ggml.go 11 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459
  1. package llm
  2. import (
  3. "encoding/binary"
  4. "errors"
  5. "fmt"
  6. "io"
  7. "strings"
  8. "github.com/ollama/ollama/util/bufioutil"
  9. )
  10. type GGML struct {
  11. container
  12. model
  13. }
  14. type model interface {
  15. KV() KV
  16. Tensors() Tensors
  17. }
  18. type KV map[string]any
  19. func (kv KV) u64(key string) uint64 {
  20. switch v := kv[key].(type) {
  21. case uint64:
  22. return v
  23. case uint32:
  24. return uint64(v)
  25. case float64:
  26. return uint64(v)
  27. default:
  28. return 0
  29. }
  30. }
  31. func (kv KV) Architecture() string {
  32. if s, ok := kv["general.architecture"].(string); ok {
  33. return s
  34. }
  35. return "unknown"
  36. }
  37. func (kv KV) ParameterCount() uint64 {
  38. return kv.u64("general.parameter_count")
  39. }
  40. func (kv KV) FileType() fileType {
  41. if u64 := kv.u64("general.file_type"); u64 > 0 {
  42. return fileType(uint32(u64))
  43. }
  44. return fileTypeUnknown
  45. }
  46. func (kv KV) BlockCount() uint64 {
  47. return kv.u64(fmt.Sprintf("%s.block_count", kv.Architecture()))
  48. }
  49. func (kv KV) HeadCount() uint64 {
  50. return kv.u64(fmt.Sprintf("%s.attention.head_count", kv.Architecture()))
  51. }
  52. func (kv KV) HeadCountKV() uint64 {
  53. if headCountKV := kv.u64(fmt.Sprintf("%s.attention.head_count_kv", kv.Architecture())); headCountKV > 0 {
  54. return headCountKV
  55. }
  56. return 1
  57. }
  58. func (kv KV) EmbeddingHeadCount() uint64 {
  59. if heads := kv.HeadCount(); heads > 0 {
  60. return kv.EmbeddingLength() / kv.HeadCount()
  61. }
  62. return 0
  63. }
  64. func (kv KV) EmbeddingHeadCountK() uint64 {
  65. if k := kv.u64(fmt.Sprintf("%s.attention.key_length", kv.Architecture())); k > 0 {
  66. return k
  67. }
  68. return kv.EmbeddingHeadCount()
  69. }
  70. func (kv KV) EmbeddingHeadCountV() uint64 {
  71. if v := kv.u64(fmt.Sprintf("%s.attention.value_length", kv.Architecture())); v > 0 {
  72. return v
  73. }
  74. return kv.EmbeddingHeadCount()
  75. }
  76. func (kv KV) GQA() uint64 {
  77. return kv.HeadCount() / kv.HeadCountKV()
  78. }
  79. func (kv KV) EmbeddingLength() uint64 {
  80. return kv.u64(fmt.Sprintf("%s.embedding_length", kv.Architecture()))
  81. }
  82. func (kv KV) ContextLength() uint64 {
  83. return kv.u64(fmt.Sprintf("%s.context_length", kv.Architecture()))
  84. }
  85. func (kv KV) ChatTemplate() string {
  86. s, _ := kv["tokenizer.chat_template"].(string)
  87. return s
  88. }
  89. type Tensors struct {
  90. Items []*Tensor
  91. Offset uint64
  92. }
  93. func (ts Tensors) Layers() map[string]Layer {
  94. layers := make(map[string]Layer)
  95. for _, t := range ts.Items {
  96. parts := strings.Split(t.Name, ".")
  97. if parts[0] == "blk" {
  98. // join first and second part, e.g. blk.%d
  99. parts = append([]string{fmt.Sprintf("%s.%s", parts[0], parts[1])}, parts[2:]...)
  100. }
  101. if _, ok := layers[parts[0]]; !ok {
  102. layers[parts[0]] = make(Layer)
  103. }
  104. layers[parts[0]][strings.Join(parts[1:], ".")] = t
  105. }
  106. return layers
  107. }
  108. type Layer map[string]*Tensor
  109. func (l Layer) size() (size uint64) {
  110. for _, t := range l {
  111. size += t.Size()
  112. }
  113. return size
  114. }
  115. type Tensor struct {
  116. Name string `json:"name"`
  117. Kind uint32 `json:"kind"`
  118. Offset uint64 `json:"-"`
  119. // Shape is the number of elements in each dimension
  120. Shape []uint64 `json:"shape"`
  121. io.WriterTo `json:"-"`
  122. }
  123. func (t Tensor) blockSize() uint64 {
  124. switch t.Kind {
  125. case 0, 1, 24, 25, 26, 27, 28, 30: // F32, F16, I8, I16, I32, I64, F64, BF16
  126. return 1
  127. case 2, 3, 4, 5, 6, 7, 8, 9, 20: // Q4_0, Q4_1, Q5_0, Q5_1, Q8_0, Q8_1, IQ4_NL
  128. return 32
  129. default: // All others
  130. return 256
  131. }
  132. }
  133. func (t Tensor) typeSize() uint64 {
  134. blockSize := t.blockSize()
  135. switch t.Kind {
  136. case 0: // FP32
  137. return 4
  138. case 1: // FP16
  139. return 2
  140. case 2: // Q4_0
  141. return 2 + blockSize/2
  142. case 3: // Q4_1
  143. return 2 + 2 + blockSize/2
  144. case 6: // Q5_0
  145. return 2 + 4 + blockSize/2
  146. case 7: // Q5_1
  147. return 2 + 2 + 4 + blockSize/2
  148. case 8: // Q8_0
  149. return 2 + blockSize
  150. case 9: // Q8_1
  151. return 4 + 4 + blockSize
  152. case 10: // Q2_K
  153. return blockSize/16 + blockSize/4 + 2 + 2
  154. case 11: // Q3_K
  155. return blockSize/8 + blockSize/4 + 12 + 2
  156. case 12: // Q4_K
  157. return 2 + 2 + 12 + blockSize/2
  158. case 13: // Q5_K
  159. return 2 + 2 + 12 + blockSize/8 + blockSize/2
  160. case 14: // Q6_K
  161. return blockSize/2 + blockSize/4 + blockSize/16 + 2
  162. case 15: // Q8_K
  163. return 2 + blockSize + 2*blockSize/16
  164. case 16: // IQ2_XXS
  165. return 2 + 2*blockSize/8
  166. case 17: // IQ2_XS
  167. return 2 + 2*blockSize/8 + blockSize/32
  168. case 18: // IQ3_XXS
  169. return 2 + blockSize/4 + blockSize/8
  170. case 19: // IQ1_S
  171. return 2 + blockSize/8 + blockSize/16
  172. case 20: // IQ4_NL
  173. return 2 + blockSize/2
  174. case 21: // IQ3_S
  175. return 2 + blockSize/4 + blockSize/8 + blockSize/32 + 4
  176. case 22: // IQ2_S
  177. return 2 + blockSize/4 + blockSize/16
  178. case 23: // IQ4_XS
  179. return 2 + 2 + blockSize/2 + blockSize/64
  180. case 24: // I8
  181. return 1
  182. case 25: // I16
  183. return 2
  184. case 26: // I32
  185. return 4
  186. case 27: // I64
  187. return 8
  188. case 28: // F64
  189. return 8
  190. case 29: // IQ1_M
  191. return blockSize/8 + blockSize/16 + blockSize/32
  192. default:
  193. return 0
  194. }
  195. }
  196. func (t Tensor) parameters() uint64 {
  197. var count uint64 = 1
  198. for _, n := range t.Shape {
  199. count *= n
  200. }
  201. return count
  202. }
  203. func (t Tensor) Size() uint64 {
  204. return t.parameters() * t.typeSize() / t.blockSize()
  205. }
  206. type container interface {
  207. Name() string
  208. Decode(io.ReadSeeker) (model, error)
  209. }
  210. const (
  211. // Magic constant for `ggml` files (unversioned).
  212. FILE_MAGIC_GGML = 0x67676d6c
  213. // Magic constant for `ggml` files (versioned, ggmf).
  214. FILE_MAGIC_GGMF = 0x67676d66
  215. // Magic constant for `ggml` files (versioned, ggjt).
  216. FILE_MAGIC_GGJT = 0x67676a74
  217. // Magic constant for `ggla` files (LoRA adapter).
  218. FILE_MAGIC_GGLA = 0x67676C61
  219. // Magic constant for `gguf` files (versioned, gguf)
  220. FILE_MAGIC_GGUF_LE = 0x46554747
  221. FILE_MAGIC_GGUF_BE = 0x47475546
  222. )
  223. var ErrUnsupportedFormat = errors.New("unsupported model format")
  224. func DetectGGMLType(b []byte) string {
  225. switch binary.LittleEndian.Uint32(b[:4]) {
  226. case FILE_MAGIC_GGML:
  227. return "ggml"
  228. case FILE_MAGIC_GGMF:
  229. return "ggmf"
  230. case FILE_MAGIC_GGJT:
  231. return "ggjt"
  232. case FILE_MAGIC_GGLA:
  233. return "ggla"
  234. case FILE_MAGIC_GGUF_LE, FILE_MAGIC_GGUF_BE:
  235. return "gguf"
  236. default:
  237. return ""
  238. }
  239. }
  240. // DecodeGGML decodes a GGML model from the given reader.
  241. //
  242. // It collects array values for arrays with a size less than or equal to
  243. // maxArraySize. If maxArraySize is 0, the default value of 1024 is used. If
  244. // the maxArraySize is negative, all arrays are collected.
  245. func DecodeGGML(rs io.ReadSeeker, maxArraySize int) (*GGML, int64, error) {
  246. if maxArraySize == 0 {
  247. maxArraySize = 1024
  248. }
  249. rs = bufioutil.NewBufferedSeeker(rs, 32<<10)
  250. var magic uint32
  251. if err := binary.Read(rs, binary.LittleEndian, &magic); err != nil {
  252. return nil, 0, err
  253. }
  254. var c container
  255. switch magic {
  256. case FILE_MAGIC_GGML, FILE_MAGIC_GGMF, FILE_MAGIC_GGJT:
  257. return nil, 0, ErrUnsupportedFormat
  258. case FILE_MAGIC_GGLA:
  259. c = &containerGGLA{}
  260. case FILE_MAGIC_GGUF_LE:
  261. c = &containerGGUF{ByteOrder: binary.LittleEndian, maxArraySize: maxArraySize}
  262. case FILE_MAGIC_GGUF_BE:
  263. c = &containerGGUF{ByteOrder: binary.BigEndian, maxArraySize: maxArraySize}
  264. default:
  265. return nil, 0, errors.New("invalid file magic")
  266. }
  267. model, err := c.Decode(rs)
  268. if err != nil {
  269. return nil, 0, err
  270. }
  271. offset, err := rs.Seek(0, io.SeekCurrent)
  272. if err != nil {
  273. return nil, 0, err
  274. }
  275. // final model type
  276. return &GGML{
  277. container: c,
  278. model: model,
  279. }, offset, nil
  280. }
  281. func (llm GGML) GraphSize(context, batch uint64) (partialOffload, fullOffload uint64) {
  282. embedding := llm.KV().EmbeddingLength()
  283. heads := llm.KV().HeadCount()
  284. headsKV := llm.KV().HeadCountKV()
  285. vocab := uint64(llm.KV()["tokenizer.ggml.tokens"].(*array).size)
  286. embeddingHeads := llm.KV().EmbeddingHeadCount()
  287. embeddingHeadsK := llm.KV().EmbeddingHeadCountK()
  288. layers := llm.Tensors().Layers()
  289. switch llm.KV().Architecture() {
  290. case "llama":
  291. fullOffload = 4 * batch * (1 + 4*embedding + context*(1+heads))
  292. partialOffload = 4 * batch * embedding
  293. partialOffload += max(
  294. // 4*batch*(4+6*embedding+context*(2*heads)+llm.KV().GQA()),
  295. 4*batch*(1+embedding+max(context, embedding))+embedding*embedding*9/16+4*context*(batch*heads+embeddingHeads*headsKV),
  296. 4*batch*(embedding+vocab)+embedding*vocab*105/128,
  297. )
  298. if ffnGateExpsWeight, ok := layers["blk.0"]["ffn_gate_exps.weight"]; ok {
  299. // mixtral 8x22b
  300. ff := uint64(llm.KV()["llama.feed_forward_length"].(uint32))
  301. partialOffload = max(
  302. 3*ffnGateExpsWeight.Size()+4*batch*(2*ff+headsKV+embedding+context+embeddingHeads*headsKV),
  303. 4*(context*batch*heads+context*embeddingHeads*headsKV+batch*1024+embeddingHeads*headsKV*batch),
  304. )
  305. } else if ffnGateWeight, ok := layers["blk.0"]["ffn_gate.0.weight"]; ok {
  306. // mixtral 8x7b
  307. ffnGateWeight1 := ffnGateWeight.Shape[1]
  308. fullOffload = 4 * batch * (2 + 3*embedding + context*(1+heads) + 2*headsKV + ffnGateWeight1)
  309. partialOffload = max(
  310. 4*batch*(3+embeddingHeads*headsKV+embedding+context*(1+heads)+ffnGateWeight1)+(embedding*embedding+3*embedding*headsKV*ffnGateWeight1)*9/16,
  311. 4*batch*(1+2*embedding+context*(1+heads))+embedding*(6*context*headsKV/heads+embedding*9/16),
  312. )
  313. }
  314. case "gemma", "gemma2":
  315. fullOffload = max(
  316. 4*batch*(embedding+vocab),
  317. 4*batch*(2+context+context*heads+2*embedding+2*embeddingHeadsK*heads),
  318. )
  319. partialOffload = max(
  320. 4*embedding*batch+embedding*vocab*105/128+4*vocab*batch,
  321. 4*batch*(2*embedding+1+2*embeddingHeadsK*heads+context+context*heads)+
  322. 4*embeddingHeadsK*context*8+
  323. embedding*embeddingHeadsK*heads*9/16,
  324. )
  325. case "command-r":
  326. fullOffload = max(
  327. 4*batch*(embedding+vocab),
  328. 4*batch*(2+4*embedding+context*(1+heads)),
  329. )
  330. partialOffload = max(
  331. 4*batch*(embedding+vocab)+embedding*vocab*105/128,
  332. 4*batch*(1+2*embedding+context*(1+heads))+4*embedding*context+embedding*embedding*9/16,
  333. )
  334. case "qwen2":
  335. fullOffload = max(
  336. 4*batch*(embedding+vocab),
  337. 4*batch*(1+2*embedding+context+context*heads),
  338. )
  339. partialOffload = max(
  340. 4*batch*(embedding+vocab)+embedding*vocab*105/128,
  341. 4*(batch*(1+2*embedding+context*(1+heads))+embedding*(1+context)),
  342. )
  343. case "phi2":
  344. fullOffload = max(
  345. 4*batch*(embedding+vocab),
  346. 4*batch*(1+4*embedding+context+context*heads),
  347. )
  348. partialOffload = max(
  349. 4*batch*(2*embedding+vocab)+embedding*vocab*105/128,
  350. 4*batch*(2+3*embedding+context+context*heads),
  351. )
  352. case "stablelm":
  353. fullOffload = 4 * batch * (context*(1+heads) + 3*embedding + 2)
  354. partialOffload = max(
  355. 4*batch*(vocab+2*embedding),
  356. fullOffload,
  357. )
  358. case "deepseek2":
  359. fullOffload = max(
  360. 4*batch*(3*embedding+vocab),
  361. 4*batch*(3*embedding+2+context*(1+headsKV)+2*embeddingHeadsK*headsKV),
  362. )
  363. partialOffload = max(
  364. 4*batch*(3*embedding+vocab)+embedding*vocab*105/128,
  365. 4*batch*(2*embedding+1+2*embeddingHeadsK*headsKV+context+context*headsKV)+4*embeddingHeadsK*context*headsKV+embedding*embeddingHeadsK*headsKV*9/16,
  366. )
  367. case "chatglm":
  368. fullOffload = 4 * batch * (embedding + vocab)
  369. partialOffload = 4*batch*(embedding+vocab) + embedding*vocab*105/128
  370. if qkvBias, ok := layers["blk.0"]["attn_qkv.bias"]; ok {
  371. fullOffload = max(
  372. fullOffload,
  373. 4*batch*(2+
  374. 2*embedding+
  375. context+
  376. context*heads+
  377. embeddingHeadsK*heads+
  378. qkvBias.Shape[0]),
  379. )
  380. partialOffload = max(
  381. partialOffload,
  382. 4*batch*(1+
  383. 2*embedding+
  384. embeddingHeadsK*heads+
  385. context+
  386. context*heads)+
  387. 4*embeddingHeadsK*context+
  388. 4*context*embeddingHeadsK+
  389. 4*qkvBias.Shape[0],
  390. )
  391. }
  392. }
  393. return
  394. }