Brak opisu

Michael Yang 7359c5ea5e usage templating 10 miesięcy temu
.github cd5c8f6471 Optimize container images for startup (#6547) 7 miesięcy temu
api 8e6da3cbc5 update deprecated warnings 8 miesięcy temu
app 93ea9240ae Move ollama executable out of bin dir (#6535) 8 miesięcy temu
auth b732beba6a lint 9 miesięcy temu
build cd5c8f6471 Optimize container images for startup (#6547) 7 miesięcy temu
cmd 7359c5ea5e usage templating 7 miesięcy temu
convert 84b84ce2db catch when model vocab size is set correctly (#6714) 7 miesięcy temu
docs 9246e6dd15 Verify permissions for AMD GPU (#6736) 7 miesięcy temu
envconfig 7359c5ea5e usage templating 7 miesięcy temu
examples fef257c5c5 examples: updated requirements.txt for privategpt example 7 miesięcy temu
format b732beba6a lint 9 miesięcy temu
gpu cd5c8f6471 Optimize container images for startup (#6547) 7 miesięcy temu
integration 90ca84172c Fix embeddings memory corruption (#6467) 8 miesięcy temu
llm 7359c5ea5e usage templating 7 miesięcy temu
macapp 0e4d653687 upate to `llama3.1` elsewhere in repo (#6032) 9 miesięcy temu
openai 06d4fba851 openai: align chat temperature and frequency_penalty options with completion (#6688) 7 miesięcy temu
parser b732beba6a lint 9 miesięcy temu
progress f7e3b9190f cmd: spinner progress for transfer model data (#6100) 8 miesięcy temu
readline 2697d7f5aa lint 8 miesięcy temu
runners 7359c5ea5e usage templating 7 miesięcy temu
scripts cd5c8f6471 Optimize container images for startup (#6547) 7 miesięcy temu
server 7359c5ea5e usage templating 7 miesięcy temu
template 9468c6824a Merge pull request #6534 from ollama/mxyng/messages 8 miesięcy temu
types 0a8d6ea86d Fix typo and improve readability (#5964) 8 miesięcy temu
util cb42e607c5 llm: speed up gguf decoding by a lot (#5246) 10 miesięcy temu
version 2c7f956b38 add version 1 rok temu
.dockerignore cd5c8f6471 Optimize container images for startup (#6547) 7 miesięcy temu
.gitattributes d4e6407464 Restrict text files with explicit line feeds to *.go. 8 miesięcy temu
.gitignore cd5c8f6471 Optimize container images for startup (#6547) 7 miesięcy temu
.gitmodules fac9060da5 Init submodule with new path 1 rok temu
.golangci.yaml 8e6da3cbc5 update deprecated warnings 8 miesięcy temu
.prettierrc.json 8685a5ad18 move .prettierrc.json to root 1 rok temu
CONTRIBUTING.md 369479cc30 docs: fix spelling error (#6391) 8 miesięcy temu
Dockerfile cd5c8f6471 Optimize container images for startup (#6547) 7 miesięcy temu
LICENSE df5fdd6647 `proto` -> `ollama` 1 rok temu
README.md 5a00dc9fc9 readme: add ollama_moe to community integrations (#6752) 7 miesięcy temu
SECURITY.md 463a8aa273 Create SECURITY.md 9 miesięcy temu
go.mod feedf49c71 Go back to a pinned Go version 8 miesięcy temu
go.sum 9b6c2e6eb6 detect chat template from KV 10 miesięcy temu
main.go b732beba6a lint 9 miesięcy temu

README.md

 ollama

Ollama

Discord

Get up and running with large language models.

macOS

Download

Windows preview

Download

Linux

curl -fsSL https://ollama.com/install.sh | sh

Manual install instructions

Docker

The official Ollama Docker image ollama/ollama is available on Docker Hub.

Libraries

Quickstart

To run and chat with Llama 3.1:

ollama run llama3.1

Model library

Ollama supports a list of models available on ollama.com/library

Here are some example models that can be downloaded:

Model Parameters Size Download
Llama 3.1 8B 4.7GB ollama run llama3.1
Llama 3.1 70B 40GB ollama run llama3.1:70b
Llama 3.1 405B 231GB ollama run llama3.1:405b
Phi 3 Mini 3.8B 2.3GB ollama run phi3
Phi 3 Medium 14B 7.9GB ollama run phi3:medium
Gemma 2 2B 1.6GB ollama run gemma2:2b
Gemma 2 9B 5.5GB ollama run gemma2
Gemma 2 27B 16GB ollama run gemma2:27b
Mistral 7B 4.1GB ollama run mistral
Moondream 2 1.4B 829MB ollama run moondream
Neural Chat 7B 4.1GB ollama run neural-chat
Starling 7B 4.1GB ollama run starling-lm
Code Llama 7B 3.8GB ollama run codellama
Llama 2 Uncensored 7B 3.8GB ollama run llama2-uncensored
LLaVA 7B 4.5GB ollama run llava
Solar 10.7B 6.1GB ollama run solar

[!NOTE] You should have at least 8 GB of RAM available to run the 7B models, 16 GB to run the 13B models, and 32 GB to run the 33B models.

Customize a model

Import from GGUF

Ollama supports importing GGUF models in the Modelfile:

  1. Create a file named Modelfile, with a FROM instruction with the local filepath to the model you want to import.

    FROM ./vicuna-33b.Q4_0.gguf
    
  2. Create the model in Ollama

    ollama create example -f Modelfile
    
  3. Run the model

    ollama run example
    

Import from PyTorch or Safetensors

See the guide on importing models for more information.

Customize a prompt

Models from the Ollama library can be customized with a prompt. For example, to customize the llama3.1 model:

ollama pull llama3.1

Create a Modelfile:

FROM llama3.1

# set the temperature to 1 [higher is more creative, lower is more coherent]
PARAMETER temperature 1

# set the system message
SYSTEM """
You are Mario from Super Mario Bros. Answer as Mario, the assistant, only.
"""

Next, create and run the model:

ollama create mario -f ./Modelfile
ollama run mario
>>> hi
Hello! It's your friend Mario.

For more examples, see the examples directory. For more information on working with a Modelfile, see the Modelfile documentation.

CLI Reference

Create a model

ollama create is used to create a model from a Modelfile.

ollama create mymodel -f ./Modelfile

Pull a model

ollama pull llama3.1

This command can also be used to update a local model. Only the diff will be pulled.

Remove a model

ollama rm llama3.1

Copy a model

ollama cp llama3.1 my-model

Multiline input

For multiline input, you can wrap text with """:

>>> """Hello,
... world!
... """
I'm a basic program that prints the famous "Hello, world!" message to the console.

Multimodal models

ollama run llava "What's in this image? /Users/jmorgan/Desktop/smile.png"
The image features a yellow smiley face, which is likely the central focus of the picture.

Pass the prompt as an argument

$ ollama run llama3.1 "Summarize this file: $(cat README.md)"
 Ollama is a lightweight, extensible framework for building and running language models on the local machine. It provides a simple API for creating, running, and managing models, as well as a library of pre-built models that can be easily used in a variety of applications.

Show model information

ollama show llama3.1

List models on your computer

ollama list

Start Ollama

ollama serve is used when you want to start ollama without running the desktop application.

Building

See the developer guide

Running local builds

Next, start the server:

./ollama serve

Finally, in a separate shell, run a model:

./ollama run llama3.1

REST API

Ollama has a REST API for running and managing models.

Generate a response

curl http://localhost:11434/api/generate -d '{
  "model": "llama3.1",
  "prompt":"Why is the sky blue?"
}'

Chat with a model

curl http://localhost:11434/api/chat -d '{
  "model": "llama3.1",
  "messages": [
    { "role": "user", "content": "why is the sky blue?" }
  ]
}'

See the API documentation for all endpoints.

Community Integrations

Web & Desktop

Terminal

Apple Vision Pro

Database

Package managers

Libraries

Mobile

  • Enchanted
  • Maid
  • ConfiChat (Lightweight, standalone, multi-platform, and privacy focused LLM chat interface with optional encryption)

Extensions & Plugins

Supported backends

  • llama.cpp project founded by Georgi Gerganov.