123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568 |
- /**
- * llama.cpp - commit 40c6d79fb52f995f47507fedfeaae2ac05d9b35c - do not edit this file
- *
- * MIT License
- *
- * Copyright (c) 2023-2024 The ggml authors
- *
- * Permission is hereby granted, free of charge, to any person obtaining a copy
- * of this software and associated documentation files (the "Software"), to deal
- * in the Software without restriction, including without limitation the rights
- * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
- * copies of the Software, and to permit persons to whom the Software is
- * furnished to do so, subject to the following conditions:
- *
- * The above copyright notice and this permission notice shall be included in all
- * copies or substantial portions of the Software.
- *
- * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
- * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
- * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
- * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
- * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
- * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
- * SOFTWARE.
- */
- #include "clip.h"
- #include "llava.h"
- #include "llama.h"
- #include <algorithm>
- #include <cerrno>
- #include <cstdio>
- #include <cstdlib>
- #include <cstring>
- #include <limits>
- #include <vector>
- #if defined(LLAVA_LOG_OFF)
- # define LOG_INF(...)
- # define LOG_WRN(...)
- # define LOG_ERR(...)
- # define LOG_DBG(...)
- #else // defined(LLAVA_LOG_OFF)
- # define LOG_INF(...) do { fprintf(stdout, __VA_ARGS__); } while (0)
- # define LOG_WRN(...) do { fprintf(stderr, __VA_ARGS__); } while (0)
- # define LOG_ERR(...) do { fprintf(stderr, __VA_ARGS__); } while (0)
- # define LOG_DBG(...) do { fprintf(stdout, __VA_ARGS__); } while (0)
- #endif // defined(LLAVA_LOG_OFF)
- // RGB uint8 image
- struct clip_image_u8 {
- int nx;
- int ny;
- std::vector<uint8_t> buf;
- };
- // RGB float32 image (NHWC)
- // Memory layout: RGBRGBRGB...
- struct clip_image_f32 {
- int nx;
- int ny;
- std::vector<float> buf;
- };
- struct clip_image_grid_shape {
- int first;
- int second;
- };
- /**
- * Selects the best resolution from a list of possible resolutions based on the original size.
- *
- * @param original_size The original size of the image in the format (width, height).
- * @param possible_resolutions A list of possible resolutions in the format [(width1, height1), (width2, height2), ...].
- * @return The best fit resolution in the format (width, height).
- */
- static std::pair<int, int> select_best_resolution(const std::pair<int, int>& original_size, const std::vector<std::pair<int, int>>& possible_resolutions) {
- int original_width = original_size.first;
- int original_height = original_size.second;
- std::pair<int, int> best_fit;
- int max_effective_resolution = 0;
- int min_wasted_resolution = std::numeric_limits<int>::max();
- for (const auto& resolution : possible_resolutions) {
- int width = resolution.first;
- int height = resolution.second;
- float scale = std::min(static_cast<float>(width) / original_width, static_cast<float>(height) / original_height);
- int downscaled_width = static_cast<int>(original_width * scale);
- int downscaled_height = static_cast<int>(original_height * scale);
- int effective_resolution = std::min(downscaled_width * downscaled_height, original_width * original_height);
- int wasted_resolution = (width * height) - effective_resolution;
- // LOG_DBG("resolution: %d %d, scale: %f, downscaled: %d %d, effective: %d, wasted: %d\n", width, height, scale, downscaled_width, downscaled_height, effective_resolution, wasted_resolution);
- if (effective_resolution > max_effective_resolution || (effective_resolution == max_effective_resolution && wasted_resolution < min_wasted_resolution)) {
- max_effective_resolution = effective_resolution;
- min_wasted_resolution = wasted_resolution;
- best_fit = resolution;
- }
- }
- return best_fit;
- }
- /**
- * @brief Get the anyres image grid shape object
- *
- * @param image_size
- * @param grid_pinpoints
- * @param image_patch_size
- * @return <int, int>
- */
- static struct clip_image_grid_shape get_anyres_image_grid_shape(const std::pair<int, int> & image_size, const std::vector<std::pair<int, int>> & grid_pinpoints, int image_patch_size) {
- /**
- Conversion from gguf flat array to vector:
- std::vector<std::pair<int, int>> possible_resolutions;
- for (int i = 0; i < 32 && params.image_grid_pinpoints[i] != 0; i+=2) {
- possible_resolutions.push_back({params.image_grid_pinpoints[i], params.image_grid_pinpoints[i+1]});
- }
- */
- auto best_resolution = select_best_resolution(image_size, grid_pinpoints);
- return {best_resolution.first / image_patch_size, best_resolution.second / image_patch_size};
- }
- // Take the image segments in a grid configuration and return the embeddings and the number of embeddings into preallocated memory (image_embd_out)
- static bool clip_llava_handle_patches(clip_ctx * ctx_clip, std::vector<float *> & image_embd_v, struct clip_image_grid_shape grid_shape, float * image_embd_out, int * n_img_pos_out) {
- struct {
- struct ggml_context * ctx;
- } model;
- const int32_t image_size = clip_image_size(ctx_clip);
- const int32_t patch_size = clip_patch_size(ctx_clip);
- int32_t num_patches_per_side = image_size / patch_size; // 336 / 14 = 24 - used for embedding-patching boxes (24*24 = 576 patches)
- int num_patches_width = grid_shape.first; // grid 1-4
- int num_patches_height = grid_shape.second; // grid 1-4
- const size_t num_images = num_patches_width * num_patches_height + 1;
- // TODO: size calculation is not calculated - it's only tens of MB
- size_t ctx_size = 0;
- {
- ctx_size += clip_embd_nbytes(ctx_clip) * num_images * 8; // image_features
- ctx_size += 1024*1024 * ggml_type_size(GGML_TYPE_F32);
- }
- struct ggml_init_params params {
- /*.mem_size =*/ ctx_size,
- /*.mem_buffer =*/ NULL,
- /*.no_alloc =*/ false, // NOTE: this should be false when using the legacy API
- };
- // Python reference code for full unpad:
- /*
- base_image_feature = image_feature[0]
- image_feature = image_feature[1:]
- image_feature = image_feature.permute(4, 0, 2, 1, 3).contiguous()
- image_feature = image_feature.flatten(1, 2).flatten(2, 3)
- image_feature = unpad_image(image_feature, image_sizes[image_idx])
- image_feature = torch.cat((
- image_feature,
- self.model.image_newline[:, None, None].expand(*image_feature.shape[:-1], 1)
- ), dim=-1)
- image_feature = image_feature.flatten(1, 2).transpose(0, 1)
- image_feature = torch.cat((base_image_feature, image_feature), dim=0)
- */
- // We now have two options: unpad or no unpad. Unpad removes tokens for faster llm eval.
- // In terms of result quality it appears to make no difference, so we'll start with the easier approach given 5D tensors are not supported in ggml yet.
- // Without unpad we have to split the sub-image embeddings into patches of 24 features each and permute them.
- // Once all images are processed to prepended the base_image_features without any changes.
- // Pytorch reference simplified, modified for ggml compatibility - confirmed identical output in python (for a 2x2 grid image (676x676 scaling))
- /*
- image_feature = image_feature.view(2, 2, 24, 24, 4096)
- image_feature = image_feature.permute(0, 2, 1, 3, 4).contiguous()
- image_feature = image_feature.view(2, 24, 2, 24, 4096)
- image_feature = image_feature.flatten(0, 3)
- // Reshape to 4D tensor by merging the last two dimensions
- image_feature = image_feature.view(2, 2, 24, 24*4096)
- image_feature = image_feature.permute(0, 2, 1, 3).contiguous()
- image_feature = image_feature.view(-1, 4096)
- */
- model.ctx = ggml_init(params);
- struct ggml_tensor * image_features = ggml_new_tensor_3d(model.ctx, GGML_TYPE_F32, clip_n_mmproj_embd(ctx_clip), clip_n_patches(ctx_clip), num_images - 1); // example: 4096 x 576 x 4
- // ggml_tensor_printf(image_features,"image_features",__LINE__,false,false);
- // fill it with the image embeddings, ignoring the base
- for (size_t i = 1; i < num_images; i++) {
- size_t offset = (i-1) * clip_embd_nbytes(ctx_clip);
- memcpy((uint8_t *)(image_features->data) + offset, image_embd_v[i], clip_embd_nbytes(ctx_clip));
- }
- struct ggml_cgraph * gf = ggml_new_graph(model.ctx);
- size_t size_ele = ggml_type_size(GGML_TYPE_F32);
- struct ggml_tensor *image_features_patchview = ggml_view_4d(model.ctx, image_features,
- num_patches_per_side * clip_n_mmproj_embd(ctx_clip),
- num_patches_per_side,
- num_patches_width,
- num_patches_height,
- size_ele * num_patches_per_side * clip_n_mmproj_embd(ctx_clip),
- size_ele * num_patches_per_side * clip_n_mmproj_embd(ctx_clip) * num_patches_per_side,
- size_ele * num_patches_per_side * clip_n_mmproj_embd(ctx_clip) * num_patches_per_side * num_patches_width, 0);
- // ggml_tensor_printf(image_features_patchview,"image_features_patchview",__LINE__,false,false);
- struct ggml_tensor *permuted_cont = ggml_cont(model.ctx, ggml_permute(model.ctx, image_features_patchview, 0, 2, 1, 3));
- /**
- At the end of each row we have to add the row_end embeddings, which are the same as the newline embeddings
- image_feature = torch.cat((
- image_feature,
- self.model.image_newline[:, None, None].expand(*image_feature.shape[:-1], 1).to(image_feature.device)
- ), dim=-1)
- *
- */
- // ggml_tensor_printf(permuted_cont,"permuted_cont",__LINE__,false,false);
- struct ggml_tensor *flatten = ggml_view_2d(model.ctx, permuted_cont, clip_n_mmproj_embd(ctx_clip), num_patches_height * num_patches_width * num_patches_per_side * num_patches_per_side, size_ele * clip_n_mmproj_embd(ctx_clip), 0);
- // ggml_tensor_printf(flatten,"flatten",__LINE__,false,false);
- ggml_build_forward_expand(gf, flatten);
- ggml_graph_compute_with_ctx(model.ctx, gf, 1);
- struct ggml_tensor* result = ggml_graph_node(gf, -1);
- memcpy(image_embd_out, image_embd_v[0], clip_embd_nbytes(ctx_clip)); // main image as global context
- // append without newline tokens (default behavior in llava_arch when not using unpad ):
- memcpy(image_embd_out + clip_n_patches(ctx_clip) * clip_n_mmproj_embd(ctx_clip), (float*)result->data, clip_embd_nbytes(ctx_clip) * (num_images-1)); // grid patches
- *n_img_pos_out = static_cast<int>(result->ne[1]+clip_n_patches(ctx_clip));
- // Debug: Test single segments
- // Current findings: sending base image, sending a segment embedding all works similar to python
- // However, permuted embeddings do not work yet (stride issue?)
- // memcpy(image_embd_out, image_embd_v[0], clip_embd_nbytes(ctx_clip)); // main image as context
- // memcpy(image_embd_out, (float*)prepared_cont->data, clip_embd_nbytes(ctx_clip)); // main image as context
- // *n_img_pos_out=576;
- ggml_free(model.ctx);
- return true;
- }
- static clip_image_f32 * only_v2_5_reshape_by_patch(clip_image_f32 * image, int patch_size) {
- int width = image->nx;
- int height = image->ny;
- int num_patches = (height / patch_size) * (width / patch_size);
- clip_image_f32 * patch = clip_image_f32_init();
- patch->nx = patch_size * num_patches;
- patch->ny = patch_size;
- patch->buf.resize(3 * patch->nx * patch->ny);
- int patch_index = 0;
- for (int i = 0; i < height; i += patch_size) {
- for (int j = 0; j < width; j += patch_size) {
- for (int pi = 0; pi < patch_size; ++pi) {
- for (int pj = 0; pj < patch_size; ++pj) {
- int input_index = ((i + pi) * width + (j + pj)) * 3;
- int output_index = (pi * patch_size * num_patches + patch_index * patch_size + pj) * 3;
- patch->buf[output_index] = image->buf[input_index];
- patch->buf[output_index+1] = image->buf[input_index+1];
- patch->buf[output_index+2] = image->buf[input_index+2];
- }
- }
- patch_index++;
- }
- }
- return patch;
- }
- static bool encode_image_with_clip(clip_ctx * ctx_clip, int n_threads, const clip_image_u8 * img, float * image_embd, int * n_img_pos) {
- // std::vector<clip_image_f32*> img_res_v; // format VectN x H x W x RGB (N x 336 x 336 x 3), so interleaved RGB - different to the python implementation which is N x 3 x 336 x 336
- clip_image_f32_batch img_res_v;
- img_res_v.size = 0;
- img_res_v.data = nullptr;
- if (!clip_image_preprocess(ctx_clip, img, &img_res_v)) {
- LOG_ERR("%s: unable to preprocess image\n", __func__);
- delete[] img_res_v.data;
- return false;
- }
- const int64_t t_img_enc_start_us = ggml_time_us();
- const char * mm_patch_merge_type = clip_patch_merge_type(ctx_clip);
- if (clip_is_minicpmv(ctx_clip)) {
- std::vector<float *> image_embd_v;
- image_embd_v.resize(img_res_v.size);
- struct clip_image_size * load_image_size = clip_image_size_init();
- for (size_t i = 0; i < img_res_v.size; i++) {
- const int64_t t_img_enc_step_start_us = ggml_time_us();
- image_embd_v[i] = (float *)malloc(clip_embd_nbytes(ctx_clip));
- int patch_size=14;
- load_image_size->width = img_res_v.data[i].nx;
- load_image_size->height = img_res_v.data[i].ny;
- clip_add_load_image_size(ctx_clip, load_image_size);
- bool encoded = false;
- int has_minicpmv_projector = clip_is_minicpmv(ctx_clip);
- if (has_minicpmv_projector == 2) {
- encoded = clip_image_encode(ctx_clip, n_threads, only_v2_5_reshape_by_patch(&img_res_v.data[i], patch_size), image_embd_v[i]);
- }
- else if (has_minicpmv_projector == 3) {
- encoded = clip_image_encode(ctx_clip, n_threads, &img_res_v.data[i], image_embd_v[i]);
- }
- if (!encoded) {
- LOG_ERR("Unable to encode image - spatial_unpad - subimage %d of %d\n", (int) i+1, (int) img_res_v.size);
- return false;
- }
- const int64_t t_img_enc_steop_batch_us = ggml_time_us();
- LOG_INF("%s: step %d of %d encoded in %8.2f ms\n", __func__, (int)i+1, (int)img_res_v.size, (t_img_enc_steop_batch_us - t_img_enc_step_start_us) / 1000.0);
- }
- const int64_t t_img_enc_batch_us = ggml_time_us();
- LOG_INF("%s: all %d segments encoded in %8.2f ms\n", __func__, (int)img_res_v.size, (t_img_enc_batch_us - t_img_enc_start_us) / 1000.0);
- int n_img_pos_out = 0;
- for (size_t i = 0; i < image_embd_v.size(); i++) {
- std::memcpy(image_embd + n_img_pos_out * clip_n_mmproj_embd(ctx_clip), image_embd_v[i], clip_embd_nbytes(ctx_clip));
- n_img_pos_out += clip_n_patches(ctx_clip);
- }
- *n_img_pos = n_img_pos_out;
- for (size_t i = 0; i < image_embd_v.size(); i++) {
- free(image_embd_v[i]);
- }
- image_embd_v.clear();
- load_image_size->width = img->nx;
- load_image_size->height = img->ny;
- clip_add_load_image_size(ctx_clip, load_image_size);
- LOG_INF("%s: load_image_size %d %d\n", __func__, load_image_size->width, load_image_size->height);
- }
- else if (strcmp(mm_patch_merge_type, "spatial_unpad") != 0) {
- // flat / default llava-1.5 type embedding
- *n_img_pos = clip_n_patches(ctx_clip);
- bool encoded = clip_image_encode(ctx_clip, n_threads, &img_res_v.data[0], image_embd); // image_embd shape is 576 x 4096
- delete[] img_res_v.data;
- if (!encoded) {
- LOG_ERR("Unable to encode image\n");
- return false;
- }
- }
- else {
- // spatial_unpad llava-1.6 type embedding
- // TODO: CLIP needs batching support - in HF the llm projection is separate after encoding, which might be a solution to quickly get batching working
- std::vector<float *> image_embd_v;
- image_embd_v.resize(img_res_v.size);
- for (size_t i = 0; i < img_res_v.size; i++) {
- image_embd_v[i] = (float *)malloc(clip_embd_nbytes(ctx_clip)); // 576 patches * 4096 embeddings * 4 bytes = 9437184
- const bool encoded = clip_image_encode(ctx_clip, n_threads, &img_res_v.data[i], image_embd_v[i]); // image data is in 3x336x336 format and will be converted to 336x336x3 inside
- if (!encoded) {
- LOG_ERR("Unable to encode image - spatial_unpad - subimage %d of %d\n", (int) i+1, (int) img_res_v.size);
- return false;
- }
- }
- const int64_t t_img_enc_batch_us = ggml_time_us();
- LOG_INF("%s: %d segments encoded in %8.2f ms\n", __func__, (int)img_res_v.size, (t_img_enc_batch_us - t_img_enc_start_us) / 1000.0);
- const int32_t * image_grid = clip_image_grid(ctx_clip);
- std::vector<std::pair<int, int>> grid_pinpoints;
- for (int i = 0; i < 32 && image_grid[i] != 0; i += 2) {
- grid_pinpoints.push_back({image_grid[i], image_grid[i+1]});
- }
- // free all img_res_v - not needed anymore
- delete[] img_res_v.data;
- img_res_v.size = 0;
- img_res_v.data = nullptr;
- const int32_t image_size = clip_image_size(ctx_clip);
- struct clip_image_grid_shape grid_shape = get_anyres_image_grid_shape({img->nx,img->ny}, grid_pinpoints, image_size);
- int n_img_pos_out;
- clip_llava_handle_patches(ctx_clip, image_embd_v, grid_shape, image_embd, &n_img_pos_out);
- *n_img_pos = n_img_pos_out;
- for (size_t i = 0; i < image_embd_v.size(); i++) {
- free(image_embd_v[i]);
- }
- image_embd_v.clear();
- // debug image/segment/normalization content:
- // clip_image_u8 * tmp = clip_image_u8_init();
- // clip_image_convert_f32_to_u8(*image_feature, *tmp);
- // clip_image_save_to_bmp(*tmp, "image_feature.bmp");
- }
- LOG_INF("%s: image embedding created: %d tokens\n", __func__, *n_img_pos);
- const int64_t t_img_enc_end_us = ggml_time_us();
- float t_img_enc_ms = (t_img_enc_end_us - t_img_enc_start_us) / 1000.0;
- LOG_INF("\n%s: image encoded in %8.2f ms by CLIP (%8.2f ms per image patch)\n", __func__, t_img_enc_ms, t_img_enc_ms / *n_img_pos);
- return true;
- }
- bool llava_validate_embed_size(const llama_context * ctx_llama, const clip_ctx * ctx_clip) {
- // make sure that the correct mmproj was used, i.e., compare apples to apples
- int n_llama_embd = llama_n_embd(llama_get_model(ctx_llama));
- auto n_image_embd = clip_n_mmproj_embd(ctx_clip);
- if (n_image_embd != n_llama_embd) {
- LOG_ERR("%s: embedding dim of the multimodal projector (%d) is not equal to that of LLaMA (%d). Make sure that you use the correct mmproj file.\n", __func__, n_image_embd, n_llama_embd);
- return false;
- }
- return true;
- }
- bool llava_image_embed_make_with_clip_img(clip_ctx * ctx_clip, int n_threads, const clip_image_u8 * img, float ** image_embd_out, int * n_img_pos_out) {
- int num_max_patches = 6;
- if (clip_is_minicpmv(ctx_clip)) {
- num_max_patches = 10;
- }
- float * image_embd = (float *)malloc(clip_embd_nbytes(ctx_clip)*num_max_patches); // TODO: base on gridsize/llava model
- if (!image_embd) {
- LOG_ERR("Unable to allocate memory for image embeddings\n");
- return false;
- }
- int n_img_pos;
- if (!encode_image_with_clip(ctx_clip, n_threads, img, image_embd, &n_img_pos)) {
- LOG_ERR("%s: cannot encode image, aborting\n", __func__);
- free(image_embd);
- return false;
- }
- *image_embd_out = image_embd;
- *n_img_pos_out = n_img_pos;
- return true;
- }
- struct llava_embd_batch {
- std::vector<llama_pos> pos;
- std::vector<int32_t> n_seq_id;
- std::vector<llama_seq_id> seq_id_0;
- std::vector<llama_seq_id *> seq_ids;
- std::vector<int8_t> logits;
- llama_batch batch;
- llava_embd_batch(float * embd, int32_t n_embd, int32_t n_tokens, llama_pos pos_0, llama_seq_id seq_id) {
- pos .resize(n_tokens);
- n_seq_id.resize(n_tokens);
- seq_ids .resize(n_tokens + 1);
- logits .resize(n_tokens);
- seq_id_0.resize(1);
- seq_id_0[0] = seq_id;
- seq_ids [n_tokens] = nullptr;
- batch = {
- /*n_tokens =*/ n_tokens,
- /*tokens =*/ nullptr,
- /*embd =*/ embd,
- /*n_embd =*/ n_embd,
- /*pos =*/ pos.data(),
- /*n_seq_id =*/ n_seq_id.data(),
- /*seq_id =*/ seq_ids.data(),
- /*logits =*/ logits.data(),
- };
- for (int i = 0; i < n_tokens; i++) {
- batch.pos [i] = pos_0 + i;
- batch.n_seq_id[i] = 1;
- batch.seq_id [i] = seq_id_0.data();
- batch.logits [i] = false;
- }
- }
- };
- bool llava_eval_image_embed(llama_context * ctx_llama, const struct llava_image_embed * image_embed, int n_batch, int * n_past) {
- int n_embd = llama_n_embd(llama_get_model(ctx_llama));
- for (int i = 0; i < image_embed->n_image_pos; i += n_batch) {
- int n_eval = image_embed->n_image_pos - i;
- if (n_eval > n_batch) {
- n_eval = n_batch;
- }
- float * embd = image_embed->embed+i*n_embd;
- llava_embd_batch llava_batch = llava_embd_batch(embd, n_embd, n_eval, *n_past, 0);
- if (llama_decode(ctx_llama, llava_batch.batch)) {
- LOG_ERR("%s : failed to eval\n", __func__);
- return false;
- }
- *n_past += n_eval;
- }
- return true;
- }
- struct llava_image_embed * llava_image_embed_make_with_bytes(struct clip_ctx * ctx_clip, int n_threads, const unsigned char * image_bytes, int image_bytes_length) {
- clip_image_u8 * img = clip_image_u8_init();
- if (!clip_image_load_from_bytes(image_bytes, image_bytes_length, img)) {
- clip_image_u8_free(img);
- LOG_ERR("%s: can't load image from bytes, is it a valid image?", __func__);
- return NULL;
- }
- float* image_embed = NULL;
- int n_image_pos = 0;
- bool image_embed_result = llava_image_embed_make_with_clip_img(ctx_clip, n_threads, img, &image_embed, &n_image_pos);
- if (!image_embed_result) {
- clip_image_u8_free(img);
- LOG_ERR("%s: couldn't embed the image\n", __func__);
- return NULL;
- }
- clip_image_u8_free(img);
- auto result = (llava_image_embed*)malloc(sizeof(llava_image_embed));
- result->embed = image_embed;
- result->n_image_pos = n_image_pos;
- return result;
- }
- static bool load_file_to_bytes(const char* path, unsigned char** bytesOut, long *sizeOut) {
- auto file = fopen(path, "rb");
- if (file == NULL) {
- LOG_ERR("%s: can't read file %s\n", __func__, path);
- return false;
- }
- fseek(file, 0, SEEK_END);
- auto fileSize = ftell(file);
- fseek(file, 0, SEEK_SET);
- auto buffer = (unsigned char *)malloc(fileSize); // Allocate memory to hold the file data
- if (buffer == NULL) {
- LOG_ERR("%s: failed to alloc %ld bytes for file %s\n", __func__, fileSize, path);
- perror("Memory allocation error");
- fclose(file);
- return false;
- }
- errno = 0;
- size_t ret = fread(buffer, 1, fileSize, file); // Read the file into the buffer
- if (ferror(file)) {
- LOG_ERR("read error: %s", strerror(errno));
- free(buffer);
- fclose(file);
- return false;
- }
- if (ret != (size_t) fileSize) {
- LOG_ERR("unexpectedly reached end of file");
- free(buffer);
- fclose(file);
- return false;
- }
- fclose(file); // Close the file
- *bytesOut = buffer;
- *sizeOut = fileSize;
- return true;
- }
- struct llava_image_embed * llava_image_embed_make_with_filename(struct clip_ctx * ctx_clip, int n_threads, const char * image_path) {
- unsigned char* image_bytes;
- long image_bytes_length;
- auto loaded = load_file_to_bytes(image_path, &image_bytes, &image_bytes_length);
- if (!loaded) {
- LOG_ERR("%s: failed to load %s\n", __func__, image_path);
- return NULL;
- }
- llava_image_embed *embed = llava_image_embed_make_with_bytes(ctx_clip, n_threads, image_bytes, image_bytes_length);
- free(image_bytes);
- return embed;
- }
- void llava_image_embed_free(struct llava_image_embed * embed) {
- free(embed->embed);
- free(embed);
- }
|