llm.go 2.6 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495
  1. package llm
  2. import (
  3. "context"
  4. "fmt"
  5. "log"
  6. "os"
  7. "runtime"
  8. "github.com/pbnjay/memory"
  9. "github.com/jmorganca/ollama/api"
  10. "github.com/jmorganca/ollama/format"
  11. )
  12. type LLM interface {
  13. Predict(context.Context, []int, string, func(api.GenerateResponse)) error
  14. Embedding(context.Context, string) ([]float64, error)
  15. Encode(context.Context, string) ([]int, error)
  16. Decode(context.Context, []int) (string, error)
  17. SetOptions(api.Options)
  18. Close()
  19. Ping(context.Context) error
  20. }
  21. func New(workDir, model string, adapters []string, opts api.Options) (LLM, error) {
  22. if _, err := os.Stat(model); err != nil {
  23. return nil, err
  24. }
  25. f, err := os.Open(model)
  26. if err != nil {
  27. return nil, err
  28. }
  29. defer f.Close()
  30. ggml, err := DecodeGGML(f)
  31. if err != nil {
  32. return nil, err
  33. }
  34. if runtime.GOOS == "darwin" {
  35. switch ggml.FileType() {
  36. case "Q8_0":
  37. if ggml.Name() != "gguf" && opts.NumGPU != 0 {
  38. // GGML Q8_0 do not support Metal API and will
  39. // cause the runner to segmentation fault so disable GPU
  40. log.Printf("WARNING: GPU disabled for F32, Q5_0, Q5_1, and Q8_0")
  41. opts.NumGPU = 0
  42. }
  43. case "F32", "Q5_0", "Q5_1":
  44. if opts.NumGPU != 0 {
  45. // F32, Q5_0, Q5_1, and Q8_0 do not support Metal API and will
  46. // cause the runner to segmentation fault so disable GPU
  47. log.Printf("WARNING: GPU disabled for F32, Q5_0, Q5_1, and Q8_0")
  48. opts.NumGPU = 0
  49. }
  50. }
  51. var requiredMemory int64
  52. var f16Multiplier int64 = 2
  53. switch ggml.ModelType() {
  54. case "3B", "7B":
  55. requiredMemory = 8 * format.GigaByte
  56. case "13B":
  57. requiredMemory = 16 * format.GigaByte
  58. case "30B", "34B", "40B":
  59. requiredMemory = 32 * format.GigaByte
  60. case "65B", "70B":
  61. requiredMemory = 64 * format.GigaByte
  62. case "180B":
  63. requiredMemory = 128 * format.GigaByte
  64. f16Multiplier = 4
  65. }
  66. systemMemory := int64(memory.TotalMemory())
  67. if ggml.FileType() == "F16" && requiredMemory*f16Multiplier > systemMemory {
  68. return nil, fmt.Errorf("F16 model requires at least %s of total memory", format.HumanBytes(requiredMemory))
  69. } else if requiredMemory > systemMemory {
  70. return nil, fmt.Errorf("model requires at least %s of total memory", format.HumanBytes(requiredMemory))
  71. }
  72. }
  73. switch ggml.Name() {
  74. case "gguf":
  75. opts.NumGQA = 0 // TODO: remove this when llama.cpp runners differ enough to need separate newLlama functions
  76. return newLlama(model, adapters, chooseRunners(workDir, "gguf"), ggml.NumLayers(), opts)
  77. case "ggml", "ggmf", "ggjt", "ggla":
  78. return newLlama(model, adapters, chooseRunners(workDir, "ggml"), ggml.NumLayers(), opts)
  79. default:
  80. return nil, fmt.Errorf("unknown ggml type: %s", ggml.ModelFamily())
  81. }
  82. }