12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091 |
- package llm
- import (
- "context"
- "fmt"
- "log"
- "os"
- "runtime"
- "github.com/pbnjay/memory"
- "github.com/jmorganca/ollama/api"
- "github.com/jmorganca/ollama/format"
- )
- type LLM interface {
- Predict(context.Context, []int, string, string, func(api.GenerateResponse)) error
- Embedding(context.Context, string) ([]float64, error)
- Encode(context.Context, string) ([]int, error)
- Decode(context.Context, []int) (string, error)
- SetOptions(api.Options)
- Close()
- Ping(context.Context) error
- }
- func New(workDir, model string, adapters []string, opts api.Options) (LLM, error) {
- if _, err := os.Stat(model); err != nil {
- return nil, err
- }
- f, err := os.Open(model)
- if err != nil {
- return nil, err
- }
- defer f.Close()
- ggml, err := DecodeGGML(f)
- if err != nil {
- return nil, err
- }
- if runtime.GOOS == "darwin" {
- switch ggml.FileType() {
- case "F32", "Q5_0", "Q5_1", "Q8_0":
- if ggml.Name() != "gguf" && opts.NumGPU != 0 {
- // GGML Q8_0 do not support Metal API and will
- // cause the runner to segmentation fault so disable GPU
- log.Printf("WARNING: GPU disabled for F32, Q5_0, Q5_1, and Q8_0")
- opts.NumGPU = 0
- }
- }
- var requiredMemory int64
- var f16Multiplier int64 = 2
- switch ggml.ModelType() {
- case "3B", "7B":
- requiredMemory = 8 * format.GigaByte
- case "13B":
- requiredMemory = 16 * format.GigaByte
- case "30B", "34B", "40B":
- requiredMemory = 32 * format.GigaByte
- case "65B", "70B":
- requiredMemory = 64 * format.GigaByte
- case "180B":
- requiredMemory = 128 * format.GigaByte
- f16Multiplier = 4
- }
- systemMemory := int64(memory.TotalMemory())
- if ggml.FileType() == "F16" && requiredMemory*f16Multiplier > systemMemory {
- return nil, fmt.Errorf("F16 model requires at least %s of total memory", format.HumanBytes(requiredMemory))
- } else if requiredMemory > systemMemory {
- return nil, fmt.Errorf("model requires at least %s of total memory", format.HumanBytes(requiredMemory))
- }
- }
- switch ggml.Name() {
- case "gguf":
- // TODO: gguf will load these options automatically from the model binary
- opts.NumGQA = 0
- opts.RopeFrequencyBase = 0.0
- opts.RopeFrequencyScale = 0.0
- return newLlama(model, adapters, chooseRunners(workDir, "gguf"), ggml.NumLayers(), opts)
- case "ggml", "ggmf", "ggjt", "ggla":
- return newLlama(model, adapters, chooseRunners(workDir, "ggml"), ggml.NumLayers(), opts)
- default:
- return nil, fmt.Errorf("unknown ggml type: %s", ggml.ModelFamily())
- }
- }
|