123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453 |
- From 0000000000000000000000000000000000000000 Mon Sep 17 00:00:00 2001
- From: Michael Yang <mxyng@pm.me>
- Date: Mon, 16 Sep 2024 15:53:16 -0700
- Subject: [PATCH] solar-pro
- solar-pro introduces block skip connections where blocks are connected
- to other, non-sequential blocks with a scale multiple
- this change adds 4 new keys to store the skip connections and one new
- tensor to store the scalar. the scalar is implemented a 1-dimensional
- tensor with 2 elements dervied from the model's bskcn_tv configuration.
- in general, the values are (bskcn_tv, 1 - bskcn_tv)
- ---
- src/llama-arch.cpp | 53 +++++++----
- src/llama-arch.h | 3 +
- src/llama-hparams.cpp | 8 ++
- src/llama-hparams.h | 5 +
- src/llama-model-loader.cpp | 1 +
- src/llama-model.cpp | 16 ++++
- src/llama-model.h | 3 +
- src/llama.cpp | 185 +++++++++++++++++++++++++++++++++++++
- 8 files changed, 258 insertions(+), 16 deletions(-)
- diff --git a/src/llama-arch.cpp b/src/llama-arch.cpp
- index 007d79f8..5b376c5e 100644
- --- a/src/llama-arch.cpp
- +++ b/src/llama-arch.cpp
- @@ -59,6 +59,7 @@ static const std::map<llm_arch, const char *> LLM_ARCH_NAMES = {
- { LLM_ARCH_GRANITE, "granite" },
- { LLM_ARCH_GRANITE_MOE, "granitemoe" },
- { LLM_ARCH_CHAMELEON, "chameleon" },
- + { LLM_ARCH_SOLAR, "solar" },
- { LLM_ARCH_WAVTOKENIZER_DEC, "wavtokenizer-dec" },
- { LLM_ARCH_UNKNOWN, "(unknown)" },
- };
- @@ -106,22 +107,23 @@ static const std::map<llm_kv, const char *> LLM_KV_NAMES = {
- { LLM_KV_RESIDUAL_SCALE, "%s.residual_scale" },
- { LLM_KV_EMBEDDING_SCALE, "%s.embedding_scale" },
-
- - { LLM_KV_ATTENTION_HEAD_COUNT, "%s.attention.head_count" },
- - { LLM_KV_ATTENTION_HEAD_COUNT_KV, "%s.attention.head_count_kv" },
- - { LLM_KV_ATTENTION_MAX_ALIBI_BIAS, "%s.attention.max_alibi_bias" },
- - { LLM_KV_ATTENTION_CLAMP_KQV, "%s.attention.clamp_kqv" },
- - { LLM_KV_ATTENTION_KEY_LENGTH, "%s.attention.key_length" },
- - { LLM_KV_ATTENTION_VALUE_LENGTH, "%s.attention.value_length" },
- - { LLM_KV_ATTENTION_LAYERNORM_EPS, "%s.attention.layer_norm_epsilon" },
- - { LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, "%s.attention.layer_norm_rms_epsilon" },
- - { LLM_KV_ATTENTION_GROUPNORM_EPS, "%s.attention.group_norm_epsilon" },
- - { LLM_KV_ATTENTION_GROUPNORM_GROUPS, "%s.attention.group_norm_groups" },
- - { LLM_KV_ATTENTION_CAUSAL, "%s.attention.causal" },
- - { LLM_KV_ATTENTION_Q_LORA_RANK, "%s.attention.q_lora_rank" },
- - { LLM_KV_ATTENTION_KV_LORA_RANK, "%s.attention.kv_lora_rank" },
- - { LLM_KV_ATTENTION_RELATIVE_BUCKETS_COUNT, "%s.attention.relative_buckets_count" },
- - { LLM_KV_ATTENTION_SLIDING_WINDOW, "%s.attention.sliding_window" },
- - { LLM_KV_ATTENTION_SCALE, "%s.attention.scale" },
- + { LLM_KV_ATTENTION_HEAD_COUNT, "%s.attention.head_count" },
- + { LLM_KV_ATTENTION_HEAD_COUNT_KV, "%s.attention.head_count_kv" },
- + { LLM_KV_ATTENTION_MAX_ALIBI_BIAS, "%s.attention.max_alibi_bias" },
- + { LLM_KV_ATTENTION_CLAMP_KQV, "%s.attention.clamp_kqv" },
- + { LLM_KV_ATTENTION_KEY_LENGTH, "%s.attention.key_length" },
- + { LLM_KV_ATTENTION_VALUE_LENGTH, "%s.attention.value_length" },
- + { LLM_KV_ATTENTION_LAYERNORM_EPS, "%s.attention.layer_norm_epsilon" },
- + { LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, "%s.attention.layer_norm_rms_epsilon" },
- + { LLM_KV_ATTENTION_GROUPNORM_EPS, "%s.attention.group_norm_epsilon" },
- + { LLM_KV_ATTENTION_GROUPNORM_GROUPS, "%s.attention.group_norm_groups" },
- + { LLM_KV_ATTENTION_CAUSAL, "%s.attention.causal" },
- + { LLM_KV_ATTENTION_Q_LORA_RANK, "%s.attention.q_lora_rank" },
- + { LLM_KV_ATTENTION_KV_LORA_RANK, "%s.attention.kv_lora_rank" },
- + { LLM_KV_ATTENTION_RELATIVE_BUCKETS_COUNT, "%s.attention.relative_buckets_count" },
- + { LLM_KV_ATTENTION_SLIDING_WINDOW, "%s.attention.sliding_window" },
- + { LLM_KV_ATTENTION_SCALE, "%s.attention.scale" },
- + { LLM_KV_ATTENTION_BLOCK_SKIP_CONNECTION, "%s.attention.block_skip_connection" },
-
- { LLM_KV_ROPE_DIMENSION_COUNT, "%s.rope.dimension_count" },
- { LLM_KV_ROPE_DIMENSION_SECTIONS, "%s.rope.dimension_sections" },
- @@ -1240,6 +1242,24 @@ static const std::map<llm_arch, std::map<llm_tensor, const char *>> LLM_TENSOR_N
- { LLM_TENSOR_POS_NET_ATTN_OUT, "posnet.%d.attn_output" },
- },
- },
- + {
- + LLM_ARCH_SOLAR,
- + {
- + { LLM_TENSOR_TOKEN_EMBD, "token_embd" },
- + { LLM_TENSOR_OUTPUT_NORM, "output_norm" },
- + { LLM_TENSOR_OUTPUT, "output" },
- + { LLM_TENSOR_ATTN_NORM, "blk.%d.attn_norm" },
- + { LLM_TENSOR_ATTN_Q, "blk.%d.attn_q" },
- + { LLM_TENSOR_ATTN_K, "blk.%d.attn_k" },
- + { LLM_TENSOR_ATTN_V, "blk.%d.attn_v" },
- + { LLM_TENSOR_ATTN_OUT, "blk.%d.attn_output" },
- + { LLM_TENSOR_FFN_NORM, "blk.%d.ffn_norm" },
- + { LLM_TENSOR_FFN_GATE, "blk.%d.ffn_gate" },
- + { LLM_TENSOR_FFN_DOWN, "blk.%d.ffn_down" },
- + { LLM_TENSOR_FFN_UP, "blk.%d.ffn_up" },
- + { LLM_TENSOR_BSKCN_TV, "bskcn_tv" },
- + },
- + },
- {
- LLM_ARCH_UNKNOWN,
- {
- @@ -1372,6 +1392,7 @@ static const std::map<llm_tensor, llm_tensor_info> LLM_TENSOR_INFOS = {
- {LLM_TENSOR_FFN_EXP_PROBS_B, {LLM_TENSOR_LAYER_REPEATING, GGML_OP_ADD}},
- // this tensor is loaded for T5, but never used
- {LLM_TENSOR_DEC_CROSS_ATTN_REL_B, {LLM_TENSOR_LAYER_REPEATING, GGML_OP_NONE}},
- + {LLM_TENSOR_BSKCN_TV, {LLM_TENSOR_LAYER_REPEATING, GGML_OP_MUL}},
- {LLM_TENSOR_CONV1D, {LLM_TENSOR_LAYER_INPUT, GGML_OP_IM2COL}},
- {LLM_TENSOR_POS_NET_NORM, {LLM_TENSOR_LAYER_REPEATING, GGML_OP_MUL}},
- {LLM_TENSOR_POS_NET_NORM1, {LLM_TENSOR_LAYER_REPEATING, GGML_OP_MUL}},
- diff --git a/src/llama-arch.h b/src/llama-arch.h
- index 45e458bb..eac7055b 100644
- --- a/src/llama-arch.h
- +++ b/src/llama-arch.h
- @@ -63,6 +63,7 @@ enum llm_arch {
- LLM_ARCH_GRANITE,
- LLM_ARCH_GRANITE_MOE,
- LLM_ARCH_CHAMELEON,
- + LLM_ARCH_SOLAR,
- LLM_ARCH_WAVTOKENIZER_DEC,
- LLM_ARCH_UNKNOWN,
- };
- @@ -126,6 +127,7 @@ enum llm_kv {
- LLM_KV_ATTENTION_RELATIVE_BUCKETS_COUNT,
- LLM_KV_ATTENTION_SLIDING_WINDOW,
- LLM_KV_ATTENTION_SCALE,
- + LLM_KV_ATTENTION_BLOCK_SKIP_CONNECTION,
-
- LLM_KV_ROPE_DIMENSION_COUNT,
- LLM_KV_ROPE_DIMENSION_SECTIONS,
- @@ -305,6 +307,7 @@ enum llm_tensor {
- LLM_TENSOR_ENC_OUTPUT_NORM,
- LLM_TENSOR_CLS,
- LLM_TENSOR_CLS_OUT,
- + LLM_TENSOR_BSKCN_TV,
- LLM_TENSOR_CONV1D,
- LLM_TENSOR_CONVNEXT_DW,
- LLM_TENSOR_CONVNEXT_NORM,
- diff --git a/src/llama-hparams.cpp b/src/llama-hparams.cpp
- index c4053469..450738da 100644
- --- a/src/llama-hparams.cpp
- +++ b/src/llama-hparams.cpp
- @@ -69,3 +69,11 @@ uint32_t llama_hparams::n_embd_v_s() const {
- // corresponds to Mamba's ssm_states size
- return ssm_d_state * ssm_d_inner;
- }
- +
- +bool llama_hparams::n_bskcn(uint32_t n, uint32_t il) const {
- + if (il < n_layer) {
- + return n_bskcn_arr[n][il] > 0;
- + }
- +
- + GGML_ABORT("fatal error");
- +}
- \ No newline at end of file
- diff --git a/src/llama-hparams.h b/src/llama-hparams.h
- index a29f20ec..fd898e27 100644
- --- a/src/llama-hparams.h
- +++ b/src/llama-hparams.h
- @@ -52,6 +52,8 @@ struct llama_hparams {
- std::array<uint32_t, LLAMA_MAX_LAYERS> n_head_kv_arr;
- std::array<uint32_t, LLAMA_MAX_LAYERS> n_ff_arr;
-
- + std::array<std::array<uint32_t, LLAMA_MAX_LAYERS>, 4> n_bskcn_arr = {};
- +
- uint32_t n_layer_dense_lead = 0;
- uint32_t n_lora_q = 0;
- uint32_t n_lora_kv = 0;
- @@ -134,6 +136,9 @@ struct llama_hparams {
-
- // dimension of the recurrent state embeddings
- uint32_t n_embd_v_s() const;
- +
- + // Block skip connection
- + bool n_bskcn(uint32_t n, uint32_t il) const;
- };
-
- static_assert(std::is_trivially_copyable<llama_hparams>::value, "llama_hparams must be trivially copyable");
- diff --git a/src/llama-model-loader.cpp b/src/llama-model-loader.cpp
- index 7743b465..422524a8 100644
- --- a/src/llama-model-loader.cpp
- +++ b/src/llama-model-loader.cpp
- @@ -364,6 +364,7 @@ namespace GGUFMeta {
- // TODO: this is not very clever - figure out something better
- template bool llama_model_loader::get_key_or_arr<std::array<int, 4>>(enum llm_kv kid, std::array<int, 4> & result, uint32_t n, bool required);
- template bool llama_model_loader::get_key_or_arr<std::array<uint32_t, 512>>(enum llm_kv kid, std::array<uint32_t, 512> & result, uint32_t n, bool required);
- + template bool llama_model_loader::get_key_or_arr<uint32_t>(const std::string & key, std::array<uint32_t, 512> & result, uint32_t n, bool required);
-
- llama_model_loader::llama_model_loader(const std::string & fname, bool use_mmap, bool check_tensors, const struct llama_model_kv_override * param_overrides_p) {
- int trace = 0;
- diff --git a/src/llama-model.cpp b/src/llama-model.cpp
- index 00b80c52..306c557d 100644
- --- a/src/llama-model.cpp
- +++ b/src/llama-model.cpp
- @@ -1091,6 +1091,21 @@ void llm_load_hparams(llama_model_loader & ml, llama_model & model) {
- default: model.type = e_model::MODEL_UNKNOWN;
- }
- } break;
- + case LLM_ARCH_SOLAR:
- + {
- + ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
- + for (size_t i = 0; i < hparams.n_bskcn_arr.max_size(); ++i) {
- + auto & bskcn = hparams.n_bskcn_arr[i];
- + bskcn.fill(0);
- + auto kv = LLM_KV(model.arch);
- + ml.get_key_or_arr(format((kv(LLM_KV_ATTENTION_BLOCK_SKIP_CONNECTION) + ".%d").c_str(), i), bskcn, hparams.n_layer, false);
- + }
- +
- + switch (hparams.n_layer) {
- + case 64: model.type = e_model::MODEL_22B; break;
- + default: model.type = e_model::MODEL_UNKNOWN;
- + }
- + } break;
- case LLM_ARCH_WAVTOKENIZER_DEC:
- {
- ml.get_key(LLM_KV_ATTENTION_LAYERNORM_EPS, hparams.f_norm_eps);
- @@ -2065,6 +2080,7 @@ enum llama_rope_type llama_rope_type(const struct llama_model * model) {
- case LLM_ARCH_GRANITE:
- case LLM_ARCH_GRANITE_MOE:
- case LLM_ARCH_CHAMELEON:
- + case LLM_ARCH_SOLAR:
- return LLAMA_ROPE_TYPE_NORM;
-
- // the pairs of head values are offset by n_rot/2
- diff --git a/src/llama-model.h b/src/llama-model.h
- index ce038932..c1b9c0a1 100644
- --- a/src/llama-model.h
- +++ b/src/llama-model.h
- @@ -54,6 +54,7 @@ enum llm_type {
- MODEL_15B,
- MODEL_16B,
- MODEL_20B,
- + MODEL_22B,
- MODEL_30B,
- MODEL_32B,
- MODEL_34B,
- @@ -275,6 +276,8 @@ struct llama_layer {
- struct ggml_tensor * ffn_up_scale = nullptr;
- struct ggml_tensor * ffn_down_scale = nullptr;
-
- + struct ggml_tensor * bskcn_tv = nullptr;
- +
- struct llama_layer_posnet posnet;
-
- struct llama_layer_convnext convnext;
- diff --git a/src/llama.cpp b/src/llama.cpp
- index 4eb3f6b9..7dec50ae 100644
- --- a/src/llama.cpp
- +++ b/src/llama.cpp
- @@ -2206,6 +2206,35 @@ static bool llm_load_tensors(
-
- layer.ffn_norm = create_tensor(tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd}, 0);
-
- + layer.ffn_gate = create_tensor(tn(LLM_TENSOR_FFN_GATE, "weight", i), {n_embd, n_ff}, 0);
- + layer.ffn_down = create_tensor(tn(LLM_TENSOR_FFN_DOWN, "weight", i), { n_ff, n_embd}, 0);
- + layer.ffn_up = create_tensor(tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff}, 0);
- + }
- + } break;
- + case LLM_ARCH_SOLAR:
- + {
- + model.tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, 0);
- +
- + // output
- + {
- + model.output_norm = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd}, 0);
- + model.output = create_tensor(tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, llama_model_loader::TENSOR_NOT_REQUIRED);
- + }
- +
- + for (int i = 0; i < n_layer; ++i) {
- + auto & layer = model.layers[i];
- +
- + layer.attn_norm = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd}, 0);
- +
- + layer.wq = create_tensor(tn(LLM_TENSOR_ATTN_Q, "weight", i), {n_embd, n_embd_head_k * n_head}, 0);
- + layer.wk = create_tensor(tn(LLM_TENSOR_ATTN_K, "weight", i), {n_embd, n_embd_k_gqa}, 0);
- + layer.wv = create_tensor(tn(LLM_TENSOR_ATTN_V, "weight", i), {n_embd, n_embd_v_gqa}, 0);
- + layer.wo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd_head_k * n_head, n_embd}, 0);
- +
- + layer.ffn_norm = create_tensor(tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd}, 0);
- +
- + layer.bskcn_tv = create_tensor(tn(LLM_TENSOR_BSKCN_TV, "weight", i), {2}, llama_model_loader::TENSOR_NOT_REQUIRED | (i != 0 ? llama_model_loader::TENSOR_DUPLICATED : 0));
- +
- layer.ffn_gate = create_tensor(tn(LLM_TENSOR_FFN_GATE, "weight", i), {n_embd, n_ff}, 0);
- layer.ffn_down = create_tensor(tn(LLM_TENSOR_FFN_DOWN, "weight", i), { n_ff, n_embd}, 0);
- layer.ffn_up = create_tensor(tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff}, 0);
- @@ -10226,6 +10255,158 @@ struct llm_build_context {
- return gf;
- }
-
- + ggml_cgraph * build_solar() {
- + struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, llama_model_max_nodes(model), false);
- +
- + // mutable variable, needed during the last layer of the computation to skip unused tokens
- + int32_t n_tokens = this->n_tokens;
- +
- + const int64_t n_embd_head = hparams.n_embd_head_v;
- + GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
- + GGML_ASSERT(n_embd_head == hparams.n_rot);
- +
- + struct ggml_tensor * cur;
- + struct ggml_tensor * inpL;
- +
- + inpL = llm_build_inp_embd(ctx0, lctx, hparams, ubatch, model.tok_embd, cb);
- +
- + // inp_pos - contains the positions
- + struct ggml_tensor * inp_pos = build_inp_pos();
- +
- + // KQ_mask (mask for 1 head, it will be broadcasted to all heads)
- + struct ggml_tensor * KQ_mask = build_inp_KQ_mask();
- +
- + struct ggml_tensor * bskcn_1;
- + struct ggml_tensor * bskcn_2;
- +
- + for (int il = 0; il < n_layer; ++il) {
- + struct ggml_tensor * inpSA = inpL;
- +
- + if (hparams.n_bskcn(0, il)) {
- + bskcn_1 = inpSA;
- + }
- +
- + if (hparams.n_bskcn(1, il)) {
- + bskcn_2 = inpSA;
- + }
- +
- + if (hparams.n_bskcn(2, il)) {
- + inpSA = ggml_add(
- + ctx0,
- + ggml_mul(ctx0, bskcn_1, ggml_view_1d(ctx0, model.layers[il].bskcn_tv, 1, 0)),
- + ggml_mul(ctx0, inpSA, ggml_view_1d(ctx0, model.layers[il].bskcn_tv, 1, ggml_element_size(model.layers[il].bskcn_tv))));
- + }
- +
- + if (hparams.n_bskcn(3, il)) {
- + inpSA = ggml_add(
- + ctx0,
- + ggml_mul(ctx0, bskcn_2, ggml_view_1d(ctx0, model.layers[il].bskcn_tv, 1, 0)),
- + ggml_mul(ctx0, inpSA, ggml_view_1d(ctx0, model.layers[il].bskcn_tv, 1, ggml_element_size(model.layers[il].bskcn_tv))));
- + }
- +
- + // norm
- + cur = llm_build_norm(ctx0, inpL, hparams,
- + model.layers[il].attn_norm, NULL,
- + LLM_NORM_RMS, cb, il);
- + cb(cur, "attn_norm", il);
- +
- + // self-attention
- + {
- + // rope freq factors for llama3; may return nullptr for llama2 and other models
- + struct ggml_tensor * rope_factors = build_rope_factors(il);
- +
- + // compute Q and K and RoPE them
- + struct ggml_tensor * Qcur = llm_build_lora_mm(lctx, ctx0, model.layers[il].wq, cur);
- + cb(Qcur, "Qcur", il);
- + if (model.layers[il].bq) {
- + Qcur = ggml_add(ctx0, Qcur, model.layers[il].bq);
- + cb(Qcur, "Qcur", il);
- + }
- +
- + struct ggml_tensor * Kcur = llm_build_lora_mm(lctx, ctx0, model.layers[il].wk, cur);
- + cb(Kcur, "Kcur", il);
- + if (model.layers[il].bk) {
- + Kcur = ggml_add(ctx0, Kcur, model.layers[il].bk);
- + cb(Kcur, "Kcur", il);
- + }
- +
- + struct ggml_tensor * Vcur = llm_build_lora_mm(lctx, ctx0, model.layers[il].wv, cur);
- + cb(Vcur, "Vcur", il);
- + if (model.layers[il].bv) {
- + Vcur = ggml_add(ctx0, Vcur, model.layers[il].bv);
- + cb(Vcur, "Vcur", il);
- + }
- +
- + Qcur = ggml_rope_ext(
- + ctx0, ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens), inp_pos, rope_factors,
- + n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
- + ext_factor, attn_factor, beta_fast, beta_slow
- + );
- + cb(Qcur, "Qcur", il);
- +
- + Kcur = ggml_rope_ext(
- + ctx0, ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens), inp_pos, rope_factors,
- + n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
- + ext_factor, attn_factor, beta_fast, beta_slow
- + );
- + cb(Kcur, "Kcur", il);
- +
- + cur = llm_build_kv(ctx0, lctx, kv_self, gf,
- + model.layers[il].wo, model.layers[il].bo,
- + Kcur, Vcur, Qcur, KQ_mask, n_tokens, kv_head, n_kv, 1.0f/sqrtf(float(n_embd_head)), cb, il);
- + }
- +
- + if (il == n_layer - 1) {
- + // skip computing output for unused tokens
- + struct ggml_tensor * inp_out_ids = build_inp_out_ids();
- + n_tokens = n_outputs;
- + cur = ggml_get_rows(ctx0, cur, inp_out_ids);
- + inpSA = ggml_get_rows(ctx0, inpSA, inp_out_ids);
- + }
- +
- + struct ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpSA);
- + cb(ffn_inp, "ffn_inp", il);
- +
- + // feed-forward network
- + cur = llm_build_norm(ctx0, ffn_inp, hparams,
- + model.layers[il].ffn_norm, NULL,
- + LLM_NORM_RMS, cb, il);
- + cb(cur, "ffn_norm", il);
- +
- + cur = llm_build_ffn(ctx0, lctx, cur,
- + model.layers[il].ffn_up, model.layers[il].ffn_up_b, NULL,
- + model.layers[il].ffn_gate, model.layers[il].ffn_gate_b, NULL,
- + model.layers[il].ffn_down, model.layers[il].ffn_down_b, NULL,
- + NULL,
- + LLM_FFN_SILU, LLM_FFN_PAR, cb, il);
- + cb(cur, "ffn_out", il);
- +
- + cur = ggml_add(ctx0, cur, ffn_inp);
- + cb(cur, "ffn_out", il);
- +
- + cur = lctx.cvec.apply_to(ctx0, cur, il);
- + cb(cur, "l_out", il);
- +
- + // input for next layer
- + inpL = cur;
- + }
- +
- + cur = inpL;
- +
- + cur = llm_build_norm(ctx0, cur, hparams,
- + model.output_norm, NULL,
- + LLM_NORM_RMS, cb, -1);
- + cb(cur, "result_norm", -1);
- +
- + // lm_head
- + cur = llm_build_lora_mm(lctx, ctx0, model.output, cur);
- + cb(cur, "result_output", -1);
- +
- + ggml_build_forward_expand(gf, cur);
- +
- + return gf;
- + }
- +
- struct ggml_cgraph * build_wavtokenizer_dec() {
- struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, llama_model_max_nodes(model), false);
-
- @@ -10660,6 +10841,10 @@ static struct ggml_cgraph * llama_build_graph(
- {
- result = llm.build_chameleon();
- } break;
- + case LLM_ARCH_SOLAR:
- + {
- + result = llm.build_solar();
- + } break;
- case LLM_ARCH_WAVTOKENIZER_DEC:
- {
- result = llm.build_wavtokenizer_dec();
|