llm.go 3.2 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103
  1. package llm
  2. import (
  3. "context"
  4. "fmt"
  5. "log"
  6. "os"
  7. "runtime"
  8. "github.com/pbnjay/memory"
  9. "github.com/jmorganca/ollama/api"
  10. )
  11. type LLM interface {
  12. Predict(context.Context, []int, string, func(api.GenerateResponse)) error
  13. Embedding(context.Context, string) ([]float64, error)
  14. Encode(context.Context, string) ([]int, error)
  15. Decode(context.Context, []int) (string, error)
  16. SetOptions(api.Options)
  17. Close()
  18. Ping(context.Context) error
  19. }
  20. func New(workDir, model string, adapters []string, opts api.Options) (LLM, error) {
  21. if _, err := os.Stat(model); err != nil {
  22. return nil, err
  23. }
  24. f, err := os.Open(model)
  25. if err != nil {
  26. return nil, err
  27. }
  28. defer f.Close()
  29. ggml, err := DecodeGGML(f)
  30. if err != nil {
  31. return nil, err
  32. }
  33. if runtime.GOOS == "darwin" {
  34. switch ggml.FileType() {
  35. case "Q8_0":
  36. if ggml.Name() != "gguf" && opts.NumGPU != 0 {
  37. // GGML Q8_0 do not support Metal API and will
  38. // cause the runner to segmentation fault so disable GPU
  39. log.Printf("WARNING: GPU disabled for F32, Q5_0, Q5_1, and Q8_0")
  40. opts.NumGPU = 0
  41. }
  42. case "F32", "Q5_0", "Q5_1":
  43. if opts.NumGPU != 0 {
  44. // F32, Q5_0, Q5_1, and Q8_0 do not support Metal API and will
  45. // cause the runner to segmentation fault so disable GPU
  46. log.Printf("WARNING: GPU disabled for F32, Q5_0, Q5_1, and Q8_0")
  47. opts.NumGPU = 0
  48. }
  49. }
  50. }
  51. totalResidentMemory := memory.TotalMemory()
  52. switch ggml.ModelType() {
  53. case "3B", "7B":
  54. if ggml.FileType() == "F16" && totalResidentMemory < 16*1000*1000 {
  55. return nil, fmt.Errorf("F16 model requires at least 16 GB of memory")
  56. } else if totalResidentMemory < 8*1000*1000 {
  57. return nil, fmt.Errorf("model requires at least 8 GB of memory")
  58. }
  59. case "13B":
  60. if ggml.FileType() == "F16" && totalResidentMemory < 32*1000*1000 {
  61. return nil, fmt.Errorf("F16 model requires at least 32 GB of memory")
  62. } else if totalResidentMemory < 16*1000*1000 {
  63. return nil, fmt.Errorf("model requires at least 16 GB of memory")
  64. }
  65. case "30B", "34B", "40B":
  66. if ggml.FileType() == "F16" && totalResidentMemory < 64*1000*1000 {
  67. return nil, fmt.Errorf("F16 model requires at least 64 GB of memory")
  68. } else if totalResidentMemory < 32*1000*1000 {
  69. return nil, fmt.Errorf("model requires at least 32 GB of memory")
  70. }
  71. case "65B", "70B":
  72. if ggml.FileType() == "F16" && totalResidentMemory < 128*1000*1000 {
  73. return nil, fmt.Errorf("F16 model requires at least 128 GB of memory")
  74. } else if totalResidentMemory < 64*1000*1000 {
  75. return nil, fmt.Errorf("model requires at least 64 GB of memory")
  76. }
  77. case "180B":
  78. if ggml.FileType() == "F16" && totalResidentMemory < 512*1000*1000 {
  79. return nil, fmt.Errorf("F16 model requires at least 512GB of memory")
  80. } else if totalResidentMemory < 128*1000*1000 {
  81. return nil, fmt.Errorf("model requires at least 128GB of memory")
  82. }
  83. }
  84. switch ggml.Name() {
  85. case "gguf":
  86. opts.NumGQA = 0 // TODO: remove this when llama.cpp runners differ enough to need separate newLlama functions
  87. return newLlama(model, adapters, chooseRunners(workDir, "gguf"), ggml.NumLayers(), opts)
  88. case "ggml", "ggmf", "ggjt", "ggla":
  89. return newLlama(model, adapters, chooseRunners(workDir, "ggml"), ggml.NumLayers(), opts)
  90. default:
  91. return nil, fmt.Errorf("unknown ggml type: %s", ggml.ModelFamily())
  92. }
  93. }