llama.h 62 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291
  1. /**
  2. * llama.cpp - commit 40c6d79fb52f995f47507fedfeaae2ac05d9b35c - do not edit this file
  3. *
  4. * MIT License
  5. *
  6. * Copyright (c) 2023-2024 The ggml authors
  7. *
  8. * Permission is hereby granted, free of charge, to any person obtaining a copy
  9. * of this software and associated documentation files (the "Software"), to deal
  10. * in the Software without restriction, including without limitation the rights
  11. * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
  12. * copies of the Software, and to permit persons to whom the Software is
  13. * furnished to do so, subject to the following conditions:
  14. *
  15. * The above copyright notice and this permission notice shall be included in all
  16. * copies or substantial portions of the Software.
  17. *
  18. * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
  19. * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
  20. * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
  21. * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
  22. * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
  23. * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
  24. * SOFTWARE.
  25. */
  26. #ifndef LLAMA_H
  27. #define LLAMA_H
  28. #include "ggml.h"
  29. #include "ggml-cpu.h"
  30. #include "ggml-backend.h"
  31. #include <stddef.h>
  32. #include <stdint.h>
  33. #include <stdio.h>
  34. #include <stdbool.h>
  35. #ifdef LLAMA_SHARED
  36. # if defined(_WIN32) && !defined(__MINGW32__)
  37. # ifdef LLAMA_BUILD
  38. # define LLAMA_API __declspec(dllexport)
  39. # else
  40. # define LLAMA_API __declspec(dllimport)
  41. # endif
  42. # else
  43. # define LLAMA_API __attribute__ ((visibility ("default")))
  44. # endif
  45. #else
  46. # define LLAMA_API
  47. #endif
  48. #ifdef __GNUC__
  49. # define DEPRECATED(func, hint) func __attribute__((deprecated(hint)))
  50. #elif defined(_MSC_VER)
  51. # define DEPRECATED(func, hint) __declspec(deprecated(hint)) func
  52. #else
  53. # define DEPRECATED(func, hint) func
  54. #endif
  55. #define LLAMA_DEFAULT_SEED 0xFFFFFFFF
  56. // TODO: use everywhere in the implementation
  57. #define LLAMA_TOKEN_NULL -1
  58. #define LLAMA_FILE_MAGIC_GGLA 0x67676c61u // 'ggla'
  59. #define LLAMA_FILE_MAGIC_GGSN 0x6767736eu // 'ggsn'
  60. #define LLAMA_FILE_MAGIC_GGSQ 0x67677371u // 'ggsq'
  61. #define LLAMA_SESSION_MAGIC LLAMA_FILE_MAGIC_GGSN
  62. #define LLAMA_SESSION_VERSION 9
  63. #define LLAMA_STATE_SEQ_MAGIC LLAMA_FILE_MAGIC_GGSQ
  64. #define LLAMA_STATE_SEQ_VERSION 2
  65. #ifdef __cplusplus
  66. extern "C" {
  67. #endif
  68. //
  69. // C interface
  70. //
  71. // TODO: show sample usage
  72. //
  73. // struct llama_vocab; // TODO: add in the future
  74. struct llama_model;
  75. struct llama_context;
  76. struct llama_sampler;
  77. typedef int32_t llama_pos;
  78. typedef int32_t llama_token;
  79. typedef int32_t llama_seq_id;
  80. enum llama_vocab_type {
  81. LLAMA_VOCAB_TYPE_NONE = 0, // For models without vocab
  82. LLAMA_VOCAB_TYPE_SPM = 1, // LLaMA tokenizer based on byte-level BPE with byte fallback
  83. LLAMA_VOCAB_TYPE_BPE = 2, // GPT-2 tokenizer based on byte-level BPE
  84. LLAMA_VOCAB_TYPE_WPM = 3, // BERT tokenizer based on WordPiece
  85. LLAMA_VOCAB_TYPE_UGM = 4, // T5 tokenizer based on Unigram
  86. LLAMA_VOCAB_TYPE_RWKV = 5, // RWKV tokenizer based on greedy tokenization
  87. };
  88. // pre-tokenization types
  89. enum llama_vocab_pre_type {
  90. LLAMA_VOCAB_PRE_TYPE_DEFAULT = 0,
  91. LLAMA_VOCAB_PRE_TYPE_LLAMA3 = 1,
  92. LLAMA_VOCAB_PRE_TYPE_DEEPSEEK_LLM = 2,
  93. LLAMA_VOCAB_PRE_TYPE_DEEPSEEK_CODER = 3,
  94. LLAMA_VOCAB_PRE_TYPE_FALCON = 4,
  95. LLAMA_VOCAB_PRE_TYPE_MPT = 5,
  96. LLAMA_VOCAB_PRE_TYPE_STARCODER = 6,
  97. LLAMA_VOCAB_PRE_TYPE_GPT2 = 7,
  98. LLAMA_VOCAB_PRE_TYPE_REFACT = 8,
  99. LLAMA_VOCAB_PRE_TYPE_COMMAND_R = 9,
  100. LLAMA_VOCAB_PRE_TYPE_STABLELM2 = 10,
  101. LLAMA_VOCAB_PRE_TYPE_QWEN2 = 11,
  102. LLAMA_VOCAB_PRE_TYPE_OLMO = 12,
  103. LLAMA_VOCAB_PRE_TYPE_DBRX = 13,
  104. LLAMA_VOCAB_PRE_TYPE_SMAUG = 14,
  105. LLAMA_VOCAB_PRE_TYPE_PORO = 15,
  106. LLAMA_VOCAB_PRE_TYPE_CHATGLM3 = 16,
  107. LLAMA_VOCAB_PRE_TYPE_CHATGLM4 = 17,
  108. LLAMA_VOCAB_PRE_TYPE_VIKING = 18,
  109. LLAMA_VOCAB_PRE_TYPE_JAIS = 19,
  110. LLAMA_VOCAB_PRE_TYPE_TEKKEN = 20,
  111. LLAMA_VOCAB_PRE_TYPE_SMOLLM = 21,
  112. LLAMA_VOCAB_PRE_TYPE_CODESHELL = 22,
  113. LLAMA_VOCAB_PRE_TYPE_BLOOM = 23,
  114. LLAMA_VOCAB_PRE_TYPE_GPT3_FINNISH = 24,
  115. LLAMA_VOCAB_PRE_TYPE_EXAONE = 25,
  116. LLAMA_VOCAB_PRE_TYPE_CHAMELEON = 26,
  117. };
  118. enum llama_rope_type {
  119. LLAMA_ROPE_TYPE_NONE = -1,
  120. LLAMA_ROPE_TYPE_NORM = 0,
  121. LLAMA_ROPE_TYPE_NEOX = GGML_ROPE_TYPE_NEOX,
  122. };
  123. enum llama_token_type { //TODO: remove, required until per token attributes are available from GGUF file
  124. LLAMA_TOKEN_TYPE_UNDEFINED = 0,
  125. LLAMA_TOKEN_TYPE_NORMAL = 1,
  126. LLAMA_TOKEN_TYPE_UNKNOWN = 2,
  127. LLAMA_TOKEN_TYPE_CONTROL = 3,
  128. LLAMA_TOKEN_TYPE_USER_DEFINED = 4,
  129. LLAMA_TOKEN_TYPE_UNUSED = 5,
  130. LLAMA_TOKEN_TYPE_BYTE = 6,
  131. };
  132. enum llama_token_attr {
  133. LLAMA_TOKEN_ATTR_UNDEFINED = 0,
  134. LLAMA_TOKEN_ATTR_UNKNOWN = 1 << 0,
  135. LLAMA_TOKEN_ATTR_UNUSED = 1 << 1,
  136. LLAMA_TOKEN_ATTR_NORMAL = 1 << 2,
  137. LLAMA_TOKEN_ATTR_CONTROL = 1 << 3, // SPECIAL?
  138. LLAMA_TOKEN_ATTR_USER_DEFINED = 1 << 4,
  139. LLAMA_TOKEN_ATTR_BYTE = 1 << 5,
  140. LLAMA_TOKEN_ATTR_NORMALIZED = 1 << 6,
  141. LLAMA_TOKEN_ATTR_LSTRIP = 1 << 7,
  142. LLAMA_TOKEN_ATTR_RSTRIP = 1 << 8,
  143. LLAMA_TOKEN_ATTR_SINGLE_WORD = 1 << 9,
  144. };
  145. // model file types
  146. enum llama_ftype {
  147. LLAMA_FTYPE_ALL_F32 = 0,
  148. LLAMA_FTYPE_MOSTLY_F16 = 1, // except 1d tensors
  149. LLAMA_FTYPE_MOSTLY_Q4_0 = 2, // except 1d tensors
  150. LLAMA_FTYPE_MOSTLY_Q4_1 = 3, // except 1d tensors
  151. // LLAMA_FTYPE_MOSTLY_Q4_1_SOME_F16 = 4, // tok_embeddings.weight and output.weight are F16
  152. // LLAMA_FTYPE_MOSTLY_Q4_2 = 5, // support has been removed
  153. // LLAMA_FTYPE_MOSTLY_Q4_3 = 6, // support has been removed
  154. LLAMA_FTYPE_MOSTLY_Q8_0 = 7, // except 1d tensors
  155. LLAMA_FTYPE_MOSTLY_Q5_0 = 8, // except 1d tensors
  156. LLAMA_FTYPE_MOSTLY_Q5_1 = 9, // except 1d tensors
  157. LLAMA_FTYPE_MOSTLY_Q2_K = 10, // except 1d tensors
  158. LLAMA_FTYPE_MOSTLY_Q3_K_S = 11, // except 1d tensors
  159. LLAMA_FTYPE_MOSTLY_Q3_K_M = 12, // except 1d tensors
  160. LLAMA_FTYPE_MOSTLY_Q3_K_L = 13, // except 1d tensors
  161. LLAMA_FTYPE_MOSTLY_Q4_K_S = 14, // except 1d tensors
  162. LLAMA_FTYPE_MOSTLY_Q4_K_M = 15, // except 1d tensors
  163. LLAMA_FTYPE_MOSTLY_Q5_K_S = 16, // except 1d tensors
  164. LLAMA_FTYPE_MOSTLY_Q5_K_M = 17, // except 1d tensors
  165. LLAMA_FTYPE_MOSTLY_Q6_K = 18, // except 1d tensors
  166. LLAMA_FTYPE_MOSTLY_IQ2_XXS = 19, // except 1d tensors
  167. LLAMA_FTYPE_MOSTLY_IQ2_XS = 20, // except 1d tensors
  168. LLAMA_FTYPE_MOSTLY_Q2_K_S = 21, // except 1d tensors
  169. LLAMA_FTYPE_MOSTLY_IQ3_XS = 22, // except 1d tensors
  170. LLAMA_FTYPE_MOSTLY_IQ3_XXS = 23, // except 1d tensors
  171. LLAMA_FTYPE_MOSTLY_IQ1_S = 24, // except 1d tensors
  172. LLAMA_FTYPE_MOSTLY_IQ4_NL = 25, // except 1d tensors
  173. LLAMA_FTYPE_MOSTLY_IQ3_S = 26, // except 1d tensors
  174. LLAMA_FTYPE_MOSTLY_IQ3_M = 27, // except 1d tensors
  175. LLAMA_FTYPE_MOSTLY_IQ2_S = 28, // except 1d tensors
  176. LLAMA_FTYPE_MOSTLY_IQ2_M = 29, // except 1d tensors
  177. LLAMA_FTYPE_MOSTLY_IQ4_XS = 30, // except 1d tensors
  178. LLAMA_FTYPE_MOSTLY_IQ1_M = 31, // except 1d tensors
  179. LLAMA_FTYPE_MOSTLY_BF16 = 32, // except 1d tensors
  180. LLAMA_FTYPE_MOSTLY_Q4_0_4_4 = 33, // except 1d tensors
  181. LLAMA_FTYPE_MOSTLY_Q4_0_4_8 = 34, // except 1d tensors
  182. LLAMA_FTYPE_MOSTLY_Q4_0_8_8 = 35, // except 1d tensors
  183. LLAMA_FTYPE_MOSTLY_TQ1_0 = 36, // except 1d tensors
  184. LLAMA_FTYPE_MOSTLY_TQ2_0 = 37, // except 1d tensors
  185. LLAMA_FTYPE_GUESSED = 1024, // not specified in the model file
  186. };
  187. enum llama_rope_scaling_type {
  188. LLAMA_ROPE_SCALING_TYPE_UNSPECIFIED = -1,
  189. LLAMA_ROPE_SCALING_TYPE_NONE = 0,
  190. LLAMA_ROPE_SCALING_TYPE_LINEAR = 1,
  191. LLAMA_ROPE_SCALING_TYPE_YARN = 2,
  192. LLAMA_ROPE_SCALING_TYPE_MAX_VALUE = LLAMA_ROPE_SCALING_TYPE_YARN,
  193. };
  194. enum llama_pooling_type {
  195. LLAMA_POOLING_TYPE_UNSPECIFIED = -1,
  196. LLAMA_POOLING_TYPE_NONE = 0,
  197. LLAMA_POOLING_TYPE_MEAN = 1,
  198. LLAMA_POOLING_TYPE_CLS = 2,
  199. LLAMA_POOLING_TYPE_LAST = 3,
  200. LLAMA_POOLING_TYPE_RANK = 4, // used by reranking models to attach the classification head to the graph
  201. };
  202. enum llama_attention_type {
  203. LLAMA_ATTENTION_TYPE_UNSPECIFIED = -1,
  204. LLAMA_ATTENTION_TYPE_CAUSAL = 0,
  205. LLAMA_ATTENTION_TYPE_NON_CAUSAL = 1,
  206. };
  207. enum llama_split_mode {
  208. LLAMA_SPLIT_MODE_NONE = 0, // single GPU
  209. LLAMA_SPLIT_MODE_LAYER = 1, // split layers and KV across GPUs
  210. LLAMA_SPLIT_MODE_ROW = 2, // split layers and KV across GPUs, use tensor parallelism if supported
  211. };
  212. // TODO: simplify (https://github.com/ggerganov/llama.cpp/pull/9294#pullrequestreview-2286561979)
  213. typedef struct llama_token_data {
  214. llama_token id; // token id
  215. float logit; // log-odds of the token
  216. float p; // probability of the token
  217. } llama_token_data;
  218. typedef struct llama_token_data_array {
  219. // TODO: consider SoA
  220. // NOTE: this pointer can be modified by the samplers
  221. llama_token_data * data;
  222. size_t size;
  223. int64_t selected; // this is the index in the data array (i.e. not the token id)
  224. bool sorted;
  225. } llama_token_data_array;
  226. typedef bool (*llama_progress_callback)(float progress, void * user_data);
  227. // Input data for llama_decode
  228. // A llama_batch object can contain input about one or many sequences
  229. // The provided arrays (i.e. token, embd, pos, etc.) must have size of n_tokens
  230. //
  231. // - token : the token ids of the input (used when embd is NULL)
  232. // - embd : token embeddings (i.e. float vector of size n_embd) (used when token is NULL)
  233. // - pos : the positions of the respective token in the sequence
  234. // (if set to NULL, the token position will be tracked automatically by llama_decode)
  235. // - seq_id : the sequence to which the respective token belongs
  236. // (if set to NULL, the sequence ID will be assumed to be 0)
  237. // - logits : if zero, the logits (and/or the embeddings) for the respective token will not be output
  238. // (if set to NULL, only the logits for last token will be returned)
  239. //
  240. typedef struct llama_batch {
  241. int32_t n_tokens;
  242. llama_token * token;
  243. float * embd;
  244. int32_t n_embd;
  245. llama_pos * pos;
  246. int32_t * n_seq_id;
  247. llama_seq_id ** seq_id;
  248. int8_t * logits; // TODO: rename this to "output"
  249. } llama_batch;
  250. enum llama_model_kv_override_type {
  251. LLAMA_KV_OVERRIDE_TYPE_INT,
  252. LLAMA_KV_OVERRIDE_TYPE_FLOAT,
  253. LLAMA_KV_OVERRIDE_TYPE_BOOL,
  254. LLAMA_KV_OVERRIDE_TYPE_STR,
  255. };
  256. struct llama_model_kv_override {
  257. enum llama_model_kv_override_type tag;
  258. char key[128];
  259. union {
  260. int64_t val_i64;
  261. double val_f64;
  262. bool val_bool;
  263. char val_str[128];
  264. };
  265. };
  266. struct llama_model_params {
  267. // NULL-terminated list of devices to use for offloading (if NULL, all available devices are used)
  268. ggml_backend_dev_t * devices;
  269. int32_t n_gpu_layers; // number of layers to store in VRAM
  270. enum llama_split_mode split_mode; // how to split the model across multiple GPUs
  271. // the GPU that is used for the entire model when split_mode is LLAMA_SPLIT_MODE_NONE
  272. int32_t main_gpu;
  273. // proportion of the model (layers or rows) to offload to each GPU, size: llama_max_devices()
  274. const float * tensor_split;
  275. // comma separated list of RPC servers to use for offloading
  276. const char * rpc_servers;
  277. // Called with a progress value between 0.0 and 1.0. Pass NULL to disable.
  278. // If the provided progress_callback returns true, model loading continues.
  279. // If it returns false, model loading is immediately aborted.
  280. llama_progress_callback progress_callback;
  281. // context pointer passed to the progress callback
  282. void * progress_callback_user_data;
  283. // override key-value pairs of the model meta data
  284. const struct llama_model_kv_override * kv_overrides;
  285. // Keep the booleans together to avoid misalignment during copy-by-value.
  286. bool vocab_only; // only load the vocabulary, no weights
  287. bool use_mmap; // use mmap if possible
  288. bool use_mlock; // force system to keep model in RAM
  289. bool check_tensors; // validate model tensor data
  290. };
  291. // NOTE: changing the default values of parameters marked as [EXPERIMENTAL] may cause crashes or incorrect results in certain configurations
  292. // https://github.com/ggerganov/llama.cpp/pull/7544
  293. struct llama_context_params {
  294. uint32_t n_ctx; // text context, 0 = from model
  295. uint32_t n_batch; // logical maximum batch size that can be submitted to llama_decode
  296. uint32_t n_ubatch; // physical maximum batch size
  297. uint32_t n_seq_max; // max number of sequences (i.e. distinct states for recurrent models)
  298. int32_t n_threads; // number of threads to use for generation
  299. int32_t n_threads_batch; // number of threads to use for batch processing
  300. enum llama_rope_scaling_type rope_scaling_type; // RoPE scaling type, from `enum llama_rope_scaling_type`
  301. enum llama_pooling_type pooling_type; // whether to pool (sum) embedding results by sequence id
  302. enum llama_attention_type attention_type; // attention type to use for embeddings
  303. // ref: https://github.com/ggerganov/llama.cpp/pull/2054
  304. float rope_freq_base; // RoPE base frequency, 0 = from model
  305. float rope_freq_scale; // RoPE frequency scaling factor, 0 = from model
  306. float yarn_ext_factor; // YaRN extrapolation mix factor, negative = from model
  307. float yarn_attn_factor; // YaRN magnitude scaling factor
  308. float yarn_beta_fast; // YaRN low correction dim
  309. float yarn_beta_slow; // YaRN high correction dim
  310. uint32_t yarn_orig_ctx; // YaRN original context size
  311. float defrag_thold; // defragment the KV cache if holes/size > thold, < 0 disabled (default)
  312. ggml_backend_sched_eval_callback cb_eval;
  313. void * cb_eval_user_data;
  314. enum ggml_type type_k; // data type for K cache [EXPERIMENTAL]
  315. enum ggml_type type_v; // data type for V cache [EXPERIMENTAL]
  316. // Keep the booleans together and at the end of the struct to avoid misalignment during copy-by-value.
  317. // TODO: move at the end of the struct
  318. bool logits_all; // the llama_decode() call computes all logits, not just the last one (DEPRECATED - set llama_batch.logits instead)
  319. bool embeddings; // if true, extract embeddings (together with logits)
  320. bool offload_kqv; // whether to offload the KQV ops (including the KV cache) to GPU
  321. bool flash_attn; // whether to use flash attention [EXPERIMENTAL]
  322. bool no_perf; // whether to measure performance timings
  323. // Abort callback
  324. // if it returns true, execution of llama_decode() will be aborted
  325. // currently works only with CPU execution
  326. ggml_abort_callback abort_callback;
  327. void * abort_callback_data;
  328. };
  329. // model quantization parameters
  330. typedef struct llama_model_quantize_params {
  331. int32_t nthread; // number of threads to use for quantizing, if <=0 will use std::thread::hardware_concurrency()
  332. enum llama_ftype ftype; // quantize to this llama_ftype
  333. enum ggml_type output_tensor_type; // output tensor type
  334. enum ggml_type token_embedding_type; // token embeddings tensor type
  335. bool allow_requantize; // allow quantizing non-f32/f16 tensors
  336. bool quantize_output_tensor; // quantize output.weight
  337. bool only_copy; // only copy tensors - ftype, allow_requantize and quantize_output_tensor are ignored
  338. bool pure; // quantize all tensors to the default type
  339. bool keep_split; // quantize to the same number of shards
  340. void * imatrix; // pointer to importance matrix data
  341. void * kv_overrides; // pointer to vector containing overrides
  342. } llama_model_quantize_params;
  343. typedef struct llama_logit_bias {
  344. llama_token token;
  345. float bias;
  346. } llama_logit_bias;
  347. typedef struct llama_sampler_chain_params {
  348. bool no_perf; // whether to measure performance timings
  349. } llama_sampler_chain_params;
  350. // used in chat template
  351. typedef struct llama_chat_message {
  352. const char * role;
  353. const char * content;
  354. } llama_chat_message;
  355. // lora adapter
  356. struct llama_lora_adapter;
  357. // Helpers for getting default parameters
  358. // TODO: update API to start accepting pointers to params structs (https://github.com/ggerganov/llama.cpp/discussions/9172)
  359. LLAMA_API struct llama_model_params llama_model_default_params(void);
  360. LLAMA_API struct llama_context_params llama_context_default_params(void);
  361. LLAMA_API struct llama_sampler_chain_params llama_sampler_chain_default_params(void);
  362. LLAMA_API struct llama_model_quantize_params llama_model_quantize_default_params(void);
  363. // Initialize the llama + ggml backend
  364. // If numa is true, use NUMA optimizations
  365. // Call once at the start of the program
  366. LLAMA_API void llama_backend_init(void);
  367. //optional:
  368. LLAMA_API void llama_numa_init(enum ggml_numa_strategy numa);
  369. // Optional: an auto threadpool gets created in ggml if not passed explicitly
  370. LLAMA_API void llama_attach_threadpool(
  371. struct llama_context * ctx,
  372. ggml_threadpool_t threadpool,
  373. ggml_threadpool_t threadpool_batch);
  374. LLAMA_API void llama_detach_threadpool(struct llama_context * ctx);
  375. // Call once at the end of the program - currently only used for MPI
  376. LLAMA_API void llama_backend_free(void);
  377. LLAMA_API struct llama_model * llama_load_model_from_file(
  378. const char * path_model,
  379. struct llama_model_params params);
  380. LLAMA_API void llama_free_model(struct llama_model * model);
  381. // TODO: rename to llama_init_from_model
  382. LLAMA_API struct llama_context * llama_new_context_with_model(
  383. struct llama_model * model,
  384. struct llama_context_params params);
  385. // TODO (jmorganca): this should most likely be passed in as part of a batch
  386. // and not set on the context for all batches.
  387. LLAMA_API void llama_set_cross_attention(struct llama_context * ctx, bool cross_attn_state);
  388. // Frees all allocated memory
  389. LLAMA_API void llama_free(struct llama_context * ctx);
  390. LLAMA_API int64_t llama_time_us(void);
  391. LLAMA_API size_t llama_max_devices(void);
  392. LLAMA_API bool llama_supports_mmap (void);
  393. LLAMA_API bool llama_supports_mlock (void);
  394. LLAMA_API bool llama_supports_gpu_offload(void);
  395. LLAMA_API bool llama_supports_rpc (void);
  396. LLAMA_API uint32_t llama_n_ctx (const struct llama_context * ctx);
  397. LLAMA_API uint32_t llama_n_batch (const struct llama_context * ctx);
  398. LLAMA_API uint32_t llama_n_ubatch (const struct llama_context * ctx);
  399. LLAMA_API uint32_t llama_n_seq_max (const struct llama_context * ctx);
  400. LLAMA_API int32_t llama_n_vocab (const struct llama_model * model);
  401. LLAMA_API int32_t llama_n_ctx_train(const struct llama_model * model);
  402. LLAMA_API int32_t llama_n_embd (const struct llama_model * model);
  403. LLAMA_API int32_t llama_n_layer (const struct llama_model * model);
  404. LLAMA_API int32_t llama_n_head (const struct llama_model * model);
  405. LLAMA_API const struct llama_model * llama_get_model(const struct llama_context * ctx);
  406. LLAMA_API enum llama_pooling_type llama_pooling_type(const struct llama_context * ctx);
  407. LLAMA_API enum llama_vocab_type llama_vocab_type (const struct llama_model * model);
  408. LLAMA_API enum llama_rope_type llama_rope_type (const struct llama_model * model);
  409. // Get the model's RoPE frequency scaling factor
  410. LLAMA_API float llama_rope_freq_scale_train(const struct llama_model * model);
  411. // Functions to access the model's GGUF metadata scalar values
  412. // - The functions return the length of the string on success, or -1 on failure
  413. // - The output string is always null-terminated and cleared on failure
  414. // - GGUF array values are not supported by these functions
  415. // Get metadata value as a string by key name
  416. LLAMA_API int32_t llama_model_meta_val_str(const struct llama_model * model, const char * key, char * buf, size_t buf_size);
  417. // Get the number of metadata key/value pairs
  418. LLAMA_API int32_t llama_model_meta_count(const struct llama_model * model);
  419. // Get metadata key name by index
  420. LLAMA_API int32_t llama_model_meta_key_by_index(const struct llama_model * model, int32_t i, char * buf, size_t buf_size);
  421. // Get metadata value as a string by index
  422. LLAMA_API int32_t llama_model_meta_val_str_by_index(const struct llama_model * model, int32_t i, char * buf, size_t buf_size);
  423. // Get a string describing the model type
  424. LLAMA_API int32_t llama_model_desc(const struct llama_model * model, char * buf, size_t buf_size);
  425. // Returns the total size of all the tensors in the model in bytes
  426. LLAMA_API uint64_t llama_model_size(const struct llama_model * model);
  427. // Returns the total number of parameters in the model
  428. LLAMA_API uint64_t llama_model_n_params(const struct llama_model * model);
  429. // Get a llama model tensor
  430. LLAMA_API struct ggml_tensor * llama_get_model_tensor(struct llama_model * model, const char * name);
  431. // Returns true if the model contains an encoder that requires llama_encode() call
  432. LLAMA_API bool llama_model_has_encoder(const struct llama_model * model);
  433. // Returns true if the model contains a decoder that requires llama_decode() call
  434. LLAMA_API bool llama_model_has_decoder(const struct llama_model * model);
  435. // For encoder-decoder models, this function returns id of the token that must be provided
  436. // to the decoder to start generating output sequence. For other models, it returns -1.
  437. LLAMA_API llama_token llama_model_decoder_start_token(const struct llama_model * model);
  438. // Returns true if the model is recurrent (like Mamba, RWKV, etc.)
  439. LLAMA_API bool llama_model_is_recurrent(const struct llama_model * model);
  440. // Returns 0 on success
  441. LLAMA_API uint32_t llama_model_quantize(
  442. const char * fname_inp,
  443. const char * fname_out,
  444. const llama_model_quantize_params * params);
  445. // Load a LoRA adapter from file
  446. // The loaded adapter will be associated to the given model, and will be free when the model is deleted
  447. LLAMA_API struct llama_lora_adapter * llama_lora_adapter_init(
  448. struct llama_model * model,
  449. const char * path_lora);
  450. // Add a loaded LoRA adapter to given context
  451. // This will not modify model's weight
  452. LLAMA_API int32_t llama_lora_adapter_set(
  453. struct llama_context * ctx,
  454. struct llama_lora_adapter * adapter,
  455. float scale);
  456. // Remove a specific LoRA adapter from given context
  457. // Return -1 if the adapter is not present in the context
  458. LLAMA_API int32_t llama_lora_adapter_remove(
  459. struct llama_context * ctx,
  460. struct llama_lora_adapter * adapter);
  461. // Remove all LoRA adapters from given context
  462. LLAMA_API void llama_lora_adapter_clear(
  463. struct llama_context * ctx);
  464. // Manually free a LoRA adapter
  465. // Note: loaded adapters will be free when the associated model is deleted
  466. LLAMA_API void llama_lora_adapter_free(struct llama_lora_adapter * adapter);
  467. // Apply a loaded control vector to a llama_context, or if data is NULL, clear
  468. // the currently loaded vector.
  469. // n_embd should be the size of a single layer's control, and data should point
  470. // to an n_embd x n_layers buffer starting from layer 1.
  471. // il_start and il_end are the layer range the vector should apply to (both inclusive)
  472. // See llama_control_vector_load in common to load a control vector.
  473. LLAMA_API int32_t llama_control_vector_apply(
  474. struct llama_context * lctx,
  475. const float * data,
  476. size_t len,
  477. int32_t n_embd,
  478. int32_t il_start,
  479. int32_t il_end);
  480. //
  481. // KV cache
  482. //
  483. // Information associated with an individual cell in the KV cache view.
  484. struct llama_kv_cache_view_cell {
  485. // The position for this cell. Takes KV cache shifts into account.
  486. // May be negative if the cell is not populated.
  487. llama_pos pos;
  488. };
  489. // An updateable view of the KV cache.
  490. struct llama_kv_cache_view {
  491. // Number of KV cache cells. This will be the same as the context size.
  492. int32_t n_cells;
  493. // Maximum number of sequences that can exist in a cell. It's not an error
  494. // if there are more sequences in a cell than this value, however they will
  495. // not be visible in the view cells_sequences.
  496. int32_t n_seq_max;
  497. // Number of tokens in the cache. For example, if there are two populated
  498. // cells, the first with 1 sequence id in it and the second with 2 sequence
  499. // ids then you'll have 3 tokens.
  500. int32_t token_count;
  501. // Number of populated cache cells.
  502. int32_t used_cells;
  503. // Maximum contiguous empty slots in the cache.
  504. int32_t max_contiguous;
  505. // Index to the start of the max_contiguous slot range. Can be negative
  506. // when cache is full.
  507. int32_t max_contiguous_idx;
  508. // Information for an individual cell.
  509. struct llama_kv_cache_view_cell * cells;
  510. // The sequences for each cell. There will be n_seq_max items per cell.
  511. llama_seq_id * cells_sequences;
  512. };
  513. // Create an empty KV cache view. (use only for debugging purposes)
  514. LLAMA_API struct llama_kv_cache_view llama_kv_cache_view_init(const struct llama_context * ctx, int32_t n_seq_max);
  515. // Free a KV cache view. (use only for debugging purposes)
  516. LLAMA_API void llama_kv_cache_view_free(struct llama_kv_cache_view * view);
  517. // Update the KV cache view structure with the current state of the KV cache. (use only for debugging purposes)
  518. LLAMA_API void llama_kv_cache_view_update(const struct llama_context * ctx, struct llama_kv_cache_view * view);
  519. // Returns the number of tokens in the KV cache (slow, use only for debug)
  520. // If a KV cell has multiple sequences assigned to it, it will be counted multiple times
  521. LLAMA_API int32_t llama_get_kv_cache_token_count(const struct llama_context * ctx);
  522. // Returns the number of used KV cells (i.e. have at least one sequence assigned to them)
  523. LLAMA_API int32_t llama_get_kv_cache_used_cells(const struct llama_context * ctx);
  524. // Clear the KV cache - both cell info is erased and KV data is zeroed
  525. LLAMA_API void llama_kv_cache_clear(
  526. struct llama_context * ctx);
  527. // Removes all tokens that belong to the specified sequence and have positions in [p0, p1)
  528. // Returns false if a partial sequence cannot be removed. Removing a whole sequence never fails
  529. // seq_id < 0 : match any sequence
  530. // p0 < 0 : [0, p1]
  531. // p1 < 0 : [p0, inf)
  532. LLAMA_API bool llama_kv_cache_seq_rm(
  533. struct llama_context * ctx,
  534. llama_seq_id seq_id,
  535. llama_pos p0,
  536. llama_pos p1);
  537. // Copy all tokens that belong to the specified sequence to another sequence
  538. // Note that this does not allocate extra KV cache memory - it simply assigns the tokens to the new sequence
  539. // p0 < 0 : [0, p1]
  540. // p1 < 0 : [p0, inf)
  541. LLAMA_API void llama_kv_cache_seq_cp(
  542. struct llama_context * ctx,
  543. llama_seq_id seq_id_src,
  544. llama_seq_id seq_id_dst,
  545. llama_pos p0,
  546. llama_pos p1);
  547. // Removes all tokens that do not belong to the specified sequence
  548. LLAMA_API void llama_kv_cache_seq_keep(
  549. struct llama_context * ctx,
  550. llama_seq_id seq_id);
  551. // Adds relative position "delta" to all tokens that belong to the specified sequence and have positions in [p0, p1)
  552. // If the KV cache is RoPEd, the KV data is updated accordingly:
  553. // - lazily on next llama_decode()
  554. // - explicitly with llama_kv_cache_update()
  555. // p0 < 0 : [0, p1]
  556. // p1 < 0 : [p0, inf)
  557. LLAMA_API void llama_kv_cache_seq_add(
  558. struct llama_context * ctx,
  559. llama_seq_id seq_id,
  560. llama_pos p0,
  561. llama_pos p1,
  562. llama_pos delta);
  563. // Integer division of the positions by factor of `d > 1`
  564. // If the KV cache is RoPEd, the KV data is updated accordingly:
  565. // - lazily on next llama_decode()
  566. // - explicitly with llama_kv_cache_update()
  567. // p0 < 0 : [0, p1]
  568. // p1 < 0 : [p0, inf)
  569. LLAMA_API void llama_kv_cache_seq_div(
  570. struct llama_context * ctx,
  571. llama_seq_id seq_id,
  572. llama_pos p0,
  573. llama_pos p1,
  574. int d);
  575. // Returns the largest position present in the KV cache for the specified sequence
  576. LLAMA_API llama_pos llama_kv_cache_seq_pos_max(
  577. struct llama_context * ctx,
  578. llama_seq_id seq_id);
  579. // Defragment the KV cache
  580. // This will be applied:
  581. // - lazily on next llama_decode()
  582. // - explicitly with llama_kv_cache_update()
  583. LLAMA_API void llama_kv_cache_defrag(struct llama_context * ctx);
  584. // Apply the KV cache updates (such as K-shifts, defragmentation, etc.)
  585. LLAMA_API void llama_kv_cache_update(struct llama_context * ctx);
  586. // Check if the context supports KV cache shifting
  587. LLAMA_API bool llama_kv_cache_can_shift(struct llama_context * ctx);
  588. //
  589. // State / sessions
  590. //
  591. // Returns the *actual* size in bytes of the state
  592. // (logits, embedding and kv_cache)
  593. // Only use when saving the state, not when restoring it, otherwise the size may be too small.
  594. LLAMA_API size_t llama_state_get_size(struct llama_context * ctx);
  595. LLAMA_API DEPRECATED(size_t llama_get_state_size(struct llama_context * ctx),
  596. "use llama_state_get_size instead");
  597. // Copies the state to the specified destination address.
  598. // Destination needs to have allocated enough memory.
  599. // Returns the number of bytes copied
  600. LLAMA_API size_t llama_state_get_data(
  601. struct llama_context * ctx,
  602. uint8_t * dst,
  603. size_t size);
  604. LLAMA_API DEPRECATED(size_t llama_copy_state_data(
  605. struct llama_context * ctx,
  606. uint8_t * dst),
  607. "use llama_state_get_data instead");
  608. // Set the state reading from the specified address
  609. // Returns the number of bytes read
  610. LLAMA_API size_t llama_state_set_data(
  611. struct llama_context * ctx,
  612. const uint8_t * src,
  613. size_t size);
  614. LLAMA_API DEPRECATED(size_t llama_set_state_data(
  615. struct llama_context * ctx,
  616. const uint8_t * src),
  617. "use llama_state_set_data instead");
  618. // Save/load session file
  619. LLAMA_API bool llama_state_load_file(
  620. struct llama_context * ctx,
  621. const char * path_session,
  622. llama_token * tokens_out,
  623. size_t n_token_capacity,
  624. size_t * n_token_count_out);
  625. LLAMA_API DEPRECATED(bool llama_load_session_file(
  626. struct llama_context * ctx,
  627. const char * path_session,
  628. llama_token * tokens_out,
  629. size_t n_token_capacity,
  630. size_t * n_token_count_out),
  631. "use llama_state_load_file instead");
  632. LLAMA_API bool llama_state_save_file(
  633. struct llama_context * ctx,
  634. const char * path_session,
  635. const llama_token * tokens,
  636. size_t n_token_count);
  637. LLAMA_API DEPRECATED(bool llama_save_session_file(
  638. struct llama_context * ctx,
  639. const char * path_session,
  640. const llama_token * tokens,
  641. size_t n_token_count),
  642. "use llama_state_save_file instead");
  643. // Get the exact size needed to copy the KV cache of a single sequence
  644. LLAMA_API size_t llama_state_seq_get_size(
  645. struct llama_context * ctx,
  646. llama_seq_id seq_id);
  647. // Copy the KV cache of a single sequence into the specified buffer
  648. LLAMA_API size_t llama_state_seq_get_data(
  649. struct llama_context * ctx,
  650. uint8_t * dst,
  651. size_t size,
  652. llama_seq_id seq_id);
  653. // Copy the sequence data (originally copied with `llama_state_seq_get_data`) into the specified sequence
  654. // Returns:
  655. // - Positive: Ok
  656. // - Zero: Failed to load
  657. LLAMA_API size_t llama_state_seq_set_data(
  658. struct llama_context * ctx,
  659. const uint8_t * src,
  660. size_t size,
  661. llama_seq_id dest_seq_id);
  662. LLAMA_API size_t llama_state_seq_save_file(
  663. struct llama_context * ctx,
  664. const char * filepath,
  665. llama_seq_id seq_id,
  666. const llama_token * tokens,
  667. size_t n_token_count);
  668. LLAMA_API size_t llama_state_seq_load_file(
  669. struct llama_context * ctx,
  670. const char * filepath,
  671. llama_seq_id dest_seq_id,
  672. llama_token * tokens_out,
  673. size_t n_token_capacity,
  674. size_t * n_token_count_out);
  675. //
  676. // Decoding
  677. //
  678. // Return batch for single sequence of tokens
  679. // The sequence ID will be fixed to 0
  680. // The position of the tokens will be tracked automatically by llama_decode
  681. //
  682. // NOTE: this is a helper function to facilitate transition to the new batch API - avoid using it
  683. //
  684. LLAMA_API struct llama_batch llama_batch_get_one(
  685. llama_token * tokens,
  686. int32_t n_tokens);
  687. // Allocates a batch of tokens on the heap that can hold a maximum of n_tokens
  688. // Each token can be assigned up to n_seq_max sequence ids
  689. // The batch has to be freed with llama_batch_free()
  690. // If embd != 0, llama_batch.embd will be allocated with size of n_tokens * embd * sizeof(float)
  691. // Otherwise, llama_batch.token will be allocated to store n_tokens llama_token
  692. // The rest of the llama_batch members are allocated with size n_tokens
  693. // All members are left uninitialized
  694. LLAMA_API struct llama_batch llama_batch_init(
  695. int32_t n_tokens,
  696. int32_t embd,
  697. int32_t n_seq_max);
  698. // Frees a batch of tokens allocated with llama_batch_init()
  699. LLAMA_API void llama_batch_free(struct llama_batch batch);
  700. // Processes a batch of tokens with the ecoder part of the encoder-decoder model.
  701. // Stores the encoder output internally for later use by the decoder cross-attention layers.
  702. // 0 - success
  703. // < 0 - error. the KV cache state is restored to the state before this call
  704. LLAMA_API int32_t llama_encode(
  705. struct llama_context * ctx,
  706. struct llama_batch batch);
  707. // Positive return values does not mean a fatal error, but rather a warning.
  708. // 0 - success
  709. // 1 - could not find a KV slot for the batch (try reducing the size of the batch or increase the context)
  710. // < 0 - error. the KV cache state is restored to the state before this call
  711. LLAMA_API int32_t llama_decode(
  712. struct llama_context * ctx,
  713. struct llama_batch batch);
  714. // Set the number of threads used for decoding
  715. // n_threads is the number of threads used for generation (single token)
  716. // n_threads_batch is the number of threads used for prompt and batch processing (multiple tokens)
  717. LLAMA_API void llama_set_n_threads(struct llama_context * ctx, int32_t n_threads, int32_t n_threads_batch);
  718. // Get the number of threads used for generation of a single token.
  719. LLAMA_API int32_t llama_n_threads(struct llama_context * ctx);
  720. // Get the number of threads used for prompt and batch processing (multiple token).
  721. LLAMA_API int32_t llama_n_threads_batch(struct llama_context * ctx);
  722. // Set whether the model is in embeddings mode or not
  723. // If true, embeddings will be returned but logits will not
  724. LLAMA_API void llama_set_embeddings(struct llama_context * ctx, bool embeddings);
  725. // Set whether to use causal attention or not
  726. // If set to true, the model will only attend to the past tokens
  727. LLAMA_API void llama_set_causal_attn(struct llama_context * ctx, bool causal_attn);
  728. // Set abort callback
  729. LLAMA_API void llama_set_abort_callback(struct llama_context * ctx, ggml_abort_callback abort_callback, void * abort_callback_data);
  730. // Wait until all computations are finished
  731. // This is automatically done when using one of the functions below to obtain the computation results
  732. // and is not necessary to call it explicitly in most cases
  733. LLAMA_API void llama_synchronize(struct llama_context * ctx);
  734. // Token logits obtained from the last call to llama_decode()
  735. // The logits for which llama_batch.logits[i] != 0 are stored contiguously
  736. // in the order they have appeared in the batch.
  737. // Rows: number of tokens for which llama_batch.logits[i] != 0
  738. // Cols: n_vocab
  739. LLAMA_API float * llama_get_logits(struct llama_context * ctx);
  740. // Logits for the ith token. For positive indices, Equivalent to:
  741. // llama_get_logits(ctx) + ctx->output_ids[i]*n_vocab
  742. // Negative indicies can be used to access logits in reverse order, -1 is the last logit.
  743. // returns NULL for invalid ids.
  744. LLAMA_API float * llama_get_logits_ith(struct llama_context * ctx, int32_t i);
  745. // Get all output token embeddings.
  746. // when pooling_type == LLAMA_POOLING_TYPE_NONE or when using a generative model,
  747. // the embeddings for which llama_batch.logits[i] != 0 are stored contiguously
  748. // in the order they have appeared in the batch.
  749. // shape: [n_outputs*n_embd]
  750. // Otherwise, returns NULL.
  751. LLAMA_API float * llama_get_embeddings(struct llama_context * ctx);
  752. // Get the embeddings for the ith token. For positive indices, Equivalent to:
  753. // llama_get_embeddings(ctx) + ctx->output_ids[i]*n_embd
  754. // Negative indicies can be used to access embeddings in reverse order, -1 is the last embedding.
  755. // shape: [n_embd] (1-dimensional)
  756. // returns NULL for invalid ids.
  757. LLAMA_API float * llama_get_embeddings_ith(struct llama_context * ctx, int32_t i);
  758. // Get the embeddings for a sequence id
  759. // Returns NULL if pooling_type is LLAMA_POOLING_TYPE_NONE
  760. // when pooling_type == LLAMA_POOLING_TYPE_RANK, returns float[1] with the rank of the sequence
  761. // otherwise: float[n_embd] (1-dimensional)
  762. LLAMA_API float * llama_get_embeddings_seq(struct llama_context * ctx, llama_seq_id seq_id);
  763. //
  764. // Vocab
  765. //
  766. LLAMA_API const char * llama_token_get_text(const struct llama_model * model, llama_token token);
  767. LLAMA_API float llama_token_get_score(const struct llama_model * model, llama_token token);
  768. LLAMA_API enum llama_token_attr llama_token_get_attr(const struct llama_model * model, llama_token token);
  769. // Check if the token is supposed to end generation (end-of-generation, eg. EOS, EOT, etc.)
  770. LLAMA_API bool llama_token_is_eog(const struct llama_model * model, llama_token token);
  771. // Identify if Token Id is a control token or a render-able token
  772. LLAMA_API bool llama_token_is_control(const struct llama_model * model, llama_token token);
  773. // Special tokens
  774. LLAMA_API llama_token llama_token_bos(const struct llama_model * model); // beginning-of-sentence
  775. LLAMA_API llama_token llama_token_eos(const struct llama_model * model); // end-of-sentence
  776. LLAMA_API llama_token llama_token_eot(const struct llama_model * model); // end-of-turn
  777. LLAMA_API llama_token llama_token_cls(const struct llama_model * model); // classification
  778. LLAMA_API llama_token llama_token_sep(const struct llama_model * model); // sentence separator
  779. LLAMA_API llama_token llama_token_nl (const struct llama_model * model); // next-line
  780. LLAMA_API llama_token llama_token_pad(const struct llama_model * model); // padding
  781. LLAMA_API bool llama_add_bos_token(const struct llama_model * model);
  782. LLAMA_API bool llama_add_eos_token(const struct llama_model * model);
  783. // infill tokens
  784. DEPRECATED(LLAMA_API llama_token llama_token_prefix(const struct llama_model * model), "use llama_token_fim_pre instead");
  785. DEPRECATED(LLAMA_API llama_token llama_token_middle(const struct llama_model * model), "use llama_token_fim_mid instead");
  786. DEPRECATED(LLAMA_API llama_token llama_token_suffix(const struct llama_model * model), "use llama_token_fim_suf instead");
  787. LLAMA_API llama_token llama_token_fim_pre(const struct llama_model * model);
  788. LLAMA_API llama_token llama_token_fim_suf(const struct llama_model * model);
  789. LLAMA_API llama_token llama_token_fim_mid(const struct llama_model * model);
  790. LLAMA_API llama_token llama_token_fim_pad(const struct llama_model * model);
  791. LLAMA_API llama_token llama_token_fim_rep(const struct llama_model * model);
  792. LLAMA_API llama_token llama_token_fim_sep(const struct llama_model * model);
  793. //
  794. // Tokenization
  795. //
  796. // The API is thread-safe.
  797. //
  798. /// @details Convert the provided text into tokens.
  799. /// @param tokens The tokens pointer must be large enough to hold the resulting tokens.
  800. /// @return Returns the number of tokens on success, no more than n_tokens_max
  801. /// @return Returns a negative number on failure - the number of tokens that would have been returned
  802. /// @param add_special Allow to add BOS and EOS tokens if model is configured to do so.
  803. /// @param parse_special Allow tokenizing special and/or control tokens which otherwise are not exposed and treated
  804. /// as plaintext. Does not insert a leading space.
  805. LLAMA_API int32_t llama_tokenize(
  806. const struct llama_model * model,
  807. const char * text,
  808. int32_t text_len,
  809. llama_token * tokens,
  810. int32_t n_tokens_max,
  811. bool add_special,
  812. bool parse_special);
  813. // Token Id -> Piece.
  814. // Uses the vocabulary in the provided context.
  815. // Does not write null terminator to the buffer.
  816. // User can skip up to 'lstrip' leading spaces before copying (useful when encoding/decoding multiple tokens with 'add_space_prefix')
  817. // @param special If true, special tokens are rendered in the output.
  818. LLAMA_API int32_t llama_token_to_piece(
  819. const struct llama_model * model,
  820. llama_token token,
  821. char * buf,
  822. int32_t length,
  823. int32_t lstrip,
  824. bool special);
  825. /// @details Convert the provided tokens into text (inverse of llama_tokenize()).
  826. /// @param text The char pointer must be large enough to hold the resulting text.
  827. /// @return Returns the number of chars/bytes on success, no more than text_len_max.
  828. /// @return Returns a negative number on failure - the number of chars/bytes that would have been returned.
  829. /// @param remove_special Allow to remove BOS and EOS tokens if model is configured to do so.
  830. /// @param unparse_special If true, special tokens are rendered in the output.
  831. LLAMA_API int32_t llama_detokenize(
  832. const struct llama_model * model,
  833. const llama_token * tokens,
  834. int32_t n_tokens,
  835. char * text,
  836. int32_t text_len_max,
  837. bool remove_special,
  838. bool unparse_special);
  839. //
  840. // Chat templates
  841. //
  842. /// Apply chat template. Inspired by hf apply_chat_template() on python.
  843. /// Both "model" and "custom_template" are optional, but at least one is required. "custom_template" has higher precedence than "model"
  844. /// NOTE: This function does not use a jinja parser. It only support a pre-defined list of template. See more: https://github.com/ggerganov/llama.cpp/wiki/Templates-supported-by-llama_chat_apply_template
  845. /// @param tmpl A Jinja template to use for this chat. If this is nullptr, the model’s default chat template will be used instead.
  846. /// @param chat Pointer to a list of multiple llama_chat_message
  847. /// @param n_msg Number of llama_chat_message in this chat
  848. /// @param add_ass Whether to end the prompt with the token(s) that indicate the start of an assistant message.
  849. /// @param buf A buffer to hold the output formatted prompt. The recommended alloc size is 2 * (total number of characters of all messages)
  850. /// @param length The size of the allocated buffer
  851. /// @return The total number of bytes of the formatted prompt. If is it larger than the size of buffer, you may need to re-alloc it and then re-apply the template.
  852. LLAMA_API int32_t llama_chat_apply_template(
  853. const struct llama_model * model,
  854. const char * tmpl,
  855. const struct llama_chat_message * chat,
  856. size_t n_msg,
  857. bool add_ass,
  858. char * buf,
  859. int32_t length);
  860. // Get list of built-in chat templates
  861. LLAMA_API int32_t llama_chat_builtin_templates(const char ** output, size_t len);
  862. //
  863. // Sampling API
  864. //
  865. // Sample usage:
  866. //
  867. // // prepare the sampling chain at the start
  868. // auto sparams = llama_sampler_chain_default_params();
  869. //
  870. // llama_sampler * smpl = llama_sampler_chain_init(sparams);
  871. //
  872. // llama_sampler_chain_add(smpl, llama_sampler_init_top_k(50));
  873. // llama_sampler_chain_add(smpl, llama_sampler_init_top_p(0.9, 1));
  874. // llama_sampler_chain_add(smpl, llama_sampler_init_temp (0.8));
  875. //
  876. // // typically, the chain should end with a sampler such as "greedy", "dist" or "mirostat"
  877. // // this sampler will be responsible to select the actual token
  878. // llama_sampler_chain_add(smpl, llama_sampler_init_dist(seed));
  879. //
  880. // ...
  881. //
  882. // // decoding loop:
  883. // while (...) {
  884. // ...
  885. //
  886. // llama_decode(ctx, batch);
  887. //
  888. // // sample from the logits of the last token in the batch
  889. // const llama_token id = llama_sampler_sample(smpl, ctx, -1);
  890. //
  891. // // accepting the token updates the internal state of certain samplers (e.g. grammar, repetition, etc.)
  892. // llama_sampler_accept(smpl, id);
  893. // ...
  894. // }
  895. //
  896. // llama_sampler_free(smpl);
  897. //
  898. // TODO: In the future, llama_sampler will be utilized to offload the sampling to the backends (e.g. GPU).
  899. // TODO: in the future, the entire sampling API that uses llama_model should start using llama_vocab
  900. //
  901. typedef void * llama_sampler_context_t;
  902. // user code can implement the interface below in order to create custom llama_sampler
  903. struct llama_sampler_i {
  904. const char * (*name) (const struct llama_sampler * smpl); // can be NULL
  905. void (*accept)( struct llama_sampler * smpl, llama_token token); // can be NULL
  906. void (*apply) ( struct llama_sampler * smpl, llama_token_data_array * cur_p); // required
  907. void (*reset) ( struct llama_sampler * smpl); // can be NULL
  908. struct llama_sampler * (*clone) (const struct llama_sampler * smpl); // can be NULL if ctx is NULL
  909. void (*free) ( struct llama_sampler * smpl); // can be NULL if ctx is NULL
  910. // TODO: API for internal libllama usage for appending the sampling to an existing ggml_cgraph
  911. //void (*apply_ggml) (struct llama_sampler * smpl, ...);
  912. };
  913. struct llama_sampler {
  914. struct llama_sampler_i * iface;
  915. llama_sampler_context_t ctx;
  916. };
  917. // mirror of llama_sampler_i:
  918. LLAMA_API const char * llama_sampler_name (const struct llama_sampler * smpl);
  919. LLAMA_API void llama_sampler_accept( struct llama_sampler * smpl, llama_token token);
  920. LLAMA_API void llama_sampler_apply ( struct llama_sampler * smpl, llama_token_data_array * cur_p);
  921. LLAMA_API void llama_sampler_reset ( struct llama_sampler * smpl);
  922. LLAMA_API struct llama_sampler * llama_sampler_clone (const struct llama_sampler * smpl);
  923. // important: do not free if the sampler has been added to a llama_sampler_chain (via llama_sampler_chain_add)
  924. LLAMA_API void llama_sampler_free ( struct llama_sampler * smpl);
  925. // llama_sampler_chain
  926. // a type of llama_sampler that can chain multiple samplers one after another
  927. LLAMA_API struct llama_sampler * llama_sampler_chain_init(struct llama_sampler_chain_params params);
  928. // important: takes ownership of the sampler object and will free it when llama_sampler_free is called
  929. LLAMA_API void llama_sampler_chain_add( struct llama_sampler * chain, struct llama_sampler * smpl);
  930. LLAMA_API struct llama_sampler * llama_sampler_chain_get(const struct llama_sampler * chain, int32_t i);
  931. LLAMA_API int llama_sampler_chain_n (const struct llama_sampler * chain);
  932. // after removing a sampler, the chain will no longer own it, and it will not be freed when the chain is freed
  933. LLAMA_API struct llama_sampler * llama_sampler_chain_remove( struct llama_sampler * chain, int32_t i);
  934. // available samplers:
  935. LLAMA_API struct llama_sampler * llama_sampler_init_greedy(void);
  936. LLAMA_API struct llama_sampler * llama_sampler_init_dist (uint32_t seed);
  937. /// @details Sorts candidate tokens by their logits in descending order and calculate probabilities based on logits.
  938. /// NOTE: Avoid using on the full vocabulary as the sorting can become slow. For example, apply top-k or top-p sampling first.
  939. DEPRECATED(LLAMA_API struct llama_sampler * llama_sampler_init_softmax (void),
  940. "will be removed in the future (see https://github.com/ggerganov/llama.cpp/pull/9896#discussion_r1800920915)");
  941. /// @details Top-K sampling described in academic paper "The Curious Case of Neural Text Degeneration" https://arxiv.org/abs/1904.09751
  942. LLAMA_API struct llama_sampler * llama_sampler_init_top_k (int32_t k);
  943. /// @details Nucleus sampling described in academic paper "The Curious Case of Neural Text Degeneration" https://arxiv.org/abs/1904.09751
  944. LLAMA_API struct llama_sampler * llama_sampler_init_top_p (float p, size_t min_keep);
  945. /// @details Minimum P sampling as described in https://github.com/ggerganov/llama.cpp/pull/3841
  946. LLAMA_API struct llama_sampler * llama_sampler_init_min_p (float p, size_t min_keep);
  947. /// @details Locally Typical Sampling implementation described in the paper https://arxiv.org/abs/2202.00666.
  948. LLAMA_API struct llama_sampler * llama_sampler_init_typical (float p, size_t min_keep);
  949. /// #details Updates the logits l_i` = l_i/t. When t <= 0.0f, the maximum logit is kept at it's original value, the rest are set to -inf
  950. LLAMA_API struct llama_sampler * llama_sampler_init_temp (float t);
  951. /// @details Dynamic temperature implementation (a.k.a. entropy) described in the paper https://arxiv.org/abs/2309.02772.
  952. LLAMA_API struct llama_sampler * llama_sampler_init_temp_ext (float t, float delta, float exponent);
  953. /// @details XTC sampler as described in https://github.com/oobabooga/text-generation-webui/pull/6335
  954. LLAMA_API struct llama_sampler * llama_sampler_init_xtc (float p, float t, size_t min_keep, uint32_t seed);
  955. /// @details Mirostat 1.0 algorithm described in the paper https://arxiv.org/abs/2007.14966. Uses tokens instead of words.
  956. /// @param candidates A vector of `llama_token_data` containing the candidate tokens, their probabilities (p), and log-odds (logit) for the current position in the generated text.
  957. /// @param tau The target cross-entropy (or surprise) value you want to achieve for the generated text. A higher value corresponds to more surprising or less predictable text, while a lower value corresponds to less surprising or more predictable text.
  958. /// @param eta The learning rate used to update `mu` based on the error between the target and observed surprisal of the sampled word. A larger learning rate will cause `mu` to be updated more quickly, while a smaller learning rate will result in slower updates.
  959. /// @param m The number of tokens considered in the estimation of `s_hat`. This is an arbitrary value that is used to calculate `s_hat`, which in turn helps to calculate the value of `k`. In the paper, they use `m = 100`, but you can experiment with different values to see how it affects the performance of the algorithm.
  960. /// @param mu Maximum cross-entropy. This value is initialized to be twice the target cross-entropy (`2 * tau`) and is updated in the algorithm based on the error between the target and observed surprisal.
  961. LLAMA_API struct llama_sampler * llama_sampler_init_mirostat(
  962. int32_t n_vocab,
  963. uint32_t seed,
  964. float tau,
  965. float eta,
  966. int32_t m);
  967. /// @details Mirostat 2.0 algorithm described in the paper https://arxiv.org/abs/2007.14966. Uses tokens instead of words.
  968. /// @param candidates A vector of `llama_token_data` containing the candidate tokens, their probabilities (p), and log-odds (logit) for the current position in the generated text.
  969. /// @param tau The target cross-entropy (or surprise) value you want to achieve for the generated text. A higher value corresponds to more surprising or less predictable text, while a lower value corresponds to less surprising or more predictable text.
  970. /// @param eta The learning rate used to update `mu` based on the error between the target and observed surprisal of the sampled word. A larger learning rate will cause `mu` to be updated more quickly, while a smaller learning rate will result in slower updates.
  971. /// @param mu Maximum cross-entropy. This value is initialized to be twice the target cross-entropy (`2 * tau`) and is updated in the algorithm based on the error between the target and observed surprisal.
  972. LLAMA_API struct llama_sampler * llama_sampler_init_mirostat_v2(
  973. uint32_t seed,
  974. float tau,
  975. float eta);
  976. LLAMA_API struct llama_sampler * llama_sampler_init_grammar(
  977. const struct llama_model * model,
  978. const char * grammar_str,
  979. const char * grammar_root);
  980. LLAMA_API struct llama_sampler * llama_sampler_init_penalties(
  981. int32_t n_vocab, // llama_n_vocab()
  982. llama_token special_eos_id, // llama_token_eos()
  983. llama_token linefeed_id, // llama_token_nl()
  984. int32_t penalty_last_n, // last n tokens to penalize (0 = disable penalty, -1 = context size)
  985. float penalty_repeat, // 1.0 = disabled
  986. float penalty_freq, // 0.0 = disabled
  987. float penalty_present, // 0.0 = disabled
  988. bool penalize_nl, // consider newlines as a repeatable token
  989. bool ignore_eos); // ignore the end-of-sequence token
  990. /// @details DRY sampler, designed by p-e-w, as described in: https://github.com/oobabooga/text-generation-webui/pull/5677, porting Koboldcpp implementation authored by pi6am: https://github.com/LostRuins/koboldcpp/pull/982
  991. LLAMA_API struct llama_sampler * llama_sampler_init_dry(
  992. const struct llama_model * model,
  993. float dry_multiplier,
  994. float dry_base,
  995. int32_t dry_allowed_length,
  996. int32_t dry_penalty_last_n,
  997. const char ** seq_breakers,
  998. size_t num_breakers);
  999. LLAMA_API struct llama_sampler * llama_sampler_init_logit_bias(
  1000. int32_t n_vocab,
  1001. int32_t n_logit_bias,
  1002. const llama_logit_bias * logit_bias);
  1003. // this sampler is meant to be used for fill-in-the-middle infilling
  1004. // it's supposed to be used after top_k + top_p sampling
  1005. //
  1006. // 1. if the sum of the EOG probs times the number of candidates is higher than the sum of the other probs -> pick EOG
  1007. // 2. combine probs of tokens that have the same prefix
  1008. //
  1009. // example:
  1010. //
  1011. // - before:
  1012. // "hel": 0.5
  1013. // "hell": 0.2
  1014. // "hello": 0.1
  1015. // "dummy": 0.1
  1016. //
  1017. // - after:
  1018. // "hel": 0.8
  1019. // "dummy": 0.1
  1020. //
  1021. // 3. discard non-EOG tokens with low prob
  1022. // 4. if no tokens are left -> pick EOT
  1023. //
  1024. LLAMA_API struct llama_sampler * llama_sampler_init_infill(const struct llama_model * model);
  1025. // Returns the seed used by the sampler if applicable, LLAMA_DEFAULT_SEED otherwise
  1026. LLAMA_API uint32_t llama_sampler_get_seed(const struct llama_sampler * smpl);
  1027. /// @details Sample and accept a token from the idx-th output of the last evaluation
  1028. //
  1029. // Shorthand for:
  1030. // const auto * logits = llama_get_logits_ith(ctx, idx);
  1031. // llama_token_data_array cur_p = { ... init from logits ... };
  1032. // llama_sampler_apply(smpl, &cur_p);
  1033. // auto token = cur_p.data[cur_p.selected].id;
  1034. // llama_sampler_accept(smpl, token);
  1035. // return token;
  1036. // Returns the sampled token
  1037. LLAMA_API llama_token llama_sampler_sample(struct llama_sampler * smpl, struct llama_context * ctx, int32_t idx);
  1038. // TODO: extend in the future
  1039. //LLAMA_API void llama_decode_with_sampler(struct llama_context * ctx, struct llama_sampler * smpl, struct llama_batch batch, ...);
  1040. //
  1041. // Model split
  1042. //
  1043. /// @details Build a split GGUF final path for this chunk.
  1044. /// llama_split_path(split_path, sizeof(split_path), "/models/ggml-model-q4_0", 2, 4) => split_path = "/models/ggml-model-q4_0-00002-of-00004.gguf"
  1045. // Returns the split_path length.
  1046. LLAMA_API int llama_split_path(char * split_path, size_t maxlen, const char * path_prefix, int split_no, int split_count);
  1047. /// @details Extract the path prefix from the split_path if and only if the split_no and split_count match.
  1048. /// llama_split_prefix(split_prefix, 64, "/models/ggml-model-q4_0-00002-of-00004.gguf", 2, 4) => split_prefix = "/models/ggml-model-q4_0"
  1049. // Returns the split_prefix length.
  1050. LLAMA_API int llama_split_prefix(char * split_prefix, size_t maxlen, const char * split_path, int split_no, int split_count);
  1051. // Print system information
  1052. LLAMA_API const char * llama_print_system_info(void);
  1053. // Set callback for all future logging events.
  1054. // If this is not called, or NULL is supplied, everything is output on stderr.
  1055. LLAMA_API void llama_log_set(ggml_log_callback log_callback, void * user_data);
  1056. //
  1057. // Performance utils
  1058. //
  1059. // NOTE: Used by llama.cpp examples, avoid using in third-party apps. Instead, do your own performance measurements.
  1060. //
  1061. struct llama_perf_context_data {
  1062. double t_start_ms;
  1063. double t_load_ms;
  1064. double t_p_eval_ms;
  1065. double t_eval_ms;
  1066. int32_t n_p_eval;
  1067. int32_t n_eval;
  1068. };
  1069. struct llama_perf_sampler_data {
  1070. double t_sample_ms;
  1071. int32_t n_sample;
  1072. };
  1073. LLAMA_API struct llama_perf_context_data llama_perf_context (const struct llama_context * ctx);
  1074. LLAMA_API void llama_perf_context_print(const struct llama_context * ctx);
  1075. LLAMA_API void llama_perf_context_reset( struct llama_context * ctx);
  1076. // NOTE: the following work only with samplers constructed via llama_sampler_chain_init
  1077. LLAMA_API struct llama_perf_sampler_data llama_perf_sampler (const struct llama_sampler * chain);
  1078. LLAMA_API void llama_perf_sampler_print(const struct llama_sampler * chain);
  1079. LLAMA_API void llama_perf_sampler_reset( struct llama_sampler * chain);
  1080. #ifdef __cplusplus
  1081. }
  1082. #endif
  1083. #endif // LLAMA_H