k_quants.c 153 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450245124522453245424552456245724582459246024612462246324642465246624672468246924702471247224732474247524762477247824792480248124822483248424852486248724882489249024912492249324942495249624972498249925002501250225032504250525062507250825092510251125122513251425152516251725182519252025212522252325242525252625272528252925302531253225332534253525362537253825392540254125422543254425452546254725482549255025512552255325542555255625572558255925602561256225632564256525662567256825692570257125722573257425752576257725782579258025812582258325842585258625872588258925902591259225932594259525962597259825992600260126022603260426052606260726082609261026112612261326142615261626172618261926202621262226232624262526262627262826292630263126322633263426352636263726382639264026412642264326442645264626472648264926502651265226532654265526562657265826592660266126622663266426652666266726682669267026712672267326742675267626772678267926802681268226832684268526862687268826892690269126922693269426952696269726982699270027012702270327042705270627072708270927102711271227132714271527162717271827192720272127222723272427252726272727282729273027312732273327342735273627372738273927402741274227432744274527462747274827492750275127522753275427552756275727582759276027612762276327642765276627672768276927702771277227732774277527762777277827792780278127822783278427852786278727882789279027912792279327942795279627972798279928002801280228032804280528062807280828092810281128122813281428152816281728182819282028212822282328242825282628272828282928302831283228332834283528362837283828392840284128422843284428452846284728482849285028512852285328542855285628572858285928602861286228632864286528662867286828692870287128722873287428752876287728782879288028812882288328842885288628872888288928902891289228932894289528962897289828992900290129022903290429052906290729082909291029112912291329142915291629172918291929202921292229232924292529262927292829292930293129322933293429352936293729382939294029412942294329442945294629472948294929502951295229532954295529562957295829592960296129622963296429652966296729682969297029712972297329742975297629772978297929802981298229832984298529862987298829892990299129922993299429952996299729982999300030013002300330043005300630073008300930103011301230133014301530163017301830193020302130223023302430253026302730283029303030313032303330343035303630373038303930403041304230433044304530463047304830493050305130523053305430553056305730583059306030613062306330643065306630673068306930703071307230733074307530763077307830793080308130823083308430853086308730883089309030913092309330943095309630973098309931003101310231033104310531063107310831093110311131123113311431153116311731183119312031213122312331243125312631273128312931303131313231333134313531363137313831393140314131423143314431453146314731483149315031513152315331543155315631573158315931603161316231633164316531663167316831693170317131723173317431753176317731783179318031813182318331843185318631873188318931903191319231933194319531963197319831993200320132023203320432053206320732083209321032113212321332143215321632173218321932203221322232233224322532263227322832293230323132323233323432353236323732383239324032413242324332443245324632473248324932503251325232533254325532563257325832593260326132623263326432653266326732683269327032713272327332743275327632773278327932803281328232833284328532863287328832893290329132923293329432953296329732983299330033013302330333043305330633073308330933103311331233133314331533163317331833193320332133223323332433253326332733283329333033313332333333343335333633373338333933403341334233433344334533463347334833493350335133523353335433553356335733583359336033613362336333643365336633673368336933703371337233733374337533763377337833793380338133823383338433853386338733883389339033913392339333943395339633973398339934003401340234033404340534063407340834093410341134123413341434153416341734183419342034213422342334243425342634273428342934303431343234333434343534363437343834393440344134423443344434453446344734483449345034513452345334543455345634573458345934603461346234633464346534663467346834693470347134723473347434753476347734783479348034813482348334843485348634873488348934903491349234933494349534963497349834993500350135023503350435053506350735083509351035113512351335143515351635173518351935203521352235233524352535263527352835293530353135323533353435353536353735383539354035413542354335443545354635473548354935503551355235533554355535563557355835593560356135623563356435653566356735683569357035713572357335743575357635773578357935803581358235833584358535863587358835893590359135923593359435953596359735983599360036013602360336043605360636073608360936103611361236133614361536163617361836193620362136223623362436253626362736283629363036313632363336343635363636373638363936403641364236433644364536463647364836493650365136523653365436553656365736583659366036613662366336643665366636673668366936703671367236733674367536763677367836793680368136823683368436853686368736883689369036913692369336943695369636973698369937003701370237033704370537063707370837093710371137123713371437153716371737183719372037213722372337243725372637273728372937303731373237333734373537363737373837393740374137423743374437453746374737483749375037513752375337543755375637573758375937603761376237633764376537663767376837693770377137723773377437753776377737783779378037813782378337843785378637873788378937903791379237933794379537963797379837993800380138023803380438053806380738083809381038113812381338143815381638173818381938203821382238233824382538263827382838293830383138323833383438353836383738383839384038413842384338443845384638473848384938503851385238533854385538563857385838593860386138623863386438653866386738683869387038713872387338743875387638773878387938803881388238833884388538863887388838893890389138923893389438953896389738983899390039013902390339043905390639073908390939103911391239133914391539163917391839193920392139223923392439253926
  1. /**
  2. * llama.cpp - git 5bf2a2771886ee86137e01dbc7492f78fb392066
  3. *
  4. * MIT License
  5. *
  6. * Copyright (c) 2023 Georgi Gerganov
  7. *
  8. * Permission is hereby granted, free of charge, to any person obtaining a copy
  9. * of this software and associated documentation files (the "Software"), to deal
  10. * in the Software without restriction, including without limitation the rights
  11. * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
  12. * copies of the Software, and to permit persons to whom the Software is
  13. * furnished to do so, subject to the following conditions:
  14. *
  15. * The above copyright notice and this permission notice shall be included in all
  16. * copies or substantial portions of the Software.
  17. *
  18. * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
  19. * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
  20. * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
  21. * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
  22. * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
  23. * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
  24. * SOFTWARE.
  25. */
  26. #include "k_quants.h"
  27. #include "ggml.h"
  28. #include <math.h>
  29. #include <string.h>
  30. #include <assert.h>
  31. #ifdef __ARM_NEON
  32. // if YCM cannot find <arm_neon.h>, make a symbolic link to it, for example:
  33. //
  34. // $ ln -sfn /Library/Developer/CommandLineTools/usr/lib/clang/13.1.6/include/arm_neon.h ./src/
  35. //
  36. #include <arm_neon.h>
  37. #else
  38. #ifdef __wasm_simd128__
  39. #include <wasm_simd128.h>
  40. #else
  41. #ifdef __POWER9_VECTOR__
  42. #include <altivec.h>
  43. #undef bool
  44. #define bool _Bool
  45. #else
  46. #if defined(_MSC_VER) || defined(__MINGW32__)
  47. #include <intrin.h>
  48. #else
  49. #if !defined(__riscv)
  50. #include <immintrin.h>
  51. #endif
  52. #endif
  53. #endif
  54. #endif
  55. #endif
  56. #undef MIN
  57. #undef MAX
  58. #define MIN(a, b) ((a) < (b) ? (a) : (b))
  59. #define MAX(a, b) ((a) > (b) ? (a) : (b))
  60. //
  61. // 2-6 bit quantization in super-blocks
  62. //
  63. //
  64. // ===================== Helper functions
  65. //
  66. static inline int nearest_int(float fval) {
  67. assert(fval <= 4194303.f);
  68. float val = fval + 12582912.f;
  69. int i; memcpy(&i, &val, sizeof(int));
  70. return (i & 0x007fffff) - 0x00400000;
  71. }
  72. static float make_qx_quants(int n, int nmax, const float * restrict x, int8_t * restrict L, int rmse_type) {
  73. float max = 0;
  74. float amax = 0;
  75. for (int i = 0; i < n; ++i) {
  76. float ax = fabsf(x[i]);
  77. if (ax > amax) { amax = ax; max = x[i]; }
  78. }
  79. if (!amax) { // all zero
  80. for (int i = 0; i < n; ++i) {
  81. L[i] = 0;
  82. }
  83. return 0.f;
  84. }
  85. float iscale = -nmax / max;
  86. if (rmse_type == 0) {
  87. for (int i = 0; i < n; ++i) {
  88. int l = nearest_int(iscale * x[i]);
  89. L[i] = nmax + MAX(-nmax, MIN(nmax-1, l));
  90. }
  91. return 1/iscale;
  92. }
  93. int weight_type = rmse_type%2;
  94. float sumlx = 0;
  95. float suml2 = 0;
  96. for (int i = 0; i < n; ++i) {
  97. int l = nearest_int(iscale * x[i]);
  98. l = MAX(-nmax, MIN(nmax-1, l));
  99. L[i] = l + nmax;
  100. float w = weight_type == 1 ? x[i] * x[i] : 1;
  101. sumlx += w*x[i]*l;
  102. suml2 += w*l*l;
  103. }
  104. float scale = sumlx/suml2;
  105. float best = scale * sumlx;
  106. for (int itry = 0; itry < 3; ++itry) {
  107. iscale = 1/scale;
  108. float slx = 0;
  109. float sl2 = 0;
  110. bool changed = false;
  111. for (int i = 0; i < n; ++i) {
  112. int l = nearest_int(iscale * x[i]);
  113. l = MAX(-nmax, MIN(nmax-1, l));
  114. if (l + nmax != L[i]) { changed = true; }
  115. float w = weight_type == 1 ? x[i] * x[i] : 1.f;
  116. slx += w*x[i]*l;
  117. sl2 += w*l*l;
  118. }
  119. if (!changed || sl2 == 0 || slx*slx <= best*sl2) { break; }
  120. for (int i = 0; i < n; ++i) {
  121. int l = nearest_int(iscale * x[i]);
  122. L[i] = nmax + MAX(-nmax, MIN(nmax-1, l));
  123. }
  124. sumlx = slx; suml2 = sl2;
  125. scale = sumlx/suml2;
  126. best = scale * sumlx;
  127. }
  128. for (int itry = 0; itry < 5; ++itry) {
  129. int n_changed = 0;
  130. for (int i = 0; i < n; ++i) {
  131. float w = weight_type == 1 ? x[i]*x[i] : 1;
  132. int l = L[i] - nmax;
  133. float slx = sumlx - w*x[i]*l;
  134. if (slx > 0) {
  135. float sl2 = suml2 - w*l*l;
  136. int new_l = nearest_int(x[i] * sl2 / slx);
  137. new_l = MAX(-nmax, MIN(nmax-1, new_l));
  138. if (new_l != l) {
  139. slx += w*x[i]*new_l;
  140. sl2 += w*new_l*new_l;
  141. if (sl2 > 0 && slx*slx*suml2 > sumlx*sumlx*sl2) {
  142. L[i] = nmax + new_l; sumlx = slx; suml2 = sl2;
  143. scale = sumlx / suml2; best = scale * sumlx;
  144. ++n_changed;
  145. }
  146. }
  147. }
  148. }
  149. if (!n_changed) { break; }
  150. }
  151. if (rmse_type < 3) {
  152. return scale;
  153. }
  154. for (int is = -4; is <= 4; ++is) {
  155. if (is == 0) {
  156. continue;
  157. }
  158. iscale = -(nmax + 0.1f*is) / max;
  159. sumlx = suml2 = 0;
  160. for (int i = 0; i < n; ++i) {
  161. int l = nearest_int(iscale * x[i]);
  162. l = MAX(-nmax, MIN(nmax-1, l));
  163. float w = weight_type == 1 ? x[i] * x[i] : 1;
  164. sumlx += w*x[i]*l;
  165. suml2 += w*l*l;
  166. }
  167. if (suml2 > 0 && sumlx*sumlx > best*suml2) {
  168. for (int i = 0; i < n; ++i) {
  169. int l = nearest_int(iscale * x[i]);
  170. L[i] = nmax + MAX(-nmax, MIN(nmax-1, l));
  171. }
  172. scale = sumlx/suml2; best = scale*sumlx;
  173. }
  174. }
  175. return scale;
  176. }
  177. static float make_q3_quants(int n, int nmax, const float * restrict x, int8_t * restrict L, bool do_rmse) {
  178. float max = 0;
  179. float amax = 0;
  180. for (int i = 0; i < n; ++i) {
  181. float ax = fabsf(x[i]);
  182. if (ax > amax) { amax = ax; max = x[i]; }
  183. }
  184. if (!amax) { // all zero
  185. for (int i = 0; i < n; ++i) { L[i] = 0; }
  186. return 0.f;
  187. }
  188. float iscale = -nmax / max;
  189. if (do_rmse) {
  190. float sumlx = 0;
  191. float suml2 = 0;
  192. for (int i = 0; i < n; ++i) {
  193. int l = nearest_int(iscale * x[i]);
  194. l = MAX(-nmax, MIN(nmax-1, l));
  195. L[i] = l;
  196. float w = x[i]*x[i];
  197. sumlx += w*x[i]*l;
  198. suml2 += w*l*l;
  199. }
  200. for (int itry = 0; itry < 5; ++itry) {
  201. int n_changed = 0;
  202. for (int i = 0; i < n; ++i) {
  203. float w = x[i]*x[i];
  204. float slx = sumlx - w*x[i]*L[i];
  205. if (slx > 0) {
  206. float sl2 = suml2 - w*L[i]*L[i];
  207. int new_l = nearest_int(x[i] * sl2 / slx);
  208. new_l = MAX(-nmax, MIN(nmax-1, new_l));
  209. if (new_l != L[i]) {
  210. slx += w*x[i]*new_l;
  211. sl2 += w*new_l*new_l;
  212. if (sl2 > 0 && slx*slx*suml2 > sumlx*sumlx*sl2) {
  213. L[i] = new_l; sumlx = slx; suml2 = sl2;
  214. ++n_changed;
  215. }
  216. }
  217. }
  218. }
  219. if (!n_changed) {
  220. break;
  221. }
  222. }
  223. for (int i = 0; i < n; ++i) {
  224. L[i] += nmax;
  225. }
  226. return sumlx / suml2;
  227. }
  228. for (int i = 0; i < n; ++i) {
  229. int l = nearest_int(iscale * x[i]);
  230. l = MAX(-nmax, MIN(nmax-1, l));
  231. L[i] = l + nmax;
  232. }
  233. return 1/iscale;
  234. }
  235. static float make_qkx1_quants(int n, int nmax, const float * restrict x, uint8_t * restrict L, float * restrict the_min, int ntry) {
  236. float min = x[0];
  237. float max = x[0];
  238. for (int i = 1; i < n; ++i) {
  239. if (x[i] < min) min = x[i];
  240. if (x[i] > max) max = x[i];
  241. }
  242. if (max == min) {
  243. for (int i = 0; i < n; ++i) L[i] = 0;
  244. *the_min = 0;
  245. return 0.f;
  246. }
  247. if (min > 0) min = 0;
  248. float iscale = nmax/(max - min);
  249. float scale = 1/iscale;
  250. for (int itry = 0; itry < ntry; ++itry) {
  251. float sumlx = 0; int suml2 = 0;
  252. bool did_change = false;
  253. for (int i = 0; i < n; ++i) {
  254. int l = nearest_int(iscale*(x[i] - min));
  255. l = MAX(0, MIN(nmax, l));
  256. if (l != L[i]) {
  257. L[i] = l;
  258. did_change = true;
  259. }
  260. sumlx += (x[i] - min)*l;
  261. suml2 += l*l;
  262. }
  263. scale = sumlx/suml2;
  264. float sum = 0;
  265. for (int i = 0; i < n; ++i) {
  266. sum += x[i] - scale*L[i];
  267. }
  268. min = sum/n;
  269. if (min > 0) min = 0;
  270. iscale = 1/scale;
  271. if (!did_change) break;
  272. }
  273. *the_min = -min;
  274. return scale;
  275. }
  276. #if QK_K == 256
  277. static inline void get_scale_min_k4(int j, const uint8_t * restrict q, uint8_t * restrict d, uint8_t * restrict m) {
  278. if (j < 4) {
  279. *d = q[j] & 63; *m = q[j + 4] & 63;
  280. } else {
  281. *d = (q[j+4] & 0xF) | ((q[j-4] >> 6) << 4);
  282. *m = (q[j+4] >> 4) | ((q[j-0] >> 6) << 4);
  283. }
  284. }
  285. #endif
  286. //========================- 2-bit (de)-quantization
  287. void quantize_row_q2_K_reference(const float * restrict x, block_q2_K * restrict y, int k) {
  288. assert(k % QK_K == 0);
  289. const int nb = k / QK_K;
  290. uint8_t L[QK_K];
  291. float mins[QK_K/16];
  292. float scales[QK_K/16];
  293. const float q4scale = 15.f;
  294. for (int i = 0; i < nb; i++) {
  295. float max_scale = 0; // as we are deducting the min, scales are always positive
  296. float max_min = 0;
  297. for (int j = 0; j < QK_K/16; ++j) {
  298. scales[j] = make_qkx1_quants(16, 3, x + 16*j, L + 16*j, &mins[j], 5);
  299. float scale = scales[j];
  300. if (scale > max_scale) {
  301. max_scale = scale;
  302. }
  303. float min = mins[j];
  304. if (min > max_min) {
  305. max_min = min;
  306. }
  307. }
  308. if (max_scale > 0) {
  309. float iscale = q4scale/max_scale;
  310. for (int j = 0; j < QK_K/16; ++j) {
  311. int l = nearest_int(iscale*scales[j]);
  312. y[i].scales[j] = l;
  313. }
  314. y[i].d = ggml_fp32_to_fp16(max_scale/q4scale);
  315. } else {
  316. for (int j = 0; j < QK_K/16; ++j) y[i].scales[j] = 0;
  317. y[i].d = ggml_fp32_to_fp16(0.f);
  318. }
  319. if (max_min > 0) {
  320. float iscale = q4scale/max_min;
  321. for (int j = 0; j < QK_K/16; ++j) {
  322. int l = nearest_int(iscale*mins[j]);
  323. y[i].scales[j] |= (l << 4);
  324. }
  325. y[i].dmin = ggml_fp32_to_fp16(max_min/q4scale);
  326. } else {
  327. y[i].dmin = ggml_fp32_to_fp16(0.f);
  328. }
  329. for (int j = 0; j < QK_K/16; ++j) {
  330. const float d = ggml_fp16_to_fp32(y[i].d) * (y[i].scales[j] & 0xF);
  331. if (!d) continue;
  332. const float dm = ggml_fp16_to_fp32(y[i].dmin) * (y[i].scales[j] >> 4);
  333. for (int ii = 0; ii < 16; ++ii) {
  334. int l = nearest_int((x[16*j + ii] + dm)/d);
  335. l = MAX(0, MIN(3, l));
  336. L[16*j + ii] = l;
  337. }
  338. }
  339. #if QK_K == 256
  340. for (int j = 0; j < QK_K; j += 128) {
  341. for (int l = 0; l < 32; ++l) {
  342. y[i].qs[j/4 + l] = L[j + l] | (L[j + l + 32] << 2) | (L[j + l + 64] << 4) | (L[j + l + 96] << 6);
  343. }
  344. }
  345. #else
  346. for (int l = 0; l < 16; ++l) {
  347. y[i].qs[l] = L[l] | (L[l + 16] << 2) | (L[l + 32] << 4) | (L[l + 48] << 6);
  348. }
  349. #endif
  350. x += QK_K;
  351. }
  352. }
  353. void dequantize_row_q2_K(const block_q2_K * restrict x, float * restrict y, int k) {
  354. assert(k % QK_K == 0);
  355. const int nb = k / QK_K;
  356. for (int i = 0; i < nb; i++) {
  357. const float d = ggml_fp16_to_fp32(x[i].d);
  358. const float min = ggml_fp16_to_fp32(x[i].dmin);
  359. const uint8_t * q = x[i].qs;
  360. #if QK_K == 256
  361. int is = 0;
  362. float dl, ml;
  363. for (int n = 0; n < QK_K; n += 128) {
  364. int shift = 0;
  365. for (int j = 0; j < 4; ++j) {
  366. uint8_t sc = x[i].scales[is++];
  367. dl = d * (sc & 0xF); ml = min * (sc >> 4);
  368. for (int l = 0; l < 16; ++l) *y++ = dl * ((int8_t)((q[l] >> shift) & 3)) - ml;
  369. sc = x[i].scales[is++];
  370. dl = d * (sc & 0xF); ml = min * (sc >> 4);
  371. for (int l = 0; l < 16; ++l) *y++ = dl * ((int8_t)((q[l+16] >> shift) & 3)) - ml;
  372. shift += 2;
  373. }
  374. q += 32;
  375. }
  376. #else
  377. float dl1 = d * (x[i].scales[0] & 0xF), ml1 = min * (x[i].scales[0] >> 4);
  378. float dl2 = d * (x[i].scales[1] & 0xF), ml2 = min * (x[i].scales[1] >> 4);
  379. float dl3 = d * (x[i].scales[2] & 0xF), ml3 = min * (x[i].scales[2] >> 4);
  380. float dl4 = d * (x[i].scales[3] & 0xF), ml4 = min * (x[i].scales[3] >> 4);
  381. for (int l = 0; l < 16; ++l) {
  382. y[l+ 0] = dl1 * ((int8_t)((q[l] >> 0) & 3)) - ml1;
  383. y[l+16] = dl2 * ((int8_t)((q[l] >> 2) & 3)) - ml2;
  384. y[l+32] = dl3 * ((int8_t)((q[l] >> 4) & 3)) - ml3;
  385. y[l+48] = dl4 * ((int8_t)((q[l] >> 6) & 3)) - ml4;
  386. }
  387. y += QK_K;
  388. #endif
  389. }
  390. }
  391. void quantize_row_q2_K(const float * restrict x, void * restrict vy, int k) {
  392. quantize_row_q2_K_reference(x, vy, k);
  393. }
  394. size_t ggml_quantize_q2_K(const float * restrict src, void * restrict dst, int n, int k, int64_t * restrict hist) {
  395. const int nb = k / QK_K;
  396. // TODO - collect histograms - although, at a second thought, I don't really care about them
  397. (void)hist;
  398. for (int j = 0; j < nb; j += k) {
  399. block_q2_K * restrict y = (block_q2_K *)dst + j/QK_K;
  400. quantize_row_q2_K_reference(src + j, y, k);
  401. }
  402. return (n/QK_K*sizeof(block_q2_K));
  403. }
  404. //========================= 3-bit (de)-quantization
  405. void quantize_row_q3_K_reference(const float * restrict x, block_q3_K * restrict y, int k) {
  406. assert(k % QK_K == 0);
  407. const int nb = k / QK_K;
  408. int8_t L[QK_K];
  409. float scales[QK_K / 16];
  410. for (int i = 0; i < nb; i++) {
  411. float max_scale = 0;
  412. float amax = 0;
  413. for (int j = 0; j < QK_K/16; ++j) {
  414. scales[j] = make_q3_quants(16, 4, x + 16*j, L + 16*j, true);
  415. float scale = fabsf(scales[j]);
  416. if (scale > amax) {
  417. amax = scale; max_scale = scales[j];
  418. }
  419. }
  420. #if QK_K == 256
  421. memset(y[i].scales, 0, 12);
  422. if (max_scale) {
  423. float iscale = -32.f/max_scale;
  424. for (int j = 0; j < QK_K/16; ++j) {
  425. int8_t l = nearest_int(iscale*scales[j]);
  426. l = MAX(-32, MIN(31, l)) + 32;
  427. if (j < 8) {
  428. y[i].scales[j] = l & 0xF;
  429. } else {
  430. y[i].scales[j-8] |= ((l & 0xF) << 4);
  431. }
  432. l >>= 4;
  433. y[i].scales[j%4 + 8] |= (l << (2*(j/4)));
  434. }
  435. y[i].d = ggml_fp32_to_fp16(1/iscale);
  436. } else {
  437. y[i].d = ggml_fp32_to_fp16(0.f);
  438. }
  439. int8_t sc;
  440. for (int j = 0; j < QK_K/16; ++j) {
  441. sc = j < 8 ? y[i].scales[j] & 0xF : y[i].scales[j-8] >> 4;
  442. sc = (sc | (((y[i].scales[8 + j%4] >> (2*(j/4))) & 3) << 4)) - 32;
  443. float d = ggml_fp16_to_fp32(y[i].d) * sc;
  444. if (!d) {
  445. continue;
  446. }
  447. for (int ii = 0; ii < 16; ++ii) {
  448. int l = nearest_int(x[16*j + ii]/d);
  449. l = MAX(-4, MIN(3, l));
  450. L[16*j + ii] = l + 4;
  451. }
  452. }
  453. #else
  454. if (max_scale) {
  455. float iscale = -8.f/max_scale;
  456. for (int j = 0; j < QK_K/16; j+=2) {
  457. int l1 = nearest_int(iscale*scales[j]);
  458. l1 = 8 + MAX(-8, MIN(7, l1));
  459. int l2 = nearest_int(iscale*scales[j+1]);
  460. l2 = 8 + MAX(-8, MIN(7, l2));
  461. y[i].scales[j/2] = l1 | (l2 << 4);
  462. }
  463. y[i].d = ggml_fp32_to_fp16(1/iscale);
  464. } else {
  465. for (int j = 0; j < QK_K/16; j+=2) {
  466. y[i].scales[j/2] = 0;
  467. }
  468. y[i].d = ggml_fp32_to_fp16(0.f);
  469. }
  470. for (int j = 0; j < QK_K/16; ++j) {
  471. int s = j%2 == 0 ? y[i].scales[j/2] & 0xF : y[i].scales[j/2] >> 4;
  472. float d = ggml_fp16_to_fp32(y[i].d) * (s - 8);
  473. if (!d) {
  474. continue;
  475. }
  476. for (int ii = 0; ii < 16; ++ii) {
  477. int l = nearest_int(x[16*j + ii]/d);
  478. l = MAX(-4, MIN(3, l));
  479. L[16*j + ii] = l + 4;
  480. }
  481. }
  482. #endif
  483. memset(y[i].hmask, 0, QK_K/8);
  484. // We put the high-bit for the 1st 8 quants into bit 0, the next 8 into bit 1, etc.
  485. int m = 0;
  486. uint8_t hm = 1;
  487. for (int j = 0; j < QK_K; ++j) {
  488. if (L[j] > 3) {
  489. y[i].hmask[m] |= hm;
  490. L[j] -= 4;
  491. }
  492. if (++m == QK_K/8) {
  493. m = 0; hm <<= 1;
  494. }
  495. }
  496. #if QK_K == 256
  497. for (int j = 0; j < QK_K; j += 128) {
  498. for (int l = 0; l < 32; ++l) {
  499. y[i].qs[j/4 + l] = L[j + l] | (L[j + l + 32] << 2) | (L[j + l + 64] << 4) | (L[j + l + 96] << 6);
  500. }
  501. }
  502. #else
  503. for (int l = 0; l < 16; ++l) {
  504. y[i].qs[l] = L[l] | (L[l + 16] << 2) | (L[l + 32] << 4) | (L[l + 48] << 6);
  505. }
  506. #endif
  507. x += QK_K;
  508. }
  509. }
  510. #if QK_K == 256
  511. void dequantize_row_q3_K(const block_q3_K * restrict x, float * restrict y, int k) {
  512. assert(k % QK_K == 0);
  513. const int nb = k / QK_K;
  514. const uint32_t kmask1 = 0x03030303;
  515. const uint32_t kmask2 = 0x0f0f0f0f;
  516. uint32_t aux[4];
  517. const int8_t * scales = (const int8_t*)aux;
  518. for (int i = 0; i < nb; i++) {
  519. const float d_all = ggml_fp16_to_fp32(x[i].d);
  520. const uint8_t * restrict q = x[i].qs;
  521. const uint8_t * restrict hm = x[i].hmask;
  522. uint8_t m = 1;
  523. memcpy(aux, x[i].scales, 12);
  524. uint32_t tmp = aux[2];
  525. aux[2] = ((aux[0] >> 4) & kmask2) | (((tmp >> 4) & kmask1) << 4);
  526. aux[3] = ((aux[1] >> 4) & kmask2) | (((tmp >> 6) & kmask1) << 4);
  527. aux[0] = (aux[0] & kmask2) | (((tmp >> 0) & kmask1) << 4);
  528. aux[1] = (aux[1] & kmask2) | (((tmp >> 2) & kmask1) << 4);
  529. int is = 0;
  530. float dl;
  531. for (int n = 0; n < QK_K; n += 128) {
  532. int shift = 0;
  533. for (int j = 0; j < 4; ++j) {
  534. dl = d_all * (scales[is++] - 32);
  535. for (int l = 0; l < 16; ++l) {
  536. *y++ = dl * ((int8_t)((q[l+ 0] >> shift) & 3) - ((hm[l+ 0] & m) ? 0 : 4));
  537. }
  538. dl = d_all * (scales[is++] - 32);
  539. for (int l = 0; l < 16; ++l) {
  540. *y++ = dl * ((int8_t)((q[l+16] >> shift) & 3) - ((hm[l+16] & m) ? 0 : 4));
  541. }
  542. shift += 2;
  543. m <<= 1;
  544. }
  545. q += 32;
  546. }
  547. }
  548. }
  549. #else
  550. void dequantize_row_q3_K(const block_q3_K * restrict x, float * restrict y, int k) {
  551. assert(k % QK_K == 0);
  552. assert(QK_K == 64);
  553. const int nb = k / QK_K;
  554. for (int i = 0; i < nb; i++) {
  555. const float d_all = ggml_fp16_to_fp32(x[i].d);
  556. const uint8_t * restrict q = x[i].qs;
  557. const uint8_t * restrict hm = x[i].hmask;
  558. const float d1 = d_all * ((x[i].scales[0] & 0xF) - 8);
  559. const float d2 = d_all * ((x[i].scales[0] >> 4) - 8);
  560. const float d3 = d_all * ((x[i].scales[1] & 0xF) - 8);
  561. const float d4 = d_all * ((x[i].scales[1] >> 4) - 8);
  562. for (int l=0; l<8; ++l) {
  563. uint8_t h = hm[l];
  564. y[l+ 0] = d1 * ((int8_t)((q[l+0] >> 0) & 3) - ((h & 0x01) ? 0 : 4));
  565. y[l+ 8] = d1 * ((int8_t)((q[l+8] >> 0) & 3) - ((h & 0x02) ? 0 : 4));
  566. y[l+16] = d2 * ((int8_t)((q[l+0] >> 2) & 3) - ((h & 0x04) ? 0 : 4));
  567. y[l+24] = d2 * ((int8_t)((q[l+8] >> 2) & 3) - ((h & 0x08) ? 0 : 4));
  568. y[l+32] = d3 * ((int8_t)((q[l+0] >> 4) & 3) - ((h & 0x10) ? 0 : 4));
  569. y[l+40] = d3 * ((int8_t)((q[l+8] >> 4) & 3) - ((h & 0x20) ? 0 : 4));
  570. y[l+48] = d4 * ((int8_t)((q[l+0] >> 6) & 3) - ((h & 0x40) ? 0 : 4));
  571. y[l+56] = d4 * ((int8_t)((q[l+8] >> 6) & 3) - ((h & 0x80) ? 0 : 4));
  572. }
  573. y += QK_K;
  574. }
  575. }
  576. #endif
  577. void quantize_row_q3_K(const float * restrict x, void * restrict vy, int k) {
  578. quantize_row_q3_K_reference(x, vy, k);
  579. }
  580. size_t ggml_quantize_q3_K(const float * restrict src, void * restrict dst, int n, int k, int64_t * restrict hist) {
  581. const int nb = k / QK_K;
  582. // TODO - collect histograms - although, at a second thought, I don't really care about them
  583. (void)hist;
  584. for (int j = 0; j < nb; j += k) {
  585. block_q3_K * restrict y = (block_q3_K *)dst + j/QK_K;
  586. quantize_row_q3_K_reference(src + j, y, k);
  587. }
  588. return (n/QK_K*sizeof(block_q3_K));
  589. }
  590. // ====================== 4-bit (de)-quantization
  591. void quantize_row_q4_K_reference(const float * restrict x, block_q4_K * restrict y, int k) {
  592. assert(k % QK_K == 0);
  593. const int nb = k / QK_K;
  594. uint8_t L[QK_K];
  595. float mins[QK_K/32];
  596. float scales[QK_K/32];
  597. for (int i = 0; i < nb; i++) {
  598. float max_scale = 0; // as we are deducting the min, scales are always positive
  599. float max_min = 0;
  600. for (int j = 0; j < QK_K/32; ++j) {
  601. scales[j] = make_qkx1_quants(32, 15, x + 32*j, L + 32*j, &mins[j], 5);
  602. float scale = scales[j];
  603. if (scale > max_scale) {
  604. max_scale = scale;
  605. }
  606. float min = mins[j];
  607. if (min > max_min) {
  608. max_min = min;
  609. }
  610. }
  611. #if QK_K == 256
  612. float inv_scale = max_scale > 0 ? 63.f/max_scale : 0.f;
  613. float inv_min = max_min > 0 ? 63.f/max_min : 0.f;
  614. for (int j = 0; j < QK_K/32; ++j) {
  615. uint8_t ls = nearest_int(inv_scale*scales[j]);
  616. uint8_t lm = nearest_int(inv_min*mins[j]);
  617. ls = MIN(63, ls);
  618. lm = MIN(63, lm);
  619. if (j < 4) {
  620. y[i].scales[j] = ls;
  621. y[i].scales[j+4] = lm;
  622. } else {
  623. y[i].scales[j+4] = (ls & 0xF) | ((lm & 0xF) << 4);
  624. y[i].scales[j-4] |= ((ls >> 4) << 6);
  625. y[i].scales[j-0] |= ((lm >> 4) << 6);
  626. }
  627. }
  628. y[i].d = ggml_fp32_to_fp16(max_scale/63.f);
  629. y[i].dmin = ggml_fp32_to_fp16(max_min/63.f);
  630. uint8_t sc, m;
  631. for (int j = 0; j < QK_K/32; ++j) {
  632. get_scale_min_k4(j, y[i].scales, &sc, &m);
  633. const float d = ggml_fp16_to_fp32(y[i].d) * sc;
  634. if (!d) continue;
  635. const float dm = ggml_fp16_to_fp32(y[i].dmin) * m;
  636. for (int ii = 0; ii < 32; ++ii) {
  637. int l = nearest_int((x[32*j + ii] + dm)/d);
  638. l = MAX(0, MIN(15, l));
  639. L[32*j + ii] = l;
  640. }
  641. }
  642. #else
  643. const float s_factor = 15.f;
  644. float inv_scale = max_scale > 0 ? s_factor/max_scale : 0.f;
  645. float inv_min = max_min > 0 ? s_factor/max_min : 0.f;
  646. int d1 = nearest_int(inv_scale*scales[0]);
  647. int m1 = nearest_int(inv_min*mins[0]);
  648. int d2 = nearest_int(inv_scale*scales[1]);
  649. int m2 = nearest_int(inv_min*mins[1]);
  650. y[i].scales[0] = d1 | (m1 << 4);
  651. y[i].scales[1] = d2 | (m2 << 4);
  652. y[i].d[0] = ggml_fp32_to_fp16(max_scale/s_factor);
  653. y[i].d[1] = ggml_fp32_to_fp16(max_min/s_factor);
  654. float sumlx = 0;
  655. int suml2 = 0;
  656. for (int j = 0; j < QK_K/32; ++j) {
  657. const uint8_t sd = y[i].scales[j] & 0xF;
  658. const uint8_t sm = y[i].scales[j] >> 4;
  659. const float d = ggml_fp16_to_fp32(y[i].d[0]) * sd;
  660. if (!d) continue;
  661. const float m = ggml_fp16_to_fp32(y[i].d[1]) * sm;
  662. for (int ii = 0; ii < 32; ++ii) {
  663. int l = nearest_int((x[32*j + ii] + m)/d);
  664. l = MAX(0, MIN(15, l));
  665. L[32*j + ii] = l;
  666. sumlx += (x[32*j + ii] + m)*l*sd;
  667. suml2 += l*l*sd*sd;
  668. }
  669. }
  670. if (suml2) {
  671. y[i].d[0] = ggml_fp32_to_fp16(sumlx/suml2);
  672. }
  673. #endif
  674. uint8_t * q = y[i].qs;
  675. for (int j = 0; j < QK_K; j += 64) {
  676. for (int l = 0; l < 32; ++l) q[l] = L[j + l] | (L[j + l + 32] << 4);
  677. q += 32;
  678. }
  679. x += QK_K;
  680. }
  681. }
  682. void dequantize_row_q4_K(const block_q4_K * restrict x, float * restrict y, int k) {
  683. assert(k % QK_K == 0);
  684. const int nb = k / QK_K;
  685. for (int i = 0; i < nb; i++) {
  686. const uint8_t * q = x[i].qs;
  687. #if QK_K == 256
  688. const float d = ggml_fp16_to_fp32(x[i].d);
  689. const float min = ggml_fp16_to_fp32(x[i].dmin);
  690. int is = 0;
  691. uint8_t sc, m;
  692. for (int j = 0; j < QK_K; j += 64) {
  693. get_scale_min_k4(is + 0, x[i].scales, &sc, &m);
  694. const float d1 = d * sc; const float m1 = min * m;
  695. get_scale_min_k4(is + 1, x[i].scales, &sc, &m);
  696. const float d2 = d * sc; const float m2 = min * m;
  697. for (int l = 0; l < 32; ++l) *y++ = d1 * (q[l] & 0xF) - m1;
  698. for (int l = 0; l < 32; ++l) *y++ = d2 * (q[l] >> 4) - m2;
  699. q += 32; is += 2;
  700. }
  701. #else
  702. const float dall = ggml_fp16_to_fp32(x[i].d[0]);
  703. const float mall = ggml_fp16_to_fp32(x[i].d[1]);
  704. const float d1 = dall * (x[i].scales[0] & 0xF), m1 = mall * (x[i].scales[0] >> 4);
  705. const float d2 = dall * (x[i].scales[1] & 0xF), m2 = mall * (x[i].scales[1] >> 4);
  706. for (int l = 0; l < 32; ++l) {
  707. y[l+ 0] = d1 * (q[l] & 0xF) - m1;
  708. y[l+32] = d2 * (q[l] >> 4) - m2;
  709. }
  710. y += QK_K;
  711. #endif
  712. }
  713. }
  714. void quantize_row_q4_K(const float * restrict x, void * restrict vy, int k) {
  715. assert(k % QK_K == 0);
  716. block_q4_K * restrict y = vy;
  717. quantize_row_q4_K_reference(x, y, k);
  718. }
  719. size_t ggml_quantize_q4_K(const float * restrict src, void * restrict dst, int n, int k, int64_t * restrict hist) {
  720. assert(k % QK_K == 0);
  721. const int nb = k / QK_K;
  722. (void)hist; // TODO: collect histograms
  723. for (int j = 0; j < nb; j += k) {
  724. block_q4_K * restrict y = (block_q4_K *)dst + j/QK_K;
  725. quantize_row_q4_K_reference(src + j, y, k);
  726. }
  727. return (n/QK_K*sizeof(block_q4_K));
  728. }
  729. // ====================== 5-bit (de)-quantization
  730. void quantize_row_q5_K_reference(const float * restrict x, block_q5_K * restrict y, int k) {
  731. assert(k % QK_K == 0);
  732. const int nb = k / QK_K;
  733. #if QK_K == 256
  734. uint8_t L[QK_K];
  735. float mins[QK_K/32];
  736. float scales[QK_K/32];
  737. #else
  738. int8_t L[QK_K];
  739. float scales[QK_K/16];
  740. #endif
  741. for (int i = 0; i < nb; i++) {
  742. #if QK_K == 256
  743. float max_scale = 0; // as we are deducting the min, scales are always positive
  744. float max_min = 0;
  745. for (int j = 0; j < QK_K/32; ++j) {
  746. scales[j] = make_qkx1_quants(32, 31, x + 32*j, L + 32*j, &mins[j], 5);
  747. float scale = scales[j];
  748. if (scale > max_scale) {
  749. max_scale = scale;
  750. }
  751. float min = mins[j];
  752. if (min > max_min) {
  753. max_min = min;
  754. }
  755. }
  756. float inv_scale = max_scale > 0 ? 63.f/max_scale : 0.f;
  757. float inv_min = max_min > 0 ? 63.f/max_min : 0.f;
  758. for (int j = 0; j < QK_K/32; ++j) {
  759. uint8_t ls = nearest_int(inv_scale*scales[j]);
  760. uint8_t lm = nearest_int(inv_min*mins[j]);
  761. ls = MIN(63, ls);
  762. lm = MIN(63, lm);
  763. if (j < 4) {
  764. y[i].scales[j] = ls;
  765. y[i].scales[j+4] = lm;
  766. } else {
  767. y[i].scales[j+4] = (ls & 0xF) | ((lm & 0xF) << 4);
  768. y[i].scales[j-4] |= ((ls >> 4) << 6);
  769. y[i].scales[j-0] |= ((lm >> 4) << 6);
  770. }
  771. }
  772. y[i].d = ggml_fp32_to_fp16(max_scale/63.f);
  773. y[i].dmin = ggml_fp32_to_fp16(max_min/63.f);
  774. uint8_t sc, m;
  775. for (int j = 0; j < QK_K/32; ++j) {
  776. get_scale_min_k4(j, y[i].scales, &sc, &m);
  777. const float d = ggml_fp16_to_fp32(y[i].d) * sc;
  778. if (!d) continue;
  779. const float dm = ggml_fp16_to_fp32(y[i].dmin) * m;
  780. for (int ii = 0; ii < 32; ++ii) {
  781. int l = nearest_int((x[32*j + ii] + dm)/d);
  782. l = MAX(0, MIN(31, l));
  783. L[32*j + ii] = l;
  784. }
  785. }
  786. uint8_t * restrict qh = y[i].qh;
  787. uint8_t * restrict ql = y[i].qs;
  788. memset(qh, 0, QK_K/8);
  789. uint8_t m1 = 1, m2 = 2;
  790. for (int n = 0; n < QK_K; n += 64) {
  791. for (int j = 0; j < 32; ++j) {
  792. int l1 = L[n + j];
  793. if (l1 > 15) {
  794. l1 -= 16; qh[j] |= m1;
  795. }
  796. int l2 = L[n + j + 32];
  797. if (l2 > 15) {
  798. l2 -= 16; qh[j] |= m2;
  799. }
  800. ql[j] = l1 | (l2 << 4);
  801. }
  802. m1 <<= 2; m2 <<= 2;
  803. ql += 32;
  804. }
  805. #else
  806. float max_scale = 0, amax = 0;
  807. for (int j = 0; j < QK_K/16; ++j) {
  808. scales[j] = make_qx_quants(16, 16, x + 16*j, L + 16*j, 1);
  809. float abs_scale = fabsf(scales[j]);
  810. if (abs_scale > amax) {
  811. amax = abs_scale;
  812. max_scale = scales[j];
  813. }
  814. }
  815. float iscale = -128.f/max_scale;
  816. for (int j = 0; j < QK_K/16; ++j) {
  817. int l = nearest_int(iscale*scales[j]);
  818. y[i].scales[j] = MAX(-128, MIN(127, l));
  819. }
  820. y[i].d = ggml_fp32_to_fp16(1/iscale);
  821. for (int j = 0; j < QK_K/16; ++j) {
  822. const float d = ggml_fp16_to_fp32(y[i].d) * y[i].scales[j];
  823. if (!d) continue;
  824. for (int ii = 0; ii < 16; ++ii) {
  825. int l = nearest_int(x[16*j + ii]/d);
  826. l = MAX(-16, MIN(15, l));
  827. L[16*j + ii] = l + 16;
  828. }
  829. }
  830. uint8_t * restrict qh = y[i].qh;
  831. uint8_t * restrict ql = y[i].qs;
  832. memset(qh, 0, QK_K/8);
  833. for (int j = 0; j < 32; ++j) {
  834. int jm = j%8;
  835. int is = j/8;
  836. int l1 = L[j];
  837. if (l1 > 15) {
  838. l1 -= 16; qh[jm] |= (1 << is);
  839. }
  840. int l2 = L[j + 32];
  841. if (l2 > 15) {
  842. l2 -= 16; qh[jm] |= (1 << (4 + is));
  843. }
  844. ql[j] = l1 | (l2 << 4);
  845. }
  846. #endif
  847. x += QK_K;
  848. }
  849. }
  850. void dequantize_row_q5_K(const block_q5_K * restrict x, float * restrict y, int k) {
  851. assert(k % QK_K == 0);
  852. const int nb = k / QK_K;
  853. for (int i = 0; i < nb; i++) {
  854. const uint8_t * ql = x[i].qs;
  855. const uint8_t * qh = x[i].qh;
  856. #if QK_K == 256
  857. const float d = ggml_fp16_to_fp32(x[i].d);
  858. const float min = ggml_fp16_to_fp32(x[i].dmin);
  859. int is = 0;
  860. uint8_t sc, m;
  861. uint8_t u1 = 1, u2 = 2;
  862. for (int j = 0; j < QK_K; j += 64) {
  863. get_scale_min_k4(is + 0, x[i].scales, &sc, &m);
  864. const float d1 = d * sc; const float m1 = min * m;
  865. get_scale_min_k4(is + 1, x[i].scales, &sc, &m);
  866. const float d2 = d * sc; const float m2 = min * m;
  867. for (int l = 0; l < 32; ++l) *y++ = d1 * ((ql[l] & 0xF) + (qh[l] & u1 ? 16 : 0)) - m1;
  868. for (int l = 0; l < 32; ++l) *y++ = d2 * ((ql[l] >> 4) + (qh[l] & u2 ? 16 : 0)) - m2;
  869. ql += 32; is += 2;
  870. u1 <<= 2; u2 <<= 2;
  871. }
  872. #else
  873. float d = ggml_fp16_to_fp32(x[i].d);
  874. const int8_t * restrict s = x[i].scales;
  875. for (int l = 0; l < 8; ++l) {
  876. y[l+ 0] = d * s[0] * ((ql[l+ 0] & 0xF) - (qh[l] & 0x01 ? 0 : 16));
  877. y[l+ 8] = d * s[0] * ((ql[l+ 8] & 0xF) - (qh[l] & 0x02 ? 0 : 16));
  878. y[l+16] = d * s[1] * ((ql[l+16] & 0xF) - (qh[l] & 0x04 ? 0 : 16));
  879. y[l+24] = d * s[1] * ((ql[l+24] & 0xF) - (qh[l] & 0x08 ? 0 : 16));
  880. y[l+32] = d * s[2] * ((ql[l+ 0] >> 4) - (qh[l] & 0x10 ? 0 : 16));
  881. y[l+40] = d * s[2] * ((ql[l+ 8] >> 4) - (qh[l] & 0x20 ? 0 : 16));
  882. y[l+48] = d * s[3] * ((ql[l+16] >> 4) - (qh[l] & 0x40 ? 0 : 16));
  883. y[l+56] = d * s[3] * ((ql[l+24] >> 4) - (qh[l] & 0x80 ? 0 : 16));
  884. }
  885. y += QK_K;
  886. #endif
  887. }
  888. }
  889. void quantize_row_q5_K(const float * restrict x, void * restrict vy, int k) {
  890. assert(k % QK_K == 0);
  891. block_q5_K * restrict y = vy;
  892. quantize_row_q5_K_reference(x, y, k);
  893. }
  894. size_t ggml_quantize_q5_K(const float * restrict src, void * restrict dst, int n, int k, int64_t * restrict hist) {
  895. assert(k % QK_K == 0);
  896. const int nb = k / QK_K;
  897. (void)hist;
  898. for (int j = 0; j < nb; j += k) {
  899. block_q5_K * restrict y = (block_q5_K *)dst + j/QK_K;
  900. quantize_row_q5_K_reference(src + j, y, k);
  901. }
  902. return (n/QK_K*sizeof(block_q5_K));
  903. }
  904. // ====================== 6-bit (de)-quantization
  905. void quantize_row_q6_K_reference(const float * restrict x, block_q6_K * restrict y, int k) {
  906. assert(k % QK_K == 0);
  907. const int nb = k / QK_K;
  908. int8_t L[QK_K];
  909. float scales[QK_K/16];
  910. for (int i = 0; i < nb; i++) {
  911. float max_scale = 0;
  912. float max_abs_scale = 0;
  913. for (int ib = 0; ib < QK_K/16; ++ib) {
  914. const float scale = make_qx_quants(16, 32, x + 16*ib, L + 16*ib, 1);
  915. scales[ib] = scale;
  916. const float abs_scale = fabsf(scale);
  917. if (abs_scale > max_abs_scale) {
  918. max_abs_scale = abs_scale;
  919. max_scale = scale;
  920. }
  921. }
  922. float iscale = -128.f/max_scale;
  923. y[i].d = ggml_fp32_to_fp16(1/iscale);
  924. for (int ib = 0; ib < QK_K/16; ++ib) {
  925. y[i].scales[ib] = MIN(127, nearest_int(iscale*scales[ib]));
  926. }
  927. for (int j = 0; j < QK_K/16; ++j) {
  928. float d = ggml_fp16_to_fp32(y[i].d) * y[i].scales[j];
  929. if (!d) {
  930. continue;
  931. }
  932. for (int ii = 0; ii < 16; ++ii) {
  933. int l = nearest_int(x[16*j + ii]/d);
  934. l = MAX(-32, MIN(31, l));
  935. L[16*j + ii] = l + 32;
  936. }
  937. }
  938. uint8_t * restrict ql = y[i].ql;
  939. uint8_t * restrict qh = y[i].qh;
  940. #if QK_K == 256
  941. for (int j = 0; j < QK_K; j += 128) {
  942. for (int l = 0; l < 32; ++l) {
  943. const uint8_t q1 = L[j + l + 0] & 0xF;
  944. const uint8_t q2 = L[j + l + 32] & 0xF;
  945. const uint8_t q3 = L[j + l + 64] & 0xF;
  946. const uint8_t q4 = L[j + l + 96] & 0xF;
  947. ql[l+ 0] = q1 | (q3 << 4);
  948. ql[l+32] = q2 | (q4 << 4);
  949. qh[l] = (L[j + l] >> 4) | ((L[j + l + 32] >> 4) << 2) | ((L[j + l + 64] >> 4) << 4) | ((L[j + l + 96] >> 4) << 6);
  950. }
  951. ql += 64;
  952. qh += 32;
  953. }
  954. #else
  955. for (int l = 0; l < 32; ++l) {
  956. const uint8_t q1 = L[l + 0] & 0xF;
  957. const uint8_t q2 = L[l + 32] & 0xF;
  958. ql[l] = q1 | (q2 << 4);
  959. }
  960. for (int l = 0; l < 16; ++l) {
  961. qh[l] = (L[l] >> 4) | ((L[l + 16] >> 4) << 2) | ((L[l + 32] >> 4) << 4) | ((L[l + 48] >> 4) << 6);
  962. }
  963. #endif
  964. x += QK_K;
  965. }
  966. }
  967. void dequantize_row_q6_K(const block_q6_K * restrict x, float * restrict y, int k) {
  968. assert(k % QK_K == 0);
  969. const int nb = k / QK_K;
  970. for (int i = 0; i < nb; i++) {
  971. const float d = ggml_fp16_to_fp32(x[i].d);
  972. const uint8_t * restrict ql = x[i].ql;
  973. const uint8_t * restrict qh = x[i].qh;
  974. const int8_t * restrict sc = x[i].scales;
  975. #if QK_K == 256
  976. for (int n = 0; n < QK_K; n += 128) {
  977. for (int l = 0; l < 32; ++l) {
  978. int is = l/16;
  979. const int8_t q1 = (int8_t)((ql[l + 0] & 0xF) | (((qh[l] >> 0) & 3) << 4)) - 32;
  980. const int8_t q2 = (int8_t)((ql[l + 32] & 0xF) | (((qh[l] >> 2) & 3) << 4)) - 32;
  981. const int8_t q3 = (int8_t)((ql[l + 0] >> 4) | (((qh[l] >> 4) & 3) << 4)) - 32;
  982. const int8_t q4 = (int8_t)((ql[l + 32] >> 4) | (((qh[l] >> 6) & 3) << 4)) - 32;
  983. y[l + 0] = d * sc[is + 0] * q1;
  984. y[l + 32] = d * sc[is + 2] * q2;
  985. y[l + 64] = d * sc[is + 4] * q3;
  986. y[l + 96] = d * sc[is + 6] * q4;
  987. }
  988. y += 128;
  989. ql += 64;
  990. qh += 32;
  991. sc += 8;
  992. }
  993. #else
  994. for (int l = 0; l < 16; ++l) {
  995. const int8_t q1 = (int8_t)((ql[l+ 0] & 0xF) | (((qh[l] >> 0) & 3) << 4)) - 32;
  996. const int8_t q2 = (int8_t)((ql[l+16] & 0xF) | (((qh[l] >> 2) & 3) << 4)) - 32;
  997. const int8_t q3 = (int8_t)((ql[l+ 0] >> 4) | (((qh[l] >> 4) & 3) << 4)) - 32;
  998. const int8_t q4 = (int8_t)((ql[l+16] >> 4) | (((qh[l] >> 6) & 3) << 4)) - 32;
  999. y[l+ 0] = d * sc[0] * q1;
  1000. y[l+16] = d * sc[1] * q2;
  1001. y[l+32] = d * sc[2] * q3;
  1002. y[l+48] = d * sc[3] * q4;
  1003. }
  1004. y += 64;
  1005. #endif
  1006. }
  1007. }
  1008. void quantize_row_q6_K(const float * restrict x, void * restrict vy, int k) {
  1009. assert(k % QK_K == 0);
  1010. block_q6_K * restrict y = vy;
  1011. quantize_row_q6_K_reference(x, y, k);
  1012. }
  1013. size_t ggml_quantize_q6_K(const float * src, void * dst, int n, int k, int64_t * hist) {
  1014. assert(k % QK_K == 0);
  1015. const int nb = k / QK_K;
  1016. (void)hist; // TODO
  1017. for (int j = 0; j < nb; j += k) {
  1018. block_q6_K * restrict y = (block_q6_K *)dst + j/QK_K;
  1019. quantize_row_q6_K_reference(src + j, y, k);
  1020. }
  1021. return (n/QK_K*sizeof(block_q6_K));
  1022. }
  1023. //===================================== Q8_K ==============================================
  1024. void quantize_row_q8_K_reference(const float * restrict x, block_q8_K * restrict y, int k) {
  1025. assert(k % QK_K == 0);
  1026. const int nb = k / QK_K;
  1027. for (int i = 0; i < nb; i++) {
  1028. float max = 0;
  1029. float amax = 0;
  1030. for (int j = 0; j < QK_K; ++j) {
  1031. float ax = fabsf(x[j]);
  1032. if (ax > amax) {
  1033. amax = ax; max = x[j];
  1034. }
  1035. }
  1036. if (!amax) {
  1037. y[i].d = 0;
  1038. memset(y[i].qs, 0, QK_K);
  1039. x += QK_K;
  1040. continue;
  1041. }
  1042. const float iscale = -128.f/max;
  1043. for (int j = 0; j < QK_K; ++j) {
  1044. int v = nearest_int(iscale*x[j]);
  1045. y[i].qs[j] = MIN(127, v);
  1046. }
  1047. for (int j = 0; j < QK_K/16; ++j) {
  1048. int sum = 0;
  1049. for (int ii = 0; ii < 16; ++ii) {
  1050. sum += y[i].qs[j*16 + ii];
  1051. }
  1052. y[i].bsums[j] = sum;
  1053. }
  1054. y[i].d = 1/iscale;
  1055. x += QK_K;
  1056. }
  1057. }
  1058. void dequantize_row_q8_K(const block_q8_K * restrict x, float * restrict y, int k) {
  1059. assert(k % QK_K == 0);
  1060. const int nb = k / QK_K;
  1061. for (int i = 0; i < nb; i++) {
  1062. for (int j = 0; j < QK_K; ++j) {
  1063. *y++ = x[i].d * x[i].qs[j];
  1064. }
  1065. }
  1066. }
  1067. void quantize_row_q8_K(const float * restrict x, void * restrict y, int k) {
  1068. quantize_row_q8_K_reference(x, y, k);
  1069. }
  1070. //===================================== Dot ptoducts =================================
  1071. //
  1072. // Helper functions
  1073. //
  1074. #if __AVX__ || __AVX2__ || __AVX512F__
  1075. // horizontally add 8 floats
  1076. static inline float hsum_float_8(const __m256 x) {
  1077. __m128 res = _mm256_extractf128_ps(x, 1);
  1078. res = _mm_add_ps(res, _mm256_castps256_ps128(x));
  1079. res = _mm_add_ps(res, _mm_movehl_ps(res, res));
  1080. res = _mm_add_ss(res, _mm_movehdup_ps(res));
  1081. return _mm_cvtss_f32(res);
  1082. }
  1083. // shuffles to pick the required scales in dot products
  1084. static inline __m256i get_scale_shuffle_q3k(int i) {
  1085. static const uint8_t k_shuffle[128] = {
  1086. 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3,
  1087. 4, 5, 4, 5, 4, 5, 4, 5, 4, 5, 4, 5, 4, 5, 4, 5, 6, 7, 6, 7, 6, 7, 6, 7, 6, 7, 6, 7, 6, 7, 6, 7,
  1088. 8, 9, 8, 9, 8, 9, 8, 9, 8, 9, 8, 9, 8, 9, 8, 9, 10,11,10,11,10,11,10,11,10,11,10,11,10,11,10,11,
  1089. 12,13,12,13,12,13,12,13,12,13,12,13,12,13,12,13, 14,15,14,15,14,15,14,15,14,15,14,15,14,15,14,15,
  1090. };
  1091. return _mm256_loadu_si256((const __m256i*)k_shuffle + i);
  1092. }
  1093. static inline __m256i get_scale_shuffle_k4(int i) {
  1094. static const uint8_t k_shuffle[256] = {
  1095. 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1,
  1096. 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3,
  1097. 4, 5, 4, 5, 4, 5, 4, 5, 4, 5, 4, 5, 4, 5, 4, 5, 4, 5, 4, 5, 4, 5, 4, 5, 4, 5, 4, 5, 4, 5, 4, 5,
  1098. 6, 7, 6, 7, 6, 7, 6, 7, 6, 7, 6, 7, 6, 7, 6, 7, 6, 7, 6, 7, 6, 7, 6, 7, 6, 7, 6, 7, 6, 7, 6, 7,
  1099. 8, 9, 8, 9, 8, 9, 8, 9, 8, 9, 8, 9, 8, 9, 8, 9, 8, 9, 8, 9, 8, 9, 8, 9, 8, 9, 8, 9, 8, 9, 8, 9,
  1100. 10,11,10,11,10,11,10,11,10,11,10,11,10,11,10,11,10,11,10,11,10,11,10,11,10,11,10,11,10,11,10,11,
  1101. 12,13,12,13,12,13,12,13,12,13,12,13,12,13,12,13,12,13,12,13,12,13,12,13,12,13,12,13,12,13,12,13,
  1102. 14,15,14,15,14,15,14,15,14,15,14,15,14,15,14,15,14,15,14,15,14,15,14,15,14,15,14,15,14,15,14,15
  1103. };
  1104. return _mm256_loadu_si256((const __m256i*)k_shuffle + i);
  1105. }
  1106. static inline __m128i get_scale_shuffle(int i) {
  1107. static const uint8_t k_shuffle[128] = {
  1108. 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1,
  1109. 2, 2, 2, 2, 2, 2, 2, 2, 3, 3, 3, 3, 3, 3, 3, 3,
  1110. 4, 4, 4, 4, 4, 4, 4, 4, 5, 5, 5, 5, 5, 5, 5, 5,
  1111. 6, 6, 6, 6, 6, 6, 6, 6, 7, 7, 7, 7, 7, 7, 7, 7,
  1112. 8, 8, 8, 8, 8, 8, 8, 8, 9, 9, 9, 9, 9, 9, 9, 9,
  1113. 10,10,10,10,10,10,10,10, 11,11,11,11,11,11,11,11,
  1114. 12,12,12,12,12,12,12,12, 13,13,13,13,13,13,13,13,
  1115. 14,14,14,14,14,14,14,14, 15,15,15,15,15,15,15,15
  1116. };
  1117. return _mm_loadu_si128((const __m128i*)k_shuffle + i);
  1118. }
  1119. #endif
  1120. #if QK_K == 256
  1121. void ggml_vec_dot_q2_K_q8_K(const int n, float * restrict s, const void * restrict vx, const void * restrict vy) {
  1122. const block_q2_K * restrict x = vx;
  1123. const block_q8_K * restrict y = vy;
  1124. const int nb = n / QK_K;
  1125. #ifdef __ARM_NEON
  1126. const uint8x16_t m3 = vdupq_n_u8(0x3);
  1127. const uint8x16_t m4 = vdupq_n_u8(0xF);
  1128. const int32x4_t vzero = vdupq_n_s32(0);
  1129. int8x16x2_t q2bytes;
  1130. uint8_t aux[16];
  1131. float sum = 0;
  1132. for (int i = 0; i < nb; ++i) {
  1133. const float d = y[i].d * ggml_fp16_to_fp32(x[i].d);
  1134. const float dmin = -y[i].d * ggml_fp16_to_fp32(x[i].dmin);
  1135. const uint8_t * restrict q2 = x[i].qs;
  1136. const int8_t * restrict q8 = y[i].qs;
  1137. const uint8_t * restrict sc = x[i].scales;
  1138. const uint8x16_t mins_and_scales = vld1q_u8(sc);
  1139. const uint8x16_t scales = vandq_u8(mins_and_scales, m4);
  1140. vst1q_u8(aux, scales);
  1141. const uint8x16_t mins = vshrq_n_u8(mins_and_scales, 4);
  1142. const int16x8x2_t q8sums = vld1q_s16_x2(y[i].bsums);
  1143. const int16x8x2_t mins16 = {vreinterpretq_s16_u16(vmovl_u8(vget_low_u8(mins))), vreinterpretq_s16_u16(vmovl_u8(vget_high_u8(mins)))};
  1144. const int32x4_t s0 = vaddq_s32(vmull_s16(vget_low_s16 (mins16.val[0]), vget_low_s16 (q8sums.val[0])),
  1145. vmull_s16(vget_high_s16(mins16.val[0]), vget_high_s16(q8sums.val[0])));
  1146. const int32x4_t s1 = vaddq_s32(vmull_s16(vget_low_s16 (mins16.val[1]), vget_low_s16 (q8sums.val[1])),
  1147. vmull_s16(vget_high_s16(mins16.val[1]), vget_high_s16(q8sums.val[1])));
  1148. sum += dmin * vaddvq_s32(vaddq_s32(s0, s1));
  1149. int isum = 0;
  1150. int is = 0;
  1151. // We use this macro instead of a function call because for some reason
  1152. // the code runs 2-3% slower, even if the function is declared inline
  1153. #if defined(__ARM_FEATURE_DOTPROD)
  1154. #define MULTIPLY_ACCUM_WITH_SCALE(index)\
  1155. isum += vaddvq_s32(vdotq_s32(vzero, q2bytes.val[0], q8bytes.val[0])) * aux[is+(index)];\
  1156. isum += vaddvq_s32(vdotq_s32(vzero, q2bytes.val[1], q8bytes.val[1])) * aux[is+1+(index)];
  1157. #else
  1158. #define MULTIPLY_ACCUM_WITH_SCALE(index)\
  1159. {\
  1160. const int16x8_t p1 = vaddq_s16(vmull_s8(vget_low_s8 (q2bytes.val[0]), vget_low_s8 (q8bytes.val[0])),\
  1161. vmull_s8(vget_high_s8(q2bytes.val[0]), vget_high_s8(q8bytes.val[0])));\
  1162. const int16x8_t p2 = vaddq_s16(vmull_s8(vget_low_s8 (q2bytes.val[1]), vget_low_s8 (q8bytes.val[1])),\
  1163. vmull_s8(vget_high_s8(q2bytes.val[1]), vget_high_s8(q8bytes.val[1])));\
  1164. isum += vaddvq_s16(p1) * aux[is+(index)] + vaddvq_s16(p2) * aux[is+1+(index)];\
  1165. }
  1166. #endif
  1167. #define SHIFT_MULTIPLY_ACCUM_WITH_SCALE(shift, index)\
  1168. q8bytes = vld1q_s8_x2(q8); q8 += 32;\
  1169. q2bytes.val[0] = vreinterpretq_s8_u8(vandq_u8(vshrq_n_u8(q2bits.val[0], (shift)), m3));\
  1170. q2bytes.val[1] = vreinterpretq_s8_u8(vandq_u8(vshrq_n_u8(q2bits.val[1], (shift)), m3));\
  1171. MULTIPLY_ACCUM_WITH_SCALE((index));
  1172. for (int j = 0; j < QK_K/128; ++j) {
  1173. const uint8x16x2_t q2bits = vld1q_u8_x2(q2); q2 += 32;
  1174. int8x16x2_t q8bytes = vld1q_s8_x2(q8); q8 += 32;
  1175. q2bytes.val[0] = vreinterpretq_s8_u8(vandq_u8(q2bits.val[0], m3));
  1176. q2bytes.val[1] = vreinterpretq_s8_u8(vandq_u8(q2bits.val[1], m3));
  1177. MULTIPLY_ACCUM_WITH_SCALE(0);
  1178. SHIFT_MULTIPLY_ACCUM_WITH_SCALE(2, 2);
  1179. SHIFT_MULTIPLY_ACCUM_WITH_SCALE(4, 4);
  1180. SHIFT_MULTIPLY_ACCUM_WITH_SCALE(6, 6);
  1181. is += 8;
  1182. }
  1183. sum += d * isum;
  1184. }
  1185. *s = sum;
  1186. #elif defined __AVX2__
  1187. const __m256i m3 = _mm256_set1_epi8(3);
  1188. const __m128i m4 = _mm_set1_epi8(0xF);
  1189. __m256 acc = _mm256_setzero_ps();
  1190. for (int i = 0; i < nb; ++i) {
  1191. const float d = y[i].d * ggml_fp16_to_fp32(x[i].d);
  1192. const float dmin = -y[i].d * ggml_fp16_to_fp32(x[i].dmin);
  1193. const uint8_t * restrict q2 = x[i].qs;
  1194. const int8_t * restrict q8 = y[i].qs;
  1195. const __m128i mins_and_scales = _mm_loadu_si128((const __m128i*)x[i].scales);
  1196. const __m128i scales8 = _mm_and_si128(mins_and_scales, m4);
  1197. const __m128i mins8 = _mm_and_si128(_mm_srli_epi16(mins_and_scales, 4), m4);
  1198. const __m256i mins = _mm256_cvtepi8_epi16(mins8);
  1199. const __m256i prod = _mm256_madd_epi16(mins, _mm256_loadu_si256((const __m256i*)y[i].bsums));
  1200. acc = _mm256_fmadd_ps(_mm256_broadcast_ss(&dmin), _mm256_cvtepi32_ps(prod), acc);
  1201. const __m256i all_scales = _mm256_cvtepi8_epi16(scales8);
  1202. const __m128i l_scales = _mm256_extracti128_si256(all_scales, 0);
  1203. const __m128i h_scales = _mm256_extracti128_si256(all_scales, 1);
  1204. const __m256i scales[2] = {_mm256_set_m128i(l_scales, l_scales), _mm256_set_m128i(h_scales, h_scales)};
  1205. __m256i sumi = _mm256_setzero_si256();
  1206. for (int j = 0; j < QK_K/128; ++j) {
  1207. const __m256i q2bits = _mm256_loadu_si256((const __m256i*)q2); q2 += 32;
  1208. const __m256i q8_0 = _mm256_loadu_si256((const __m256i*)q8); q8 += 32;
  1209. const __m256i q8_1 = _mm256_loadu_si256((const __m256i*)q8); q8 += 32;
  1210. const __m256i q8_2 = _mm256_loadu_si256((const __m256i*)q8); q8 += 32;
  1211. const __m256i q8_3 = _mm256_loadu_si256((const __m256i*)q8); q8 += 32;
  1212. const __m256i q2_0 = _mm256_and_si256(q2bits, m3);
  1213. const __m256i q2_1 = _mm256_and_si256(_mm256_srli_epi16(q2bits, 2), m3);
  1214. const __m256i q2_2 = _mm256_and_si256(_mm256_srli_epi16(q2bits, 4), m3);
  1215. const __m256i q2_3 = _mm256_and_si256(_mm256_srli_epi16(q2bits, 6), m3);
  1216. __m256i p0 = _mm256_maddubs_epi16(q2_0, q8_0);
  1217. __m256i p1 = _mm256_maddubs_epi16(q2_1, q8_1);
  1218. __m256i p2 = _mm256_maddubs_epi16(q2_2, q8_2);
  1219. __m256i p3 = _mm256_maddubs_epi16(q2_3, q8_3);
  1220. p0 = _mm256_madd_epi16(_mm256_shuffle_epi8(scales[j], get_scale_shuffle_q3k(0)), p0);
  1221. p1 = _mm256_madd_epi16(_mm256_shuffle_epi8(scales[j], get_scale_shuffle_q3k(1)), p1);
  1222. p2 = _mm256_madd_epi16(_mm256_shuffle_epi8(scales[j], get_scale_shuffle_q3k(2)), p2);
  1223. p3 = _mm256_madd_epi16(_mm256_shuffle_epi8(scales[j], get_scale_shuffle_q3k(3)), p3);
  1224. p0 = _mm256_add_epi32(p0, p1);
  1225. p2 = _mm256_add_epi32(p2, p3);
  1226. sumi = _mm256_add_epi32(sumi, _mm256_add_epi32(p0, p2));
  1227. }
  1228. acc = _mm256_fmadd_ps(_mm256_broadcast_ss(&d), _mm256_cvtepi32_ps(sumi), acc);
  1229. }
  1230. *s = hsum_float_8(acc);
  1231. #elif defined __AVX__
  1232. const __m128i m3 = _mm_set1_epi8(0x3);
  1233. const __m128i m4 = _mm_set1_epi8(0xF);
  1234. const __m128i m2 = _mm_set1_epi8(0x2);
  1235. __m256 acc = _mm256_setzero_ps();
  1236. for (int i = 0; i < nb; ++i) {
  1237. const float dall = y[i].d * ggml_fp16_to_fp32(x[i].d);
  1238. const float dmin = -y[i].d * ggml_fp16_to_fp32(x[i].dmin);
  1239. const uint8_t * restrict q2 = x[i].qs;
  1240. const int8_t * restrict q8 = y[i].qs;
  1241. // load mins and scales from block_q2_K.scales[QK_K/16]
  1242. const __m128i mins_and_scales = _mm_loadu_si128((const __m128i*)x[i].scales);
  1243. const __m128i scales16 = _mm_and_si128(mins_and_scales, m4);
  1244. const __m128i mins16 = _mm_and_si128(_mm_srli_epi16(mins_and_scales, 4), m4);
  1245. const __m128i mins_0 = _mm_cvtepi8_epi16(mins16);
  1246. const __m128i mins_1 = _mm_cvtepi8_epi16(_mm_unpackhi_epi64(mins16, mins16));
  1247. // summs = y[i].bsums * (x[i].scales >> 4) in 16bits*8*2 to 32bits*4*2
  1248. const __m128i summs_0 = _mm_madd_epi16(mins_0, _mm_loadu_si128((const __m128i*)&y[i].bsums[0]));
  1249. const __m128i summs_1 = _mm_madd_epi16(mins_1, _mm_loadu_si128((const __m128i*)&y[i].bsums[8]));
  1250. // sumf += -dmin * summs in 32bits*8
  1251. acc = _mm256_add_ps(_mm256_mul_ps(_mm256_broadcast_ss(&dmin), _mm256_cvtepi32_ps(_mm256_set_m128i(summs_1, summs_0))), acc);
  1252. const __m128i scales_0 = _mm_cvtepi8_epi16(scales16);
  1253. const __m128i scales_1 = _mm_cvtepi8_epi16(_mm_unpackhi_epi64(scales16, scales16));
  1254. const __m128i scales[2] = { scales_0, scales_1 };
  1255. __m128i sumi_0 = _mm_setzero_si128();
  1256. __m128i sumi_1 = _mm_setzero_si128();
  1257. for (int j = 0; j < QK_K/128; ++j) {
  1258. // load Q8 quants int8*16*8 from block_q8_K.qs[QK_K]
  1259. const __m128i q8_0 = _mm_loadu_si128((const __m128i*)q8); q8 += 16;
  1260. const __m128i q8_1 = _mm_loadu_si128((const __m128i*)q8); q8 += 16;
  1261. const __m128i q8_2 = _mm_loadu_si128((const __m128i*)q8); q8 += 16;
  1262. const __m128i q8_3 = _mm_loadu_si128((const __m128i*)q8); q8 += 16;
  1263. const __m128i q8_4 = _mm_loadu_si128((const __m128i*)q8); q8 += 16;
  1264. const __m128i q8_5 = _mm_loadu_si128((const __m128i*)q8); q8 += 16;
  1265. const __m128i q8_6 = _mm_loadu_si128((const __m128i*)q8); q8 += 16;
  1266. const __m128i q8_7 = _mm_loadu_si128((const __m128i*)q8); q8 += 16;
  1267. // load 2bits*16*8 from block_q2_K.qs[QK_K/4]
  1268. __m128i q2bits = _mm_loadu_si128((const __m128i*)q2); q2 += 16;
  1269. const __m128i q2_0 = _mm_and_si128(q2bits, m3);
  1270. const __m128i q2_2 = _mm_and_si128(_mm_srli_epi16(q2bits, 2), m3);
  1271. const __m128i q2_4 = _mm_and_si128(_mm_srli_epi16(q2bits, 4), m3);
  1272. const __m128i q2_6 = _mm_and_si128(_mm_srli_epi16(q2bits, 6), m3);
  1273. q2bits = _mm_loadu_si128((const __m128i*)q2); q2 += 16;
  1274. const __m128i q2_1 = _mm_and_si128(q2bits, m3);
  1275. const __m128i q2_3 = _mm_and_si128(_mm_srli_epi16(q2bits, 2), m3);
  1276. const __m128i q2_5 = _mm_and_si128(_mm_srli_epi16(q2bits, 4), m3);
  1277. const __m128i q2_7 = _mm_and_si128(_mm_srli_epi16(q2bits, 6), m3);
  1278. // isuml = q8[l] * ((q2[l] >> shift) & 3) in 8bits*16*8 to 16bits*8*8
  1279. __m128i p0 = _mm_maddubs_epi16(q2_0, q8_0);
  1280. __m128i p1 = _mm_maddubs_epi16(q2_1, q8_1);
  1281. __m128i p2 = _mm_maddubs_epi16(q2_2, q8_2);
  1282. __m128i p3 = _mm_maddubs_epi16(q2_3, q8_3);
  1283. __m128i p4 = _mm_maddubs_epi16(q2_4, q8_4);
  1284. __m128i p5 = _mm_maddubs_epi16(q2_5, q8_5);
  1285. __m128i p6 = _mm_maddubs_epi16(q2_6, q8_6);
  1286. __m128i p7 = _mm_maddubs_epi16(q2_7, q8_7);
  1287. // isum += (x[i].scales[is++] & 0xF) * isuml in 16bits*8*8 to 32bits*4*8
  1288. __m128i shuffle = _mm_set1_epi16(0x0100);
  1289. p0 = _mm_madd_epi16(_mm_shuffle_epi8(scales[j], shuffle), p0);
  1290. shuffle = _mm_add_epi16(shuffle, m2);
  1291. p1 = _mm_madd_epi16(_mm_shuffle_epi8(scales[j], shuffle), p1);
  1292. shuffle = _mm_add_epi16(shuffle, m2);
  1293. p2 = _mm_madd_epi16(_mm_shuffle_epi8(scales[j], shuffle), p2);
  1294. shuffle = _mm_add_epi16(shuffle, m2);
  1295. p3 = _mm_madd_epi16(_mm_shuffle_epi8(scales[j], shuffle), p3);
  1296. shuffle = _mm_add_epi16(shuffle, m2);
  1297. p4 = _mm_madd_epi16(_mm_shuffle_epi8(scales[j], shuffle), p4);
  1298. shuffle = _mm_add_epi16(shuffle, m2);
  1299. p5 = _mm_madd_epi16(_mm_shuffle_epi8(scales[j], shuffle), p5);
  1300. shuffle = _mm_add_epi16(shuffle, m2);
  1301. p6 = _mm_madd_epi16(_mm_shuffle_epi8(scales[j], shuffle), p6);
  1302. shuffle = _mm_add_epi16(shuffle, m2);
  1303. p7 = _mm_madd_epi16(_mm_shuffle_epi8(scales[j], shuffle), p7);
  1304. p0 = _mm_add_epi32(p0, p1);
  1305. p2 = _mm_add_epi32(p2, p3);
  1306. p4 = _mm_add_epi32(p4, p5);
  1307. p6 = _mm_add_epi32(p6, p7);
  1308. // isum in 32bits*4*2
  1309. sumi_0 = _mm_add_epi32(sumi_0, _mm_add_epi32(p0, p2));
  1310. sumi_1 = _mm_add_epi32(sumi_1, _mm_add_epi32(p4, p6));
  1311. }
  1312. // sumf += dall * isum - dmin * summs in 32bits
  1313. __m256i sumi = _mm256_set_m128i(sumi_1, sumi_0);
  1314. acc = _mm256_add_ps(_mm256_mul_ps(_mm256_broadcast_ss(&dall), _mm256_cvtepi32_ps(sumi)), acc);
  1315. }
  1316. *s = hsum_float_8(acc);
  1317. #else
  1318. float sumf = 0;
  1319. for (int i = 0; i < nb; ++i) {
  1320. const uint8_t * q2 = x[i].qs;
  1321. const int8_t * q8 = y[i].qs;
  1322. const uint8_t * sc = x[i].scales;
  1323. int summs = 0;
  1324. for (int j = 0; j < 16; ++j) {
  1325. summs += y[i].bsums[j] * (sc[j] >> 4);
  1326. }
  1327. const float dall = y[i].d * ggml_fp16_to_fp32(x[i].d);
  1328. const float dmin = y[i].d * ggml_fp16_to_fp32(x[i].dmin);
  1329. int isum = 0;
  1330. int is = 0;
  1331. int d;
  1332. for (int k = 0; k < QK_K/128; ++k) {
  1333. int shift = 0;
  1334. for (int j = 0; j < 4; ++j) {
  1335. d = sc[is++] & 0xF;
  1336. int isuml = 0;
  1337. for (int l = 0; l < 16; ++l) isuml += q8[l] * ((q2[l] >> shift) & 3);
  1338. isum += d * isuml;
  1339. d = sc[is++] & 0xF;
  1340. isuml = 0;
  1341. for (int l = 16; l < 32; ++l) isuml += q8[l] * ((q2[l] >> shift) & 3);
  1342. isum += d * isuml;
  1343. shift += 2;
  1344. q8 += 32;
  1345. }
  1346. q2 += 32;
  1347. }
  1348. sumf += dall * isum - dmin * summs;
  1349. }
  1350. *s = sumf;
  1351. #endif
  1352. }
  1353. #else
  1354. void ggml_vec_dot_q2_K_q8_K(const int n, float * restrict s, const void * restrict vx, const void * restrict vy) {
  1355. const block_q2_K * restrict x = vx;
  1356. const block_q8_K * restrict y = vy;
  1357. const int nb = n / QK_K;
  1358. #ifdef __ARM_NEON
  1359. const uint8x16_t m3 = vdupq_n_u8(0x3);
  1360. const int32x4_t vzero = vdupq_n_s32(0);
  1361. int8x16x4_t q2bytes;
  1362. uint32_t aux32[2];
  1363. const uint8_t * scales = (const uint8_t *)aux32;
  1364. float sum = 0;
  1365. for (int i = 0; i < nb; ++i) {
  1366. const float d = y[i].d * (float)x[i].d;
  1367. const float dmin = -y[i].d * (float)x[i].dmin;
  1368. const uint8_t * restrict q2 = x[i].qs;
  1369. const int8_t * restrict q8 = y[i].qs;
  1370. const uint32_t * restrict sc = (const uint32_t *)x[i].scales;
  1371. aux32[0] = sc[0] & 0x0f0f0f0f;
  1372. aux32[1] = (sc[0] >> 4) & 0x0f0f0f0f;
  1373. sum += dmin * (scales[4] * y[i].bsums[0] + scales[5] * y[i].bsums[1] + scales[6] * y[i].bsums[2] + scales[7] * y[i].bsums[3]);
  1374. int isum1 = 0, isum2 = 0;
  1375. const uint8x16_t q2bits = vld1q_u8(q2);
  1376. const int8x16x4_t q8bytes = vld1q_s8_x4(q8);
  1377. q2bytes.val[0] = vreinterpretq_s8_u8(vandq_u8(q2bits, m3));
  1378. q2bytes.val[1] = vreinterpretq_s8_u8(vandq_u8(vshrq_n_u8(q2bits, 2), m3));
  1379. q2bytes.val[2] = vreinterpretq_s8_u8(vandq_u8(vshrq_n_u8(q2bits, 4), m3));
  1380. q2bytes.val[3] = vreinterpretq_s8_u8(vandq_u8(vshrq_n_u8(q2bits, 6), m3));
  1381. #if defined(__ARM_FEATURE_DOTPROD)
  1382. isum1 += vaddvq_s32(vdotq_s32(vzero, q2bytes.val[0], q8bytes.val[0])) * scales[0];
  1383. isum2 += vaddvq_s32(vdotq_s32(vzero, q2bytes.val[1], q8bytes.val[1])) * scales[1];
  1384. isum1 += vaddvq_s32(vdotq_s32(vzero, q2bytes.val[2], q8bytes.val[2])) * scales[2];
  1385. isum2 += vaddvq_s32(vdotq_s32(vzero, q2bytes.val[3], q8bytes.val[3])) * scales[3];
  1386. #else
  1387. const int16x8_t p1 = vaddq_s16(vmull_s8(vget_low_s8 (q2bytes.val[0]), vget_low_s8 (q8bytes.val[0])),
  1388. vmull_s8(vget_high_s8(q2bytes.val[0]), vget_high_s8(q8bytes.val[0])));
  1389. const int16x8_t p2 = vaddq_s16(vmull_s8(vget_low_s8 (q2bytes.val[1]), vget_low_s8 (q8bytes.val[1])),
  1390. vmull_s8(vget_high_s8(q2bytes.val[1]), vget_high_s8(q8bytes.val[1])));
  1391. isum1 += vaddvq_s16(p1) * scales[0];
  1392. isum2 += vaddvq_s16(p2) * scales[1];
  1393. const int16x8_t p3 = vaddq_s16(vmull_s8(vget_low_s8 (q2bytes.val[2]), vget_low_s8 (q8bytes.val[2])),
  1394. vmull_s8(vget_high_s8(q2bytes.val[2]), vget_high_s8(q8bytes.val[2])));
  1395. const int16x8_t p4 = vaddq_s16(vmull_s8(vget_low_s8 (q2bytes.val[3]), vget_low_s8 (q8bytes.val[3])),
  1396. vmull_s8(vget_high_s8(q2bytes.val[3]), vget_high_s8(q8bytes.val[3])));
  1397. isum1 += vaddvq_s16(p3) * scales[2];
  1398. isum2 += vaddvq_s16(p4) * scales[3];
  1399. #endif
  1400. sum += d * (isum1 + isum2);
  1401. }
  1402. *s = sum;
  1403. #elif defined __AVX2__
  1404. const __m256i m3 = _mm256_set1_epi8(3);
  1405. __m256 acc = _mm256_setzero_ps();
  1406. uint32_t ud, um;
  1407. const uint8_t * restrict db = (const uint8_t *)&ud;
  1408. const uint8_t * restrict mb = (const uint8_t *)&um;
  1409. float summs = 0;
  1410. // TODO: optimize this
  1411. for (int i = 0; i < nb; ++i) {
  1412. const float d = y[i].d * ggml_fp16_to_fp32(x[i].d);
  1413. const float dmin = -y[i].d * ggml_fp16_to_fp32(x[i].dmin);
  1414. const uint8_t * restrict q2 = x[i].qs;
  1415. const int8_t * restrict q8 = y[i].qs;
  1416. const uint32_t * restrict sc = (const uint32_t *)x[i].scales;
  1417. ud = (sc[0] >> 0) & 0x0f0f0f0f;
  1418. um = (sc[0] >> 4) & 0x0f0f0f0f;
  1419. int32_t smin = mb[0] * y[i].bsums[0] + mb[1] * y[i].bsums[1] + mb[2] * y[i].bsums[2] + mb[3] * y[i].bsums[3];
  1420. summs += dmin * smin;
  1421. const __m128i q2bits = _mm_loadu_si128((const __m128i*)q2);
  1422. const __m256i q2_0 = _mm256_and_si256(_mm256_set_m128i(_mm_srli_epi16(q2bits, 2), q2bits), m3);
  1423. const __m256i q2_1 = _mm256_and_si256(_mm256_set_m128i(_mm_srli_epi16(q2bits, 6), _mm_srli_epi16(q2bits, 4)), m3);
  1424. const __m256i q8_0 = _mm256_loadu_si256((const __m256i*)(q8+ 0));
  1425. const __m256i q8_1 = _mm256_loadu_si256((const __m256i*)(q8+32));
  1426. const __m256i p0 = _mm256_maddubs_epi16(q2_0, q8_0);
  1427. const __m256i p1 = _mm256_maddubs_epi16(q2_1, q8_1);
  1428. const __m256i p_0 = _mm256_cvtepi16_epi32(_mm256_extracti128_si256(p0, 0));
  1429. const __m256i p_1 = _mm256_cvtepi16_epi32(_mm256_extracti128_si256(p0, 1));
  1430. const __m256i p_2 = _mm256_cvtepi16_epi32(_mm256_extracti128_si256(p1, 0));
  1431. const __m256i p_3 = _mm256_cvtepi16_epi32(_mm256_extracti128_si256(p1, 1));
  1432. acc = _mm256_fmadd_ps(_mm256_set1_ps(d * db[0]), _mm256_cvtepi32_ps(p_0), acc);
  1433. acc = _mm256_fmadd_ps(_mm256_set1_ps(d * db[1]), _mm256_cvtepi32_ps(p_1), acc);
  1434. acc = _mm256_fmadd_ps(_mm256_set1_ps(d * db[2]), _mm256_cvtepi32_ps(p_2), acc);
  1435. acc = _mm256_fmadd_ps(_mm256_set1_ps(d * db[3]), _mm256_cvtepi32_ps(p_3), acc);
  1436. }
  1437. *s = hsum_float_8(acc) + summs;
  1438. #else
  1439. float sumf = 0;
  1440. int isum[4];
  1441. for (int i = 0; i < nb; ++i) {
  1442. const uint8_t * q2 = x[i].qs;
  1443. const int8_t * q8 = y[i].qs;
  1444. const uint8_t * sc = x[i].scales;
  1445. int summs = 0;
  1446. for (int j = 0; j < QK_K/16; ++j) {
  1447. summs += y[i].bsums[j] * (sc[j] >> 4);
  1448. }
  1449. const float dall = y[i].d * ggml_fp16_to_fp32(x[i].d);
  1450. const float dmin = y[i].d * ggml_fp16_to_fp32(x[i].dmin);
  1451. isum[0] = isum[1] = isum[2] = isum[3] = 0;
  1452. for (int l = 0; l < 16; ++l) {
  1453. isum[0] += q8[l+ 0] * ((q2[l] >> 0) & 3);
  1454. isum[1] += q8[l+16] * ((q2[l] >> 2) & 3);
  1455. isum[2] += q8[l+32] * ((q2[l] >> 4) & 3);
  1456. isum[3] += q8[l+48] * ((q2[l] >> 6) & 3);
  1457. }
  1458. for (int l = 0; l < 4; ++l) {
  1459. isum[l] *= (sc[l] & 0xF);
  1460. }
  1461. sumf += dall * (isum[0] + isum[1] + isum[2] + isum[3]) - dmin * summs;
  1462. }
  1463. *s = sumf;
  1464. #endif
  1465. }
  1466. #endif
  1467. #if QK_K == 256
  1468. void ggml_vec_dot_q3_K_q8_K(const int n, float * restrict s, const void * restrict vx, const void * restrict vy) {
  1469. assert(n % QK_K == 0);
  1470. const uint32_t kmask1 = 0x03030303;
  1471. const uint32_t kmask2 = 0x0f0f0f0f;
  1472. const block_q3_K * restrict x = vx;
  1473. const block_q8_K * restrict y = vy;
  1474. const int nb = n / QK_K;
  1475. #ifdef __ARM_NEON
  1476. uint32_t aux[3];
  1477. uint32_t utmp[4];
  1478. const uint8x16_t m3b = vdupq_n_u8(0x3);
  1479. #ifdef __ARM_FEATURE_DOTPROD
  1480. const int32x4_t vzero = vdupq_n_s32(0);
  1481. #endif
  1482. const uint8x16_t m0 = vdupq_n_u8(1);
  1483. const uint8x16_t m1 = vshlq_n_u8(m0, 1);
  1484. const uint8x16_t m2 = vshlq_n_u8(m0, 2);
  1485. const uint8x16_t m3 = vshlq_n_u8(m0, 3);
  1486. const int8_t m32 = 32;
  1487. int8x16x4_t q3bytes;
  1488. float sum = 0;
  1489. for (int i = 0; i < nb; ++i) {
  1490. const float d = y[i].d * ggml_fp16_to_fp32(x[i].d);
  1491. const uint8_t * restrict q3 = x[i].qs;
  1492. const uint8_t * restrict qh = x[i].hmask;
  1493. const int8_t * restrict q8 = y[i].qs;
  1494. uint8x16x2_t qhbits = vld1q_u8_x2(qh);
  1495. uint8x16x4_t q3h;
  1496. int32_t isum = 0;
  1497. // Set up scales
  1498. memcpy(aux, x[i].scales, 12);
  1499. utmp[3] = ((aux[1] >> 4) & kmask2) | (((aux[2] >> 6) & kmask1) << 4);
  1500. utmp[2] = ((aux[0] >> 4) & kmask2) | (((aux[2] >> 4) & kmask1) << 4);
  1501. utmp[1] = (aux[1] & kmask2) | (((aux[2] >> 2) & kmask1) << 4);
  1502. utmp[0] = (aux[0] & kmask2) | (((aux[2] >> 0) & kmask1) << 4);
  1503. int8_t * scale = (int8_t *)utmp;
  1504. for (int j = 0; j < 16; ++j) scale[j] -= m32;
  1505. for (int j = 0; j < QK_K/128; ++j) {
  1506. const uint8x16x2_t q3bits = vld1q_u8_x2(q3); q3 += 32;
  1507. const int8x16x4_t q8bytes_1 = vld1q_s8_x4(q8); q8 += 64;
  1508. const int8x16x4_t q8bytes_2 = vld1q_s8_x4(q8); q8 += 64;
  1509. q3h.val[0] = vshlq_n_u8(vbicq_u8(m0, qhbits.val[0]), 2);
  1510. q3h.val[1] = vshlq_n_u8(vbicq_u8(m0, qhbits.val[1]), 2);
  1511. q3h.val[2] = vshlq_n_u8(vbicq_u8(m1, qhbits.val[0]), 1);
  1512. q3h.val[3] = vshlq_n_u8(vbicq_u8(m1, qhbits.val[1]), 1);
  1513. q3bytes.val[0] = vsubq_s8(vreinterpretq_s8_u8(vandq_u8(q3bits.val[0], m3b)), vreinterpretq_s8_u8(q3h.val[0]));
  1514. q3bytes.val[1] = vsubq_s8(vreinterpretq_s8_u8(vandq_u8(q3bits.val[1], m3b)), vreinterpretq_s8_u8(q3h.val[1]));
  1515. q3bytes.val[2] = vsubq_s8(vreinterpretq_s8_u8(vandq_u8(vshrq_n_u8(q3bits.val[0], 2), m3b)), vreinterpretq_s8_u8(q3h.val[2]));
  1516. q3bytes.val[3] = vsubq_s8(vreinterpretq_s8_u8(vandq_u8(vshrq_n_u8(q3bits.val[1], 2), m3b)), vreinterpretq_s8_u8(q3h.val[3]));
  1517. #if defined(__ARM_FEATURE_DOTPROD)
  1518. isum += vaddvq_s32(vdotq_s32(vzero, q3bytes.val[0], q8bytes_1.val[0])) * scale[0];
  1519. isum += vaddvq_s32(vdotq_s32(vzero, q3bytes.val[1], q8bytes_1.val[1])) * scale[1];
  1520. isum += vaddvq_s32(vdotq_s32(vzero, q3bytes.val[2], q8bytes_1.val[2])) * scale[2];
  1521. isum += vaddvq_s32(vdotq_s32(vzero, q3bytes.val[3], q8bytes_1.val[3])) * scale[3];
  1522. #else
  1523. int16x8_t p0 = vaddq_s16(vmull_s8(vget_low_s8 (q3bytes.val[0]), vget_low_s8 (q8bytes_1.val[0])),
  1524. vmull_s8(vget_high_s8(q3bytes.val[0]), vget_high_s8(q8bytes_1.val[0])));
  1525. int16x8_t p1 = vaddq_s16(vmull_s8(vget_low_s8 (q3bytes.val[1]), vget_low_s8 (q8bytes_1.val[1])),
  1526. vmull_s8(vget_high_s8(q3bytes.val[1]), vget_high_s8(q8bytes_1.val[1])));
  1527. int16x8_t p2 = vaddq_s16(vmull_s8(vget_low_s8 (q3bytes.val[2]), vget_low_s8 (q8bytes_1.val[2])),
  1528. vmull_s8(vget_high_s8(q3bytes.val[2]), vget_high_s8(q8bytes_1.val[2])));
  1529. int16x8_t p3 = vaddq_s16(vmull_s8(vget_low_s8 (q3bytes.val[3]), vget_low_s8 (q8bytes_1.val[3])),
  1530. vmull_s8(vget_high_s8(q3bytes.val[3]), vget_high_s8(q8bytes_1.val[3])));
  1531. isum += vaddvq_s16(p0) * scale[0] + vaddvq_s16(p1) * scale[1] + vaddvq_s16(p2) * scale[2] + vaddvq_s16(p3) * scale[3];
  1532. #endif
  1533. scale += 4;
  1534. q3h.val[0] = vbicq_u8(m2, qhbits.val[0]);
  1535. q3h.val[1] = vbicq_u8(m2, qhbits.val[1]);
  1536. q3h.val[2] = vshrq_n_u8(vbicq_u8(m3, qhbits.val[0]), 1);
  1537. q3h.val[3] = vshrq_n_u8(vbicq_u8(m3, qhbits.val[1]), 1);
  1538. q3bytes.val[0] = vsubq_s8(vreinterpretq_s8_u8(vandq_u8(vshrq_n_u8(q3bits.val[0], 4), m3b)), vreinterpretq_s8_u8(q3h.val[0]));
  1539. q3bytes.val[1] = vsubq_s8(vreinterpretq_s8_u8(vandq_u8(vshrq_n_u8(q3bits.val[1], 4), m3b)), vreinterpretq_s8_u8(q3h.val[1]));
  1540. q3bytes.val[2] = vsubq_s8(vreinterpretq_s8_u8(vandq_u8(vshrq_n_u8(q3bits.val[0], 6), m3b)), vreinterpretq_s8_u8(q3h.val[2]));
  1541. q3bytes.val[3] = vsubq_s8(vreinterpretq_s8_u8(vandq_u8(vshrq_n_u8(q3bits.val[1], 6), m3b)), vreinterpretq_s8_u8(q3h.val[3]));
  1542. #if defined(__ARM_FEATURE_DOTPROD)
  1543. isum += vaddvq_s32(vdotq_s32(vzero, q3bytes.val[0], q8bytes_2.val[0])) * scale[0];
  1544. isum += vaddvq_s32(vdotq_s32(vzero, q3bytes.val[1], q8bytes_2.val[1])) * scale[1];
  1545. isum += vaddvq_s32(vdotq_s32(vzero, q3bytes.val[2], q8bytes_2.val[2])) * scale[2];
  1546. isum += vaddvq_s32(vdotq_s32(vzero, q3bytes.val[3], q8bytes_2.val[3])) * scale[3];
  1547. #else
  1548. p0 = vaddq_s16(vmull_s8(vget_low_s8 (q3bytes.val[0]), vget_low_s8 (q8bytes_2.val[0])),
  1549. vmull_s8(vget_high_s8(q3bytes.val[0]), vget_high_s8(q8bytes_2.val[0])));
  1550. p1 = vaddq_s16(vmull_s8(vget_low_s8 (q3bytes.val[1]), vget_low_s8 (q8bytes_2.val[1])),
  1551. vmull_s8(vget_high_s8(q3bytes.val[1]), vget_high_s8(q8bytes_2.val[1])));
  1552. p2 = vaddq_s16(vmull_s8(vget_low_s8 (q3bytes.val[2]), vget_low_s8 (q8bytes_2.val[2])),
  1553. vmull_s8(vget_high_s8(q3bytes.val[2]), vget_high_s8(q8bytes_2.val[2])));
  1554. p3 = vaddq_s16(vmull_s8(vget_low_s8 (q3bytes.val[3]), vget_low_s8 (q8bytes_2.val[3])),
  1555. vmull_s8(vget_high_s8(q3bytes.val[3]), vget_high_s8(q8bytes_2.val[3])));
  1556. isum += vaddvq_s16(p0) * scale[0] + vaddvq_s16(p1) * scale[1] + vaddvq_s16(p2) * scale[2] + vaddvq_s16(p3) * scale[3];
  1557. #endif
  1558. scale += 4;
  1559. if (j == 0) {
  1560. qhbits.val[0] = vshrq_n_u8(qhbits.val[0], 4);
  1561. qhbits.val[1] = vshrq_n_u8(qhbits.val[1], 4);
  1562. }
  1563. }
  1564. sum += d * isum;
  1565. }
  1566. *s = sum;
  1567. #elif defined __AVX2__
  1568. const __m256i m3 = _mm256_set1_epi8(3);
  1569. const __m256i mone = _mm256_set1_epi8(1);
  1570. const __m128i m32 = _mm_set1_epi8(32);
  1571. __m256 acc = _mm256_setzero_ps();
  1572. uint32_t aux[3];
  1573. for (int i = 0; i < nb; ++i) {
  1574. const float d = y[i].d * ggml_fp16_to_fp32(x[i].d);
  1575. const uint8_t * restrict q3 = x[i].qs;
  1576. const int8_t * restrict q8 = y[i].qs;
  1577. // Set up scales
  1578. memcpy(aux, x[i].scales, 12);
  1579. __m128i scales128 = _mm_set_epi32(
  1580. ((aux[1] >> 4) & kmask2) | (((aux[2] >> 6) & kmask1) << 4),
  1581. ((aux[0] >> 4) & kmask2) | (((aux[2] >> 4) & kmask1) << 4),
  1582. (aux[1] & kmask2) | (((aux[2] >> 2) & kmask1) << 4),
  1583. (aux[0] & kmask2) | (((aux[2] >> 0) & kmask1) << 4));
  1584. scales128 = _mm_sub_epi8(scales128, m32);
  1585. const __m256i all_scales = _mm256_cvtepi8_epi16(scales128);
  1586. const __m128i l_scales = _mm256_extracti128_si256(all_scales, 0);
  1587. const __m128i h_scales = _mm256_extracti128_si256(all_scales, 1);
  1588. const __m256i scales[2] = {_mm256_set_m128i(l_scales, l_scales), _mm256_set_m128i(h_scales, h_scales)};
  1589. // high bit
  1590. const __m256i hbits = _mm256_loadu_si256((const __m256i*)x[i].hmask);
  1591. // integer accumulator
  1592. __m256i sumi = _mm256_setzero_si256();
  1593. int bit = 0;
  1594. int is = 0;
  1595. for (int j = 0; j < QK_K/128; ++j) {
  1596. // load low 2 bits
  1597. const __m256i q3bits = _mm256_loadu_si256((const __m256i*)q3); q3 += 32;
  1598. // prepare low and high bits
  1599. const __m256i q3l_0 = _mm256_and_si256(q3bits, m3);
  1600. const __m256i q3h_0 = _mm256_slli_epi16(_mm256_srli_epi16(_mm256_andnot_si256(hbits, _mm256_slli_epi16(mone, bit)), bit), 2);
  1601. ++bit;
  1602. const __m256i q3l_1 = _mm256_and_si256(_mm256_srli_epi16(q3bits, 2), m3);
  1603. const __m256i q3h_1 = _mm256_slli_epi16(_mm256_srli_epi16(_mm256_andnot_si256(hbits, _mm256_slli_epi16(mone, bit)), bit), 2);
  1604. ++bit;
  1605. const __m256i q3l_2 = _mm256_and_si256(_mm256_srli_epi16(q3bits, 4), m3);
  1606. const __m256i q3h_2 = _mm256_slli_epi16(_mm256_srli_epi16(_mm256_andnot_si256(hbits, _mm256_slli_epi16(mone, bit)), bit), 2);
  1607. ++bit;
  1608. const __m256i q3l_3 = _mm256_and_si256(_mm256_srli_epi16(q3bits, 6), m3);
  1609. const __m256i q3h_3 = _mm256_slli_epi16(_mm256_srli_epi16(_mm256_andnot_si256(hbits, _mm256_slli_epi16(mone, bit)), bit), 2);
  1610. ++bit;
  1611. // load Q8 quants
  1612. const __m256i q8_0 = _mm256_loadu_si256((const __m256i*)q8); q8 += 32;
  1613. const __m256i q8_1 = _mm256_loadu_si256((const __m256i*)q8); q8 += 32;
  1614. const __m256i q8_2 = _mm256_loadu_si256((const __m256i*)q8); q8 += 32;
  1615. const __m256i q8_3 = _mm256_loadu_si256((const __m256i*)q8); q8 += 32;
  1616. // Dot product: we multiply the 2 low bits and 1 high bit part separately, so we can use _mm256_maddubs_epi16,
  1617. // and then subtract. The high bit part has the 2 already subtracted (and so, it is zero if the high bit was not set,
  1618. // and 2 if the high bit was set)
  1619. __m256i q8s_0 = _mm256_maddubs_epi16(q3h_0, q8_0);
  1620. __m256i q8s_1 = _mm256_maddubs_epi16(q3h_1, q8_1);
  1621. __m256i q8s_2 = _mm256_maddubs_epi16(q3h_2, q8_2);
  1622. __m256i q8s_3 = _mm256_maddubs_epi16(q3h_3, q8_3);
  1623. __m256i p16_0 = _mm256_maddubs_epi16(q3l_0, q8_0);
  1624. __m256i p16_1 = _mm256_maddubs_epi16(q3l_1, q8_1);
  1625. __m256i p16_2 = _mm256_maddubs_epi16(q3l_2, q8_2);
  1626. __m256i p16_3 = _mm256_maddubs_epi16(q3l_3, q8_3);
  1627. p16_0 = _mm256_sub_epi16(p16_0, q8s_0);
  1628. p16_1 = _mm256_sub_epi16(p16_1, q8s_1);
  1629. p16_2 = _mm256_sub_epi16(p16_2, q8s_2);
  1630. p16_3 = _mm256_sub_epi16(p16_3, q8s_3);
  1631. // multiply with scales
  1632. p16_0 = _mm256_madd_epi16(_mm256_shuffle_epi8(scales[j], get_scale_shuffle_q3k(is + 0)), p16_0);
  1633. p16_1 = _mm256_madd_epi16(_mm256_shuffle_epi8(scales[j], get_scale_shuffle_q3k(is + 1)), p16_1);
  1634. p16_2 = _mm256_madd_epi16(_mm256_shuffle_epi8(scales[j], get_scale_shuffle_q3k(is + 2)), p16_2);
  1635. p16_3 = _mm256_madd_epi16(_mm256_shuffle_epi8(scales[j], get_scale_shuffle_q3k(is + 3)), p16_3);
  1636. // accumulate
  1637. p16_0 = _mm256_add_epi32(p16_0, p16_1);
  1638. p16_2 = _mm256_add_epi32(p16_2, p16_3);
  1639. sumi = _mm256_add_epi32(sumi, _mm256_add_epi32(p16_0, p16_2));
  1640. }
  1641. // multiply with block scale and accumulate
  1642. acc = _mm256_fmadd_ps(_mm256_broadcast_ss(&d), _mm256_cvtepi32_ps(sumi), acc);
  1643. }
  1644. *s = hsum_float_8(acc);
  1645. #elif defined __AVX__
  1646. const __m128i m3 = _mm_set1_epi8(3);
  1647. const __m128i mone = _mm_set1_epi8(1);
  1648. const __m128i m32 = _mm_set1_epi8(32);
  1649. const __m128i m2 = _mm_set1_epi8(2);
  1650. __m256 acc = _mm256_setzero_ps();
  1651. uint32_t *aux;
  1652. for (int i = 0; i < nb; ++i) {
  1653. const float d = y[i].d * ggml_fp16_to_fp32(x[i].d);
  1654. const uint8_t * restrict q3 = x[i].qs;
  1655. const int8_t * restrict q8 = y[i].qs;
  1656. // Set up scales
  1657. aux = (uint32_t *)x[i].scales;
  1658. __m128i scales128 = _mm_set_epi32(
  1659. ((aux[1] >> 4) & kmask2) | (((aux[2] >> 6) & kmask1) << 4),
  1660. ((aux[0] >> 4) & kmask2) | (((aux[2] >> 4) & kmask1) << 4),
  1661. (aux[1] & kmask2) | (((aux[2] >> 2) & kmask1) << 4),
  1662. (aux[0] & kmask2) | (((aux[2] >> 0) & kmask1) << 4));
  1663. scales128 = _mm_sub_epi8(scales128, m32);
  1664. const __m128i scales_0 = _mm_cvtepi8_epi16(scales128);
  1665. const __m128i scales_1 = _mm_cvtepi8_epi16(_mm_unpackhi_epi64(scales128, scales128));
  1666. const __m128i scales[2] = { scales_0, scales_1 };
  1667. // high bit *128*2 from block_q3_K.hmask[QK_K/8]
  1668. const __m128i hbits_0 = _mm_loadu_si128((const __m128i*)&x[i].hmask[0]);
  1669. const __m128i hbits_1 = _mm_loadu_si128((const __m128i*)&x[i].hmask[16]);
  1670. // integer accumulator
  1671. __m128i sumi_0 = _mm_setzero_si128();
  1672. __m128i sumi_1 = _mm_setzero_si128();
  1673. for (int j = 0; j < QK_K/128; ++j) {
  1674. // load low 2 bits *64*2 from block_q3_K.qs[QK_K/4]
  1675. const __m128i q3bits_0 = _mm_loadu_si128((const __m128i*)q3); q3 += 16;
  1676. const __m128i q3bits_1 = _mm_loadu_si128((const __m128i*)q3); q3 += 16;
  1677. // prepare low and high bits
  1678. const int bit = j << 2;
  1679. const __m128i q3l_0 = _mm_and_si128(q3bits_0, m3);
  1680. const __m128i q3l_1 = _mm_and_si128(q3bits_1, m3);
  1681. const __m128i q3h_0 = _mm_slli_epi16(_mm_srli_epi16(_mm_andnot_si128(hbits_0, _mm_slli_epi16(mone, bit)), bit), 2);
  1682. const __m128i q3h_1 = _mm_slli_epi16(_mm_srli_epi16(_mm_andnot_si128(hbits_1, _mm_slli_epi16(mone, bit)), bit), 2);
  1683. const __m128i q3l_2 = _mm_and_si128(_mm_srli_epi16(q3bits_0, 2), m3);
  1684. const __m128i q3l_3 = _mm_and_si128(_mm_srli_epi16(q3bits_1, 2), m3);
  1685. const __m128i q3h_2 = _mm_slli_epi16(_mm_srli_epi16(_mm_andnot_si128(hbits_0, _mm_slli_epi16(mone, bit+1)), bit+1), 2);
  1686. const __m128i q3h_3 = _mm_slli_epi16(_mm_srli_epi16(_mm_andnot_si128(hbits_1, _mm_slli_epi16(mone, bit+1)), bit+1), 2);
  1687. const __m128i q3l_4 = _mm_and_si128(_mm_srli_epi16(q3bits_0, 4), m3);
  1688. const __m128i q3l_5 = _mm_and_si128(_mm_srli_epi16(q3bits_1, 4), m3);
  1689. const __m128i q3h_4 = _mm_slli_epi16(_mm_srli_epi16(_mm_andnot_si128(hbits_0, _mm_slli_epi16(mone, bit+2)), bit+2), 2);
  1690. const __m128i q3h_5 = _mm_slli_epi16(_mm_srli_epi16(_mm_andnot_si128(hbits_1, _mm_slli_epi16(mone, bit+2)), bit+2), 2);
  1691. const __m128i q3l_6 = _mm_and_si128(_mm_srli_epi16(q3bits_0, 6), m3);
  1692. const __m128i q3l_7 = _mm_and_si128(_mm_srli_epi16(q3bits_1, 6), m3);
  1693. const __m128i q3h_6 = _mm_slli_epi16(_mm_srli_epi16(_mm_andnot_si128(hbits_0, _mm_slli_epi16(mone, bit+3)), bit+3), 2);
  1694. const __m128i q3h_7 = _mm_slli_epi16(_mm_srli_epi16(_mm_andnot_si128(hbits_1, _mm_slli_epi16(mone, bit+3)), bit+3), 2);
  1695. // load Q8 quants from block_q8_K.qs[QK_K]
  1696. const __m128i q8_0 = _mm_loadu_si128((const __m128i*)q8); q8 += 16;
  1697. const __m128i q8_1 = _mm_loadu_si128((const __m128i*)q8); q8 += 16;
  1698. const __m128i q8_2 = _mm_loadu_si128((const __m128i*)q8); q8 += 16;
  1699. const __m128i q8_3 = _mm_loadu_si128((const __m128i*)q8); q8 += 16;
  1700. const __m128i q8_4 = _mm_loadu_si128((const __m128i*)q8); q8 += 16;
  1701. const __m128i q8_5 = _mm_loadu_si128((const __m128i*)q8); q8 += 16;
  1702. const __m128i q8_6 = _mm_loadu_si128((const __m128i*)q8); q8 += 16;
  1703. const __m128i q8_7 = _mm_loadu_si128((const __m128i*)q8); q8 += 16;
  1704. // Dot product: we multiply the 2 low bits and 1 high bit part separately, so we can use _mm256_maddubs_epi16,
  1705. // and then subtract. The high bit part has the 2 already subtracted (and so, it is zero if the high bit was not set,
  1706. // and 2 if the high bit was set)
  1707. __m128i q8s_0 = _mm_maddubs_epi16(q3h_0, q8_0);
  1708. __m128i q8s_1 = _mm_maddubs_epi16(q3h_1, q8_1);
  1709. __m128i q8s_2 = _mm_maddubs_epi16(q3h_2, q8_2);
  1710. __m128i q8s_3 = _mm_maddubs_epi16(q3h_3, q8_3);
  1711. __m128i q8s_4 = _mm_maddubs_epi16(q3h_4, q8_4);
  1712. __m128i q8s_5 = _mm_maddubs_epi16(q3h_5, q8_5);
  1713. __m128i q8s_6 = _mm_maddubs_epi16(q3h_6, q8_6);
  1714. __m128i q8s_7 = _mm_maddubs_epi16(q3h_7, q8_7);
  1715. __m128i p16_0 = _mm_maddubs_epi16(q3l_0, q8_0);
  1716. __m128i p16_1 = _mm_maddubs_epi16(q3l_1, q8_1);
  1717. __m128i p16_2 = _mm_maddubs_epi16(q3l_2, q8_2);
  1718. __m128i p16_3 = _mm_maddubs_epi16(q3l_3, q8_3);
  1719. __m128i p16_4 = _mm_maddubs_epi16(q3l_4, q8_4);
  1720. __m128i p16_5 = _mm_maddubs_epi16(q3l_5, q8_5);
  1721. __m128i p16_6 = _mm_maddubs_epi16(q3l_6, q8_6);
  1722. __m128i p16_7 = _mm_maddubs_epi16(q3l_7, q8_7);
  1723. p16_0 = _mm_sub_epi16(p16_0, q8s_0);
  1724. p16_1 = _mm_sub_epi16(p16_1, q8s_1);
  1725. p16_2 = _mm_sub_epi16(p16_2, q8s_2);
  1726. p16_3 = _mm_sub_epi16(p16_3, q8s_3);
  1727. p16_4 = _mm_sub_epi16(p16_4, q8s_4);
  1728. p16_5 = _mm_sub_epi16(p16_5, q8s_5);
  1729. p16_6 = _mm_sub_epi16(p16_6, q8s_6);
  1730. p16_7 = _mm_sub_epi16(p16_7, q8s_7);
  1731. // multiply with scales
  1732. __m128i shuffle = _mm_set1_epi16(0x0100);
  1733. p16_0 = _mm_madd_epi16(_mm_shuffle_epi8(scales[j], shuffle), p16_0);
  1734. shuffle = _mm_add_epi16(shuffle, m2);
  1735. p16_1 = _mm_madd_epi16(_mm_shuffle_epi8(scales[j], shuffle), p16_1);
  1736. shuffle = _mm_add_epi16(shuffle, m2);
  1737. p16_2 = _mm_madd_epi16(_mm_shuffle_epi8(scales[j], shuffle), p16_2);
  1738. shuffle = _mm_add_epi16(shuffle, m2);
  1739. p16_3 = _mm_madd_epi16(_mm_shuffle_epi8(scales[j], shuffle), p16_3);
  1740. shuffle = _mm_add_epi16(shuffle, m2);
  1741. p16_4 = _mm_madd_epi16(_mm_shuffle_epi8(scales[j], shuffle), p16_4);
  1742. shuffle = _mm_add_epi16(shuffle, m2);
  1743. p16_5 = _mm_madd_epi16(_mm_shuffle_epi8(scales[j], shuffle), p16_5);
  1744. shuffle = _mm_add_epi16(shuffle, m2);
  1745. p16_6 = _mm_madd_epi16(_mm_shuffle_epi8(scales[j], shuffle), p16_6);
  1746. shuffle = _mm_add_epi16(shuffle, m2);
  1747. p16_7 = _mm_madd_epi16(_mm_shuffle_epi8(scales[j], shuffle), p16_7);
  1748. // accumulate
  1749. p16_0 = _mm_add_epi32(p16_0, p16_1);
  1750. p16_2 = _mm_add_epi32(p16_2, p16_3);
  1751. p16_4 = _mm_add_epi32(p16_4, p16_5);
  1752. p16_6 = _mm_add_epi32(p16_6, p16_7);
  1753. sumi_0 = _mm_add_epi32(sumi_0, _mm_add_epi32(p16_0, p16_2));
  1754. sumi_1 = _mm_add_epi32(sumi_1, _mm_add_epi32(p16_4, p16_6));
  1755. }
  1756. // multiply with block scale and accumulate
  1757. __m256i sumi = _mm256_set_m128i(sumi_1, sumi_0);
  1758. acc = _mm256_add_ps(_mm256_mul_ps(_mm256_broadcast_ss(&d), _mm256_cvtepi32_ps(sumi)), acc);
  1759. }
  1760. *s = hsum_float_8(acc);
  1761. #else
  1762. // scalar version
  1763. // This function is written like this so the compiler can manage to vectorize most of it
  1764. // Using -Ofast, GCC and clang manage to produce code that is within a factor of 2 or so from the
  1765. // manually vectorized version above. Every other version I tried would run at least 4 times slower.
  1766. // The ideal situation would be if we could just write the code once, and the compiler would
  1767. // automatically produce the best possible set of machine instructions, instead of us having to manually
  1768. // write vectorized versions for AVX, ARM_NEON, etc.
  1769. int8_t aux8[QK_K];
  1770. int16_t aux16[8];
  1771. float sums [8];
  1772. int32_t aux32[8];
  1773. memset(sums, 0, 8*sizeof(float));
  1774. uint32_t auxs[4];
  1775. const int8_t * scales = (const int8_t*)auxs;
  1776. float sumf = 0;
  1777. for (int i = 0; i < nb; ++i) {
  1778. const uint8_t * restrict q3 = x[i].qs;
  1779. const uint8_t * restrict hm = x[i].hmask;
  1780. const int8_t * restrict q8 = y[i].qs;
  1781. memset(aux32, 0, 8*sizeof(int32_t));
  1782. int8_t * restrict a = aux8;
  1783. uint8_t m = 1;
  1784. for (int j = 0; j < QK_K; j += 128) {
  1785. for (int l = 0; l < 32; ++l) a[l] = q3[l] & 3;
  1786. for (int l = 0; l < 32; ++l) a[l] -= (hm[l] & m ? 0 : 4);
  1787. a += 32; m <<= 1;
  1788. for (int l = 0; l < 32; ++l) a[l] = (q3[l] >> 2) & 3;
  1789. for (int l = 0; l < 32; ++l) a[l] -= (hm[l] & m ? 0 : 4);
  1790. a += 32; m <<= 1;
  1791. for (int l = 0; l < 32; ++l) a[l] = (q3[l] >> 4) & 3;
  1792. for (int l = 0; l < 32; ++l) a[l] -= (hm[l] & m ? 0 : 4);
  1793. a += 32; m <<= 1;
  1794. for (int l = 0; l < 32; ++l) a[l] = (q3[l] >> 6) & 3;
  1795. for (int l = 0; l < 32; ++l) a[l] -= (hm[l] & m ? 0 : 4);
  1796. a += 32; m <<= 1;
  1797. q3 += 32;
  1798. }
  1799. a = aux8;
  1800. memcpy(auxs, x[i].scales, 12);
  1801. uint32_t tmp = auxs[2];
  1802. auxs[2] = ((auxs[0] >> 4) & kmask2) | (((tmp >> 4) & kmask1) << 4);
  1803. auxs[3] = ((auxs[1] >> 4) & kmask2) | (((tmp >> 6) & kmask1) << 4);
  1804. auxs[0] = (auxs[0] & kmask2) | (((tmp >> 0) & kmask1) << 4);
  1805. auxs[1] = (auxs[1] & kmask2) | (((tmp >> 2) & kmask1) << 4);
  1806. for (int j = 0; j < QK_K/16; ++j) {
  1807. for (int l = 0; l < 8; ++l) aux16[l] = q8[l] * a[l];
  1808. for (int l = 0; l < 8; ++l) aux32[l] += (scales[j] - 32) * aux16[l];
  1809. q8 += 8; a += 8;
  1810. for (int l = 0; l < 8; ++l) aux16[l] = q8[l] * a[l];
  1811. for (int l = 0; l < 8; ++l) aux32[l] += (scales[j] - 32) * aux16[l];
  1812. q8 += 8; a += 8;
  1813. }
  1814. const float d = ggml_fp16_to_fp32(x[i].d) * y[i].d;
  1815. for (int l = 0; l < 8; ++l) sums[l] += d * aux32[l];
  1816. }
  1817. for (int l = 0; l < 8; ++l) sumf += sums[l];
  1818. *s = sumf;
  1819. #endif
  1820. }
  1821. #else
  1822. void ggml_vec_dot_q3_K_q8_K(const int n, float * restrict s, const void * restrict vx, const void * restrict vy) {
  1823. assert(n % QK_K == 0);
  1824. const block_q3_K * restrict x = vx;
  1825. const block_q8_K * restrict y = vy;
  1826. const int nb = n / QK_K;
  1827. #ifdef __ARM_NEON
  1828. #ifdef __ARM_FEATURE_DOTPROD
  1829. const int32x4_t vzero = vdupq_n_s32(0);
  1830. #endif
  1831. const uint8x16_t m3b = vdupq_n_u8(0x3);
  1832. const uint8x16_t mh = vdupq_n_u8(4);
  1833. int8x16x4_t q3bytes;
  1834. uint16_t aux16[2];
  1835. int8_t * scales = (int8_t *)aux16;
  1836. float sum = 0;
  1837. for (int i = 0; i < nb; ++i) {
  1838. uint8x16x4_t q3h;
  1839. const uint8x8_t hbits = vld1_u8(x[i].hmask);
  1840. const uint8x16_t q3bits = vld1q_u8(x[i].qs);
  1841. const int8x16x4_t q8bytes = vld1q_s8_x4(y[i].qs);
  1842. const uint16_t a = *(const uint16_t *)x[i].scales;
  1843. aux16[0] = a & 0x0f0f;
  1844. aux16[1] = (a >> 4) & 0x0f0f;
  1845. for (int j = 0; j < 4; ++j) scales[j] -= 8;
  1846. int32_t isum = -4*(scales[0] * y[i].bsums[0] + scales[2] * y[i].bsums[1] + scales[1] * y[i].bsums[2] + scales[3] * y[i].bsums[3]);
  1847. const float d = y[i].d * (float)x[i].d;
  1848. const uint8x16_t htmp = vcombine_u8(hbits, vshr_n_u8(hbits, 1));
  1849. q3h.val[0] = vandq_u8(mh, vshlq_n_u8(htmp, 2));
  1850. q3h.val[1] = vandq_u8(mh, htmp);
  1851. q3h.val[2] = vandq_u8(mh, vshrq_n_u8(htmp, 2));
  1852. q3h.val[3] = vandq_u8(mh, vshrq_n_u8(htmp, 4));
  1853. q3bytes.val[0] = vreinterpretq_s8_u8(vorrq_u8(vandq_u8(q3bits, m3b), q3h.val[0]));
  1854. q3bytes.val[1] = vreinterpretq_s8_u8(vorrq_u8(vandq_u8(vshrq_n_u8(q3bits, 2), m3b), q3h.val[1]));
  1855. q3bytes.val[2] = vreinterpretq_s8_u8(vorrq_u8(vandq_u8(vshrq_n_u8(q3bits, 4), m3b), q3h.val[2]));
  1856. q3bytes.val[3] = vreinterpretq_s8_u8(vorrq_u8(vshrq_n_u8(q3bits, 6), q3h.val[3]));
  1857. #if defined(__ARM_FEATURE_DOTPROD)
  1858. isum += vaddvq_s32(vdotq_s32(vzero, q3bytes.val[0], q8bytes.val[0])) * scales[0];
  1859. isum += vaddvq_s32(vdotq_s32(vzero, q3bytes.val[1], q8bytes.val[1])) * scales[2];
  1860. isum += vaddvq_s32(vdotq_s32(vzero, q3bytes.val[2], q8bytes.val[2])) * scales[1];
  1861. isum += vaddvq_s32(vdotq_s32(vzero, q3bytes.val[3], q8bytes.val[3])) * scales[3];
  1862. #else
  1863. const int16x8_t p0 = vaddq_s16(vmull_s8(vget_low_s8 (q3bytes.val[0]), vget_low_s8 (q8bytes.val[0])),
  1864. vmull_s8(vget_high_s8(q3bytes.val[0]), vget_high_s8(q8bytes.val[0])));
  1865. const int16x8_t p1 = vaddq_s16(vmull_s8(vget_low_s8 (q3bytes.val[1]), vget_low_s8 (q8bytes.val[1])),
  1866. vmull_s8(vget_high_s8(q3bytes.val[1]), vget_high_s8(q8bytes.val[1])));
  1867. const int16x8_t p2 = vaddq_s16(vmull_s8(vget_low_s8 (q3bytes.val[2]), vget_low_s8 (q8bytes.val[2])),
  1868. vmull_s8(vget_high_s8(q3bytes.val[2]), vget_high_s8(q8bytes.val[2])));
  1869. const int16x8_t p3 = vaddq_s16(vmull_s8(vget_low_s8 (q3bytes.val[3]), vget_low_s8 (q8bytes.val[3])),
  1870. vmull_s8(vget_high_s8(q3bytes.val[3]), vget_high_s8(q8bytes.val[3])));
  1871. isum += vaddvq_s16(p0) * scales[0] + vaddvq_s16(p1) * scales[2] + vaddvq_s16(p2) * scales[1] + vaddvq_s16(p3) * scales[3];
  1872. #endif
  1873. sum += d * isum;
  1874. }
  1875. *s = sum;
  1876. #elif defined __AVX2__
  1877. const __m256i m3 = _mm256_set1_epi8(3);
  1878. const __m256i m1 = _mm256_set1_epi8(1);
  1879. __m256 acc = _mm256_setzero_ps();
  1880. uint64_t aux64;
  1881. uint16_t aux16[2];
  1882. const int8_t * aux8 = (const int8_t *)aux16;
  1883. for (int i = 0; i < nb; ++i) {
  1884. const float d = y[i].d * ggml_fp16_to_fp32(x[i].d);
  1885. const uint8_t * restrict q3 = x[i].qs;
  1886. const int8_t * restrict q8 = y[i].qs;
  1887. const uint16_t a = *(const uint16_t *)x[i].scales;
  1888. aux16[0] = a & 0x0f0f;
  1889. aux16[1] = (a >> 4) & 0x0f0f;
  1890. const __m256i scale_0 = _mm256_set_m128i(_mm_set1_epi16(aux8[2] - 8), _mm_set1_epi16(aux8[0] - 8));
  1891. const __m256i scale_1 = _mm256_set_m128i(_mm_set1_epi16(aux8[3] - 8), _mm_set1_epi16(aux8[1] - 8));
  1892. memcpy(&aux64, x[i].hmask, 8);
  1893. const __m128i haux = _mm_set_epi64x(aux64 >> 1, aux64 >> 0);
  1894. __m256i q3h_0 = _mm256_set_m128i(_mm_srli_epi16(haux, 2), haux);
  1895. __m256i q3h_1 = _mm256_srli_epi16(q3h_0, 4);
  1896. q3h_0 = _mm256_slli_epi16(_mm256_andnot_si256(q3h_0, m1), 2);
  1897. q3h_1 = _mm256_slli_epi16(_mm256_andnot_si256(q3h_1, m1), 2);
  1898. // load low 2 bits
  1899. const __m128i q3bits = _mm_loadu_si128((const __m128i*)q3);
  1900. // prepare low and high bits
  1901. const __m256i q3aux = _mm256_set_m128i(_mm_srli_epi16(q3bits, 2), q3bits);
  1902. const __m256i q3l_0 = _mm256_and_si256(q3aux, m3);
  1903. const __m256i q3l_1 = _mm256_and_si256(_mm256_srli_epi16(q3aux, 4), m3);
  1904. // load Q8 quants
  1905. const __m256i q8_0 = _mm256_loadu_si256((const __m256i*)(q8+ 0));
  1906. const __m256i q8_1 = _mm256_loadu_si256((const __m256i*)(q8+32));
  1907. // Dot product: we multiply the 2 low bits and 1 high bit part separately, so we can use _mm256_maddubs_epi16,
  1908. // and then subtract. The high bit part has the 2 already subtracted (and so, it is zero if the high bit was not set,
  1909. // and 2 if the high bit was set)
  1910. const __m256i q8s_0 = _mm256_maddubs_epi16(q3h_0, q8_0);
  1911. const __m256i q8s_1 = _mm256_maddubs_epi16(q3h_1, q8_1);
  1912. __m256i p16_0 = _mm256_maddubs_epi16(q3l_0, q8_0);
  1913. __m256i p16_1 = _mm256_maddubs_epi16(q3l_1, q8_1);
  1914. p16_0 = _mm256_sub_epi16(p16_0, q8s_0);
  1915. p16_1 = _mm256_sub_epi16(p16_1, q8s_1);
  1916. // multiply with scales
  1917. p16_0 = _mm256_madd_epi16(scale_0, p16_0);
  1918. p16_1 = _mm256_madd_epi16(scale_1, p16_1);
  1919. p16_0 = _mm256_add_epi32(p16_0, p16_1);
  1920. // multiply with block scale and accumulate
  1921. acc = _mm256_fmadd_ps(_mm256_broadcast_ss(&d), _mm256_cvtepi32_ps(p16_0), acc);
  1922. }
  1923. *s = hsum_float_8(acc);
  1924. #else
  1925. int8_t aux8[QK_K];
  1926. int16_t aux16[8];
  1927. float sums [8];
  1928. int32_t aux32[8];
  1929. int32_t scales[4];
  1930. memset(sums, 0, 8*sizeof(float));
  1931. float sumf = 0;
  1932. for (int i = 0; i < nb; ++i) {
  1933. const uint8_t * restrict q3 = x[i].qs;
  1934. const uint8_t * restrict hm = x[i].hmask;
  1935. const int8_t * restrict q8 = y[i].qs;
  1936. int8_t * restrict a = aux8;
  1937. for (int l = 0; l < 8; ++l) {
  1938. a[l+ 0] = (int8_t)((q3[l+0] >> 0) & 3) - (hm[l] & 0x01 ? 0 : 4);
  1939. a[l+ 8] = (int8_t)((q3[l+8] >> 0) & 3) - (hm[l] & 0x02 ? 0 : 4);
  1940. a[l+16] = (int8_t)((q3[l+0] >> 2) & 3) - (hm[l] & 0x04 ? 0 : 4);
  1941. a[l+24] = (int8_t)((q3[l+8] >> 2) & 3) - (hm[l] & 0x08 ? 0 : 4);
  1942. a[l+32] = (int8_t)((q3[l+0] >> 4) & 3) - (hm[l] & 0x10 ? 0 : 4);
  1943. a[l+40] = (int8_t)((q3[l+8] >> 4) & 3) - (hm[l] & 0x20 ? 0 : 4);
  1944. a[l+48] = (int8_t)((q3[l+0] >> 6) & 3) - (hm[l] & 0x40 ? 0 : 4);
  1945. a[l+56] = (int8_t)((q3[l+8] >> 6) & 3) - (hm[l] & 0x80 ? 0 : 4);
  1946. }
  1947. scales[0] = (x[i].scales[0] & 0xF) - 8;
  1948. scales[1] = (x[i].scales[0] >> 4) - 8;
  1949. scales[2] = (x[i].scales[1] & 0xF) - 8;
  1950. scales[3] = (x[i].scales[1] >> 4) - 8;
  1951. memset(aux32, 0, 8*sizeof(int32_t));
  1952. for (int j = 0; j < QK_K/16; ++j) {
  1953. for (int l = 0; l < 8; ++l) aux16[l] = q8[l] * a[l];
  1954. q8 += 8; a += 8;
  1955. for (int l = 0; l < 8; ++l) aux16[l] += q8[l] * a[l];
  1956. q8 += 8; a += 8;
  1957. for (int l = 0; l < 8; ++l) aux32[l] += scales[j] * aux16[l];
  1958. }
  1959. const float d = ggml_fp16_to_fp32(x[i].d) * y[i].d;
  1960. for (int l = 0; l < 8; ++l) sums[l] += d * aux32[l];
  1961. }
  1962. for (int l = 0; l < 8; ++l) sumf += sums[l];
  1963. *s = sumf;
  1964. #endif
  1965. }
  1966. #endif
  1967. #if QK_K == 256
  1968. void ggml_vec_dot_q4_K_q8_K(const int n, float * restrict s, const void * restrict vx, const void * restrict vy) {
  1969. assert(n % QK_K == 0);
  1970. const block_q4_K * restrict x = vx;
  1971. const block_q8_K * restrict y = vy;
  1972. const int nb = n / QK_K;
  1973. static const uint32_t kmask1 = 0x3f3f3f3f;
  1974. static const uint32_t kmask2 = 0x0f0f0f0f;
  1975. static const uint32_t kmask3 = 0x03030303;
  1976. uint32_t utmp[4];
  1977. #ifdef __ARM_NEON
  1978. const uint8x16_t m4b = vdupq_n_u8(0xf);
  1979. #ifdef __ARM_FEATURE_DOTPROD
  1980. const int32x4_t mzero = vdupq_n_s32(0);
  1981. #endif
  1982. int8x16x2_t q4bytes;
  1983. int8x16x2_t q8bytes;
  1984. float sumf = 0;
  1985. for (int i = 0; i < nb; ++i) {
  1986. const float d = y[i].d * ggml_fp16_to_fp32(x[i].d);
  1987. const float dmin = y[i].d * ggml_fp16_to_fp32(x[i].dmin);
  1988. const int16x8_t q8sums = vpaddq_s16(vld1q_s16(y[i].bsums), vld1q_s16(y[i].bsums + 8));
  1989. memcpy(utmp, x[i].scales, 12);
  1990. const uint32x2_t mins8 = {utmp[1] & kmask1, ((utmp[2] >> 4) & kmask2) | (((utmp[1] >> 6) & kmask3) << 4)};
  1991. utmp[1] = (utmp[2] & kmask2) | (((utmp[0] >> 6) & kmask3) << 4);
  1992. utmp[0] &= kmask1;
  1993. const int16x8_t mins = vreinterpretq_s16_u16(vmovl_u8(vreinterpret_u8_u32(mins8)));
  1994. const int32x4_t prod = vaddq_s32(vmull_s16(vget_low_s16 (q8sums), vget_low_s16 (mins)),
  1995. vmull_s16(vget_high_s16(q8sums), vget_high_s16(mins)));
  1996. sumf -= dmin * vaddvq_s32(prod);
  1997. const uint8_t * scales = (const uint8_t *)utmp;
  1998. const uint8_t * restrict q4 = x[i].qs;
  1999. const int8_t * restrict q8 = y[i].qs;
  2000. //int32x4_t isum = mzero;
  2001. int32_t sumi1 = 0;
  2002. int32_t sumi2 = 0;
  2003. for (int j = 0; j < QK_K/64; ++j) {
  2004. const uint8x16x2_t q4bits = vld1q_u8_x2(q4); q4 += 32;
  2005. #ifdef __ARM_FEATURE_DOTPROD
  2006. q8bytes = vld1q_s8_x2(q8); q8 += 32;
  2007. q4bytes.val[0] = vreinterpretq_s8_u8(vandq_u8 (q4bits.val[0], m4b));
  2008. q4bytes.val[1] = vreinterpretq_s8_u8(vandq_u8 (q4bits.val[1], m4b));
  2009. const int32x4_t p1 = vdotq_s32(vdotq_s32(mzero, q4bytes.val[0], q8bytes.val[0]), q4bytes.val[1], q8bytes.val[1]);
  2010. sumi1 += vaddvq_s32(p1) * scales[2*j+0];
  2011. q8bytes = vld1q_s8_x2(q8); q8 += 32;
  2012. q4bytes.val[0] = vreinterpretq_s8_u8(vshrq_n_u8(q4bits.val[0], 4));
  2013. q4bytes.val[1] = vreinterpretq_s8_u8(vshrq_n_u8(q4bits.val[1], 4));
  2014. const int32x4_t p2 = vdotq_s32(vdotq_s32(mzero, q4bytes.val[0], q8bytes.val[0]), q4bytes.val[1], q8bytes.val[1]);
  2015. sumi2 += vaddvq_s32(p2) * scales[2*j+1];
  2016. #else
  2017. q8bytes = vld1q_s8_x2(q8); q8 += 32;
  2018. q4bytes.val[0] = vreinterpretq_s8_u8(vandq_u8 (q4bits.val[0], m4b));
  2019. q4bytes.val[1] = vreinterpretq_s8_u8(vandq_u8 (q4bits.val[1], m4b));
  2020. const int16x8_t p0 = vaddq_s16(vmull_s8(vget_low_s8 (q4bytes.val[0]), vget_low_s8 (q8bytes.val[0])),
  2021. vmull_s8(vget_high_s8(q4bytes.val[0]), vget_high_s8(q8bytes.val[0])));
  2022. const int16x8_t p1 = vaddq_s16(vmull_s8(vget_low_s8 (q4bytes.val[1]), vget_low_s8 (q8bytes.val[1])),
  2023. vmull_s8(vget_high_s8(q4bytes.val[1]), vget_high_s8(q8bytes.val[1])));
  2024. sumi1 += vaddvq_s16(vaddq_s16(p0, p1)) * scales[2*j+0];
  2025. q8bytes = vld1q_s8_x2(q8); q8 += 32;
  2026. q4bytes.val[0] = vreinterpretq_s8_u8(vshrq_n_u8(q4bits.val[0], 4));
  2027. q4bytes.val[1] = vreinterpretq_s8_u8(vshrq_n_u8(q4bits.val[1], 4));
  2028. const int16x8_t p2 = vaddq_s16(vmull_s8(vget_low_s8 (q4bytes.val[0]), vget_low_s8 (q8bytes.val[0])),
  2029. vmull_s8(vget_high_s8(q4bytes.val[0]), vget_high_s8(q8bytes.val[0])));
  2030. const int16x8_t p3 = vaddq_s16(vmull_s8(vget_low_s8 (q4bytes.val[1]), vget_low_s8 (q8bytes.val[1])),
  2031. vmull_s8(vget_high_s8(q4bytes.val[1]), vget_high_s8(q8bytes.val[1])));
  2032. sumi2 += vaddvq_s16(vaddq_s16(p2, p3)) * scales[2*j+1];
  2033. #endif
  2034. }
  2035. sumf += d * (sumi1 + sumi2);
  2036. }
  2037. *s = sumf;
  2038. #elif defined __AVX2__
  2039. const __m256i m4 = _mm256_set1_epi8(0xF);
  2040. __m256 acc = _mm256_setzero_ps();
  2041. __m128 acc_m = _mm_setzero_ps();
  2042. for (int i = 0; i < nb; ++i) {
  2043. const float d = y[i].d * ggml_fp16_to_fp32(x[i].d);
  2044. const float dmin = -y[i].d * ggml_fp16_to_fp32(x[i].dmin);
  2045. memcpy(utmp, x[i].scales, 12);
  2046. utmp[3] = ((utmp[2] >> 4) & kmask2) | (((utmp[1] >> 6) & kmask3) << 4);
  2047. const uint32_t uaux = utmp[1] & kmask1;
  2048. utmp[1] = (utmp[2] & kmask2) | (((utmp[0] >> 6) & kmask3) << 4);
  2049. utmp[2] = uaux;
  2050. utmp[0] &= kmask1;
  2051. const uint8_t * restrict q4 = x[i].qs;
  2052. const int8_t * restrict q8 = y[i].qs;
  2053. const __m256i mins_and_scales = _mm256_cvtepu8_epi16(_mm_set_epi32(utmp[3], utmp[2], utmp[1], utmp[0]));
  2054. const __m256i q8sums = _mm256_loadu_si256((const __m256i*)y[i].bsums);
  2055. const __m128i q8s = _mm_hadd_epi16(_mm256_extracti128_si256(q8sums, 0), _mm256_extracti128_si256(q8sums, 1));
  2056. const __m128i prod = _mm_madd_epi16(_mm256_extracti128_si256(mins_and_scales, 1), q8s);
  2057. acc_m = _mm_fmadd_ps(_mm_set1_ps(dmin), _mm_cvtepi32_ps(prod), acc_m);
  2058. const __m128i sc128 = _mm256_extracti128_si256(mins_and_scales, 0);
  2059. const __m256i scales = _mm256_set_m128i(sc128, sc128);
  2060. __m256i sumi = _mm256_setzero_si256();
  2061. for (int j = 0; j < QK_K/64; ++j) {
  2062. const __m256i scale_l = _mm256_shuffle_epi8(scales, get_scale_shuffle_k4(2*j+0));
  2063. const __m256i scale_h = _mm256_shuffle_epi8(scales, get_scale_shuffle_k4(2*j+1));
  2064. const __m256i q4bits = _mm256_loadu_si256((const __m256i*)q4); q4 += 32;
  2065. const __m256i q4l = _mm256_and_si256(q4bits, m4);
  2066. const __m256i q4h = _mm256_and_si256(_mm256_srli_epi16(q4bits, 4), m4);
  2067. const __m256i q8l = _mm256_loadu_si256((const __m256i*)q8); q8 += 32;
  2068. __m256i p16l = _mm256_maddubs_epi16(q4l, q8l);
  2069. p16l = _mm256_madd_epi16(scale_l, p16l);
  2070. sumi = _mm256_add_epi32(sumi, p16l);
  2071. const __m256i q8h = _mm256_loadu_si256((const __m256i*)q8); q8 += 32;
  2072. __m256i p16h = _mm256_maddubs_epi16(q4h, q8h);
  2073. p16h = _mm256_madd_epi16(scale_h, p16h);
  2074. sumi = _mm256_add_epi32(sumi, p16h);
  2075. }
  2076. __m256 vd = _mm256_set1_ps(d);
  2077. acc = _mm256_fmadd_ps(vd, _mm256_cvtepi32_ps(sumi), acc);
  2078. }
  2079. acc_m = _mm_add_ps(acc_m, _mm_movehl_ps(acc_m, acc_m));
  2080. acc_m = _mm_add_ss(acc_m, _mm_movehdup_ps(acc_m));
  2081. *s = hsum_float_8(acc) + _mm_cvtss_f32(acc_m);
  2082. #elif defined __AVX__
  2083. const __m128i m4 = _mm_set1_epi8(0xF);
  2084. const __m128i m2 = _mm_set1_epi8(0x2);
  2085. __m256 acc = _mm256_setzero_ps();
  2086. __m128 acc_m = _mm_setzero_ps();
  2087. for (int i = 0; i < nb; ++i) {
  2088. const float d = y[i].d * ggml_fp16_to_fp32(x[i].d);
  2089. const float dmin = -y[i].d * ggml_fp16_to_fp32(x[i].dmin);
  2090. const uint8_t * restrict q4 = x[i].qs;
  2091. const int8_t * restrict q8 = y[i].qs;
  2092. memcpy(utmp, x[i].scales, 12);
  2093. utmp[3] = ((utmp[2] >> 4) & kmask2) | (((utmp[1] >> 6) & kmask3) << 4);
  2094. const uint32_t uaux = utmp[1] & kmask1;
  2095. utmp[1] = (utmp[2] & kmask2) | (((utmp[0] >> 6) & kmask3) << 4);
  2096. utmp[2] = uaux;
  2097. utmp[0] &= kmask1;
  2098. const __m128i utmps = _mm_set_epi32(utmp[3], utmp[2], utmp[1], utmp[0]);
  2099. const __m128i scales = _mm_cvtepu8_epi16(utmps);
  2100. const __m128i mins = _mm_cvtepu8_epi16(_mm_unpackhi_epi64(utmps, utmps));
  2101. const __m128i q8sums_0 = _mm_loadu_si128((const __m128i*)&y[i].bsums[0]);
  2102. const __m128i q8sums_1 = _mm_loadu_si128((const __m128i*)&y[i].bsums[8]);
  2103. const __m128i q8s = _mm_hadd_epi16(q8sums_0, q8sums_1);
  2104. const __m128i prod = _mm_madd_epi16(mins, q8s);
  2105. acc_m = _mm_add_ps(_mm_mul_ps(_mm_set1_ps(dmin), _mm_cvtepi32_ps(prod)), acc_m);
  2106. __m128i sumi_0 = _mm_setzero_si128();
  2107. __m128i sumi_1 = _mm_setzero_si128();
  2108. __m128i shuffle = _mm_set1_epi16(0x0100);
  2109. for (int j = 0; j < QK_K/64; ++j) {
  2110. const __m128i scale_l = _mm_shuffle_epi8(scales, shuffle);
  2111. shuffle = _mm_add_epi16(shuffle, m2);
  2112. const __m128i scale_h = _mm_shuffle_epi8(scales, shuffle);
  2113. shuffle = _mm_add_epi16(shuffle, m2);
  2114. __m128i q4bits = _mm_loadu_si128((const __m128i*)q4); q4 += 16;
  2115. const __m128i q4l_0 = _mm_and_si128(q4bits, m4);
  2116. const __m128i q4h_0 = _mm_and_si128(_mm_srli_epi16(q4bits, 4), m4);
  2117. q4bits = _mm_loadu_si128((const __m128i*)q4); q4 += 16;
  2118. const __m128i q4l_1 = _mm_and_si128(q4bits, m4);
  2119. const __m128i q4h_1 = _mm_and_si128(_mm_srli_epi16(q4bits, 4), m4);
  2120. const __m128i q8l_0 = _mm_loadu_si128((const __m128i*)q8); q8 += 16;
  2121. __m128i p16l = _mm_maddubs_epi16(q4l_0, q8l_0);
  2122. p16l = _mm_madd_epi16(scale_l, p16l);
  2123. sumi_0 = _mm_add_epi32(sumi_0, p16l);
  2124. const __m128i q8l_1 = _mm_loadu_si128((const __m128i*)q8); q8 += 16;
  2125. p16l = _mm_maddubs_epi16(q4l_1, q8l_1);
  2126. p16l = _mm_madd_epi16(scale_l, p16l);
  2127. sumi_1 = _mm_add_epi32(sumi_1, p16l);
  2128. const __m128i q8h_0 = _mm_loadu_si128((const __m128i*)q8); q8 += 16;
  2129. __m128i p16h = _mm_maddubs_epi16(q4h_0, q8h_0);
  2130. p16h = _mm_madd_epi16(scale_h, p16h);
  2131. sumi_0 = _mm_add_epi32(sumi_0, p16h);
  2132. const __m128i q8h_1 = _mm_loadu_si128((const __m128i*)q8); q8 += 16;
  2133. p16h = _mm_maddubs_epi16(q4h_1, q8h_1);
  2134. p16h = _mm_madd_epi16(scale_h, p16h);
  2135. sumi_1 = _mm_add_epi32(sumi_1, p16h);
  2136. }
  2137. __m256 vd = _mm256_set1_ps(d);
  2138. __m256i sumi = _mm256_set_m128i(sumi_1, sumi_0);
  2139. acc = _mm256_add_ps(_mm256_mul_ps(vd, _mm256_cvtepi32_ps(sumi)), acc);
  2140. }
  2141. acc_m = _mm_add_ps(acc_m, _mm_movehl_ps(acc_m, acc_m));
  2142. acc_m = _mm_add_ss(acc_m, _mm_movehdup_ps(acc_m));
  2143. *s = hsum_float_8(acc) + _mm_cvtss_f32(acc_m);
  2144. #else
  2145. const uint8_t * scales = (const uint8_t*)&utmp[0];
  2146. const uint8_t * mins = (const uint8_t*)&utmp[2];
  2147. int8_t aux8[QK_K];
  2148. int16_t aux16[8];
  2149. float sums [8];
  2150. int32_t aux32[8];
  2151. memset(sums, 0, 8*sizeof(float));
  2152. float sumf = 0;
  2153. for (int i = 0; i < nb; ++i) {
  2154. const uint8_t * restrict q4 = x[i].qs;
  2155. const int8_t * restrict q8 = y[i].qs;
  2156. memset(aux32, 0, 8*sizeof(int32_t));
  2157. int8_t * restrict a = aux8;
  2158. for (int j = 0; j < QK_K/64; ++j) {
  2159. for (int l = 0; l < 32; ++l) a[l] = (int8_t)(q4[l] & 0xF);
  2160. a += 32;
  2161. for (int l = 0; l < 32; ++l) a[l] = (int8_t)(q4[l] >> 4);
  2162. a += 32; q4 += 32;
  2163. }
  2164. memcpy(utmp, x[i].scales, 12);
  2165. utmp[3] = ((utmp[2] >> 4) & kmask2) | (((utmp[1] >> 6) & kmask3) << 4);
  2166. const uint32_t uaux = utmp[1] & kmask1;
  2167. utmp[1] = (utmp[2] & kmask2) | (((utmp[0] >> 6) & kmask3) << 4);
  2168. utmp[2] = uaux;
  2169. utmp[0] &= kmask1;
  2170. int sumi = 0;
  2171. for (int j = 0; j < QK_K/16; ++j) sumi += y[i].bsums[j] * mins[j/2];
  2172. a = aux8;
  2173. int is = 0;
  2174. for (int j = 0; j < QK_K/32; ++j) {
  2175. int32_t scale = scales[is++];
  2176. for (int l = 0; l < 8; ++l) aux16[l] = q8[l] * a[l];
  2177. for (int l = 0; l < 8; ++l) aux32[l] += scale * aux16[l];
  2178. q8 += 8; a += 8;
  2179. for (int l = 0; l < 8; ++l) aux16[l] = q8[l] * a[l];
  2180. for (int l = 0; l < 8; ++l) aux32[l] += scale * aux16[l];
  2181. q8 += 8; a += 8;
  2182. for (int l = 0; l < 8; ++l) aux16[l] = q8[l] * a[l];
  2183. for (int l = 0; l < 8; ++l) aux32[l] += scale * aux16[l];
  2184. q8 += 8; a += 8;
  2185. for (int l = 0; l < 8; ++l) aux16[l] = q8[l] * a[l];
  2186. for (int l = 0; l < 8; ++l) aux32[l] += scale * aux16[l];
  2187. q8 += 8; a += 8;
  2188. }
  2189. const float d = ggml_fp16_to_fp32(x[i].d) * y[i].d;
  2190. for (int l = 0; l < 8; ++l) sums[l] += d * aux32[l];
  2191. const float dmin = ggml_fp16_to_fp32(x[i].dmin) * y[i].d;
  2192. sumf -= dmin * sumi;
  2193. }
  2194. for (int l = 0; l < 8; ++l) sumf += sums[l];
  2195. *s = sumf;
  2196. #endif
  2197. }
  2198. #else
  2199. void ggml_vec_dot_q4_K_q8_K(const int n, float * restrict s, const void * restrict vx, const void * restrict vy) {
  2200. assert(n % QK_K == 0);
  2201. const block_q4_K * restrict x = vx;
  2202. const block_q8_K * restrict y = vy;
  2203. const int nb = n / QK_K;
  2204. #ifdef __ARM_NEON
  2205. const uint8x16_t m4b = vdupq_n_u8(0xf);
  2206. #ifdef __ARM_FEATURE_DOTPROD
  2207. const int32x4_t mzero = vdupq_n_s32(0);
  2208. #endif
  2209. float sumf = 0;
  2210. int8x16x2_t q4bytes;
  2211. int8x16x4_t q8bytes;
  2212. float sum_mins = 0.f;
  2213. uint16_t aux16[2];
  2214. const uint8_t * restrict scales = (const uint8_t *)aux16;
  2215. for (int i = 0; i < nb; ++i) {
  2216. const uint8_t * restrict q4 = x[i].qs;
  2217. const int8_t * restrict q8 = y[i].qs;
  2218. const uint16_t * restrict a = (const uint16_t *)x[i].scales;
  2219. aux16[0] = a[0] & 0x0f0f;
  2220. aux16[1] = (a[0] >> 4) & 0x0f0f;
  2221. const int32_t summi = scales[2] * (y[i].bsums[0] + y[i].bsums[1]) + scales[3] * (y[i].bsums[2] + y[i].bsums[3]);
  2222. sum_mins += y[i].d * (float)x[i].d[1] * summi;
  2223. const float d = y[i].d * (float)x[i].d[0];
  2224. const uint8x16x2_t q4bits = vld1q_u8_x2(q4);
  2225. #ifdef __ARM_FEATURE_DOTPROD
  2226. q8bytes = vld1q_s8_x4(q8);
  2227. q4bytes.val[0] = vreinterpretq_s8_u8(vandq_u8 (q4bits.val[0], m4b));
  2228. q4bytes.val[1] = vreinterpretq_s8_u8(vandq_u8 (q4bits.val[1], m4b));
  2229. const int32x4_t p1 = vdotq_s32(vdotq_s32(mzero, q4bytes.val[0], q8bytes.val[0]), q4bytes.val[1], q8bytes.val[1]);
  2230. const int32_t sumi1 = vaddvq_s32(p1) * scales[0];
  2231. q4bytes.val[0] = vreinterpretq_s8_u8(vshrq_n_u8(q4bits.val[0], 4));
  2232. q4bytes.val[1] = vreinterpretq_s8_u8(vshrq_n_u8(q4bits.val[1], 4));
  2233. const int32x4_t p2 = vdotq_s32(vdotq_s32(mzero, q4bytes.val[0], q8bytes.val[2]), q4bytes.val[1], q8bytes.val[3]);
  2234. const int32_t sumi2 = vaddvq_s32(p2) * scales[1];
  2235. #else
  2236. q8bytes = vld1q_s8_x4(q8);
  2237. q4bytes.val[0] = vreinterpretq_s8_u8(vandq_u8 (q4bits.val[0], m4b));
  2238. q4bytes.val[1] = vreinterpretq_s8_u8(vandq_u8 (q4bits.val[1], m4b));
  2239. const int16x8_t p0 = vaddq_s16(vmull_s8(vget_low_s8 (q4bytes.val[0]), vget_low_s8 (q8bytes.val[0])),
  2240. vmull_s8(vget_high_s8(q4bytes.val[0]), vget_high_s8(q8bytes.val[0])));
  2241. const int16x8_t p1 = vaddq_s16(vmull_s8(vget_low_s8 (q4bytes.val[1]), vget_low_s8 (q8bytes.val[1])),
  2242. vmull_s8(vget_high_s8(q4bytes.val[1]), vget_high_s8(q8bytes.val[1])));
  2243. int32_t sumi1 = vaddvq_s16(vaddq_s16(p0, p1)) * scales[0];
  2244. q4bytes.val[0] = vreinterpretq_s8_u8(vshrq_n_u8(q4bits.val[0], 4));
  2245. q4bytes.val[1] = vreinterpretq_s8_u8(vshrq_n_u8(q4bits.val[1], 4));
  2246. const int16x8_t p2 = vaddq_s16(vmull_s8(vget_low_s8 (q4bytes.val[0]), vget_low_s8 (q8bytes.val[2])),
  2247. vmull_s8(vget_high_s8(q4bytes.val[0]), vget_high_s8(q8bytes.val[2])));
  2248. const int16x8_t p3 = vaddq_s16(vmull_s8(vget_low_s8 (q4bytes.val[1]), vget_low_s8 (q8bytes.val[3])),
  2249. vmull_s8(vget_high_s8(q4bytes.val[1]), vget_high_s8(q8bytes.val[3])));
  2250. int32_t sumi2 = vaddvq_s16(vaddq_s16(p2, p3)) * scales[1];
  2251. #endif
  2252. sumf += d * (sumi1 + sumi2);
  2253. }
  2254. *s = sumf - sum_mins;
  2255. #elif defined __AVX2__
  2256. const __m256i m4 = _mm256_set1_epi8(0xF);
  2257. __m256 acc = _mm256_setzero_ps();
  2258. float summs = 0;
  2259. uint16_t aux16[2];
  2260. const uint8_t * scales = (const uint8_t *)aux16;
  2261. for (int i = 0; i < nb; ++i) {
  2262. const float d = ggml_fp16_to_fp32(x[i].d[0]) * y[i].d;
  2263. const float m = ggml_fp16_to_fp32(x[i].d[1]) * y[i].d;
  2264. const __m256 vd = _mm256_set1_ps(d);
  2265. const uint16_t * a = (const uint16_t *)x[i].scales;
  2266. aux16[0] = a[0] & 0x0f0f;
  2267. aux16[1] = (a[0] >> 4) & 0x0f0f;
  2268. summs += m * (scales[2] * (y[i].bsums[0] + y[i].bsums[1]) + scales[3] * (y[i].bsums[2] + y[i].bsums[3]));
  2269. const uint8_t * restrict q4 = x[i].qs;
  2270. const int8_t * restrict q8 = y[i].qs;
  2271. const __m256i q4bits = _mm256_loadu_si256((const __m256i*)q4);
  2272. const __m256i q4l = _mm256_and_si256(q4bits, m4);
  2273. const __m256i q4h = _mm256_and_si256(_mm256_srli_epi16(q4bits, 4), m4);
  2274. const __m256i q8l = _mm256_loadu_si256((const __m256i*)(q8+ 0));
  2275. const __m256i q8h = _mm256_loadu_si256((const __m256i*)(q8+32));
  2276. const __m256i p16l = _mm256_maddubs_epi16(q4l, q8l);
  2277. const __m256i p16h = _mm256_maddubs_epi16(q4h, q8h);
  2278. const __m256i p32l = _mm256_madd_epi16(_mm256_set1_epi16(scales[0]), p16l);
  2279. acc = _mm256_fmadd_ps(vd, _mm256_cvtepi32_ps(p32l), acc);
  2280. const __m256i p32h = _mm256_madd_epi16(_mm256_set1_epi16(scales[1]), p16h);
  2281. acc = _mm256_fmadd_ps(vd, _mm256_cvtepi32_ps(p32h), acc);
  2282. }
  2283. *s = hsum_float_8(acc) - summs;
  2284. #else
  2285. uint8_t aux8[QK_K];
  2286. int16_t aux16[16];
  2287. float sums [8];
  2288. memset(sums, 0, 8*sizeof(float));
  2289. uint16_t s16[2];
  2290. const uint8_t * restrict scales = (const uint8_t *)s16;
  2291. float sumf = 0;
  2292. for (int i = 0; i < nb; ++i) {
  2293. const uint8_t * restrict q4 = x[i].qs;
  2294. const int8_t * restrict q8 = y[i].qs;
  2295. uint8_t * restrict a = aux8;
  2296. for (int l = 0; l < 32; ++l) a[l+ 0] = q4[l] & 0xF;
  2297. for (int l = 0; l < 32; ++l) a[l+32] = q4[l] >> 4;
  2298. const uint16_t * restrict b = (const uint16_t *)x[i].scales;
  2299. s16[0] = b[0] & 0x0f0f;
  2300. s16[1] = (b[0] >> 4) & 0x0f0f;
  2301. sumf -= y[i].d * ggml_fp16_to_fp32(x[i].d[1]) * (scales[2] * (y[i].bsums[0] + y[i].bsums[1]) + scales[3] * (y[i].bsums[2] + y[i].bsums[3]));
  2302. const float d = y[i].d * ggml_fp16_to_fp32(x[i].d[0]);
  2303. for (int j = 0; j < QK_K/32; ++j) {
  2304. for (int l = 0; l < 16; ++l) aux16[l] = q8[l] * a[l];
  2305. q8 += 16; a += 16;
  2306. for (int l = 0; l < 16; ++l) aux16[l] += q8[l] * a[l];
  2307. q8 += 16; a += 16;
  2308. const float dl = d * scales[j];
  2309. for (int l = 0; l < 8; ++l) sums[l] += dl * (aux16[l] + aux16[l+8]);
  2310. }
  2311. }
  2312. for (int l = 0; l < 8; ++l) sumf += sums[l];
  2313. *s = sumf;
  2314. #endif
  2315. }
  2316. #endif
  2317. #if QK_K == 256
  2318. void ggml_vec_dot_q5_K_q8_K(const int n, float * restrict s, const void * restrict vx, const void * restrict vy) {
  2319. assert(n % QK_K == 0);
  2320. const block_q5_K * restrict x = vx;
  2321. const block_q8_K * restrict y = vy;
  2322. const int nb = n / QK_K;
  2323. static const uint32_t kmask1 = 0x3f3f3f3f;
  2324. static const uint32_t kmask2 = 0x0f0f0f0f;
  2325. static const uint32_t kmask3 = 0x03030303;
  2326. uint32_t utmp[4];
  2327. #ifdef __ARM_NEON
  2328. const uint8x16_t m4b = vdupq_n_u8(0xf);
  2329. const int32x4_t mzero = vdupq_n_s32(0);
  2330. const uint8x16_t mone = vdupq_n_u8(1);
  2331. const uint8x16_t mtwo = vdupq_n_u8(2);
  2332. int8x16x4_t q5bytes;
  2333. float sumf = 0;
  2334. for (int i = 0; i < nb; ++i) {
  2335. const float d = y[i].d * ggml_fp16_to_fp32(x[i].d);
  2336. const float dmin = y[i].d * ggml_fp16_to_fp32(x[i].dmin);
  2337. const int16x8_t q8sums = vpaddq_s16(vld1q_s16(y[i].bsums), vld1q_s16(y[i].bsums + 8));
  2338. memcpy(utmp, x[i].scales, 12);
  2339. utmp[3] = ((utmp[2] >> 4) & kmask2) | (((utmp[1] >> 6) & kmask3) << 4);
  2340. const uint32_t uaux = utmp[1] & kmask1;
  2341. utmp[1] = (utmp[2] & kmask2) | (((utmp[0] >> 6) & kmask3) << 4);
  2342. utmp[2] = uaux;
  2343. utmp[0] &= kmask1;
  2344. const uint8x8_t mins8 = vld1_u8((const uint8_t*)utmp + 8);
  2345. const int16x8_t mins = vreinterpretq_s16_u16(vmovl_u8(mins8));
  2346. const int32x4_t prod = vaddq_s32(vmull_s16(vget_low_s16 (q8sums), vget_low_s16 (mins)),
  2347. vmull_s16(vget_high_s16(q8sums), vget_high_s16(mins)));
  2348. int32_t sumi_mins = vaddvq_s32(prod);
  2349. const uint8_t * scales = (const uint8_t *)utmp;
  2350. const uint8_t * restrict q5 = x[i].qs;
  2351. const uint8_t * restrict qh = x[i].qh;
  2352. const int8_t * restrict q8 = y[i].qs;
  2353. uint8x16x2_t qhbits = vld1q_u8_x2(qh);
  2354. uint8x16x4_t q5h;
  2355. int32_t sumi = 0;
  2356. for (int j = 0; j < QK_K/64; ++j) {
  2357. const uint8x16x2_t q5bits = vld1q_u8_x2(q5); q5 += 32;
  2358. const int8x16x4_t q8bytes = vld1q_s8_x4(q8); q8 += 64;
  2359. q5h.val[0] = vshlq_n_u8(vandq_u8(mone, qhbits.val[0]), 4);
  2360. q5h.val[1] = vshlq_n_u8(vandq_u8(mone, qhbits.val[1]), 4);
  2361. q5h.val[2] = vshlq_n_u8(vandq_u8(mtwo, qhbits.val[0]), 3);
  2362. q5h.val[3] = vshlq_n_u8(vandq_u8(mtwo, qhbits.val[1]), 3);
  2363. qhbits.val[0] = vshrq_n_u8(qhbits.val[0], 2);
  2364. qhbits.val[1] = vshrq_n_u8(qhbits.val[1], 2);
  2365. q5bytes.val[0] = vreinterpretq_s8_u8(vorrq_u8(vandq_u8(q5bits.val[0], m4b), q5h.val[0]));
  2366. q5bytes.val[1] = vreinterpretq_s8_u8(vorrq_u8(vandq_u8(q5bits.val[1], m4b), q5h.val[1]));
  2367. q5bytes.val[2] = vreinterpretq_s8_u8(vorrq_u8(vshrq_n_u8(q5bits.val[0], 4), q5h.val[2]));
  2368. q5bytes.val[3] = vreinterpretq_s8_u8(vorrq_u8(vshrq_n_u8(q5bits.val[1], 4), q5h.val[3]));
  2369. #if defined(__ARM_FEATURE_DOTPROD)
  2370. sumi += vaddvq_s32(vdotq_s32(vdotq_s32(mzero, q5bytes.val[0], q8bytes.val[0]), q5bytes.val[1], q8bytes.val[1])) * *scales++;
  2371. sumi += vaddvq_s32(vdotq_s32(vdotq_s32(mzero, q5bytes.val[2], q8bytes.val[2]), q5bytes.val[3], q8bytes.val[3])) * *scales++;
  2372. #else
  2373. const int16x8_t p0 = vaddq_s16(vmull_s8(vget_low_s8 (q5bytes.val[0]), vget_low_s8 (q8bytes.val[0])),
  2374. vmull_s8(vget_high_s8(q5bytes.val[0]), vget_high_s8(q8bytes.val[0])));
  2375. const int16x8_t p1 = vaddq_s16(vmull_s8(vget_low_s8 (q5bytes.val[1]), vget_low_s8 (q8bytes.val[1])),
  2376. vmull_s8(vget_high_s8(q5bytes.val[1]), vget_high_s8(q8bytes.val[1])));
  2377. sumi += vaddvq_s16(vaddq_s16(p0, p1)) * *scales++;
  2378. const int16x8_t p2 = vaddq_s16(vmull_s8(vget_low_s8 (q5bytes.val[2]), vget_low_s8 (q8bytes.val[2])),
  2379. vmull_s8(vget_high_s8(q5bytes.val[2]), vget_high_s8(q8bytes.val[2])));
  2380. const int16x8_t p3 = vaddq_s16(vmull_s8(vget_low_s8 (q5bytes.val[3]), vget_low_s8 (q8bytes.val[3])),
  2381. vmull_s8(vget_high_s8(q5bytes.val[3]), vget_high_s8(q8bytes.val[3])));
  2382. sumi += vaddvq_s16(vaddq_s16(p2, p3)) * *scales++;
  2383. #endif
  2384. }
  2385. sumf += d * sumi - dmin * sumi_mins;
  2386. }
  2387. *s = sumf;
  2388. #elif defined __AVX2__
  2389. const __m256i m4 = _mm256_set1_epi8(0xF);
  2390. const __m128i mzero = _mm_setzero_si128();
  2391. const __m256i mone = _mm256_set1_epi8(1);
  2392. __m256 acc = _mm256_setzero_ps();
  2393. float summs = 0.f;
  2394. for (int i = 0; i < nb; ++i) {
  2395. const uint8_t * restrict q5 = x[i].qs;
  2396. const int8_t * restrict q8 = y[i].qs;
  2397. #if QK_K == 256
  2398. const float d = y[i].d * ggml_fp16_to_fp32(x[i].d);
  2399. const float dmin = -y[i].d * ggml_fp16_to_fp32(x[i].dmin);
  2400. memcpy(utmp, x[i].scales, 12);
  2401. utmp[3] = ((utmp[2] >> 4) & kmask2) | (((utmp[1] >> 6) & kmask3) << 4);
  2402. const uint32_t uaux = utmp[1] & kmask1;
  2403. utmp[1] = (utmp[2] & kmask2) | (((utmp[0] >> 6) & kmask3) << 4);
  2404. utmp[2] = uaux;
  2405. utmp[0] &= kmask1;
  2406. #else
  2407. // TODO
  2408. const float d = 0, dmin = 0;
  2409. #endif
  2410. const __m256i mins_and_scales = _mm256_cvtepu8_epi16(_mm_set_epi32(utmp[3], utmp[2], utmp[1], utmp[0]));
  2411. const __m256i q8sums = _mm256_loadu_si256((const __m256i*)y[i].bsums);
  2412. const __m128i q8s = _mm_hadd_epi16(_mm256_extracti128_si256(q8sums, 0), _mm256_extracti128_si256(q8sums, 1));
  2413. const __m128i prod = _mm_madd_epi16(_mm256_extracti128_si256(mins_and_scales, 1), q8s);
  2414. const __m128i hsum = _mm_hadd_epi32(_mm_hadd_epi32(prod, mzero), mzero);
  2415. summs += dmin * _mm_extract_epi32(hsum, 0);
  2416. const __m128i sc128 = _mm256_extracti128_si256(mins_and_scales, 0);
  2417. const __m256i scales = _mm256_set_m128i(sc128, sc128);
  2418. const __m256i hbits = _mm256_loadu_si256((const __m256i*)x[i].qh);
  2419. __m256i hmask = mone;
  2420. __m256i sumi = _mm256_setzero_si256();
  2421. int bit = 0;
  2422. for (int j = 0; j < QK_K/64; ++j) {
  2423. const __m256i scale_0 = _mm256_shuffle_epi8(scales, get_scale_shuffle_k4(2*j+0));
  2424. const __m256i scale_1 = _mm256_shuffle_epi8(scales, get_scale_shuffle_k4(2*j+1));
  2425. const __m256i q5bits = _mm256_loadu_si256((const __m256i*)q5); q5 += 32;
  2426. const __m256i q5l_0 = _mm256_and_si256(q5bits, m4);
  2427. const __m256i q5h_0 = _mm256_slli_epi16(_mm256_srli_epi16(_mm256_and_si256(hbits, hmask), bit++), 4);
  2428. const __m256i q5_0 = _mm256_add_epi8(q5l_0, q5h_0);
  2429. hmask = _mm256_slli_epi16(hmask, 1);
  2430. const __m256i q5l_1 = _mm256_and_si256(_mm256_srli_epi16(q5bits, 4), m4);
  2431. const __m256i q5h_1 = _mm256_slli_epi16(_mm256_srli_epi16(_mm256_and_si256(hbits, hmask), bit++), 4);
  2432. const __m256i q5_1 = _mm256_add_epi8(q5l_1, q5h_1);
  2433. hmask = _mm256_slli_epi16(hmask, 1);
  2434. const __m256i q8_0 = _mm256_loadu_si256((const __m256i*)q8); q8 += 32;
  2435. const __m256i q8_1 = _mm256_loadu_si256((const __m256i*)q8); q8 += 32;
  2436. __m256i p16_0 = _mm256_maddubs_epi16(q5_0, q8_0);
  2437. __m256i p16_1 = _mm256_maddubs_epi16(q5_1, q8_1);
  2438. p16_0 = _mm256_madd_epi16(scale_0, p16_0);
  2439. p16_1 = _mm256_madd_epi16(scale_1, p16_1);
  2440. sumi = _mm256_add_epi32(sumi, _mm256_add_epi32(p16_0, p16_1));
  2441. }
  2442. __m256 vd = _mm256_set1_ps(d);
  2443. acc = _mm256_fmadd_ps(vd, _mm256_cvtepi32_ps(sumi), acc);
  2444. }
  2445. *s = hsum_float_8(acc) + summs;
  2446. #elif defined __AVX__
  2447. const __m128i m4 = _mm_set1_epi8(0xF);
  2448. const __m128i mzero = _mm_setzero_si128();
  2449. const __m128i mone = _mm_set1_epi8(1);
  2450. const __m128i m2 = _mm_set1_epi8(2);
  2451. __m256 acc = _mm256_setzero_ps();
  2452. float summs = 0.f;
  2453. for (int i = 0; i < nb; ++i) {
  2454. const float d = y[i].d * ggml_fp16_to_fp32(x[i].d);
  2455. const float dmin = -y[i].d * ggml_fp16_to_fp32(x[i].dmin);
  2456. const uint8_t * restrict q5 = x[i].qs;
  2457. const int8_t * restrict q8 = y[i].qs;
  2458. memcpy(utmp, x[i].scales, 12);
  2459. utmp[3] = ((utmp[2] >> 4) & kmask2) | (((utmp[1] >> 6) & kmask3) << 4);
  2460. const uint32_t uaux = utmp[1] & kmask1;
  2461. utmp[1] = (utmp[2] & kmask2) | (((utmp[0] >> 6) & kmask3) << 4);
  2462. utmp[2] = uaux;
  2463. utmp[0] &= kmask1;
  2464. const __m128i utmps = _mm_set_epi32(utmp[3], utmp[2], utmp[1], utmp[0]);
  2465. const __m128i scales = _mm_cvtepu8_epi16(utmps);
  2466. const __m128i mins = _mm_cvtepu8_epi16(_mm_unpackhi_epi64(utmps, utmps));
  2467. const __m128i q8sums_0 = _mm_loadu_si128((const __m128i*)&y[i].bsums[0]);
  2468. const __m128i q8sums_1 = _mm_loadu_si128((const __m128i*)&y[i].bsums[8]);
  2469. const __m128i q8s = _mm_hadd_epi16(q8sums_0, q8sums_1);
  2470. const __m128i prod = _mm_madd_epi16(mins, q8s);
  2471. const __m128i hsum = _mm_hadd_epi32(_mm_hadd_epi32(prod, mzero), mzero);
  2472. summs += dmin * _mm_extract_epi32(hsum, 0);
  2473. const __m128i hbits_0 = _mm_loadu_si128((const __m128i*)&x[i].qh[0]);
  2474. const __m128i hbits_1 = _mm_loadu_si128((const __m128i*)&x[i].qh[16]);
  2475. __m128i hmask = mone;
  2476. __m128i sumi_0 = _mm_setzero_si128();
  2477. __m128i sumi_1 = _mm_setzero_si128();
  2478. int bit = 0;
  2479. __m128i shuffle = _mm_set1_epi16(0x0100);
  2480. for (int j = 0; j < QK_K/64; ++j) {
  2481. const __m128i scale_0 = _mm_shuffle_epi8(scales, shuffle);
  2482. shuffle = _mm_add_epi16(shuffle, m2);
  2483. const __m128i scale_1 = _mm_shuffle_epi8(scales, shuffle);
  2484. shuffle = _mm_add_epi16(shuffle, m2);
  2485. const __m128i q5bits_0 = _mm_loadu_si128((const __m128i*)q5); q5 += 16;
  2486. const __m128i q5bits_1 = _mm_loadu_si128((const __m128i*)q5); q5 += 16;
  2487. __m128i q5l_0 = _mm_and_si128(q5bits_0, m4);
  2488. __m128i q5l_1 = _mm_and_si128(q5bits_1, m4);
  2489. __m128i q5h_0 = _mm_slli_epi16(_mm_srli_epi16(_mm_and_si128(hbits_0, hmask), bit), 4);
  2490. __m128i q5h_1 = _mm_slli_epi16(_mm_srli_epi16(_mm_and_si128(hbits_1, hmask), bit++), 4);
  2491. __m128i q5_0 = _mm_add_epi8(q5l_0, q5h_0);
  2492. __m128i q5_1 = _mm_add_epi8(q5l_1, q5h_1);
  2493. hmask = _mm_slli_epi16(hmask, 1);
  2494. __m128i q8_0 = _mm_loadu_si128((const __m128i*)q8); q8 += 16;
  2495. __m128i q8_1 = _mm_loadu_si128((const __m128i*)q8); q8 += 16;
  2496. __m128i p16_0 = _mm_maddubs_epi16(q5_0, q8_0);
  2497. __m128i p16_1 = _mm_maddubs_epi16(q5_1, q8_1);
  2498. p16_0 = _mm_madd_epi16(scale_0, p16_0);
  2499. p16_1 = _mm_madd_epi16(scale_0, p16_1);
  2500. q5l_0 = _mm_and_si128(_mm_srli_epi16(q5bits_0, 4), m4);
  2501. q5l_1 = _mm_and_si128(_mm_srli_epi16(q5bits_1, 4), m4);
  2502. q5h_0 = _mm_slli_epi16(_mm_srli_epi16(_mm_and_si128(hbits_0, hmask), bit), 4);
  2503. q5h_1 = _mm_slli_epi16(_mm_srli_epi16(_mm_and_si128(hbits_1, hmask), bit++), 4);
  2504. q5_0 = _mm_add_epi8(q5l_0, q5h_0);
  2505. q5_1 = _mm_add_epi8(q5l_1, q5h_1);
  2506. hmask = _mm_slli_epi16(hmask, 1);
  2507. q8_0 = _mm_loadu_si128((const __m128i*)q8); q8 += 16;
  2508. q8_1 = _mm_loadu_si128((const __m128i*)q8); q8 += 16;
  2509. __m128i p16_2 = _mm_maddubs_epi16(q5_0, q8_0);
  2510. __m128i p16_3 = _mm_maddubs_epi16(q5_1, q8_1);
  2511. p16_2 = _mm_madd_epi16(scale_1, p16_2);
  2512. p16_3 = _mm_madd_epi16(scale_1, p16_3);
  2513. sumi_0 = _mm_add_epi32(sumi_0, _mm_add_epi32(p16_0, p16_2));
  2514. sumi_1 = _mm_add_epi32(sumi_1, _mm_add_epi32(p16_1, p16_3));
  2515. }
  2516. __m256 vd = _mm256_set1_ps(d);
  2517. __m256i sumi = _mm256_set_m128i(sumi_1, sumi_0);
  2518. acc = _mm256_add_ps(_mm256_mul_ps(vd, _mm256_cvtepi32_ps(sumi)), acc);
  2519. }
  2520. *s = hsum_float_8(acc) + summs;
  2521. #else
  2522. const uint8_t * scales = (const uint8_t*)&utmp[0];
  2523. const uint8_t * mins = (const uint8_t*)&utmp[2];
  2524. int8_t aux8[QK_K];
  2525. int16_t aux16[8];
  2526. float sums [8];
  2527. int32_t aux32[8];
  2528. memset(sums, 0, 8*sizeof(float));
  2529. float sumf = 0;
  2530. for (int i = 0; i < nb; ++i) {
  2531. const uint8_t * restrict q4 = x[i].qs;
  2532. const uint8_t * restrict hm = x[i].qh;
  2533. const int8_t * restrict q8 = y[i].qs;
  2534. memset(aux32, 0, 8*sizeof(int32_t));
  2535. int8_t * restrict a = aux8;
  2536. uint8_t m = 1;
  2537. for (int j = 0; j < QK_K/64; ++j) {
  2538. for (int l = 0; l < 32; ++l) a[l] = (int8_t)(q4[l] & 0xF);
  2539. for (int l = 0; l < 32; ++l) a[l] += (hm[l] & m ? 16 : 0);
  2540. a += 32; m <<= 1;
  2541. for (int l = 0; l < 32; ++l) a[l] = (int8_t)(q4[l] >> 4);
  2542. for (int l = 0; l < 32; ++l) a[l] += (hm[l] & m ? 16 : 0);
  2543. a += 32; m <<= 1;
  2544. q4 += 32;
  2545. }
  2546. memcpy(utmp, x[i].scales, 12);
  2547. utmp[3] = ((utmp[2] >> 4) & kmask2) | (((utmp[1] >> 6) & kmask3) << 4);
  2548. const uint32_t uaux = utmp[1] & kmask1;
  2549. utmp[1] = (utmp[2] & kmask2) | (((utmp[0] >> 6) & kmask3) << 4);
  2550. utmp[2] = uaux;
  2551. utmp[0] &= kmask1;
  2552. int sumi = 0;
  2553. for (int j = 0; j < QK_K/16; ++j) sumi += y[i].bsums[j] * mins[j/2];
  2554. a = aux8;
  2555. int is = 0;
  2556. for (int j = 0; j < QK_K/32; ++j) {
  2557. int32_t scale = scales[is++];
  2558. for (int l = 0; l < 8; ++l) aux16[l] = q8[l] * a[l];
  2559. for (int l = 0; l < 8; ++l) aux32[l] += scale * aux16[l];
  2560. q8 += 8; a += 8;
  2561. for (int l = 0; l < 8; ++l) aux16[l] = q8[l] * a[l];
  2562. for (int l = 0; l < 8; ++l) aux32[l] += scale * aux16[l];
  2563. q8 += 8; a += 8;
  2564. for (int l = 0; l < 8; ++l) aux16[l] = q8[l] * a[l];
  2565. for (int l = 0; l < 8; ++l) aux32[l] += scale * aux16[l];
  2566. q8 += 8; a += 8;
  2567. for (int l = 0; l < 8; ++l) aux16[l] = q8[l] * a[l];
  2568. for (int l = 0; l < 8; ++l) aux32[l] += scale * aux16[l];
  2569. q8 += 8; a += 8;
  2570. }
  2571. const float d = ggml_fp16_to_fp32(x[i].d) * y[i].d;
  2572. for (int l = 0; l < 8; ++l) sums[l] += d * aux32[l];
  2573. const float dmin = ggml_fp16_to_fp32(x[i].dmin) * y[i].d;
  2574. sumf -= dmin * sumi;
  2575. }
  2576. for (int l = 0; l < 8; ++l) sumf += sums[l];
  2577. *s = sumf;
  2578. #endif
  2579. }
  2580. #else
  2581. void ggml_vec_dot_q5_K_q8_K(const int n, float * restrict s, const void * restrict vx, const void * restrict vy) {
  2582. assert(n % QK_K == 0);
  2583. const block_q5_K * restrict x = vx;
  2584. const block_q8_K * restrict y = vy;
  2585. const int nb = n / QK_K;
  2586. #ifdef __ARM_NEON
  2587. const uint8x16_t m4b = vdupq_n_u8(0xf);
  2588. const int32x4_t mzero = vdupq_n_s32(0);
  2589. const uint8x16_t mh = vdupq_n_u8(16);
  2590. int8x16x4_t q5bytes;
  2591. uint8x16x4_t q5h;
  2592. float sumf = 0;
  2593. for (int i = 0; i < nb; ++i) {
  2594. const float d = y[i].d * (float)x[i].d;
  2595. const int8_t * sc = x[i].scales;
  2596. const uint8_t * restrict q5 = x[i].qs;
  2597. const uint8_t * restrict qh = x[i].qh;
  2598. const int8_t * restrict q8 = y[i].qs;
  2599. const uint8x8_t qhbits = vld1_u8(qh);
  2600. const uint8x16x2_t q5bits = vld1q_u8_x2(q5);
  2601. const int8x16x4_t q8bytes = vld1q_s8_x4(q8);
  2602. const uint8x16_t htmp = vcombine_u8(qhbits, vshr_n_u8(qhbits, 1));
  2603. q5h.val[0] = vbicq_u8(mh, vshlq_n_u8(htmp, 4));
  2604. q5h.val[1] = vbicq_u8(mh, vshlq_n_u8(htmp, 2));
  2605. q5h.val[2] = vbicq_u8(mh, htmp);
  2606. q5h.val[3] = vbicq_u8(mh, vshrq_n_u8(htmp, 2));
  2607. q5bytes.val[0] = vsubq_s8(vreinterpretq_s8_u8(vandq_u8(q5bits.val[0], m4b)), vreinterpretq_s8_u8(q5h.val[0]));
  2608. q5bytes.val[1] = vsubq_s8(vreinterpretq_s8_u8(vandq_u8(q5bits.val[1], m4b)), vreinterpretq_s8_u8(q5h.val[1]));
  2609. q5bytes.val[2] = vsubq_s8(vreinterpretq_s8_u8(vshrq_n_u8(q5bits.val[0], 4)), vreinterpretq_s8_u8(q5h.val[2]));
  2610. q5bytes.val[3] = vsubq_s8(vreinterpretq_s8_u8(vshrq_n_u8(q5bits.val[1], 4)), vreinterpretq_s8_u8(q5h.val[3]));
  2611. #if defined(__ARM_FEATURE_DOTPROD)
  2612. int32_t sumi1 = sc[0] * vaddvq_s32(vdotq_s32(mzero, q5bytes.val[0], q8bytes.val[0]));
  2613. int32_t sumi2 = sc[1] * vaddvq_s32(vdotq_s32(mzero, q5bytes.val[1], q8bytes.val[1]));
  2614. int32_t sumi3 = sc[2] * vaddvq_s32(vdotq_s32(mzero, q5bytes.val[2], q8bytes.val[2]));
  2615. int32_t sumi4 = sc[3] * vaddvq_s32(vdotq_s32(mzero, q5bytes.val[3], q8bytes.val[3]));
  2616. sumf += d * (sumi1 + sumi2 + sumi3 + sumi4);
  2617. #else
  2618. const int16x8_t p0 = vaddq_s16(vmull_s8(vget_low_s8 (q5bytes.val[0]), vget_low_s8 (q8bytes.val[0])),
  2619. vmull_s8(vget_high_s8(q5bytes.val[0]), vget_high_s8(q8bytes.val[0])));
  2620. const int16x8_t p1 = vaddq_s16(vmull_s8(vget_low_s8 (q5bytes.val[1]), vget_low_s8 (q8bytes.val[1])),
  2621. vmull_s8(vget_high_s8(q5bytes.val[1]), vget_high_s8(q8bytes.val[1])));
  2622. int32_t sumi = sc[0] * vaddvq_s16(p0) + sc[1] * vaddvq_s16(p1);
  2623. const int16x8_t p2 = vaddq_s16(vmull_s8(vget_low_s8 (q5bytes.val[2]), vget_low_s8 (q8bytes.val[2])),
  2624. vmull_s8(vget_high_s8(q5bytes.val[2]), vget_high_s8(q8bytes.val[2])));
  2625. const int16x8_t p3 = vaddq_s16(vmull_s8(vget_low_s8 (q5bytes.val[3]), vget_low_s8 (q8bytes.val[3])),
  2626. vmull_s8(vget_high_s8(q5bytes.val[3]), vget_high_s8(q8bytes.val[3])));
  2627. sumi += sc[2] * vaddvq_s16(p2) + sc[3] * vaddvq_s16(p3);
  2628. sumf += d*sumi;
  2629. #endif
  2630. }
  2631. *s = sumf;
  2632. #elif defined __AVX2__
  2633. const __m256i m4 = _mm256_set1_epi8(0xF);
  2634. const __m256i mone = _mm256_set1_epi8(1);
  2635. __m256 acc = _mm256_setzero_ps();
  2636. for (int i = 0; i < nb; ++i) {
  2637. const uint8_t * restrict q5 = x[i].qs;
  2638. const int8_t * restrict q8 = y[i].qs;
  2639. const float d = y[i].d * ggml_fp16_to_fp32(x[i].d);
  2640. const __m256i q5bits = _mm256_loadu_si256((const __m256i*)q5);
  2641. const __m256i scale_l = _mm256_set_m128i(_mm_set1_epi16(x[i].scales[1]), _mm_set1_epi16(x[i].scales[0]));
  2642. const __m256i scale_h = _mm256_set_m128i(_mm_set1_epi16(x[i].scales[3]), _mm_set1_epi16(x[i].scales[2]));
  2643. int64_t aux64;
  2644. memcpy(&aux64, x[i].qh, 8);
  2645. const __m128i haux128 = _mm_set_epi64x(aux64 >> 1, aux64);
  2646. const __m256i haux256 = _mm256_set_m128i(_mm_srli_epi16(haux128, 2), haux128);
  2647. const __m256i q5h_0 = _mm256_slli_epi16(_mm256_andnot_si256(haux256, mone), 4);
  2648. const __m256i q5h_1 = _mm256_slli_epi16(_mm256_andnot_si256(_mm256_srli_epi16(haux256, 4), mone), 4);
  2649. const __m256i q5l_0 = _mm256_and_si256(q5bits, m4);
  2650. const __m256i q5l_1 = _mm256_and_si256(_mm256_srli_epi16(q5bits, 4), m4);
  2651. const __m256i q8_0 = _mm256_loadu_si256((const __m256i*)(q8+ 0));
  2652. const __m256i q8_1 = _mm256_loadu_si256((const __m256i*)(q8+32));
  2653. const __m256i p16_0 = _mm256_madd_epi16(scale_l, _mm256_maddubs_epi16(q5l_0, q8_0));
  2654. const __m256i p16_1 = _mm256_madd_epi16(scale_h, _mm256_maddubs_epi16(q5l_1, q8_1));
  2655. const __m256i s16_0 = _mm256_madd_epi16(scale_l, _mm256_maddubs_epi16(q5h_0, q8_0));
  2656. const __m256i s16_1 = _mm256_madd_epi16(scale_h, _mm256_maddubs_epi16(q5h_1, q8_1));
  2657. const __m256i dot = _mm256_sub_epi32(_mm256_add_epi32(p16_0, p16_1), _mm256_add_epi32(s16_0, s16_1));
  2658. acc = _mm256_fmadd_ps(_mm256_set1_ps(d), _mm256_cvtepi32_ps(dot), acc);
  2659. }
  2660. *s = hsum_float_8(acc);
  2661. #else
  2662. uint8_t aux8[QK_K];
  2663. int16_t aux16[16];
  2664. float sums [8];
  2665. memset(sums, 0, 8*sizeof(float));
  2666. float sumf = 0;
  2667. for (int i = 0; i < nb; ++i) {
  2668. const uint8_t * restrict q4 = x[i].qs;
  2669. const uint8_t * restrict hm = x[i].qh;
  2670. const int8_t * restrict q8 = y[i].qs;
  2671. uint8_t * restrict a = aux8;
  2672. for (int l = 0; l < 32; ++l) {
  2673. a[l+ 0] = q4[l] & 0xF;
  2674. a[l+32] = q4[l] >> 4;
  2675. }
  2676. for (int is = 0; is < 8; ++is) {
  2677. uint8_t m = 1 << is;
  2678. for (int l = 0; l < 8; ++l) a[8*is + l] -= (hm[l] & m ? 0 : 16);
  2679. }
  2680. const float d = y[i].d * ggml_fp16_to_fp32(x[i].d);
  2681. const int8_t * restrict sc = x[i].scales;
  2682. for (int j = 0; j < QK_K/16; ++j) {
  2683. const float dl = d * sc[j];
  2684. for (int l = 0; l < 16; ++l) aux16[l] = q8[l] * a[l];
  2685. for (int l = 0; l < 8; ++l) sums[l] += dl * (aux16[l] + aux16[8+l]);
  2686. q8 += 16; a += 16;
  2687. }
  2688. }
  2689. for (int l = 0; l < 8; ++l) sumf += sums[l];
  2690. *s = sumf;
  2691. #endif
  2692. }
  2693. #endif
  2694. #if QK_K == 256
  2695. void ggml_vec_dot_q6_K_q8_K(const int n, float * restrict s, const void * restrict vx, const void * restrict vy) {
  2696. assert(n % QK_K == 0);
  2697. const block_q6_K * restrict x = vx;
  2698. const block_q8_K * restrict y = vy;
  2699. const int nb = n / QK_K;
  2700. #ifdef __ARM_NEON
  2701. float sum = 0;
  2702. const uint8x16_t m4b = vdupq_n_u8(0xF);
  2703. const int32x4_t vzero = vdupq_n_s32(0);
  2704. //const int8x16_t m32s = vdupq_n_s8(32);
  2705. const uint8x16_t mone = vdupq_n_u8(3);
  2706. int8x16x4_t q6bytes;
  2707. uint8x16x4_t q6h;
  2708. for (int i = 0; i < nb; ++i) {
  2709. const float d_all = ggml_fp16_to_fp32(x[i].d);
  2710. const uint8_t * restrict q6 = x[i].ql;
  2711. const uint8_t * restrict qh = x[i].qh;
  2712. const int8_t * restrict q8 = y[i].qs;
  2713. const int8_t * restrict scale = x[i].scales;
  2714. const int16x8x2_t q8sums = vld1q_s16_x2(y[i].bsums);
  2715. const int8x16_t scales = vld1q_s8(scale);
  2716. const int16x8x2_t q6scales = {vmovl_s8(vget_low_s8(scales)), vmovl_s8(vget_high_s8(scales))};
  2717. const int32x4_t prod = vaddq_s32(vaddq_s32(vmull_s16(vget_low_s16 (q8sums.val[0]), vget_low_s16 (q6scales.val[0])),
  2718. vmull_s16(vget_high_s16(q8sums.val[0]), vget_high_s16(q6scales.val[0]))),
  2719. vaddq_s32(vmull_s16(vget_low_s16 (q8sums.val[1]), vget_low_s16 (q6scales.val[1])),
  2720. vmull_s16(vget_high_s16(q8sums.val[1]), vget_high_s16(q6scales.val[1]))));
  2721. int32_t isum_mins = vaddvq_s32(prod);
  2722. int32_t isum = 0;
  2723. for (int j = 0; j < QK_K/128; ++j) {
  2724. uint8x16x2_t qhbits = vld1q_u8_x2(qh); qh += 32;
  2725. uint8x16x4_t q6bits = vld1q_u8_x4(q6); q6 += 64;
  2726. int8x16x4_t q8bytes = vld1q_s8_x4(q8); q8 += 64;
  2727. q6h.val[0] = vshlq_n_u8(vandq_u8(mone, qhbits.val[0]), 4);
  2728. q6h.val[1] = vshlq_n_u8(vandq_u8(mone, qhbits.val[1]), 4);
  2729. uint8x16_t shifted = vshrq_n_u8(qhbits.val[0], 2);
  2730. q6h.val[2] = vshlq_n_u8(vandq_u8(mone, shifted), 4);
  2731. shifted = vshrq_n_u8(qhbits.val[1], 2);
  2732. q6h.val[3] = vshlq_n_u8(vandq_u8(mone, shifted), 4);
  2733. //q6bytes.val[0] = vsubq_s8(vreinterpretq_s8_u8(vorrq_u8(vandq_u8(q6bits.val[0], m4b), q6h.val[0])), m32s);
  2734. //q6bytes.val[1] = vsubq_s8(vreinterpretq_s8_u8(vorrq_u8(vandq_u8(q6bits.val[1], m4b), q6h.val[1])), m32s);
  2735. //q6bytes.val[2] = vsubq_s8(vreinterpretq_s8_u8(vorrq_u8(vandq_u8(q6bits.val[2], m4b), q6h.val[2])), m32s);
  2736. //q6bytes.val[3] = vsubq_s8(vreinterpretq_s8_u8(vorrq_u8(vandq_u8(q6bits.val[3], m4b), q6h.val[3])), m32s);
  2737. q6bytes.val[0] = vreinterpretq_s8_u8(vorrq_u8(vandq_u8(q6bits.val[0], m4b), q6h.val[0]));
  2738. q6bytes.val[1] = vreinterpretq_s8_u8(vorrq_u8(vandq_u8(q6bits.val[1], m4b), q6h.val[1]));
  2739. q6bytes.val[2] = vreinterpretq_s8_u8(vorrq_u8(vandq_u8(q6bits.val[2], m4b), q6h.val[2]));
  2740. q6bytes.val[3] = vreinterpretq_s8_u8(vorrq_u8(vandq_u8(q6bits.val[3], m4b), q6h.val[3]));
  2741. #if defined(__ARM_FEATURE_DOTPROD)
  2742. isum += vaddvq_s32(vdotq_s32(vzero, q6bytes.val[0], q8bytes.val[0])) * scale[0] +
  2743. vaddvq_s32(vdotq_s32(vzero, q6bytes.val[1], q8bytes.val[1])) * scale[1] +
  2744. vaddvq_s32(vdotq_s32(vzero, q6bytes.val[2], q8bytes.val[2])) * scale[2] +
  2745. vaddvq_s32(vdotq_s32(vzero, q6bytes.val[3], q8bytes.val[3])) * scale[3];
  2746. scale += 4;
  2747. #else
  2748. int16x8_t p0 = vaddq_s16(vmull_s8(vget_low_s8 (q6bytes.val[0]), vget_low_s8 (q8bytes.val[0])),
  2749. vmull_s8(vget_high_s8(q6bytes.val[0]), vget_high_s8(q8bytes.val[0])));
  2750. int16x8_t p1 = vaddq_s16(vmull_s8(vget_low_s8 (q6bytes.val[1]), vget_low_s8 (q8bytes.val[1])),
  2751. vmull_s8(vget_high_s8(q6bytes.val[1]), vget_high_s8(q8bytes.val[1])));
  2752. isum += vaddvq_s16(p0) * scale[0] + vaddvq_s16(p1) * scale[1];
  2753. scale += 2;
  2754. int16x8_t p2 = vaddq_s16(vmull_s8(vget_low_s8 (q6bytes.val[2]), vget_low_s8 (q8bytes.val[2])),
  2755. vmull_s8(vget_high_s8(q6bytes.val[2]), vget_high_s8(q8bytes.val[2])));
  2756. int16x8_t p3 = vaddq_s16(vmull_s8(vget_low_s8 (q6bytes.val[3]), vget_low_s8 (q8bytes.val[3])),
  2757. vmull_s8(vget_high_s8(q6bytes.val[3]), vget_high_s8(q8bytes.val[3])));
  2758. isum += vaddvq_s16(p2) * scale[0] + vaddvq_s16(p3) * scale[1];
  2759. scale += 2;
  2760. #endif
  2761. q8bytes = vld1q_s8_x4(q8); q8 += 64;
  2762. shifted = vshrq_n_u8(qhbits.val[0], 4);
  2763. q6h.val[0] = vshlq_n_u8(vandq_u8(mone, shifted), 4);
  2764. shifted = vshrq_n_u8(qhbits.val[1], 4);
  2765. q6h.val[1] = vshlq_n_u8(vandq_u8(mone, shifted), 4);
  2766. shifted = vshrq_n_u8(qhbits.val[0], 6);
  2767. q6h.val[2] = vshlq_n_u8(vandq_u8(mone, shifted), 4);
  2768. shifted = vshrq_n_u8(qhbits.val[1], 6);
  2769. q6h.val[3] = vshlq_n_u8(vandq_u8(mone, shifted), 4);
  2770. //q6bytes.val[0] = vsubq_s8(vreinterpretq_s8_u8(vorrq_u8(vshrq_n_u8(q6bits.val[0], 4), q6h.val[0])), m32s);
  2771. //q6bytes.val[1] = vsubq_s8(vreinterpretq_s8_u8(vorrq_u8(vshrq_n_u8(q6bits.val[1], 4), q6h.val[1])), m32s);
  2772. //q6bytes.val[2] = vsubq_s8(vreinterpretq_s8_u8(vorrq_u8(vshrq_n_u8(q6bits.val[2], 4), q6h.val[2])), m32s);
  2773. //q6bytes.val[3] = vsubq_s8(vreinterpretq_s8_u8(vorrq_u8(vshrq_n_u8(q6bits.val[3], 4), q6h.val[3])), m32s);
  2774. q6bytes.val[0] = vreinterpretq_s8_u8(vorrq_u8(vshrq_n_u8(q6bits.val[0], 4), q6h.val[0]));
  2775. q6bytes.val[1] = vreinterpretq_s8_u8(vorrq_u8(vshrq_n_u8(q6bits.val[1], 4), q6h.val[1]));
  2776. q6bytes.val[2] = vreinterpretq_s8_u8(vorrq_u8(vshrq_n_u8(q6bits.val[2], 4), q6h.val[2]));
  2777. q6bytes.val[3] = vreinterpretq_s8_u8(vorrq_u8(vshrq_n_u8(q6bits.val[3], 4), q6h.val[3]));
  2778. #if defined(__ARM_FEATURE_DOTPROD)
  2779. isum += vaddvq_s32(vdotq_s32(vzero, q6bytes.val[0], q8bytes.val[0])) * scale[0] +
  2780. vaddvq_s32(vdotq_s32(vzero, q6bytes.val[1], q8bytes.val[1])) * scale[1] +
  2781. vaddvq_s32(vdotq_s32(vzero, q6bytes.val[2], q8bytes.val[2])) * scale[2] +
  2782. vaddvq_s32(vdotq_s32(vzero, q6bytes.val[3], q8bytes.val[3])) * scale[3];
  2783. scale += 4;
  2784. //for (int l = 0; l < 4; ++l) {
  2785. // const int32x4_t p = vdotq_s32(vzero, q6bytes.val[l], q8bytes.val[l]);
  2786. // isum += vaddvq_s32(p) * *scale++;
  2787. //}
  2788. #else
  2789. p0 = vaddq_s16(vmull_s8(vget_low_s8 (q6bytes.val[0]), vget_low_s8 (q8bytes.val[0])),
  2790. vmull_s8(vget_high_s8(q6bytes.val[0]), vget_high_s8(q8bytes.val[0])));
  2791. p1 = vaddq_s16(vmull_s8(vget_low_s8 (q6bytes.val[1]), vget_low_s8 (q8bytes.val[1])),
  2792. vmull_s8(vget_high_s8(q6bytes.val[1]), vget_high_s8(q8bytes.val[1])));
  2793. isum += vaddvq_s16(p0) * scale[0] + vaddvq_s16(p1) * scale[1];
  2794. scale += 2;
  2795. p2 = vaddq_s16(vmull_s8(vget_low_s8 (q6bytes.val[2]), vget_low_s8 (q8bytes.val[2])),
  2796. vmull_s8(vget_high_s8(q6bytes.val[2]), vget_high_s8(q8bytes.val[2])));
  2797. p3 = vaddq_s16(vmull_s8(vget_low_s8 (q6bytes.val[3]), vget_low_s8 (q8bytes.val[3])),
  2798. vmull_s8(vget_high_s8(q6bytes.val[3]), vget_high_s8(q8bytes.val[3])));
  2799. isum += vaddvq_s16(p2) * scale[0] + vaddvq_s16(p3) * scale[1];
  2800. scale += 2;
  2801. #endif
  2802. }
  2803. //sum += isum * d_all * y[i].d;
  2804. sum += d_all * y[i].d * (isum - 32 * isum_mins);
  2805. }
  2806. *s = sum;
  2807. #elif defined __AVX2__
  2808. const __m256i m4 = _mm256_set1_epi8(0xF);
  2809. const __m256i m2 = _mm256_set1_epi8(3);
  2810. const __m256i m32s = _mm256_set1_epi8(32);
  2811. __m256 acc = _mm256_setzero_ps();
  2812. for (int i = 0; i < nb; ++i) {
  2813. const float d = y[i].d * ggml_fp16_to_fp32(x[i].d);
  2814. const uint8_t * restrict q4 = x[i].ql;
  2815. const uint8_t * restrict qh = x[i].qh;
  2816. const int8_t * restrict q8 = y[i].qs;
  2817. const __m128i scales = _mm_loadu_si128((const __m128i*)x[i].scales);
  2818. __m256i sumi = _mm256_setzero_si256();
  2819. int is = 0;
  2820. for (int j = 0; j < QK_K/128; ++j) {
  2821. const __m128i scale_0 = _mm_shuffle_epi8(scales, get_scale_shuffle(is + 0));
  2822. const __m128i scale_1 = _mm_shuffle_epi8(scales, get_scale_shuffle(is + 1));
  2823. const __m128i scale_2 = _mm_shuffle_epi8(scales, get_scale_shuffle(is + 2));
  2824. const __m128i scale_3 = _mm_shuffle_epi8(scales, get_scale_shuffle(is + 3));
  2825. is += 4;
  2826. const __m256i q4bits1 = _mm256_loadu_si256((const __m256i*)q4); q4 += 32;
  2827. const __m256i q4bits2 = _mm256_loadu_si256((const __m256i*)q4); q4 += 32;
  2828. const __m256i q4bitsH = _mm256_loadu_si256((const __m256i*)qh); qh += 32;
  2829. const __m256i q4h_0 = _mm256_slli_epi16(_mm256_and_si256(q4bitsH, m2), 4);
  2830. const __m256i q4h_1 = _mm256_slli_epi16(_mm256_and_si256(_mm256_srli_epi16(q4bitsH, 2), m2), 4);
  2831. const __m256i q4h_2 = _mm256_slli_epi16(_mm256_and_si256(_mm256_srli_epi16(q4bitsH, 4), m2), 4);
  2832. const __m256i q4h_3 = _mm256_slli_epi16(_mm256_and_si256(_mm256_srli_epi16(q4bitsH, 6), m2), 4);
  2833. const __m256i q4_0 = _mm256_or_si256(_mm256_and_si256(q4bits1, m4), q4h_0);
  2834. const __m256i q4_1 = _mm256_or_si256(_mm256_and_si256(q4bits2, m4), q4h_1);
  2835. const __m256i q4_2 = _mm256_or_si256(_mm256_and_si256(_mm256_srli_epi16(q4bits1, 4), m4), q4h_2);
  2836. const __m256i q4_3 = _mm256_or_si256(_mm256_and_si256(_mm256_srli_epi16(q4bits2, 4), m4), q4h_3);
  2837. const __m256i q8_0 = _mm256_loadu_si256((const __m256i*)q8); q8 += 32;
  2838. const __m256i q8_1 = _mm256_loadu_si256((const __m256i*)q8); q8 += 32;
  2839. const __m256i q8_2 = _mm256_loadu_si256((const __m256i*)q8); q8 += 32;
  2840. const __m256i q8_3 = _mm256_loadu_si256((const __m256i*)q8); q8 += 32;
  2841. __m256i q8s_0 = _mm256_maddubs_epi16(m32s, q8_0);
  2842. __m256i q8s_1 = _mm256_maddubs_epi16(m32s, q8_1);
  2843. __m256i q8s_2 = _mm256_maddubs_epi16(m32s, q8_2);
  2844. __m256i q8s_3 = _mm256_maddubs_epi16(m32s, q8_3);
  2845. __m256i p16_0 = _mm256_maddubs_epi16(q4_0, q8_0);
  2846. __m256i p16_1 = _mm256_maddubs_epi16(q4_1, q8_1);
  2847. __m256i p16_2 = _mm256_maddubs_epi16(q4_2, q8_2);
  2848. __m256i p16_3 = _mm256_maddubs_epi16(q4_3, q8_3);
  2849. p16_0 = _mm256_sub_epi16(p16_0, q8s_0);
  2850. p16_1 = _mm256_sub_epi16(p16_1, q8s_1);
  2851. p16_2 = _mm256_sub_epi16(p16_2, q8s_2);
  2852. p16_3 = _mm256_sub_epi16(p16_3, q8s_3);
  2853. p16_0 = _mm256_madd_epi16(_mm256_cvtepi8_epi16(scale_0), p16_0);
  2854. p16_1 = _mm256_madd_epi16(_mm256_cvtepi8_epi16(scale_1), p16_1);
  2855. p16_2 = _mm256_madd_epi16(_mm256_cvtepi8_epi16(scale_2), p16_2);
  2856. p16_3 = _mm256_madd_epi16(_mm256_cvtepi8_epi16(scale_3), p16_3);
  2857. sumi = _mm256_add_epi32(sumi, _mm256_add_epi32(p16_0, p16_1));
  2858. sumi = _mm256_add_epi32(sumi, _mm256_add_epi32(p16_2, p16_3));
  2859. }
  2860. acc = _mm256_fmadd_ps(_mm256_broadcast_ss(&d), _mm256_cvtepi32_ps(sumi), acc);
  2861. }
  2862. *s = hsum_float_8(acc);
  2863. #elif defined __AVX__
  2864. const __m128i m4 = _mm_set1_epi8(0xF);
  2865. const __m128i m3 = _mm_set1_epi8(3);
  2866. const __m128i m32s = _mm_set1_epi8(32);
  2867. const __m128i m2 = _mm_set1_epi8(2);
  2868. __m256 acc = _mm256_setzero_ps();
  2869. for (int i = 0; i < nb; ++i) {
  2870. const float d = y[i].d * ggml_fp16_to_fp32(x[i].d);
  2871. const uint8_t * restrict q4 = x[i].ql;
  2872. const uint8_t * restrict qh = x[i].qh;
  2873. const int8_t * restrict q8 = y[i].qs;
  2874. const __m128i scales = _mm_loadu_si128((const __m128i*)x[i].scales);
  2875. __m128i sumi_0 = _mm_setzero_si128();
  2876. __m128i sumi_1 = _mm_setzero_si128();
  2877. __m128i shuffle = _mm_set_epi64x(0x0101010101010101, 0x0000000000000000);
  2878. for (int j = 0; j < QK_K/128; ++j) {
  2879. const __m128i q4bitsH_0 = _mm_loadu_si128((const __m128i*)qh); qh += 16;
  2880. const __m128i q4bitsH_1 = _mm_loadu_si128((const __m128i*)qh); qh += 16;
  2881. const __m128i q4h_0 = _mm_slli_epi16(_mm_and_si128(q4bitsH_0, m3), 4);
  2882. const __m128i q4h_1 = _mm_slli_epi16(_mm_and_si128(q4bitsH_1, m3), 4);
  2883. const __m128i q4h_2 = _mm_slli_epi16(_mm_and_si128(_mm_srli_epi16(q4bitsH_0, 2), m3), 4);
  2884. const __m128i q4h_3 = _mm_slli_epi16(_mm_and_si128(_mm_srli_epi16(q4bitsH_1, 2), m3), 4);
  2885. const __m128i q4h_4 = _mm_slli_epi16(_mm_and_si128(_mm_srli_epi16(q4bitsH_0, 4), m3), 4);
  2886. const __m128i q4h_5 = _mm_slli_epi16(_mm_and_si128(_mm_srli_epi16(q4bitsH_1, 4), m3), 4);
  2887. const __m128i q4h_6 = _mm_slli_epi16(_mm_and_si128(_mm_srli_epi16(q4bitsH_0, 6), m3), 4);
  2888. const __m128i q4h_7 = _mm_slli_epi16(_mm_and_si128(_mm_srli_epi16(q4bitsH_1, 6), m3), 4);
  2889. const __m128i q4bits1_0 = _mm_loadu_si128((const __m128i*)q4); q4 += 16;
  2890. const __m128i q4bits1_1 = _mm_loadu_si128((const __m128i*)q4); q4 += 16;
  2891. const __m128i q4bits2_0 = _mm_loadu_si128((const __m128i*)q4); q4 += 16;
  2892. const __m128i q4bits2_1 = _mm_loadu_si128((const __m128i*)q4); q4 += 16;
  2893. const __m128i q4_0 = _mm_or_si128(_mm_and_si128(q4bits1_0, m4), q4h_0);
  2894. const __m128i q4_1 = _mm_or_si128(_mm_and_si128(q4bits1_1, m4), q4h_1);
  2895. const __m128i q4_2 = _mm_or_si128(_mm_and_si128(q4bits2_0, m4), q4h_2);
  2896. const __m128i q4_3 = _mm_or_si128(_mm_and_si128(q4bits2_1, m4), q4h_3);
  2897. const __m128i q4_4 = _mm_or_si128(_mm_and_si128(_mm_srli_epi16(q4bits1_0, 4), m4), q4h_4);
  2898. const __m128i q4_5 = _mm_or_si128(_mm_and_si128(_mm_srli_epi16(q4bits1_1, 4), m4), q4h_5);
  2899. const __m128i q4_6 = _mm_or_si128(_mm_and_si128(_mm_srli_epi16(q4bits2_0, 4), m4), q4h_6);
  2900. const __m128i q4_7 = _mm_or_si128(_mm_and_si128(_mm_srli_epi16(q4bits2_1, 4), m4), q4h_7);
  2901. const __m128i q8_0 = _mm_loadu_si128((const __m128i*)q8); q8 += 16;
  2902. const __m128i q8_1 = _mm_loadu_si128((const __m128i*)q8); q8 += 16;
  2903. const __m128i q8_2 = _mm_loadu_si128((const __m128i*)q8); q8 += 16;
  2904. const __m128i q8_3 = _mm_loadu_si128((const __m128i*)q8); q8 += 16;
  2905. const __m128i q8_4 = _mm_loadu_si128((const __m128i*)q8); q8 += 16;
  2906. const __m128i q8_5 = _mm_loadu_si128((const __m128i*)q8); q8 += 16;
  2907. const __m128i q8_6 = _mm_loadu_si128((const __m128i*)q8); q8 += 16;
  2908. const __m128i q8_7 = _mm_loadu_si128((const __m128i*)q8); q8 += 16;
  2909. __m128i q8s_0 = _mm_maddubs_epi16(m32s, q8_0);
  2910. __m128i q8s_1 = _mm_maddubs_epi16(m32s, q8_1);
  2911. __m128i q8s_2 = _mm_maddubs_epi16(m32s, q8_2);
  2912. __m128i q8s_3 = _mm_maddubs_epi16(m32s, q8_3);
  2913. __m128i q8s_4 = _mm_maddubs_epi16(m32s, q8_4);
  2914. __m128i q8s_5 = _mm_maddubs_epi16(m32s, q8_5);
  2915. __m128i q8s_6 = _mm_maddubs_epi16(m32s, q8_6);
  2916. __m128i q8s_7 = _mm_maddubs_epi16(m32s, q8_7);
  2917. __m128i p16_0 = _mm_maddubs_epi16(q4_0, q8_0);
  2918. __m128i p16_1 = _mm_maddubs_epi16(q4_1, q8_1);
  2919. __m128i p16_2 = _mm_maddubs_epi16(q4_2, q8_2);
  2920. __m128i p16_3 = _mm_maddubs_epi16(q4_3, q8_3);
  2921. __m128i p16_4 = _mm_maddubs_epi16(q4_4, q8_4);
  2922. __m128i p16_5 = _mm_maddubs_epi16(q4_5, q8_5);
  2923. __m128i p16_6 = _mm_maddubs_epi16(q4_6, q8_6);
  2924. __m128i p16_7 = _mm_maddubs_epi16(q4_7, q8_7);
  2925. p16_0 = _mm_sub_epi16(p16_0, q8s_0);
  2926. p16_1 = _mm_sub_epi16(p16_1, q8s_1);
  2927. p16_2 = _mm_sub_epi16(p16_2, q8s_2);
  2928. p16_3 = _mm_sub_epi16(p16_3, q8s_3);
  2929. p16_4 = _mm_sub_epi16(p16_4, q8s_4);
  2930. p16_5 = _mm_sub_epi16(p16_5, q8s_5);
  2931. p16_6 = _mm_sub_epi16(p16_6, q8s_6);
  2932. p16_7 = _mm_sub_epi16(p16_7, q8s_7);
  2933. const __m128i scale_0 = _mm_shuffle_epi8(scales, shuffle);
  2934. shuffle = _mm_add_epi8(shuffle, m2);
  2935. const __m128i scale_1 = _mm_shuffle_epi8(scales, shuffle);
  2936. shuffle = _mm_add_epi8(shuffle, m2);
  2937. const __m128i scale_2 = _mm_shuffle_epi8(scales, shuffle);
  2938. shuffle = _mm_add_epi8(shuffle, m2);
  2939. const __m128i scale_3 = _mm_shuffle_epi8(scales, shuffle);
  2940. shuffle = _mm_add_epi8(shuffle, m2);
  2941. p16_0 = _mm_madd_epi16(_mm_cvtepi8_epi16(scale_0), p16_0);
  2942. p16_1 = _mm_madd_epi16(_mm_cvtepi8_epi16(_mm_unpackhi_epi64(scale_0, scale_0)), p16_1);
  2943. p16_2 = _mm_madd_epi16(_mm_cvtepi8_epi16(scale_1), p16_2);
  2944. p16_3 = _mm_madd_epi16(_mm_cvtepi8_epi16(_mm_unpackhi_epi64(scale_1, scale_1)), p16_3);
  2945. p16_4 = _mm_madd_epi16(_mm_cvtepi8_epi16(scale_2), p16_4);
  2946. p16_5 = _mm_madd_epi16(_mm_cvtepi8_epi16(_mm_unpackhi_epi64(scale_2, scale_2)), p16_5);
  2947. p16_6 = _mm_madd_epi16(_mm_cvtepi8_epi16(scale_3), p16_6);
  2948. p16_7 = _mm_madd_epi16(_mm_cvtepi8_epi16(_mm_unpackhi_epi64(scale_3, scale_3)), p16_7);
  2949. sumi_0 = _mm_add_epi32(sumi_0, _mm_add_epi32(p16_0, p16_2));
  2950. sumi_1 = _mm_add_epi32(sumi_1, _mm_add_epi32(p16_1, p16_3));
  2951. sumi_0 = _mm_add_epi32(sumi_0, _mm_add_epi32(p16_4, p16_6));
  2952. sumi_1 = _mm_add_epi32(sumi_1, _mm_add_epi32(p16_5, p16_7));
  2953. }
  2954. __m256i sumi = _mm256_set_m128i(sumi_1, sumi_0);
  2955. acc = _mm256_add_ps(_mm256_mul_ps(_mm256_broadcast_ss(&d), _mm256_cvtepi32_ps(sumi)), acc);
  2956. }
  2957. *s = hsum_float_8(acc);
  2958. #else
  2959. int8_t aux8[QK_K];
  2960. int16_t aux16[8];
  2961. float sums [8];
  2962. int32_t aux32[8];
  2963. memset(sums, 0, 8*sizeof(float));
  2964. float sumf = 0;
  2965. for (int i = 0; i < nb; ++i) {
  2966. const uint8_t * restrict q4 = x[i].ql;
  2967. const uint8_t * restrict qh = x[i].qh;
  2968. const int8_t * restrict q8 = y[i].qs;
  2969. memset(aux32, 0, 8*sizeof(int32_t));
  2970. int8_t * restrict a = aux8;
  2971. for (int j = 0; j < QK_K; j += 128) {
  2972. for (int l = 0; l < 32; ++l) {
  2973. a[l + 0] = (int8_t)((q4[l + 0] & 0xF) | (((qh[l] >> 0) & 3) << 4)) - 32;
  2974. a[l + 32] = (int8_t)((q4[l + 32] & 0xF) | (((qh[l] >> 2) & 3) << 4)) - 32;
  2975. a[l + 64] = (int8_t)((q4[l + 0] >> 4) | (((qh[l] >> 4) & 3) << 4)) - 32;
  2976. a[l + 96] = (int8_t)((q4[l + 32] >> 4) | (((qh[l] >> 6) & 3) << 4)) - 32;
  2977. }
  2978. a += 128;
  2979. q4 += 64;
  2980. qh += 32;
  2981. }
  2982. a = aux8;
  2983. int is = 0;
  2984. for (int j = 0; j < QK_K/16; ++j) {
  2985. int scale = x[i].scales[is++];
  2986. for (int l = 0; l < 8; ++l) aux16[l] = q8[l] * a[l];
  2987. for (int l = 0; l < 8; ++l) aux32[l] += scale * aux16[l];
  2988. q8 += 8; a += 8;
  2989. for (int l = 0; l < 8; ++l) aux16[l] = q8[l] * a[l];
  2990. for (int l = 0; l < 8; ++l) aux32[l] += scale * aux16[l];
  2991. q8 += 8; a += 8;
  2992. }
  2993. const float d = ggml_fp16_to_fp32(x[i].d) * y[i].d;
  2994. for (int l = 0; l < 8; ++l) sums[l] += d * aux32[l];
  2995. }
  2996. for (int l = 0; l < 8; ++l) sumf += sums[l];
  2997. *s = sumf;
  2998. #endif
  2999. }
  3000. #else
  3001. void ggml_vec_dot_q6_K_q8_K(const int n, float * restrict s, const void * restrict vx, const void * restrict vy) {
  3002. assert(n % QK_K == 0);
  3003. const block_q6_K * restrict x = vx;
  3004. const block_q8_K * restrict y = vy;
  3005. const int nb = n / QK_K;
  3006. #ifdef __ARM_NEON
  3007. float sum = 0;
  3008. const uint8x16_t m4b = vdupq_n_u8(0xF);
  3009. const int32x4_t vzero = vdupq_n_s32(0);
  3010. const int8x16_t m32s = vdupq_n_s8(32);
  3011. const uint8x16_t mone = vdupq_n_u8(3);
  3012. int8x16x4_t q6bytes;
  3013. uint8x16x4_t q6h;
  3014. for (int i = 0; i < nb; ++i) {
  3015. const float d_all = (float)x[i].d;
  3016. const uint8_t * restrict q6 = x[i].ql;
  3017. const uint8_t * restrict qh = x[i].qh;
  3018. const int8_t * restrict q8 = y[i].qs;
  3019. const int8_t * restrict scale = x[i].scales;
  3020. int32_t isum = 0;
  3021. uint8x16_t qhbits = vld1q_u8(qh);
  3022. uint8x16x2_t q6bits = vld1q_u8_x2(q6);
  3023. int8x16x4_t q8bytes = vld1q_s8_x4(q8);
  3024. q6h.val[0] = vshlq_n_u8(vandq_u8(mone, qhbits), 4);
  3025. uint8x16_t shifted = vshrq_n_u8(qhbits, 2);
  3026. q6h.val[1] = vshlq_n_u8(vandq_u8(mone, shifted), 4);
  3027. shifted = vshrq_n_u8(qhbits, 4);
  3028. q6h.val[2] = vshlq_n_u8(vandq_u8(mone, shifted), 4);
  3029. shifted = vshrq_n_u8(qhbits, 6);
  3030. q6h.val[3] = vshlq_n_u8(vandq_u8(mone, shifted), 4);
  3031. q6bytes.val[0] = vsubq_s8(vreinterpretq_s8_u8(vorrq_u8(vandq_u8(q6bits.val[0], m4b), q6h.val[0])), m32s);
  3032. q6bytes.val[1] = vsubq_s8(vreinterpretq_s8_u8(vorrq_u8(vandq_u8(q6bits.val[1], m4b), q6h.val[1])), m32s);
  3033. q6bytes.val[2] = vsubq_s8(vreinterpretq_s8_u8(vorrq_u8(vshrq_n_u8(q6bits.val[0], 4), q6h.val[2])), m32s);
  3034. q6bytes.val[3] = vsubq_s8(vreinterpretq_s8_u8(vorrq_u8(vshrq_n_u8(q6bits.val[1], 4), q6h.val[3])), m32s);
  3035. #if defined(__ARM_FEATURE_DOTPROD)
  3036. isum += vaddvq_s32(vdotq_s32(vzero, q6bytes.val[0], q8bytes.val[0])) * scale[0] +
  3037. vaddvq_s32(vdotq_s32(vzero, q6bytes.val[1], q8bytes.val[1])) * scale[1] +
  3038. vaddvq_s32(vdotq_s32(vzero, q6bytes.val[2], q8bytes.val[2])) * scale[2] +
  3039. vaddvq_s32(vdotq_s32(vzero, q6bytes.val[3], q8bytes.val[3])) * scale[3];
  3040. #else
  3041. int16x8_t p0 = vaddq_s16(vmull_s8(vget_low_s8 (q6bytes.val[0]), vget_low_s8 (q8bytes.val[0])),
  3042. vmull_s8(vget_high_s8(q6bytes.val[0]), vget_high_s8(q8bytes.val[0])));
  3043. int16x8_t p1 = vaddq_s16(vmull_s8(vget_low_s8 (q6bytes.val[1]), vget_low_s8 (q8bytes.val[1])),
  3044. vmull_s8(vget_high_s8(q6bytes.val[1]), vget_high_s8(q8bytes.val[1])));
  3045. isum += vaddvq_s16(p0) * scale[0] + vaddvq_s16(p1) * scale[1];
  3046. int16x8_t p2 = vaddq_s16(vmull_s8(vget_low_s8 (q6bytes.val[2]), vget_low_s8 (q8bytes.val[2])),
  3047. vmull_s8(vget_high_s8(q6bytes.val[2]), vget_high_s8(q8bytes.val[2])));
  3048. int16x8_t p3 = vaddq_s16(vmull_s8(vget_low_s8 (q6bytes.val[3]), vget_low_s8 (q8bytes.val[3])),
  3049. vmull_s8(vget_high_s8(q6bytes.val[3]), vget_high_s8(q8bytes.val[3])));
  3050. isum += vaddvq_s16(p2) * scale[2] + vaddvq_s16(p3) * scale[3];
  3051. #endif
  3052. sum += isum * d_all * y[i].d;
  3053. }
  3054. *s = sum;
  3055. #elif defined __AVX2__
  3056. const __m256i m4 = _mm256_set1_epi8(0xF);
  3057. const __m256i m2 = _mm256_set1_epi8(3);
  3058. const __m256i m32s = _mm256_set1_epi8(32);
  3059. __m256 acc = _mm256_setzero_ps();
  3060. for (int i = 0; i < nb; ++i) {
  3061. const float d = y[i].d * ggml_fp16_to_fp32(x[i].d);
  3062. const uint8_t * restrict q4 = x[i].ql;
  3063. const uint8_t * restrict qh = x[i].qh;
  3064. const int8_t * restrict q8 = y[i].qs;
  3065. const __m64 scales_1 = _mm_set1_pi8(x[i].scales[0]);
  3066. const __m64 scales_2 = _mm_set1_pi8(x[i].scales[1]);
  3067. const __m64 scales_3 = _mm_set1_pi8(x[i].scales[2]);
  3068. const __m64 scales_4 = _mm_set1_pi8(x[i].scales[3]);
  3069. __m256i sumi = _mm256_setzero_si256();
  3070. const __m128i scale_0 = _mm_set_epi64(scales_2, scales_1);
  3071. const __m128i scale_1 = _mm_set_epi64(scales_4, scales_3);
  3072. const __m256i q4bits1 = _mm256_loadu_si256((const __m256i*)q4);
  3073. const __m128i q4bitsH = _mm_loadu_si128((const __m128i*)qh);
  3074. const __m256i q4h_0 = _mm256_slli_epi16(_mm256_and_si256(_mm256_set_m128i(_mm_srli_epi16(q4bitsH, 2), q4bitsH), m2), 4);
  3075. const __m256i q4h_1 = _mm256_slli_epi16(_mm256_and_si256(_mm256_set_m128i(_mm_srli_epi16(q4bitsH, 6), _mm_srli_epi16(q4bitsH, 4)), m2), 4);
  3076. const __m256i q4_0 = _mm256_or_si256(_mm256_and_si256(q4bits1, m4), q4h_0);
  3077. const __m256i q4_1 = _mm256_or_si256(_mm256_and_si256(_mm256_srli_epi16(q4bits1, 4), m4), q4h_1);
  3078. const __m256i q8_0 = _mm256_loadu_si256((const __m256i*)(q8+ 0));
  3079. const __m256i q8_1 = _mm256_loadu_si256((const __m256i*)(q8+32));
  3080. __m256i q8s_0 = _mm256_maddubs_epi16(m32s, q8_0);
  3081. __m256i q8s_1 = _mm256_maddubs_epi16(m32s, q8_1);
  3082. __m256i p16_0 = _mm256_maddubs_epi16(q4_0, q8_0);
  3083. __m256i p16_1 = _mm256_maddubs_epi16(q4_1, q8_1);
  3084. p16_0 = _mm256_sub_epi16(p16_0, q8s_0);
  3085. p16_1 = _mm256_sub_epi16(p16_1, q8s_1);
  3086. p16_0 = _mm256_madd_epi16(_mm256_cvtepi8_epi16(scale_0), p16_0);
  3087. p16_1 = _mm256_madd_epi16(_mm256_cvtepi8_epi16(scale_1), p16_1);
  3088. sumi = _mm256_add_epi32(sumi, _mm256_add_epi32(p16_0, p16_1));
  3089. acc = _mm256_fmadd_ps(_mm256_broadcast_ss(&d), _mm256_cvtepi32_ps(sumi), acc);
  3090. }
  3091. *s = hsum_float_8(acc);
  3092. #else
  3093. int8_t aux8[QK_K];
  3094. int16_t aux16[8];
  3095. float sums [8];
  3096. int32_t aux32[8];
  3097. memset(sums, 0, 8*sizeof(float));
  3098. float sumf = 0;
  3099. for (int i = 0; i < nb; ++i) {
  3100. const uint8_t * restrict q4 = x[i].ql;
  3101. const uint8_t * restrict qh = x[i].qh;
  3102. const int8_t * restrict q8 = y[i].qs;
  3103. memset(aux32, 0, 8*sizeof(int32_t));
  3104. int8_t * restrict a = aux8;
  3105. for (int l = 0; l < 16; ++l) {
  3106. a[l+ 0] = (int8_t)((q4[l+ 0] & 0xF) | (((qh[l] >> 0) & 3) << 4)) - 32;
  3107. a[l+16] = (int8_t)((q4[l+16] & 0xF) | (((qh[l] >> 2) & 3) << 4)) - 32;
  3108. a[l+32] = (int8_t)((q4[l+ 0] >> 4) | (((qh[l] >> 4) & 3) << 4)) - 32;
  3109. a[l+48] = (int8_t)((q4[l+16] >> 4) | (((qh[l] >> 6) & 3) << 4)) - 32;
  3110. }
  3111. int is = 0;
  3112. for (int j = 0; j < QK_K/16; ++j) {
  3113. int scale = x[i].scales[is++];
  3114. for (int l = 0; l < 8; ++l) aux16[l] = q8[l] * a[l];
  3115. for (int l = 0; l < 8; ++l) aux32[l] += scale * aux16[l];
  3116. q8 += 8; a += 8;
  3117. for (int l = 0; l < 8; ++l) aux16[l] = q8[l] * a[l];
  3118. for (int l = 0; l < 8; ++l) aux32[l] += scale * aux16[l];
  3119. q8 += 8; a += 8;
  3120. }
  3121. const float d = ggml_fp16_to_fp32(x[i].d) * y[i].d;
  3122. for (int l = 0; l < 8; ++l) sums[l] += d * aux32[l];
  3123. }
  3124. for (int l = 0; l < 8; ++l) sumf += sums[l];
  3125. *s = sumf;
  3126. #endif
  3127. }
  3128. #endif