Bez popisu

Michael Yang 4b4e97ed10 tests před 11 měsíci
.github c12f1c5b99 release: move mingw library cleanup to correct job před 9 měsíci
api ccd7785859 Merge pull request #5243 from dhiltgen/modelfile_use_mmap před 10 měsíci
app 9d8a4988e8 Implement log rotation for tray app před 10 měsíci
auth 0a7fdbe533 prompt to display and add local ollama keys to account (#3717) před 1 rokem
cmd 5f034f5b63 Include Show Info in Interactive (#5342) před 10 měsíci
convert e40145a39d lint před 11 měsíci
docs 8d62a65ca7 rebase main před 9 měsíci
envconfig 0d16eb310e fix: use `envconfig.ModelsDir` directly (#4821) před 10 měsíci
examples 94d37fdcae fix: examples/langchain-python-rag-privategpt/requirements.txt (#3382) před 10 měsíci
format e40145a39d lint před 11 měsíci
gpu f8241bfba3 gpu: report system free memory instead of 0 (#5521) před 9 měsíci
integration 4b4e97ed10 tests před 9 měsíci
llm 53da2c6965 llm: remove ambiguous comment when putting upper limit on predictions to avoid infinite generation (#5535) před 9 měsíci
macapp 8aadad9c72 updated updateURL před 11 měsíci
openai d626b99b54 OpenAI: v1/completions compatibility (#5209) před 10 měsíci
parser 7e571f95f0 trimspace test case před 10 měsíci
progress e40145a39d lint před 11 měsíci
readline 8ce4032e72 more lint před 11 měsíci
scripts 4f67b39d26 Centos 7 EOL broke mirrors před 10 měsíci
server 4b4e97ed10 tests před 9 měsíci
template a30915bde1 add capabilities před 10 měsíci
types 8d62a65ca7 rebase main před 9 měsíci
util cb42e607c5 llm: speed up gguf decoding by a lot (#5246) před 10 měsíci
version 2c7f956b38 add version před 1 rokem
.dockerignore 5017a15bcb add `macapp` to `.dockerignore` před 1 rokem
.gitattributes f7dc7dcc64 Update .gitattributes před 11 měsíci
.gitignore 34a4a94f13 ignore debug bin files před 1 rokem
.gitmodules fac9060da5 Init submodule with new path před 1 rokem
.golangci.yaml 6297f85606 gofmt, goimports před 11 měsíci
.prettierrc.json 8685a5ad18 move .prettierrc.json to root před 1 rokem
Dockerfile 020bd60ab2 Switch amd container image base to rocky 8 před 10 měsíci
LICENSE df5fdd6647 `proto` -> `ollama` před 1 rokem
README.md 1963c00201 Update README.md (#5214) před 10 měsíci
go.mod 4b4e97ed10 tests před 9 měsíci
go.sum 9b6c2e6eb6 detect chat template from KV před 10 měsíci
main.go 1b272d5bcd change `github.com/jmorganca/ollama` to `github.com/ollama/ollama` (#3347) před 1 rokem

README.md

 ollama

Ollama

Discord

Get up and running with large language models.

macOS

Download

Windows preview

Download

Linux

curl -fsSL https://ollama.com/install.sh | sh

Manual install instructions

Docker

The official Ollama Docker image ollama/ollama is available on Docker Hub.

Libraries

Quickstart

To run and chat with Llama 3:

ollama run llama3

Model library

Ollama supports a list of models available on ollama.com/library

Here are some example models that can be downloaded:

Model Parameters Size Download
Llama 3 8B 4.7GB ollama run llama3
Llama 3 70B 40GB ollama run llama3:70b
Phi 3 Mini 3.8B 2.3GB ollama run phi3
Phi 3 Medium 14B 7.9GB ollama run phi3:medium
Gemma 2 9B 5.5GB ollama run gemma2
Gemma 2 27B 16GB ollama run gemma2:27b
Mistral 7B 4.1GB ollama run mistral
Moondream 2 1.4B 829MB ollama run moondream
Neural Chat 7B 4.1GB ollama run neural-chat
Starling 7B 4.1GB ollama run starling-lm
Code Llama 7B 3.8GB ollama run codellama
Llama 2 Uncensored 7B 3.8GB ollama run llama2-uncensored
LLaVA 7B 4.5GB ollama run llava
Solar 10.7B 6.1GB ollama run solar

Note: You should have at least 8 GB of RAM available to run the 7B models, 16 GB to run the 13B models, and 32 GB to run the 33B models.

Customize a model

Import from GGUF

Ollama supports importing GGUF models in the Modelfile:

  1. Create a file named Modelfile, with a FROM instruction with the local filepath to the model you want to import.

    FROM ./vicuna-33b.Q4_0.gguf
    
  2. Create the model in Ollama

    ollama create example -f Modelfile
    
  3. Run the model

    ollama run example
    

Import from PyTorch or Safetensors

See the guide on importing models for more information.

Customize a prompt

Models from the Ollama library can be customized with a prompt. For example, to customize the llama3 model:

ollama pull llama3

Create a Modelfile:

FROM llama3

# set the temperature to 1 [higher is more creative, lower is more coherent]
PARAMETER temperature 1

# set the system message
SYSTEM """
You are Mario from Super Mario Bros. Answer as Mario, the assistant, only.
"""

Next, create and run the model:

ollama create mario -f ./Modelfile
ollama run mario
>>> hi
Hello! It's your friend Mario.

For more examples, see the examples directory. For more information on working with a Modelfile, see the Modelfile documentation.

CLI Reference

Create a model

ollama create is used to create a model from a Modelfile.

ollama create mymodel -f ./Modelfile

Pull a model

ollama pull llama3

This command can also be used to update a local model. Only the diff will be pulled.

Remove a model

ollama rm llama3

Copy a model

ollama cp llama3 my-model

Multiline input

For multiline input, you can wrap text with """:

>>> """Hello,
... world!
... """
I'm a basic program that prints the famous "Hello, world!" message to the console.

Multimodal models

>>> What's in this image? /Users/jmorgan/Desktop/smile.png
The image features a yellow smiley face, which is likely the central focus of the picture.

Pass the prompt as an argument

$ ollama run llama3 "Summarize this file: $(cat README.md)"
 Ollama is a lightweight, extensible framework for building and running language models on the local machine. It provides a simple API for creating, running, and managing models, as well as a library of pre-built models that can be easily used in a variety of applications.

Show model information

ollama show llama3

List models on your computer

ollama list

Start Ollama

ollama serve is used when you want to start ollama without running the desktop application.

Building

See the developer guide

Running local builds

Next, start the server:

./ollama serve

Finally, in a separate shell, run a model:

./ollama run llama3

REST API

Ollama has a REST API for running and managing models.

Generate a response

curl http://localhost:11434/api/generate -d '{
  "model": "llama3",
  "prompt":"Why is the sky blue?"
}'

Chat with a model

curl http://localhost:11434/api/chat -d '{
  "model": "llama3",
  "messages": [
    { "role": "user", "content": "why is the sky blue?" }
  ]
}'

See the API documentation for all endpoints.

Community Integrations

Web & Desktop

Terminal

Database

Package managers

Libraries

Mobile

Extensions & Plugins

Supported backends

  • llama.cpp project founded by Georgi Gerganov.