr = ggml_nrows(src0);
  11717. // rows per thread
  11718. const int64_t dr = (nr + nth - 1)/nth;
  11719. // row range for this thread
  11720. const int64_t ir0 = dr*ith;
  11721. const int64_t ir1 = MIN(ir0 + dr, nr);
  11722. float * d = (float *) opt0->data;
  11723. for (int64_t i1 = ir0; i1 < ir1; i1++) {
  11724. float * ds0 = (float *)((char *) dst->data + i1*dst->nb[1]);
  11725. float * s0 = (float *)((char *) src0->data + i1*src0->nb[1]);
  11726. float * s1 = (float *)((char *) src1->data + i1*src1->nb[1]);
  11727. float * sm = (float *) params->wdata + ith*nc;
  11728. #ifndef NDEBUG
  11729. for (int i = 0; i < nc; ++i) {
  11730. //printf("p[%d] = %f\n", i, p[i]);
  11731. assert(!isnan(s0[i]));
  11732. assert(!isnan(s1[i]));
  11733. }
  11734. #endif
  11735. // step by step explanation:
  11736. {
  11737. //float * sums = (float *) params->wdata;
  11738. // forward pass with annotated gradients from backward pass
  11739. // (built by going in reverse operation order, adding to gradients of current operation args)
  11740. // st0 = exp(s0-max(s0)) grad[st0] = grad[st1]*(1.0 - eps)/sum
  11741. // from softmax_back: grad[s0] = st1_k * (grad[st1]_k - dot(st1, grad[st1]))
  11742. // ggml_vec_scale_f32(nc, st, sum); // st1 = st0*/sum = softmax(s0) grad[st1] = grad[st2]*(1.0 - eps)
  11743. // ggml_vec_scale_f32(nc, st, (1.0f - eps)); // st2 = st1*(1.0 - eps) grad[st2] = grad[st3]
  11744. // ggml_vec_add1_f32(nc, st, st, eps); // st3 = st2 + eps grad[st3] = grad[st4]/st3
  11745. // ggml_vec_log_f32(nc, st, st); // st4 = log(st3) grad[st4] = grad[st5] * s1
  11746. // ggml_vec_mul_f32(nc, st, st, s1); // st5 = st4 * s1 grad[st5] = grad[sums[ith]]
  11747. // ggml_vec_sum_f32(nc, sums + ith, st); // sums[ith] = st5 grad[sums[ith]] = grad[cross_entropy_loss] = -grad[cel]
  11748. // substitute into grad[st1], because we can reuse softmax_back from this point on
  11749. // grad[st1] = -grad[cel]*s1*(1.0 - eps)/(eps + softmax(s0)*(1.0 - eps))
  11750. // postorder:
  11751. // grad[st1] := softmax(s0)
  11752. // grad[st1] := grad[st1]*(1.0 - eps)
  11753. // grad[st1] := grad[st1] + eps
  11754. // grad[st1] := s1 / grad[st1]
  11755. // grad[st1] := grad[st1]*(1.0-eps)*-grad[cel]
  11756. // src0 gradients by going through softmax_back
  11757. // grad[s0] = st1_k * (grad[st1]_k - dot(st1, grad[st1]))
  11758. // from softmax_back:
  11759. // dxk = yk * (dyk - dot(y, dy))
  11760. // dot_y_dy := dot(y, dy)
  11761. // dx := dy
  11762. // dx := dx - dot_y_dy
  11763. // dx := dx * y
  11764. // postorder:
  11765. // dot_st1_dst1 := dot(st1, grad[st1])
  11766. // grad[s0] := grad[st1]
  11767. // grad[s0] := grad[s0] - dot_st1_dst1
  11768. // grad[s0] := grad[s0] * st1
  11769. // prepend postorder from grad[st1] directly using grad[s0] as memory location, as we will grad[s0] := grad[st1]
  11770. // sm := softmax(s0)
  11771. // grad[s0] := sm*(1.0 - eps)
  11772. // grad[s0] := grad[s0] + eps
  11773. // grad[s0] := s1 / grad[s0]
  11774. // grad[s0] := grad[s0]*(1.0-eps)*-grad[cel]
  11775. // dot_st1_dst1 := dot(sm, grad[s0])
  11776. // grad[s0] := grad[s0] - dot_st1_dst1
  11777. // grad[s0] := grad[s0] * sm
  11778. }
  11779. // soft_max
  11780. ggml_float sum = 0.0;
  11781. {
  11782. float max = -INFINITY;
  11783. ggml_vec_max_f32(nc, &max, s0);
  11784. uint16_t scvt;
  11785. for (int i = 0; i < nc; i++) {
  11786. if (s0[i] == -INFINITY) {
  11787. sm[i] = 0.0f;
  11788. } else {
  11789. // const float val = (s0[i] == -INFINITY) ? 0.0 : exp(s0[i] - max);
  11790. ggml_fp16_t s = GGML_FP32_TO_FP16(s0[i] - max);
  11791. memcpy(&scvt, &s, sizeof(scvt));
  11792. const float val = GGML_FP16_TO_FP32(table_exp_f16[scvt]);
  11793. sum += (ggml_float)val;
  11794. sm[i] = val;
  11795. }
  11796. }
  11797. assert(sum > 0.0);
  11798. sum = 1.0/sum;
  11799. }
  11800. float dot_st1_dst1 = 0;
  11801. ggml_vec_scale_f32(nc, sm, sum);
  11802. ggml_vec_cpy_f32 (nc, ds0, sm);
  11803. ggml_vec_scale_f32(nc, ds0, (1.0f - eps));
  11804. ggml_vec_add1_f32 (nc, ds0, ds0, eps);
  11805. ggml_vec_div_f32 (nc, ds0, s1, ds0);
  11806. ggml_vec_scale_f32(nc, ds0, -(1.0f - eps)*d[0]);
  11807. ggml_vec_dot_f32 (nc, &dot_st1_dst1, sm, ds0);
  11808. ggml_vec_acc1_f32 (nc, ds0, -dot_st1_dst1);
  11809. ggml_vec_mul_f32 (nc, ds0, ds0, sm);
  11810. #ifndef NDEBUG
  11811. for (int i = 0; i < nc; ++i) {
  11812. assert(!isnan(sm[i]));
  11813. assert(!isinf(sm[i]));
  11814. assert(!isnan(ds0[i]));
  11815. assert(!isinf(ds0[i]));
  11816. }
  11817. #endif
  11818. }
  11819. }
  11820. static void ggml_compute_forward_cross_entropy_loss_back(
  11821. const struct ggml_compute_params * params,
  11822. const struct ggml_tensor * src0,
  11823. const struct ggml_tensor * src1,
  11824. const struct ggml_tensor * opt0,
  11825. struct ggml_tensor * dst) {
  11826. switch (src0->type) {
  11827. case GGML_TYPE_F32:
  11828. {
  11829. ggml_compute_forward_cross_entropy_loss_back_f32(params, src0, src1, opt0, dst);
  11830. } break;
  11831. default:
  11832. {
  11833. GGML_ASSERT(false);
  11834. } break;
  11835. }
  11836. }
  11837. /////////////////////////////////
  11838. static void ggml_compute_forward(struct ggml_compute_params * params, struct ggml_tensor * tensor) {
  11839. GGML_ASSERT(params);
  11840. #ifdef GGML_USE_CUBLAS
  11841. bool skip_cpu = ggml_cuda_compute_forward(params, tensor);
  11842. if (skip_cpu) {
  11843. return;
  11844. }
  11845. GGML_ASSERT(tensor->src[0] == NULL || tensor->src[0]->backend == GGML_BACKEND_CPU);
  11846. GGML_ASSERT(tensor->src[1] == NULL || tensor->src[1]->backend == GGML_BACKEND_CPU);
  11847. #endif // GGML_USE_CUBLAS
  11848. switch (tensor->op) {
  11849. case GGML_OP_DUP:
  11850. {
  11851. ggml_compute_forward_dup(params, tensor->src[0], tensor);
  11852. } break;
  11853. case GGML_OP_ADD:
  11854. {
  11855. ggml_compute_forward_add(params, tensor->src[0], tensor->src[1], tensor);
  11856. } break;
  11857. case GGML_OP_ADD1:
  11858. {
  11859. ggml_compute_forward_add1(params, tensor->src[0], tensor->src[1], tensor);
  11860. } break;
  11861. case GGML_OP_ACC:
  11862. {
  11863. ggml_compute_forward_acc(params, tensor->src[0], tensor->src[1], tensor->src[2], tensor);
  11864. } break;
  11865. case GGML_OP_SUB:
  11866. {
  11867. ggml_compute_forward_sub(params, tensor->src[0], tensor->src[1], tensor);
  11868. } break;
  11869. case GGML_OP_MUL:
  11870. {
  11871. ggml_compute_forward_mul(params, tensor->src[0], tensor->src[1], tensor);
  11872. } break;
  11873. case GGML_OP_DIV:
  11874. {
  11875. ggml_compute_forward_div(params, tensor->src[0], tensor->src[1], tensor);
  11876. } break;
  11877. case GGML_OP_SQR:
  11878. {
  11879. ggml_compute_forward_sqr(params, tensor->src[0], tensor);
  11880. } break;
  11881. case GGML_OP_SQRT:
  11882. {
  11883. ggml_compute_forward_sqrt(params, tensor->src[0], tensor);
  11884. } break;
  11885. case GGML_OP_LOG:
  11886. {
  11887. ggml_compute_forward_log(params, tensor->src[0], tensor);
  11888. } break;
  11889. case GGML_OP_SUM:
  11890. {
  11891. ggml_compute_forward_sum(params, tensor->src[0], tensor);
  11892. } break;
  11893. case GGML_OP_SUM_ROWS:
  11894. {
  11895. ggml_compute_forward_sum_rows(params, tensor->src[0], tensor);
  11896. } break;
  11897. case GGML_OP_MEAN:
  11898. {
  11899. ggml_compute_forward_mean(params, tensor->src[0], tensor);
  11900. } break;
  11901. case GGML_OP_ARGMAX:
  11902. {
  11903. ggml_compute_forward_argmax(params, tensor->src[0], tensor);
  11904. } break;
  11905. case GGML_OP_REPEAT:
  11906. {
  11907. ggml_compute_forward_repeat(params, tensor->src[0], tensor);
  11908. } break;
  11909. case GGML_OP_REPEAT_BACK:
  11910. {
  11911. ggml_compute_forward_repeat_back(params, tensor->src[0], tensor);
  11912. } break;
  11913. case GGML_OP_ABS:
  11914. {
  11915. ggml_compute_forward_abs(params, tensor->src[0], tensor);
  11916. } break;
  11917. case GGML_OP_SGN:
  11918. {
  11919. ggml_compute_forward_sgn(params, tensor->src[0], tensor);
  11920. } break;
  11921. case GGML_OP_NEG:
  11922. {
  11923. ggml_compute_forward_neg(params, tensor->src[0], tensor);
  11924. } break;
  11925. case GGML_OP_STEP:
  11926. {
  11927. ggml_compute_forward_step(params, tensor->src[0], tensor);
  11928. } break;
  11929. case GGML_OP_TANH:
  11930. {
  11931. ggml_compute_forward_tanh(params, tensor->src[0], tensor);
  11932. } break;
  11933. case GGML_OP_ELU:
  11934. {
  11935. ggml_compute_forward_elu(params, tensor->src[0], tensor);
  11936. } break;
  11937. case GGML_OP_RELU:
  11938. {
  11939. ggml_compute_forward_relu(params, tensor->src[0], tensor);
  11940. } break;
  11941. case GGML_OP_GELU:
  11942. {
  11943. ggml_compute_forward_gelu(params, tensor->src[0], tensor);
  11944. } break;
  11945. case GGML_OP_GELU_QUICK:
  11946. {
  11947. ggml_compute_forward_gelu_quick(params, tensor->src[0], tensor);
  11948. } break;
  11949. case GGML_OP_SILU:
  11950. {
  11951. ggml_compute_forward_silu(params, tensor->src[0], tensor);
  11952. } break;
  11953. case GGML_OP_SILU_BACK:
  11954. {
  11955. ggml_compute_forward_silu_back(params, tensor->src[0], tensor->src[1], tensor);
  11956. } break;
  11957. case GGML_OP_NORM:
  11958. {
  11959. ggml_compute_forward_norm(params, tensor->src[0], tensor);
  11960. } break;
  11961. case GGML_OP_RMS_NORM:
  11962. {
  11963. ggml_compute_forward_rms_norm(params, tensor->src[0], tensor);
  11964. } break;
  11965. case GGML_OP_RMS_NORM_BACK:
  11966. {
  11967. ggml_compute_forward_rms_norm_back(params, tensor->src[0], tensor->src[1], tensor);
  11968. } break;
  11969. case GGML_OP_MUL_MAT:
  11970. {
  11971. ggml_compute_forward_mul_mat(params, tensor->src[0], tensor->src[1], tensor);
  11972. } break;
  11973. case GGML_OP_OUT_PROD:
  11974. {
  11975. ggml_compute_forward_out_prod(params, tensor->src[0], tensor->src[1], tensor);
  11976. } break;
  11977. case GGML_OP_SCALE:
  11978. {
  11979. ggml_compute_forward_scale(params, tensor->src[0], tensor->src[1], tensor);
  11980. } break;
  11981. case GGML_OP_SET:
  11982. {
  11983. ggml_compute_forward_set(params, tensor->src[0], tensor->src[1], tensor->src[2], tensor);
  11984. } break;
  11985. case GGML_OP_CPY:
  11986. {
  11987. ggml_compute_forward_cpy(params, tensor->src[0], tensor);
  11988. } break;
  11989. case GGML_OP_CONT:
  11990. {
  11991. ggml_compute_forward_cont(params, tensor->src[0], tensor);
  11992. } break;
  11993. case GGML_OP_RESHAPE:
  11994. {
  11995. ggml_compute_forward_reshape(params, tensor->src[0], tensor);
  11996. } break;
  11997. case GGML_OP_VIEW:
  11998. {
  11999. ggml_compute_forward_view(params, tensor->src[0]);
  12000. } break;
  12001. case GGML_OP_PERMUTE:
  12002. {
  12003. ggml_compute_forward_permute(params, tensor->src[0]);
  12004. } break;
  12005. case GGML_OP_TRANSPOSE:
  12006. {
  12007. ggml_compute_forward_transpose(params, tensor->src[0]);
  12008. } break;
  12009. case GGML_OP_GET_ROWS:
  12010. {
  12011. ggml_compute_forward_get_rows(params, tensor->src[0], tensor->src[1], tensor);
  12012. } break;
  12013. case GGML_OP_GET_ROWS_BACK:
  12014. {
  12015. ggml_compute_forward_get_rows_back(params, tensor->src[0], tensor->src[1], tensor->src[2], tensor);
  12016. } break;
  12017. case GGML_OP_DIAG:
  12018. {
  12019. ggml_compute_forward_diag(params, tensor->src[0], tensor);
  12020. } break;
  12021. case GGML_OP_DIAG_MASK_INF:
  12022. {
  12023. ggml_compute_forward_diag_mask_inf(params, tensor->src[0], tensor->src[1], tensor);
  12024. } break;
  12025. case GGML_OP_DIAG_MASK_ZERO:
  12026. {
  12027. ggml_compute_forward_diag_mask_zero(params, tensor->src[0], tensor->src[1], tensor);
  12028. } break;
  12029. case GGML_OP_SOFT_MAX:
  12030. {
  12031. ggml_compute_forward_soft_max(params, tensor->src[0], tensor);
  12032. } break;
  12033. case GGML_OP_SOFT_MAX_BACK:
  12034. {
  12035. ggml_compute_forward_soft_max_back(params, tensor->src[0], tensor->src[1], tensor);
  12036. } break;
  12037. case GGML_OP_ROPE:
  12038. {
  12039. ggml_compute_forward_rope(params, tensor->src[0], tensor->src[1], tensor);
  12040. } break;
  12041. case GGML_OP_ROPE_BACK:
  12042. {
  12043. ggml_compute_forward_rope_back(params, tensor->src[0], tensor->src[1], tensor);
  12044. } break;
  12045. case GGML_OP_ALIBI:
  12046. {
  12047. ggml_compute_forward_alibi(params, tensor->src[0], tensor->src[1], tensor);
  12048. } break;
  12049. case GGML_OP_CLAMP:
  12050. {
  12051. ggml_compute_forward_clamp(params, tensor->src[0], tensor->src[1], tensor);
  12052. } break;
  12053. case GGML_OP_CONV_1D:
  12054. {
  12055. ggml_compute_forward_conv_1d(params, tensor->src[0], tensor->src[1], tensor->src[2], tensor);
  12056. } break;
  12057. case GGML_OP_CONV_2D:
  12058. {
  12059. ggml_compute_forward_conv_2d(params, tensor->src[0], tensor->src[1], tensor->src[2], tensor);
  12060. } break;
  12061. case GGML_OP_FLASH_ATTN:
  12062. {
  12063. const int32_t t = ggml_get_i32_1d(tensor->src[3], 0);
  12064. GGML_ASSERT(t == 0 || t == 1);
  12065. const bool masked = t != 0;
  12066. ggml_compute_forward_flash_attn(params, tensor->src[0], tensor->src[1], tensor->src[2], masked, tensor);
  12067. } break;
  12068. case GGML_OP_FLASH_FF:
  12069. {
  12070. ggml_compute_forward_flash_ff(params, tensor->src[0], tensor->src[1], tensor->src[2], tensor->src[3], tensor->src[4], tensor);
  12071. } break;
  12072. case GGML_OP_FLASH_ATTN_BACK:
  12073. {
  12074. int32_t t = ggml_get_i32_1d(tensor->src[4], 0);
  12075. GGML_ASSERT(t == 0 || t == 1);
  12076. bool masked = t != 0;
  12077. ggml_compute_forward_flash_attn_back(params, tensor->src[0], tensor->src[1], tensor->src[2], tensor->src[3], masked, tensor);
  12078. } break;
  12079. case GGML_OP_WIN_PART:
  12080. {
  12081. ggml_compute_forward_win_part(params, tensor->src[0], tensor->src[2], tensor);
  12082. } break;
  12083. case GGML_OP_WIN_UNPART:
  12084. {
  12085. ggml_compute_forward_win_unpart(params, tensor->src[0], tensor->src[2], tensor);
  12086. } break;
  12087. case GGML_OP_MAP_UNARY:
  12088. {
  12089. const ggml_unary_op_f32_t fun = *((ggml_unary_op_f32_t *)tensor->src[2]->data);
  12090. ggml_compute_forward_map_unary(params, tensor->src[0], tensor, fun);
  12091. }
  12092. break;
  12093. case GGML_OP_MAP_BINARY:
  12094. {
  12095. const ggml_binary_op_f32_t fun = *((ggml_binary_op_f32_t *)tensor->src[2]->data);
  12096. ggml_compute_forward_map_binary(params, tensor->src[0], tensor->src[1], tensor, fun);
  12097. }
  12098. break;
  12099. case GGML_OP_MAP_CUSTOM1:
  12100. {
  12101. const ggml_custom1_op_f32_t fun = *((ggml_custom1_op_f32_t *)tensor->src[2]->data);
  12102. ggml_compute_forward_map_custom1(params, tensor->src[0], tensor, fun);
  12103. }
  12104. break;
  12105. case GGML_OP_MAP_CUSTOM2:
  12106. {
  12107. const ggml_custom2_op_f32_t fun = *((ggml_custom2_op_f32_t *)tensor->src[2]->data);
  12108. ggml_compute_forward_map_custom2(params, tensor->src[0], tensor->src[1], tensor, fun);
  12109. }
  12110. break;
  12111. case GGML_OP_MAP_CUSTOM3:
  12112. {
  12113. const ggml_custom3_op_f32_t fun = *((ggml_custom3_op_f32_t *)tensor->src[2]->data);
  12114. ggml_compute_forward_map_custom3(params, tensor->src[0], tensor->src[1], tensor->src[3], tensor, fun);
  12115. }
  12116. break;
  12117. case GGML_OP_CROSS_ENTROPY_LOSS:
  12118. {
  12119. ggml_compute_forward_cross_entropy_loss(params, tensor->src[0], tensor->src[1], tensor);
  12120. }
  12121. break;
  12122. case GGML_OP_CROSS_ENTROPY_LOSS_BACK:
  12123. {
  12124. ggml_compute_forward_cross_entropy_loss_back(params, tensor->src[0], tensor->src[1], tensor->src[2], tensor);
  12125. }
  12126. break;
  12127. case GGML_OP_NONE:
  12128. {
  12129. // nop
  12130. } break;
  12131. case GGML_OP_COUNT:
  12132. {
  12133. GGML_ASSERT(false);
  12134. } break;
  12135. }
  12136. }
  12137. ////////////////////////////////////////////////////////////////////////////////
  12138. static void ggml_compute_backward(struct ggml_context * ctx, struct ggml_tensor * tensor, bool inplace) {
  12139. struct ggml_tensor * src0 = tensor->src[0];
  12140. struct ggml_tensor * src1 = tensor->src[1];
  12141. switch (tensor->op) {
  12142. case GGML_OP_DUP:
  12143. {
  12144. if (src0->grad) {
  12145. src0->grad = ggml_add_impl(ctx, src0->grad, tensor->grad, inplace);
  12146. }
  12147. } break;
  12148. case GGML_OP_ADD:
  12149. {
  12150. if (src0->grad) {
  12151. src0->grad = ggml_add_impl(ctx, src0->grad, tensor->grad, inplace);
  12152. }
  12153. if (src1->grad) {
  12154. src1->grad = ggml_add_impl(ctx, src1->grad, tensor->grad, inplace);
  12155. }
  12156. } break;
  12157. case GGML_OP_ADD1:
  12158. {
  12159. if (src0->grad) {
  12160. src0->grad = ggml_add_impl(ctx, src0->grad, tensor->grad, inplace);
  12161. }
  12162. if (src1->grad) {
  12163. src1->grad = ggml_add_impl(ctx,
  12164. src1->grad,
  12165. ggml_mean(ctx, tensor->grad), // TODO: should probably be sum instead of mean
  12166. inplace);
  12167. }
  12168. } break;
  12169. case GGML_OP_ACC:
  12170. {
  12171. if (src0->grad) {
  12172. src0->grad = ggml_add_impl(ctx, src0->grad, tensor->grad, inplace);
  12173. }
  12174. if (src1->grad) {
  12175. GGML_ASSERT(ggml_nelements(tensor->src[2]) == 5);
  12176. GGML_ASSERT(tensor->src[2]->type == GGML_TYPE_I32);
  12177. const size_t nb1 = (( int32_t * ) tensor->src[2]->data)[0];
  12178. const size_t nb2 = (( int32_t * ) tensor->src[2]->data)[1];
  12179. const size_t nb3 = (( int32_t * ) tensor->src[2]->data)[2];
  12180. const size_t offset = (( int32_t * ) tensor->src[2]->data)[3];
  12181. struct ggml_tensor * tensor_grad_view = ggml_view_4d(ctx,
  12182. tensor->grad,
  12183. src1->grad->ne[0],
  12184. src1->grad->ne[1],
  12185. src1->grad->ne[2],
  12186. src1->grad->ne[3],
  12187. nb1, nb2, nb3, offset);
  12188. src1->grad =
  12189. ggml_add_impl(ctx,
  12190. src1->grad,
  12191. ggml_reshape(ctx,
  12192. ggml_cont(ctx, tensor_grad_view),
  12193. src1->grad),
  12194. inplace);
  12195. }
  12196. } break;
  12197. case GGML_OP_SUB:
  12198. {
  12199. if (src0->grad) {
  12200. src0->grad = ggml_add_impl(ctx, src0->grad, tensor->grad, inplace);
  12201. }
  12202. if (src1->grad) {
  12203. src1->grad = ggml_sub_impl(ctx, src1->grad, tensor->grad, inplace);
  12204. }
  12205. } break;
  12206. case GGML_OP_MUL:
  12207. {
  12208. if (src0->grad) {
  12209. src0->grad =
  12210. ggml_add_impl(ctx,
  12211. src0->grad,
  12212. ggml_mul(ctx, src1, tensor->grad),
  12213. inplace);
  12214. }
  12215. if (src1->grad) {
  12216. src1->grad =
  12217. ggml_add_impl(ctx,
  12218. src1->grad,
  12219. ggml_mul(ctx, src0, tensor->grad),
  12220. inplace);
  12221. }
  12222. } break;
  12223. case GGML_OP_DIV:
  12224. {
  12225. if (src0->grad) {
  12226. src0->grad =
  12227. ggml_add_impl(ctx,
  12228. src0->grad,
  12229. ggml_div(ctx, tensor->grad, src1),
  12230. inplace);
  12231. }
  12232. if (src1->grad) {
  12233. src1->grad =
  12234. ggml_sub_impl(ctx,
  12235. src1->grad,
  12236. ggml_mul(ctx,
  12237. tensor->grad,
  12238. ggml_div(ctx, tensor, src1)),
  12239. inplace);
  12240. }
  12241. } break;
  12242. case GGML_OP_SQR:
  12243. {
  12244. if (src0->grad) {
  12245. src0->grad =
  12246. ggml_add_impl(ctx,
  12247. src0->grad,
  12248. ggml_scale(ctx,
  12249. ggml_mul(ctx, src0, tensor->grad),
  12250. ggml_new_f32(ctx, 2.0f)),
  12251. inplace);
  12252. }
  12253. } break;
  12254. case GGML_OP_SQRT:
  12255. {
  12256. if (src0->grad) {
  12257. src0->grad =
  12258. ggml_add_impl(ctx,
  12259. src0->grad,
  12260. ggml_scale(ctx,
  12261. ggml_div(ctx,
  12262. tensor->grad,
  12263. tensor),
  12264. ggml_new_f32(ctx, 0.5f)),
  12265. inplace);
  12266. }
  12267. } break;
  12268. case GGML_OP_LOG:
  12269. {
  12270. if (src0->grad) {
  12271. src0->grad =
  12272. ggml_add_impl(ctx,
  12273. src0->grad,
  12274. ggml_div(ctx,
  12275. tensor->grad,
  12276. src0),
  12277. inplace);
  12278. }
  12279. } break;
  12280. case GGML_OP_SUM:
  12281. {
  12282. if (src0->grad) {
  12283. src0->grad =
  12284. ggml_add1_impl(ctx,
  12285. src0->grad,
  12286. tensor->grad,
  12287. inplace);
  12288. }
  12289. } break;
  12290. case GGML_OP_SUM_ROWS:
  12291. {
  12292. if (src0->grad) {
  12293. src0->grad =
  12294. ggml_add_impl(ctx,
  12295. src0->grad,
  12296. ggml_repeat(ctx,
  12297. tensor->grad,
  12298. src0->grad),
  12299. inplace);
  12300. }
  12301. } break;
  12302. case GGML_OP_MEAN:
  12303. case GGML_OP_ARGMAX:
  12304. {
  12305. GGML_ASSERT(false); // TODO: implement
  12306. } break;
  12307. case GGML_OP_REPEAT:
  12308. {
  12309. // necessary for llama
  12310. if (src0->grad) {
  12311. src0->grad = ggml_add_impl(ctx,
  12312. src0->grad,
  12313. ggml_repeat_back(ctx, tensor->grad, src0->grad),
  12314. inplace);
  12315. }
  12316. } break;
  12317. case GGML_OP_REPEAT_BACK:
  12318. {
  12319. if (src0->grad) {
  12320. // TODO: test this
  12321. src0->grad = ggml_add_impl(ctx,
  12322. src0->grad,
  12323. ggml_repeat(ctx, tensor->grad, src0->grad),
  12324. inplace);
  12325. }
  12326. } break;
  12327. case GGML_OP_ABS:
  12328. {
  12329. if (src0->grad) {
  12330. src0->grad =
  12331. ggml_add_impl(ctx,
  12332. src0->grad,
  12333. ggml_mul(ctx,
  12334. ggml_sgn(ctx, src0),
  12335. tensor->grad),
  12336. inplace);
  12337. }
  12338. } break;
  12339. case GGML_OP_SGN:
  12340. {
  12341. if (src0->grad) {
  12342. // noop
  12343. }
  12344. } break;
  12345. case GGML_OP_NEG:
  12346. {
  12347. if (src0->grad) {
  12348. src0->grad = ggml_sub_impl(ctx, src0->grad, tensor->grad, inplace);
  12349. }
  12350. } break;
  12351. case GGML_OP_STEP:
  12352. {
  12353. if (src0->grad) {
  12354. // noop
  12355. }
  12356. } break;
  12357. case GGML_OP_TANH:
  12358. {
  12359. GGML_ASSERT(false); // TODO: not implemented
  12360. } break;
  12361. case GGML_OP_ELU:
  12362. {
  12363. GGML_ASSERT(false); // TODO: not implemented
  12364. } break;
  12365. case GGML_OP_RELU:
  12366. {
  12367. if (src0->grad) {
  12368. src0->grad = ggml_sub_impl(ctx,
  12369. src0->grad,
  12370. ggml_mul(ctx,
  12371. ggml_step(ctx, src0),
  12372. tensor->grad),
  12373. inplace);
  12374. }
  12375. } break;
  12376. case GGML_OP_GELU:
  12377. {
  12378. GGML_ASSERT(false); // TODO: not implemented
  12379. } break;
  12380. case GGML_OP_GELU_QUICK:
  12381. {
  12382. GGML_ASSERT(false); // TODO: not implemented
  12383. } break;
  12384. case GGML_OP_SILU:
  12385. {
  12386. // necessary for llama
  12387. if (src0->grad) {
  12388. src0->grad = ggml_add_impl(ctx,
  12389. src0->grad,
  12390. ggml_silu_back(ctx, src0, tensor->grad),
  12391. inplace);
  12392. }
  12393. } break;
  12394. case GGML_OP_SILU_BACK:
  12395. {
  12396. GGML_ASSERT(false); // TODO: not implemented
  12397. } break;
  12398. case GGML_OP_NORM:
  12399. {
  12400. GGML_ASSERT(false); // TODO: not implemented
  12401. } break;
  12402. case GGML_OP_RMS_NORM:
  12403. {
  12404. // necessary for llama
  12405. if (src0->grad) {
  12406. src0->grad = ggml_add_impl(ctx,
  12407. src0->grad,
  12408. ggml_rms_norm_back(ctx, src0, tensor->grad),
  12409. inplace);
  12410. }
  12411. } break;
  12412. case GGML_OP_RMS_NORM_BACK:
  12413. {
  12414. GGML_ASSERT(false); // TODO: not implemented
  12415. } break;
  12416. case GGML_OP_MUL_MAT:
  12417. {
  12418. // https://cs231n.github.io/optimization-2/#staged
  12419. // # forward pass
  12420. // s0 = np.random.randn(5, 10)
  12421. // s1 = np.random.randn(10, 3)
  12422. // t = s0.dot(s1)
  12423. // # now suppose we had the gradient on t from above in the circuit
  12424. // dt = np.random.randn(*t.shape) # same shape as t
  12425. // ds0 = dt.dot(s1.T) #.T gives the transpose of the matrix
  12426. // ds1 = t.T.dot(dt)
  12427. // tensor.shape [m,p]
  12428. // src0.shape [n,m]
  12429. // src1.shape [n,p]
  12430. // necessary for llama
  12431. if (src0->grad) {
  12432. src0->grad =
  12433. ggml_add_impl(ctx,
  12434. src0->grad,
  12435. ggml_out_prod(ctx, // [n,m]
  12436. src1, // [n,p]
  12437. tensor->grad), // [m,p]
  12438. inplace);
  12439. }
  12440. if (src1->grad) {
  12441. src1->grad =
  12442. ggml_add_impl(ctx,
  12443. src1->grad,
  12444. // ggml_mul_mat(ctx, // [n,p]
  12445. // ggml_cont(ctx, // [m,n]
  12446. // ggml_transpose(ctx, src0)), // [m,n]
  12447. // tensor->grad), // [m,p]
  12448. // // when src0 is bigger than tensor->grad (this is mostly the case in llama),
  12449. // // avoid transpose of src0, rather transpose smaller tensor->grad
  12450. // // and then use ggml_out_prod
  12451. ggml_out_prod(ctx, // [n,p]
  12452. src0, // [n,m]
  12453. ggml_transpose(ctx, // [p,m]
  12454. tensor->grad)), // [m,p]
  12455. inplace);
  12456. }
  12457. } break;
  12458. case GGML_OP_OUT_PROD:
  12459. {
  12460. GGML_ASSERT(false); // TODO: not implemented
  12461. } break;
  12462. case GGML_OP_SCALE:
  12463. {
  12464. // necessary for llama
  12465. if (src0->grad) {
  12466. src0->grad =
  12467. ggml_add_impl(ctx,
  12468. src0->grad,
  12469. ggml_scale_impl(ctx, tensor->grad, src1, false),
  12470. inplace);
  12471. }
  12472. if (src1->grad) {
  12473. src1->grad =
  12474. ggml_add_impl(ctx,
  12475. src1->grad,
  12476. ggml_sum(ctx, ggml_mul_impl(ctx, tensor->grad, src0, false)),
  12477. inplace);
  12478. }
  12479. } break;
  12480. case GGML_OP_SET:
  12481. {
  12482. GGML_ASSERT(ggml_nelements(tensor->src[2]) == 5);
  12483. GGML_ASSERT(tensor->src[2]->type == GGML_TYPE_I32);
  12484. const size_t nb1 = (( int32_t * ) tensor->src[2]->data)[0];
  12485. const size_t nb2 = (( int32_t * ) tensor->src[2]->data)[1];
  12486. const size_t nb3 = (( int32_t * ) tensor->src[2]->data)[2];
  12487. const size_t offset = (( int32_t * ) tensor->src[2]->data)[3];
  12488. struct ggml_tensor * tensor_grad_view = NULL;
  12489. if (src0->grad || src1->grad) {
  12490. GGML_ASSERT(src0->type == tensor->type);
  12491. GGML_ASSERT(tensor->grad->type == tensor->type);
  12492. GGML_ASSERT(tensor->grad->type == src1->grad->type);
  12493. tensor_grad_view = ggml_view_4d(ctx,
  12494. tensor->grad,
  12495. src1->grad->ne[0],
  12496. src1->grad->ne[1],
  12497. src1->grad->ne[2],
  12498. src1->grad->ne[3],
  12499. nb1, nb2, nb3, offset);
  12500. }
  12501. if (src0->grad) {
  12502. src0->grad = ggml_add_impl(ctx,
  12503. src0->grad,
  12504. ggml_acc_impl(ctx,
  12505. tensor->grad,
  12506. ggml_neg(ctx, tensor_grad_view),
  12507. nb1, nb2, nb3, offset, false),
  12508. inplace);
  12509. }
  12510. if (src1->grad) {
  12511. src1->grad =
  12512. ggml_add_impl(ctx,
  12513. src1->grad,
  12514. ggml_reshape(ctx,
  12515. ggml_cont(ctx, tensor_grad_view),
  12516. src1->grad),
  12517. inplace);
  12518. }
  12519. } break;
  12520. case GGML_OP_CPY:
  12521. {
  12522. // necessary for llama
  12523. // cpy overwrites value of src1 by src0 and returns view(src1)
  12524. // the overwriting is mathematically equivalent to:
  12525. // tensor = src0 * 1 + src1 * 0
  12526. if (src0->grad) {
  12527. // dsrc0 = dtensor * 1
  12528. src0->grad = ggml_add_impl(ctx, src0->grad, tensor->grad, inplace);
  12529. }
  12530. if (src1->grad) {
  12531. // dsrc1 = dtensor * 0 -> noop
  12532. }
  12533. } break;
  12534. case GGML_OP_CONT:
  12535. {
  12536. // same as cpy
  12537. if (src0->grad) {
  12538. GGML_ASSERT(ggml_is_contiguous(src0->grad));
  12539. GGML_ASSERT(ggml_is_contiguous(tensor->grad));
  12540. src0->grad = ggml_add_impl(ctx, src0->grad, tensor->grad, inplace);
  12541. }
  12542. } break;
  12543. case GGML_OP_RESHAPE:
  12544. {
  12545. // necessary for llama
  12546. if (src0->grad) {
  12547. src0->grad =
  12548. ggml_add_impl(ctx, src0->grad,
  12549. ggml_reshape(ctx, tensor->grad, src0->grad),
  12550. inplace);
  12551. }
  12552. } break;
  12553. case GGML_OP_VIEW:
  12554. {
  12555. // necessary for llama
  12556. if (src0->grad) {
  12557. size_t offset;
  12558. GGML_ASSERT(sizeof(offset) <= ggml_nbytes(tensor->src[2]));
  12559. memcpy(&offset, tensor->src[2]->data, sizeof(offset));
  12560. size_t nb1 = tensor->nb[1];
  12561. size_t nb2 = tensor->nb[2];
  12562. size_t nb3 = tensor->nb[3];
  12563. if (src0->type != src0->grad->type) {
  12564. // gradient is typically F32, but src0 could be other type
  12565. size_t ng = ggml_element_size(src0->grad);
  12566. size_t n0 = ggml_element_size(src0);
  12567. GGML_ASSERT(offset % n0 == 0);
  12568. GGML_ASSERT(nb1 % n0 == 0);
  12569. GGML_ASSERT(nb2 % n0 == 0);
  12570. GGML_ASSERT(nb3 % n0 == 0);
  12571. offset = (offset / n0) * ng;
  12572. nb1 = (nb1 / n0) * ng;
  12573. nb2 = (nb2 / n0) * ng;
  12574. nb3 = (nb3 / n0) * ng;
  12575. }
  12576. src0->grad = ggml_acc_impl(ctx, src0->grad, tensor->grad, nb1, nb2, nb3, offset, inplace);
  12577. }
  12578. } break;
  12579. case GGML_OP_PERMUTE:
  12580. {
  12581. // necessary for llama
  12582. if (src0->grad) {
  12583. int32_t * axes = (int32_t *) tensor->src[2]->data;
  12584. int axis0 = axes[0] & 0x3;
  12585. int axis1 = axes[1] & 0x3;
  12586. int axis2 = axes[2] & 0x3;
  12587. int axis3 = axes[3] & 0x3;
  12588. int axes_backward[4] = {0,0,0,0};
  12589. axes_backward[axis0] = 0;
  12590. axes_backward[axis1] = 1;
  12591. axes_backward[axis2] = 2;
  12592. axes_backward[axis3] = 3;
  12593. src0->grad =
  12594. ggml_add_impl(ctx, src0->grad,
  12595. ggml_permute(ctx,
  12596. tensor->grad,
  12597. axes_backward[0],
  12598. axes_backward[1],
  12599. axes_backward[2],
  12600. axes_backward[3]),
  12601. inplace);
  12602. }
  12603. } break;
  12604. case GGML_OP_TRANSPOSE:
  12605. {
  12606. // necessary for llama
  12607. if (src0->grad) {
  12608. src0->grad =
  12609. ggml_add_impl(ctx, src0->grad,
  12610. ggml_transpose(ctx, tensor->grad),
  12611. inplace);
  12612. }
  12613. } break;
  12614. case GGML_OP_GET_ROWS:
  12615. {
  12616. // necessary for llama (only for tokenizer)
  12617. if (src0->grad) {
  12618. src0->grad =
  12619. ggml_add_impl(ctx, src0->grad,
  12620. ggml_get_rows_back(ctx, tensor->grad, src1, src0->grad),
  12621. inplace);
  12622. }
  12623. if (src1->grad) {
  12624. // noop
  12625. }
  12626. } break;
  12627. case GGML_OP_GET_ROWS_BACK:
  12628. {
  12629. GGML_ASSERT(false); // TODO: not implemented
  12630. } break;
  12631. case GGML_OP_DIAG:
  12632. {
  12633. GGML_ASSERT(false); // TODO: not implemented
  12634. } break;
  12635. case GGML_OP_DIAG_MASK_INF:
  12636. {
  12637. // necessary for llama
  12638. if (src0->grad) {
  12639. assert(src1->type == GGML_TYPE_I32);
  12640. assert(ggml_nelements(src1) == 2);
  12641. const int n_past = ((int32_t *) src1->data)[0];
  12642. src0->grad =
  12643. ggml_add_impl(ctx, src0->grad,
  12644. ggml_diag_mask_zero_impl(ctx, tensor->grad, n_past, false),
  12645. inplace);
  12646. }
  12647. if (src1->grad) {
  12648. // noop
  12649. }
  12650. } break;
  12651. case GGML_OP_DIAG_MASK_ZERO:
  12652. {
  12653. // necessary for llama
  12654. if (src0->grad) {
  12655. assert(src1->type == GGML_TYPE_I32);
  12656. assert(ggml_nelements(src1) == 2);
  12657. const int n_past = ((int32_t *) src1->data)[0];
  12658. src0->grad =
  12659. ggml_add_impl(ctx, src0->grad,
  12660. ggml_diag_mask_zero_impl(ctx, tensor->grad, n_past, false),
  12661. inplace);
  12662. }
  12663. if (src1->grad) {
  12664. // noop
  12665. }
  12666. } break;
  12667. case GGML_OP_SOFT_MAX:
  12668. {
  12669. // necessary for llama
  12670. if (src0->grad) {
  12671. src0->grad =
  12672. ggml_add_impl(ctx, src0->grad,
  12673. ggml_soft_max_back(ctx, tensor->grad, tensor),
  12674. inplace);
  12675. }
  12676. } break;
  12677. case GGML_OP_SOFT_MAX_BACK:
  12678. {
  12679. GGML_ASSERT(false); // TODO: not implemented
  12680. } break;
  12681. case GGML_OP_ROPE:
  12682. {
  12683. // necessary for llama
  12684. if (src0->grad) {
  12685. assert(src1->type == GGML_TYPE_I32);
  12686. assert(ggml_nelements(src1) == 4);
  12687. const int n_past = ((int32_t *) src1->data)[0];
  12688. const int n_dims = ((int32_t *) src1->data)[1];
  12689. const int mode = ((int32_t *) src1->data)[2];
  12690. src0->grad = ggml_add_impl(ctx,
  12691. src0->grad,
  12692. ggml_rope_back(ctx,
  12693. tensor->grad,
  12694. n_past,
  12695. n_dims,
  12696. mode),
  12697. inplace);
  12698. }
  12699. if (src1->grad) {
  12700. // noop
  12701. }
  12702. } break;
  12703. case GGML_OP_ROPE_BACK:
  12704. {
  12705. if (src0->grad) {
  12706. assert(src1->type == GGML_TYPE_I32);
  12707. assert(ggml_nelements(src1) == 4);
  12708. const int n_past = ((int32_t *) src1->data)[0];
  12709. const int n_dims = ((int32_t *) src1->data)[1];
  12710. const int mode = ((int32_t *) src1->data)[2];
  12711. const int n_ctx = ((int32_t *) src1->data)[3];
  12712. src0->grad = ggml_add_impl(ctx,
  12713. src0->grad,
  12714. ggml_rope(ctx,
  12715. tensor->grad,
  12716. n_past,
  12717. n_dims,
  12718. mode,
  12719. n_ctx),
  12720. inplace);
  12721. }
  12722. if (src1->grad) {
  12723. // noop
  12724. }
  12725. } break;
  12726. case GGML_OP_ALIBI:
  12727. {
  12728. GGML_ASSERT(false); // TODO: not implemented
  12729. } break;
  12730. case GGML_OP_CLAMP:
  12731. {
  12732. GGML_ASSERT(false); // TODO: not implemented
  12733. } break;
  12734. case GGML_OP_CONV_1D:
  12735. {
  12736. GGML_ASSERT(false); // TODO: not implemented
  12737. } break;
  12738. case GGML_OP_CONV_2D:
  12739. {
  12740. GGML_ASSERT(false); // TODO: not implemented
  12741. } break;
  12742. case GGML_OP_FLASH_ATTN:
  12743. {
  12744. struct ggml_tensor * flash_grad = NULL;
  12745. if (src0->grad || src1->grad || tensor->src[2]->grad) {
  12746. int32_t t = ggml_get_i32_1d(tensor->src[3], 0);
  12747. GGML_ASSERT(t == 0 || t == 1);
  12748. bool masked = t != 0;
  12749. flash_grad =
  12750. ggml_flash_attn_back(ctx,
  12751. src0,
  12752. src1,
  12753. tensor->src[2],
  12754. tensor->grad,
  12755. masked);
  12756. }
  12757. if (src0->grad) {
  12758. struct ggml_tensor * grad_q = NULL;
  12759. const size_t nb0 = flash_grad->nb[0];
  12760. const size_t offset = 0;
  12761. switch(src0->n_dims) {
  12762. case 2:
  12763. {
  12764. grad_q = ggml_view_2d(ctx,
  12765. flash_grad,
  12766. src0->ne[0],
  12767. src0->ne[1],
  12768. nb0*src0->ne[0],
  12769. offset);
  12770. } break;
  12771. case 3:
  12772. {
  12773. grad_q = ggml_view_3d(ctx,
  12774. flash_grad,
  12775. src0->ne[0],
  12776. src0->ne[1],
  12777. src0->ne[2],
  12778. nb0*src0->ne[0],
  12779. nb0*src0->ne[0]*src0->ne[1],
  12780. offset);
  12781. } break;
  12782. case 4:
  12783. {
  12784. grad_q = ggml_view_4d(ctx,
  12785. flash_grad,
  12786. src0->ne[0],
  12787. src0->ne[1],
  12788. src0->ne[2],
  12789. src0->ne[3],
  12790. nb0*src0->ne[0],
  12791. nb0*src0->ne[0]*src0->ne[1],
  12792. nb0*src0->ne[0]*src0->ne[1]*src0->ne[2],
  12793. offset);
  12794. } break;
  12795. }
  12796. src0->grad = ggml_add_impl(ctx,
  12797. src0->grad,
  12798. grad_q,
  12799. inplace);
  12800. }
  12801. if (src1->grad) {
  12802. struct ggml_tensor * grad_k = NULL;
  12803. const size_t nb0 = flash_grad->nb[0];
  12804. const size_t offset = nb0*src0->ne[0]*src0->ne[1]*src0->ne[2]*src0->ne[3];
  12805. switch(src1->n_dims) {
  12806. case 2:
  12807. {
  12808. grad_k = ggml_view_2d(ctx,
  12809. flash_grad,
  12810. src1->ne[0],
  12811. src1->ne[1],
  12812. nb0*src1->ne[0],
  12813. offset);
  12814. } break;
  12815. case 3:
  12816. {
  12817. grad_k = ggml_view_3d(ctx,
  12818. flash_grad,
  12819. src1->ne[0],
  12820. src1->ne[1],
  12821. src1->ne[2],
  12822. nb0*src1->ne[0],
  12823. nb0*src1->ne[0]*src1->ne[1],
  12824. offset);
  12825. } break;
  12826. case 4:
  12827. {
  12828. grad_k = ggml_view_4d(ctx,
  12829. flash_grad,
  12830. src1->ne[0],
  12831. src1->ne[1],
  12832. src1->ne[2],
  12833. src1->ne[3],
  12834. nb0*src1->ne[0],
  12835. nb0*src1->ne[0]*src1->ne[1],
  12836. nb0*src1->ne[0]*src1->ne[1]*src1->ne[2],
  12837. offset);
  12838. } break;
  12839. }
  12840. src1->grad = ggml_add_impl(ctx,
  12841. src1->grad,
  12842. grad_k,
  12843. inplace);
  12844. }
  12845. struct ggml_tensor * opt0 = tensor->src[2];
  12846. if (opt0->grad) {
  12847. struct ggml_tensor * grad_v = NULL;
  12848. const size_t nb0 = flash_grad->nb[0];
  12849. const size_t offset = nb0*src0->ne[0]*src0->ne[1]*src0->ne[2]*src0->ne[3]
  12850. + nb0*src1->ne[0]*src1->ne[1]*src1->ne[2]*src1->ne[3];
  12851. switch(opt0->n_dims) {
  12852. case 2:
  12853. {
  12854. grad_v = ggml_view_2d(ctx,
  12855. flash_grad,
  12856. opt0->ne[0],
  12857. opt0->ne[1],
  12858. nb0*opt0->ne[0],
  12859. offset);
  12860. } break;
  12861. case 3:
  12862. {
  12863. grad_v = ggml_view_3d(ctx,
  12864. flash_grad,
  12865. opt0->ne[0],
  12866. opt0->ne[1],
  12867. opt0->ne[2],
  12868. nb0*opt0->ne[0],
  12869. nb0*opt0->ne[0]*opt0->ne[1],
  12870. offset);
  12871. } break;
  12872. case 4:
  12873. {
  12874. grad_v = ggml_view_4d(ctx,
  12875. flash_grad,
  12876. opt0->ne[0],
  12877. opt0->ne[1],
  12878. opt0->ne[2],
  12879. opt0->ne[3],
  12880. nb0*opt0->ne[0],
  12881. nb0*opt0->ne[0]*opt0->ne[1],
  12882. nb0*opt0->ne[0]*opt0->ne[1]*opt0->ne[2],
  12883. offset);
  12884. } break;
  12885. }
  12886. opt0->grad = ggml_add_impl(ctx,
  12887. opt0->grad,
  12888. grad_v,
  12889. inplace);
  12890. }
  12891. } break;
  12892. case GGML_OP_FLASH_FF:
  12893. {
  12894. GGML_ASSERT(false); // not supported
  12895. } break;
  12896. case GGML_OP_FLASH_ATTN_BACK:
  12897. {
  12898. GGML_ASSERT(false); // not supported
  12899. } break;
  12900. case GGML_OP_WIN_PART:
  12901. case GGML_OP_WIN_UNPART:
  12902. case GGML_OP_MAP_UNARY:
  12903. case GGML_OP_MAP_BINARY:
  12904. case GGML_OP_MAP_CUSTOM1:
  12905. case GGML_OP_MAP_CUSTOM2:
  12906. case GGML_OP_MAP_CUSTOM3:
  12907. {
  12908. GGML_ASSERT(false); // not supported
  12909. } break;
  12910. case GGML_OP_CROSS_ENTROPY_LOSS:
  12911. {
  12912. if (src0->grad) {
  12913. src0->grad = ggml_add_impl(ctx,
  12914. src0->grad,
  12915. ggml_cross_entropy_loss_back(ctx,
  12916. src0,
  12917. src1,
  12918. tensor->grad),
  12919. inplace);
  12920. }
  12921. } break;
  12922. case GGML_OP_CROSS_ENTROPY_LOSS_BACK:
  12923. {
  12924. GGML_ASSERT(false); // not supported
  12925. } break;
  12926. case GGML_OP_NONE:
  12927. {
  12928. // nop
  12929. } break;
  12930. case GGML_OP_COUNT:
  12931. {
  12932. GGML_ASSERT(false);
  12933. } break;
  12934. }
  12935. }
  12936. static void ggml_visit_parents(struct ggml_cgraph * cgraph, struct ggml_tensor * node) {
  12937. if (node->grad == NULL) {
  12938. // this usually happens when we generate intermediate nodes from constants in the backward pass
  12939. // it can also happen during forward pass, if the user performs computations with constants
  12940. if (node->op != GGML_OP_NONE) {
  12941. //GGML_PRINT_DEBUG("%s: warning: node %p has no grad, but op %d\n", __func__, (void *) node, node->op);
  12942. }
  12943. }
  12944. // check if already visited
  12945. for (int i = 0; i < cgraph->n_nodes; i++) {
  12946. if (cgraph->nodes[i] == node) {
  12947. return;
  12948. }
  12949. }
  12950. for (int i = 0; i < cgraph->n_leafs; i++) {
  12951. if (cgraph->leafs[i] == node) {
  12952. return;
  12953. }
  12954. }
  12955. for (int i = 0; i < GGML_MAX_SRC; ++i) {
  12956. if (node->src[i]) {
  12957. ggml_visit_parents(cgraph, node->src[i]);
  12958. }
  12959. }
  12960. if (node->op == GGML_OP_NONE && node->grad == NULL) {
  12961. // reached a leaf node, not part of the gradient graph (e.g. a constant)
  12962. GGML_ASSERT(cgraph->n_leafs < GGML_MAX_NODES);
  12963. if (strlen(node->name) == 0) {
  12964. ggml_format_name(node, "leaf_%d", cgraph->n_leafs);
  12965. }
  12966. cgraph->leafs[cgraph->n_leafs] = node;
  12967. cgraph->n_leafs++;
  12968. } else {
  12969. GGML_ASSERT(cgraph->n_nodes < GGML_MAX_NODES);
  12970. if (strlen(node->name) == 0) {
  12971. ggml_format_name(node, "node_%d", cgraph->n_nodes);
  12972. }
  12973. cgraph->nodes[cgraph->n_nodes] = node;
  12974. cgraph->grads[cgraph->n_nodes] = node->grad;
  12975. cgraph->n_nodes++;
  12976. }
  12977. }
  12978. static void ggml_build_forward_impl(struct ggml_cgraph * cgraph, struct ggml_tensor * tensor, bool expand) {
  12979. if (!expand) {
  12980. cgraph->n_nodes = 0;
  12981. cgraph->n_leafs = 0;
  12982. }
  12983. const int n0 = cgraph->n_nodes;
  12984. UNUSED(n0);
  12985. ggml_visit_parents(cgraph, tensor);
  12986. const int n_new = cgraph->n_nodes - n0;
  12987. GGML_PRINT_DEBUG("%s: visited %d new nodes\n", __func__, n_new);
  12988. if (n_new > 0) {
  12989. // the last added node should always be starting point
  12990. GGML_ASSERT(cgraph->nodes[cgraph->n_nodes - 1] == tensor);
  12991. }
  12992. }
  12993. void ggml_build_forward_expand(struct ggml_cgraph * cgraph, struct ggml_tensor * tensor) {
  12994. ggml_build_forward_impl(cgraph, tensor, true);
  12995. }
  12996. struct ggml_cgraph ggml_build_forward(struct ggml_tensor * tensor) {
  12997. struct ggml_cgraph result = {
  12998. /*.n_nodes =*/ 0,
  12999. /*.n_leafs =*/ 0,
  13000. /*.nodes =*/ { NULL },
  13001. /*.grads =*/ { NULL },
  13002. /*.leafs =*/ { NULL },
  13003. /*.perf_runs =*/ 0,
  13004. /*.perf_cycles =*/ 0,
  13005. /*.perf_time_us =*/ 0,
  13006. };
  13007. ggml_build_forward_impl(&result, tensor, false);
  13008. return result;
  13009. }
  13010. struct ggml_cgraph ggml_build_backward(struct ggml_context * ctx, struct ggml_cgraph * gf, bool keep) {
  13011. struct ggml_cgraph result = *gf;
  13012. GGML_ASSERT(gf->n_nodes > 0);
  13013. // if we are keeping the gradient graph, we have to detach the gradient nodes from the original graph
  13014. if (keep) {
  13015. for (int i = 0; i < gf->n_nodes; i++) {
  13016. struct ggml_tensor * node = gf->nodes[i];
  13017. if (node->grad) {
  13018. node->grad = ggml_dup_tensor(ctx, node);
  13019. gf->grads[i] = node->grad;
  13020. }
  13021. }
  13022. }
  13023. for (int i = gf->n_nodes - 1; i >= 0; i--) {
  13024. struct ggml_tensor * node = gf->nodes[i];
  13025. // because we detached the grad nodes from the original graph, we can afford inplace operations
  13026. if (node->grad) {
  13027. ggml_compute_backward(ctx, node, keep);
  13028. }
  13029. }
  13030. for (int i = gf->n_nodes - 1; i >= 0; i--) {
  13031. struct ggml_tensor * node = gf->nodes[i];
  13032. if (node->is_param) {
  13033. GGML_PRINT_DEBUG("%s: found root node %p\n", __func__, (void *) node);
  13034. ggml_build_forward_impl(&result, node->grad, true);
  13035. }
  13036. }
  13037. return result;
  13038. }
  13039. //
  13040. // thread data
  13041. //
  13042. // synchronization is done via busy loops
  13043. // I tried using spin locks, but not sure how to use them correctly - the things I tried were slower than busy loops
  13044. //
  13045. #ifdef __APPLE__
  13046. //#include <os/lock.h>
  13047. //
  13048. //typedef os_unfair_lock ggml_lock_t;
  13049. //
  13050. //#define ggml_lock_init(x) UNUSED(x)
  13051. //#define ggml_lock_destroy(x) UNUSED(x)
  13052. //#define ggml_lock_lock os_unfair_lock_lock
  13053. //#define ggml_lock_unlock os_unfair_lock_unlock
  13054. //
  13055. //#define GGML_LOCK_INITIALIZER OS_UNFAIR_LOCK_INIT
  13056. typedef int ggml_lock_t;
  13057. #define ggml_lock_init(x) UNUSED(x)
  13058. #define ggml_lock_destroy(x) UNUSED(x)
  13059. #define ggml_lock_lock(x) UNUSED(x)
  13060. #define ggml_lock_unlock(x) UNUSED(x)
  13061. #define GGML_LOCK_INITIALIZER 0
  13062. typedef pthread_t ggml_thread_t;
  13063. #define ggml_thread_create pthread_create
  13064. #define ggml_thread_join pthread_join
  13065. #else
  13066. //typedef pthread_spinlock_t ggml_lock_t;
  13067. //#define ggml_lock_init(x) pthread_spin_init(x, PTHREAD_PROCESS_PRIVATE)
  13068. //#define ggml_lock_destroy pthread_spin_destroy
  13069. //#define ggml_lock_lock pthread_spin_lock
  13070. //#define ggml_lock_unlock pthread_spin_unlock
  13071. typedef int ggml_lock_t;
  13072. #define ggml_lock_init(x) UNUSED(x)
  13073. #define ggml_lock_destroy(x) UNUSED(x)
  13074. #if defined(__x86_64__) || (defined(_MSC_VER) && defined(_M_AMD64))
  13075. #define ggml_lock_lock(x) _mm_pause()
  13076. #else
  13077. #define ggml_lock_lock(x) UNUSED(x)
  13078. #endif
  13079. #define ggml_lock_unlock(x) UNUSED(x)
  13080. #define GGML_LOCK_INITIALIZER 0
  13081. typedef pthread_t ggml_thread_t;
  13082. #define ggml_thread_create pthread_create
  13083. #define ggml_thread_join pthread_join
  13084. #endif
  13085. // Android's libc implementation "bionic" does not support setting affinity
  13086. #if defined(__linux__) && !defined(__BIONIC__)
  13087. void set_numa_thread_affinity(int thread_n, int n_threads) {
  13088. if (!ggml_is_numa()) {
  13089. return;
  13090. }
  13091. // run thread on node_num thread_n / (threads per node)
  13092. const int node_num = thread_n / ((n_threads + g_state.numa.n_nodes - 1) / g_state.numa.n_nodes);
  13093. struct ggml_numa_node * node = &g_state.numa.nodes[node_num];
  13094. size_t setsize = CPU_ALLOC_SIZE(g_state.numa.total_cpus);
  13095. cpu_set_t * cpus = CPU_ALLOC(g_state.numa.total_cpus);
  13096. CPU_ZERO_S(setsize, cpus);
  13097. for (size_t i = 0; i < node->n_cpus; ++i) {
  13098. CPU_SET_S(node->cpus[i], setsize, cpus);
  13099. }
  13100. int rv = pthread_setaffinity_np(pthread_self(), setsize, cpus);
  13101. if (rv) {
  13102. fprintf(stderr, "warning: pthread_setaffinity_np() failed: %s\n",
  13103. strerror(rv));
  13104. }
  13105. CPU_FREE(cpus);
  13106. }
  13107. void clear_numa_thread_affinity(void) {
  13108. if (!ggml_is_numa()) {
  13109. return;
  13110. }
  13111. size_t setsize = CPU_ALLOC_SIZE(g_state.numa.total_cpus);
  13112. cpu_set_t * cpus = CPU_ALLOC(g_state.numa.total_cpus);
  13113. CPU_ZERO_S(setsize, cpus);
  13114. for (unsigned i = 0; i < g_state.numa.total_cpus; ++i) {
  13115. CPU_SET_S(i, setsize, cpus);
  13116. }
  13117. int rv = pthread_setaffinity_np(pthread_self(), setsize, cpus);
  13118. if (rv) {
  13119. fprintf(stderr, "warning: pthread_setaffinity_np() failed: %s\n",
  13120. strerror(rv));
  13121. }
  13122. CPU_FREE(cpus);
  13123. }
  13124. #else
  13125. // TODO: Windows etc.
  13126. // (the linux implementation may also work on BSD, someone should test)
  13127. void set_numa_thread_affinity(int thread_n, int n_threads) { UNUSED(thread_n); UNUSED(n_threads); }
  13128. void clear_numa_thread_affinity(void) {}
  13129. #endif
  13130. struct ggml_compute_state_shared {
  13131. const struct ggml_cgraph * cgraph;
  13132. const struct ggml_cplan * cplan;
  13133. int64_t perf_node_start_cycles;
  13134. int64_t perf_node_start_time_us;
  13135. const int n_threads;
  13136. // synchronization primitives
  13137. atomic_int n_active; // num active threads
  13138. atomic_int node_n; // active graph node
  13139. };
  13140. struct ggml_compute_state {
  13141. ggml_thread_t thrd;
  13142. int ith;
  13143. struct ggml_compute_state_shared * shared;
  13144. };
  13145. static void ggml_graph_compute_perf_stats_node(struct ggml_tensor * node, const struct ggml_compute_state_shared * st) {
  13146. int64_t cycles_cur = ggml_perf_cycles() - st->perf_node_start_cycles;
  13147. int64_t time_us_cur = ggml_perf_time_us() - st->perf_node_start_time_us;
  13148. node->perf_runs++;
  13149. node->perf_cycles += cycles_cur;
  13150. node->perf_time_us += time_us_cur;
  13151. }
  13152. static thread_ret_t ggml_graph_compute_thread(void * data) {
  13153. struct ggml_compute_state * state = (struct ggml_compute_state *) data;
  13154. const struct ggml_cgraph * cgraph = state->shared->cgraph;
  13155. const struct ggml_cplan * cplan = state->shared->cplan;
  13156. const int * n_tasks_arr = cplan->n_tasks;
  13157. const int n_threads = state->shared->n_threads;
  13158. set_numa_thread_affinity(state->ith, n_threads);
  13159. int node_n = -1;
  13160. while (true) {
  13161. if (atomic_fetch_sub(&state->shared->n_active, 1) == 1) {
  13162. // all other threads are finished and spinning
  13163. // do finalize and init here so we don't have synchronize again
  13164. struct ggml_compute_params params = {
  13165. /*.type =*/ GGML_TASK_FINALIZE,
  13166. /*.ith =*/ 0,
  13167. /*.nth =*/ 0,
  13168. /*.wsize =*/ cplan->work_size,
  13169. /*.wdata =*/ cplan->work_data,
  13170. };
  13171. if (node_n != -1) {
  13172. /* FINALIZE */
  13173. struct ggml_tensor * node = state->shared->cgraph->nodes[node_n];
  13174. if (GGML_OP_HAS_FINALIZE[node->op]) {
  13175. params.nth = n_tasks_arr[node_n];
  13176. ggml_compute_forward(&params, node);
  13177. ggml_graph_compute_perf_stats_node(node, state->shared);
  13178. }
  13179. }
  13180. // distribute new work or execute it direct if 1T
  13181. while (++node_n < cgraph->n_nodes) {
  13182. GGML_PRINT_DEBUG_5("%s: %d/%d\n", __func__, node_n, cgraph->n_nodes);
  13183. struct ggml_tensor * node = cgraph->nodes[node_n];
  13184. const int n_tasks = n_tasks_arr[node_n];
  13185. state->shared->perf_node_start_cycles = ggml_perf_cycles();
  13186. state->shared->perf_node_start_time_us = ggml_perf_time_us();
  13187. params.nth = n_tasks;
  13188. /* INIT */
  13189. if (GGML_OP_HAS_INIT[node->op]) {
  13190. params.type = GGML_TASK_INIT;
  13191. ggml_compute_forward(&params, node);
  13192. }
  13193. if (n_tasks == 1) {
  13194. // TODO: maybe push node_n to the atomic but if other threads see n_tasks is 1,
  13195. // they do something more efficient than spinning (?)
  13196. params.type = GGML_TASK_COMPUTE;
  13197. ggml_compute_forward(&params, node);
  13198. if (GGML_OP_HAS_FINALIZE[node->op]) {
  13199. params.type = GGML_TASK_FINALIZE;
  13200. ggml_compute_forward(&params, node);
  13201. ggml_graph_compute_perf_stats_node(node, state->shared);
  13202. }
  13203. } else {
  13204. break;
  13205. }
  13206. }
  13207. atomic_store(&state->shared->n_active, n_threads);
  13208. atomic_store(&state->shared->node_n, node_n);
  13209. } else {
  13210. // wait for other threads to finish
  13211. const int last = node_n;
  13212. do {
  13213. //sched_yield();
  13214. node_n = atomic_load(&state->shared->node_n);
  13215. } while (node_n == last);
  13216. }
  13217. // check if we should stop
  13218. if (node_n >= cgraph->n_nodes) break;
  13219. /* COMPUTE */
  13220. struct ggml_tensor * node = cgraph->nodes[node_n];
  13221. const int n_tasks = n_tasks_arr[node_n];
  13222. struct ggml_compute_params params = {
  13223. /*.type =*/ GGML_TASK_COMPUTE,
  13224. /*.ith =*/ state->ith,
  13225. /*.nth =*/ n_tasks,
  13226. /*.wsize =*/ cplan->work_size,
  13227. /*.wdata =*/ cplan->work_data,
  13228. };
  13229. if (state->ith < n_tasks) {
  13230. ggml_compute_forward(&params, node);
  13231. }
  13232. }
  13233. return 0;
  13234. }
  13235. struct ggml_cplan ggml_graph_plan(struct ggml_cgraph * cgraph, int n_threads) {
  13236. if (n_threads <= 0) {
  13237. n_threads = GGML_DEFAULT_N_THREADS;
  13238. }
  13239. size_t work_size = 0;
  13240. struct ggml_cplan cplan;
  13241. memset(&cplan, 0, sizeof(struct ggml_cplan));
  13242. // thread scheduling for the different operations + work buffer size estimation
  13243. for (int i = 0; i < cgraph->n_nodes; i++) {
  13244. int n_tasks = 1;
  13245. struct ggml_tensor * node = cgraph->nodes[i];
  13246. switch (node->op) {
  13247. case GGML_OP_CPY:
  13248. case GGML_OP_DUP:
  13249. {
  13250. n_tasks = n_threads;
  13251. size_t cur = 0;
  13252. if (ggml_is_quantized(node->type)) {
  13253. cur = GGML_TYPE_SIZE[GGML_TYPE_F32] * node->ne[0] * n_tasks;
  13254. }
  13255. work_size = MAX(work_size, cur);
  13256. } break;
  13257. case GGML_OP_ADD:
  13258. case GGML_OP_ADD1:
  13259. {
  13260. n_tasks = n_threads;
  13261. size_t cur = 0;
  13262. if (ggml_is_quantized(node->src[0]->type)) {
  13263. cur = GGML_TYPE_SIZE[GGML_TYPE_F32] * node->src[0]->ne[0] * n_tasks;
  13264. }
  13265. work_size = MAX(work_size, cur);
  13266. } break;
  13267. case GGML_OP_ACC:
  13268. {
  13269. n_tasks = n_threads;
  13270. size_t cur = 0;
  13271. if (ggml_is_quantized(node->src[0]->type)) {
  13272. cur = GGML_TYPE_SIZE[GGML_TYPE_F32] * node->src[1]->ne[0] * n_tasks;
  13273. }
  13274. work_size = MAX(work_size, cur);
  13275. } break;
  13276. case GGML_OP_SUB:
  13277. case GGML_OP_DIV:
  13278. case GGML_OP_SQR:
  13279. case GGML_OP_SQRT:
  13280. case GGML_OP_LOG:
  13281. case GGML_OP_SUM:
  13282. case GGML_OP_SUM_ROWS:
  13283. case GGML_OP_MEAN:
  13284. case GGML_OP_ARGMAX:
  13285. case GGML_OP_REPEAT:
  13286. case GGML_OP_REPEAT_BACK:
  13287. case GGML_OP_ABS:
  13288. case GGML_OP_SGN:
  13289. case GGML_OP_NEG:
  13290. case GGML_OP_STEP:
  13291. case GGML_OP_TANH:
  13292. case GGML_OP_ELU:
  13293. case GGML_OP_RELU:
  13294. {
  13295. n_tasks = 1;
  13296. } break;
  13297. case GGML_OP_MUL:
  13298. case GGML_OP_GELU:
  13299. case GGML_OP_GELU_QUICK:
  13300. case GGML_OP_SILU:
  13301. case GGML_OP_SILU_BACK:
  13302. case GGML_OP_NORM:
  13303. case GGML_OP_RMS_NORM:
  13304. case GGML_OP_RMS_NORM_BACK:
  13305. {
  13306. n_tasks = n_threads;
  13307. } break;
  13308. case GGML_OP_MUL_MAT:
  13309. case GGML_OP_OUT_PROD:
  13310. {
  13311. n_tasks = n_threads;
  13312. // TODO: use different scheduling for different matrix sizes
  13313. //const int nr0 = ggml_nrows(node->src[0]);
  13314. //const int nr1 = ggml_nrows(node->src[1]);
  13315. //n_tasks = MIN(n_threads, MAX(1, nr0/128));
  13316. //printf("nr0 = %8d, nr1 = %8d, nr0*nr1 = %8d, n_tasks%d\n", nr0, nr1, nr0*nr1, n_tasks);
  13317. size_t cur = 0;
  13318. const enum ggml_type vec_dot_type = type_traits[node->src[0]->type].vec_dot_type;
  13319. #if defined(GGML_USE_CUBLAS)
  13320. if (ggml_cuda_can_mul_mat(node->src[0], node->src[1], node)) {
  13321. n_tasks = 1; // TODO: this actually is doing nothing
  13322. // the threads are still spinning
  13323. } else
  13324. #elif defined(GGML_USE_CLBLAST)
  13325. if (ggml_cl_can_mul_mat(node->src[0], node->src[1], node)) {
  13326. n_tasks = 1; // TODO: this actually is doing nothing
  13327. // the threads are still spinning
  13328. cur = ggml_cl_mul_mat_get_wsize(node->src[0], node->src[1], node);
  13329. } else
  13330. #endif
  13331. #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS)
  13332. if (ggml_compute_forward_mul_mat_use_blas(node->src[0], node->src[1], node)) {
  13333. n_tasks = 1; // TODO: this actually is doing nothing
  13334. // the threads are still spinning
  13335. if (node->src[0]->type != GGML_TYPE_F32) {
  13336. // here we need memory just for single 2D matrix from src0
  13337. cur = GGML_TYPE_SIZE[GGML_TYPE_F32]*(node->src[0]->ne[0]*node->src[0]->ne[1]);
  13338. }
  13339. } else
  13340. #endif
  13341. if (node->src[1]->type != vec_dot_type) {
  13342. cur = GGML_TYPE_SIZE[vec_dot_type]*ggml_nelements(node->src[1])/GGML_BLCK_SIZE[vec_dot_type];
  13343. } else {
  13344. cur = 0;
  13345. }
  13346. work_size = MAX(work_size, cur);
  13347. } break;
  13348. case GGML_OP_SCALE:
  13349. {
  13350. n_tasks = 1;
  13351. } break;
  13352. case GGML_OP_SET:
  13353. case GGML_OP_CONT:
  13354. case GGML_OP_RESHAPE:
  13355. case GGML_OP_VIEW:
  13356. case GGML_OP_PERMUTE:
  13357. case GGML_OP_TRANSPOSE:
  13358. case GGML_OP_GET_ROWS:
  13359. case GGML_OP_GET_ROWS_BACK:
  13360. case GGML_OP_DIAG:
  13361. case GGML_OP_DIAG_MASK_ZERO:
  13362. {
  13363. n_tasks = 1;
  13364. } break;
  13365. case GGML_OP_DIAG_MASK_INF:
  13366. case GGML_OP_SOFT_MAX:
  13367. case GGML_OP_SOFT_MAX_BACK:
  13368. case GGML_OP_ROPE:
  13369. case GGML_OP_ROPE_BACK:
  13370. {
  13371. n_tasks = n_threads;
  13372. } break;
  13373. case GGML_OP_ALIBI:
  13374. {
  13375. n_tasks = 1; //TODO
  13376. } break;
  13377. case GGML_OP_CLAMP:
  13378. {
  13379. n_tasks = 1; //TODO
  13380. } break;
  13381. case GGML_OP_CONV_1D:
  13382. {
  13383. n_tasks = n_threads;
  13384. GGML_ASSERT(node->src[0]->ne[3] == 1);
  13385. GGML_ASSERT(node->src[1]->ne[2] == 1);
  13386. GGML_ASSERT(node->src[1]->ne[3] == 1);
  13387. size_t cur = 0;
  13388. const int nk = node->src[0]->ne[0];
  13389. if (node->src[0]->type == GGML_TYPE_F16 &&
  13390. node->src[1]->type == GGML_TYPE_F32) {
  13391. cur = sizeof(ggml_fp16_t)*(
  13392. nk*ggml_up32(node->src[0]->ne[1])*node->src[0]->ne[2] +
  13393. ( 2*(nk/2) + node->src[1]->ne[0])*node->src[1]->ne[1]
  13394. );
  13395. } else if (node->src[0]->type == GGML_TYPE_F32 &&
  13396. node->src[1]->type == GGML_TYPE_F32) {
  13397. cur = sizeof(float)*(
  13398. nk*ggml_up32(node->src[0]->ne[1])*node->src[0]->ne[2] +
  13399. ( 2*(nk/2) + node->src[1]->ne[0])*node->src[1]->ne[1]
  13400. );
  13401. } else {
  13402. GGML_ASSERT(false);
  13403. }
  13404. work_size = MAX(work_size, cur);
  13405. } break;
  13406. case GGML_OP_CONV_2D:
  13407. {
  13408. n_tasks = n_threads;
  13409. GGML_ASSERT(node->src[1]->ne[3] == 1);
  13410. const int64_t ne00 = node->src[0]->ne[0]; // W
  13411. const int64_t ne01 = node->src[0]->ne[1]; // H
  13412. const int64_t ne02 = node->src[0]->ne[2]; // C
  13413. const int64_t ne03 = node->src[0]->ne[3]; // N
  13414. const int64_t ne10 = node->src[1]->ne[0]; // W
  13415. const int64_t ne11 = node->src[1]->ne[1]; // H
  13416. const int64_t ne12 = node->src[1]->ne[2]; // C
  13417. const int64_t nk = ne00*ne01;
  13418. UNUSED(ne02);
  13419. UNUSED(ne03);
  13420. UNUSED(nk);
  13421. size_t cur = 0;
  13422. if (node->src[0]->type == GGML_TYPE_F16 &&
  13423. node->src[1]->type == GGML_TYPE_F32) {
  13424. cur = sizeof(ggml_fp16_t)*(ne10*ne11*ne12);
  13425. } else if (node->src[0]->type == GGML_TYPE_F32 &&
  13426. node->src[1]->type == GGML_TYPE_F32) {
  13427. cur = sizeof(float)* (ne10*ne11*ne12);
  13428. } else {
  13429. GGML_ASSERT(false);
  13430. }
  13431. work_size = MAX(work_size, cur);
  13432. } break;
  13433. case GGML_OP_FLASH_ATTN:
  13434. {
  13435. n_tasks = n_threads;
  13436. size_t cur = 0;
  13437. const int64_t ne11 = ggml_up(node->src[1]->ne[1], GGML_SOFT_MAX_UNROLL);
  13438. if (node->src[1]->type == GGML_TYPE_F32) {
  13439. cur = sizeof(float)*ne11*n_tasks; // TODO: this can become (n_tasks-1)
  13440. cur += sizeof(float)*ne11*n_tasks; // this is overestimated by x2
  13441. }
  13442. if (node->src[1]->type == GGML_TYPE_F16) {
  13443. cur = sizeof(float)*ne11*n_tasks; // TODO: this can become (n_tasks-1)
  13444. cur += sizeof(float)*ne11*n_tasks; // this is overestimated by x2
  13445. }
  13446. work_size = MAX(work_size, cur);
  13447. } break;
  13448. case GGML_OP_FLASH_FF:
  13449. {
  13450. n_tasks = n_threads;
  13451. size_t cur = 0;
  13452. if (node->src[1]->type == GGML_TYPE_F32) {
  13453. cur = sizeof(float)*node->src[1]->ne[1]*n_tasks; // TODO: this can become (n_tasks-1)
  13454. cur += sizeof(float)*node->src[1]->ne[1]*n_tasks; // this is overestimated by x2
  13455. }
  13456. if (node->src[1]->type == GGML_TYPE_F16) {
  13457. cur = sizeof(float)*node->src[1]->ne[1]*n_tasks; // TODO: this can become (n_tasks-1)
  13458. cur += sizeof(float)*node->src[1]->ne[1]*n_tasks; // this is overestimated by x2
  13459. }
  13460. work_size = MAX(work_size, cur);
  13461. } break;
  13462. case GGML_OP_FLASH_ATTN_BACK:
  13463. {
  13464. n_tasks = n_threads;
  13465. size_t cur = 0;
  13466. const int64_t D = node->src[0]->ne[0];
  13467. const int64_t ne11 = ggml_up(node->src[1]->ne[1], GGML_SOFT_MAX_UNROLL);
  13468. const int64_t mxDn = MAX(D, ne11) * 2; // *2 because of S and SM in ggml_compute_forward_flash_attn_back
  13469. if (node->src[1]->type == GGML_TYPE_F32) {
  13470. cur = sizeof(float)*mxDn*n_tasks; // TODO: this can become (n_tasks-1)
  13471. cur += sizeof(float)*mxDn*n_tasks; // this is overestimated by x2
  13472. }
  13473. if (node->src[1]->type == GGML_TYPE_F16) {
  13474. cur = sizeof(float)*mxDn*n_tasks; // TODO: this can become (n_tasks-1)
  13475. cur += sizeof(float)*mxDn*n_tasks; // this is overestimated by x2
  13476. }
  13477. work_size = MAX(work_size, cur);
  13478. } break;
  13479. case GGML_OP_WIN_PART:
  13480. case GGML_OP_WIN_UNPART:
  13481. case GGML_OP_MAP_UNARY:
  13482. case GGML_OP_MAP_BINARY:
  13483. case GGML_OP_MAP_CUSTOM1:
  13484. case GGML_OP_MAP_CUSTOM2:
  13485. case GGML_OP_MAP_CUSTOM3:
  13486. {
  13487. n_tasks = 1;
  13488. } break;
  13489. case GGML_OP_CROSS_ENTROPY_LOSS:
  13490. {
  13491. n_tasks = n_threads;
  13492. size_t cur = ggml_type_size(node->type)*(n_tasks + node->src[0]->ne[0]*n_tasks);
  13493. work_size = MAX(work_size, cur);
  13494. } break;
  13495. case GGML_OP_CROSS_ENTROPY_LOSS_BACK:
  13496. {
  13497. n_tasks = n_threads;
  13498. size_t cur = ggml_type_size(node->type)*node->src[0]->ne[0]*n_tasks;
  13499. work_size = MAX(work_size, cur);
  13500. } break;
  13501. case GGML_OP_NONE:
  13502. {
  13503. n_tasks = 1;
  13504. } break;
  13505. case GGML_OP_COUNT:
  13506. {
  13507. GGML_ASSERT(false);
  13508. } break;
  13509. }
  13510. cplan.n_tasks[i] = n_tasks;
  13511. }
  13512. if (work_size > 0) {
  13513. work_size += CACHE_LINE_SIZE*(n_threads - 1);
  13514. }
  13515. cplan.n_threads = n_threads;
  13516. cplan.work_size = work_size;
  13517. cplan.work_data = NULL;
  13518. return cplan;
  13519. }
  13520. void ggml_graph_compute(struct ggml_cgraph * cgraph, struct ggml_cplan * cplan) {
  13521. {
  13522. GGML_ASSERT(cplan);
  13523. GGML_ASSERT(cplan->n_threads > 0);
  13524. if (cplan->work_size > 0) {
  13525. GGML_ASSERT(cplan->work_data);
  13526. }
  13527. for (int i = 0; i < cgraph->n_nodes; ++i) {
  13528. if (cgraph->nodes[i]->op != GGML_OP_NONE) {
  13529. GGML_ASSERT(cplan->n_tasks[i] > 0);
  13530. }
  13531. }
  13532. }
  13533. const int n_threads = cplan->n_threads;
  13534. struct ggml_compute_state_shared state_shared = {
  13535. /*.cgraph =*/ cgraph,
  13536. /*.cgraph_plan =*/ cplan,
  13537. /*.perf_node_start_cycles =*/ 0,
  13538. /*.perf_node_start_time_us =*/ 0,
  13539. /*.n_threads =*/ n_threads,
  13540. /*.n_active =*/ n_threads,
  13541. /*.node_n =*/ -1,
  13542. };
  13543. struct ggml_compute_state * workers = alloca(sizeof(struct ggml_compute_state)*n_threads);
  13544. // create thread pool
  13545. if (n_threads > 1) {
  13546. for (int j = 1; j < n_threads; ++j) {
  13547. workers[j] = (struct ggml_compute_state) {
  13548. .thrd = 0,
  13549. .ith = j,
  13550. .shared = &state_shared,
  13551. };
  13552. const int rc = ggml_thread_create(&workers[j].thrd, NULL, ggml_graph_compute_thread, &workers[j]);
  13553. GGML_ASSERT(rc == 0);
  13554. }
  13555. }
  13556. workers[0].ith = 0;
  13557. workers[0].shared = &state_shared;
  13558. const int64_t perf_start_cycles = ggml_perf_cycles();
  13559. const int64_t perf_start_time_us = ggml_perf_time_us();
  13560. // this is a work thread too
  13561. ggml_graph_compute_thread(&workers[0]);
  13562. // don't leave affinity set on the main thread
  13563. clear_numa_thread_affinity();
  13564. // join thread pool
  13565. if (n_threads > 1) {
  13566. for (int j = 1; j < n_threads; j++) {
  13567. const int rc = ggml_thread_join(workers[j].thrd, NULL);
  13568. GGML_ASSERT(rc == 0);
  13569. }
  13570. }
  13571. // performance stats (graph)
  13572. {
  13573. int64_t perf_cycles_cur = ggml_perf_cycles() - perf_start_cycles;
  13574. int64_t perf_time_us_cur = ggml_perf_time_us() - perf_start_time_us;
  13575. cgraph->perf_runs++;
  13576. cgraph->perf_cycles += perf_cycles_cur;
  13577. cgraph->perf_time_us += perf_time_us_cur;
  13578. GGML_PRINT_DEBUG("%s: perf (%d) - cpu = %.3f / %.3f ms, wall = %.3f / %.3f ms\n",
  13579. __func__, cgraph->perf_runs,
  13580. (double) perf_cycles_cur / (double) ggml_cycles_per_ms(),
  13581. (double) cgraph->perf_cycles / (double) ggml_cycles_per_ms() / (double) cgraph->perf_runs,
  13582. (double) perf_time_us_cur / 1000.0,
  13583. (double) cgraph->perf_time_us / 1000.0 / cgraph->perf_runs);
  13584. }
  13585. }
  13586. void ggml_graph_reset(struct ggml_cgraph * cgraph) {
  13587. for (int i = 0; i < cgraph->n_nodes; i++) {
  13588. struct ggml_tensor * grad = cgraph->grads[i];
  13589. if (grad) {
  13590. ggml_set_zero(grad);
  13591. }
  13592. }
  13593. }
  13594. void ggml_graph_compute_with_ctx(struct ggml_context * ctx, struct ggml_cgraph * cgraph, int n_threads) {
  13595. struct ggml_cplan cplan = ggml_graph_plan(cgraph, n_threads);
  13596. struct ggml_tensor * buf = ggml_new_tensor_1d(ctx, GGML_TYPE_I8, cplan.work_size);
  13597. GGML_ASSERT(buf);
  13598. cplan.work_data = buf->data;
  13599. ggml_graph_compute(cgraph, &cplan);
  13600. }
  13601. struct ggml_tensor * ggml_graph_get_tensor(struct ggml_cgraph * cgraph, const char * name) {
  13602. for (int i = 0; i < cgraph->n_leafs; i++) {
  13603. struct ggml_tensor * leaf = cgraph->leafs[i];
  13604. if (strcmp(leaf->name, name) == 0) {
  13605. return leaf;
  13606. }
  13607. }
  13608. for (int i = 0; i < cgraph->n_nodes; i++) {
  13609. struct ggml_tensor * node = cgraph->nodes[i];
  13610. if (strcmp(node->name, name) == 0) {
  13611. return node;
  13612. }
  13613. }
  13614. return NULL;
  13615. }
  13616. static void ggml_graph_export_leaf(const struct ggml_tensor * tensor, FILE * fout) {
  13617. const int64_t * ne = tensor->ne;
  13618. const size_t * nb = tensor->nb;
  13619. fprintf(fout, "%-6s %-12s %8d %" PRId64 " %" PRId64 " %" PRId64 " %" PRId64 " %16zu %16zu %16zu %16zu %16p %32s\n",
  13620. ggml_type_name(tensor->type),
  13621. ggml_op_name (tensor->op),
  13622. tensor->n_dims,
  13623. ne[0], ne[1], ne[2], ne[3],
  13624. nb[0], nb[1], nb[2], nb[3],
  13625. tensor->data,
  13626. tensor->name);
  13627. }
  13628. static void ggml_graph_export_node(const struct ggml_tensor * tensor, const char * arg, FILE * fout) {
  13629. const int64_t * ne = tensor->ne;
  13630. const size_t * nb = tensor->nb;
  13631. fprintf(fout, "%-6s %-6s %-12s %8d %" PRId64 " %" PRId64 " %" PRId64 " %" PRId64 " %16zu %16zu %16zu %16zu %16p %32s\n",
  13632. arg,
  13633. ggml_type_name(tensor->type),
  13634. ggml_op_name (tensor->op),
  13635. tensor->n_dims,
  13636. ne[0], ne[1], ne[2], ne[3],
  13637. nb[0], nb[1], nb[2], nb[3],
  13638. tensor->data,
  13639. tensor->name);
  13640. }
  13641. void ggml_graph_export(const struct ggml_cgraph * cgraph, const char * fname) {
  13642. //assert(cgraph->work == NULL);
  13643. //assert(cgraph->work_size == 0);
  13644. uint64_t size_eval = 0;
  13645. // compute size of intermediate results
  13646. // TODO: does not take into account scratch buffers !!!!
  13647. for (int i = 0; i < cgraph->n_nodes; ++i) {
  13648. size_eval += ggml_nbytes(cgraph->nodes[i]);
  13649. }
  13650. // print
  13651. {
  13652. FILE * fout = stdout;
  13653. fprintf(fout, "\n");
  13654. fprintf(fout, "%-16s %8x\n", "magic", GGML_FILE_MAGIC);
  13655. fprintf(fout, "%-16s %8d\n", "version", GGML_FILE_VERSION);
  13656. fprintf(fout, "%-16s %8d\n", "leafs", cgraph->n_leafs);
  13657. fprintf(fout, "%-16s %8d\n", "nodes", cgraph->n_nodes);
  13658. fprintf(fout, "%-16s %" PRIu64 "\n", "eval", size_eval);
  13659. // header
  13660. fprintf(fout, "\n");
  13661. fprintf(fout, "%-6s %-12s %8s %8s %8s %8s %8s %16s %16s %16s %16s %16s %16s\n",
  13662. "TYPE", "OP", "NDIMS", "NE0", "NE1", "NE2", "NE3", "NB0", "NB1", "NB2", "NB3", "DATA", "NAME");
  13663. for (int i = 0; i < cgraph->n_leafs; ++i) {
  13664. ggml_graph_export_leaf(cgraph->leafs[i], fout);
  13665. GGML_ASSERT(cgraph->leafs[i]->op == GGML_OP_NONE);
  13666. GGML_ASSERT(cgraph->leafs[i]->src[0] == NULL);
  13667. GGML_ASSERT(cgraph->leafs[i]->src[1] == NULL);
  13668. }
  13669. // header
  13670. fprintf(fout, "\n");
  13671. fprintf(fout, "%-6s %-6s %-12s %8s %8s %8s %8s %8s %16s %16s %16s %16s %8s %16s %16s\n",
  13672. "ARG", "TYPE", "OP", "NDIMS", "NE0", "NE1", "NE2", "NE3", "NB0", "NB1", "NB2", "NB3", "NTASKS", "DATA", "NAME");
  13673. for (int i = 0; i < cgraph->n_nodes; ++i) {
  13674. ggml_graph_export_node(cgraph->nodes[i], "DST", fout);
  13675. for (int j = 0; j < GGML_MAX_SRC; ++j) {
  13676. if (cgraph->nodes[i]->src[j]) {
  13677. ggml_graph_export_node(cgraph->nodes[i]->src[j], "SRC", fout);
  13678. }
  13679. }
  13680. fprintf(fout, "\n");
  13681. }
  13682. fprintf(fout, "\n");
  13683. }
  13684. // write binary data
  13685. {
  13686. FILE * fout = fopen(fname, "wb");
  13687. if (!fout) {
  13688. fprintf(stderr, "%s: failed to open %s\n", __func__, fname);
  13689. return;
  13690. }
  13691. // header
  13692. {
  13693. const uint32_t magic = GGML_FILE_MAGIC;
  13694. const uint32_t version = GGML_FILE_VERSION;
  13695. const uint32_t n_leafs = cgraph->n_leafs;
  13696. const uint32_t nodes = cgraph->n_nodes;
  13697. fwrite(&magic, sizeof(uint32_t), 1, fout);
  13698. fwrite(&version, sizeof(uint32_t), 1, fout);
  13699. fwrite(&n_leafs, sizeof(uint32_t), 1, fout);
  13700. fwrite(&nodes, sizeof(uint32_t), 1, fout);
  13701. fwrite(&size_eval, sizeof(uint64_t), 1, fout);
  13702. }
  13703. // leafs
  13704. {
  13705. for (int i = 0; i < cgraph->n_leafs; ++i) {
  13706. const struct ggml_tensor * tensor = cgraph->leafs[i];
  13707. const uint32_t type = tensor->type;
  13708. const uint32_t op = tensor->op;
  13709. const uint32_t n_dims = tensor->n_dims;
  13710. fwrite(&type, sizeof(uint32_t), 1, fout);
  13711. fwrite(&op, sizeof(uint32_t), 1, fout);
  13712. fwrite(&n_dims, sizeof(uint32_t), 1, fout);
  13713. for (int j = 0; j < GGML_MAX_DIMS; ++j) {
  13714. const uint64_t ne = tensor->ne[j];
  13715. const uint64_t nb = tensor->nb[j];
  13716. fwrite(&ne, sizeof(uint64_t), 1, fout);
  13717. fwrite(&nb, sizeof(uint64_t), 1, fout);
  13718. }
  13719. fwrite(tensor->name, sizeof(char), GGML_MAX_NAME, fout);
  13720. // dump the data
  13721. // TODO: pad this to 32 byte boundary
  13722. {
  13723. const size_t size = ggml_nbytes(tensor);
  13724. fwrite(tensor->data, sizeof(char), size, fout);
  13725. }
  13726. }
  13727. }
  13728. // nodes
  13729. {
  13730. for (int i = 0; i < cgraph->n_nodes; ++i) {
  13731. const struct ggml_tensor * tensor = cgraph->nodes[i];
  13732. const uint32_t type = tensor->type;
  13733. const uint32_t op = tensor->op;
  13734. const uint32_t n_dims = tensor->n_dims;
  13735. fwrite(&type, sizeof(uint32_t), 1, fout);
  13736. fwrite(&op, sizeof(uint32_t), 1, fout);
  13737. fwrite(&n_dims, sizeof(uint32_t), 1, fout);
  13738. for (int j = 0; j < GGML_MAX_DIMS; ++j) {
  13739. const uint64_t ne = tensor->ne[j];
  13740. const uint64_t nb = tensor->nb[j];
  13741. fwrite(&ne, sizeof(uint64_t), 1, fout);
  13742. fwrite(&nb, sizeof(uint64_t), 1, fout);
  13743. }
  13744. fwrite(tensor->name, sizeof(char), GGML_MAX_NAME, fout);
  13745. // output the op arguments
  13746. {
  13747. struct ggml_tensor * args[GGML_MAX_SRC] = { NULL };
  13748. for (int j = 0; j < GGML_MAX_SRC; ++j) {
  13749. args[j] = tensor->src[j];
  13750. }
  13751. for (int j = 0; j < GGML_MAX_SRC; ++j) {
  13752. if (args[j]) {
  13753. int32_t idx = -1;
  13754. // check if leaf
  13755. {
  13756. for (int k = 0; k < cgraph->n_leafs; ++k) {
  13757. if (args[j] == cgraph->leafs[k]) {
  13758. idx = k;
  13759. break;
  13760. }
  13761. }
  13762. }
  13763. // check if node
  13764. if (idx == -1) {
  13765. for (int k = 0; k < cgraph->n_nodes; ++k) {
  13766. if (args[j] == cgraph->nodes[k]) {
  13767. idx = GGML_MAX_NODES + k;
  13768. break;
  13769. }
  13770. }
  13771. }
  13772. if (idx == -1) {
  13773. fprintf(stderr, "%s: failed to find tensor, arg = %d, node = %d\n", __func__, j, i);
  13774. return;
  13775. }
  13776. fwrite(&idx, sizeof(int32_t), 1, fout);
  13777. } else {
  13778. const int32_t nul = -1;
  13779. fwrite(&nul, sizeof(int32_t), 1, fout);
  13780. }
  13781. }
  13782. }
  13783. }
  13784. }
  13785. fclose(fout);
  13786. }
  13787. }
  13788. struct ggml_cgraph ggml_graph_import(const char * fname, struct ggml_context ** ctx_data, struct ggml_context ** ctx_eval) {
  13789. assert(*ctx_data == NULL);
  13790. assert(*ctx_eval == NULL);
  13791. struct ggml_cgraph result = { 0 };
  13792. struct ggml_tensor * data = NULL;
  13793. // read file into data
  13794. {
  13795. FILE * fin = fopen(fname, "rb");
  13796. if (!fin) {
  13797. fprintf(stderr, "%s: failed to open %s\n", __func__, fname);
  13798. return result;
  13799. }
  13800. size_t fsize = 0;
  13801. fseek(fin, 0, SEEK_END);
  13802. fsize = ftell(fin);
  13803. fseek(fin, 0, SEEK_SET);
  13804. // create the data context
  13805. {
  13806. const size_t overhead = 1*ggml_tensor_overhead();
  13807. struct ggml_init_params params = {
  13808. .mem_size = fsize + overhead,
  13809. .mem_buffer = NULL,
  13810. .no_alloc = false,
  13811. };
  13812. *ctx_data = ggml_init(params);
  13813. if (!*ctx_data) {
  13814. fprintf(stderr, "%s: failed to create ggml context\n", __func__);
  13815. fclose(fin);
  13816. return result;
  13817. }
  13818. }
  13819. data = ggml_new_tensor_1d(*ctx_data, GGML_TYPE_I8, fsize);
  13820. {
  13821. const size_t ret = fread(data->data, sizeof(char), fsize, fin);
  13822. if (ret != fsize) {
  13823. fprintf(stderr, "%s: failed to read %s\n", __func__, fname);
  13824. fclose(fin);
  13825. return result;
  13826. }
  13827. }
  13828. fclose(fin);
  13829. }
  13830. // populate result
  13831. {
  13832. char * ptr = (char *) data->data;
  13833. const uint32_t magic = *(const uint32_t *) ptr; ptr += sizeof(magic);
  13834. if (magic != GGML_FILE_MAGIC) {
  13835. fprintf(stderr, "%s: invalid magic number, got %08x\n", __func__, magic);
  13836. return result;
  13837. }
  13838. const uint32_t version = *(const uint32_t *) ptr; ptr += sizeof(version);
  13839. if (version != GGML_FILE_VERSION) {
  13840. fprintf(stderr, "%s: invalid version number\n", __func__);
  13841. return result;
  13842. }
  13843. const uint32_t n_leafs = *(const uint32_t *) ptr; ptr += sizeof(n_leafs);
  13844. const uint32_t n_nodes = *(const uint32_t *) ptr; ptr += sizeof(n_nodes);
  13845. const uint64_t size_eval = *(const uint64_t *) ptr; ptr += sizeof(size_eval);
  13846. result.n_leafs = n_leafs;
  13847. result.n_nodes = n_nodes;
  13848. // create the data context
  13849. {
  13850. const size_t overhead = (n_leafs + n_nodes)*ggml_tensor_overhead();
  13851. struct ggml_init_params params = {
  13852. .mem_size = size_eval + overhead,
  13853. .mem_buffer = NULL,
  13854. .no_alloc = true,
  13855. };
  13856. *ctx_eval = ggml_init(params);
  13857. if (!*ctx_eval) {
  13858. fprintf(stderr, "%s: failed to create ggml context\n", __func__);
  13859. return result;
  13860. }
  13861. }
  13862. // leafs
  13863. {
  13864. uint32_t type;
  13865. uint32_t op;
  13866. uint32_t n_dims;
  13867. for (uint32_t i = 0; i < n_leafs; ++i) {
  13868. type = *(const uint32_t *) ptr; ptr += sizeof(type);
  13869. op = *(const uint32_t *) ptr; ptr += sizeof(op);
  13870. n_dims = *(const uint32_t *) ptr; ptr += sizeof(n_dims);
  13871. int64_t ne[GGML_MAX_DIMS];
  13872. size_t nb[GGML_MAX_DIMS];
  13873. for (int j = 0; j < GGML_MAX_DIMS; ++j) {
  13874. uint64_t ne_cur;
  13875. uint64_t nb_cur;
  13876. ne_cur = *(const uint64_t *) ptr; ptr += sizeof(ne_cur);
  13877. nb_cur = *(const uint64_t *) ptr; ptr += sizeof(nb_cur);
  13878. ne[j] = ne_cur;
  13879. nb[j] = nb_cur;
  13880. }
  13881. struct ggml_tensor * tensor = ggml_new_tensor(*ctx_eval, (enum ggml_type) type, n_dims, ne);
  13882. tensor->op = (enum ggml_op) op;
  13883. memcpy(tensor->name, ptr, GGML_MAX_NAME); ptr += GGML_MAX_NAME;
  13884. tensor->data = (void *) ptr;
  13885. for (int j = 0; j < GGML_MAX_DIMS; ++j) {
  13886. tensor->nb[j] = nb[j];
  13887. }
  13888. result.leafs[i] = tensor;
  13889. ptr += ggml_nbytes(tensor);
  13890. fprintf(stderr, "%s: loaded leaf %d: '%16s', %3d dims, %9zu bytes\n", __func__, i, tensor->name, n_dims, ggml_nbytes(tensor));
  13891. }
  13892. }
  13893. ggml_set_no_alloc(*ctx_eval, false);
  13894. // nodes
  13895. {
  13896. uint32_t type;
  13897. uint32_t op;
  13898. uint32_t n_dims;
  13899. for (uint32_t i = 0; i < n_nodes; ++i) {
  13900. type = *(const uint32_t *) ptr; ptr += sizeof(type);
  13901. op = *(const uint32_t *) ptr; ptr += sizeof(op);
  13902. n_dims = *(const uint32_t *) ptr; ptr += sizeof(n_dims);
  13903. enum ggml_op eop = (enum ggml_op) op;
  13904. int64_t ne[GGML_MAX_DIMS];
  13905. size_t nb[GGML_MAX_DIMS];
  13906. for (int j = 0; j < GGML_MAX_DIMS; ++j) {
  13907. uint64_t ne_cur;
  13908. uint64_t nb_cur;
  13909. ne_cur = *(const uint64_t *) ptr; ptr += sizeof(ne_cur);
  13910. nb_cur = *(const uint64_t *) ptr; ptr += sizeof(nb_cur);
  13911. ne[j] = ne_cur;
  13912. nb[j] = nb_cur;
  13913. }
  13914. const char * ptr_name = ptr; ptr += GGML_MAX_NAME;
  13915. const int32_t * ptr_arg_idx = (const int32_t *) ptr; ptr += GGML_MAX_SRC*sizeof(int32_t);
  13916. struct ggml_tensor * args[GGML_MAX_SRC] = { NULL };
  13917. // parse args
  13918. for (int j = 0; j < GGML_MAX_SRC; ++j) {
  13919. const int32_t arg_idx = ptr_arg_idx[j];
  13920. if (arg_idx == -1) {
  13921. continue;
  13922. }
  13923. if (arg_idx < GGML_MAX_NODES) {
  13924. args[j] = result.leafs[arg_idx];
  13925. } else {
  13926. args[j] = result.nodes[arg_idx - GGML_MAX_NODES];
  13927. }
  13928. }
  13929. // create the tensor
  13930. // "view" operations are handled differently
  13931. // TODO: handle inplace ops - currently a copy is always made
  13932. struct ggml_tensor * tensor = NULL;
  13933. switch (eop) {
  13934. // TODO: implement other view ops
  13935. case GGML_OP_RESHAPE:
  13936. {
  13937. tensor = ggml_reshape_4d(*ctx_eval, args[0], ne[0], ne[1], ne[2], ne[3]);
  13938. } break;
  13939. case GGML_OP_VIEW:
  13940. {
  13941. tensor = ggml_view_4d(*ctx_eval, args[0], ne[0], ne[1], ne[2], ne[3], 0, 0, 0, 0);
  13942. uint64_t offs;
  13943. memcpy(&offs, args[2]->data, sizeof(offs));
  13944. tensor->data = ((char *) tensor->data) + offs;
  13945. } break;
  13946. case GGML_OP_TRANSPOSE:
  13947. {
  13948. tensor = ggml_transpose(*ctx_eval, args[0]);
  13949. } break;
  13950. case GGML_OP_PERMUTE:
  13951. {
  13952. tensor = ggml_view_4d(*ctx_eval, args[0], ne[0], ne[1], ne[2], ne[3], 0, 0, 0, 0);
  13953. } break;
  13954. default:
  13955. {
  13956. tensor = ggml_new_tensor(*ctx_eval, (enum ggml_type) type, n_dims, ne);
  13957. tensor->op = eop;
  13958. } break;
  13959. }
  13960. memcpy(tensor->name, ptr_name, GGML_MAX_NAME);
  13961. for (int j = 0; j < GGML_MAX_DIMS; ++j) {
  13962. tensor->nb[j] = nb[j];
  13963. }
  13964. for (int j = 0; j < GGML_MAX_SRC; ++j) {
  13965. tensor->src[j] = args[j];
  13966. }
  13967. result.nodes[i] = tensor;
  13968. fprintf(stderr, "%s: loaded node %d: '%16s', %3d dims, %9zu bytes\n", __func__, i, tensor->name, n_dims, ggml_nbytes(tensor));
  13969. }
  13970. }
  13971. }
  13972. return result;
  13973. }
  13974. void ggml_graph_print(const struct ggml_cgraph * cgraph) {
  13975. int64_t perf_total_per_op_us[GGML_OP_COUNT] = {0};
  13976. GGML_PRINT("=== GRAPH ===\n");
  13977. GGML_PRINT_DEBUG("n_threads = %d\n", cgraph->n_threads);
  13978. GGML_PRINT_DEBUG("total work size = %zu bytes\n", cgraph->work_size);
  13979. GGML_PRINT("n_nodes = %d\n", cgraph->n_nodes);
  13980. for (int i = 0; i < cgraph->n_nodes; i++) {
  13981. struct ggml_tensor * node = cgraph->nodes[i];
  13982. perf_total_per_op_us[node->op] += MAX(1, node->perf_time_us);
  13983. GGML_PRINT(" - %3d: [ %5" PRId64 ", %5" PRId64 ", %5" PRId64 "] %16s %s (%3d) cpu = %7.3f / %7.3f ms, wall = %7.3f / %7.3f ms\n",
  13984. i,
  13985. node->ne[0], node->ne[1], node->ne[2],
  13986. GGML_OP_NAME[node->op], node->is_param ? "x" : node->grad ? "g" : " ", node->perf_runs,
  13987. (double) node->perf_cycles / (double) ggml_cycles_per_ms(),
  13988. (double) node->perf_cycles / (double) ggml_cycles_per_ms() / (double) node->perf_runs,
  13989. (double) node->perf_time_us / 1000.0,
  13990. (double) node->perf_time_us / 1000.0 / node->perf_runs);
  13991. }
  13992. GGML_PRINT("n_leafs = %d\n", cgraph->n_leafs);
  13993. for (int i = 0; i < cgraph->n_leafs; i++) {
  13994. struct ggml_tensor * node = cgraph->leafs[i];
  13995. GGML_PRINT(" - %3d: [ %5" PRId64 ", %5" PRId64 "] %8s\n",
  13996. i,
  13997. node->ne[0], node->ne[1],
  13998. GGML_OP_NAME[node->op]);
  13999. }
  14000. for (int i = 0; i < GGML_OP_COUNT; i++) {
  14001. if (perf_total_per_op_us[i] == 0) {
  14002. continue;
  14003. }
  14004. GGML_PRINT("perf_total_per_op_us[%16s] = %7.3f ms\n", GGML_OP_NAME[i], (double) perf_total_per_op_us[i] / 1000.0);
  14005. }
  14006. GGML_PRINT("========================================\n");
  14007. }
  14008. // check if node is part of the graph
  14009. static bool ggml_graph_find(const struct ggml_cgraph * cgraph, const struct ggml_tensor * node) {
  14010. if (cgraph == NULL) {
  14011. return true;
  14012. }
  14013. for (int i = 0; i < cgraph->n_nodes; i++) {
  14014. if (cgraph->nodes[i] == node) {
  14015. return true;
  14016. }
  14017. }
  14018. return false;
  14019. }
  14020. static struct ggml_tensor * ggml_graph_get_parent(const struct ggml_cgraph * cgraph, const struct ggml_tensor * node) {
  14021. for (int i = 0; i < cgraph->n_nodes; i++) {
  14022. struct ggml_tensor * parent = cgraph->nodes[i];
  14023. if (parent->grad == node) {
  14024. return parent;
  14025. }
  14026. }
  14027. return NULL;
  14028. }
  14029. static void ggml_graph_dump_dot_node_edge(FILE * fp, const struct ggml_cgraph * gb, struct ggml_tensor * node, struct ggml_tensor * parent, const char * label) {
  14030. struct ggml_tensor * gparent = ggml_graph_get_parent(gb, node);
  14031. struct ggml_tensor * gparent0 = ggml_graph_get_parent(gb, parent);
  14032. fprintf(fp, " \"%p\":%s -> \"%p\":%s [ arrowhead = %s; style = %s; label = \"%s\"; ]\n",
  14033. gparent0 ? (void *) gparent0 : (void *) parent,
  14034. gparent0 ? "g" : "x",
  14035. gparent ? (void *) gparent : (void *) node,
  14036. gparent ? "g" : "x",
  14037. gparent ? "empty" : "vee",
  14038. gparent ? "dashed" : "solid",
  14039. label);
  14040. }
  14041. static void ggml_graph_dump_dot_leaf_edge(FILE * fp, struct ggml_tensor * node, struct ggml_tensor * parent, const char * label) {
  14042. fprintf(fp, " \"%p\":%s -> \"%p\":%s [ label = \"%s\"; ]\n",
  14043. (void *) parent, "x",
  14044. (void *) node, "x",
  14045. label);
  14046. }
  14047. void ggml_graph_dump_dot(const struct ggml_cgraph * gb, const struct ggml_cgraph * gf, const char * filename) {
  14048. char color[16];
  14049. FILE * fp = fopen(filename, "w");
  14050. GGML_ASSERT(fp);
  14051. fprintf(fp, "digraph G {\n");
  14052. fprintf(fp, " newrank = true;\n");
  14053. fprintf(fp, " rankdir = LR;\n");
  14054. for (int i = 0; i < gb->n_nodes; i++) {
  14055. struct ggml_tensor * node = gb->nodes[i];
  14056. if (ggml_graph_get_parent(gb, node) != NULL) {
  14057. continue;
  14058. }
  14059. if (node->is_param) {
  14060. snprintf(color, sizeof(color), "yellow");
  14061. } else if (node->grad) {
  14062. if (ggml_graph_find(gf, node)) {
  14063. snprintf(color, sizeof(color), "green");
  14064. } else {
  14065. snprintf(color, sizeof(color), "lightblue");
  14066. }
  14067. } else {
  14068. snprintf(color, sizeof(color), "white");
  14069. }
  14070. fprintf(fp, " \"%p\" [ "
  14071. "style = filled; fillcolor = %s; shape = record; "
  14072. "label=\"",
  14073. (void *) node, color);
  14074. if (strlen(node->name) > 0) {
  14075. fprintf(fp, "%s (%s)|", node->name, ggml_type_name(node->type));
  14076. } else {
  14077. fprintf(fp, "(%s)|", ggml_type_name(node->type));
  14078. }
  14079. if (node->n_dims == 2) {
  14080. fprintf(fp, "%d [%" PRId64 ", %" PRId64 "] | <x>%s", i, node->ne[0], node->ne[1], GGML_OP_SYMBOL[node->op]);
  14081. } else {
  14082. fprintf(fp, "%d [%" PRId64 ", %" PRId64 ", %" PRId64 "] | <x>%s", i, node->ne[0], node->ne[1], node->ne[2], GGML_OP_SYMBOL[node->op]);
  14083. }
  14084. if (node->grad) {
  14085. fprintf(fp, " | <g>%s\"; ]\n", GGML_OP_SYMBOL[node->grad->op]);
  14086. } else {
  14087. fprintf(fp, "\"; ]\n");
  14088. }
  14089. }
  14090. for (int i = 0; i < gb->n_leafs; i++) {
  14091. struct ggml_tensor * node = gb->leafs[i];
  14092. snprintf(color, sizeof(color), "pink");
  14093. fprintf(fp, " \"%p\" [ "
  14094. "style = filled; fillcolor = %s; shape = record; "
  14095. "label=\"<x>",
  14096. (void *) node, color);
  14097. if (strlen(node->name) > 0) {
  14098. fprintf(fp, "%s (%s)|", node->name, ggml_type_name(node->type));
  14099. } else {
  14100. fprintf(fp, "(%s)|", ggml_type_name(node->type));
  14101. }
  14102. fprintf(fp, "CONST %d [%" PRId64 ", %" PRId64 "]", i, node->ne[0], node->ne[1]);
  14103. if (ggml_nelements(node) < 5) {
  14104. fprintf(fp, " | (");
  14105. for (int j = 0; j < ggml_nelements(node); j++) {
  14106. if (node->type == GGML_TYPE_I8 || node->type == GGML_TYPE_I16 || node->type == GGML_TYPE_I32) {
  14107. fprintf(fp, "%d", ggml_get_i32_1d(node, j));
  14108. }
  14109. else if (node->type == GGML_TYPE_F32 || node->type == GGML_TYPE_F16) {
  14110. fprintf(fp, "%.1e", (double)ggml_get_f32_1d(node, j));
  14111. }
  14112. else {
  14113. fprintf(fp, "#");
  14114. }
  14115. if (j < ggml_nelements(node) - 1) {
  14116. fprintf(fp, ", ");
  14117. }
  14118. }
  14119. fprintf(fp, ")");
  14120. }
  14121. fprintf(fp, "\"; ]\n");
  14122. }
  14123. for (int i = 0; i < gb->n_nodes; i++) {
  14124. struct ggml_tensor * node = gb->nodes[i];
  14125. for (int j = 0; j < GGML_MAX_SRC; j++) {
  14126. if (node->src[j]) {
  14127. char label[16];
  14128. snprintf(label, sizeof(label), "src %d", j);
  14129. ggml_graph_dump_dot_node_edge(fp, gb, node, node->src[j], label);
  14130. }
  14131. }
  14132. }
  14133. for (int i = 0; i < gb->n_leafs; i++) {
  14134. struct ggml_tensor * node = gb->leafs[i];
  14135. for (int j = 0; j < GGML_MAX_SRC; j++) {
  14136. if (node->src[j]) {
  14137. char label[16];
  14138. snprintf(label, sizeof(label), "src %d", j);
  14139. ggml_graph_dump_dot_leaf_edge(fp, node, node->src[j], label);
  14140. }
  14141. }
  14142. }
  14143. fprintf(fp, "}\n");
  14144. fclose(fp);
  14145. GGML_PRINT("%s: dot -Tpng %s -o %s.png && open %s.png\n", __func__, filename, filename, filename);
  14146. }
  14147. ////////////////////////////////////////////////////////////////////////////////
  14148. static void ggml_opt_set_params(int np, struct ggml_tensor * const ps[], const float * x) {
  14149. int i = 0;
  14150. for (int p = 0; p < np; ++p) {
  14151. const int64_t ne = ggml_nelements(ps[p]) ;
  14152. // TODO: add function to set tensor from array
  14153. for (int64_t j = 0; j < ne; ++j) {
  14154. ggml_set_f32_1d(ps[p], j, x[i++]);
  14155. }
  14156. }
  14157. }
  14158. static void ggml_opt_get_params(int np, struct ggml_tensor * const ps[], float * x) {
  14159. int i = 0;
  14160. for (int p = 0; p < np; ++p) {
  14161. const int64_t ne = ggml_nelements(ps[p]) ;
  14162. // TODO: add function to get all elements at once
  14163. for (int64_t j = 0; j < ne; ++j) {
  14164. x[i++] = ggml_get_f32_1d(ps[p], j);
  14165. }
  14166. }
  14167. }
  14168. static void ggml_opt_get_grad(int np, struct ggml_tensor * const ps[], float * g) {
  14169. int i = 0;
  14170. for (int p = 0; p < np; ++p) {
  14171. const int64_t ne = ggml_nelements(ps[p]) ;
  14172. // TODO: add function to get all elements at once
  14173. for (int64_t j = 0; j < ne; ++j) {
  14174. g[i++] = ggml_get_f32_1d(ps[p]->grad, j);
  14175. }
  14176. }
  14177. }
  14178. //
  14179. // ADAM
  14180. //
  14181. // ref: https://arxiv.org/pdf/1412.6980.pdf
  14182. //
  14183. static enum ggml_opt_result ggml_opt_adam(
  14184. struct ggml_context * ctx,
  14185. struct ggml_opt_context * opt,
  14186. struct ggml_opt_params params,
  14187. struct ggml_tensor * f,
  14188. struct ggml_cgraph * gf,
  14189. struct ggml_cgraph * gb) {
  14190. GGML_ASSERT(ggml_is_scalar(f));
  14191. // these will store the parameters we want to optimize
  14192. struct ggml_tensor * ps[GGML_MAX_PARAMS];
  14193. int np = 0;
  14194. int nx = 0;
  14195. for (int i = 0; i < gf->n_nodes; ++i) {
  14196. if (gf->nodes[i]->is_param) {
  14197. GGML_PRINT_DEBUG("found param %d: grad->op = %d\n", np, gf->nodes[i]->grad->op);
  14198. GGML_ASSERT(np < GGML_MAX_PARAMS);
  14199. ps[np++] = gf->nodes[i];
  14200. nx += ggml_nelements(gf->nodes[i]);
  14201. }
  14202. }
  14203. if ((opt->params.type != params.type) || (opt->nx != nx) || (opt->params.past != params.past)) {
  14204. int iter = opt->iter;
  14205. ggml_opt_init(opt->ctx, opt, params, nx);
  14206. opt->iter = iter;
  14207. }
  14208. // constants
  14209. const float sched = params.adam.sched;
  14210. const float decay = params.adam.decay * sched;
  14211. const float alpha = params.adam.alpha * sched;
  14212. const float beta1 = params.adam.beta1;
  14213. const float beta2 = params.adam.beta2;
  14214. const float eps = params.adam.eps;
  14215. float * x = opt->adam.x->data; // view of the parameters
  14216. float * g1 = opt->adam.g1->data; // gradient
  14217. float * g2 = opt->adam.g2->data; // gradient squared
  14218. float * m = opt->adam.m->data; // first moment
  14219. float * v = opt->adam.v->data; // second moment
  14220. float * mh = opt->adam.mh->data; // first moment hat
  14221. float * vh = opt->adam.vh->data; // second moment hat
  14222. float * pf = params.past > 0 ? opt->adam.pf->data : NULL; // past function values
  14223. // update view
  14224. ggml_opt_get_params(np, ps, x);
  14225. // compute the function value
  14226. ggml_graph_reset (gf);
  14227. ggml_set_f32 (f->grad, 1.0f);
  14228. ggml_graph_compute_with_ctx(ctx, gb, params.n_threads);
  14229. opt->adam.fx_prev = ggml_get_f32_1d(f, 0);
  14230. opt->adam.fx_best = opt->adam.fx_prev;
  14231. if (pf) {
  14232. pf[opt->iter % params.past] = opt->adam.fx_prev;
  14233. }
  14234. // initialize
  14235. if (opt->just_initialized) {
  14236. opt->adam.n_no_improvement = 0;
  14237. opt->just_initialized = false;
  14238. }
  14239. float * fx_best = &opt->adam.fx_best;
  14240. float * fx_prev = &opt->adam.fx_prev;
  14241. int * n_no_improvement = &opt->adam.n_no_improvement;
  14242. int iter0 = opt->iter;
  14243. // run the optimizer
  14244. for (int t = 0; t < params.adam.n_iter; ++t) {
  14245. opt->iter = iter0 + t + 1;
  14246. GGML_PRINT_DEBUG ("=== iter %d ===\n", t);
  14247. GGML_PRINT_DEBUG ("f = %10.6f\n", ggml_get_f32_1d(f, 0));
  14248. GGML_PRINT_DEBUG_5("df/dx0 = %10.6f\n", ggml_get_f32_1d(ps[0]->grad, 0));
  14249. GGML_PRINT_DEBUG_5("df/dx1 = %10.6f\n", ggml_get_f32_1d(ps[1]->grad, 0));
  14250. for (int i = 0; i < np; ++i) {
  14251. GGML_PRINT_DEBUG("param %d: %10.6f, g = %10.6f\n", i,
  14252. ggml_get_f32_1d(ps[i], 0), ggml_get_f32_1d(ps[i]->grad, 0));
  14253. }
  14254. const int64_t t_start_wall = ggml_time_us();
  14255. const int64_t t_start_cpu = ggml_cycles();
  14256. UNUSED(t_start_wall);
  14257. UNUSED(t_start_cpu);
  14258. {
  14259. // update the gradient
  14260. ggml_opt_get_grad(np, ps, g1);
  14261. // m_t = beta1*m_t-1 + (1 - beta1)*g_t
  14262. ggml_vec_scale_f32(nx, m, beta1);
  14263. ggml_vec_mad_f32 (nx, m, g1, 1.0f - beta1);
  14264. // g2 = g1^2
  14265. ggml_vec_sqr_f32 (nx, g2, g1);
  14266. // v_t = beta2*v_t-1 + (1 - beta2)*g_t^2
  14267. ggml_vec_scale_f32(nx, v, beta2);
  14268. ggml_vec_mad_f32 (nx, v, g2, 1.0f - beta2);
  14269. // m^hat = m_t / (1 - beta1^t)
  14270. // v^hat = v_t / (1 - beta2^t)
  14271. // x_t = x_t-1 - sched*(alpha*m^hat/(sqrt(v^hat) + eps) + decay*x_t-1)
  14272. // x_t = x_t-1 - sched*alpha*m^hat/(sqrt(v^hat) + eps) - sched*decay*x_t-1
  14273. // x_t = x_t-1*(1-sched*decay) - sched*alpha*m^hat/(sqrt(v^hat) + eps)
  14274. // x_t = x_t-1*(1-sched*decay) + sched*decay*(-alpha/decay)*m^hat/(sqrt(v^hat) + eps)
  14275. // x_t = mix(x_t-1, (-alpha/decay)*m^hat/(sqrt(v^hat) + eps), sched*decay)
  14276. ggml_vec_cpy_f32 (nx, mh, m);
  14277. ggml_vec_cpy_f32 (nx, vh, v);
  14278. ggml_vec_scale_f32(nx, mh, alpha/(1.0f - powf(beta1, opt->iter)));
  14279. ggml_vec_scale_f32(nx, vh, 1.0f/(1.0f - powf(beta2, opt->iter)));
  14280. ggml_vec_sqrt_f32 (nx, vh, vh);
  14281. ggml_vec_acc1_f32 (nx, vh, eps);
  14282. ggml_vec_div_f32 (nx, mh, mh, vh);
  14283. ggml_vec_scale_f32(nx, x, 1.0f - decay);
  14284. ggml_vec_sub_f32 (nx, x, x, mh);
  14285. // update the parameters
  14286. ggml_opt_set_params(np, ps, x);
  14287. }
  14288. ggml_graph_reset (gf);
  14289. ggml_set_f32 (f->grad, 1.0f);
  14290. ggml_graph_compute_with_ctx(ctx, gb, params.n_threads);
  14291. const float fx = ggml_get_f32_1d(f, 0);
  14292. // check convergence
  14293. if (fabsf(fx - fx_prev[0])/fx < params.adam.eps_f) {
  14294. GGML_PRINT_DEBUG("converged\n");
  14295. return GGML_OPT_OK;
  14296. }
  14297. // delta-based convergence test
  14298. if (pf != NULL) {
  14299. // need at least params.past iterations to start checking for convergence
  14300. if (params.past <= iter0 + t) {
  14301. const float rate = (pf[(iter0 + t)%params.past] - fx)/fx;
  14302. if (fabsf(rate) < params.delta) {
  14303. return GGML_OPT_OK;
  14304. }
  14305. }
  14306. pf[(iter0 + t)%params.past] = fx;
  14307. }
  14308. // check for improvement
  14309. if (params.max_no_improvement > 0) {
  14310. if (fx_best[0] > fx) {
  14311. fx_best[0] = fx;
  14312. n_no_improvement[0] = 0;
  14313. } else {
  14314. ++n_no_improvement[0];
  14315. if (n_no_improvement[0] >= params.max_no_improvement) {
  14316. return GGML_OPT_OK;
  14317. }
  14318. }
  14319. }
  14320. fx_prev[0] = fx;
  14321. {
  14322. const int64_t t_end_cpu = ggml_cycles();
  14323. GGML_PRINT_DEBUG("time iter: %5.3f s\n", ((float)(t_end_cpu - t_start_cpu))/CLOCKS_PER_SEC);
  14324. UNUSED(t_end_cpu);
  14325. const int64_t t_end_wall = ggml_time_us();
  14326. GGML_PRINT_DEBUG("wall time iter: %5.3f s\n", (t_end_wall - t_start_wall)/1e6);
  14327. UNUSED(t_end_wall);
  14328. }
  14329. }
  14330. return GGML_OPT_DID_NOT_CONVERGE;
  14331. }
  14332. //
  14333. // L-BFGS
  14334. //
  14335. // the L-BFGS implementation below is based on the following implementation:
  14336. //
  14337. // https://github.com/chokkan/liblbfgs
  14338. //
  14339. struct ggml_lbfgs_iteration_data {
  14340. float alpha;
  14341. float ys;
  14342. float * s;
  14343. float * y;
  14344. };
  14345. static enum ggml_opt_result linesearch_backtracking(
  14346. struct ggml_context * ctx,
  14347. const struct ggml_opt_params * params,
  14348. int nx,
  14349. float * x,
  14350. float * fx,
  14351. float * g,
  14352. float * d,
  14353. float * step,
  14354. const float * xp,
  14355. struct ggml_tensor * f,
  14356. struct ggml_cgraph * gf,
  14357. struct ggml_cgraph * gb,
  14358. const int np,
  14359. struct ggml_tensor * ps[]) {
  14360. int count = 0;
  14361. float width = 0.0f;
  14362. float dg = 0.0f;
  14363. float finit = 0.0f;
  14364. float dginit = 0.0f;
  14365. float dgtest = 0.0f;
  14366. const float dec = 0.5f;
  14367. const float inc = 2.1f;
  14368. if (*step <= 0.f) {
  14369. return GGML_LINESEARCH_INVALID_PARAMETERS;
  14370. }
  14371. // compute the initial gradient in the search direction
  14372. ggml_vec_dot_f32(nx, &dginit, g, d);
  14373. // make sure that d points to a descent direction
  14374. if (0 < dginit) {
  14375. return GGML_LINESEARCH_FAIL;
  14376. }
  14377. // initialize local variables
  14378. finit = *fx;
  14379. dgtest = params->lbfgs.ftol*dginit;
  14380. while (true) {
  14381. ggml_vec_cpy_f32(nx, x, xp);
  14382. ggml_vec_mad_f32(nx, x, d, *step);
  14383. // evaluate the function and gradient values
  14384. {
  14385. ggml_opt_set_params(np, ps, x);
  14386. ggml_graph_reset (gf);
  14387. ggml_set_f32 (f->grad, 1.0f);
  14388. ggml_graph_compute_with_ctx(ctx, gb, params->n_threads);
  14389. ggml_opt_get_grad(np, ps, g);
  14390. *fx = ggml_get_f32_1d(f, 0);
  14391. }
  14392. ++count;
  14393. if (*fx > finit + (*step)*dgtest) {
  14394. width = dec;
  14395. } else {
  14396. // Armijo condition is satisfied
  14397. if (params->lbfgs.linesearch == GGML_LINESEARCH_BACKTRACKING_ARMIJO) {
  14398. return count;
  14399. }
  14400. ggml_vec_dot_f32(nx, &dg, g, d);
  14401. // check the Wolfe condition
  14402. if (dg < params->lbfgs.wolfe * dginit) {
  14403. width = inc;
  14404. } else {
  14405. if(params->lbfgs.linesearch == GGML_LINESEARCH_BACKTRACKING_WOLFE) {
  14406. // regular Wolfe conditions
  14407. return count;
  14408. }
  14409. if(dg > -params->lbfgs.wolfe*dginit) {
  14410. width = dec;
  14411. } else {
  14412. // strong Wolfe condition (GGML_LINESEARCH_BACKTRACKING_STRONG_WOLFE)
  14413. return count;
  14414. }
  14415. return count;
  14416. }
  14417. }
  14418. if (*step < params->lbfgs.min_step) {
  14419. return GGML_LINESEARCH_MINIMUM_STEP;
  14420. }
  14421. if (*step > params->lbfgs.max_step) {
  14422. return GGML_LINESEARCH_MAXIMUM_STEP;
  14423. }
  14424. if (params->lbfgs.max_linesearch <= count) {
  14425. return GGML_LINESEARCH_MAXIMUM_ITERATIONS;
  14426. }
  14427. (*step) *= width;
  14428. }
  14429. return GGML_LINESEARCH_FAIL;
  14430. }
  14431. static enum ggml_opt_result ggml_opt_lbfgs(
  14432. struct ggml_context * ctx,
  14433. struct ggml_opt_context * opt,
  14434. struct ggml_opt_params params,
  14435. struct ggml_tensor * f,
  14436. struct ggml_cgraph * gf,
  14437. struct ggml_cgraph * gb) {
  14438. if (params.lbfgs.linesearch == GGML_LINESEARCH_BACKTRACKING_WOLFE ||
  14439. params.lbfgs.linesearch == GGML_LINESEARCH_BACKTRACKING_STRONG_WOLFE) {
  14440. if (params.lbfgs.wolfe <= params.lbfgs.ftol || 1.f <= params.lbfgs.wolfe) {
  14441. return GGML_OPT_INVALID_WOLFE;
  14442. }
  14443. }
  14444. const int m = params.lbfgs.m;
  14445. // these will store the parameters we want to optimize
  14446. struct ggml_tensor * ps[GGML_MAX_PARAMS];
  14447. int np = 0;
  14448. int nx = 0;
  14449. for (int i = 0; i < gf->n_nodes; ++i) {
  14450. if (gf->nodes[i]->is_param) {
  14451. GGML_PRINT_DEBUG("found param %d: grad->op = %d\n", np, gf->nodes[i]->grad->op);
  14452. GGML_ASSERT(np < GGML_MAX_PARAMS);
  14453. ps[np++] = gf->nodes[i];
  14454. nx += ggml_nelements(gf->nodes[i]);
  14455. }
  14456. }
  14457. if ((opt->params.type != params.type) || (opt->nx != nx) || (opt->params.past != params.past) || (opt->params.lbfgs.m != params.lbfgs.m)) {
  14458. int iter = opt->iter;
  14459. ggml_opt_init(ctx, opt, params, nx);
  14460. opt->iter = iter;
  14461. }
  14462. float * x = opt->lbfgs.x->data; // current parameters
  14463. float * xp = opt->lbfgs.xp->data; // previous parameters
  14464. float * g = opt->lbfgs.g->data; // current gradient
  14465. float * gp = opt->lbfgs.gp->data; // previous gradient
  14466. float * d = opt->lbfgs.d->data; // search direction
  14467. float * pf = params.past > 0 ? opt->lbfgs.pf->data : NULL; // past function values
  14468. float fx = 0.0f; // cost function value
  14469. float xnorm = 0.0f; // ||x||
  14470. float gnorm = 0.0f; // ||g||
  14471. // initialize x from the graph nodes
  14472. ggml_opt_get_params(np, ps, x);
  14473. // the L-BFGS memory
  14474. float * lm_alpha = opt->lbfgs.lmal->data;
  14475. float * lm_ys = opt->lbfgs.lmys->data;
  14476. float * lm_s = opt->lbfgs.lms->data;
  14477. float * lm_y = opt->lbfgs.lmy->data;
  14478. // evaluate the function value and its gradient
  14479. {
  14480. ggml_opt_set_params(np, ps, x);
  14481. ggml_graph_reset (gf);
  14482. ggml_set_f32 (f->grad, 1.0f);
  14483. ggml_graph_compute_with_ctx(ctx, gb, params.n_threads);
  14484. ggml_opt_get_grad(np, ps, g);
  14485. fx = ggml_get_f32_1d(f, 0);
  14486. }
  14487. // search direction = -gradient
  14488. ggml_vec_neg_f32(nx, d, g);
  14489. // ||x||, ||g||
  14490. ggml_vec_norm_f32(nx, &xnorm, x);
  14491. ggml_vec_norm_f32(nx, &gnorm, g);
  14492. if (xnorm < 1.0f) {
  14493. xnorm = 1.0f;
  14494. }
  14495. // already optimized
  14496. if (gnorm/xnorm <= params.lbfgs.eps) {
  14497. return GGML_OPT_OK;
  14498. }
  14499. if (opt->just_initialized) {
  14500. if (pf) {
  14501. pf[0] = fx;
  14502. }
  14503. opt->lbfgs.fx_best = fx;
  14504. // initial step
  14505. ggml_vec_norm_inv_f32(nx, &opt->lbfgs.step, d);
  14506. opt->lbfgs.j = 0;
  14507. opt->lbfgs.k = 1;
  14508. opt->lbfgs.end = 0;
  14509. opt->lbfgs.n_no_improvement = 0;
  14510. opt->just_initialized = false;
  14511. }
  14512. float * fx_best = &opt->lbfgs.fx_best;
  14513. float * step = &opt->lbfgs.step;
  14514. int * j = &opt->lbfgs.j;
  14515. int * k = &opt->lbfgs.k;
  14516. int * end = &opt->lbfgs.end;
  14517. int * n_no_improvement = &opt->lbfgs.n_no_improvement;
  14518. int ls = 0;
  14519. int bound = 0;
  14520. float ys = 0.0f;
  14521. float yy = 0.0f;
  14522. float beta = 0.0f;
  14523. int it = 0;
  14524. while (true) {
  14525. // store the current position and gradient vectors
  14526. ggml_vec_cpy_f32(nx, xp, x);
  14527. ggml_vec_cpy_f32(nx, gp, g);
  14528. ls = linesearch_backtracking(ctx, &params, nx, x, &fx, g, d, step, xp, f, gf, gb, np, ps);
  14529. if (ls < 0) {
  14530. // linesearch failed - go back to the previous point and return
  14531. ggml_vec_cpy_f32(nx, x, xp);
  14532. ggml_vec_cpy_f32(nx, g, gp);
  14533. return ls;
  14534. }
  14535. ggml_vec_norm_f32(nx, &xnorm, x);
  14536. ggml_vec_norm_f32(nx, &gnorm, g);
  14537. GGML_PRINT_DEBUG("f = %10.6f\n", ggml_get_f32_1d(f, 0));
  14538. if (xnorm < 1.0f) {
  14539. xnorm = 1.0f;
  14540. }
  14541. if (gnorm/xnorm <= params.lbfgs.eps) {
  14542. // converged
  14543. return GGML_OPT_OK;
  14544. }
  14545. // delta-based convergence test
  14546. if (pf != NULL) {
  14547. // need at least params.past iterations to start checking for convergence
  14548. if (params.past <= k[0]) {
  14549. const float rate = (pf[k[0]%params.past] - fx)/fx;
  14550. if (fabsf(rate) < params.delta) {
  14551. return GGML_OPT_OK;
  14552. }
  14553. }
  14554. pf[k[0]%params.past] = fx;
  14555. }
  14556. // check for improvement
  14557. if (params.max_no_improvement > 0) {
  14558. if (fx < fx_best[0]) {
  14559. fx_best[0] = fx;
  14560. n_no_improvement[0] = 0;
  14561. } else {
  14562. n_no_improvement[0]++;
  14563. if (n_no_improvement[0] >= params.max_no_improvement) {
  14564. return GGML_OPT_OK;
  14565. }
  14566. }
  14567. }
  14568. if (params.lbfgs.n_iter != 0 && params.lbfgs.n_iter < it + 1) {
  14569. // reached the maximum number of iterations
  14570. return GGML_OPT_DID_NOT_CONVERGE;
  14571. }
  14572. // update vectors s and y:
  14573. // s_{k+1} = x_{k+1} - x_{k} = \step * d_{k}.
  14574. // y_{k+1} = g_{k+1} - g_{k}.
  14575. //
  14576. ggml_vec_sub_f32(nx, &lm_s[end[0]*nx], x, xp);
  14577. ggml_vec_sub_f32(nx, &lm_y[end[0]*nx], g, gp);
  14578. // compute scalars ys and yy:
  14579. // ys = y^t \cdot s -> 1 / \rho.
  14580. // yy = y^t \cdot y.
  14581. //
  14582. ggml_vec_dot_f32(nx, &ys, &lm_y[end[0]*nx], &lm_s[end[0] *nx]);
  14583. ggml_vec_dot_f32(nx, &yy, &lm_y[end[0]*nx], &lm_y[end[0]*nx]);
  14584. lm_ys[end[0]] = ys;
  14585. // find new search direction
  14586. // ref: https://en.wikipedia.org/wiki/Limited-memory_BFGS
  14587. bound = (m <= k[0]) ? m : k[0];
  14588. k[0]++;
  14589. it++;
  14590. end[0] = (end[0] + 1)%m;
  14591. // initialize search direction with -g
  14592. ggml_vec_neg_f32(nx, d, g);
  14593. j[0] = end[0];
  14594. for (int i = 0; i < bound; ++i) {
  14595. j[0] = (j[0] + m - 1) % m;
  14596. // \alpha_{j} = \rho_{j} s^{t}_{j} \cdot q_{k+1}
  14597. ggml_vec_dot_f32(nx, &lm_alpha[j[0]], &lm_s[j[0]*nx], d);
  14598. lm_alpha[j[0]] /= lm_ys[j[0]];
  14599. // q_{i} = q_{i+1} - \alpha_{i} y_{i}
  14600. ggml_vec_mad_f32(nx, d, &lm_y[j[0]*nx], -lm_alpha[j[0]]);
  14601. }
  14602. ggml_vec_scale_f32(nx, d, ys/yy);
  14603. for (int i = 0; i < bound; ++i) {
  14604. // \beta_{j} = \rho_{j} y^t_{j} \cdot \gamma_{i}
  14605. ggml_vec_dot_f32(nx, &beta, &lm_y[j[0]*nx], d);
  14606. beta /= lm_ys[j[0]];
  14607. // \gamma_{i+1} = \gamma_{i} + (\alpha_{j} - \beta_{j}) s_{j}
  14608. ggml_vec_mad_f32(nx, d, &lm_s[j[0]*nx], lm_alpha[j[0]] - beta);
  14609. j[0] = (j[0] + 1)%m;
  14610. }
  14611. step[0] = 1.0;
  14612. }
  14613. return GGML_OPT_DID_NOT_CONVERGE;
  14614. }
  14615. struct ggml_opt_params ggml_opt_default_params(enum ggml_opt_type type) {
  14616. struct ggml_opt_params result;
  14617. switch (type) {
  14618. case GGML_OPT_ADAM:
  14619. {
  14620. result = (struct ggml_opt_params) {
  14621. .type = GGML_OPT_ADAM,
  14622. .n_threads = 1,
  14623. .past = 0,
  14624. .delta = 1e-5f,
  14625. .max_no_improvement = 100,
  14626. .print_forward_graph = true,
  14627. .print_backward_graph = true,
  14628. .adam = {
  14629. .n_iter = 10000,
  14630. .sched = 1.000f,
  14631. .decay = 0.001f,
  14632. .alpha = 0.001f,
  14633. .beta1 = 0.9f,
  14634. .beta2 = 0.999f,
  14635. .eps = 1e-8f,
  14636. .eps_f = 1e-5f,
  14637. .eps_g = 1e-3f,
  14638. },
  14639. };
  14640. } break;
  14641. case GGML_OPT_LBFGS:
  14642. {
  14643. result = (struct ggml_opt_params) {
  14644. .type = GGML_OPT_LBFGS,
  14645. .n_threads = 1,
  14646. .past = 0,
  14647. .delta = 1e-5f,
  14648. .max_no_improvement = 0,
  14649. .print_forward_graph = true,
  14650. .print_backward_graph = true,
  14651. .lbfgs = {
  14652. .m = 6,
  14653. .n_iter = 100,
  14654. .max_linesearch = 20,
  14655. .eps = 1e-5f,
  14656. .ftol = 1e-4f,
  14657. .wolfe = 0.9f,
  14658. .min_step = 1e-20f,
  14659. .max_step = 1e+20f,
  14660. .linesearch = GGML_LINESEARCH_DEFAULT,
  14661. },
  14662. };
  14663. } break;
  14664. }
  14665. return result;
  14666. }
  14667. GGML_API void ggml_opt_init(
  14668. struct ggml_context * ctx,
  14669. struct ggml_opt_context * opt,
  14670. struct ggml_opt_params params,
  14671. int64_t nx) {
  14672. opt->ctx = ctx;
  14673. opt->params = params;
  14674. opt->iter = 0;
  14675. opt->nx = nx;
  14676. opt->just_initialized = true;
  14677. switch (opt->params.type) {
  14678. case GGML_OPT_ADAM:
  14679. {
  14680. opt->adam.x = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx);
  14681. opt->adam.g1 = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx);
  14682. opt->adam.g2 = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx);
  14683. opt->adam.m = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx);
  14684. opt->adam.v = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx);
  14685. opt->adam.mh = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx);
  14686. opt->adam.vh = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx);
  14687. opt->adam.pf = params.past > 0
  14688. ? ggml_new_tensor_1d(ctx, GGML_TYPE_F32, params.past)
  14689. : NULL;
  14690. ggml_set_zero(opt->adam.x);
  14691. ggml_set_zero(opt->adam.g1);
  14692. ggml_set_zero(opt->adam.g2);
  14693. ggml_set_zero(opt->adam.m);
  14694. ggml_set_zero(opt->adam.v);
  14695. ggml_set_zero(opt->adam.mh);
  14696. ggml_set_zero(opt->adam.vh);
  14697. if (opt->adam.pf) {
  14698. ggml_set_zero(opt->adam.pf);
  14699. }
  14700. } break;
  14701. case GGML_OPT_LBFGS:
  14702. {
  14703. opt->lbfgs.x = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx);
  14704. opt->lbfgs.xp = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx);
  14705. opt->lbfgs.g = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx);
  14706. opt->lbfgs.gp = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx);
  14707. opt->lbfgs.d = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx);
  14708. opt->lbfgs.pf = params.past > 0
  14709. ? ggml_new_tensor_1d(ctx, GGML_TYPE_F32, params.past)
  14710. : NULL;
  14711. opt->lbfgs.lmal = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, params.lbfgs.m);
  14712. opt->lbfgs.lmys = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, params.lbfgs.m);
  14713. opt->lbfgs.lms = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, nx, params.lbfgs.m);
  14714. opt->lbfgs.lmy = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, nx, params.lbfgs.m);
  14715. ggml_set_zero(opt->lbfgs.x);
  14716. ggml_set_zero(opt->lbfgs.xp);
  14717. ggml_set_zero(opt->lbfgs.g);
  14718. ggml_set_zero(opt->lbfgs.gp);
  14719. ggml_set_zero(opt->lbfgs.d);
  14720. if (opt->lbfgs.pf) {
  14721. ggml_set_zero(opt->lbfgs.pf);
  14722. }
  14723. ggml_set_zero(opt->lbfgs.lmal);
  14724. ggml_set_zero(opt->lbfgs.lmys);
  14725. ggml_set_zero(opt->lbfgs.lms);
  14726. ggml_set_zero(opt->lbfgs.lmy);
  14727. } break;
  14728. }
  14729. }
  14730. enum ggml_opt_result ggml_opt(
  14731. struct ggml_context * ctx,
  14732. struct ggml_opt_params params,
  14733. struct ggml_tensor * f) {
  14734. bool free_ctx = false;
  14735. if (ctx == NULL) {
  14736. struct ggml_init_params params_ctx = {
  14737. .mem_size = 16*1024*1024,
  14738. .mem_buffer = NULL,
  14739. .no_alloc = false,
  14740. };
  14741. ctx = ggml_init(params_ctx);
  14742. if (ctx == NULL) {
  14743. return GGML_OPT_NO_CONTEXT;
  14744. }
  14745. free_ctx = true;
  14746. }
  14747. enum ggml_opt_result result = GGML_OPT_OK;
  14748. struct ggml_opt_context * opt = (struct ggml_opt_context *) alloca(sizeof(struct ggml_opt_context));
  14749. ggml_opt_init(ctx, opt, params, 0);
  14750. result = ggml_opt_resume(ctx, opt, f);
  14751. if (free_ctx) {
  14752. ggml_free(ctx);
  14753. }
  14754. return result;
  14755. }
  14756. enum ggml_opt_result ggml_opt_resume(
  14757. struct ggml_context * ctx,
  14758. struct ggml_opt_context * opt,
  14759. struct ggml_tensor * f) {
  14760. // build forward + backward compute graphs
  14761. struct ggml_tensor * gfbuf = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, sizeof(struct ggml_cgraph) / GGML_TYPE_SIZE[GGML_TYPE_I32]+ (sizeof(struct ggml_cgraph) % GGML_TYPE_SIZE[GGML_TYPE_I32] ? 1 : 0));
  14762. struct ggml_tensor * gbbuf = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, sizeof(struct ggml_cgraph) / GGML_TYPE_SIZE[GGML_TYPE_I32]+ (sizeof(struct ggml_cgraph) % GGML_TYPE_SIZE[GGML_TYPE_I32] ? 1 : 0));
  14763. struct ggml_cgraph * gf = (struct ggml_cgraph *) gfbuf->data;
  14764. struct ggml_cgraph * gb = (struct ggml_cgraph *) gbbuf->data;
  14765. *gf = ggml_build_forward (f);
  14766. *gb = ggml_build_backward(ctx, gf, true);
  14767. return ggml_opt_resume_g(ctx, opt, f, gf, gb);
  14768. }
  14769. enum ggml_opt_result ggml_opt_resume_g(
  14770. struct ggml_context * ctx,
  14771. struct ggml_opt_context * opt,
  14772. struct ggml_tensor * f,
  14773. struct ggml_cgraph * gf,
  14774. struct ggml_cgraph * gb) {
  14775. // build forward + backward compute graphs
  14776. enum ggml_opt_result result = GGML_OPT_OK;
  14777. switch (opt->params.type) {
  14778. case GGML_OPT_ADAM:
  14779. {
  14780. result = ggml_opt_adam(ctx, opt, opt->params, f, gf, gb);
  14781. } break;
  14782. case GGML_OPT_LBFGS:
  14783. {
  14784. result = ggml_opt_lbfgs(ctx, opt, opt->params, f, gf, gb);
  14785. } break;
  14786. }
  14787. if (opt->params.print_forward_graph) {
  14788. ggml_graph_print (gf);
  14789. ggml_graph_dump_dot(gf, NULL, "opt-forward.dot");
  14790. }
  14791. if (opt->params.print_backward_graph) {
  14792. ggml_graph_print (gb);
  14793. ggml_graph_dump_dot(gb, gf, "opt-backward.dot");
  14794. }
  14795. return result;
  14796. }
  14797. ////////////////////////////////////////////////////////////////////////////////
  14798. size_t ggml_quantize_q4_0(const float * src, void * dst, int n, int k, int64_t * hist) {
  14799. assert(k % QK4_0 == 0);
  14800. const int nb = k / QK4_0;
  14801. for (int b = 0; b < n; b += k) {
  14802. block_q4_0 * restrict y = (block_q4_0 *) dst + b/QK4_0;
  14803. quantize_row_q4_0_reference(src + b, y, k);
  14804. for (int i = 0; i < nb; i++) {
  14805. for (int j = 0; j < QK4_0; j += 2) {
  14806. const uint8_t vi0 = y[i].qs[j/2] & 0x0F;
  14807. const uint8_t vi1 = y[i].qs[j/2] >> 4;
  14808. hist[vi0]++;
  14809. hist[vi1]++;
  14810. }
  14811. }
  14812. }
  14813. return (n/QK4_0*sizeof(block_q4_0));
  14814. }
  14815. size_t ggml_quantize_q4_1(const float * src, void * dst, int n, int k, int64_t * hist) {
  14816. assert(k % QK4_1 == 0);
  14817. const int nb = k / QK4_1;
  14818. for (int b = 0; b < n; b += k) {
  14819. block_q4_1 * restrict y = (block_q4_1 *) dst + b/QK4_1;
  14820. quantize_row_q4_1_reference(src + b, y, k);
  14821. for (int i = 0; i < nb; i++) {
  14822. for (int j = 0; j < QK4_1; j += 2) {
  14823. const uint8_t vi0 = y[i].qs[j/2] & 0x0F;
  14824. const uint8_t vi1 = y[i].qs[j/2] >> 4;
  14825. hist[vi0]++;
  14826. hist[vi1]++;
  14827. }
  14828. }
  14829. }
  14830. return (n/QK4_1*sizeof(block_q4_1));
  14831. }
  14832. size_t ggml_quantize_q5_0(const float * src, void * dst, int n, int k, int64_t * hist) {
  14833. assert(k % QK5_0 == 0);
  14834. const int nb = k / QK5_0;
  14835. for (int b = 0; b < n; b += k) {
  14836. block_q5_0 * restrict y = (block_q5_0 *)dst + b/QK5_0;
  14837. quantize_row_q5_0_reference(src + b, y, k);
  14838. for (int i = 0; i < nb; i++) {
  14839. uint32_t qh;
  14840. memcpy(&qh, &y[i].qh, sizeof(qh));
  14841. for (int j = 0; j < QK5_0; j += 2) {
  14842. const uint8_t vh0 = ((qh & (1u << (j + 0 ))) >> (j + 0 )) << 4;
  14843. const uint8_t vh1 = ((qh & (1u << (j + 16))) >> (j + 12));
  14844. // cast to 16 bins
  14845. const uint8_t vi0 = ((y[i].qs[j/2] & 0x0F) | vh0) / 2;
  14846. const uint8_t vi1 = ((y[i].qs[j/2] >> 4) | vh1) / 2;
  14847. hist[vi0]++;
  14848. hist[vi1]++;
  14849. }
  14850. }
  14851. }
  14852. return (n/QK5_0*sizeof(block_q5_0));
  14853. }
  14854. size_t ggml_quantize_q5_1(const float * src, void * dst, int n, int k, int64_t * hist) {
  14855. assert(k % QK5_1 == 0);
  14856. const int nb = k / QK5_1;
  14857. for (int b = 0; b < n; b += k) {
  14858. block_q5_1 * restrict y = (block_q5_1 *)dst + b/QK5_1;
  14859. quantize_row_q5_1_reference(src + b, y, k);
  14860. for (int i = 0; i < nb; i++) {
  14861. uint32_t qh;
  14862. memcpy(&qh, &y[i].qh, sizeof(qh));
  14863. for (int j = 0; j < QK5_1; j += 2) {
  14864. const uint8_t vh0 = ((qh & (1u << (j + 0 ))) >> (j + 0 )) << 4;
  14865. const uint8_t vh1 = ((qh & (1u << (j + 16))) >> (j + 12));
  14866. // cast to 16 bins
  14867. const uint8_t vi0 = ((y[i].qs[j/2] & 0x0F) | vh0) / 2;
  14868. const uint8_t vi1 = ((y[i].qs[j/2] >> 4) | vh1) / 2;
  14869. hist[vi0]++;
  14870. hist[vi1]++;
  14871. }
  14872. }
  14873. }
  14874. return (n/QK5_1*sizeof(block_q5_1));
  14875. }
  14876. size_t ggml_quantize_q8_0(const float * src, void * dst, int n, int k, int64_t * hist) {
  14877. assert(k % QK8_0 == 0);
  14878. const int nb = k / QK8_0;
  14879. for (int b = 0; b < n; b += k) {
  14880. block_q8_0 * restrict y = (block_q8_0 *)dst + b/QK8_0;
  14881. quantize_row_q8_0_reference(src + b, y, k);
  14882. for (int i = 0; i < nb; i++) {
  14883. for (int j = 0; j < QK8_0; ++j) {
  14884. const int8_t vi = y[i].qs[j];
  14885. hist[vi/16 + 8]++;
  14886. }
  14887. }
  14888. }
  14889. return (n/QK8_0*sizeof(block_q8_0));
  14890. }
  14891. size_t ggml_quantize_chunk(enum ggml_type type, const float * src, void * dst, int start, int n, int64_t * hist) {
  14892. size_t result = 0;
  14893. switch (type) {
  14894. case GGML_TYPE_Q4_0:
  14895. {
  14896. GGML_ASSERT(start % QK4_0 == 0);
  14897. block_q4_0 * block = (block_q4_0*)dst + start / QK4_0;
  14898. result = ggml_quantize_q4_0(src + start, block, n, n, hist);
  14899. } break;
  14900. case GGML_TYPE_Q4_1:
  14901. {
  14902. GGML_ASSERT(start % QK4_1 == 0);
  14903. block_q4_1 * block = (block_q4_1*)dst + start / QK4_1;
  14904. result = ggml_quantize_q4_1(src + start, block, n, n, hist);
  14905. } break;
  14906. case GGML_TYPE_Q5_0:
  14907. {
  14908. GGML_ASSERT(start % QK5_0 == 0);
  14909. block_q5_0 * block = (block_q5_0*)dst + start / QK5_0;
  14910. result = ggml_quantize_q5_0(src + start, block, n, n, hist);
  14911. } break;
  14912. case GGML_TYPE_Q5_1:
  14913. {
  14914. GGML_ASSERT(start % QK5_1 == 0);
  14915. block_q5_1 * block = (block_q5_1*)dst + start / QK5_1;
  14916. result = ggml_quantize_q5_1(src + start, block, n, n, hist);
  14917. } break;
  14918. case GGML_TYPE_Q8_0:
  14919. {
  14920. GGML_ASSERT(start % QK8_0 == 0);
  14921. block_q8_0 * block = (block_q8_0*)dst + start / QK8_0;
  14922. result = ggml_quantize_q8_0(src + start, block, n, n, hist);
  14923. } break;
  14924. #ifdef GGML_USE_K_QUANTS
  14925. case GGML_TYPE_Q2_K:
  14926. {
  14927. GGML_ASSERT(start % QK_K == 0);
  14928. block_q2_K * block = (block_q2_K*)dst + start / QK_K;
  14929. result = ggml_quantize_q2_K(src + start, block, n, n, hist);
  14930. } break;
  14931. case GGML_TYPE_Q3_K:
  14932. {
  14933. GGML_ASSERT(start % QK_K == 0);
  14934. block_q3_K * block = (block_q3_K*)dst + start / QK_K;
  14935. result = ggml_quantize_q3_K(src + start, block, n, n, hist);
  14936. } break;
  14937. case GGML_TYPE_Q4_K:
  14938. {
  14939. GGML_ASSERT(start % QK_K == 0);
  14940. block_q4_K * block = (block_q4_K*)dst + start / QK_K;
  14941. result = ggml_quantize_q4_K(src + start, block, n, n, hist);
  14942. } break;
  14943. case GGML_TYPE_Q5_K:
  14944. {
  14945. GGML_ASSERT(start % QK_K == 0);
  14946. block_q5_K * block = (block_q5_K*)dst + start / QK_K;
  14947. result = ggml_quantize_q5_K(src + start, block, n, n, hist);
  14948. } break;
  14949. case GGML_TYPE_Q6_K:
  14950. {
  14951. GGML_ASSERT(start % QK_K == 0);
  14952. block_q6_K * block = (block_q6_K*)dst + start / QK_K;
  14953. result = ggml_quantize_q6_K(src + start, block, n, n, hist);
  14954. } break;
  14955. #endif
  14956. case GGML_TYPE_F16:
  14957. {
  14958. int elemsize = sizeof(ggml_fp16_t);
  14959. ggml_fp32_to_fp16_row(src + start, (ggml_fp16_t *)dst + start, n);
  14960. result = n * elemsize;
  14961. } break;
  14962. case GGML_TYPE_F32:
  14963. {
  14964. int elemsize = sizeof(float);
  14965. result = n * elemsize;
  14966. memcpy((uint8_t *)dst + start * elemsize, src + start, result);
  14967. } break;
  14968. default:
  14969. assert(false);
  14970. }
  14971. return result;
  14972. }
  14973. ////////////////////////////////////////////////////////////////////////////////
  14974. int ggml_cpu_has_avx(void) {
  14975. #if defined(__AVX__)
  14976. return 1;
  14977. #else
  14978. return 0;
  14979. #endif
  14980. }
  14981. int ggml_cpu_has_avx2(void) {
  14982. #if defined(__AVX2__)
  14983. return 1;
  14984. #else
  14985. return 0;
  14986. #endif
  14987. }
  14988. int ggml_cpu_has_avx512(void) {
  14989. #if defined(__AVX512F__)
  14990. return 1;
  14991. #else
  14992. return 0;
  14993. #endif
  14994. }
  14995. int ggml_cpu_has_avx512_vbmi(void) {
  14996. #if defined(__AVX512VBMI__)
  14997. return 1;
  14998. #else
  14999. return 0;
  15000. #endif
  15001. }
  15002. int ggml_cpu_has_avx512_vnni(void) {
  15003. #if defined(__AVX512VNNI__)
  15004. return 1;
  15005. #else
  15006. return 0;
  15007. #endif
  15008. }
  15009. int ggml_cpu_has_fma(void) {
  15010. #if defined(__FMA__)
  15011. return 1;
  15012. #else
  15013. return 0;
  15014. #endif
  15015. }
  15016. int ggml_cpu_has_neon(void) {
  15017. #if defined(__ARM_NEON)
  15018. return 1;
  15019. #else
  15020. return 0;
  15021. #endif
  15022. }
  15023. int ggml_cpu_has_arm_fma(void) {
  15024. #if defined(__ARM_FEATURE_FMA)
  15025. return 1;
  15026. #else
  15027. return 0;
  15028. #endif
  15029. }
  15030. int ggml_cpu_has_f16c(void) {
  15031. #if defined(__F16C__)
  15032. return 1;
  15033. #else
  15034. return 0;
  15035. #endif
  15036. }
  15037. int ggml_cpu_has_fp16_va(void) {
  15038. #if defined(__ARM_FEATURE_FP16_VECTOR_ARITHMETIC)
  15039. return 1;
  15040. #else
  15041. return 0;
  15042. #endif
  15043. }
  15044. int ggml_cpu_has_wasm_simd(void) {
  15045. #if defined(__wasm_simd128__)
  15046. return 1;
  15047. #else
  15048. return 0;
  15049. #endif
  15050. }
  15051. int ggml_cpu_has_blas(void) {
  15052. #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS) || defined(GGML_USE_CUBLAS) || defined(GGML_USE_CLBLAST)
  15053. return 1;
  15054. #else
  15055. return 0;
  15056. #endif
  15057. }
  15058. int ggml_cpu_has_cublas(void) {
  15059. #if defined(GGML_USE_CUBLAS)
  15060. return 1;
  15061. #else
  15062. return 0;
  15063. #endif
  15064. }
  15065. int ggml_cpu_has_clblast(void) {
  15066. #if defined(GGML_USE_CLBLAST)
  15067. return 1;
  15068. #else
  15069. return 0;
  15070. #endif
  15071. }
  15072. int ggml_cpu_has_gpublas(void) {
  15073. return ggml_cpu_has_cublas() || ggml_cpu_has_clblast();
  15074. }
  15075. int ggml_cpu_has_sse3(void) {
  15076. #if defined(__SSE3__)
  15077. return 1;
  15078. #else
  15079. return 0;
  15080. #endif
  15081. }
  15082. int ggml_cpu_has_vsx(void) {
  15083. #if defined(__POWER9_VECTOR__)
  15084. return 1;
  15085. #else
  15086. return 0;
  15087. #endif
  15088. }
  15089. ////////////////////////////////////////////////////////////////////////////////