1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365236623672368236923702371237223732374237523762377237823792380238123822383238423852386238723882389239023912392239323942395239623972398239924002401240224032404240524062407240824092410241124122413241424152416241724182419242024212422242324242425242624272428242924302431243224332434243524362437243824392440244124422443244424452446244724482449245024512452245324542455245624572458245924602461246224632464246524662467246824692470247124722473247424752476247724782479248024812482248324842485248624872488248924902491249224932494249524962497249824992500250125022503250425052506250725082509251025112512251325142515251625172518251925202521252225232524252525262527252825292530253125322533253425352536253725382539254025412542254325442545254625472548254925502551255225532554255525562557255825592560256125622563256425652566256725682569257025712572257325742575257625772578257925802581258225832584258525862587258825892590259125922593259425952596259725982599260026012602260326042605260626072608260926102611261226132614261526162617261826192620262126222623262426252626262726282629263026312632263326342635263626372638263926402641264226432644264526462647264826492650265126522653265426552656265726582659266026612662266326642665266626672668266926702671267226732674267526762677267826792680268126822683268426852686268726882689269026912692269326942695269626972698269927002701270227032704270527062707270827092710271127122713271427152716271727182719272027212722272327242725272627272728272927302731273227332734273527362737273827392740274127422743274427452746274727482749275027512752275327542755275627572758275927602761276227632764276527662767276827692770277127722773277427752776277727782779278027812782278327842785278627872788278927902791279227932794279527962797279827992800280128022803280428052806280728082809281028112812281328142815281628172818281928202821282228232824282528262827282828292830283128322833283428352836283728382839284028412842284328442845284628472848284928502851285228532854285528562857285828592860286128622863286428652866286728682869287028712872287328742875287628772878287928802881288228832884288528862887288828892890289128922893289428952896289728982899290029012902290329042905290629072908290929102911291229132914291529162917291829192920292129222923292429252926292729282929293029312932293329342935293629372938293929402941294229432944294529462947294829492950295129522953295429552956295729582959296029612962296329642965296629672968296929702971297229732974297529762977297829792980298129822983298429852986298729882989299029912992299329942995299629972998299930003001300230033004300530063007300830093010301130123013301430153016301730183019302030213022302330243025302630273028302930303031303230333034303530363037303830393040304130423043304430453046304730483049305030513052305330543055305630573058305930603061306230633064306530663067306830693070307130723073307430753076307730783079308030813082308330843085308630873088308930903091309230933094309530963097309830993100310131023103310431053106310731083109311031113112311331143115311631173118311931203121312231233124312531263127312831293130313131323133313431353136313731383139314031413142314331443145314631473148314931503151315231533154315531563157315831593160316131623163316431653166316731683169317031713172317331743175317631773178317931803181318231833184318531863187318831893190319131923193319431953196319731983199320032013202320332043205320632073208320932103211321232133214321532163217321832193220322132223223322432253226322732283229323032313232323332343235323632373238323932403241324232433244324532463247324832493250325132523253325432553256325732583259326032613262326332643265326632673268326932703271327232733274327532763277327832793280328132823283328432853286328732883289329032913292329332943295329632973298329933003301330233033304330533063307330833093310331133123313331433153316331733183319332033213322332333243325332633273328332933303331333233333334333533363337333833393340334133423343334433453346334733483349335033513352335333543355335633573358335933603361336233633364336533663367336833693370337133723373337433753376337733783379338033813382338333843385338633873388338933903391339233933394339533963397339833993400340134023403340434053406340734083409341034113412341334143415341634173418341934203421342234233424342534263427342834293430343134323433343434353436343734383439344034413442344334443445344634473448344934503451345234533454345534563457345834593460346134623463346434653466346734683469347034713472347334743475347634773478347934803481348234833484348534863487348834893490349134923493349434953496349734983499350035013502350335043505350635073508350935103511351235133514351535163517351835193520352135223523352435253526352735283529353035313532353335343535353635373538353935403541354235433544354535463547354835493550355135523553355435553556355735583559356035613562356335643565356635673568356935703571357235733574357535763577357835793580358135823583358435853586358735883589359035913592359335943595359635973598359936003601360236033604360536063607360836093610361136123613361436153616361736183619362036213622362336243625362636273628362936303631363236333634363536363637363836393640364136423643364436453646364736483649365036513652365336543655365636573658365936603661366236633664366536663667366836693670367136723673367436753676367736783679368036813682368336843685368636873688368936903691369236933694369536963697369836993700 |
- /**
- * llama.cpp - git 5bf2a2771886ee86137e01dbc7492f78fb392066
- *
- * MIT License
- *
- * Copyright (c) 2023 Georgi Gerganov
- *
- * Permission is hereby granted, free of charge, to any person obtaining a copy
- * of this software and associated documentation files (the "Software"), to deal
- * in the Software without restriction, including without limitation the rights
- * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
- * copies of the Software, and to permit persons to whom the Software is
- * furnished to do so, subject to the following conditions:
- *
- * The above copyright notice and this permission notice shall be included in all
- * copies or substantial portions of the Software.
- *
- * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
- * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
- * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
- * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
- * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
- * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
- * SOFTWARE.
- */
- // Defines fileno on msys:
- #ifndef _GNU_SOURCE
- #define _GNU_SOURCE
- #include <cstddef>
- #include <cstdint>
- #include <cstdio>
- #endif
- #include "llama-util.h"
- #include "llama.h"
- #include "ggml.h"
- #ifdef GGML_USE_CUBLAS
- #include "ggml-cuda.h"
- #elif defined(GGML_USE_CLBLAST)
- #include "ggml-opencl.h"
- #endif
- #ifdef GGML_USE_METAL
- #include "ggml-metal.h"
- #endif
- #ifdef GGML_USE_MPI
- #include "ggml-mpi.h"
- #endif
- #ifdef GGML_USE_K_QUANTS
- #ifndef QK_K
- #ifdef GGML_QKK_64
- #define QK_K 64
- #else
- #define QK_K 256
- #endif
- #endif
- #endif
- #include <array>
- #include <ctime>
- #include <cinttypes>
- #include <fstream>
- #include <random>
- #include <map>
- #include <unordered_map>
- #include <queue>
- #include <cassert>
- #include <cstring>
- #include <climits>
- #include <memory>
- #include <algorithm>
- #include <initializer_list>
- #include <thread>
- #include <atomic>
- #include <mutex>
- #include <sstream>
- #include <numeric>
- #if defined(_MSC_VER)
- #pragma warning(disable: 4244 4267) // possible loss of data
- #endif
- #define LLAMA_USE_SCRATCH
- #define LLAMA_MAX_SCRATCH_BUFFERS 16
- // available llama models
- enum e_model {
- MODEL_UNKNOWN,
- MODEL_3B,
- MODEL_7B,
- MODEL_13B,
- MODEL_30B,
- MODEL_65B,
- };
- static const size_t kB = 1024;
- static const size_t MB = 1024*1024;
- // computed for n_ctx == 2048
- // TODO: dynamically determine these sizes
- // needs modifications in ggml
- typedef void (*offload_func_t)(struct ggml_tensor * tensor);
- void llama_nop(struct ggml_tensor * tensor) { // don't offload by default
- (void) tensor;
- }
- //
- // ggml helpers
- //
- static void ggml_graph_compute_helper(std::vector<uint8_t> & buf, ggml_cgraph * graph, int n_threads) {
- struct ggml_cplan plan = ggml_graph_plan(graph, n_threads);
- if (plan.work_size > 0) {
- buf.resize(plan.work_size);
- plan.work_data = buf.data();
- }
- ggml_graph_compute(graph, &plan);
- }
- //
- // memory sizes
- //
- static const std::map<e_model, size_t> & MEM_REQ_SCRATCH0()
- {
- static std::map<e_model, size_t> k_sizes = {
- { MODEL_3B, 256ull * MB },
- { MODEL_7B, 512ull * MB },
- { MODEL_13B, 512ull * MB },
- { MODEL_30B, 512ull * MB },
- { MODEL_65B, 1024ull * MB },
- };
- return k_sizes;
- }
- static const std::map<e_model, size_t> & MEM_REQ_SCRATCH1()
- {
- static std::map<e_model, size_t> k_sizes = {
- { MODEL_3B, 256ull * MB },
- { MODEL_7B, 512ull * MB },
- { MODEL_13B, 512ull * MB },
- { MODEL_30B, 512ull * MB },
- { MODEL_65B, 1024ull * MB },
- };
- return k_sizes;
- }
- // 2*n_embd*n_ctx*n_layer*sizeof(float16)
- static const std::map<e_model, size_t> & MEM_REQ_KV_SELF()
- {
- static std::map<e_model, size_t> k_sizes = {
- { MODEL_3B, 682ull * MB },
- { MODEL_7B, 1026ull * MB },
- { MODEL_13B, 1608ull * MB },
- { MODEL_30B, 3124ull * MB },
- { MODEL_65B, 5120ull * MB },
- };
- return k_sizes;
- }
- // this is mostly needed for temporary mul_mat buffers to dequantize the data
- // not actually needed if BLAS is disabled
- static const std::map<e_model, size_t> & MEM_REQ_EVAL()
- {
- static std::map<e_model, size_t> k_sizes = {
- { MODEL_3B, 512ull * MB },
- { MODEL_7B, 768ull * MB },
- { MODEL_13B, 1024ull * MB },
- { MODEL_30B, 1280ull * MB },
- { MODEL_65B, 1536ull * MB },
- };
- return k_sizes;
- }
- // amount of VRAM needed per batch size to hold temporary results
- // the values for 3b and 65b are not derived from testing but instead chosen conservatively
- static const std::map<e_model, size_t> & VRAM_REQ_SCRATCH_BASE()
- {
- static std::map<e_model, size_t> k_sizes = {
- { MODEL_3B, 512ull * kB },
- { MODEL_7B, 512ull * kB },
- { MODEL_13B, 640ull * kB },
- { MODEL_30B, 768ull * kB },
- { MODEL_65B, 1536ull * kB },
- };
- return k_sizes;
- }
- // amount of VRAM needed per batch size and context to hold temporary results
- // the values for 3b and 65b are not derived from testing but instead chosen conservatively
- static const std::map<e_model, size_t> & VRAM_REQ_SCRATCH_PER_CONTEXT()
- {
- static std::map<e_model, size_t> k_sizes = {
- { MODEL_3B, 128ull },
- { MODEL_7B, 128ull },
- { MODEL_13B, 160ull },
- { MODEL_30B, 208ull },
- { MODEL_65B, 416ull },
- };
- return k_sizes;
- }
- // default hparams (LLaMA 7B)
- struct llama_hparams {
- uint32_t n_vocab = 32000;
- uint32_t n_ctx = 512; // this is provided as user input?
- uint32_t n_embd = 4096;
- uint32_t n_mult = 256;
- uint32_t n_head = 32;
- uint32_t n_layer = 32;
- uint32_t n_rot = 64;
- enum llama_ftype ftype = LLAMA_FTYPE_MOSTLY_F16;
- bool operator!=(const llama_hparams & other) const {
- return static_cast<bool>(memcmp(this, &other, sizeof(llama_hparams)));
- }
- };
- struct llama_layer {
- // normalization
- struct ggml_tensor * attention_norm;
- // attention
- struct ggml_tensor * wq;
- struct ggml_tensor * wk;
- struct ggml_tensor * wv;
- struct ggml_tensor * wo;
- // normalization
- struct ggml_tensor * ffn_norm;
- // ff
- struct ggml_tensor * w1;
- struct ggml_tensor * w2;
- struct ggml_tensor * w3;
- };
- struct llama_kv_cache {
- struct ggml_tensor * k = NULL;
- struct ggml_tensor * v = NULL;
- struct ggml_context * ctx = NULL;
- llama_ctx_buffer buf;
- int n; // number of tokens currently in the cache
- ~llama_kv_cache() {
- if (ctx) {
- ggml_free(ctx);
- }
- #ifdef GGML_USE_CUBLAS
- ggml_cuda_free_data(k);
- ggml_cuda_free_data(v);
- #endif // GGML_USE_CUBLAS
- }
- };
- struct llama_vocab {
- using id = int32_t;
- using token = std::string;
- struct token_score {
- token tok;
- float score;
- };
- std::unordered_map<token, id> token_to_id;
- std::vector<token_score> id_to_token;
- };
- struct llama_model {
- e_model type = MODEL_UNKNOWN;
- llama_hparams hparams;
- struct ggml_tensor * tok_embeddings;
- struct ggml_tensor * norm;
- struct ggml_tensor * output;
- std::vector<llama_layer> layers;
- int n_gpu_layers;
- // context
- struct ggml_context * ctx = NULL;
- // the model memory buffer
- llama_ctx_buffer buf;
- // model memory mapped file
- std::unique_ptr<llama_mmap> mapping;
- // objects representing data potentially being locked in memory
- llama_mlock mlock_buf;
- llama_mlock mlock_mmap;
- // for quantize-stats only
- std::vector<std::pair<std::string, struct ggml_tensor *>> tensors_by_name;
- int64_t t_load_us = 0;
- int64_t t_start_us = 0;
- llama_vocab vocab;
- ~llama_model() {
- if (ctx) {
- ggml_free(ctx);
- }
- #ifdef GGML_USE_CUBLAS
- for (size_t i = 0; i < tensors_by_name.size(); ++i) {
- ggml_cuda_free_data(tensors_by_name[i].second);
- }
- ggml_cuda_free_scratch();
- #elif defined(GGML_USE_CLBLAST)
- for (size_t i = 0; i < tensors_by_name.size(); ++i) {
- ggml_cl_free_data(tensors_by_name[i].second);
- }
- #endif
- }
- };
- struct llama_context {
- llama_context(const llama_model & model, const llama_vocab & vocab) : model(model), vocab(vocab), t_load_us(model.t_load_us), t_start_us(model.t_start_us) {}
- #ifdef GGML_USE_METAL
- ~llama_context() {
- if (ctx_metal) {
- ggml_metal_free(ctx_metal);
- }
- }
- #endif
- std::mt19937 rng;
- bool has_evaluated_once = false;
- int64_t t_sample_us = 0;
- int64_t t_eval_us = 0;
- int64_t t_p_eval_us = 0;
- int32_t n_sample = 0; // number of tokens sampled
- int32_t n_eval = 0; // number of eval calls
- int32_t n_p_eval = 0; // number of tokens in eval calls for the prompt (with batch size > 1)
- const llama_model & model;
- const llama_vocab & vocab;
- bool model_owner = false;
- int64_t t_load_us;
- int64_t t_start_us;
- // key + value cache for the self attention
- struct llama_kv_cache kv_self;
- size_t mem_per_token = 0;
- // decode output (2-dimensional array: [n_tokens][n_vocab])
- std::vector<float> logits;
- bool logits_all = false;
- // input embedding (1-dimensional array: [n_embd])
- std::vector<float> embedding;
- // reusable buffer for `struct ggml_graph_plan.work_data`
- std::vector<uint8_t> work_buffer;
- // memory buffers used to evaluate the model
- // TODO: move in llama_state
- llama_ctx_buffer buf_compute;
- llama_ctx_buffer buf_scratch[LLAMA_MAX_SCRATCH_BUFFERS];
- #ifdef GGML_USE_METAL
- ggml_metal_context * ctx_metal = NULL;
- #endif
- #ifdef GGML_USE_MPI
- ggml_mpi_context * ctx_mpi = NULL;
- #endif
- int buf_last = 0;
- size_t buf_max_size[LLAMA_MAX_SCRATCH_BUFFERS] = { 0 };
- void use_buf(struct ggml_context * ctx, int i) {
- #if defined(LLAMA_USE_SCRATCH)
- size_t last_size = 0;
- if (i == -1) {
- last_size = ggml_set_scratch(ctx, { 0, 0, nullptr, });
- } else {
- auto & buf = buf_scratch[i];
- last_size = ggml_set_scratch(ctx, { 0, buf.size, buf.addr, });
- }
- if (buf_last >= 0) {
- buf_max_size[buf_last] = std::max(buf_max_size[buf_last], last_size);
- }
- buf_last = i;
- #else
- (void) i;
- (void) ctx;
- #endif
- }
- size_t get_buf_max_mem(int i) const {
- #if defined(LLAMA_USE_SCRATCH)
- return buf_max_size[i];
- #else
- (void) i;
- return 0;
- #endif
- }
- };
- template <typename T>
- static T checked_mul(T a, T b) {
- T ret = a * b;
- if (a != 0 && ret / a != b) {
- throw std::runtime_error(format("overflow multiplying %llu * %llu",
- (unsigned long long) a, (unsigned long long) b));
- }
- return ret;
- }
- static size_t checked_div(size_t a, size_t b) {
- if (b == 0 || a % b != 0) {
- throw std::runtime_error(format("error dividing %zu / %zu", a, b));
- }
- return a / b;
- }
- static std::string llama_format_tensor_shape(const std::vector<uint32_t> & ne) {
- char buf[256];
- snprintf(buf, sizeof(buf), "%5u", ne.at(0));
- for (size_t i = 1; i < ne.size(); i++) {
- snprintf(buf + strlen(buf), sizeof(buf) - strlen(buf), " x %5u", ne.at(i));
- }
- return buf;
- }
- static size_t llama_calc_tensor_size(const std::vector<uint32_t> & ne, enum ggml_type type) {
- size_t size = ggml_type_size(type);
- for (uint32_t dim : ne) {
- size = checked_mul<size_t>(size, dim);
- }
- return size / ggml_blck_size(type);
- }
- struct llama_load_tensor {
- std::string name;
- enum ggml_type type = GGML_TYPE_F32;
- std::vector<uint32_t> ne;
- size_t file_off;
- size_t size;
- struct ggml_tensor * ggml_tensor = NULL;
- uint8_t * data;
- };
- struct llama_load_tensors_map {
- // tensors is kept in a separate vector to preserve file order
- std::vector<llama_load_tensor> tensors;
- std::unordered_map<std::string, size_t> name_to_idx;
- };
- enum llama_file_version {
- LLAMA_FILE_VERSION_GGML,
- LLAMA_FILE_VERSION_GGMF_V1, // added version field and scores in vocab
- LLAMA_FILE_VERSION_GGJT_V1, // added padding
- LLAMA_FILE_VERSION_GGJT_V2, // changed quantization format
- LLAMA_FILE_VERSION_GGJT_V3, // changed Q4 and Q8 quantization format
- };
- struct llama_file_loader {
- llama_file file;
- llama_file_version file_version;
- llama_hparams hparams;
- llama_vocab vocab;
- llama_file_loader(const char * fname, llama_load_tensors_map & tensors_map)
- : file(fname, "rb") {
- fprintf(stderr, "llama.cpp: loading model from %s\n", fname);
- read_magic();
- read_hparams();
- read_vocab();
- read_tensor_metadata(tensors_map);
- }
- void read_magic() {
- uint32_t magic = file.read_u32();
- if (magic == LLAMA_FILE_MAGIC_GGML) {
- file_version = LLAMA_FILE_VERSION_GGML;
- return;
- }
- uint32_t version = file.read_u32();
- switch (magic) {
- case LLAMA_FILE_MAGIC_GGMF:
- switch (version) {
- case 1: file_version = LLAMA_FILE_VERSION_GGMF_V1; return;
- }
- break;
- case LLAMA_FILE_MAGIC_GGJT:
- switch (version) {
- case 1: file_version = LLAMA_FILE_VERSION_GGJT_V1; return;
- case 2: file_version = LLAMA_FILE_VERSION_GGJT_V2; return;
- case 3: file_version = LLAMA_FILE_VERSION_GGJT_V3; return;
- }
- }
- throw std::runtime_error(format("unknown (magic, version) combination: %08x, %08x; is this really a GGML file?",
- magic, version));
- }
- void read_hparams() {
- hparams.n_vocab = file.read_u32();
- hparams.n_embd = file.read_u32();
- hparams.n_mult = file.read_u32();
- hparams.n_head = file.read_u32();
- hparams.n_layer = file.read_u32();
- hparams.n_rot = file.read_u32();
- hparams.ftype = (enum llama_ftype) file.read_u32();
- }
- void read_vocab() {
- vocab.id_to_token.resize(hparams.n_vocab);
- for (uint32_t i = 0; i < hparams.n_vocab; i++) {
- uint32_t len = file.read_u32();
- std::string word = file.read_string(len);
- float score = 0.0f;
- file.read_raw(&score, sizeof(score));
- vocab.token_to_id[word] = i;
- auto & tok_score = vocab.id_to_token[i];
- tok_score.tok = std::move(word);
- tok_score.score = score;
- }
- }
- void read_tensor_metadata(llama_load_tensors_map & tensors_map) {
- while (file.tell() < file.size) {
- llama_load_tensor tensor;
- uint32_t n_dims = file.read_u32();
- uint32_t name_len = file.read_u32();
- tensor.type = (enum ggml_type) file.read_u32();
- tensor.ne.resize(n_dims);
- file.read_raw(tensor.ne.data(), sizeof(tensor.ne[0]) * n_dims);
- std::string name = file.read_string(name_len);
- if (n_dims < 1 || n_dims > 2) {
- throw std::runtime_error(format("llama.cpp: tensor '%s' should not be %u-dimensional", name.c_str(), n_dims));
- }
- switch (tensor.type) {
- case GGML_TYPE_F32:
- case GGML_TYPE_F16:
- case GGML_TYPE_Q4_0:
- case GGML_TYPE_Q4_1:
- case GGML_TYPE_Q5_0:
- case GGML_TYPE_Q5_1:
- case GGML_TYPE_Q8_0:
- case GGML_TYPE_Q2_K:
- case GGML_TYPE_Q3_K:
- case GGML_TYPE_Q4_K:
- case GGML_TYPE_Q5_K:
- case GGML_TYPE_Q6_K:
- break;
- default: {
- throw std::runtime_error(format("unrecognized tensor type %u\n", tensor.type));
- }
- }
- // skip to the next multiple of 32 bytes
- file.seek(-static_cast<ptrdiff_t>(file.tell()) & 31, SEEK_CUR);
- tensor.file_off = file.tell();
- tensor.name = name;
- tensor.size = llama_calc_tensor_size(tensor.ne, tensor.type);
- file.seek(tensor.size, SEEK_CUR);
- tensors_map.tensors.push_back(tensor);
- tensors_map.name_to_idx[name] = tensors_map.tensors.size() - 1;
- }
- }
- };
- struct llama_file_saver {
- llama_file file;
- llama_file_loader * any_file_loader;
- llama_file_saver(const char * fname, llama_file_loader * any_file_loader, enum llama_ftype new_ftype)
- : file(fname, "wb"), any_file_loader(any_file_loader) {
- fprintf(stderr, "llama.cpp: saving model to %s\n", fname);
- write_magic();
- write_hparams(new_ftype);
- write_vocab();
- }
- void write_magic() {
- file.write_u32(LLAMA_FILE_MAGIC); // magic
- file.write_u32(LLAMA_FILE_VERSION); // version
- }
- void write_hparams(enum llama_ftype new_ftype) {
- const llama_hparams & hparams = any_file_loader->hparams;
- file.write_u32(hparams.n_vocab);
- file.write_u32(hparams.n_embd);
- file.write_u32(hparams.n_mult);
- file.write_u32(hparams.n_head);
- file.write_u32(hparams.n_layer);
- file.write_u32(hparams.n_rot);
- file.write_u32(new_ftype);
- }
- void write_vocab() {
- if (any_file_loader->file_version == LLAMA_FILE_VERSION_GGML) {
- fprintf(stderr, "llama.cpp: WARNING: input is an old file that doesn't have scores; will add dummy scores\n");
- }
- uint32_t n_vocab = any_file_loader->hparams.n_vocab;
- for (uint32_t i = 0; i < n_vocab; i++) {
- const auto & token_score = any_file_loader->vocab.id_to_token.at(i);
- file.write_u32((uint32_t) token_score.tok.size());
- file.write_raw(token_score.tok.data(), token_score.tok.size());
- file.write_raw(&token_score.score, sizeof(token_score.score));
- }
- }
- void write_tensor(llama_load_tensor & tensor, enum ggml_type new_type, const void * new_data, size_t new_size) {
- switch (new_type) {
- case GGML_TYPE_F32:
- case GGML_TYPE_F16:
- case GGML_TYPE_Q4_0:
- case GGML_TYPE_Q4_1:
- case GGML_TYPE_Q5_0:
- case GGML_TYPE_Q5_1:
- case GGML_TYPE_Q8_0:
- case GGML_TYPE_Q2_K:
- case GGML_TYPE_Q3_K:
- case GGML_TYPE_Q4_K:
- case GGML_TYPE_Q5_K:
- case GGML_TYPE_Q6_K:
- break;
- default: LLAMA_ASSERT(false);
- }
- file.write_u32((uint32_t) tensor.ne.size());
- file.write_u32((uint32_t) tensor.name.size());
- file.write_u32(new_type);
- file.write_raw(tensor.ne.data(), sizeof(tensor.ne[0]) * tensor.ne.size());
- file.write_raw(tensor.name.data(), tensor.name.size());
- file.seek(-static_cast<ptrdiff_t>(file.tell()) & 31, SEEK_CUR);
- LLAMA_ASSERT(new_size == llama_calc_tensor_size(tensor.ne, new_type));
- file.write_raw(new_data, new_size);
- }
- };
- struct llama_model_loader {
- std::unique_ptr<llama_file_loader> file_loader;
- llama_load_tensors_map tensors_map;
- bool use_mmap;
- size_t num_ggml_tensors_created = 0;
- struct ggml_context * ggml_ctx = NULL;
- std::unique_ptr<llama_mmap> mapping;
- llama_model_loader(const std::string & fname_base, bool use_mmap) {
- file_loader = std::unique_ptr<llama_file_loader>(new llama_file_loader(fname_base.c_str(), tensors_map));
- if (!llama_mmap::SUPPORTED) {
- use_mmap = false;
- }
- this->use_mmap = use_mmap;
- }
- void calc_sizes(size_t * ctx_size_p, size_t * mmapped_size_p) const {
- *ctx_size_p = *mmapped_size_p = 0;
- for (const llama_load_tensor & lt : tensors_map.tensors) {
- *ctx_size_p += sizeof(struct ggml_tensor) + GGML_OBJECT_SIZE;
- *(use_mmap ? mmapped_size_p : ctx_size_p) += lt.size;
- }
- }
- struct ggml_tensor * get_tensor(const std::string & name, const std::vector<uint32_t> & ne, ggml_backend backend) {
- auto it = tensors_map.name_to_idx.find(name);
- if (it == tensors_map.name_to_idx.end()) {
- throw std::runtime_error(std::runtime_error(format("llama.cpp: tensor '%s' is missing from model", name.c_str())));
- }
- llama_load_tensor & lt = tensors_map.tensors.at(it->second);
- if (lt.ne != ne) {
- throw std::runtime_error(format("llama.cpp: tensor '%s' has wrong shape; expected %s, got %s",
- name.c_str(), llama_format_tensor_shape(ne).c_str(), llama_format_tensor_shape(lt.ne).c_str()));
- }
- return get_tensor_for(lt, backend);
- }
- struct ggml_tensor * get_tensor_for(llama_load_tensor & lt, ggml_backend backend) {
- struct ggml_tensor * tensor;
- if (backend != GGML_BACKEND_CPU) {
- ggml_set_no_alloc(ggml_ctx, true);
- }
- if (lt.ne.size() == 2) {
- tensor = ggml_new_tensor_2d(ggml_ctx, lt.type, lt.ne.at(0), lt.ne.at(1));
- } else {
- LLAMA_ASSERT(lt.ne.size() == 1);
- tensor = ggml_new_tensor_1d(ggml_ctx, lt.type, lt.ne.at(0));
- }
- ggml_set_name(tensor, lt.name.c_str());
- LLAMA_ASSERT(lt.ggml_tensor == NULL); // if this fails, we called get_tensor twice on the same tensor
- if (backend != GGML_BACKEND_CPU) {
- ggml_set_no_alloc(ggml_ctx, use_mmap);
- }
- tensor->backend = backend;
- lt.ggml_tensor = tensor;
- num_ggml_tensors_created++;
- return tensor;
- }
- void done_getting_tensors() const {
- if (num_ggml_tensors_created != tensors_map.tensors.size()) {
- throw std::runtime_error(std::string("llama.cpp: file contained more tensors than expected"));
- }
- }
- void load_all_data(llama_progress_callback progress_callback, void * progress_callback_user_data, llama_mlock * lmlock) {
- size_t data_size = 0;
- size_t prefetch_size = 0;
- size_t lock_size = 0;
- for (const llama_load_tensor & lt : tensors_map.tensors) {
- data_size += lt.size;
- if (lt.ggml_tensor->backend == GGML_BACKEND_CPU) {
- prefetch_size += lt.size;
- }
- }
- if (use_mmap) {
- mapping.reset(new llama_mmap(&file_loader->file, prefetch_size, ggml_is_numa()));
- if (lmlock) {
- lmlock->init(mapping->addr);
- }
- }
- size_t done_size = 0;
- for (llama_load_tensor & lt : tensors_map.tensors) {
- if (progress_callback) {
- progress_callback((float) done_size / data_size, progress_callback_user_data);
- }
- LLAMA_ASSERT(lt.ggml_tensor); // unused tensors should have been caught by load_data already
- lt.data = (uint8_t *) lt.ggml_tensor->data;
- // allocate temp buffer if not using mmap
- if (!use_mmap && lt.data == NULL) {
- GGML_ASSERT(lt.ggml_tensor->backend != GGML_BACKEND_CPU);
- lt.data = (uint8_t*)malloc(ggml_nbytes(lt.ggml_tensor));
- }
- load_data_for(lt);
- switch(lt.ggml_tensor->backend) {
- case GGML_BACKEND_CPU:
- lt.ggml_tensor->data = lt.data;
- if (use_mmap && lmlock) {
- lock_size += lt.size;
- lmlock->grow_to(lock_size);
- }
- break;
- #if defined(GGML_USE_CUBLAS)
- case GGML_BACKEND_GPU:
- case GGML_BACKEND_GPU_SPLIT:
- ggml_cuda_transform_tensor(lt.data, lt.ggml_tensor);
- if (!use_mmap) {
- free(lt.data);
- }
- break;
- #elif defined(GGML_USE_CLBLAST)
- case GGML_BACKEND_GPU:
- ggml_cl_transform_tensor(lt.data, lt.ggml_tensor);
- if (!use_mmap) {
- free(lt.data);
- }
- break;
- #endif
- default:
- continue;
- }
- done_size += lt.size;
- }
- }
- void load_data_for(llama_load_tensor & lt) {
- if (use_mmap) {
- lt.data = (uint8_t *) mapping->addr + lt.file_off;
- } else {
- llama_file & file = file_loader->file;
- file.seek(lt.file_off, SEEK_SET);
- file.read_raw(lt.data, lt.size);
- }
- if (0) {
- print_checksum(lt);
- }
- }
- static void print_checksum(llama_load_tensor & lt) {
- uint32_t sum = 0;
- for (size_t i = 0; i < lt.size; i++) {
- uint8_t byte = lt.data[i];
- sum = byte + (sum << 6) + (sum << 16) - sum; // sdbm hash
- }
- fprintf(stderr, "%s checksum: %#08x (%s, size %zu)\n", lt.name.c_str(), sum,
- llama_format_tensor_shape(lt.ne).c_str(), lt.size);
- }
- };
- //
- // kv cache
- //
- static bool kv_cache_init(
- const struct llama_hparams & hparams,
- struct llama_kv_cache & cache,
- ggml_type wtype,
- int n_ctx,
- int n_gpu_layers) {
- const int n_embd = hparams.n_embd;
- const int n_layer = hparams.n_layer;
- const int64_t n_mem = n_layer*n_ctx;
- const int64_t n_elements = n_embd*n_mem;
- cache.buf.resize(2u*n_elements*ggml_type_size(wtype) + 2u*MB);
- cache.n = 0;
- struct ggml_init_params params;
- params.mem_size = cache.buf.size;
- params.mem_buffer = cache.buf.addr;
- params.no_alloc = false;
- cache.ctx = ggml_init(params);
- if (!cache.ctx) {
- fprintf(stderr, "%s: failed to allocate memory for kv cache\n", __func__);
- return false;
- }
- cache.k = ggml_new_tensor_1d(cache.ctx, wtype, n_elements);
- cache.v = ggml_new_tensor_1d(cache.ctx, wtype, n_elements);
- ggml_set_name(cache.k, "cache_k");
- ggml_set_name(cache.v, "cache_v");
- (void) n_gpu_layers;
- #ifdef GGML_USE_CUBLAS
- if (n_gpu_layers > n_layer + 1) {
- ggml_cuda_assign_buffers_no_scratch(cache.v);
- }
- if (n_gpu_layers > n_layer + 2) {
- ggml_cuda_assign_buffers_no_scratch(cache.k);
- }
- #endif // GGML_USE_CUBLAS
- return true;
- }
- struct llama_context_params llama_context_default_params() {
- struct llama_context_params result = {
- /*.seed =*/ LLAMA_DEFAULT_SEED,
- /*.n_ctx =*/ 512,
- /*.n_batch =*/ 512,
- /*.gpu_layers =*/ 0,
- /*.main_gpu =*/ 0,
- /*.tensor_split =*/ {0},
- /*.progress_callback =*/ nullptr,
- /*.progress_callback_user_data =*/ nullptr,
- /*.low_vram =*/ false,
- /*.f16_kv =*/ true,
- /*.logits_all =*/ false,
- /*.vocab_only =*/ false,
- /*.use_mmap =*/ true,
- /*.use_mlock =*/ false,
- /*.embedding =*/ false,
- };
- return result;
- }
- struct llama_model_quantize_params llama_model_quantize_default_params() {
- struct llama_model_quantize_params result = {
- /*.nthread =*/ 0,
- /*.ftype =*/ LLAMA_FTYPE_MOSTLY_Q5_1,
- /*.allow_requantize =*/ false,
- /*.quantize_output_tensor =*/ true,
- };
- return result;
- }
- bool llama_mmap_supported() {
- return llama_mmap::SUPPORTED;
- }
- bool llama_mlock_supported() {
- return llama_mlock::SUPPORTED;
- }
- void llama_backend_init(bool numa) {
- ggml_time_init();
- // needed to initialize f16 tables
- {
- struct ggml_init_params params = { 0, NULL, false };
- struct ggml_context * ctx = ggml_init(params);
- ggml_free(ctx);
- }
- if (numa) {
- ggml_numa_init();
- }
- #ifdef GGML_USE_MPI
- ggml_mpi_backend_init();
- #endif
- }
- void llama_backend_free() {
- #ifdef GGML_USE_MPI
- ggml_mpi_backend_free();
- #endif
- }
- int64_t llama_time_us() {
- return ggml_time_us();
- }
- //
- // model loading
- //
- static const char *llama_file_version_name(llama_file_version version) {
- switch (version) {
- case LLAMA_FILE_VERSION_GGML: return "'ggml' (old version with low tokenizer quality and no mmap support)";
- case LLAMA_FILE_VERSION_GGMF_V1: return "ggmf v1 (old version with no mmap support)";
- case LLAMA_FILE_VERSION_GGJT_V1: return "ggjt v1 (pre #1405)";
- case LLAMA_FILE_VERSION_GGJT_V2: return "ggjt v2 (pre #1508)";
- case LLAMA_FILE_VERSION_GGJT_V3: return "ggjt v3 (latest)";
- }
- return "unknown";
- }
- static const char *llama_ftype_name(enum llama_ftype ftype) {
- switch (ftype) {
- case LLAMA_FTYPE_ALL_F32: return "all F32";
- case LLAMA_FTYPE_MOSTLY_F16: return "mostly F16";
- case LLAMA_FTYPE_MOSTLY_Q4_0: return "mostly Q4_0";
- case LLAMA_FTYPE_MOSTLY_Q4_1: return "mostly Q4_1";
- case LLAMA_FTYPE_MOSTLY_Q4_1_SOME_F16:
- return "mostly Q4_1, some F16";
- case LLAMA_FTYPE_MOSTLY_Q5_0: return "mostly Q5_0";
- case LLAMA_FTYPE_MOSTLY_Q5_1: return "mostly Q5_1";
- case LLAMA_FTYPE_MOSTLY_Q8_0: return "mostly Q8_0";
- // K-quants
- case LLAMA_FTYPE_MOSTLY_Q2_K: return "mostly Q2_K";
- case LLAMA_FTYPE_MOSTLY_Q3_K_S: return "mostly Q3_K - Small";
- case LLAMA_FTYPE_MOSTLY_Q3_K_M: return "mostly Q3_K - Medium";
- case LLAMA_FTYPE_MOSTLY_Q3_K_L: return "mostly Q3_K - Large";
- case LLAMA_FTYPE_MOSTLY_Q4_K_S: return "mostly Q4_K - Small";
- case LLAMA_FTYPE_MOSTLY_Q4_K_M: return "mostly Q4_K - Medium";
- case LLAMA_FTYPE_MOSTLY_Q5_K_S: return "mostly Q5_K - Small";
- case LLAMA_FTYPE_MOSTLY_Q5_K_M: return "mostly Q5_K - Medium";
- case LLAMA_FTYPE_MOSTLY_Q6_K: return "mostly Q6_K";
- default: return "unknown, may not work";
- }
- }
- static const char *llama_model_type_name(e_model type) {
- switch (type) {
- case MODEL_3B: return "3B";
- case MODEL_7B: return "7B";
- case MODEL_13B: return "13B";
- case MODEL_30B: return "30B";
- case MODEL_65B: return "65B";
- default: LLAMA_ASSERT(false);
- }
- }
- static void llama_model_load_internal(
- const std::string & fname,
- llama_model & model,
- llama_vocab & vocab,
- int n_ctx,
- int n_batch,
- int n_gpu_layers,
- int main_gpu,
- const float * tensor_split,
- bool low_vram,
- ggml_type memory_type,
- bool use_mmap,
- bool use_mlock,
- bool vocab_only,
- llama_progress_callback progress_callback,
- void * progress_callback_user_data) {
- model.t_start_us = ggml_time_us();
- std::unique_ptr<llama_model_loader> ml(new llama_model_loader(fname, use_mmap));
- vocab = std::move(ml->file_loader->vocab);
- model.hparams = ml->file_loader->hparams;
- model.n_gpu_layers = n_gpu_layers;
- llama_file_version file_version = ml->file_loader->file_version;
- auto & hparams = model.hparams;
- {
- switch (hparams.n_layer) {
- case 26: model.type = e_model::MODEL_3B; break;
- case 32: model.type = e_model::MODEL_7B; break;
- case 40: model.type = e_model::MODEL_13B; break;
- case 60: model.type = e_model::MODEL_30B; break;
- case 80: model.type = e_model::MODEL_65B; break;
- default:
- {
- if (hparams.n_layer < 32) {
- model.type = e_model::MODEL_7B;
- }
- } break;
- }
- hparams.n_ctx = n_ctx;
- }
- const uint32_t n_ff = ((2*(4*hparams.n_embd)/3 + hparams.n_mult - 1)/hparams.n_mult)*hparams.n_mult;
- {
- fprintf(stderr, "%s: format = %s\n", __func__, llama_file_version_name(file_version));
- fprintf(stderr, "%s: n_vocab = %u\n", __func__, hparams.n_vocab);
- fprintf(stderr, "%s: n_ctx = %u\n", __func__, hparams.n_ctx);
- fprintf(stderr, "%s: n_embd = %u\n", __func__, hparams.n_embd);
- fprintf(stderr, "%s: n_mult = %u\n", __func__, hparams.n_mult);
- fprintf(stderr, "%s: n_head = %u\n", __func__, hparams.n_head);
- fprintf(stderr, "%s: n_layer = %u\n", __func__, hparams.n_layer);
- fprintf(stderr, "%s: n_rot = %u\n", __func__, hparams.n_rot);
- fprintf(stderr, "%s: ftype = %u (%s)\n", __func__, hparams.ftype, llama_ftype_name(hparams.ftype));
- fprintf(stderr, "%s: n_ff = %u\n", __func__, n_ff);
- fprintf(stderr, "%s: model size = %s\n", __func__, llama_model_type_name(model.type));
- }
- if (file_version < LLAMA_FILE_VERSION_GGJT_V2) {
- if (hparams.ftype != LLAMA_FTYPE_ALL_F32 &&
- hparams.ftype != LLAMA_FTYPE_MOSTLY_F16 &&
- hparams.ftype != LLAMA_FTYPE_MOSTLY_Q8_0) {
- throw std::runtime_error(format("this format is no longer supported (see https://github.com/ggerganov/llama.cpp/pull/1405)"));
- }
- }
- if (file_version < LLAMA_FILE_VERSION_GGJT_V3) {
- if (hparams.ftype == LLAMA_FTYPE_MOSTLY_Q4_0 ||
- hparams.ftype == LLAMA_FTYPE_MOSTLY_Q4_1 ||
- hparams.ftype == LLAMA_FTYPE_MOSTLY_Q8_0) {
- throw std::runtime_error(format("this format is no longer supported (see https://github.com/ggerganov/llama.cpp/pull/1508)"));
- }
- }
- if (vocab_only) {
- return;
- }
- auto & ctx = model.ctx;
- size_t ctx_size;
- size_t mmapped_size;
- ml->calc_sizes(&ctx_size, &mmapped_size);
- fprintf(stderr, "%s: ggml ctx size = %7.2f MB\n", __func__, ctx_size/1024.0/1024.0);
- // create the ggml context
- {
- model.buf.resize(ctx_size);
- if (use_mlock) {
- model.mlock_buf.init(model.buf.addr);
- model.mlock_buf.grow_to(model.buf.size);
- }
- struct ggml_init_params params = {
- /*.mem_size =*/ model.buf.size,
- /*.mem_buffer =*/ model.buf.addr,
- /*.no_alloc =*/ ml->use_mmap,
- };
- model.ctx = ggml_init(params);
- if (!model.ctx) {
- throw std::runtime_error(format("ggml_init() failed"));
- }
- }
- (void) main_gpu;
- #if defined(GGML_USE_CUBLAS)
- fprintf(stderr, "%s: using CUDA for GPU acceleration\n", __func__);
- ggml_cuda_set_main_device(main_gpu);
- #define LLAMA_BACKEND_OFFLOAD GGML_BACKEND_GPU
- #define LLAMA_BACKEND_OFFLOAD_SPLIT GGML_BACKEND_GPU_SPLIT
- #elif defined(GGML_USE_CLBLAST)
- fprintf(stderr, "%s: using OpenCL for GPU acceleration\n", __func__);
- #define LLAMA_BACKEND_OFFLOAD GGML_BACKEND_GPU
- #define LLAMA_BACKEND_OFFLOAD_SPLIT GGML_BACKEND_GPU
- #else
- #define LLAMA_BACKEND_OFFLOAD GGML_BACKEND_CPU
- #define LLAMA_BACKEND_OFFLOAD_SPLIT GGML_BACKEND_CPU
- #endif
- // prepare memory for the weights
- size_t vram_weights = 0;
- size_t vram_scratch = 0;
- {
- const uint32_t n_embd = hparams.n_embd;
- const uint32_t n_layer = hparams.n_layer;
- const uint32_t n_vocab = hparams.n_vocab;
- ml->ggml_ctx = ctx;
- model.tok_embeddings = ml->get_tensor("tok_embeddings.weight", {n_embd, n_vocab}, GGML_BACKEND_CPU);
- // "output" tensor
- {
- ggml_backend backend_norm;
- ggml_backend backend_output;
- if (n_gpu_layers > int(n_layer)) { // NOLINT
- // norm is not performance relevant on its own but keeping it in VRAM reduces data copying
- // on Windows however this is detrimental unless everything is on the GPU
- #ifndef _WIN32
- backend_norm = low_vram ? GGML_BACKEND_CPU : LLAMA_BACKEND_OFFLOAD;
- #else
- backend_norm = low_vram || n_gpu_layers <= (int) n_layer + 2 ? GGML_BACKEND_CPU : LLAMA_BACKEND_OFFLOAD;
- #endif // _WIN32
- backend_output = LLAMA_BACKEND_OFFLOAD_SPLIT;
- } else {
- backend_norm = GGML_BACKEND_CPU;
- backend_output = GGML_BACKEND_CPU;
- }
- model.norm = ml->get_tensor("norm.weight", {n_embd}, backend_norm);
- model.output = ml->get_tensor("output.weight", {n_embd, n_vocab}, backend_output);
- if (backend_norm == GGML_BACKEND_GPU) {
- vram_weights += ggml_nbytes(model.norm);
- }
- if (backend_output == GGML_BACKEND_GPU_SPLIT) {
- vram_weights += ggml_nbytes(model.output);
- }
- }
- const int i_gpu_start = n_layer - n_gpu_layers;
- model.layers.resize(n_layer);
- for (uint32_t i = 0; i < n_layer; ++i) {
- const ggml_backend backend = int(i) < i_gpu_start ? GGML_BACKEND_CPU : LLAMA_BACKEND_OFFLOAD; // NOLINT
- const ggml_backend backend_split = int(i) < i_gpu_start ? GGML_BACKEND_CPU : LLAMA_BACKEND_OFFLOAD_SPLIT; // NOLINT
- auto & layer = model.layers[i];
- std::string layers_i = "layers." + std::to_string(i);
- layer.attention_norm = ml->get_tensor(layers_i + ".attention_norm.weight", {n_embd}, backend);
- layer.wq = ml->get_tensor(layers_i + ".attention.wq.weight", {n_embd, n_embd}, backend_split);
- layer.wk = ml->get_tensor(layers_i + ".attention.wk.weight", {n_embd, n_embd}, backend_split);
- layer.wv = ml->get_tensor(layers_i + ".attention.wv.weight", {n_embd, n_embd}, backend_split);
- layer.wo = ml->get_tensor(layers_i + ".attention.wo.weight", {n_embd, n_embd}, backend_split);
- layer.ffn_norm = ml->get_tensor(layers_i + ".ffn_norm.weight", {n_embd}, backend);
- layer.w1 = ml->get_tensor(layers_i + ".feed_forward.w1.weight", {n_embd, n_ff}, backend_split);
- layer.w2 = ml->get_tensor(layers_i + ".feed_forward.w2.weight", { n_ff, n_embd}, backend_split);
- layer.w3 = ml->get_tensor(layers_i + ".feed_forward.w3.weight", {n_embd, n_ff}, backend_split);
- if (backend == GGML_BACKEND_GPU) {
- vram_weights +=
- ggml_nbytes(layer.attention_norm) + ggml_nbytes(layer.wq) + ggml_nbytes(layer.wk) +
- ggml_nbytes(layer.wv) + ggml_nbytes(layer.wo) + ggml_nbytes(layer.ffn_norm) +
- ggml_nbytes(layer.w1) + ggml_nbytes(layer.w2) + ggml_nbytes(layer.w3);
- }
- }
- }
- ml->done_getting_tensors();
- // print memory requirements
- {
- const size_t scale = memory_type == GGML_TYPE_F32 ? 2 : 1;
- // this is the total memory required to run the inference
- const size_t mem_required =
- ctx_size +
- mmapped_size - vram_weights + // weights in VRAM not in memory
- MEM_REQ_SCRATCH0().at(model.type) +
- MEM_REQ_SCRATCH1().at(model.type) +
- MEM_REQ_EVAL().at (model.type);
- // this is the memory required by one llama_state
- const size_t mem_required_state =
- scale*MEM_REQ_KV_SELF().at(model.type);
- fprintf(stderr, "%s: mem required = %7.2f MB (+ %7.2f MB per state)\n", __func__,
- mem_required / 1024.0 / 1024.0, mem_required_state / 1024.0 / 1024.0);
- (void) vram_scratch;
- (void) n_batch;
- #ifdef GGML_USE_CUBLAS
- if (low_vram) {
- fprintf(stderr, "%s: not allocating a VRAM scratch buffer due to low VRAM option\n", __func__);
- ggml_cuda_set_scratch_size(0); // disable scratch
- } else {
- const size_t vram_scratch_base = VRAM_REQ_SCRATCH_BASE().at(model.type);
- const size_t vram_scratch_per_context = VRAM_REQ_SCRATCH_PER_CONTEXT().at(model.type);
- vram_scratch = n_batch * (vram_scratch_base + n_ctx * vram_scratch_per_context);
- ggml_cuda_set_scratch_size(vram_scratch);
- if (n_gpu_layers > 0) {
- fprintf(stderr, "%s: allocating batch_size x (%zd kB + n_ctx x %zd B) = %zd MB VRAM for the scratch buffer\n",
- __func__, vram_scratch_base / kB, vram_scratch_per_context,
- (vram_scratch + MB - 1) / MB); // round up
- }
- }
- #endif // GGML_USE_CUBLAS
- #if defined(GGML_USE_CUBLAS) || defined(GGML_USE_CLBLAST)
- const int n_gpu = std::min(n_gpu_layers, int(hparams.n_layer));
- fprintf(stderr, "%s: offloading %d repeating layers to GPU\n", __func__, n_gpu);
- if (n_gpu_layers > (int) hparams.n_layer) {
- fprintf(stderr, "%s: offloading non-repeating layers to GPU\n", __func__);
- }
- size_t vram_kv_cache = 0;
- #ifdef GGML_USE_CUBLAS
- const int max_backend_supported_layers = hparams.n_layer + 3;
- const int max_offloadable_layers = low_vram ? hparams.n_layer + 1 : hparams.n_layer + 3;
- if (n_gpu_layers > (int) hparams.n_layer + 1) {
- if (low_vram) {
- fprintf(stderr, "%s: cannot offload v cache to GPU due to low VRAM option\n", __func__);
- } else {
- fprintf(stderr, "%s: offloading v cache to GPU\n", __func__);
- vram_kv_cache += MEM_REQ_KV_SELF().at(model.type) / 2;
- }
- }
- if (n_gpu_layers > (int) hparams.n_layer + 2) {
- if (low_vram) {
- fprintf(stderr, "%s: cannot offload k cache to GPU due to low VRAM option\n", __func__);
- } else {
- fprintf(stderr, "%s: offloading k cache to GPU\n", __func__);
- vram_kv_cache += MEM_REQ_KV_SELF().at(model.type) / 2;
- }
- }
- #elif defined(GGML_USE_CLBLAST)
- const int max_backend_supported_layers = hparams.n_layer + 1;
- const int max_offloadable_layers = hparams.n_layer + 1;
- #endif // GGML_USE_CUBLAS
- fprintf(stderr, "%s: offloaded %d/%d layers to GPU\n",
- __func__, std::min(n_gpu_layers, max_offloadable_layers), max_backend_supported_layers);
- fprintf(stderr, "%s: total VRAM used: %zu MB\n",
- __func__, (vram_weights + vram_scratch + vram_kv_cache + MB - 1) / MB); // round up
- #else
- (void) n_gpu_layers;
- #endif // defined(GGML_USE_CUBLAS) || defined(GGML_USE_CLBLAST)
- }
- // populate `tensors_by_name`
- for (llama_load_tensor & lt : ml->tensors_map.tensors) {
- model.tensors_by_name.emplace_back(lt.name, lt.ggml_tensor);
- }
- (void) tensor_split;
- #if defined(GGML_USE_CUBLAS)
- {
- ggml_cuda_set_tensor_split(tensor_split);
- }
- #endif
- ml->load_all_data(progress_callback, progress_callback_user_data, use_mlock ? &model.mlock_mmap : NULL);
- if (progress_callback) {
- progress_callback(1.0f, progress_callback_user_data);
- }
- model.mapping = std::move(ml->mapping);
- // loading time will be recalculate after the first eval, so
- // we take page faults deferred by mmap() into consideration
- model.t_load_us = ggml_time_us() - model.t_start_us;
- }
- static bool llama_model_load(
- const std::string & fname,
- llama_model & model,
- llama_vocab & vocab,
- int n_ctx,
- int n_batch,
- int n_gpu_layers,
- int main_gpu,
- float * tensor_split,
- bool low_vram,
- ggml_type memory_type,
- bool use_mmap,
- bool use_mlock,
- bool vocab_only,
- llama_progress_callback progress_callback,
- void *progress_callback_user_data) {
- try {
- llama_model_load_internal(fname, model, vocab, n_ctx, n_batch, n_gpu_layers, main_gpu, tensor_split, low_vram, memory_type,
- use_mmap, use_mlock, vocab_only, progress_callback, progress_callback_user_data);
- return true;
- } catch (const std::exception & err) {
- fprintf(stderr, "error loading model: %s\n", err.what());
- return false;
- }
- }
- // evaluate the transformer
- //
- // - lctx: llama context
- // - tokens: new batch of tokens to process
- // - embd embeddings input
- // - n_tokens number of tokens
- // - n_past: the context size so far
- // - n_threads: number of threads to use
- //
- static bool llama_eval_internal(
- llama_context & lctx,
- const llama_token * tokens,
- const float * embd,
- int n_tokens,
- int n_past,
- int n_threads,
- const char * cgraph_fname) {
- LLAMA_ASSERT((!tokens && embd) || (tokens && !embd));
- #ifdef GGML_USE_MPI
- ggml_mpi_eval_init(lctx.ctx_mpi, &n_tokens, &n_past, &n_threads);
- #endif
- const int64_t t_start_us = ggml_time_us();
- const int N = n_tokens;
- const auto & model = lctx.model;
- const auto & hparams = model.hparams;
- const auto & kv_self = lctx.kv_self;
- LLAMA_ASSERT(!!kv_self.ctx);
- const int n_embd = hparams.n_embd;
- const int n_layer = hparams.n_layer;
- const int n_ctx = hparams.n_ctx;
- const int n_head = hparams.n_head;
- const int n_vocab = hparams.n_vocab;
- const int n_rot = hparams.n_embd/hparams.n_head;
- const int n_gpu_layers = model.n_gpu_layers;
- auto & mem_per_token = lctx.mem_per_token;
- auto & buf_compute = lctx.buf_compute;
- struct ggml_init_params params = {
- /*.mem_size =*/ buf_compute.size,
- /*.mem_buffer =*/ buf_compute.addr,
- /*.no_alloc =*/ false,
- };
- struct ggml_context * ctx0 = ggml_init(params);
- ggml_cgraph gf = {};
- // for big prompts, if BLAS is enabled, it is better to use only one thread
- // otherwise, the threads are spin-lock waiting for the BLAS calls and are degrading the performance
- n_threads = N >= 32 && ggml_cpu_has_blas() && !ggml_cpu_has_gpublas() ? 1 : n_threads;
- struct ggml_tensor * cur;
- struct ggml_tensor * inpL;
- if (tokens) {
- struct ggml_tensor * inp_tokens = ggml_new_tensor_1d(ctx0, GGML_TYPE_I32, N);
- memcpy(inp_tokens->data, tokens, N*ggml_element_size(inp_tokens));
- ggml_set_name(inp_tokens, "inp_tokens");
- inpL = ggml_get_rows(ctx0, model.tok_embeddings, inp_tokens);
- } else {
- #ifdef GGML_USE_MPI
- GGML_ASSERT(false && "not implemented");
- #endif
- inpL = ggml_new_tensor_2d(ctx0, GGML_TYPE_F32, n_embd, N);
- memcpy(inpL->data, embd, N * n_embd * ggml_element_size(inpL));
- }
- const int i_gpu_start = n_layer - n_gpu_layers;
- (void) i_gpu_start;
- // offload functions set the tensor output backend to GPU
- // tensors are GPU-accelerated if any input or the output has been offloaded
- //
- // with the low VRAM option VRAM scratch is disabled in llama_load_model_internal
- // in that case ggml_cuda_assign_buffers has no effect
- offload_func_t offload_func_nr = llama_nop; // nr = non-repeating
- offload_func_t offload_func_kq = llama_nop;
- offload_func_t offload_func_v = llama_nop;
- #ifdef GGML_USE_CUBLAS
- if (n_gpu_layers > n_layer) {
- offload_func_nr = ggml_cuda_assign_buffers;
- }
- if (n_gpu_layers > n_layer + 1) {
- offload_func_v = ggml_cuda_assign_buffers;
- }
- if (n_gpu_layers > n_layer + 2) {
- offload_func_kq = ggml_cuda_assign_buffers;
- }
- #endif // GGML_USE_CUBLAS
- for (int il = 0; il < n_layer; ++il) {
- ggml_format_name(inpL, "layer_inp_%d", il);
- offload_func_t offload_func = llama_nop;
- #ifdef GGML_USE_CUBLAS
- if (il >= i_gpu_start) {
- offload_func = ggml_cuda_assign_buffers;
- }
- #endif // GGML_USE_CUBLAS
- struct ggml_tensor * inpSA = inpL;
- lctx.use_buf(ctx0, 0);
- // norm
- {
- cur = ggml_rms_norm(ctx0, inpL);
- offload_func(cur);
- ggml_set_name(cur, "rms_norm_0");
- // cur = cur*attention_norm(broadcasted)
- cur = ggml_mul(ctx0, cur, model.layers[il].attention_norm);
- offload_func(cur);
- ggml_set_name(cur, "attention_norm_0");
- }
- // self-attention
- {
- // compute Q and K and RoPE them
- struct ggml_tensor * tmpk = ggml_mul_mat(ctx0, model.layers[il].wk, cur);
- offload_func_kq(tmpk);
- ggml_set_name(tmpk, "tmpk");
- struct ggml_tensor * tmpq = ggml_mul_mat(ctx0, model.layers[il].wq, cur);
- offload_func_kq(tmpq);
- ggml_set_name(tmpq, "tmpq");
- struct ggml_tensor * Kcur = ggml_rope_inplace(ctx0, ggml_reshape_3d(ctx0, tmpk, n_embd/n_head, n_head, N), n_past, n_rot, 0, 0);
- offload_func_kq(Kcur);
- ggml_set_name(Kcur, "Kcur");
- struct ggml_tensor * Qcur = ggml_rope_inplace(ctx0, ggml_reshape_3d(ctx0, tmpq, n_embd/n_head, n_head, N), n_past, n_rot, 0, 0);
- offload_func_kq(Qcur);
- ggml_set_name(Qcur, "Qcur");
- // store key and value to memory
- {
- // compute the transposed [N, n_embd] V matrix
- struct ggml_tensor * tmpv = ggml_mul_mat(ctx0, model.layers[il].wv, cur);
- offload_func_v(tmpv);
- ggml_set_name(tmpv, "tmpv");
- struct ggml_tensor * Vcur = ggml_transpose(ctx0, ggml_reshape_2d(ctx0, tmpv, n_embd, N));
- offload_func_v(Vcur);
- ggml_set_name(Vcur, "Vcur");
- struct ggml_tensor * k = ggml_view_1d(ctx0, kv_self.k, N*n_embd, (ggml_element_size(kv_self.k)*n_embd)*(il*n_ctx + n_past));
- offload_func_kq(k);
- ggml_set_name(k, "k");
- struct ggml_tensor * v = ggml_view_2d(ctx0, kv_self.v, N, n_embd,
- ( n_ctx)*ggml_element_size(kv_self.v),
- (il*n_ctx)*ggml_element_size(kv_self.v)*n_embd + n_past*ggml_element_size(kv_self.v));
- offload_func_v(v);
- ggml_set_name(v, "v");
- // important: storing RoPE-ed version of K in the KV cache!
- ggml_build_forward_expand(&gf, ggml_cpy(ctx0, Kcur, k));
- ggml_build_forward_expand(&gf, ggml_cpy(ctx0, Vcur, v));
- }
- struct ggml_tensor * Q =
- ggml_permute(ctx0,
- Qcur,
- 0, 2, 1, 3);
- offload_func_kq(Q);
- ggml_set_name(Q, "Q");
- struct ggml_tensor * K =
- ggml_permute(ctx0,
- ggml_reshape_3d(ctx0,
- ggml_view_1d(ctx0, kv_self.k, (n_past + N)*n_embd, il*n_ctx*ggml_element_size(kv_self.k)*n_embd),
- n_embd/n_head, n_head, n_past + N),
- 0, 2, 1, 3);
- offload_func_kq(K);
- ggml_set_name(K, "K");
- // K * Q
- struct ggml_tensor * KQ = ggml_mul_mat(ctx0, K, Q);
- offload_func_kq(KQ);
- ggml_set_name(KQ, "KQ");
- // KQ_scaled = KQ / sqrt(n_embd/n_head)
- struct ggml_tensor * KQ_scale = ggml_new_f32(ctx0, 1.0f/sqrtf(float(n_embd)/n_head));
- ggml_set_name(KQ_scale, "1/sqrt(n_embd/n_head)");
- // KQ_scaled shape [n_past + N, N, n_head, 1]
- struct ggml_tensor * KQ_scaled = ggml_scale_inplace(ctx0, KQ, KQ_scale);
- offload_func_kq(KQ_scaled);
- ggml_set_name(KQ_scaled, "KQ_scaled");
- // KQ_masked = mask_past(KQ_scaled)
- struct ggml_tensor * KQ_masked = ggml_diag_mask_inf_inplace(ctx0, KQ_scaled, n_past);
- offload_func_kq(KQ_masked);
- ggml_set_name(KQ_masked, "KQ_masked");
- // KQ = soft_max(KQ_masked)
- struct ggml_tensor * KQ_soft_max = ggml_soft_max_inplace(ctx0, KQ_masked);
- offload_func_v(KQ_soft_max);
- ggml_set_name(KQ_soft_max, "KQ_soft_max");
- // split cached V into n_head heads
- struct ggml_tensor * V =
- ggml_view_3d(ctx0, kv_self.v,
- n_past + N, n_embd/n_head, n_head,
- n_ctx*ggml_element_size(kv_self.v),
- n_ctx*ggml_element_size(kv_self.v)*n_embd/n_head,
- il*n_ctx*ggml_element_size(kv_self.v)*n_embd);
- offload_func_v(V);
- ggml_set_name(V, "V");
- #if 1
- struct ggml_tensor * KQV = ggml_mul_mat(ctx0, V, KQ_soft_max);
- offload_func_v(KQV);
- ggml_set_name(KQV, "KQV");
- #else
- // make V contiguous in memory to speed up the matmul, however we waste time on the copy
- // on M1 this is faster for the perplexity computation, but ~5% slower for the single-token generation
- // is there a better way?
- struct ggml_tensor * V_cont = ggml_cpy(ctx0, V, ggml_new_tensor_3d(ctx0, kv_self.v->type, n_past + N, n_embd/n_head, n_head));
- struct ggml_tensor * KQV = ggml_mul_mat(ctx0, V_cont, KQ_soft_max);
- #endif
- // KQV_merged = KQV.permute(0, 2, 1, 3)
- struct ggml_tensor * KQV_merged = ggml_permute(ctx0, KQV, 0, 2, 1, 3);
- offload_func_v(KQV_merged);
- ggml_set_name(KQV_merged, "KQV_merged");
- // cur = KQV_merged.contiguous().view(n_embd, N)
- cur = ggml_cpy(ctx0,
- KQV_merged,
- ggml_new_tensor_2d(ctx0, GGML_TYPE_F32, n_embd, N));
- offload_func_v(cur);
- ggml_set_name(cur, "KQV_merged_contiguous");
- // projection (no bias)
- cur = ggml_mul_mat(ctx0,
- model.layers[il].wo,
- cur);
- offload_func(cur);
- ggml_set_name(cur, "result_wo");
- }
- lctx.use_buf(ctx0, 1);
- struct ggml_tensor * inpFF = ggml_add(ctx0, cur, inpSA);
- offload_func(inpFF);
- ggml_set_name(inpFF, "inpFF");
- // feed-forward network
- {
- // norm
- {
- cur = ggml_rms_norm(ctx0, inpFF);
- offload_func(cur);
- ggml_set_name(cur, "rms_norm_1");
- // cur = cur*ffn_norm(broadcasted)
- cur = ggml_mul(ctx0, cur, model.layers[il].ffn_norm);
- offload_func(cur);
- ggml_set_name(cur, "ffn_norm");
- }
- struct ggml_tensor * tmp = ggml_mul_mat(ctx0,
- model.layers[il].w3,
- cur);
- offload_func(tmp);
- ggml_set_name(tmp, "result_w3");
- cur = ggml_mul_mat(ctx0,
- model.layers[il].w1,
- cur);
- offload_func(cur);
- ggml_set_name(cur, "result_w1");
- // SILU activation
- cur = ggml_silu(ctx0, cur);
- offload_func(cur);
- ggml_set_name(cur, "silu");
- cur = ggml_mul(ctx0, cur, tmp);
- offload_func(cur);
- ggml_set_name(cur, "silu_x_result_w3");
- cur = ggml_mul_mat(ctx0,
- model.layers[il].w2,
- cur);
- offload_func(cur);
- ggml_set_name(cur, "result_w2");
- }
- cur = ggml_add(ctx0, cur, inpFF);
- offload_func(cur);
- ggml_set_name(cur, "inpFF_+_result_w2");
- // input for next layer
- inpL = cur;
- }
- lctx.use_buf(ctx0, 0);
- // used at the end to optionally extract the embeddings
- struct ggml_tensor * embeddings = NULL;
- // norm
- {
- cur = ggml_rms_norm(ctx0, inpL);
- offload_func_nr(cur);
- ggml_set_name(cur, "rms_norm_2");
- // cur = cur*norm(broadcasted)
- cur = ggml_mul(ctx0, cur, model.norm);
- // offload_func_nr(cur); // TODO CPU + GPU mirrored backend
- ggml_set_name(cur, "result_norm");
- embeddings = cur;
- }
- // lm_head
- cur = ggml_mul_mat(ctx0, model.output, cur);
- ggml_set_name(cur, "result_output");
- lctx.use_buf(ctx0, -1);
- // logits -> probs
- //cur = ggml_soft_max_inplace(ctx0, cur);
- // run the computation
- ggml_build_forward_expand(&gf, cur);
- #if GGML_USE_MPI
- ggml_mpi_graph_compute_pre(lctx.ctx_mpi, &gf, n_layer);
- #endif
- #ifdef GGML_USE_METAL
- if (lctx.ctx_metal && N == 1) {
- ggml_metal_set_n_cb (lctx.ctx_metal, n_threads);
- ggml_metal_graph_compute(lctx.ctx_metal, &gf);
- ggml_metal_get_tensor (lctx.ctx_metal, cur);
- } else {
- // IMPORTANT:
- // Since we don't have efficient Matrix x Matrix Metal multiplication yet, we fallback to vanilla
- // ggml_graph_compute(). It uses Apple's Accelerate CBLAS API which takes advantage of the ANE or the AMX
- // coprocessor.
- //
- // When we implement Matrix x Matrix Metal multiplication, we can avoid this branch.
- // But for now, we have focused only on Matrix x Vector Metal multiplication.
- //
- // TODO: avoid these syncs via shared memory (ref #1696)
- //
- if (lctx.ctx_metal) {
- // We need to sync the GPU KV cache with the CPU KV cache
- ggml_metal_get_tensor(lctx.ctx_metal, kv_self.k);
- ggml_metal_get_tensor(lctx.ctx_metal, kv_self.v);
- }
- ggml_graph_compute_helper(lctx.work_buffer, &gf, n_threads);
- }
- #else
- ggml_graph_compute_helper(lctx.work_buffer, &gf, n_threads);
- #endif
- #if GGML_USE_MPI
- ggml_mpi_graph_compute_post(lctx.ctx_mpi, &gf, n_layer);
- #endif
- // update kv token count
- lctx.kv_self.n = n_past + N;
- struct ggml_tensor * res = gf.nodes[gf.n_nodes - 1];
- if (cgraph_fname) {
- ggml_graph_export(&gf, cgraph_fname);
- }
- #ifdef GGML_PERF
- // print timing information per ggml operation (for debugging purposes)
- // requires GGML_PERF to be defined
- ggml_graph_print(&gf);
- #endif
- // plot the computation graph in dot format (for debugging purposes)
- //if (n_past%100 == 0) {
- // ggml_graph_dump_dot(&gf, NULL, "llama.dot");
- //}
- // extract logits
- {
- auto & logits_out = lctx.logits;
- if (lctx.logits_all) {
- logits_out.resize(n_vocab * N);
- memcpy(logits_out.data(), (float *) ggml_get_data(res), sizeof(float)*n_vocab*N);
- } else {
- // return result for just the last token
- logits_out.resize(n_vocab);
- memcpy(logits_out.data(), (float *) ggml_get_data(res) + (n_vocab*(N-1)), sizeof(float)*n_vocab);
- }
- }
- // extract embeddings
- if (!lctx.embedding.empty()) {
- auto & embedding_out = lctx.embedding;
- embedding_out.resize(n_embd);
- memcpy(embedding_out.data(), (float *) ggml_get_data(embeddings) + (n_embd*(N - 1)), sizeof(float)*n_embd);
- }
- if (mem_per_token == 0) {
- mem_per_token = ggml_used_mem(ctx0)/N;
- }
- #if 0
- printf("\n%s: used_mem = %.3f MB, scratch -- %.3f MB %.3f MB\n", __func__,
- ggml_used_mem(ctx0)/1024.0/1024.0,
- lctx.get_buf_max_mem(0)/1024.0/1024.0,
- lctx.get_buf_max_mem(1)/1024.0/1024.0);
- #endif
- ggml_free(ctx0);
- // measure the performance only for the single-token evals
- if (N == 1) {
- lctx.t_eval_us += ggml_time_us() - t_start_us;
- lctx.n_eval++;
- }
- else if (N > 1) {
- lctx.t_p_eval_us += ggml_time_us() - t_start_us;
- lctx.n_p_eval += N;
- }
- return true;
- }
- //
- // tokenizer
- //
- static size_t utf8_len(char src) {
- const size_t lookup[] = { 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 3, 4 };
- uint8_t highbits = static_cast<uint8_t>(src) >> 4;
- return lookup[highbits];
- }
- struct llama_sp_symbol {
- using index = int;
- index prev;
- index next;
- const char * text;
- size_t n;
- };
- static_assert(std::is_trivially_copyable<llama_sp_symbol>::value, "llama_sp_symbol is not trivially copyable");
- struct llama_sp_bigram {
- struct comparator {
- bool operator()(llama_sp_bigram & l, llama_sp_bigram & r) {
- return (l.score < r.score) || (l.score == r.score && l.left > r.left);
- }
- };
- using queue_storage = std::vector<llama_sp_bigram>;
- using queue = std::priority_queue<llama_sp_bigram, queue_storage, comparator>;
- llama_sp_symbol::index left;
- llama_sp_symbol::index right;
- float score;
- size_t size;
- };
- // original implementation:
- // https://github.com/ggerganov/llama.cpp/commit/074bea2eb1f1349a0118239c4152914aecaa1be4
- struct llama_tokenizer {
- llama_tokenizer(const llama_vocab & vocab): vocab_(vocab) {}
- void tokenize(const std::string & text, std::vector<llama_vocab::id> & output) {
- // split string into utf8 chars
- int index = 0;
- size_t offs = 0;
- while (offs < text.size()) {
- llama_sp_symbol sym;
- size_t char_len = std::min(text.size() - offs, utf8_len(text[offs]));
- sym.text = text.c_str() + offs;
- sym.n = char_len;
- offs += char_len;
- sym.prev = index - 1;
- sym.next = offs == text.size() ? -1 : index + 1;
- index++;
- symbols_.emplace_back(sym);
- }
- // seed the work queue with all possible 2-character tokens.
- for (size_t i = 1; i < symbols_.size(); ++i) {
- try_add_bigram(i - 1, i);
- }
- // keep substituting the highest frequency pairs for as long as we can.
- while (!work_queue_.empty()) {
- auto bigram = work_queue_.top();
- work_queue_.pop();
- auto & left_sym = symbols_[bigram.left];
- auto & right_sym = symbols_[bigram.right];
- // if one of the symbols already got merged, skip it.
- if (left_sym.n == 0 || right_sym.n == 0 ||
- left_sym.n + right_sym.n != bigram.size) {
- continue;
- }
- // merge the right sym into the left one
- left_sym.n += right_sym.n;
- right_sym.n = 0;
- //printf("left = '%*s' size = %zu\n", (int) left_sym.n, left_sym.text, bigram.size);
- // remove the right sym from the chain
- left_sym.next = right_sym.next;
- if (right_sym.next >= 0) {
- symbols_[right_sym.next].prev = bigram.left;
- }
- // find more substitutions
- try_add_bigram(left_sym.prev, bigram.left);
- try_add_bigram(bigram.left, left_sym.next);
- }
- for (int i = 0; i != -1; i = symbols_[i].next) {
- auto & symbol = symbols_[i];
- auto token = vocab_.token_to_id.find(std::string(symbol.text, symbol.n));
- if (token == vocab_.token_to_id.end()) {
- // output any symbols that did not form tokens as bytes.
- for (int j = 0; j < (int) symbol.n; ++j) {
- llama_vocab::id token_id = static_cast<uint8_t>(symbol.text[j]) + 3;
- output.push_back(token_id);
- }
- } else {
- output.push_back((*token).second);
- }
- }
- }
- private:
- void try_add_bigram(int left, int right) {
- if (left == -1 || right == -1) {
- return;
- }
- const std::string text = std::string(symbols_[left].text, symbols_[left].n + symbols_[right].n);
- auto token = vocab_.token_to_id.find(text);
- if (token == vocab_.token_to_id.end()) {
- return;
- }
- if (static_cast<size_t>((*token).second) >= vocab_.id_to_token.size()) {
- return;
- }
- const auto &tok_score = vocab_.id_to_token[(*token).second];
- llama_sp_bigram bigram;
- bigram.left = left;
- bigram.right = right;
- bigram.score = tok_score.score;
- bigram.size = text.size();
- work_queue_.push(bigram);
- }
- const llama_vocab & vocab_;
- std::vector<llama_sp_symbol> symbols_;
- llama_sp_bigram::queue work_queue_;
- };
- static std::vector<llama_vocab::id> llama_tokenize(const llama_vocab & vocab, const std::string & text, bool bos) {
- llama_tokenizer tokenizer(vocab);
- std::vector<llama_vocab::id> output;
- if (text.empty()) {
- return output;
- }
- if (bos) {
- output.push_back(llama_token_bos());
- }
- tokenizer.tokenize(text, output);
- return output;
- }
- //
- // sampling
- //
- void llama_sample_softmax(struct llama_context * ctx, llama_token_data_array * candidates) {
- assert(candidates->size > 0);
- const int64_t t_start_sample_us = ggml_time_us();
- // Sort the logits in descending order
- if (!candidates->sorted) {
- std::sort(candidates->data, candidates->data + candidates->size, [](const llama_token_data & a, const llama_token_data & b) {
- return a.logit > b.logit;
- });
- candidates->sorted = true;
- }
- float max_l = candidates->data[0].logit;
- float cum_sum = 0.0f;
- for (size_t i = 0; i < candidates->size; ++i) {
- float p = expf(candidates->data[i].logit - max_l);
- candidates->data[i].p = p;
- cum_sum += p;
- }
- for (size_t i = 0; i < candidates->size; ++i) {
- candidates->data[i].p /= cum_sum;
- }
- if (ctx) {
- ctx->t_sample_us += ggml_time_us() - t_start_sample_us;
- }
- }
- void llama_sample_top_k(struct llama_context * ctx, llama_token_data_array * candidates, int k, size_t min_keep) {
- const int64_t t_start_sample_us = ggml_time_us();
- k = std::max(k, (int) min_keep);
- k = std::min(k, (int) candidates->size);
- // Sort scores in descending order
- if (!candidates->sorted) {
- auto comp = [](const llama_token_data & a, const llama_token_data & b) {
- return a.logit > b.logit;
- };
- if (k == (int) candidates->size) {
- std::sort(candidates->data, candidates->data + candidates->size, comp);
- } else {
- std::partial_sort(candidates->data, candidates->data + k, candidates->data + candidates->size, comp);
- }
- candidates->sorted = true;
- }
- candidates->size = k;
- if (ctx) {
- ctx->t_sample_us += ggml_time_us() - t_start_sample_us;
- }
- }
- void llama_sample_top_p(struct llama_context * ctx, llama_token_data_array * candidates, float p, size_t min_keep) {
- if (p >= 1.0f) {
- return;
- }
- llama_sample_softmax(ctx, candidates);
- const int64_t t_start_sample_us = ggml_time_us();
- // Compute the cumulative probabilities
- float cum_sum = 0.0f;
- size_t last_idx = candidates->size;
- for (size_t i = 0; i < candidates->size; ++i) {
- cum_sum += candidates->data[i].p;
- // Check if the running sum is at least p or if we have kept at least min_keep tokens
- // we set the last index to i+1 to indicate that the current iterate should be included in the set
- if (cum_sum >= p && i + 1 >= min_keep) {
- last_idx = i + 1;
- break;
- }
- }
- // Resize the output vector to keep only the top-p tokens
- candidates->size = last_idx;
- if (ctx) {
- ctx->t_sample_us += ggml_time_us() - t_start_sample_us;
- }
- }
- void llama_sample_tail_free(struct llama_context * ctx, llama_token_data_array * candidates, float z, size_t min_keep) {
- if (z >= 1.0f || candidates->size <= 2) {
- return;
- }
- llama_sample_softmax(nullptr, candidates);
- const int64_t t_start_sample_us = ggml_time_us();
- // Compute the first and second derivatives
- std::vector<float> first_derivatives(candidates->size - 1);
- std::vector<float> second_derivatives(candidates->size - 2);
- for (size_t i = 0; i < first_derivatives.size(); ++i) {
- first_derivatives[i] = candidates->data[i].p - candidates->data[i + 1].p;
- }
- for (size_t i = 0; i < second_derivatives.size(); ++i) {
- second_derivatives[i] = first_derivatives[i] - first_derivatives[i + 1];
- }
- // Calculate absolute value of second derivatives
- for (size_t i = 0; i < second_derivatives.size(); ++i) {
- second_derivatives[i] = abs(second_derivatives[i]);
- }
- // Normalize the second derivatives
- float second_derivatives_sum = std::accumulate(second_derivatives.begin(), second_derivatives.end(), 0.0f);
- for (float & value : second_derivatives) {
- value /= second_derivatives_sum;
- }
- float cum_sum = 0.0f;
- size_t last_idx = candidates->size;
- for (size_t i = 0; i < second_derivatives.size(); ++i) {
- cum_sum += second_derivatives[i];
- // Check if the running sum is greater than z or if we have kept at least min_keep tokens
- if (cum_sum > z && i >= min_keep) {
- last_idx = i;
- break;
- }
- }
- // Resize the output vector to keep only the tokens above the tail location
- candidates->size = last_idx;
- if (ctx) {
- ctx->t_sample_us += ggml_time_us() - t_start_sample_us;
- }
- }
- void llama_sample_typical(struct llama_context * ctx, llama_token_data_array * candidates, float p, size_t min_keep) {
- // Reference implementation:
- // https://github.com/huggingface/transformers/compare/main...cimeister:typical-sampling:typical-pr
- if (p >= 1.0f) {
- return;
- }
- // Compute the softmax of logits and calculate entropy
- llama_sample_softmax(nullptr, candidates);
- const int64_t t_start_sample_us = ggml_time_us();
- float entropy = 0.0f;
- for (size_t i = 0; i < candidates->size; ++i) {
- entropy += -candidates->data[i].p * logf(candidates->data[i].p);
- }
- // Compute the absolute difference between negative log probability and entropy for each candidate
- std::vector<float> shifted_scores;
- for (size_t i = 0; i < candidates->size; ++i) {
- float shifted_score = fabsf(-logf(candidates->data[i].p) - entropy);
- shifted_scores.push_back(shifted_score);
- }
- // Sort tokens based on the shifted_scores and their corresponding indices
- std::vector<size_t> indices(candidates->size);
- std::iota(indices.begin(), indices.end(), 0);
- std::sort(indices.begin(), indices.end(), [&](size_t a, size_t b) {
- return shifted_scores[a] < shifted_scores[b];
- });
- // Compute the cumulative probabilities
- float cum_sum = 0.0f;
- size_t last_idx = indices.size();
- for (size_t i = 0; i < indices.size(); ++i) {
- size_t idx = indices[i];
- cum_sum += candidates->data[idx].p;
- // Check if the running sum is greater than typical or if we have kept at least min_keep tokens
- if (cum_sum > p && i >= min_keep - 1) {
- last_idx = i + 1;
- break;
- }
- }
- // Resize the output vector to keep only the locally typical tokens
- std::vector<llama_token_data> new_candidates;
- for (size_t i = 0; i < last_idx; ++i) {
- size_t idx = indices[i];
- new_candidates.push_back(candidates->data[idx]);
- }
- // Replace the data in candidates with the new_candidates data
- std::copy(new_candidates.begin(), new_candidates.end(), candidates->data);
- candidates->size = new_candidates.size();
- if (ctx) {
- ctx->t_sample_us += ggml_time_us() - t_start_sample_us;
- }
- }
- void llama_sample_temperature(struct llama_context * ctx, llama_token_data_array * candidates_p, float temp) {
- const int64_t t_start_sample_us = ggml_time_us();
- for (size_t i = 0; i < candidates_p->size; ++i) {
- candidates_p->data[i].logit /= temp;
- }
- if (ctx) {
- ctx->t_sample_us += ggml_time_us() - t_start_sample_us;
- }
- }
- void llama_sample_repetition_penalty(struct llama_context * ctx, llama_token_data_array * candidates, const llama_token * last_tokens, size_t last_tokens_size, float penalty) {
- if (last_tokens_size == 0 || penalty == 1.0f) {
- return;
- }
- const int64_t t_start_sample_us = ggml_time_us();
- for (size_t i = 0; i < candidates->size; ++i) {
- const auto * token_iter = std::find(last_tokens, last_tokens + last_tokens_size, candidates->data[i].id);
- if (token_iter == last_tokens + last_tokens_size) {
- continue;
- }
- // The academic publication that described this technique actually just only divided, but that would cause tokens with negative logits to become more likely, which is obviously wrong.
- // This is common fix for this problem, which is to multiply by the penalty instead of dividing.
- if (candidates->data[i].logit <= 0) {
- candidates->data[i].logit *= penalty;
- } else {
- candidates->data[i].logit /= penalty;
- }
- }
- candidates->sorted = false;
- if (ctx) {
- ctx->t_sample_us += ggml_time_us() - t_start_sample_us;
- }
- }
- void llama_sample_frequency_and_presence_penalties(struct llama_context * ctx, llama_token_data_array * candidates, const llama_token * last_tokens_p, size_t last_tokens_size, float alpha_frequency, float alpha_presence) {
- if (last_tokens_size == 0 || (alpha_frequency == 0.0f && alpha_presence == 0.0f)) {
- return;
- }
- const int64_t t_start_sample_us = ggml_time_us();
- // Create a frequency map to count occurrences of each token in last_tokens
- std::unordered_map<llama_token, int> token_count;
- for (size_t i = 0; i < last_tokens_size; ++i) {
- token_count[last_tokens_p[i]]++;
- }
- // Apply frequency and presence penalties to the candidates
- for (size_t i = 0; i < candidates->size; ++i) {
- auto token_iter = token_count.find(candidates->data[i].id);
- if (token_iter == token_count.end()) {
- continue;
- }
- int count = token_iter->second;
- candidates->data[i].logit -= float(count) * alpha_frequency + float(count > 0) * alpha_presence;
- }
- candidates->sorted = false;
- if (ctx) {
- ctx->t_sample_us += ggml_time_us() - t_start_sample_us;
- }
- }
- static void llama_log_softmax(float * array, size_t size) {
- float max_l = *std::max_element(array, array + size);
- float sum = 0.f;
- for (size_t i = 0; i < size; ++i) {
- float p = expf(array[i] - max_l);
- sum += p;
- array[i] = p;
- }
- for (size_t i = 0; i < size; ++i) {
- array[i] = logf(array[i] / sum);
- }
- }
- void llama_sample_classifier_free_guidance(
- struct llama_context * ctx,
- llama_token_data_array * candidates,
- struct llama_context * guidance_ctx,
- float scale,
- float smooth_factor) {
- int64_t t_start_sample_us = t_start_sample_us = ggml_time_us();
- assert(ctx);
- auto n_vocab = llama_n_vocab(ctx);
- assert(n_vocab == (int)candidates->size);
- assert(!candidates->sorted);
- std::vector<float> logits_base;
- logits_base.reserve(candidates->size);
- for (size_t i = 0; i < candidates->size; ++i) {
- logits_base.push_back(candidates->data[i].logit);
- }
- llama_log_softmax(logits_base.data(), candidates->size);
- float* logits_guidance = llama_get_logits(guidance_ctx);
- llama_log_softmax(logits_guidance, n_vocab);
- for (int i = 0; i < n_vocab; ++i) {
- float logit_guidance = logits_guidance[i];
- float logit_base = logits_base[i];
- logits_guidance[i] = scale * (logit_base - logit_guidance) + logit_guidance;
- }
- llama_log_softmax(logits_guidance, n_vocab);
- for (int i = 0; i < n_vocab; ++i) {
- float logit_base = logits_base[i];
- float logit_guidance = logits_guidance[i];
- candidates->data[i].logit = smooth_factor * logit_guidance + (1.f - smooth_factor) * logit_base;
- }
- if (ctx) {
- ctx->t_sample_us += ggml_time_us() - t_start_sample_us;
- }
- }
- llama_token llama_sample_token_mirostat(struct llama_context * ctx, llama_token_data_array * candidates, float tau, float eta, int m, float * mu) {
- assert(ctx);
- auto N = float(llama_n_vocab(ctx));
- int64_t t_start_sample_us;
- t_start_sample_us = ggml_time_us();
- llama_sample_softmax(nullptr, candidates);
- // Estimate s_hat using the most probable m tokens
- float s_hat = 0.0;
- float sum_ti_bi = 0.0;
- float sum_ti_sq = 0.0;
- for (size_t i = 0; i < size_t(m - 1) && i < candidates->size - 1; ++i) {
- float t_i = logf(float(i + 2) / float(i + 1));
- float b_i = logf(candidates->data[i].p / candidates->data[i + 1].p);
- sum_ti_bi += t_i * b_i;
- sum_ti_sq += t_i * t_i;
- }
- s_hat = sum_ti_bi / sum_ti_sq;
- // Compute k from the estimated s_hat and target surprise value
- float epsilon_hat = s_hat - 1;
- float k = powf((epsilon_hat * powf(2, *mu)) / (1 - powf(N, -epsilon_hat)), 1 / s_hat);
- // Sample the next word X using top-k sampling
- llama_sample_top_k(nullptr, candidates, int(k), 1);
- if (ctx) {
- ctx->t_sample_us += ggml_time_us() - t_start_sample_us;
- }
- llama_token X = llama_sample_token(ctx, candidates);
- t_start_sample_us = ggml_time_us();
- // Compute error as the difference between observed surprise and target surprise value
- size_t X_idx = std::distance(candidates->data, std::find_if(candidates->data, candidates->data + candidates->size, [&](const llama_token_data & candidate) {
- return candidate.id == X;
- }));
- float observed_surprise = -log2f(candidates->data[X_idx].p);
- float e = observed_surprise - tau;
- // Update mu using the learning rate and error
- *mu = *mu - eta * e;
- if (ctx) {
- ctx->t_sample_us += ggml_time_us() - t_start_sample_us;
- }
- return X;
- }
- llama_token llama_sample_token_mirostat_v2(struct llama_context * ctx, llama_token_data_array * candidates, float tau, float eta, float * mu) {
- int64_t t_start_sample_us;
- t_start_sample_us = ggml_time_us();
- llama_sample_softmax(ctx, candidates);
- // Truncate the words with surprise values greater than mu
- candidates->size = std::distance(candidates->data, std::find_if(candidates->data, candidates->data + candidates->size, [&](const llama_token_data & candidate) {
- return -log2f(candidate.p) > *mu;
- }));
- if (candidates->size == 0) {
- candidates->size = 1;
- }
- if (ctx) {
- ctx->t_sample_us += ggml_time_us() - t_start_sample_us;
- }
- // Normalize the probabilities of the remaining words
- llama_sample_softmax(ctx, candidates);
- // Sample the next word X from the remaining words
- llama_token X = llama_sample_token(ctx, candidates);
- t_start_sample_us = ggml_time_us();
- // Compute error as the difference between observed surprise and target surprise value
- size_t X_idx = std::distance(candidates->data, std::find_if(candidates->data, candidates->data + candidates->size, [&](const llama_token_data & candidate) {
- return candidate.id == X;
- }));
- float observed_surprise = -log2f(candidates->data[X_idx].p);
- float e = observed_surprise - tau;
- // Update mu using the learning rate and error
- *mu = *mu - eta * e;
- if (ctx) {
- ctx->t_sample_us += ggml_time_us() - t_start_sample_us;
- }
- return X;
- }
- llama_token llama_sample_token_greedy(struct llama_context * ctx, llama_token_data_array * candidates) {
- const int64_t t_start_sample_us = ggml_time_us();
- // Find max element
- auto * max_iter = std::max_element(candidates->data, candidates->data + candidates->size, [](const llama_token_data & a, const llama_token_data & b) {
- return a.logit < b.logit;
- });
- llama_token result = max_iter->id;
- if (ctx) {
- ctx->t_sample_us += ggml_time_us() - t_start_sample_us;
- ctx->n_sample++;
- }
- return result;
- }
- llama_token llama_sample_token(struct llama_context * ctx, llama_token_data_array * candidates) {
- assert(ctx);
- const int64_t t_start_sample_us = ggml_time_us();
- llama_sample_softmax(nullptr, candidates);
- std::vector<float> probs;
- probs.reserve(candidates->size);
- for (size_t i = 0; i < candidates->size; ++i) {
- probs.push_back(candidates->data[i].p);
- }
- std::discrete_distribution<> dist(probs.begin(), probs.end());
- auto & rng = ctx->rng;
- int idx = dist(rng);
- llama_token result = candidates->data[idx].id;
- ctx->t_sample_us += ggml_time_us() - t_start_sample_us;
- ctx->n_sample++;
- return result;
- }
- //
- // quantization
- //
- static void llama_convert_tensor_internal(const llama_load_tensor & tensor, llama_buffer & output, const int nelements, const int nthread) {
- if (output.size < nelements * sizeof(float)) {
- output.resize(nelements * sizeof(float));
- }
- float * f32_output = (float *) output.addr;
- ggml_type_traits_t qtype;
- if (ggml_is_quantized(tensor.type)) {
- qtype = ggml_internal_get_type_traits(tensor.type);
- if (qtype.to_float == NULL) {
- throw std::runtime_error(format("type %s unsupported for integer quantization: no dequantization available", ggml_type_name(tensor.type)));
- }
- } else if (tensor.type != GGML_TYPE_F16) {
- throw std::runtime_error(format("cannot dequantize/convert tensor type %s", ggml_type_name(tensor.type)));
- }
- if (nthread < 2) {
- if (tensor.type == GGML_TYPE_F16) {
- ggml_fp16_to_fp32_row((ggml_fp16_t *)tensor.data, f32_output, nelements);
- } else if (ggml_is_quantized(tensor.type)) {
- qtype.to_float(tensor.data, f32_output, nelements);
- } else {
- LLAMA_ASSERT(false); // unreachable
- }
- return;
- }
- auto block_size = tensor.type == GGML_TYPE_F16 ? 1 : (size_t)ggml_blck_size(tensor.type);
- auto block_size_bytes = ggml_type_size(tensor.type);
- LLAMA_ASSERT(nelements % block_size == 0);
- auto nblocks = nelements / block_size;
- auto blocks_per_thread = nblocks / nthread;
- auto spare_blocks = nblocks - (blocks_per_thread * nthread); // if blocks aren't divisible by thread count
- std::vector<std::thread> workers;
- for (auto tnum = 0, in_buff_offs = 0, out_buff_offs = 0; tnum < nthread; tnum++) {
- auto thr_blocks = blocks_per_thread + (tnum == nthread - 1 ? spare_blocks : 0); // num blocks for this thread
- auto thr_elems = thr_blocks * block_size; // number of elements for this thread
- auto thr_block_bytes = thr_blocks * block_size_bytes; // number of input bytes for this thread
- auto compute = [qtype] (ggml_type typ, uint8_t * inbuf, float * outbuf, int nels) {
- if (typ == GGML_TYPE_F16) {
- ggml_fp16_to_fp32_row((ggml_fp16_t *)inbuf, outbuf, nels);
- } else {
- qtype.to_float(inbuf, outbuf, nels);
- }
- };
- workers.push_back(std::thread(compute, tensor.type, tensor.data + in_buff_offs, f32_output + out_buff_offs, thr_elems));
- in_buff_offs += thr_block_bytes;
- out_buff_offs += thr_elems;
- }
- for (auto & worker : workers) {
- worker.join();
- }
- }
- static void llama_model_quantize_internal(const std::string & fname_inp, const std::string & fname_out, const llama_model_quantize_params * params) {
- ggml_type quantized_type;
- llama_ftype ftype = params->ftype;
- int nthread = params->nthread;
- switch (params->ftype) {
- case LLAMA_FTYPE_MOSTLY_Q4_0: quantized_type = GGML_TYPE_Q4_0; break;
- case LLAMA_FTYPE_MOSTLY_Q4_1: quantized_type = GGML_TYPE_Q4_1; break;
- case LLAMA_FTYPE_MOSTLY_Q5_0: quantized_type = GGML_TYPE_Q5_0; break;
- case LLAMA_FTYPE_MOSTLY_Q5_1: quantized_type = GGML_TYPE_Q5_1; break;
- case LLAMA_FTYPE_MOSTLY_Q8_0: quantized_type = GGML_TYPE_Q8_0; break;
- case LLAMA_FTYPE_MOSTLY_F16: quantized_type = GGML_TYPE_F16; break;
- case LLAMA_FTYPE_ALL_F32: quantized_type = GGML_TYPE_F32; break;
- #ifdef GGML_USE_K_QUANTS
- // K-quants
- case LLAMA_FTYPE_MOSTLY_Q2_K: quantized_type = GGML_TYPE_Q2_K; break;
- case LLAMA_FTYPE_MOSTLY_Q3_K_S:
- case LLAMA_FTYPE_MOSTLY_Q3_K_M:
- case LLAMA_FTYPE_MOSTLY_Q3_K_L: quantized_type = GGML_TYPE_Q3_K; break;
- case LLAMA_FTYPE_MOSTLY_Q4_K_S:
- case LLAMA_FTYPE_MOSTLY_Q4_K_M: quantized_type = GGML_TYPE_Q4_K; break;
- case LLAMA_FTYPE_MOSTLY_Q5_K_S:
- case LLAMA_FTYPE_MOSTLY_Q5_K_M: quantized_type = GGML_TYPE_Q5_K; break;
- case LLAMA_FTYPE_MOSTLY_Q6_K: quantized_type = GGML_TYPE_Q6_K; break;
- #endif
- default: throw std::runtime_error(format("invalid output file type %d\n", ftype));
- }
- if (nthread <= 0) {
- nthread = std::thread::hardware_concurrency();
- }
- std::unique_ptr<llama_model_loader> model_loader(new llama_model_loader(fname_inp, /*use_mmap*/ false));
- llama_file_saver file_saver(fname_out.c_str(), model_loader->file_loader.get(), params->ftype);
- #ifdef GGML_USE_K_QUANTS
- int n_attention_wv = 0;
- int n_feed_forward_w2 = 0;
- for (auto& tensor : model_loader->tensors_map.tensors) {
- if (tensor.name.find("attention.wv.weight") != std::string::npos) {
- ++n_attention_wv;
- }
- else if (tensor.name.find("feed_forward.w2.weight") != std::string::npos) {
- ++n_feed_forward_w2;
- }
- }
- int i_attention_wv = 0;
- int i_feed_forward_w2 = 0;
- #endif
- size_t total_size_org = 0;
- size_t total_size_new = 0;
- std::vector<int64_t> hist_all(1 << 4, 0);
- std::vector<std::thread> workers;
- std::mutex mutex;
- auto use_more_bits = [] (int i_layer, int num_layers) -> bool {
- return i_layer < num_layers/8 || i_layer >= 7*num_layers/8 || (i_layer - num_layers/8)%3 == 2;
- };
- size_t idx = 0;
- for (llama_load_tensor & tensor : model_loader->tensors_map.tensors) {
- llama_buffer read_data;
- read_data.resize(tensor.size);
- tensor.data = read_data.addr;
- model_loader->load_data_for(tensor);
- printf("[%4zu/%4zu] %36s - %16s, type = %6s, ",
- ++idx, model_loader->tensors_map.tensors.size(),
- tensor.name.c_str(), llama_format_tensor_shape(tensor.ne).c_str(),
- ggml_type_name(tensor.type));
- // This used to be a regex, but <regex> has an extreme cost to compile times.
- bool quantize = tensor.name.rfind("weight") == tensor.name.size() - 6; // ends with 'weight'?
- // quantize only 2D tensors
- quantize &= (tensor.ne.size() == 2);
- quantize &= params->quantize_output_tensor || tensor.name != "output.weight";
- quantize &= quantized_type != tensor.type;
- enum ggml_type new_type;
- void * new_data;
- size_t new_size;
- llama_buffer work;
- if (!quantize) {
- new_type = tensor.type;
- new_data = tensor.data;
- new_size = tensor.size;
- printf("size = %8.3f MB\n", tensor.size/1024.0/1024.0);
- } else {
- new_type = quantized_type;
- #ifdef GGML_USE_K_QUANTS
- bool convert_incompatible_tensor = false;
- if (quantized_type == GGML_TYPE_Q2_K || quantized_type == GGML_TYPE_Q3_K || quantized_type == GGML_TYPE_Q4_K ||
- quantized_type == GGML_TYPE_Q5_K || quantized_type == GGML_TYPE_Q6_K) {
- int nx = tensor.ne.at(0);
- int ny = tensor.ne.at(1);
- if (nx % QK_K != 0 || ny % QK_K != 0) {
- fprintf(stderr, "\n\nTensor sizes %d x %d are not divisible by %d, required for k-quants.\n",nx,ny,QK_K);
- convert_incompatible_tensor = true;
- }
- }
- if (tensor.name == "output.weight") {
- int nx = tensor.ne.at(0);
- int ny = tensor.ne.at(1);
- if (nx % QK_K == 0 && ny % QK_K == 0) {
- new_type = GGML_TYPE_Q6_K;
- }
- } else if (tensor.name.find("attention.wv.weight") != std::string::npos) {
- if (ftype == LLAMA_FTYPE_MOSTLY_Q3_K_M || ftype == LLAMA_FTYPE_MOSTLY_Q2_K) new_type = GGML_TYPE_Q4_K;
- else if (ftype == LLAMA_FTYPE_MOSTLY_Q3_K_L) new_type = GGML_TYPE_Q5_K;
- else if ((ftype == LLAMA_FTYPE_MOSTLY_Q4_K_M || ftype == LLAMA_FTYPE_MOSTLY_Q5_K_M) &&
- use_more_bits(i_attention_wv, n_attention_wv)) new_type = GGML_TYPE_Q6_K;
- else if (QK_K == 64 && (ftype == LLAMA_FTYPE_MOSTLY_Q4_K_S || ftype == LLAMA_FTYPE_MOSTLY_Q3_K_S) &&
- (i_attention_wv < n_attention_wv/8 || i_attention_wv >= 7*n_attention_wv/8)) new_type = GGML_TYPE_Q6_K;
- ++i_attention_wv;
- } else if (tensor.name.find("feed_forward.w2.weight") != std::string::npos) {
- if (ftype == LLAMA_FTYPE_MOSTLY_Q3_K_M || ftype == LLAMA_FTYPE_MOSTLY_Q2_K) new_type = GGML_TYPE_Q4_K;
- else if (ftype == LLAMA_FTYPE_MOSTLY_Q3_K_L) new_type = GGML_TYPE_Q5_K;
- else if ((ftype == LLAMA_FTYPE_MOSTLY_Q4_K_M || ftype == LLAMA_FTYPE_MOSTLY_Q5_K_M) &&
- use_more_bits(i_feed_forward_w2, n_feed_forward_w2)) new_type = GGML_TYPE_Q6_K;
- //else if (ftype == LLAMA_FTYPE_MOSTLY_Q4_K_S && i_feed_forward_w2 < n_feed_forward_w2/8) new_type = GGML_TYPE_Q6_K;
- ++i_feed_forward_w2;
- } else if (tensor.name.find("attention.wo.weight") != std::string::npos) {
- if (ftype == LLAMA_FTYPE_MOSTLY_Q3_K_M || ftype == LLAMA_FTYPE_MOSTLY_Q2_K) new_type = GGML_TYPE_Q4_K;
- else if (ftype == LLAMA_FTYPE_MOSTLY_Q3_K_L) new_type = GGML_TYPE_Q5_K;
- }
- if (convert_incompatible_tensor) {
- if (tensor.name == "output.weight") {
- new_type = GGML_TYPE_F16; //fall back to F16 instead of just failing.
- fprintf(stderr, "F16 will be used for this tensor instead.\n");
- } else if (tensor.name == "tok_embeddings.weight") {
- new_type = GGML_TYPE_Q4_0; //fall back to Q4_0 instead of just failing.
- fprintf(stderr, "Q4_0 will be used for this tensor instead.\n");
- } else {
- throw std::runtime_error("Unsupported tensor size encountered\n");
- }
- }
- #endif
- float * f32_data;
- size_t nelements = tensor.ne.at(0) * tensor.ne.at(1);
- llama_buffer f32_conv_buf;
- if (tensor.type == GGML_TYPE_F32) {
- f32_data = (float *) tensor.data;
- } else if (ggml_is_quantized(tensor.type) && !params->allow_requantize) {
- throw std::runtime_error(format("requantizing from type %s is disabled", ggml_type_name(tensor.type)));
- } else {
- llama_convert_tensor_internal(tensor, f32_conv_buf, nelements, nthread);
- f32_data = (float *) f32_conv_buf.addr;
- }
- printf("quantizing .. ");
- fflush(stdout);
- work.resize(nelements * 4); // upper bound on size
- new_data = work.addr;
- std::vector<int64_t> hist_cur(1 << 4, 0);
- int chunk_size = 32 * 512;
- const int nchunk = (nelements + chunk_size - 1)/chunk_size;
- const int nthread_use = nthread > 1 ? std::max(1, std::min(nthread, nchunk)) : 1;
- if (nthread_use < 2) {
- new_size = ggml_quantize_chunk(new_type, f32_data, new_data, 0, nelements, hist_cur.data());
- } else {
- size_t counter = 0;
- new_size = 0;
- auto compute = [&mutex, &counter, &hist_cur, &new_size, new_type, f32_data, new_data, nelements, chunk_size] () {
- std::vector<int64_t> local_hist;
- size_t local_size = 0;
- while (true) {
- std::unique_lock<std::mutex> lock(mutex);
- size_t first = counter; counter += chunk_size;
- if (first >= nelements) {
- if (!local_hist.empty()) {
- for (int j=0; j<int(local_hist.size()); ++j) {
- hist_cur[j] += local_hist[j];
- }
- new_size += local_size;
- }
- break;
- }
- lock.unlock();
- size_t last = std::min(nelements, first + chunk_size);
- if (local_hist.empty()) {
- local_hist.resize(hist_cur.size(), 0);
- }
- local_size += ggml_quantize_chunk(new_type, f32_data, new_data, first, last - first, local_hist.data());
- }
- };
- if ((int) workers.size() < nthread_use - 1) {
- workers.resize(nthread_use - 1);
- }
- for (int it = 0; it < nthread_use - 1; ++it) {
- workers[it] = std::thread(compute);
- }
- compute();
- for (int it = 0; it < nthread_use - 1; ++it) {
- workers[it].join();
- }
- }
- printf("size = %8.2f MB -> %8.2f MB | hist: ", tensor.size/1024.0/1024.0, new_size/1024.0/1024.0);
- int64_t tot_count = 0;
- for (size_t i = 0; i < hist_cur.size(); i++) {
- hist_all[i] += hist_cur[i];
- tot_count += hist_cur[i];
- }
- if (tot_count > 0) {
- for (size_t i = 0; i < hist_cur.size(); i++) {
- printf("%5.3f ", hist_cur[i] / float(nelements));
- }
- }
- printf("\n");
- }
- total_size_org += tensor.size;
- total_size_new += new_size;
- file_saver.write_tensor(tensor, new_type, new_data, new_size);
- }
- printf("%s: model size = %8.2f MB\n", __func__, total_size_org/1024.0/1024.0);
- printf("%s: quant size = %8.2f MB\n", __func__, total_size_new/1024.0/1024.0);
- {
- int64_t sum_all = 0;
- for (size_t i = 0; i < hist_all.size(); i++) {
- sum_all += hist_all[i];
- }
- if (sum_all > 0) {
- printf("%s: hist: ", __func__);
- for (size_t i = 0; i < hist_all.size(); i++) {
- printf("%5.3f ", hist_all[i] / float(sum_all));
- }
- printf("\n");
- }
- }
- }
- //
- // interface implementation
- //
- struct llama_model * llama_load_model_from_file(
- const char * path_model,
- struct llama_context_params params) {
- ggml_time_init();
- llama_model * model = new llama_model;
- ggml_type memory_type = params.f16_kv ? GGML_TYPE_F16 : GGML_TYPE_F32;
- if (!llama_model_load(path_model, *model, model->vocab, params.n_ctx, params.n_batch, params.n_gpu_layers,
- params.main_gpu, params.tensor_split, params.low_vram, memory_type, params.use_mmap, params.use_mlock,
- params.vocab_only, params.progress_callback, params.progress_callback_user_data)) {
- delete model;
- fprintf(stderr, "%s: failed to load model\n", __func__);
- return nullptr;
- }
- return model;
- }
- void llama_free_model(struct llama_model * model) {
- delete model;
- }
- struct llama_context * llama_new_context_with_model(
- struct llama_model * model,
- struct llama_context_params params) {
- if (!model) {
- return nullptr;
- }
- llama_context * ctx = new llama_context(*model, model->vocab);
- if (params.seed == LLAMA_DEFAULT_SEED) {
- params.seed = time(NULL);
- }
- unsigned cur_percentage = 0;
- if (params.progress_callback == NULL) {
- params.progress_callback_user_data = &cur_percentage;
- params.progress_callback = [](float progress, void * ctx) {
- unsigned * cur_percentage_p = (unsigned *) ctx;
- unsigned percentage = (unsigned) (100 * progress);
- while (percentage > *cur_percentage_p) {
- *cur_percentage_p = percentage;
- fprintf(stderr, ".");
- fflush(stderr);
- if (percentage >= 100) {
- fprintf(stderr, "\n");
- }
- }
- };
- }
- ctx->rng = std::mt19937(params.seed);
- ctx->logits_all = params.logits_all;
- ggml_type memory_type = params.f16_kv ? GGML_TYPE_F16 : GGML_TYPE_F32;
- // reserve memory for context buffers
- if (!params.vocab_only) {
- if (!kv_cache_init(ctx->model.hparams, ctx->kv_self, memory_type, ctx->model.hparams.n_ctx, params.n_gpu_layers)) {
- fprintf(stderr, "%s: kv_cache_init() failed for self-attention cache\n", __func__);
- llama_free(ctx);
- return nullptr;
- }
- {
- const size_t memory_size = ggml_nbytes(ctx->kv_self.k) + ggml_nbytes(ctx->kv_self.v);
- fprintf(stderr, "%s: kv self size = %7.2f MB\n", __func__, memory_size / 1024.0 / 1024.0);
- }
- const auto & hparams = ctx->model.hparams;
- // resized during inference
- if (params.logits_all) {
- ctx->logits.reserve(hparams.n_ctx*hparams.n_vocab);
- } else {
- ctx->logits.reserve(hparams.n_vocab);
- }
- if (params.embedding){
- ctx->embedding.resize(hparams.n_embd);
- }
- ctx->buf_compute.resize(MEM_REQ_EVAL().at(ctx->model.type));
- ctx->buf_scratch[0].resize(MEM_REQ_SCRATCH0().at(ctx->model.type));
- ctx->buf_scratch[1].resize(MEM_REQ_SCRATCH1().at(ctx->model.type));
- }
- #ifdef GGML_USE_METAL
- if (params.n_gpu_layers > 0) {
- // this allocates all Metal resources and memory buffers
- ctx->ctx_metal = ggml_metal_init(1);
- void * data_ptr = NULL;
- size_t data_size = 0;
- if (params.use_mmap) {
- data_ptr = ctx->model.mapping->addr;
- data_size = ctx->model.mapping->size;
- } else {
- data_ptr = ggml_get_mem_buffer(ctx->model.ctx);
- data_size = ggml_get_mem_size (ctx->model.ctx);
- }
- const size_t max_size = ggml_get_max_tensor_size(ctx->model.ctx);
- printf("%s: max tensor size = %8.2f MB\n", __func__, max_size/1024.0/1024.0);
- #define LLAMA_METAL_CHECK_BUF(result) \
- if (!(result)) { \
- fprintf(stderr, "%s: failed to add buffer\n", __func__); \
- llama_free(ctx); \
- return NULL; \
- }
- LLAMA_METAL_CHECK_BUF(ggml_metal_add_buffer(ctx->ctx_metal, "data", data_ptr, data_size, max_size));
- LLAMA_METAL_CHECK_BUF(ggml_metal_add_buffer(ctx->ctx_metal, "eval", ctx->buf_compute.addr, ctx->buf_compute.size, 0));
- LLAMA_METAL_CHECK_BUF(ggml_metal_add_buffer(ctx->ctx_metal, "kv", ctx->kv_self.buf.addr, ctx->kv_self.buf.size, 0));
- LLAMA_METAL_CHECK_BUF(ggml_metal_add_buffer(ctx->ctx_metal, "scr0", ctx->buf_scratch[0].addr, ctx->buf_scratch[0].size, 0));
- LLAMA_METAL_CHECK_BUF(ggml_metal_add_buffer(ctx->ctx_metal, "scr1", ctx->buf_scratch[1].addr, ctx->buf_scratch[1].size, 0));
- #undef LLAMA_METAL_CHECK_BUF
- }
- #endif
- #ifdef GGML_USE_MPI
- ctx->ctx_mpi = ggml_mpi_init();
- if (ggml_mpi_rank(ctx->ctx_mpi) > 0) {
- // Enter a blocking eval loop with dummy input, letting rank=0 drive the process
- const std::vector<llama_token> tmp(ctx->model.hparams.n_ctx, llama_token_bos());
- while (!llama_eval(ctx, tmp.data(), tmp.size(), 0, 0)) {};
- llama_backend_free();
- exit(1);
- }
- #endif
- return ctx;
- }
- struct llama_context * llama_init_from_file(
- const char * path_model,
- struct llama_context_params params) {
- struct llama_model * model = llama_load_model_from_file(path_model, params);
- if (!model) {
- return nullptr;
- }
- struct llama_context * ctx = llama_new_context_with_model(model, params);
- ctx->model_owner = true;
- return ctx;
- }
- void llama_free(struct llama_context * ctx) {
- if (ctx->model_owner) {
- delete &ctx->model;
- }
- delete ctx;
- }
- int llama_model_quantize(
- const char * fname_inp,
- const char * fname_out,
- const llama_model_quantize_params *params) {
- try {
- llama_model_quantize_internal(fname_inp, fname_out, params);
- return 0;
- } catch (const std::exception & err) {
- fprintf(stderr, "%s: failed to quantize: %s\n", __func__, err.what());
- return 1;
- }
- }
- int llama_apply_lora_from_file_internal(const struct llama_model & model, const char * path_lora, const char * path_base_model, int n_threads) {
- fprintf(stderr, "%s: applying lora adapter from '%s' - please wait ...\n", __func__, path_lora);
- const int64_t t_start_lora_us = ggml_time_us();
- auto fin = std::ifstream(path_lora, std::ios::binary);
- if (!fin) {
- fprintf(stderr, "%s: failed to open '%s'\n", __func__, path_lora);
- return 1;
- }
- // verify magic and version
- {
- uint32_t magic;
- fin.read((char *) &magic, sizeof(magic));
- if (magic != LLAMA_FILE_MAGIC_GGLA) {
- fprintf(stderr, "%s: bad file magic\n", __func__);
- return 1;
- }
- uint32_t format_version;
- fin.read((char *) &format_version, sizeof(format_version));
- if (format_version != 1) {
- fprintf(stderr, "%s: unsupported file version\n", __func__ );
- return 1;
- }
- }
- int32_t lora_r;
- int32_t lora_alpha;
- fin.read((char *) &lora_r, sizeof(lora_r));
- fin.read((char *) &lora_alpha, sizeof(lora_alpha));
- float scaling = (float)lora_alpha / (float)lora_r;
- fprintf(stderr, "%s: r = %d, alpha = %d, scaling = %.2f\n", __func__, lora_r, lora_alpha, scaling);
- // create a temporary ggml context to store the lora tensors
- // todo: calculate size from biggest possible tensor
- std::vector<uint8_t> lora_buf(1024ull * 1024ull * 1024ull);
- struct ggml_init_params params;
- params.mem_size = lora_buf.size();
- params.mem_buffer = lora_buf.data();
- params.no_alloc = false;
- ggml_context * lora_ctx = ggml_init(params);
- std::unordered_map<std::string, struct ggml_tensor *> lora_tensors;
- // create a name -> tensor map of the model to accelerate lookups
- std::unordered_map<std::string, struct ggml_tensor*> model_tensors;
- for (const auto & kv: model.tensors_by_name) {
- model_tensors.insert(kv);
- }
- // load base model
- std::unique_ptr<llama_model_loader> model_loader;
- ggml_context * base_ctx = NULL;
- llama_buffer base_buf;
- if (path_base_model) {
- fprintf(stderr, "%s: loading base model from '%s'\n", __func__, path_base_model);
- model_loader.reset(new llama_model_loader(path_base_model, /*use_mmap*/ true));
- size_t ctx_size;
- size_t mmapped_size;
- model_loader->calc_sizes(&ctx_size, &mmapped_size);
- base_buf.resize(ctx_size);
- ggml_init_params base_params;
- base_params.mem_size = base_buf.size;
- base_params.mem_buffer = base_buf.addr;
- base_params.no_alloc = model_loader->use_mmap;
- base_ctx = ggml_init(base_params);
- model_loader->ggml_ctx = base_ctx;
- // maybe this should in llama_model_loader
- if (model_loader->use_mmap) {
- model_loader->mapping.reset(new llama_mmap(&model_loader->file_loader->file, /* prefetch */ 0, ggml_is_numa()));
- }
- }
- // read tensors and apply
- bool warned = false;
- int n_tensors = 0;
- std::vector<uint8_t> work_buffer;
- while (true) {
- int32_t n_dims;
- int32_t length;
- int32_t ftype;
- fin.read(reinterpret_cast<char *>(&n_dims), sizeof(n_dims));
- fin.read(reinterpret_cast<char *>(&length), sizeof(length));
- fin.read(reinterpret_cast<char *>(&ftype), sizeof(ftype));
- if (fin.eof()) {
- break;
- }
- int32_t ne[2] = { 1, 1 };
- for (int i = 0; i < n_dims; ++i) {
- fin.read(reinterpret_cast<char *>(&ne[i]), sizeof(ne[i]));
- }
- std::string name;
- {
- char buf[1024];
- fin.read(buf, length);
- name = std::string(buf, length);
- }
- // check for lora suffix and get the type of tensor
- const std::string lora_suffix = ".lora";
- size_t pos = name.rfind(lora_suffix);
- if (pos == std::string::npos) {
- fprintf(stderr, "%s: error: '%s' is not a lora tensor\n", __func__, name.c_str());
- return 1;
- }
- std::string lora_type = name.substr(pos + lora_suffix.length());
- std::string base_name = name;
- base_name.erase(pos);
- // fprintf(stderr, "%s: %s => %s (lora type %s) ", __func__, name.c_str(),base_name.c_str(), lora_type.c_str());
- if (model_tensors.find(base_name) == model_tensors.end()) {
- fprintf(stderr, "%s: unknown tensor '%s' in lora adapter\n", __func__, name.data());
- return 1;
- }
- // create ggml tensor
- ggml_type wtype;
- switch (ftype) {
- case 0: wtype = GGML_TYPE_F32; break;
- case 1: wtype = GGML_TYPE_F16; break;
- default:
- {
- fprintf(stderr, "%s: invalid tensor data type '%d'\n",
- __func__, ftype);
- return false;
- }
- }
- ggml_tensor * lora_tensor;
- if (n_dims == 2) {
- lora_tensor = ggml_new_tensor_2d(lora_ctx, wtype, ne[0], ne[1]);
- }
- else {
- fprintf(stderr, "%s: unsupported tensor dimension %d\n", __func__, n_dims);
- return 1;
- }
- ggml_set_name(lora_tensor, "lora_tensor");
- // load tensor data
- size_t offset = fin.tellg();
- size_t tensor_data_size = ggml_nbytes(lora_tensor);
- offset = (offset + 31) & -32;
- fin.seekg(offset);
- fin.read((char*)lora_tensor->data, tensor_data_size);
- lora_tensors[name] = lora_tensor;
- // check if we have both A and B tensors and apply
- if (lora_tensors.find(base_name + ".loraA") != lora_tensors.end() &&
- lora_tensors.find(base_name + ".loraB") != lora_tensors.end()) {
- ggml_tensor * dest_t = model_tensors[base_name];
- offload_func_t offload_func = llama_nop;
- offload_func_t offload_func_force_inplace = llama_nop;
- #ifdef GGML_USE_CUBLAS
- if (dest_t->backend == GGML_BACKEND_GPU || dest_t->backend == GGML_BACKEND_GPU_SPLIT) {
- if (dest_t->type != GGML_TYPE_F16) {
- throw std::runtime_error(format(
- "%s: error: the simultaneous use of LoRAs and GPU acceleration is only supported for f16 models", __func__));
- }
- offload_func = ggml_cuda_assign_buffers;
- offload_func_force_inplace = ggml_cuda_assign_buffers_force_inplace;
- }
- #endif // GGML_USE_CUBLAS
- ggml_tensor * base_t;
- if (model_loader) {
- // load from base model
- if (model_loader->tensors_map.name_to_idx.find(base_name) == model_loader->tensors_map.name_to_idx.end()) {
- fprintf(stderr, "%s: error: tensor '%s' not found in base model\n", __func__, base_name.c_str());
- return 1;
- }
- size_t idx = model_loader->tensors_map.name_to_idx[base_name];
- llama_load_tensor & lt = model_loader->tensors_map.tensors[idx];
- base_t = model_loader->get_tensor(base_name, { (uint32_t)dest_t->ne[0], (uint32_t)dest_t->ne[1] }, GGML_BACKEND_CPU);
- lt.data = (uint8_t *) lt.ggml_tensor->data;
- model_loader->load_data_for(lt);
- lt.ggml_tensor->data = lt.data;
- }
- else {
- base_t = dest_t;
- }
- if (ggml_is_quantized(base_t->type)) {
- if (!warned) {
- fprintf(stderr, "%s: warning: using a lora adapter with a quantized model may result in poor quality, "
- "use a f16 or f32 base model with --lora-base\n", __func__);
- warned = true;
- }
- }
- ggml_tensor * loraA = lora_tensors[base_name + ".loraA"];
- GGML_ASSERT(loraA->type == GGML_TYPE_F32);
- ggml_set_name(loraA, "loraA");
- ggml_tensor * loraB = lora_tensors[base_name + ".loraB"];
- GGML_ASSERT(loraB->type == GGML_TYPE_F32);
- ggml_set_name(loraB, "loraB");
- if (base_t->ne[0] != loraA->ne[1] || base_t->ne[1] != loraB->ne[1]) {
- fprintf(stderr, "%s: incompatible tensor dimensions (%" PRId64 " and %" PRId64 ");"
- " are you sure that this adapter is for this model?\n", __func__, base_t->ne[0], loraA->ne[1]);
- return 1;
- }
- // w = w + BA*s
- ggml_tensor * BA = ggml_mul_mat(lora_ctx, loraA, loraB);
- offload_func(BA);
- ggml_set_name(BA, "BA");
- if (scaling != 1.0f) {
- ggml_tensor * scale_tensor = ggml_new_f32(lora_ctx, scaling);
- ggml_set_name(scale_tensor, "scale_tensor");
- BA = ggml_scale_inplace(lora_ctx, BA, scale_tensor);
- offload_func(BA);
- ggml_set_name(BA, "BA_scaled");
- }
- ggml_tensor * r;
- if (base_t == dest_t) {
- r = ggml_add_inplace(lora_ctx, dest_t, BA);
- offload_func_force_inplace(r);
- ggml_set_name(r, "r_add_inplace");
- }
- else {
- r = ggml_add(lora_ctx, base_t, BA);
- offload_func(r);
- ggml_set_name(r, "r_add");
- r = ggml_cpy(lora_ctx, r, dest_t);
- offload_func(r);
- ggml_set_name(r, "r_cpy");
- }
- struct ggml_cgraph gf = ggml_build_forward(r);
- ggml_graph_compute_helper(work_buffer, &gf, n_threads);
- // we won't need these tensors again, reset the context to save memory
- ggml_free(lora_ctx);
- lora_ctx = ggml_init(params);
- lora_tensors.clear();
- n_tensors++;
- if (n_tensors % 4 == 0) {
- fprintf(stderr, ".");
- }
- }
- }
- // TODO: this should be in a destructor, it will leak on failure
- ggml_free(lora_ctx);
- if (base_ctx) {
- ggml_free(base_ctx);
- }
- const int64_t t_lora_us = ggml_time_us() - t_start_lora_us;
- fprintf(stderr, " done (%.2f ms)\n", t_lora_us / 1000.0);
- return 0;
- }
- int llama_apply_lora_from_file(struct llama_context * ctx, const char * path_lora, const char * path_base_model, int n_threads) {
- try {
- return llama_apply_lora_from_file_internal(ctx->model, path_lora, path_base_model, n_threads);
- } catch (const std::exception & err) {
- fprintf(stderr, "%s: failed to apply lora adapter: %s\n", __func__, err.what());
- return 1;
- }
- }
- int llama_model_apply_lora_from_file(const struct llama_model * model, const char * path_lora, const char * path_base_model, int n_threads) {
- try {
- return llama_apply_lora_from_file_internal(*model, path_lora, path_base_model, n_threads);
- } catch (const std::exception & err) {
- fprintf(stderr, "%s: failed to apply lora adapter: %s\n", __func__, err.what());
- return 1;
- }
- }
- int llama_get_kv_cache_token_count(const struct llama_context * ctx) {
- return ctx->kv_self.n;
- }
- #define LLAMA_MAX_RNG_STATE (64*1024)
- void llama_set_rng_seed(struct llama_context * ctx, uint32_t seed) {
- if (seed == LLAMA_DEFAULT_SEED) {
- seed = time(NULL);
- }
- ctx->rng.seed(seed);
- }
- // Returns the *maximum* size of the state
- size_t llama_get_state_size(const struct llama_context * ctx) {
- // we don't know size of rng until we actually serialize it. so reserve more than enough memory for its serialized state.
- // for reference, std::mt19937(1337) serializes to 6701 bytes.
- const size_t s_rng_size = sizeof(size_t);
- const size_t s_rng = LLAMA_MAX_RNG_STATE;
- const size_t s_logits_capacity = sizeof(size_t);
- const size_t s_logits_size = sizeof(size_t);
- const size_t s_logits = ctx->logits.capacity() * sizeof(float);
- const size_t s_embedding_size = sizeof(size_t);
- const size_t s_embedding = ctx->embedding.size() * sizeof(float);
- const size_t s_kv_size = sizeof(size_t);
- const size_t s_kv_ntok = sizeof(int);
- const size_t s_kv = ctx->kv_self.buf.size;
- const size_t s_total = (
- + s_rng_size
- + s_rng
- + s_logits_capacity
- + s_logits_size
- + s_logits
- + s_embedding_size
- + s_embedding
- + s_kv_size
- + s_kv_ntok
- + s_kv
- );
- return s_total;
- }
- // Copies the state to the specified destination address
- size_t llama_copy_state_data(struct llama_context * ctx, uint8_t * dst) {
- uint8_t * out = dst;
- // copy rng
- {
- std::stringstream rng_ss;
- rng_ss << ctx->rng;
- const size_t rng_size = rng_ss.str().size();
- char rng_buf[LLAMA_MAX_RNG_STATE];
- memset(&rng_buf[0], 0, LLAMA_MAX_RNG_STATE);
- memcpy(&rng_buf[0], rng_ss.str().data(), rng_ss.str().size());
- memcpy(out, &rng_size, sizeof(rng_size)); out += sizeof(rng_size);
- memcpy(out, &rng_buf[0], LLAMA_MAX_RNG_STATE); out += LLAMA_MAX_RNG_STATE;
- }
- // copy logits
- {
- const size_t logits_cap = ctx->logits.capacity();
- const size_t logits_size = ctx->logits.size();
- memcpy(out, &logits_cap, sizeof(logits_cap)); out += sizeof(logits_cap);
- memcpy(out, &logits_size, sizeof(logits_size)); out += sizeof(logits_size);
- if (logits_size) {
- memcpy(out, ctx->logits.data(), logits_size * sizeof(float));
- }
- out += logits_cap * sizeof(float);
- }
- // copy embeddings
- {
- const size_t embedding_size = ctx->embedding.size();
- memcpy(out, &embedding_size, sizeof(embedding_size)); out += sizeof(embedding_size);
- if (embedding_size) {
- memcpy(out, ctx->embedding.data(), embedding_size * sizeof(float));
- out += embedding_size * sizeof(float);
- }
- }
- // copy kv cache
- {
- const auto & kv_self = ctx->kv_self;
- const auto & hparams = ctx->model.hparams;
- const int n_layer = hparams.n_layer;
- const int n_embd = hparams.n_embd;
- const int n_ctx = hparams.n_ctx;
- const size_t kv_size = kv_self.buf.size;
- const int kv_ntok = llama_get_kv_cache_token_count(ctx);
- memcpy(out, &kv_size, sizeof(kv_size)); out += sizeof(kv_size);
- memcpy(out, &kv_ntok, sizeof(kv_ntok)); out += sizeof(kv_ntok);
- if (kv_size) {
- const size_t elt_size = ggml_element_size(kv_self.k);
- ggml_context * cpy_ctx = ggml_init({ 4096, NULL, /* no_alloc */ true });
- ggml_cgraph gf{};
- ggml_tensor * kout3d = ggml_new_tensor_3d(cpy_ctx, kv_self.k->type, n_embd, kv_ntok, n_layer);
- kout3d->data = out;
- out += ggml_nbytes(kout3d);
- ggml_tensor * vout3d = ggml_new_tensor_3d(cpy_ctx, kv_self.v->type, kv_ntok, n_embd, n_layer);
- vout3d->data = out;
- out += ggml_nbytes(vout3d);
- ggml_tensor * k3d = ggml_view_3d(cpy_ctx, kv_self.k,
- n_embd, kv_ntok, n_layer,
- elt_size*n_embd, elt_size*n_embd*n_ctx, 0);
- ggml_tensor * v3d = ggml_view_3d(cpy_ctx, kv_self.v,
- kv_ntok, n_embd, n_layer,
- elt_size*n_ctx, elt_size*n_ctx*n_embd, 0);
- ggml_build_forward_expand(&gf, ggml_cpy(cpy_ctx, k3d, kout3d));
- ggml_build_forward_expand(&gf, ggml_cpy(cpy_ctx, v3d, vout3d));
- ggml_graph_compute_helper(ctx->work_buffer, &gf, /*n_threads*/ 1);
- ggml_free(cpy_ctx);
- }
- }
- const size_t written = out - dst;
- const size_t max_size = llama_get_state_size(ctx);
- LLAMA_ASSERT(written <= max_size);
- return written;
- }
- // Sets the state reading from the specified source address
- size_t llama_set_state_data(struct llama_context * ctx, uint8_t * src) {
- uint8_t * inp = src;
- // set rng
- {
- size_t rng_size;
- char rng_buf[LLAMA_MAX_RNG_STATE];
- memcpy(&rng_size, inp, sizeof(rng_size)); inp += sizeof(rng_size);
- memcpy(&rng_buf[0], inp, LLAMA_MAX_RNG_STATE); inp += LLAMA_MAX_RNG_STATE;
- std::stringstream rng_ss;
- rng_ss.str(std::string(&rng_buf[0], rng_size));
- rng_ss >> ctx->rng;
- LLAMA_ASSERT(rng_ss.fail() == false);
- }
- // set logits
- {
- size_t logits_cap;
- size_t logits_size;
- memcpy(&logits_cap, inp, sizeof(logits_cap)); inp += sizeof(logits_cap);
- memcpy(&logits_size, inp, sizeof(logits_size)); inp += sizeof(logits_size);
- LLAMA_ASSERT(ctx->logits.capacity() == logits_cap);
- if (logits_size) {
- ctx->logits.resize(logits_size);
- memcpy(ctx->logits.data(), inp, logits_size * sizeof(float));
- }
- inp += logits_cap * sizeof(float);
- }
- // set embeddings
- {
- size_t embedding_size;
- memcpy(&embedding_size, inp, sizeof(embedding_size)); inp += sizeof(embedding_size);
- LLAMA_ASSERT(ctx->embedding.capacity() == embedding_size);
- if (embedding_size) {
- memcpy(ctx->embedding.data(), inp, embedding_size * sizeof(float));
- inp += embedding_size * sizeof(float);
- }
- }
- // set kv cache
- {
- const auto & kv_self = ctx->kv_self;
- const auto & hparams = ctx->model.hparams;
- const int n_layer = hparams.n_layer;
- const int n_embd = hparams.n_embd;
- const int n_ctx = hparams.n_ctx;
- size_t kv_size;
- int kv_ntok;
- memcpy(&kv_size, inp, sizeof(kv_size)); inp += sizeof(kv_size);
- memcpy(&kv_ntok, inp, sizeof(kv_ntok)); inp += sizeof(kv_ntok);
- if (kv_size) {
- LLAMA_ASSERT(kv_self.buf.size == kv_size);
- const size_t elt_size = ggml_element_size(kv_self.k);
- ggml_context * cpy_ctx = ggml_init({ 4096, NULL, /* no_alloc */ true });
- ggml_cgraph gf{};
- ggml_tensor * kin3d = ggml_new_tensor_3d(cpy_ctx, kv_self.k->type, n_embd, kv_ntok, n_layer);
- kin3d->data = (void *) inp;
- inp += ggml_nbytes(kin3d);
- ggml_tensor * vin3d = ggml_new_tensor_3d(cpy_ctx, kv_self.v->type, kv_ntok, n_embd, n_layer);
- vin3d->data = (void *) inp;
- inp += ggml_nbytes(vin3d);
- ggml_tensor * k3d = ggml_view_3d(cpy_ctx, kv_self.k,
- n_embd, kv_ntok, n_layer,
- elt_size*n_embd, elt_size*n_embd*n_ctx, 0);
- ggml_tensor * v3d = ggml_view_3d(cpy_ctx, kv_self.v,
- kv_ntok, n_embd, n_layer,
- elt_size*n_ctx, elt_size*n_ctx*n_embd, 0);
- ggml_build_forward_expand(&gf, ggml_cpy(cpy_ctx, kin3d, k3d));
- ggml_build_forward_expand(&gf, ggml_cpy(cpy_ctx, vin3d, v3d));
- ggml_graph_compute_helper(ctx->work_buffer, &gf, /*n_threads*/ 1);
- ggml_free(cpy_ctx);
- }
- ctx->kv_self.n = kv_ntok;
- }
- const size_t nread = inp - src;
- const size_t max_size = llama_get_state_size(ctx);
- LLAMA_ASSERT(nread <= max_size);
- return nread;
- }
- static bool llama_load_session_file_internal(struct llama_context * ctx, const char * path_session, llama_token * tokens_out, size_t n_token_capacity, size_t * n_token_count_out) {
- llama_file file(path_session, "rb");
- // sanity checks
- {
- const uint32_t magic = file.read_u32();
- const uint32_t version = file.read_u32();
- if (magic != LLAMA_SESSION_MAGIC || version != LLAMA_SESSION_VERSION) {
- fprintf(stderr, "%s : unknown (magic, version) for session file: %08x, %08x\n", __func__, magic, version);
- return false;
- }
- llama_hparams session_hparams;
- file.read_raw(&session_hparams, sizeof(llama_hparams));
- if (session_hparams != ctx->model.hparams) {
- fprintf(stderr, "%s : model hparams didn't match from session file!\n", __func__);
- return false;
- }
- }
- // load the prompt
- {
- const uint32_t n_token_count = file.read_u32();
- if (n_token_count > n_token_capacity) {
- fprintf(stderr, "%s : token count in session file exceeded capacity! %u > %zu\n", __func__, n_token_count, n_token_capacity);
- return false;
- }
- file.read_raw(tokens_out, sizeof(llama_token) * n_token_count);
- *n_token_count_out = n_token_count;
- }
- // restore the context state
- {
- const size_t n_state_size_cur = file.size - file.tell();
- const size_t n_state_size_max = llama_get_state_size(ctx);
- if (n_state_size_cur > n_state_size_max) {
- fprintf(stderr, "%s : the state size in session file is too big! max %zu, got %zu\n", __func__, n_state_size_max, n_state_size_cur);
- return false;
- }
- std::vector<uint8_t> state_data(n_state_size_max);
- file.read_raw(state_data.data(), n_state_size_cur);
- llama_set_state_data(ctx, state_data.data());
- }
- return true;
- }
- bool llama_load_session_file(struct llama_context * ctx, const char * path_session, llama_token * tokens_out, size_t n_token_capacity, size_t * n_token_count_out) {
- try {
- return llama_load_session_file_internal(ctx, path_session, tokens_out, n_token_capacity, n_token_count_out);
- } catch (const std::exception & err) {
- fprintf(stderr, "error loading session file: %s\n", err.what());
- return false;
- }
- }
- bool llama_save_session_file(struct llama_context * ctx, const char * path_session, const llama_token * tokens, size_t n_token_count) {
- llama_file file(path_session, "wb");
- file.write_u32(LLAMA_SESSION_MAGIC);
- file.write_u32(LLAMA_SESSION_VERSION);
- file.write_raw(&ctx->model.hparams, sizeof(llama_hparams));
- // save the prompt
- file.write_u32((uint32_t) n_token_count);
- file.write_raw(tokens, sizeof(llama_token) * n_token_count);
- // save the context state
- {
- const size_t n_state_size_max = llama_get_state_size(ctx);
- std::vector<uint8_t> state_data(n_state_size_max);
- const size_t n_state_size_cur = llama_copy_state_data(ctx, state_data.data());
- file.write_raw(state_data.data(), n_state_size_cur);
- }
- return true;
- }
- int llama_eval(
- struct llama_context * ctx,
- const llama_token * tokens,
- int n_tokens,
- int n_past,
- int n_threads) {
- if (!llama_eval_internal(*ctx, tokens, nullptr, n_tokens, n_past, n_threads, nullptr)) {
- fprintf(stderr, "%s: failed to eval\n", __func__);
- return 1;
- }
- // get a more accurate load time, upon first eval
- // TODO: fix this
- if (!ctx->has_evaluated_once) {
- ctx->t_load_us = ggml_time_us() - ctx->t_start_us;
- ctx->has_evaluated_once = true;
- }
- return 0;
- }
- int llama_eval_embd(
- struct llama_context * ctx,
- const float * embd,
- int n_tokens,
- int n_past,
- int n_threads) {
- if (!llama_eval_internal(*ctx, nullptr, embd, n_tokens, n_past, n_threads, nullptr)) {
- fprintf(stderr, "%s: failed to eval\n", __func__);
- return 1;
- }
- // get a more accurate load time, upon first eval
- // TODO: fix this
- if (!ctx->has_evaluated_once) {
- ctx->t_load_us = ggml_time_us() - ctx->t_start_us;
- ctx->has_evaluated_once = true;
- }
- return 0;
- }
- int llama_eval_export(struct llama_context * ctx, const char * fname) {
- const int n_batch = 1;
- const int n_ctx = 512 - n_batch;
- const std::vector<llama_token> tmp(n_batch, llama_token_bos());
- if (!llama_eval_internal(*ctx, tmp.data(), nullptr, tmp.size(), n_ctx, 1, fname)) {
- fprintf(stderr, "%s: failed to eval\n", __func__);
- return 1;
- }
- return 0;
- }
- int llama_tokenize(
- struct llama_context * ctx,
- const char * text,
- llama_token * tokens,
- int n_max_tokens,
- bool add_bos) {
- auto res = llama_tokenize(ctx->vocab, text, add_bos);
- if (n_max_tokens < (int) res.size()) {
- fprintf(stderr, "%s: too many tokens\n", __func__);
- return -((int) res.size());
- }
- for (size_t i = 0; i < res.size(); i++) {
- tokens[i] = res[i];
- }
- return res.size();
- }
- int llama_n_vocab(const struct llama_context * ctx) {
- return ctx->vocab.id_to_token.size();
- }
- int llama_n_ctx(const struct llama_context * ctx) {
- return ctx->model.hparams.n_ctx;
- }
- int llama_n_embd(const struct llama_context * ctx) {
- return ctx->model.hparams.n_embd;
- }
- int llama_get_vocab(
- const struct llama_context * ctx,
- const char * * strings,
- float * scores,
- int capacity) {
- int n = std::min(capacity, (int) ctx->vocab.id_to_token.size());
- for (int i = 0; i<n; ++i) {
- strings[i] = ctx->vocab.id_to_token[i].tok.c_str();
- scores[i] = ctx->vocab.id_to_token[i].score;
- }
- return n;
- }
- float * llama_get_logits(struct llama_context * ctx) {
- return ctx->logits.data();
- }
- float * llama_get_embeddings(struct llama_context * ctx) {
- return ctx->embedding.data();
- }
- const char * llama_token_to_str(const struct llama_context * ctx, llama_token token) {
- if (token >= llama_n_vocab(ctx)) {
- return nullptr;
- }
- return ctx->vocab.id_to_token[token].tok.c_str();
- }
- llama_token llama_token_bos() {
- return 1;
- }
- llama_token llama_token_eos() {
- return 2;
- }
- llama_token llama_token_nl() {
- return 13;
- }
- struct llama_timings llama_get_timings(struct llama_context * ctx) {
- struct llama_timings result = {
- /*.t_start_ms =*/ 1e-3 * ctx->t_start_us,
- /*.t_end_ms =*/ 1.00 * ggml_time_ms(),
- /*.t_load_ms =*/ 1e-3 * ctx->t_load_us,
- /*.t_sample_ms =*/ 1e-3 * ctx->t_sample_us,
- /*.t_p_eval_ms =*/ 1e-3 * ctx->t_p_eval_us,
- /*.t_eval_ms =*/ 1e-3 * ctx->t_eval_us,
- /*.n_sample =*/ std::max(1, ctx->n_sample),
- /*.n_p_eval =*/ std::max(1, ctx->n_p_eval),
- /*.n_eval =*/ std::max(1, ctx->n_eval),
- };
- return result;
- }
- void llama_print_timings(struct llama_context * ctx) {
- const llama_timings timings = llama_get_timings(ctx);
- fprintf(stderr, "\n");
- fprintf(stderr, "%s: load time = %8.2f ms\n", __func__, timings.t_load_ms);
- fprintf(stderr, "%s: sample time = %8.2f ms / %5d runs (%8.2f ms per token, %8.2f tokens per second)\n",
- __func__, timings.t_sample_ms, timings.n_sample, timings.t_sample_ms / timings.n_sample, 1e3 / timings.t_sample_ms * timings.n_sample);
- fprintf(stderr, "%s: prompt eval time = %8.2f ms / %5d tokens (%8.2f ms per token, %8.2f tokens per second)\n",
- __func__, timings.t_p_eval_ms, timings.n_p_eval, timings.t_p_eval_ms / timings.n_p_eval, 1e3 / timings.t_p_eval_ms * timings.n_p_eval);
- fprintf(stderr, "%s: eval time = %8.2f ms / %5d runs (%8.2f ms per token, %8.2f tokens per second)\n",
- __func__, timings.t_eval_ms, timings.n_eval, timings.t_eval_ms / timings.n_eval, 1e3 / timings.t_eval_ms * timings.n_eval);
- fprintf(stderr, "%s: total time = %8.2f ms\n", __func__, (timings.t_end_ms - timings.t_start_ms));
- }
- void llama_reset_timings(struct llama_context * ctx) {
- ctx->t_start_us = ggml_time_us();
- ctx->t_sample_us = ctx->n_sample = 0;
- ctx->t_eval_us = ctx->n_eval = 0;
- ctx->t_p_eval_us = ctx->n_p_eval = 0;
- }
- const char * llama_print_system_info(void) {
- static std::string s;
- s = "";
- s += "AVX = " + std::to_string(ggml_cpu_has_avx()) + " | ";
- s += "AVX2 = " + std::to_string(ggml_cpu_has_avx2()) + " | ";
- s += "AVX512 = " + std::to_string(ggml_cpu_has_avx512()) + " | ";
- s += "AVX512_VBMI = " + std::to_string(ggml_cpu_has_avx512_vbmi()) + " | ";
- s += "AVX512_VNNI = " + std::to_string(ggml_cpu_has_avx512_vnni()) + " | ";
- s += "FMA = " + std::to_string(ggml_cpu_has_fma()) + " | ";
- s += "NEON = " + std::to_string(ggml_cpu_has_neon()) + " | ";
- s += "ARM_FMA = " + std::to_string(ggml_cpu_has_arm_fma()) + " | ";
- s += "F16C = " + std::to_string(ggml_cpu_has_f16c()) + " | ";
- s += "FP16_VA = " + std::to_string(ggml_cpu_has_fp16_va()) + " | ";
- s += "WASM_SIMD = " + std::to_string(ggml_cpu_has_wasm_simd()) + " | ";
- s += "BLAS = " + std::to_string(ggml_cpu_has_blas()) + " | ";
- s += "SSE3 = " + std::to_string(ggml_cpu_has_sse3()) + " | ";
- s += "VSX = " + std::to_string(ggml_cpu_has_vsx()) + " | ";
- return s.c_str();
- }
- // For internal test use
- const std::vector<std::pair<std::string, struct ggml_tensor *>>& llama_internal_get_tensor_map(struct llama_context * ctx) {
- return ctx->model.tensors_by_name;
- }
|