ggml.h 88 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321
  1. /**
  2. * llama.cpp - commit ba1cb19cdd0d92e012e0f6e009e0620f854b6afd - do not edit this file
  3. *
  4. * MIT License
  5. *
  6. * Copyright (c) 2023-2024 The ggml authors
  7. *
  8. * Permission is hereby granted, free of charge, to any person obtaining a copy
  9. * of this software and associated documentation files (the "Software"), to deal
  10. * in the Software without restriction, including without limitation the rights
  11. * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
  12. * copies of the Software, and to permit persons to whom the Software is
  13. * furnished to do so, subject to the following conditions:
  14. *
  15. * The above copyright notice and this permission notice shall be included in all
  16. * copies or substantial portions of the Software.
  17. *
  18. * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
  19. * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
  20. * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
  21. * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
  22. * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
  23. * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
  24. * SOFTWARE.
  25. */
  26. #pragma once
  27. //
  28. // GGML Tensor Library
  29. //
  30. // This documentation is still a work in progress.
  31. // If you wish some specific topics to be covered, feel free to drop a comment:
  32. //
  33. // https://github.com/ggerganov/whisper.cpp/issues/40
  34. //
  35. // ## Overview
  36. //
  37. // This library implements:
  38. //
  39. // - a set of tensor operations
  40. // - automatic differentiation
  41. // - basic optimization algorithms
  42. //
  43. // The aim of this library is to provide a minimalistic approach for various machine learning tasks. This includes,
  44. // but is not limited to, the following:
  45. //
  46. // - linear regression
  47. // - support vector machines
  48. // - neural networks
  49. //
  50. // The library allows the user to define a certain function using the available tensor operations. This function
  51. // definition is represented internally via a computation graph. Each tensor operation in the function definition
  52. // corresponds to a node in the graph. Having the computation graph defined, the user can choose to compute the
  53. // function's value and/or its gradient with respect to the input variables. Optionally, the function can be optimized
  54. // using one of the available optimization algorithms.
  55. //
  56. // For example, here we define the function: f(x) = a*x^2 + b
  57. //
  58. // {
  59. // struct ggml_init_params params = {
  60. // .mem_size = 16*1024*1024,
  61. // .mem_buffer = NULL,
  62. // };
  63. //
  64. // // memory allocation happens here
  65. // struct ggml_context * ctx = ggml_init(params);
  66. //
  67. // struct ggml_tensor * x = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, 1);
  68. //
  69. // ggml_set_param(ctx, x); // x is an input variable
  70. //
  71. // struct ggml_tensor * a = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, 1);
  72. // struct ggml_tensor * b = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, 1);
  73. // struct ggml_tensor * x2 = ggml_mul(ctx, x, x);
  74. // struct ggml_tensor * f = ggml_add(ctx, ggml_mul(ctx, a, x2), b);
  75. //
  76. // ...
  77. // }
  78. //
  79. // Notice that the function definition above does not involve any actual computation. The computation is performed only
  80. // when the user explicitly requests it. For example, to compute the function's value at x = 2.0:
  81. //
  82. // {
  83. // ...
  84. //
  85. // struct ggml_cgraph * gf = ggml_new_graph(ctx);
  86. // ggml_build_forward_expand(gf, f);
  87. //
  88. // // set the input variable and parameter values
  89. // ggml_set_f32(x, 2.0f);
  90. // ggml_set_f32(a, 3.0f);
  91. // ggml_set_f32(b, 4.0f);
  92. //
  93. // ggml_graph_compute_with_ctx(ctx, &gf, n_threads);
  94. //
  95. // printf("f = %f\n", ggml_get_f32_1d(f, 0));
  96. //
  97. // ...
  98. // }
  99. //
  100. // The actual computation is performed in the ggml_graph_compute() function.
  101. //
  102. // The ggml_new_tensor_...() functions create new tensors. They are allocated in the memory buffer provided to the
  103. // ggml_init() function. You have to be careful not to exceed the memory buffer size. Therefore, you have to know
  104. // in advance how much memory you need for your computation. Alternatively, you can allocate a large enough memory
  105. // and after defining the computation graph, call the ggml_used_mem() function to find out how much memory was
  106. // actually needed.
  107. //
  108. // The ggml_set_param() function marks a tensor as an input variable. This is used by the automatic
  109. // differentiation and optimization algorithms.
  110. //
  111. // The described approach allows to define the function graph once and then compute its forward or backward graphs
  112. // multiple times. All computations will use the same memory buffer allocated in the ggml_init() function. This way
  113. // the user can avoid the memory allocation overhead at runtime.
  114. //
  115. // The library supports multi-dimensional tensors - up to 4 dimensions. The FP16 and FP32 data types are first class
  116. // citizens, but in theory the library can be extended to support FP8 and integer data types.
  117. //
  118. // Each tensor operation produces a new tensor. Initially the library was envisioned to support only the use of unary
  119. // and binary operations. Most of the available operations fall into one of these two categories. With time, it became
  120. // clear that the library needs to support more complex operations. The way to support these operations is not clear
  121. // yet, but a few examples are demonstrated in the following operations:
  122. //
  123. // - ggml_permute()
  124. // - ggml_conv_1d_1s()
  125. // - ggml_conv_1d_2s()
  126. //
  127. // For each tensor operator, the library implements a forward and backward computation function. The forward function
  128. // computes the output tensor value given the input tensor values. The backward function computes the adjoint of the
  129. // input tensors given the adjoint of the output tensor. For a detailed explanation of what this means, take a
  130. // calculus class, or watch the following video:
  131. //
  132. // What is Automatic Differentiation?
  133. // https://www.youtube.com/watch?v=wG_nF1awSSY
  134. //
  135. //
  136. // ## Tensor data (struct ggml_tensor)
  137. //
  138. // The tensors are stored in memory via the ggml_tensor struct. The structure provides information about the size of
  139. // the tensor, the data type, and the memory buffer where the tensor data is stored. Additionally, it contains
  140. // pointers to the "source" tensors - i.e. the tensors that were used to compute the current tensor. For example:
  141. //
  142. // {
  143. // struct ggml_tensor * c = ggml_add(ctx, a, b);
  144. //
  145. // assert(c->src[0] == a);
  146. // assert(c->src[1] == b);
  147. // }
  148. //
  149. // The multi-dimensional tensors are stored in row-major order. The ggml_tensor struct contains fields for the
  150. // number of elements in each dimension ("ne") as well as the number of bytes ("nb", a.k.a. stride). This allows
  151. // to store tensors that are not contiguous in memory, which is useful for operations such as transposition and
  152. // permutation. All tensor operations have to take the stride into account and not assume that the tensor is
  153. // contiguous in memory.
  154. //
  155. // The data of the tensor is accessed via the "data" pointer. For example:
  156. //
  157. // {
  158. // const int nx = 2;
  159. // const int ny = 3;
  160. //
  161. // struct ggml_tensor * a = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, nx, ny);
  162. //
  163. // for (int y = 0; y < ny; y++) {
  164. // for (int x = 0; x < nx; x++) {
  165. // *(float *) ((char *) a->data + y*a->nb[1] + x*a->nb[0]) = x + y;
  166. // }
  167. // }
  168. //
  169. // ...
  170. // }
  171. //
  172. // Alternatively, there are helper functions, such as ggml_get_f32_1d() and ggml_set_f32_1d() that can be used.
  173. //
  174. // ## The matrix multiplication operator (ggml_mul_mat)
  175. //
  176. // TODO
  177. //
  178. //
  179. // ## Multi-threading
  180. //
  181. // TODO
  182. //
  183. //
  184. // ## Overview of ggml.c
  185. //
  186. // TODO
  187. //
  188. //
  189. // ## SIMD optimizations
  190. //
  191. // TODO
  192. //
  193. //
  194. // ## Debugging ggml
  195. //
  196. // TODO
  197. //
  198. //
  199. #ifdef GGML_SHARED
  200. # if defined(_WIN32) && !defined(__MINGW32__)
  201. # ifdef GGML_BUILD
  202. # define GGML_API __declspec(dllexport) extern
  203. # else
  204. # define GGML_API __declspec(dllimport) extern
  205. # endif
  206. # else
  207. # define GGML_API __attribute__ ((visibility ("default"))) extern
  208. # endif
  209. #else
  210. # define GGML_API extern
  211. #endif
  212. // TODO: support for clang
  213. #ifdef __GNUC__
  214. # define GGML_DEPRECATED(func, hint) func __attribute__((deprecated(hint)))
  215. #elif defined(_MSC_VER)
  216. # define GGML_DEPRECATED(func, hint) __declspec(deprecated(hint)) func
  217. #else
  218. # define GGML_DEPRECATED(func, hint) func
  219. #endif
  220. #ifndef __GNUC__
  221. # define GGML_ATTRIBUTE_FORMAT(...)
  222. #elif defined(__MINGW32__)
  223. # define GGML_ATTRIBUTE_FORMAT(...) __attribute__((format(gnu_printf, __VA_ARGS__)))
  224. #else
  225. # define GGML_ATTRIBUTE_FORMAT(...) __attribute__((format(printf, __VA_ARGS__)))
  226. #endif
  227. #include <stdbool.h>
  228. #include <stddef.h>
  229. #include <stdint.h>
  230. #include <stdio.h>
  231. #define GGML_FILE_MAGIC 0x67676d6c // "ggml"
  232. #define GGML_FILE_VERSION 2
  233. #define GGML_QNT_VERSION 2 // bump this on quantization format changes
  234. #define GGML_QNT_VERSION_FACTOR 1000 // do not change this
  235. #define GGML_MAX_DIMS 4
  236. #define GGML_MAX_PARAMS 2048
  237. #define GGML_MAX_SRC 10
  238. #define GGML_MAX_N_THREADS 512
  239. #define GGML_MAX_OP_PARAMS 64
  240. #ifndef GGML_MAX_NAME
  241. # define GGML_MAX_NAME 64
  242. #endif
  243. #define GGML_DEFAULT_N_THREADS 4
  244. #define GGML_DEFAULT_GRAPH_SIZE 2048
  245. #if UINTPTR_MAX == 0xFFFFFFFF
  246. #define GGML_MEM_ALIGN 4
  247. #else
  248. #define GGML_MEM_ALIGN 16
  249. #endif
  250. #define GGML_EXIT_SUCCESS 0
  251. #define GGML_EXIT_ABORTED 1
  252. #define GGML_ROPE_TYPE_NEOX 2
  253. #define GGML_ROPE_TYPE_MROPE 8
  254. #define GGML_ROPE_TYPE_VISION 24
  255. #define GGUF_MAGIC "GGUF"
  256. #define GGUF_VERSION 3
  257. #define GGUF_DEFAULT_ALIGNMENT 32
  258. #define GGML_UNUSED(x) (void)(x)
  259. #define GGML_PAD(x, n) (((x) + (n) - 1) & ~((n) - 1))
  260. #ifndef NDEBUG
  261. # define GGML_UNREACHABLE() do { fprintf(stderr, "statement should be unreachable\n"); abort(); } while(0)
  262. #elif defined(__GNUC__)
  263. # define GGML_UNREACHABLE() __builtin_unreachable()
  264. #elif defined(_MSC_VER)
  265. # define GGML_UNREACHABLE() __assume(0)
  266. #else
  267. # define GGML_UNREACHABLE() ((void) 0)
  268. #endif
  269. #ifdef __cplusplus
  270. # define GGML_NORETURN [[noreturn]]
  271. #elif defined(_MSC_VER)
  272. # define GGML_NORETURN __declspec(noreturn)
  273. #else
  274. # define GGML_NORETURN _Noreturn
  275. #endif
  276. #define GGML_ABORT(...) ggml_abort(__FILE__, __LINE__, __VA_ARGS__)
  277. #define GGML_ASSERT(x) if (!(x)) GGML_ABORT("GGML_ASSERT(%s) failed", #x)
  278. // used to copy the number of elements and stride in bytes of tensors into local variables.
  279. // main purpose is to reduce code duplication and improve readability.
  280. //
  281. // example:
  282. //
  283. // GGML_TENSOR_LOCALS(int64_t, ne1, src1, ne);
  284. // GGML_TENSOR_LOCALS(size_t, nb1, src1, nb);
  285. //
  286. #define GGML_TENSOR_LOCALS_1(type, prefix, pointer, array) \
  287. const type prefix##0 = (pointer)->array[0]; \
  288. GGML_UNUSED(prefix##0);
  289. #define GGML_TENSOR_LOCALS_2(type, prefix, pointer, array) \
  290. GGML_TENSOR_LOCALS_1 (type, prefix, pointer, array) \
  291. const type prefix##1 = (pointer)->array[1]; \
  292. GGML_UNUSED(prefix##1);
  293. #define GGML_TENSOR_LOCALS_3(type, prefix, pointer, array) \
  294. GGML_TENSOR_LOCALS_2 (type, prefix, pointer, array) \
  295. const type prefix##2 = (pointer)->array[2]; \
  296. GGML_UNUSED(prefix##2);
  297. #define GGML_TENSOR_LOCALS(type, prefix, pointer, array) \
  298. GGML_TENSOR_LOCALS_3 (type, prefix, pointer, array) \
  299. const type prefix##3 = (pointer)->array[3]; \
  300. GGML_UNUSED(prefix##3);
  301. #define GGML_TENSOR_UNARY_OP_LOCALS \
  302. GGML_TENSOR_LOCALS(int64_t, ne0, src0, ne) \
  303. GGML_TENSOR_LOCALS(size_t, nb0, src0, nb) \
  304. GGML_TENSOR_LOCALS(int64_t, ne, dst, ne) \
  305. GGML_TENSOR_LOCALS(size_t, nb, dst, nb)
  306. #define GGML_TENSOR_BINARY_OP_LOCALS \
  307. GGML_TENSOR_LOCALS(int64_t, ne0, src0, ne) \
  308. GGML_TENSOR_LOCALS(size_t, nb0, src0, nb) \
  309. GGML_TENSOR_LOCALS(int64_t, ne1, src1, ne) \
  310. GGML_TENSOR_LOCALS(size_t, nb1, src1, nb) \
  311. GGML_TENSOR_LOCALS(int64_t, ne, dst, ne) \
  312. GGML_TENSOR_LOCALS(size_t, nb, dst, nb)
  313. #define GGML_TENSOR_BINARY_OP_LOCALS01 \
  314. GGML_TENSOR_LOCALS(int64_t, ne0, src0, ne) \
  315. GGML_TENSOR_LOCALS(size_t, nb0, src0, nb) \
  316. GGML_TENSOR_LOCALS(int64_t, ne1, src1, ne) \
  317. GGML_TENSOR_LOCALS(size_t, nb1, src1, nb)
  318. #ifdef __cplusplus
  319. extern "C" {
  320. #endif
  321. GGML_NORETURN GGML_ATTRIBUTE_FORMAT(3, 4)
  322. GGML_API void ggml_abort(const char * file, int line, const char * fmt, ...);
  323. enum ggml_status {
  324. GGML_STATUS_ALLOC_FAILED = -2,
  325. GGML_STATUS_FAILED = -1,
  326. GGML_STATUS_SUCCESS = 0,
  327. GGML_STATUS_ABORTED = 1,
  328. };
  329. // get ggml_status name string
  330. GGML_API const char * ggml_status_to_string(enum ggml_status status);
  331. // ieee 754-2008 half-precision float16
  332. // todo: make this not an integral type
  333. typedef uint16_t ggml_fp16_t;
  334. GGML_API float ggml_fp16_to_fp32(ggml_fp16_t);
  335. GGML_API ggml_fp16_t ggml_fp32_to_fp16(float);
  336. GGML_API void ggml_fp16_to_fp32_row(const ggml_fp16_t *, float *, int64_t);
  337. GGML_API void ggml_fp32_to_fp16_row(const float *, ggml_fp16_t *, int64_t);
  338. // google brain half-precision bfloat16
  339. typedef struct { uint16_t bits; } ggml_bf16_t;
  340. GGML_API ggml_bf16_t ggml_fp32_to_bf16(float);
  341. GGML_API float ggml_bf16_to_fp32(ggml_bf16_t); // consider just doing << 16
  342. GGML_API void ggml_bf16_to_fp32_row(const ggml_bf16_t *, float *, int64_t);
  343. GGML_API void ggml_fp32_to_bf16_row_ref(const float *, ggml_bf16_t *, int64_t);
  344. GGML_API void ggml_fp32_to_bf16_row(const float *, ggml_bf16_t *, int64_t);
  345. struct ggml_object;
  346. struct ggml_context;
  347. struct ggml_cgraph;
  348. // NOTE: always add types at the end of the enum to keep backward compatibility
  349. enum ggml_type {
  350. GGML_TYPE_F32 = 0,
  351. GGML_TYPE_F16 = 1,
  352. GGML_TYPE_Q4_0 = 2,
  353. GGML_TYPE_Q4_1 = 3,
  354. // GGML_TYPE_Q4_2 = 4, support has been removed
  355. // GGML_TYPE_Q4_3 = 5, support has been removed
  356. GGML_TYPE_Q5_0 = 6,
  357. GGML_TYPE_Q5_1 = 7,
  358. GGML_TYPE_Q8_0 = 8,
  359. GGML_TYPE_Q8_1 = 9,
  360. GGML_TYPE_Q2_K = 10,
  361. GGML_TYPE_Q3_K = 11,
  362. GGML_TYPE_Q4_K = 12,
  363. GGML_TYPE_Q5_K = 13,
  364. GGML_TYPE_Q6_K = 14,
  365. GGML_TYPE_Q8_K = 15,
  366. GGML_TYPE_IQ2_XXS = 16,
  367. GGML_TYPE_IQ2_XS = 17,
  368. GGML_TYPE_IQ3_XXS = 18,
  369. GGML_TYPE_IQ1_S = 19,
  370. GGML_TYPE_IQ4_NL = 20,
  371. GGML_TYPE_IQ3_S = 21,
  372. GGML_TYPE_IQ2_S = 22,
  373. GGML_TYPE_IQ4_XS = 23,
  374. GGML_TYPE_I8 = 24,
  375. GGML_TYPE_I16 = 25,
  376. GGML_TYPE_I32 = 26,
  377. GGML_TYPE_I64 = 27,
  378. GGML_TYPE_F64 = 28,
  379. GGML_TYPE_IQ1_M = 29,
  380. GGML_TYPE_BF16 = 30,
  381. // GGML_TYPE_Q4_0_4_4 = 31, support has been removed from gguf files
  382. // GGML_TYPE_Q4_0_4_8 = 32,
  383. // GGML_TYPE_Q4_0_8_8 = 33,
  384. GGML_TYPE_TQ1_0 = 34,
  385. GGML_TYPE_TQ2_0 = 35,
  386. // GGML_TYPE_IQ4_NL_4_4 = 36,
  387. // GGML_TYPE_IQ4_NL_4_8 = 37,
  388. // GGML_TYPE_IQ4_NL_8_8 = 38,
  389. GGML_TYPE_COUNT = 39,
  390. };
  391. // precision
  392. enum ggml_prec {
  393. GGML_PREC_DEFAULT,
  394. GGML_PREC_F32,
  395. };
  396. enum ggml_backend_type {
  397. GGML_BACKEND_TYPE_CPU = 0,
  398. GGML_BACKEND_TYPE_GPU = 10,
  399. GGML_BACKEND_TYPE_GPU_SPLIT = 20,
  400. };
  401. // model file types
  402. enum ggml_ftype {
  403. GGML_FTYPE_UNKNOWN = -1,
  404. GGML_FTYPE_ALL_F32 = 0,
  405. GGML_FTYPE_MOSTLY_F16 = 1, // except 1d tensors
  406. GGML_FTYPE_MOSTLY_Q4_0 = 2, // except 1d tensors
  407. GGML_FTYPE_MOSTLY_Q4_1 = 3, // except 1d tensors
  408. GGML_FTYPE_MOSTLY_Q4_1_SOME_F16 = 4, // tok_embeddings.weight and output.weight are F16
  409. GGML_FTYPE_MOSTLY_Q8_0 = 7, // except 1d tensors
  410. GGML_FTYPE_MOSTLY_Q5_0 = 8, // except 1d tensors
  411. GGML_FTYPE_MOSTLY_Q5_1 = 9, // except 1d tensors
  412. GGML_FTYPE_MOSTLY_Q2_K = 10, // except 1d tensors
  413. GGML_FTYPE_MOSTLY_Q3_K = 11, // except 1d tensors
  414. GGML_FTYPE_MOSTLY_Q4_K = 12, // except 1d tensors
  415. GGML_FTYPE_MOSTLY_Q5_K = 13, // except 1d tensors
  416. GGML_FTYPE_MOSTLY_Q6_K = 14, // except 1d tensors
  417. GGML_FTYPE_MOSTLY_IQ2_XXS = 15, // except 1d tensors
  418. GGML_FTYPE_MOSTLY_IQ2_XS = 16, // except 1d tensors
  419. GGML_FTYPE_MOSTLY_IQ3_XXS = 17, // except 1d tensors
  420. GGML_FTYPE_MOSTLY_IQ1_S = 18, // except 1d tensors
  421. GGML_FTYPE_MOSTLY_IQ4_NL = 19, // except 1d tensors
  422. GGML_FTYPE_MOSTLY_IQ3_S = 20, // except 1d tensors
  423. GGML_FTYPE_MOSTLY_IQ2_S = 21, // except 1d tensors
  424. GGML_FTYPE_MOSTLY_IQ4_XS = 22, // except 1d tensors
  425. GGML_FTYPE_MOSTLY_IQ1_M = 23, // except 1d tensors
  426. GGML_FTYPE_MOSTLY_BF16 = 24, // except 1d tensors
  427. };
  428. // available tensor operations:
  429. enum ggml_op {
  430. GGML_OP_NONE = 0,
  431. GGML_OP_DUP,
  432. GGML_OP_ADD,
  433. GGML_OP_ADD1,
  434. GGML_OP_ACC,
  435. GGML_OP_SUB,
  436. GGML_OP_MUL,
  437. GGML_OP_DIV,
  438. GGML_OP_SQR,
  439. GGML_OP_SQRT,
  440. GGML_OP_LOG,
  441. GGML_OP_SIN,
  442. GGML_OP_COS,
  443. GGML_OP_SUM,
  444. GGML_OP_SUM_ROWS,
  445. GGML_OP_MEAN,
  446. GGML_OP_ARGMAX,
  447. GGML_OP_COUNT_EQUAL,
  448. GGML_OP_REPEAT,
  449. GGML_OP_REPEAT_BACK,
  450. GGML_OP_CONCAT,
  451. GGML_OP_SILU_BACK,
  452. GGML_OP_NORM, // normalize
  453. GGML_OP_RMS_NORM,
  454. GGML_OP_RMS_NORM_BACK,
  455. GGML_OP_GROUP_NORM,
  456. GGML_OP_MUL_MAT,
  457. GGML_OP_MUL_MAT_ID,
  458. GGML_OP_OUT_PROD,
  459. GGML_OP_SCALE,
  460. GGML_OP_SET,
  461. GGML_OP_CPY,
  462. GGML_OP_CONT,
  463. GGML_OP_RESHAPE,
  464. GGML_OP_VIEW,
  465. GGML_OP_PERMUTE,
  466. GGML_OP_TRANSPOSE,
  467. GGML_OP_GET_ROWS,
  468. GGML_OP_GET_ROWS_BACK,
  469. GGML_OP_DIAG,
  470. GGML_OP_DIAG_MASK_INF,
  471. GGML_OP_DIAG_MASK_ZERO,
  472. GGML_OP_SOFT_MAX,
  473. GGML_OP_SOFT_MAX_BACK,
  474. GGML_OP_ROPE,
  475. GGML_OP_ROPE_BACK,
  476. GGML_OP_CLAMP,
  477. GGML_OP_CONV_TRANSPOSE_1D,
  478. GGML_OP_IM2COL,
  479. GGML_OP_IM2COL_BACK,
  480. GGML_OP_CONV_TRANSPOSE_2D,
  481. GGML_OP_POOL_1D,
  482. GGML_OP_POOL_2D,
  483. GGML_OP_POOL_2D_BACK,
  484. GGML_OP_UPSCALE, // nearest interpolate
  485. GGML_OP_PAD,
  486. GGML_OP_PAD_REFLECT_1D,
  487. GGML_OP_UNPAD,
  488. GGML_OP_ARANGE,
  489. GGML_OP_TIMESTEP_EMBEDDING,
  490. GGML_OP_ARGSORT,
  491. GGML_OP_LEAKY_RELU,
  492. GGML_OP_FLASH_ATTN_EXT,
  493. GGML_OP_FLASH_ATTN_BACK,
  494. GGML_OP_SSM_CONV,
  495. GGML_OP_SSM_SCAN,
  496. GGML_OP_WIN_PART,
  497. GGML_OP_WIN_UNPART,
  498. GGML_OP_GET_REL_POS,
  499. GGML_OP_ADD_REL_POS,
  500. GGML_OP_RWKV_WKV6,
  501. GGML_OP_UNARY,
  502. GGML_OP_MAP_UNARY,
  503. GGML_OP_MAP_BINARY,
  504. GGML_OP_MAP_CUSTOM1_F32,
  505. GGML_OP_MAP_CUSTOM2_F32,
  506. GGML_OP_MAP_CUSTOM3_F32,
  507. GGML_OP_MAP_CUSTOM1,
  508. GGML_OP_MAP_CUSTOM2,
  509. GGML_OP_MAP_CUSTOM3,
  510. GGML_OP_CROSS_ENTROPY_LOSS,
  511. GGML_OP_CROSS_ENTROPY_LOSS_BACK,
  512. GGML_OP_OPT_STEP_ADAMW,
  513. GGML_OP_COUNT,
  514. };
  515. enum ggml_unary_op {
  516. GGML_UNARY_OP_ABS,
  517. GGML_UNARY_OP_SGN,
  518. GGML_UNARY_OP_NEG,
  519. GGML_UNARY_OP_STEP,
  520. GGML_UNARY_OP_TANH,
  521. GGML_UNARY_OP_ELU,
  522. GGML_UNARY_OP_RELU,
  523. GGML_UNARY_OP_SIGMOID,
  524. GGML_UNARY_OP_GELU,
  525. GGML_UNARY_OP_GELU_QUICK,
  526. GGML_UNARY_OP_SILU,
  527. GGML_UNARY_OP_HARDSWISH,
  528. GGML_UNARY_OP_HARDSIGMOID,
  529. GGML_UNARY_OP_EXP,
  530. GGML_UNARY_OP_COUNT,
  531. };
  532. enum ggml_object_type {
  533. GGML_OBJECT_TYPE_TENSOR,
  534. GGML_OBJECT_TYPE_GRAPH,
  535. GGML_OBJECT_TYPE_WORK_BUFFER
  536. };
  537. enum ggml_log_level {
  538. GGML_LOG_LEVEL_NONE = 0,
  539. GGML_LOG_LEVEL_DEBUG = 1,
  540. GGML_LOG_LEVEL_INFO = 2,
  541. GGML_LOG_LEVEL_WARN = 3,
  542. GGML_LOG_LEVEL_ERROR = 4,
  543. GGML_LOG_LEVEL_CONT = 5, // continue previous log
  544. };
  545. // this tensor...
  546. enum ggml_tensor_flag {
  547. GGML_TENSOR_FLAG_INPUT = 1, // ...is an input for the GGML compute graph
  548. GGML_TENSOR_FLAG_OUTPUT = 2, // ...is an output for the GGML compute graph
  549. GGML_TENSOR_FLAG_PARAM = 4, // ...contains trainable parameters
  550. GGML_TENSOR_FLAG_LOSS = 8, // ...defines loss for numerical optimization (multiple loss tensors add up)
  551. };
  552. struct ggml_init_params {
  553. // memory pool
  554. size_t mem_size; // bytes
  555. void * mem_buffer; // if NULL, memory will be allocated internally
  556. bool no_alloc; // don't allocate memory for the tensor data
  557. };
  558. // n-dimensional tensor
  559. struct ggml_tensor {
  560. enum ggml_type type;
  561. GGML_DEPRECATED(enum ggml_backend_type backend, "use the buffer type to find the storage location of the tensor");
  562. struct ggml_backend_buffer * buffer;
  563. int64_t ne[GGML_MAX_DIMS]; // number of elements
  564. size_t nb[GGML_MAX_DIMS]; // stride in bytes:
  565. // nb[0] = ggml_type_size(type)
  566. // nb[1] = nb[0] * (ne[0] / ggml_blck_size(type)) + padding
  567. // nb[i] = nb[i-1] * ne[i-1]
  568. // compute data
  569. enum ggml_op op;
  570. // op params - allocated as int32_t for alignment
  571. int32_t op_params[GGML_MAX_OP_PARAMS / sizeof(int32_t)];
  572. int32_t flags;
  573. struct ggml_tensor * src[GGML_MAX_SRC];
  574. // source tensor and offset for views
  575. struct ggml_tensor * view_src;
  576. size_t view_offs;
  577. void * data;
  578. char name[GGML_MAX_NAME];
  579. void * extra; // extra things e.g. for ggml-cuda.cu
  580. char padding[8];
  581. };
  582. static const size_t GGML_TENSOR_SIZE = sizeof(struct ggml_tensor);
  583. // Abort callback
  584. // If not NULL, called before ggml computation
  585. // If it returns true, the computation is aborted
  586. typedef bool (*ggml_abort_callback)(void * data);
  587. //
  588. // GUID
  589. //
  590. // GUID types
  591. typedef uint8_t ggml_guid[16];
  592. typedef ggml_guid * ggml_guid_t;
  593. GGML_API bool ggml_guid_matches(ggml_guid_t guid_a, ggml_guid_t guid_b);
  594. // misc
  595. GGML_API void ggml_time_init(void); // call this once at the beginning of the program
  596. GGML_API int64_t ggml_time_ms(void);
  597. GGML_API int64_t ggml_time_us(void);
  598. GGML_API int64_t ggml_cycles(void);
  599. GGML_API int64_t ggml_cycles_per_ms(void);
  600. // accepts a UTF-8 path, even on Windows
  601. GGML_API FILE * ggml_fopen(const char * fname, const char * mode);
  602. GGML_API void ggml_print_object (const struct ggml_object * obj);
  603. GGML_API void ggml_print_objects(const struct ggml_context * ctx);
  604. GGML_API int64_t ggml_nelements (const struct ggml_tensor * tensor);
  605. GGML_API int64_t ggml_nrows (const struct ggml_tensor * tensor);
  606. GGML_API size_t ggml_nbytes (const struct ggml_tensor * tensor);
  607. GGML_API size_t ggml_nbytes_pad(const struct ggml_tensor * tensor); // same as ggml_nbytes() but padded to GGML_MEM_ALIGN
  608. GGML_API int64_t ggml_blck_size(enum ggml_type type);
  609. GGML_API size_t ggml_type_size(enum ggml_type type); // size in bytes for all elements in a block
  610. GGML_API size_t ggml_row_size (enum ggml_type type, int64_t ne); // size in bytes for all elements in a row
  611. GGML_DEPRECATED(
  612. GGML_API double ggml_type_sizef(enum ggml_type type), // ggml_type_size()/ggml_blck_size() as float
  613. "use ggml_row_size() instead");
  614. GGML_API const char * ggml_type_name(enum ggml_type type);
  615. GGML_API const char * ggml_op_name (enum ggml_op op);
  616. GGML_API const char * ggml_op_symbol(enum ggml_op op);
  617. GGML_API const char * ggml_unary_op_name(enum ggml_unary_op op);
  618. GGML_API const char * ggml_op_desc(const struct ggml_tensor * t); // unary or op name
  619. GGML_API size_t ggml_element_size(const struct ggml_tensor * tensor);
  620. GGML_API bool ggml_is_quantized(enum ggml_type type);
  621. // TODO: temporary until model loading of ggml examples is refactored
  622. GGML_API enum ggml_type ggml_ftype_to_ggml_type(enum ggml_ftype ftype);
  623. GGML_API bool ggml_is_transposed(const struct ggml_tensor * tensor);
  624. GGML_API bool ggml_is_permuted (const struct ggml_tensor * tensor);
  625. GGML_API bool ggml_is_empty (const struct ggml_tensor * tensor);
  626. GGML_API bool ggml_is_scalar (const struct ggml_tensor * tensor);
  627. GGML_API bool ggml_is_vector (const struct ggml_tensor * tensor);
  628. GGML_API bool ggml_is_matrix (const struct ggml_tensor * tensor);
  629. GGML_API bool ggml_is_3d (const struct ggml_tensor * tensor);
  630. GGML_API int ggml_n_dims (const struct ggml_tensor * tensor); // returns 1 for scalars
  631. GGML_API bool ggml_is_contiguous (const struct ggml_tensor * tensor);
  632. GGML_API bool ggml_is_contiguous_0(const struct ggml_tensor * tensor); // same as ggml_is_contiguous()
  633. GGML_API bool ggml_is_contiguous_1(const struct ggml_tensor * tensor); // contiguous for dims >= 1
  634. GGML_API bool ggml_is_contiguous_2(const struct ggml_tensor * tensor); // contiguous for dims >= 2
  635. GGML_API bool ggml_are_same_shape (const struct ggml_tensor * t0, const struct ggml_tensor * t1);
  636. GGML_API bool ggml_are_same_stride(const struct ggml_tensor * t0, const struct ggml_tensor * t1);
  637. GGML_API bool ggml_can_repeat(const struct ggml_tensor * t0, const struct ggml_tensor * t1);
  638. // use this to compute the memory overhead of a tensor
  639. GGML_API size_t ggml_tensor_overhead(void);
  640. GGML_API bool ggml_validate_row_data(enum ggml_type type, const void * data, size_t nbytes);
  641. // main
  642. GGML_API struct ggml_context * ggml_init (struct ggml_init_params params);
  643. GGML_API void ggml_reset(struct ggml_context * ctx);
  644. GGML_API void ggml_free (struct ggml_context * ctx);
  645. GGML_API size_t ggml_used_mem(const struct ggml_context * ctx);
  646. GGML_API bool ggml_get_no_alloc(struct ggml_context * ctx);
  647. GGML_API void ggml_set_no_alloc(struct ggml_context * ctx, bool no_alloc);
  648. GGML_API void * ggml_get_mem_buffer (const struct ggml_context * ctx);
  649. GGML_API size_t ggml_get_mem_size (const struct ggml_context * ctx);
  650. GGML_API size_t ggml_get_max_tensor_size(const struct ggml_context * ctx);
  651. GGML_API struct ggml_tensor * ggml_new_tensor(
  652. struct ggml_context * ctx,
  653. enum ggml_type type,
  654. int n_dims,
  655. const int64_t *ne);
  656. GGML_API struct ggml_tensor * ggml_new_tensor_1d(
  657. struct ggml_context * ctx,
  658. enum ggml_type type,
  659. int64_t ne0);
  660. GGML_API struct ggml_tensor * ggml_new_tensor_2d(
  661. struct ggml_context * ctx,
  662. enum ggml_type type,
  663. int64_t ne0,
  664. int64_t ne1);
  665. GGML_API struct ggml_tensor * ggml_new_tensor_3d(
  666. struct ggml_context * ctx,
  667. enum ggml_type type,
  668. int64_t ne0,
  669. int64_t ne1,
  670. int64_t ne2);
  671. GGML_API struct ggml_tensor * ggml_new_tensor_4d(
  672. struct ggml_context * ctx,
  673. enum ggml_type type,
  674. int64_t ne0,
  675. int64_t ne1,
  676. int64_t ne2,
  677. int64_t ne3);
  678. GGML_API void * ggml_new_buffer(struct ggml_context * ctx, size_t nbytes);
  679. GGML_API struct ggml_tensor * ggml_dup_tensor (struct ggml_context * ctx, const struct ggml_tensor * src);
  680. GGML_API struct ggml_tensor * ggml_view_tensor(struct ggml_context * ctx, struct ggml_tensor * src);
  681. // Context tensor enumeration and lookup
  682. GGML_API struct ggml_tensor * ggml_get_first_tensor(const struct ggml_context * ctx);
  683. GGML_API struct ggml_tensor * ggml_get_next_tensor (const struct ggml_context * ctx, struct ggml_tensor * tensor);
  684. GGML_API struct ggml_tensor * ggml_get_tensor(struct ggml_context * ctx, const char * name);
  685. // Converts a flat index into coordinates
  686. GGML_API void ggml_unravel_index(const struct ggml_tensor * tensor, int64_t i, int64_t * i0, int64_t * i1, int64_t * i2, int64_t * i3);
  687. GGML_API enum ggml_unary_op ggml_get_unary_op(const struct ggml_tensor * tensor);
  688. GGML_API void * ggml_get_data (const struct ggml_tensor * tensor);
  689. GGML_API float * ggml_get_data_f32(const struct ggml_tensor * tensor);
  690. GGML_API const char * ggml_get_name (const struct ggml_tensor * tensor);
  691. GGML_API struct ggml_tensor * ggml_set_name ( struct ggml_tensor * tensor, const char * name);
  692. GGML_ATTRIBUTE_FORMAT(2, 3)
  693. GGML_API struct ggml_tensor * ggml_format_name( struct ggml_tensor * tensor, const char * fmt, ...);
  694. // Tensor flags
  695. GGML_API void ggml_set_input(struct ggml_tensor * tensor);
  696. GGML_API void ggml_set_output(struct ggml_tensor * tensor);
  697. GGML_API void ggml_set_param(struct ggml_context * ctx, struct ggml_tensor * tensor);
  698. GGML_API void ggml_set_loss(struct ggml_tensor * tensor);
  699. //
  700. // operations on tensors with backpropagation
  701. //
  702. GGML_API struct ggml_tensor * ggml_dup(
  703. struct ggml_context * ctx,
  704. struct ggml_tensor * a);
  705. // in-place, returns view(a)
  706. GGML_API struct ggml_tensor * ggml_dup_inplace(
  707. struct ggml_context * ctx,
  708. struct ggml_tensor * a);
  709. GGML_API struct ggml_tensor * ggml_add(
  710. struct ggml_context * ctx,
  711. struct ggml_tensor * a,
  712. struct ggml_tensor * b);
  713. GGML_API struct ggml_tensor * ggml_add_inplace(
  714. struct ggml_context * ctx,
  715. struct ggml_tensor * a,
  716. struct ggml_tensor * b);
  717. GGML_API struct ggml_tensor * ggml_add_cast(
  718. struct ggml_context * ctx,
  719. struct ggml_tensor * a,
  720. struct ggml_tensor * b,
  721. enum ggml_type type);
  722. GGML_API struct ggml_tensor * ggml_add1(
  723. struct ggml_context * ctx,
  724. struct ggml_tensor * a,
  725. struct ggml_tensor * b);
  726. GGML_API struct ggml_tensor * ggml_add1_inplace(
  727. struct ggml_context * ctx,
  728. struct ggml_tensor * a,
  729. struct ggml_tensor * b);
  730. // dst = a
  731. // view(dst, nb1, nb2, nb3, offset) += b
  732. // return dst
  733. GGML_API struct ggml_tensor * ggml_acc(
  734. struct ggml_context * ctx,
  735. struct ggml_tensor * a,
  736. struct ggml_tensor * b,
  737. size_t nb1,
  738. size_t nb2,
  739. size_t nb3,
  740. size_t offset);
  741. GGML_API struct ggml_tensor * ggml_acc_inplace(
  742. struct ggml_context * ctx,
  743. struct ggml_tensor * a,
  744. struct ggml_tensor * b,
  745. size_t nb1,
  746. size_t nb2,
  747. size_t nb3,
  748. size_t offset);
  749. GGML_API struct ggml_tensor * ggml_sub(
  750. struct ggml_context * ctx,
  751. struct ggml_tensor * a,
  752. struct ggml_tensor * b);
  753. GGML_API struct ggml_tensor * ggml_sub_inplace(
  754. struct ggml_context * ctx,
  755. struct ggml_tensor * a,
  756. struct ggml_tensor * b);
  757. GGML_API struct ggml_tensor * ggml_mul(
  758. struct ggml_context * ctx,
  759. struct ggml_tensor * a,
  760. struct ggml_tensor * b);
  761. GGML_API struct ggml_tensor * ggml_mul_inplace(
  762. struct ggml_context * ctx,
  763. struct ggml_tensor * a,
  764. struct ggml_tensor * b);
  765. GGML_API struct ggml_tensor * ggml_div(
  766. struct ggml_context * ctx,
  767. struct ggml_tensor * a,
  768. struct ggml_tensor * b);
  769. GGML_API struct ggml_tensor * ggml_div_inplace(
  770. struct ggml_context * ctx,
  771. struct ggml_tensor * a,
  772. struct ggml_tensor * b);
  773. GGML_API struct ggml_tensor * ggml_sqr(
  774. struct ggml_context * ctx,
  775. struct ggml_tensor * a);
  776. GGML_API struct ggml_tensor * ggml_sqr_inplace(
  777. struct ggml_context * ctx,
  778. struct ggml_tensor * a);
  779. GGML_API struct ggml_tensor * ggml_sqrt(
  780. struct ggml_context * ctx,
  781. struct ggml_tensor * a);
  782. GGML_API struct ggml_tensor * ggml_sqrt_inplace(
  783. struct ggml_context * ctx,
  784. struct ggml_tensor * a);
  785. GGML_API struct ggml_tensor * ggml_log(
  786. struct ggml_context * ctx,
  787. struct ggml_tensor * a);
  788. GGML_API struct ggml_tensor * ggml_log_inplace(
  789. struct ggml_context * ctx,
  790. struct ggml_tensor * a);
  791. GGML_API struct ggml_tensor * ggml_sin(
  792. struct ggml_context * ctx,
  793. struct ggml_tensor * a);
  794. GGML_API struct ggml_tensor * ggml_sin_inplace(
  795. struct ggml_context * ctx,
  796. struct ggml_tensor * a);
  797. GGML_API struct ggml_tensor * ggml_cos(
  798. struct ggml_context * ctx,
  799. struct ggml_tensor * a);
  800. GGML_API struct ggml_tensor * ggml_cos_inplace(
  801. struct ggml_context * ctx,
  802. struct ggml_tensor * a);
  803. // return scalar
  804. GGML_API struct ggml_tensor * ggml_sum(
  805. struct ggml_context * ctx,
  806. struct ggml_tensor * a);
  807. // sums along rows, with input shape [a,b,c,d] return shape [1,b,c,d]
  808. GGML_API struct ggml_tensor * ggml_sum_rows(
  809. struct ggml_context * ctx,
  810. struct ggml_tensor * a);
  811. // mean along rows
  812. GGML_API struct ggml_tensor * ggml_mean(
  813. struct ggml_context * ctx,
  814. struct ggml_tensor * a);
  815. // argmax along rows
  816. GGML_API struct ggml_tensor * ggml_argmax(
  817. struct ggml_context * ctx,
  818. struct ggml_tensor * a);
  819. // count number of equal elements in a and b
  820. GGML_API struct ggml_tensor * ggml_count_equal(
  821. struct ggml_context * ctx,
  822. struct ggml_tensor * a,
  823. struct ggml_tensor * b);
  824. // if a is the same shape as b, and a is not parameter, return a
  825. // otherwise, return a new tensor: repeat(a) to fit in b
  826. GGML_API struct ggml_tensor * ggml_repeat(
  827. struct ggml_context * ctx,
  828. struct ggml_tensor * a,
  829. struct ggml_tensor * b);
  830. // sums repetitions in a into shape of b
  831. GGML_API struct ggml_tensor * ggml_repeat_back(
  832. struct ggml_context * ctx,
  833. struct ggml_tensor * a,
  834. struct ggml_tensor * b);
  835. // concat a and b along dim
  836. // used in stable-diffusion
  837. GGML_API struct ggml_tensor * ggml_concat(
  838. struct ggml_context * ctx,
  839. struct ggml_tensor * a,
  840. struct ggml_tensor * b,
  841. int dim);
  842. GGML_API struct ggml_tensor * ggml_abs(
  843. struct ggml_context * ctx,
  844. struct ggml_tensor * a);
  845. GGML_API struct ggml_tensor * ggml_abs_inplace(
  846. struct ggml_context * ctx,
  847. struct ggml_tensor * a);
  848. GGML_API struct ggml_tensor * ggml_sgn(
  849. struct ggml_context * ctx,
  850. struct ggml_tensor * a);
  851. GGML_API struct ggml_tensor * ggml_sgn_inplace(
  852. struct ggml_context * ctx,
  853. struct ggml_tensor * a);
  854. GGML_API struct ggml_tensor * ggml_neg(
  855. struct ggml_context * ctx,
  856. struct ggml_tensor * a);
  857. GGML_API struct ggml_tensor * ggml_neg_inplace(
  858. struct ggml_context * ctx,
  859. struct ggml_tensor * a);
  860. GGML_API struct ggml_tensor * ggml_step(
  861. struct ggml_context * ctx,
  862. struct ggml_tensor * a);
  863. GGML_API struct ggml_tensor * ggml_step_inplace(
  864. struct ggml_context * ctx,
  865. struct ggml_tensor * a);
  866. GGML_API struct ggml_tensor * ggml_tanh(
  867. struct ggml_context * ctx,
  868. struct ggml_tensor * a);
  869. GGML_API struct ggml_tensor * ggml_tanh_inplace(
  870. struct ggml_context * ctx,
  871. struct ggml_tensor * a);
  872. GGML_API struct ggml_tensor * ggml_elu(
  873. struct ggml_context * ctx,
  874. struct ggml_tensor * a);
  875. GGML_API struct ggml_tensor * ggml_elu_inplace(
  876. struct ggml_context * ctx,
  877. struct ggml_tensor * a);
  878. GGML_API struct ggml_tensor * ggml_relu(
  879. struct ggml_context * ctx,
  880. struct ggml_tensor * a);
  881. GGML_API struct ggml_tensor * ggml_leaky_relu(
  882. struct ggml_context * ctx,
  883. struct ggml_tensor * a, float negative_slope, bool inplace);
  884. GGML_API struct ggml_tensor * ggml_relu_inplace(
  885. struct ggml_context * ctx,
  886. struct ggml_tensor * a);
  887. GGML_API struct ggml_tensor * ggml_sigmoid(
  888. struct ggml_context * ctx,
  889. struct ggml_tensor * a);
  890. GGML_API struct ggml_tensor * ggml_sigmoid_inplace(
  891. struct ggml_context * ctx,
  892. struct ggml_tensor * a);
  893. GGML_API struct ggml_tensor * ggml_gelu(
  894. struct ggml_context * ctx,
  895. struct ggml_tensor * a);
  896. GGML_API struct ggml_tensor * ggml_gelu_inplace(
  897. struct ggml_context * ctx,
  898. struct ggml_tensor * a);
  899. GGML_API struct ggml_tensor * ggml_gelu_quick(
  900. struct ggml_context * ctx,
  901. struct ggml_tensor * a);
  902. GGML_API struct ggml_tensor * ggml_gelu_quick_inplace(
  903. struct ggml_context * ctx,
  904. struct ggml_tensor * a);
  905. GGML_API struct ggml_tensor * ggml_silu(
  906. struct ggml_context * ctx,
  907. struct ggml_tensor * a);
  908. GGML_API struct ggml_tensor * ggml_silu_inplace(
  909. struct ggml_context * ctx,
  910. struct ggml_tensor * a);
  911. // a - x
  912. // b - dy
  913. GGML_API struct ggml_tensor * ggml_silu_back(
  914. struct ggml_context * ctx,
  915. struct ggml_tensor * a,
  916. struct ggml_tensor * b);
  917. // hardswish(x) = x * relu6(x + 3) / 6
  918. GGML_API struct ggml_tensor * ggml_hardswish(
  919. struct ggml_context * ctx,
  920. struct ggml_tensor * a);
  921. // hardsigmoid(x) = relu6(x + 3) / 6
  922. GGML_API struct ggml_tensor * ggml_hardsigmoid(
  923. struct ggml_context * ctx,
  924. struct ggml_tensor * a);
  925. GGML_API struct ggml_tensor * ggml_exp(
  926. struct ggml_context * ctx,
  927. struct ggml_tensor * a);
  928. GGML_API struct ggml_tensor * ggml_exp_inplace(
  929. struct ggml_context * ctx,
  930. struct ggml_tensor * a);
  931. // normalize along rows
  932. GGML_API struct ggml_tensor * ggml_norm(
  933. struct ggml_context * ctx,
  934. struct ggml_tensor * a,
  935. float eps);
  936. GGML_API struct ggml_tensor * ggml_norm_inplace(
  937. struct ggml_context * ctx,
  938. struct ggml_tensor * a,
  939. float eps);
  940. GGML_API struct ggml_tensor * ggml_rms_norm(
  941. struct ggml_context * ctx,
  942. struct ggml_tensor * a,
  943. float eps);
  944. GGML_API struct ggml_tensor * ggml_rms_norm_inplace(
  945. struct ggml_context * ctx,
  946. struct ggml_tensor * a,
  947. float eps);
  948. // group normalize along ne0*ne1*n_groups
  949. // used in stable-diffusion
  950. GGML_API struct ggml_tensor * ggml_group_norm(
  951. struct ggml_context * ctx,
  952. struct ggml_tensor * a,
  953. int n_groups,
  954. float eps);
  955. GGML_API struct ggml_tensor * ggml_group_norm_inplace(
  956. struct ggml_context * ctx,
  957. struct ggml_tensor * a,
  958. int n_groups,
  959. float eps);
  960. // a - x
  961. // b - dy
  962. GGML_API struct ggml_tensor * ggml_rms_norm_back(
  963. struct ggml_context * ctx,
  964. struct ggml_tensor * a,
  965. struct ggml_tensor * b,
  966. float eps);
  967. // A: k columns, n rows => [ne03, ne02, n, k]
  968. // B: k columns, m rows (i.e. we transpose it internally) => [ne03 * x, ne02 * y, m, k]
  969. // result is n columns, m rows => [ne03 * x, ne02 * y, m, n]
  970. GGML_API struct ggml_tensor * ggml_mul_mat(
  971. struct ggml_context * ctx,
  972. struct ggml_tensor * a,
  973. struct ggml_tensor * b);
  974. // change the precision of a matrix multiplication
  975. // set to GGML_PREC_F32 for higher precision (useful for phi-2)
  976. GGML_API void ggml_mul_mat_set_prec(
  977. struct ggml_tensor * a,
  978. enum ggml_prec prec);
  979. // indirect matrix multiplication
  980. GGML_API struct ggml_tensor * ggml_mul_mat_id(
  981. struct ggml_context * ctx,
  982. struct ggml_tensor * as,
  983. struct ggml_tensor * b,
  984. struct ggml_tensor * ids);
  985. // A: m columns, n rows,
  986. // B: p columns, n rows,
  987. // result is m columns, p rows
  988. GGML_API struct ggml_tensor * ggml_out_prod(
  989. struct ggml_context * ctx,
  990. struct ggml_tensor * a,
  991. struct ggml_tensor * b);
  992. //
  993. // operations on tensors without backpropagation
  994. //
  995. GGML_API struct ggml_tensor * ggml_scale(
  996. struct ggml_context * ctx,
  997. struct ggml_tensor * a,
  998. float s);
  999. // in-place, returns view(a)
  1000. GGML_API struct ggml_tensor * ggml_scale_inplace(
  1001. struct ggml_context * ctx,
  1002. struct ggml_tensor * a,
  1003. float s);
  1004. // b -> view(a,offset,nb1,nb2,3), return modified a
  1005. GGML_API struct ggml_tensor * ggml_set(
  1006. struct ggml_context * ctx,
  1007. struct ggml_tensor * a,
  1008. struct ggml_tensor * b,
  1009. size_t nb1,
  1010. size_t nb2,
  1011. size_t nb3,
  1012. size_t offset); // in bytes
  1013. // b -> view(a,offset,nb1,nb2,3), return view(a)
  1014. GGML_API struct ggml_tensor * ggml_set_inplace(
  1015. struct ggml_context * ctx,
  1016. struct ggml_tensor * a,
  1017. struct ggml_tensor * b,
  1018. size_t nb1,
  1019. size_t nb2,
  1020. size_t nb3,
  1021. size_t offset); // in bytes
  1022. GGML_API struct ggml_tensor * ggml_set_1d(
  1023. struct ggml_context * ctx,
  1024. struct ggml_tensor * a,
  1025. struct ggml_tensor * b,
  1026. size_t offset); // in bytes
  1027. GGML_API struct ggml_tensor * ggml_set_1d_inplace(
  1028. struct ggml_context * ctx,
  1029. struct ggml_tensor * a,
  1030. struct ggml_tensor * b,
  1031. size_t offset); // in bytes
  1032. // b -> view(a,offset,nb1,nb2,3), return modified a
  1033. GGML_API struct ggml_tensor * ggml_set_2d(
  1034. struct ggml_context * ctx,
  1035. struct ggml_tensor * a,
  1036. struct ggml_tensor * b,
  1037. size_t nb1,
  1038. size_t offset); // in bytes
  1039. // b -> view(a,offset,nb1,nb2,3), return view(a)
  1040. GGML_API struct ggml_tensor * ggml_set_2d_inplace(
  1041. struct ggml_context * ctx,
  1042. struct ggml_tensor * a,
  1043. struct ggml_tensor * b,
  1044. size_t nb1,
  1045. size_t offset); // in bytes
  1046. // a -> b, return view(b)
  1047. GGML_API struct ggml_tensor * ggml_cpy(
  1048. struct ggml_context * ctx,
  1049. struct ggml_tensor * a,
  1050. struct ggml_tensor * b);
  1051. GGML_API struct ggml_tensor * ggml_cast(
  1052. struct ggml_context * ctx,
  1053. struct ggml_tensor * a,
  1054. enum ggml_type type);
  1055. // make contiguous
  1056. GGML_API struct ggml_tensor * ggml_cont(
  1057. struct ggml_context * ctx,
  1058. struct ggml_tensor * a);
  1059. // make contiguous, with new shape
  1060. GGML_API struct ggml_tensor * ggml_cont_1d(
  1061. struct ggml_context * ctx,
  1062. struct ggml_tensor * a,
  1063. int64_t ne0);
  1064. GGML_API struct ggml_tensor * ggml_cont_2d(
  1065. struct ggml_context * ctx,
  1066. struct ggml_tensor * a,
  1067. int64_t ne0,
  1068. int64_t ne1);
  1069. GGML_API struct ggml_tensor * ggml_cont_3d(
  1070. struct ggml_context * ctx,
  1071. struct ggml_tensor * a,
  1072. int64_t ne0,
  1073. int64_t ne1,
  1074. int64_t ne2);
  1075. GGML_API struct ggml_tensor * ggml_cont_4d(
  1076. struct ggml_context * ctx,
  1077. struct ggml_tensor * a,
  1078. int64_t ne0,
  1079. int64_t ne1,
  1080. int64_t ne2,
  1081. int64_t ne3);
  1082. // return view(a), b specifies the new shape
  1083. // TODO: when we start computing gradient, make a copy instead of view
  1084. GGML_API struct ggml_tensor * ggml_reshape(
  1085. struct ggml_context * ctx,
  1086. struct ggml_tensor * a,
  1087. struct ggml_tensor * b);
  1088. // return view(a)
  1089. // TODO: when we start computing gradient, make a copy instead of view
  1090. GGML_API struct ggml_tensor * ggml_reshape_1d(
  1091. struct ggml_context * ctx,
  1092. struct ggml_tensor * a,
  1093. int64_t ne0);
  1094. GGML_API struct ggml_tensor * ggml_reshape_2d(
  1095. struct ggml_context * ctx,
  1096. struct ggml_tensor * a,
  1097. int64_t ne0,
  1098. int64_t ne1);
  1099. // return view(a)
  1100. // TODO: when we start computing gradient, make a copy instead of view
  1101. GGML_API struct ggml_tensor * ggml_reshape_3d(
  1102. struct ggml_context * ctx,
  1103. struct ggml_tensor * a,
  1104. int64_t ne0,
  1105. int64_t ne1,
  1106. int64_t ne2);
  1107. GGML_API struct ggml_tensor * ggml_reshape_4d(
  1108. struct ggml_context * ctx,
  1109. struct ggml_tensor * a,
  1110. int64_t ne0,
  1111. int64_t ne1,
  1112. int64_t ne2,
  1113. int64_t ne3);
  1114. // offset in bytes
  1115. GGML_API struct ggml_tensor * ggml_view_1d(
  1116. struct ggml_context * ctx,
  1117. struct ggml_tensor * a,
  1118. int64_t ne0,
  1119. size_t offset);
  1120. GGML_API struct ggml_tensor * ggml_view_2d(
  1121. struct ggml_context * ctx,
  1122. struct ggml_tensor * a,
  1123. int64_t ne0,
  1124. int64_t ne1,
  1125. size_t nb1, // row stride in bytes
  1126. size_t offset);
  1127. GGML_API struct ggml_tensor * ggml_view_3d(
  1128. struct ggml_context * ctx,
  1129. struct ggml_tensor * a,
  1130. int64_t ne0,
  1131. int64_t ne1,
  1132. int64_t ne2,
  1133. size_t nb1, // row stride in bytes
  1134. size_t nb2, // slice stride in bytes
  1135. size_t offset);
  1136. GGML_API struct ggml_tensor * ggml_view_4d(
  1137. struct ggml_context * ctx,
  1138. struct ggml_tensor * a,
  1139. int64_t ne0,
  1140. int64_t ne1,
  1141. int64_t ne2,
  1142. int64_t ne3,
  1143. size_t nb1, // row stride in bytes
  1144. size_t nb2, // slice stride in bytes
  1145. size_t nb3,
  1146. size_t offset);
  1147. GGML_API struct ggml_tensor * ggml_permute(
  1148. struct ggml_context * ctx,
  1149. struct ggml_tensor * a,
  1150. int axis0,
  1151. int axis1,
  1152. int axis2,
  1153. int axis3);
  1154. // alias for ggml_permute(ctx, a, 1, 0, 2, 3)
  1155. GGML_API struct ggml_tensor * ggml_transpose(
  1156. struct ggml_context * ctx,
  1157. struct ggml_tensor * a);
  1158. // supports 3D: a->ne[2] == b->ne[1]
  1159. GGML_API struct ggml_tensor * ggml_get_rows(
  1160. struct ggml_context * ctx,
  1161. struct ggml_tensor * a, // data
  1162. struct ggml_tensor * b); // row indices
  1163. GGML_API struct ggml_tensor * ggml_get_rows_back(
  1164. struct ggml_context * ctx,
  1165. struct ggml_tensor * a, // gradients of ggml_get_rows result
  1166. struct ggml_tensor * b, // row indices
  1167. struct ggml_tensor * c); // data for ggml_get_rows, only used for its shape
  1168. GGML_API struct ggml_tensor * ggml_diag(
  1169. struct ggml_context * ctx,
  1170. struct ggml_tensor * a);
  1171. // set elements above the diagonal to -INF
  1172. GGML_API struct ggml_tensor * ggml_diag_mask_inf(
  1173. struct ggml_context * ctx,
  1174. struct ggml_tensor * a,
  1175. int n_past);
  1176. // in-place, returns view(a)
  1177. GGML_API struct ggml_tensor * ggml_diag_mask_inf_inplace(
  1178. struct ggml_context * ctx,
  1179. struct ggml_tensor * a,
  1180. int n_past);
  1181. // set elements above the diagonal to 0
  1182. GGML_API struct ggml_tensor * ggml_diag_mask_zero(
  1183. struct ggml_context * ctx,
  1184. struct ggml_tensor * a,
  1185. int n_past);
  1186. // in-place, returns view(a)
  1187. GGML_API struct ggml_tensor * ggml_diag_mask_zero_inplace(
  1188. struct ggml_context * ctx,
  1189. struct ggml_tensor * a,
  1190. int n_past);
  1191. GGML_API struct ggml_tensor * ggml_soft_max(
  1192. struct ggml_context * ctx,
  1193. struct ggml_tensor * a);
  1194. // in-place, returns view(a)
  1195. GGML_API struct ggml_tensor * ggml_soft_max_inplace(
  1196. struct ggml_context * ctx,
  1197. struct ggml_tensor * a);
  1198. // fused soft_max(a*scale + mask*(ALiBi slope))
  1199. // mask is optional
  1200. // max_bias = 0.0f for no ALiBi
  1201. GGML_API struct ggml_tensor * ggml_soft_max_ext(
  1202. struct ggml_context * ctx,
  1203. struct ggml_tensor * a,
  1204. struct ggml_tensor * mask,
  1205. float scale,
  1206. float max_bias);
  1207. GGML_API struct ggml_tensor * ggml_soft_max_back(
  1208. struct ggml_context * ctx,
  1209. struct ggml_tensor * a,
  1210. struct ggml_tensor * b);
  1211. // in-place, returns view(a)
  1212. GGML_API struct ggml_tensor * ggml_soft_max_back_inplace(
  1213. struct ggml_context * ctx,
  1214. struct ggml_tensor * a,
  1215. struct ggml_tensor * b);
  1216. // rotary position embedding
  1217. // if (mode & 1) - skip n_past elements (NOT SUPPORTED)
  1218. // if (mode & GGML_ROPE_TYPE_NEOX) - GPT-NeoX style
  1219. //
  1220. // b is an int32 vector with size a->ne[2], it contains the positions
  1221. GGML_API struct ggml_tensor * ggml_rope(
  1222. struct ggml_context * ctx,
  1223. struct ggml_tensor * a,
  1224. struct ggml_tensor * b,
  1225. int n_dims,
  1226. int mode);
  1227. // in-place, returns view(a)
  1228. GGML_API struct ggml_tensor * ggml_rope_inplace(
  1229. struct ggml_context * ctx,
  1230. struct ggml_tensor * a,
  1231. struct ggml_tensor * b,
  1232. int n_dims,
  1233. int mode);
  1234. // custom RoPE
  1235. // c is freq factors (e.g. phi3-128k), (optional)
  1236. GGML_API struct ggml_tensor * ggml_rope_ext(
  1237. struct ggml_context * ctx,
  1238. struct ggml_tensor * a,
  1239. struct ggml_tensor * b,
  1240. struct ggml_tensor * c,
  1241. int n_dims,
  1242. int mode,
  1243. int n_ctx_orig,
  1244. float freq_base,
  1245. float freq_scale,
  1246. float ext_factor,
  1247. float attn_factor,
  1248. float beta_fast,
  1249. float beta_slow);
  1250. GGML_API struct ggml_tensor * ggml_rope_multi(
  1251. struct ggml_context * ctx,
  1252. struct ggml_tensor * a,
  1253. struct ggml_tensor * b,
  1254. struct ggml_tensor * c,
  1255. int n_dims,
  1256. int sections[4],
  1257. int mode,
  1258. int n_ctx_orig,
  1259. float freq_base,
  1260. float freq_scale,
  1261. float ext_factor,
  1262. float attn_factor,
  1263. float beta_fast,
  1264. float beta_slow);
  1265. // in-place, returns view(a)
  1266. GGML_API struct ggml_tensor * ggml_rope_ext_inplace(
  1267. struct ggml_context * ctx,
  1268. struct ggml_tensor * a,
  1269. struct ggml_tensor * b,
  1270. struct ggml_tensor * c,
  1271. int n_dims,
  1272. int mode,
  1273. int n_ctx_orig,
  1274. float freq_base,
  1275. float freq_scale,
  1276. float ext_factor,
  1277. float attn_factor,
  1278. float beta_fast,
  1279. float beta_slow);
  1280. GGML_DEPRECATED(GGML_API struct ggml_tensor * ggml_rope_custom(
  1281. struct ggml_context * ctx,
  1282. struct ggml_tensor * a,
  1283. struct ggml_tensor * b,
  1284. int n_dims,
  1285. int mode,
  1286. int n_ctx_orig,
  1287. float freq_base,
  1288. float freq_scale,
  1289. float ext_factor,
  1290. float attn_factor,
  1291. float beta_fast,
  1292. float beta_slow),
  1293. "use ggml_rope_ext instead");
  1294. GGML_DEPRECATED(GGML_API struct ggml_tensor * ggml_rope_custom_inplace(
  1295. struct ggml_context * ctx,
  1296. struct ggml_tensor * a,
  1297. struct ggml_tensor * b,
  1298. int n_dims,
  1299. int mode,
  1300. int n_ctx_orig,
  1301. float freq_base,
  1302. float freq_scale,
  1303. float ext_factor,
  1304. float attn_factor,
  1305. float beta_fast,
  1306. float beta_slow),
  1307. "use ggml_rope_ext_inplace instead");
  1308. // compute correction dims for YaRN RoPE scaling
  1309. GGML_API void ggml_rope_yarn_corr_dims(
  1310. int n_dims, int n_ctx_orig, float freq_base, float beta_fast, float beta_slow, float dims[2]);
  1311. // rotary position embedding backward, i.e compute dx from dy
  1312. // a - dy
  1313. GGML_API struct ggml_tensor * ggml_rope_back(
  1314. struct ggml_context * ctx,
  1315. struct ggml_tensor * a, // gradients of ggml_rope result
  1316. struct ggml_tensor * b, // positions
  1317. struct ggml_tensor * c, // freq factors
  1318. int n_dims,
  1319. int mode,
  1320. int n_ctx_orig,
  1321. float freq_base,
  1322. float freq_scale,
  1323. float ext_factor,
  1324. float attn_factor,
  1325. float beta_fast,
  1326. float beta_slow);
  1327. // clamp
  1328. // in-place, returns view(a)
  1329. GGML_API struct ggml_tensor * ggml_clamp(
  1330. struct ggml_context * ctx,
  1331. struct ggml_tensor * a,
  1332. float min,
  1333. float max);
  1334. // im2col
  1335. // converts data into a format that effectively results in a convolution when combined with matrix multiplication
  1336. GGML_API struct ggml_tensor * ggml_im2col(
  1337. struct ggml_context * ctx,
  1338. struct ggml_tensor * a, // convolution kernel
  1339. struct ggml_tensor * b, // data
  1340. int s0, // stride dimension 0
  1341. int s1, // stride dimension 1
  1342. int p0, // padding dimension 0
  1343. int p1, // padding dimension 1
  1344. int d0, // dilation dimension 0
  1345. int d1, // dilation dimension 1
  1346. bool is_2D,
  1347. enum ggml_type dst_type);
  1348. GGML_API struct ggml_tensor * ggml_im2col_back(
  1349. struct ggml_context * ctx,
  1350. struct ggml_tensor * a, // convolution kernel
  1351. struct ggml_tensor * b, // gradient of im2col output
  1352. int64_t * ne, // shape of im2col input
  1353. int s0, // stride dimension 0
  1354. int s1, // stride dimension 1
  1355. int p0, // padding dimension 0
  1356. int p1, // padding dimension 1
  1357. int d0, // dilation dimension 0
  1358. int d1, // dilation dimension 1
  1359. bool is_2D);
  1360. GGML_API struct ggml_tensor * ggml_conv_depthwise_2d(
  1361. struct ggml_context * ctx,
  1362. struct ggml_tensor * a, // convolution kernel
  1363. struct ggml_tensor * b, // data
  1364. int s0, // stride dimension 0
  1365. int s1, // stride dimension 1
  1366. int p0, // padding dimension 0
  1367. int p1, // padding dimension 1
  1368. int d0, // dilation dimension 0
  1369. int d1); // dilation dimension 1
  1370. GGML_API struct ggml_tensor * ggml_conv_1d(
  1371. struct ggml_context * ctx,
  1372. struct ggml_tensor * a, // convolution kernel
  1373. struct ggml_tensor * b, // data
  1374. int s0, // stride
  1375. int p0, // padding
  1376. int d0); // dilation
  1377. // conv_1d with padding = half
  1378. // alias for ggml_conv_1d(a, b, s, a->ne[0]/2, d)
  1379. GGML_API struct ggml_tensor* ggml_conv_1d_ph(
  1380. struct ggml_context * ctx,
  1381. struct ggml_tensor * a, // convolution kernel
  1382. struct ggml_tensor * b, // data
  1383. int s, // stride
  1384. int d); // dilation
  1385. GGML_API struct ggml_tensor * ggml_conv_transpose_1d(
  1386. struct ggml_context * ctx,
  1387. struct ggml_tensor * a, // convolution kernel
  1388. struct ggml_tensor * b, // data
  1389. int s0, // stride
  1390. int p0, // padding
  1391. int d0); // dilation
  1392. GGML_API struct ggml_tensor * ggml_conv_2d(
  1393. struct ggml_context * ctx,
  1394. struct ggml_tensor * a, // convolution kernel
  1395. struct ggml_tensor * b, // data
  1396. int s0, // stride dimension 0
  1397. int s1, // stride dimension 1
  1398. int p0, // padding dimension 0
  1399. int p1, // padding dimension 1
  1400. int d0, // dilation dimension 0
  1401. int d1); // dilation dimension 1
  1402. // kernel size is a->ne[0] x a->ne[1]
  1403. // stride is equal to kernel size
  1404. // padding is zero
  1405. // example:
  1406. // a: 16 16 3 768
  1407. // b: 1024 1024 3 1
  1408. // res: 64 64 768 1
  1409. // used in sam
  1410. GGML_API struct ggml_tensor * ggml_conv_2d_sk_p0(
  1411. struct ggml_context * ctx,
  1412. struct ggml_tensor * a,
  1413. struct ggml_tensor * b);
  1414. // kernel size is a->ne[0] x a->ne[1]
  1415. // stride is 1
  1416. // padding is half
  1417. // example:
  1418. // a: 3 3 256 256
  1419. // b: 64 64 256 1
  1420. // res: 64 64 256 1
  1421. // used in sam
  1422. GGML_API struct ggml_tensor * ggml_conv_2d_s1_ph(
  1423. struct ggml_context * ctx,
  1424. struct ggml_tensor * a,
  1425. struct ggml_tensor * b);
  1426. GGML_API struct ggml_tensor * ggml_conv_transpose_2d_p0(
  1427. struct ggml_context * ctx,
  1428. struct ggml_tensor * a,
  1429. struct ggml_tensor * b,
  1430. int stride);
  1431. enum ggml_op_pool {
  1432. GGML_OP_POOL_MAX,
  1433. GGML_OP_POOL_AVG,
  1434. GGML_OP_POOL_COUNT,
  1435. };
  1436. GGML_API struct ggml_tensor * ggml_pool_1d(
  1437. struct ggml_context * ctx,
  1438. struct ggml_tensor * a,
  1439. enum ggml_op_pool op,
  1440. int k0, // kernel size
  1441. int s0, // stride
  1442. int p0); // padding
  1443. // the result will have 2*p0 padding for the first dimension
  1444. // and 2*p1 padding for the second dimension
  1445. GGML_API struct ggml_tensor * ggml_pool_2d(
  1446. struct ggml_context * ctx,
  1447. struct ggml_tensor * a,
  1448. enum ggml_op_pool op,
  1449. int k0,
  1450. int k1,
  1451. int s0,
  1452. int s1,
  1453. float p0,
  1454. float p1);
  1455. GGML_API struct ggml_tensor * ggml_pool_2d_back(
  1456. struct ggml_context * ctx,
  1457. struct ggml_tensor * a,
  1458. struct ggml_tensor * af, // "a"/input used in forward pass
  1459. enum ggml_op_pool op,
  1460. int k0,
  1461. int k1,
  1462. int s0,
  1463. int s1,
  1464. float p0,
  1465. float p1);
  1466. // nearest interpolate
  1467. // multiplies ne0 and ne1 by scale factor
  1468. // used in stable-diffusion
  1469. GGML_API struct ggml_tensor * ggml_upscale(
  1470. struct ggml_context * ctx,
  1471. struct ggml_tensor * a,
  1472. int scale_factor);
  1473. // nearest interpolate
  1474. // nearest interpolate to specified dimensions
  1475. // used in tortoise.cpp
  1476. GGML_API struct ggml_tensor * ggml_upscale_ext(
  1477. struct ggml_context * ctx,
  1478. struct ggml_tensor * a,
  1479. int ne0,
  1480. int ne1,
  1481. int ne2,
  1482. int ne3);
  1483. // pad each dimension with zeros: [x, ..., x] -> [x, ..., x, 0, ..., 0]
  1484. GGML_API struct ggml_tensor * ggml_pad(
  1485. struct ggml_context * ctx,
  1486. struct ggml_tensor * a,
  1487. int p0,
  1488. int p1,
  1489. int p2,
  1490. int p3);
  1491. // pad each dimension with reflection: [a, b, c, d] -> [b, a, b, c, d, c]
  1492. GGML_API struct ggml_tensor * ggml_pad_reflect_1d(
  1493. struct ggml_context * ctx,
  1494. struct ggml_tensor * a,
  1495. int p0,
  1496. int p1);
  1497. // unpad each dimension: [x, ..., x, y, ..., y] -> [x, ..., x]
  1498. GGML_API struct ggml_tensor * ggml_unpad(
  1499. struct ggml_context * ctx,
  1500. struct ggml_tensor * a,
  1501. int p0,
  1502. int p1,
  1503. int p2,
  1504. int p3);
  1505. // Ref: https://github.com/CompVis/stable-diffusion/blob/main/ldm/modules/diffusionmodules/util.py#L151
  1506. // timesteps: [N,]
  1507. // return: [N, dim]
  1508. GGML_API struct ggml_tensor * ggml_timestep_embedding(
  1509. struct ggml_context * ctx,
  1510. struct ggml_tensor * timesteps,
  1511. int dim,
  1512. int max_period);
  1513. // sort rows
  1514. enum ggml_sort_order {
  1515. GGML_SORT_ORDER_ASC,
  1516. GGML_SORT_ORDER_DESC,
  1517. };
  1518. GGML_API struct ggml_tensor * ggml_argsort(
  1519. struct ggml_context * ctx,
  1520. struct ggml_tensor * a,
  1521. enum ggml_sort_order order);
  1522. GGML_API struct ggml_tensor * ggml_arange(
  1523. struct ggml_context * ctx,
  1524. float start,
  1525. float stop,
  1526. float step);
  1527. // top k elements per row
  1528. GGML_API struct ggml_tensor * ggml_top_k(
  1529. struct ggml_context * ctx,
  1530. struct ggml_tensor * a,
  1531. int k);
  1532. #define GGML_KQ_MASK_PAD 32
  1533. // q: [n_embd, n_batch, n_head, 1]
  1534. // k: [n_embd, n_kv, n_head_kv, 1]
  1535. // v: [n_embd, n_kv, n_head_kv, 1] !! not transposed !!
  1536. // mask: [n_kv, n_batch_pad, 1, 1] !! n_batch_pad = GGML_PAD(n_batch, GGML_KQ_MASK_PAD) !!
  1537. // res: [n_embd, n_head, n_batch, 1] !! permuted !!
  1538. GGML_API struct ggml_tensor * ggml_flash_attn_ext(
  1539. struct ggml_context * ctx,
  1540. struct ggml_tensor * q,
  1541. struct ggml_tensor * k,
  1542. struct ggml_tensor * v,
  1543. struct ggml_tensor * mask,
  1544. float scale,
  1545. float max_bias,
  1546. float logit_softcap);
  1547. GGML_API void ggml_flash_attn_ext_set_prec(
  1548. struct ggml_tensor * a,
  1549. enum ggml_prec prec);
  1550. GGML_API enum ggml_prec ggml_flash_attn_ext_get_prec(
  1551. const struct ggml_tensor * a);
  1552. // TODO: needs to be adapted to ggml_flash_attn_ext
  1553. GGML_API struct ggml_tensor * ggml_flash_attn_back(
  1554. struct ggml_context * ctx,
  1555. struct ggml_tensor * q,
  1556. struct ggml_tensor * k,
  1557. struct ggml_tensor * v,
  1558. struct ggml_tensor * d,
  1559. bool masked);
  1560. GGML_API struct ggml_tensor * ggml_ssm_conv(
  1561. struct ggml_context * ctx,
  1562. struct ggml_tensor * sx,
  1563. struct ggml_tensor * c);
  1564. GGML_API struct ggml_tensor * ggml_ssm_scan(
  1565. struct ggml_context * ctx,
  1566. struct ggml_tensor * s,
  1567. struct ggml_tensor * x,
  1568. struct ggml_tensor * dt,
  1569. struct ggml_tensor * A,
  1570. struct ggml_tensor * B,
  1571. struct ggml_tensor * C);
  1572. // partition into non-overlapping windows with padding if needed
  1573. // example:
  1574. // a: 768 64 64 1
  1575. // w: 14
  1576. // res: 768 14 14 25
  1577. // used in sam
  1578. GGML_API struct ggml_tensor * ggml_win_part(
  1579. struct ggml_context * ctx,
  1580. struct ggml_tensor * a,
  1581. int w);
  1582. // reverse of ggml_win_part
  1583. // used in sam
  1584. GGML_API struct ggml_tensor * ggml_win_unpart(
  1585. struct ggml_context * ctx,
  1586. struct ggml_tensor * a,
  1587. int w0,
  1588. int h0,
  1589. int w);
  1590. GGML_API struct ggml_tensor * ggml_unary(
  1591. struct ggml_context * ctx,
  1592. struct ggml_tensor * a,
  1593. enum ggml_unary_op op);
  1594. GGML_API struct ggml_tensor * ggml_unary_inplace(
  1595. struct ggml_context * ctx,
  1596. struct ggml_tensor * a,
  1597. enum ggml_unary_op op);
  1598. // used in sam
  1599. GGML_API struct ggml_tensor * ggml_get_rel_pos(
  1600. struct ggml_context * ctx,
  1601. struct ggml_tensor * a,
  1602. int qh,
  1603. int kh);
  1604. // used in sam
  1605. GGML_API struct ggml_tensor * ggml_add_rel_pos(
  1606. struct ggml_context * ctx,
  1607. struct ggml_tensor * a,
  1608. struct ggml_tensor * pw,
  1609. struct ggml_tensor * ph);
  1610. GGML_API struct ggml_tensor * ggml_add_rel_pos_inplace(
  1611. struct ggml_context * ctx,
  1612. struct ggml_tensor * a,
  1613. struct ggml_tensor * pw,
  1614. struct ggml_tensor * ph);
  1615. GGML_API struct ggml_tensor * ggml_rwkv_wkv6(
  1616. struct ggml_context * ctx,
  1617. struct ggml_tensor * k,
  1618. struct ggml_tensor * v,
  1619. struct ggml_tensor * r,
  1620. struct ggml_tensor * tf,
  1621. struct ggml_tensor * td,
  1622. struct ggml_tensor * state);
  1623. // custom operators
  1624. typedef void (*ggml_unary_op_f32_t) (const int, float *, const float *);
  1625. typedef void (*ggml_binary_op_f32_t)(const int, float *, const float *, const float *);
  1626. typedef void (*ggml_custom1_op_f32_t)(struct ggml_tensor *, const struct ggml_tensor *);
  1627. typedef void (*ggml_custom2_op_f32_t)(struct ggml_tensor *, const struct ggml_tensor *, const struct ggml_tensor *);
  1628. typedef void (*ggml_custom3_op_f32_t)(struct ggml_tensor *, const struct ggml_tensor *, const struct ggml_tensor *, const struct ggml_tensor *);
  1629. GGML_DEPRECATED(GGML_API struct ggml_tensor * ggml_map_unary_f32(
  1630. struct ggml_context * ctx,
  1631. struct ggml_tensor * a,
  1632. ggml_unary_op_f32_t fun),
  1633. "use ggml_map_custom1 instead");
  1634. GGML_DEPRECATED(GGML_API struct ggml_tensor * ggml_map_unary_inplace_f32(
  1635. struct ggml_context * ctx,
  1636. struct ggml_tensor * a,
  1637. ggml_unary_op_f32_t fun),
  1638. "use ggml_map_custom1_inplace instead");
  1639. GGML_DEPRECATED(GGML_API struct ggml_tensor * ggml_map_binary_f32(
  1640. struct ggml_context * ctx,
  1641. struct ggml_tensor * a,
  1642. struct ggml_tensor * b,
  1643. ggml_binary_op_f32_t fun),
  1644. "use ggml_map_custom2 instead");
  1645. GGML_DEPRECATED(GGML_API struct ggml_tensor * ggml_map_binary_inplace_f32(
  1646. struct ggml_context * ctx,
  1647. struct ggml_tensor * a,
  1648. struct ggml_tensor * b,
  1649. ggml_binary_op_f32_t fun),
  1650. "use ggml_map_custom2_inplace instead");
  1651. GGML_DEPRECATED(GGML_API struct ggml_tensor * ggml_map_custom1_f32(
  1652. struct ggml_context * ctx,
  1653. struct ggml_tensor * a,
  1654. ggml_custom1_op_f32_t fun),
  1655. "use ggml_map_custom1 instead");
  1656. GGML_DEPRECATED(GGML_API struct ggml_tensor * ggml_map_custom1_inplace_f32(
  1657. struct ggml_context * ctx,
  1658. struct ggml_tensor * a,
  1659. ggml_custom1_op_f32_t fun),
  1660. "use ggml_map_custom1_inplace instead");
  1661. GGML_DEPRECATED(GGML_API struct ggml_tensor * ggml_map_custom2_f32(
  1662. struct ggml_context * ctx,
  1663. struct ggml_tensor * a,
  1664. struct ggml_tensor * b,
  1665. ggml_custom2_op_f32_t fun),
  1666. "use ggml_map_custom2 instead");
  1667. GGML_DEPRECATED(GGML_API struct ggml_tensor * ggml_map_custom2_inplace_f32(
  1668. struct ggml_context * ctx,
  1669. struct ggml_tensor * a,
  1670. struct ggml_tensor * b,
  1671. ggml_custom2_op_f32_t fun),
  1672. "use ggml_map_custom2_inplace instead");
  1673. GGML_DEPRECATED(GGML_API struct ggml_tensor * ggml_map_custom3_f32(
  1674. struct ggml_context * ctx,
  1675. struct ggml_tensor * a,
  1676. struct ggml_tensor * b,
  1677. struct ggml_tensor * c,
  1678. ggml_custom3_op_f32_t fun),
  1679. "use ggml_map_custom3 instead");
  1680. GGML_DEPRECATED(GGML_API struct ggml_tensor * ggml_map_custom3_inplace_f32(
  1681. struct ggml_context * ctx,
  1682. struct ggml_tensor * a,
  1683. struct ggml_tensor * b,
  1684. struct ggml_tensor * c,
  1685. ggml_custom3_op_f32_t fun),
  1686. "use ggml_map_custom3_inplace instead");
  1687. // custom operators v2
  1688. typedef void (*ggml_custom1_op_t)(struct ggml_tensor * dst , const struct ggml_tensor * a, int ith, int nth, void * userdata);
  1689. typedef void (*ggml_custom2_op_t)(struct ggml_tensor * dst , const struct ggml_tensor * a, const struct ggml_tensor * b, int ith, int nth, void * userdata);
  1690. typedef void (*ggml_custom3_op_t)(struct ggml_tensor * dst , const struct ggml_tensor * a, const struct ggml_tensor * b, const struct ggml_tensor * c, int ith, int nth, void * userdata);
  1691. #define GGML_N_TASKS_MAX (-1)
  1692. // n_tasks == GGML_N_TASKS_MAX means to use max number of tasks
  1693. GGML_API struct ggml_tensor * ggml_map_custom1(
  1694. struct ggml_context * ctx,
  1695. struct ggml_tensor * a,
  1696. ggml_custom1_op_t fun,
  1697. int n_tasks,
  1698. void * userdata);
  1699. GGML_API struct ggml_tensor * ggml_map_custom1_inplace(
  1700. struct ggml_context * ctx,
  1701. struct ggml_tensor * a,
  1702. ggml_custom1_op_t fun,
  1703. int n_tasks,
  1704. void * userdata);
  1705. GGML_API struct ggml_tensor * ggml_map_custom2(
  1706. struct ggml_context * ctx,
  1707. struct ggml_tensor * a,
  1708. struct ggml_tensor * b,
  1709. ggml_custom2_op_t fun,
  1710. int n_tasks,
  1711. void * userdata);
  1712. GGML_API struct ggml_tensor * ggml_map_custom2_inplace(
  1713. struct ggml_context * ctx,
  1714. struct ggml_tensor * a,
  1715. struct ggml_tensor * b,
  1716. ggml_custom2_op_t fun,
  1717. int n_tasks,
  1718. void * userdata);
  1719. GGML_API struct ggml_tensor * ggml_map_custom3(
  1720. struct ggml_context * ctx,
  1721. struct ggml_tensor * a,
  1722. struct ggml_tensor * b,
  1723. struct ggml_tensor * c,
  1724. ggml_custom3_op_t fun,
  1725. int n_tasks,
  1726. void * userdata);
  1727. GGML_API struct ggml_tensor * ggml_map_custom3_inplace(
  1728. struct ggml_context * ctx,
  1729. struct ggml_tensor * a,
  1730. struct ggml_tensor * b,
  1731. struct ggml_tensor * c,
  1732. ggml_custom3_op_t fun,
  1733. int n_tasks,
  1734. void * userdata);
  1735. // loss function
  1736. GGML_API struct ggml_tensor * ggml_cross_entropy_loss(
  1737. struct ggml_context * ctx,
  1738. struct ggml_tensor * a, // logits
  1739. struct ggml_tensor * b); // labels
  1740. GGML_API struct ggml_tensor * ggml_cross_entropy_loss_back(
  1741. struct ggml_context * ctx,
  1742. struct ggml_tensor * a, // logits
  1743. struct ggml_tensor * b, // labels
  1744. struct ggml_tensor * c); // gradients of cross_entropy_loss result
  1745. // AdamW optimizer step
  1746. // Paper: https://arxiv.org/pdf/1711.05101v3.pdf
  1747. // PyTorch: https://pytorch.org/docs/stable/generated/torch.optim.AdamW.html
  1748. GGML_API struct ggml_tensor * ggml_opt_step_adamw(
  1749. struct ggml_context * ctx,
  1750. struct ggml_tensor * a,
  1751. struct ggml_tensor * grad,
  1752. struct ggml_tensor * m,
  1753. struct ggml_tensor * v,
  1754. struct ggml_tensor * adamw_params); // parameters such a the learning rate
  1755. //
  1756. // automatic differentiation
  1757. //
  1758. GGML_API void ggml_build_forward_expand(struct ggml_cgraph * cgraph, struct ggml_tensor * tensor);
  1759. GGML_API void ggml_build_backward_expand(
  1760. struct ggml_context * ctx_static, // context for static gradients (loss + gradient accumulation)
  1761. struct ggml_context * ctx_compute, // context for gradient computation
  1762. struct ggml_cgraph * cgraph,
  1763. bool accumulate); // whether or not gradients should be accumulated, requires static allocation of tensors in ctx_static
  1764. // graph allocation in a context
  1765. GGML_API struct ggml_cgraph * ggml_new_graph (struct ggml_context * ctx); // size = GGML_DEFAULT_GRAPH_SIZE, grads = false
  1766. GGML_API struct ggml_cgraph * ggml_new_graph_custom(struct ggml_context * ctx, size_t size, bool grads);
  1767. GGML_API struct ggml_cgraph * ggml_graph_dup (struct ggml_context * ctx, struct ggml_cgraph * cgraph);
  1768. GGML_API void ggml_graph_cpy (struct ggml_cgraph * src, struct ggml_cgraph * dst);
  1769. GGML_API void ggml_graph_reset (struct ggml_cgraph * cgraph); // set regular grads + optimizer momenta to 0, set loss grad to 1
  1770. GGML_API void ggml_graph_clear (struct ggml_cgraph * cgraph);
  1771. GGML_API int ggml_graph_size (struct ggml_cgraph * cgraph);
  1772. GGML_API struct ggml_tensor * ggml_graph_node (struct ggml_cgraph * cgraph, int i); // if i < 0, returns nodes[n_nodes + i]
  1773. GGML_API struct ggml_tensor ** ggml_graph_nodes (struct ggml_cgraph * cgraph);
  1774. GGML_API int ggml_graph_n_nodes(struct ggml_cgraph * cgraph);
  1775. GGML_API void ggml_graph_add_node(struct ggml_cgraph * cgraph, struct ggml_tensor * tensor);
  1776. GGML_API size_t ggml_graph_overhead(void);
  1777. GGML_API size_t ggml_graph_overhead_custom(size_t size, bool grads);
  1778. GGML_API struct ggml_tensor * ggml_graph_get_tensor (const struct ggml_cgraph * cgraph, const char * name);
  1779. GGML_API struct ggml_tensor * ggml_graph_get_grad (const struct ggml_cgraph * cgraph, const struct ggml_tensor * node);
  1780. GGML_API struct ggml_tensor * ggml_graph_get_grad_acc(const struct ggml_cgraph * cgraph, const struct ggml_tensor * node);
  1781. GGML_API void ggml_graph_export(const struct ggml_cgraph * cgraph, const char * fname);
  1782. GGML_API struct ggml_cgraph * ggml_graph_import(const char * fname, struct ggml_context ** ctx_data, struct ggml_context ** ctx_eval);
  1783. // print info and performance information for the graph
  1784. GGML_API void ggml_graph_print(const struct ggml_cgraph * cgraph);
  1785. // dump the graph into a file using the dot format
  1786. GGML_API void ggml_graph_dump_dot(const struct ggml_cgraph * gb, const struct ggml_cgraph * gf, const char * filename);
  1787. // TODO these functions were sandwiched in the old optimization interface, is there a better place for them?
  1788. typedef void (*ggml_log_callback)(enum ggml_log_level level, const char * text, void * user_data);
  1789. // Set callback for all future logging events.
  1790. // If this is not called, or NULL is supplied, everything is output on stderr.
  1791. GGML_API void ggml_log_set(ggml_log_callback log_callback, void * user_data);
  1792. GGML_API struct ggml_tensor * ggml_set_zero(struct ggml_tensor * tensor);
  1793. //
  1794. // quantization
  1795. //
  1796. // - ggml_quantize_init can be called multiple times with the same type
  1797. // it will only initialize the quantization tables for the first call or after ggml_quantize_free
  1798. // automatically called by ggml_quantize_chunk for convenience
  1799. //
  1800. // - ggml_quantize_free will free any memory allocated by ggml_quantize_init
  1801. // call this at the end of the program to avoid memory leaks
  1802. //
  1803. // note: these are thread-safe
  1804. //
  1805. GGML_API void ggml_quantize_init(enum ggml_type type);
  1806. GGML_API void ggml_quantize_free(void);
  1807. // some quantization type cannot be used without an importance matrix
  1808. GGML_API bool ggml_quantize_requires_imatrix(enum ggml_type type);
  1809. // calls ggml_quantize_init internally (i.e. can allocate memory)
  1810. GGML_API size_t ggml_quantize_chunk(
  1811. enum ggml_type type,
  1812. const float * src,
  1813. void * dst,
  1814. int64_t start,
  1815. int64_t nrows,
  1816. int64_t n_per_row,
  1817. const float * imatrix);
  1818. //
  1819. // gguf
  1820. //
  1821. enum gguf_type {
  1822. GGUF_TYPE_UINT8 = 0,
  1823. GGUF_TYPE_INT8 = 1,
  1824. GGUF_TYPE_UINT16 = 2,
  1825. GGUF_TYPE_INT16 = 3,
  1826. GGUF_TYPE_UINT32 = 4,
  1827. GGUF_TYPE_INT32 = 5,
  1828. GGUF_TYPE_FLOAT32 = 6,
  1829. GGUF_TYPE_BOOL = 7,
  1830. GGUF_TYPE_STRING = 8,
  1831. GGUF_TYPE_ARRAY = 9,
  1832. GGUF_TYPE_UINT64 = 10,
  1833. GGUF_TYPE_INT64 = 11,
  1834. GGUF_TYPE_FLOAT64 = 12,
  1835. GGUF_TYPE_COUNT, // marks the end of the enum
  1836. };
  1837. struct gguf_context;
  1838. struct gguf_init_params {
  1839. bool no_alloc;
  1840. // if not NULL, create a ggml_context and allocate the tensor data in it
  1841. struct ggml_context ** ctx;
  1842. };
  1843. GGML_API struct gguf_context * gguf_init_empty(void);
  1844. GGML_API struct gguf_context * gguf_init_from_file(const char * fname, struct gguf_init_params params);
  1845. //GGML_API struct gguf_context * gguf_init_from_buffer(..);
  1846. GGML_API void gguf_free(struct gguf_context * ctx);
  1847. GGML_API const char * gguf_type_name(enum gguf_type type);
  1848. GGML_API int gguf_get_version (const struct gguf_context * ctx);
  1849. GGML_API size_t gguf_get_alignment (const struct gguf_context * ctx);
  1850. GGML_API size_t gguf_get_data_offset(const struct gguf_context * ctx);
  1851. GGML_API void * gguf_get_data (const struct gguf_context * ctx);
  1852. GGML_API int gguf_get_n_kv(const struct gguf_context * ctx);
  1853. GGML_API int gguf_find_key(const struct gguf_context * ctx, const char * key);
  1854. GGML_API const char * gguf_get_key (const struct gguf_context * ctx, int key_id);
  1855. GGML_API enum gguf_type gguf_get_kv_type (const struct gguf_context * ctx, int key_id);
  1856. GGML_API enum gguf_type gguf_get_arr_type(const struct gguf_context * ctx, int key_id);
  1857. // will abort if the wrong type is used for the key
  1858. GGML_API uint8_t gguf_get_val_u8 (const struct gguf_context * ctx, int key_id);
  1859. GGML_API int8_t gguf_get_val_i8 (const struct gguf_context * ctx, int key_id);
  1860. GGML_API uint16_t gguf_get_val_u16 (const struct gguf_context * ctx, int key_id);
  1861. GGML_API int16_t gguf_get_val_i16 (const struct gguf_context * ctx, int key_id);
  1862. GGML_API uint32_t gguf_get_val_u32 (const struct gguf_context * ctx, int key_id);
  1863. GGML_API int32_t gguf_get_val_i32 (const struct gguf_context * ctx, int key_id);
  1864. GGML_API float gguf_get_val_f32 (const struct gguf_context * ctx, int key_id);
  1865. GGML_API uint64_t gguf_get_val_u64 (const struct gguf_context * ctx, int key_id);
  1866. GGML_API int64_t gguf_get_val_i64 (const struct gguf_context * ctx, int key_id);
  1867. GGML_API double gguf_get_val_f64 (const struct gguf_context * ctx, int key_id);
  1868. GGML_API bool gguf_get_val_bool(const struct gguf_context * ctx, int key_id);
  1869. GGML_API const char * gguf_get_val_str (const struct gguf_context * ctx, int key_id);
  1870. GGML_API const void * gguf_get_val_data(const struct gguf_context * ctx, int key_id);
  1871. GGML_API int gguf_get_arr_n (const struct gguf_context * ctx, int key_id);
  1872. GGML_API const void * gguf_get_arr_data(const struct gguf_context * ctx, int key_id);
  1873. GGML_API const char * gguf_get_arr_str (const struct gguf_context * ctx, int key_id, int i);
  1874. GGML_API int gguf_get_n_tensors (const struct gguf_context * ctx);
  1875. GGML_API int gguf_find_tensor (const struct gguf_context * ctx, const char * name);
  1876. GGML_API size_t gguf_get_tensor_offset(const struct gguf_context * ctx, int i);
  1877. GGML_API char * gguf_get_tensor_name (const struct gguf_context * ctx, int i);
  1878. GGML_API enum ggml_type gguf_get_tensor_type (const struct gguf_context * ctx, int i);
  1879. // removes key if it exists
  1880. GGML_API void gguf_remove_key(struct gguf_context * ctx, const char * key);
  1881. // overrides existing values or adds a new one
  1882. GGML_API void gguf_set_val_u8 (struct gguf_context * ctx, const char * key, uint8_t val);
  1883. GGML_API void gguf_set_val_i8 (struct gguf_context * ctx, const char * key, int8_t val);
  1884. GGML_API void gguf_set_val_u16 (struct gguf_context * ctx, const char * key, uint16_t val);
  1885. GGML_API void gguf_set_val_i16 (struct gguf_context * ctx, const char * key, int16_t val);
  1886. GGML_API void gguf_set_val_u32 (struct gguf_context * ctx, const char * key, uint32_t val);
  1887. GGML_API void gguf_set_val_i32 (struct gguf_context * ctx, const char * key, int32_t val);
  1888. GGML_API void gguf_set_val_f32 (struct gguf_context * ctx, const char * key, float val);
  1889. GGML_API void gguf_set_val_u64 (struct gguf_context * ctx, const char * key, uint64_t val);
  1890. GGML_API void gguf_set_val_i64 (struct gguf_context * ctx, const char * key, int64_t val);
  1891. GGML_API void gguf_set_val_f64 (struct gguf_context * ctx, const char * key, double val);
  1892. GGML_API void gguf_set_val_bool(struct gguf_context * ctx, const char * key, bool val);
  1893. GGML_API void gguf_set_val_str (struct gguf_context * ctx, const char * key, const char * val);
  1894. GGML_API void gguf_set_arr_data(struct gguf_context * ctx, const char * key, enum gguf_type type, const void * data, int n);
  1895. GGML_API void gguf_set_arr_str (struct gguf_context * ctx, const char * key, const char ** data, int n);
  1896. // set or add KV pairs from another context
  1897. GGML_API void gguf_set_kv(struct gguf_context * ctx, struct gguf_context * src);
  1898. // manage tensor info
  1899. GGML_API void gguf_add_tensor(struct gguf_context * ctx, const struct ggml_tensor * tensor);
  1900. GGML_API void gguf_set_tensor_type(struct gguf_context * ctx, const char * name, enum ggml_type type);
  1901. GGML_API void gguf_set_tensor_data(struct gguf_context * ctx, const char * name, const void * data, size_t size);
  1902. // writing gguf files can be done in 2 ways:
  1903. //
  1904. // - write the entire gguf_context to a binary file in a single pass:
  1905. //
  1906. // gguf_write_to_file(ctx, fname);
  1907. //
  1908. // - first prepare a file with a placeholder for the meta data, write the tensor data, then write the meta data:
  1909. //
  1910. // FILE * f = fopen(fname, "wb");
  1911. // fseek(f, gguf_get_meta_size(ctx), SEEK_SET);
  1912. // fwrite(f, ...);
  1913. // void * data = gguf_meta_get_meta_data(ctx);
  1914. // fseek(f, 0, SEEK_SET);
  1915. // fwrite(f, data, gguf_get_meta_size(ctx));
  1916. // free(data);
  1917. // fclose(f);
  1918. //
  1919. // write the entire context to a binary file
  1920. GGML_API void gguf_write_to_file(const struct gguf_context * ctx, const char * fname, bool only_meta);
  1921. // get the size in bytes of the meta data (header, kv pairs, tensor info) including padding
  1922. GGML_API size_t gguf_get_meta_size(const struct gguf_context * ctx);
  1923. GGML_API void gguf_get_meta_data(const struct gguf_context * ctx, void * data);
  1924. #ifdef __cplusplus
  1925. // restrict not standard in C++
  1926. # if defined(__GNUC__)
  1927. # define GGML_RESTRICT __restrict__
  1928. # elif defined(__clang__)
  1929. # define GGML_RESTRICT __restrict
  1930. # elif defined(_MSC_VER)
  1931. # define GGML_RESTRICT __restrict
  1932. # else
  1933. # define GGML_RESTRICT
  1934. # endif
  1935. #else
  1936. # define GGML_RESTRICT restrict
  1937. #endif
  1938. typedef void (*ggml_to_float_t) (const void * GGML_RESTRICT x, float * GGML_RESTRICT y, int64_t k);
  1939. typedef void (*ggml_from_float_t)(const float * GGML_RESTRICT x, void * GGML_RESTRICT y, int64_t k);
  1940. struct ggml_type_traits {
  1941. const char * type_name;
  1942. int64_t blck_size;
  1943. int64_t blck_size_interleave; // interleave elements in blocks
  1944. size_t type_size;
  1945. bool is_quantized;
  1946. ggml_to_float_t to_float;
  1947. ggml_from_float_t from_float_ref;
  1948. };
  1949. GGML_API const struct ggml_type_traits * ggml_get_type_traits(enum ggml_type type);
  1950. // ggml threadpool
  1951. // TODO: currently, only a few functions are in the base ggml API, while the rest are in the CPU backend
  1952. // the goal should be to create an API that other backends can use move everything to the ggml base
  1953. // scheduling priorities
  1954. enum ggml_sched_priority {
  1955. GGML_SCHED_PRIO_NORMAL,
  1956. GGML_SCHED_PRIO_MEDIUM,
  1957. GGML_SCHED_PRIO_HIGH,
  1958. GGML_SCHED_PRIO_REALTIME
  1959. };
  1960. // threadpool params
  1961. // Use ggml_threadpool_params_default() or ggml_threadpool_params_init() to populate the defaults
  1962. struct ggml_threadpool_params {
  1963. bool cpumask[GGML_MAX_N_THREADS]; // mask of cpu cores (all-zeros means use default affinity settings)
  1964. int n_threads; // number of threads
  1965. enum ggml_sched_priority prio; // thread priority
  1966. uint32_t poll; // polling level (0 - no polling, 100 - aggressive polling)
  1967. bool strict_cpu; // strict cpu placement
  1968. bool paused; // start in paused state
  1969. };
  1970. struct ggml_threadpool; // forward declaration, see ggml.c
  1971. typedef struct ggml_threadpool * ggml_threadpool_t;
  1972. GGML_API struct ggml_threadpool_params ggml_threadpool_params_default(int n_threads);
  1973. GGML_API void ggml_threadpool_params_init (struct ggml_threadpool_params * p, int n_threads);
  1974. GGML_API bool ggml_threadpool_params_match (const struct ggml_threadpool_params * p0, const struct ggml_threadpool_params * p1);
  1975. #ifdef __cplusplus
  1976. }
  1977. #endif