Nessuna descrizione

Blake Mizerany 39a199bb3e remove duplicate check for ".." 1 anno fa
.github 058f6cd2cc Move nested payloads to installer and zip file on windows 1 anno fa
api 34b9db5afc Request and model concurrency 1 anno fa
app 058f6cd2cc Move nested payloads to installer and zip file on windows 1 anno fa
auth e43648afe5 rerefactor 1 anno fa
cmd 658e60cf73 Revert "stop running model on interactive exit" 1 anno fa
convert ce8ce82567 add mixtral 8x7b model conversion (#3859) 1 anno fa
docs 74d2a9ef9a add OLLAMA_KEEP_ALIVE env variable to FAQ (#3865) 1 anno fa
examples ba460802c2 examples: add more Go examples using the API (#3599) 1 anno fa
format 34b9db5afc Request and model concurrency 1 anno fa
gpu 0d6687f84c AMD gfx patch rev is hex 1 anno fa
integration f2ea8470e5 Local unicode test case 1 anno fa
llm 6e76348df7 Merge pull request #3834 from dhiltgen/not_found_in_path 1 anno fa
macapp fc6558f47f Correct directory reference in macapp/README (#3555) 1 anno fa
openai 1b272d5bcd change `github.com/jmorganca/ollama` to `github.com/ollama/ollama` (#3347) 1 anno fa
parser 7c40a67841 Save and load sessions (#2063) 1 anno fa
progress 1b272d5bcd change `github.com/jmorganca/ollama` to `github.com/ollama/ollama` (#3347) 1 anno fa
readline 5a5efee46b Add gemma safetensors conversion (#3250) 1 anno fa
scripts 058f6cd2cc Move nested payloads to installer and zip file on windows 1 anno fa
server d8851cb7a0 Harden sched TestLoad 1 anno fa
types 39a199bb3e remove duplicate check for ".." 1 anno fa
version 2c7f956b38 add version 1 anno fa
.dockerignore 5017a15bcb add `macapp` to `.dockerignore` 1 anno fa
.gitattributes 38daf0a252 rename `.gitattributes` 1 anno fa
.gitignore 58d95cc9bd Switch back to subprocessing for llama.cpp 1 anno fa
.gitmodules fac9060da5 Init submodule with new path 1 anno fa
.golangci.yaml 5a5efee46b Add gemma safetensors conversion (#3250) 1 anno fa
.prettierrc.json 8685a5ad18 move .prettierrc.json to root 1 anno fa
Dockerfile 8aec92fa6d rearranged conditional logic for static build, dockerfile updated 1 anno fa
LICENSE df5fdd6647 `proto` -> `ollama` 1 anno fa
README.md 928d844896 adding phi-3 mini to readme 1 anno fa
go.mod 9f8691c6c8 Add llama2 / torch models for `ollama create` (#3607) 1 anno fa
go.sum 9f8691c6c8 Add llama2 / torch models for `ollama create` (#3607) 1 anno fa
main.go 1b272d5bcd change `github.com/jmorganca/ollama` to `github.com/ollama/ollama` (#3347) 1 anno fa

README.md

ollama

Ollama

Discord

Get up and running with large language models locally.

macOS

Download

Windows preview

Download

Linux

curl -fsSL https://ollama.com/install.sh | sh

Manual install instructions

Docker

The official Ollama Docker image ollama/ollama is available on Docker Hub.

Libraries

Quickstart

To run and chat with Llama 3:

ollama run llama3

Model library

Ollama supports a list of models available on ollama.com/library

Here are some example models that can be downloaded:

Model Parameters Size Download
Llama 3 8B 4.7GB ollama run llama3
Llama 3 70B 40GB ollama run llama3:70b
Phi-3 3,8B 2.3GB ollama run phi3
Mistral 7B 4.1GB ollama run mistral
Neural Chat 7B 4.1GB ollama run neural-chat
Starling 7B 4.1GB ollama run starling-lm
Code Llama 7B 3.8GB ollama run codellama
Llama 2 Uncensored 7B 3.8GB ollama run llama2-uncensored
LLaVA 7B 4.5GB ollama run llava
Gemma 2B 1.4GB ollama run gemma:2b
Gemma 7B 4.8GB ollama run gemma:7b
Solar 10.7B 6.1GB ollama run solar

Note: You should have at least 8 GB of RAM available to run the 7B models, 16 GB to run the 13B models, and 32 GB to run the 33B models.

Customize a model

Import from GGUF

Ollama supports importing GGUF models in the Modelfile:

  1. Create a file named Modelfile, with a FROM instruction with the local filepath to the model you want to import.

    FROM ./vicuna-33b.Q4_0.gguf
    
  2. Create the model in Ollama

    ollama create example -f Modelfile
    
  3. Run the model

    ollama run example
    

Import from PyTorch or Safetensors

See the guide on importing models for more information.

Customize a prompt

Models from the Ollama library can be customized with a prompt. For example, to customize the llama3 model:

ollama pull llama3

Create a Modelfile:

FROM llama3

# set the temperature to 1 [higher is more creative, lower is more coherent]
PARAMETER temperature 1

# set the system message
SYSTEM """
You are Mario from Super Mario Bros. Answer as Mario, the assistant, only.
"""

Next, create and run the model:

ollama create mario -f ./Modelfile
ollama run mario
>>> hi
Hello! It's your friend Mario.

For more examples, see the examples directory. For more information on working with a Modelfile, see the Modelfile documentation.

CLI Reference

Create a model

ollama create is used to create a model from a Modelfile.

ollama create mymodel -f ./Modelfile

Pull a model

ollama pull llama3

This command can also be used to update a local model. Only the diff will be pulled.

Remove a model

ollama rm llama3

Copy a model

ollama cp llama3 my-model

Multiline input

For multiline input, you can wrap text with """:

>>> """Hello,
... world!
... """
I'm a basic program that prints the famous "Hello, world!" message to the console.

Multimodal models

>>> What's in this image? /Users/jmorgan/Desktop/smile.png
The image features a yellow smiley face, which is likely the central focus of the picture.

Pass in prompt as arguments

$ ollama run llama3 "Summarize this file: $(cat README.md)"
 Ollama is a lightweight, extensible framework for building and running language models on the local machine. It provides a simple API for creating, running, and managing models, as well as a library of pre-built models that can be easily used in a variety of applications.

List models on your computer

ollama list

Start Ollama

ollama serve is used when you want to start ollama without running the desktop application.

Building

Install cmake and go:

brew install cmake go

Then generate dependencies:

go generate ./...

Then build the binary:

go build .

More detailed instructions can be found in the developer guide

Running local builds

Next, start the server:

./ollama serve

Finally, in a separate shell, run a model:

./ollama run llama3

REST API

Ollama has a REST API for running and managing models.

Generate a response

curl http://localhost:11434/api/generate -d '{
  "model": "llama3",
  "prompt":"Why is the sky blue?"
}'

Chat with a model

curl http://localhost:11434/api/chat -d '{
  "model": "llama3",
  "messages": [
    { "role": "user", "content": "why is the sky blue?" }
  ]
}'

See the API documentation for all endpoints.

Community Integrations

Web & Desktop

Terminal

Database

Package managers

Libraries

Mobile

Extensions & Plugins

Supported backends

  • llama.cpp project founded by Georgi Gerganov.