123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103 |
- package llm
- import (
- "context"
- "fmt"
- "log"
- "os"
- "runtime"
- "github.com/pbnjay/memory"
- "github.com/jmorganca/ollama/api"
- )
- type LLM interface {
- Predict(context.Context, []int, string, func(api.GenerateResponse)) error
- Embedding(context.Context, string) ([]float64, error)
- Encode(context.Context, string) ([]int, error)
- Decode(context.Context, []int) (string, error)
- SetOptions(api.Options)
- Close()
- Ping(context.Context) error
- }
- func New(workDir, model string, adapters []string, opts api.Options) (LLM, error) {
- if _, err := os.Stat(model); err != nil {
- return nil, err
- }
- f, err := os.Open(model)
- if err != nil {
- return nil, err
- }
- defer f.Close()
- ggml, err := DecodeGGML(f)
- if err != nil {
- return nil, err
- }
- if runtime.GOOS == "darwin" {
- switch ggml.FileType() {
- case "Q8_0":
- if ggml.Name() != "gguf" && opts.NumGPU != 0 {
- // GGML Q8_0 do not support Metal API and will
- // cause the runner to segmentation fault so disable GPU
- log.Printf("WARNING: GPU disabled for F32, Q5_0, Q5_1, and Q8_0")
- opts.NumGPU = 0
- }
- case "F32", "Q5_0", "Q5_1":
- if opts.NumGPU != 0 {
- // F32, Q5_0, Q5_1, and Q8_0 do not support Metal API and will
- // cause the runner to segmentation fault so disable GPU
- log.Printf("WARNING: GPU disabled for F32, Q5_0, Q5_1, and Q8_0")
- opts.NumGPU = 0
- }
- }
- }
- totalResidentMemory := memory.TotalMemory()
- switch ggml.ModelType() {
- case "3B", "7B":
- if ggml.FileType() == "F16" && totalResidentMemory < 16*1000*1000 {
- return nil, fmt.Errorf("F16 model requires at least 16 GB of memory")
- } else if totalResidentMemory < 8*1000*1000 {
- return nil, fmt.Errorf("model requires at least 8 GB of memory")
- }
- case "13B":
- if ggml.FileType() == "F16" && totalResidentMemory < 32*1000*1000 {
- return nil, fmt.Errorf("F16 model requires at least 32 GB of memory")
- } else if totalResidentMemory < 16*1000*1000 {
- return nil, fmt.Errorf("model requires at least 16 GB of memory")
- }
- case "30B", "34B", "40B":
- if ggml.FileType() == "F16" && totalResidentMemory < 64*1000*1000 {
- return nil, fmt.Errorf("F16 model requires at least 64 GB of memory")
- } else if totalResidentMemory < 32*1000*1000 {
- return nil, fmt.Errorf("model requires at least 32 GB of memory")
- }
- case "65B", "70B":
- if ggml.FileType() == "F16" && totalResidentMemory < 128*1000*1000 {
- return nil, fmt.Errorf("F16 model requires at least 128 GB of memory")
- } else if totalResidentMemory < 64*1000*1000 {
- return nil, fmt.Errorf("model requires at least 64 GB of memory")
- }
- case "180B":
- if ggml.FileType() == "F16" && totalResidentMemory < 512*1000*1000 {
- return nil, fmt.Errorf("F16 model requires at least 512GB of memory")
- } else if totalResidentMemory < 128*1000*1000 {
- return nil, fmt.Errorf("model requires at least 128GB of memory")
- }
- }
- switch ggml.Name() {
- case "gguf":
- opts.NumGQA = 0 // TODO: remove this when llama.cpp runners differ enough to need separate newLlama functions
- return newLlama(model, adapters, chooseRunners(workDir, "gguf"), ggml.NumLayers(), opts)
- case "ggml", "ggmf", "ggjt", "ggla":
- return newLlama(model, adapters, chooseRunners(workDir, "ggml"), ggml.NumLayers(), opts)
- default:
- return nil, fmt.Errorf("unknown ggml type: %s", ggml.ModelFamily())
- }
- }
|