clip.cpp 120 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235223622372238223922402241224222432244224522462247224822492250225122522253225422552256225722582259226022612262226322642265226622672268226922702271227222732274227522762277227822792280228122822283228422852286228722882289229022912292229322942295229622972298229923002301230223032304230523062307230823092310231123122313231423152316231723182319232023212322232323242325232623272328232923302331233223332334233523362337233823392340234123422343234423452346234723482349235023512352235323542355235623572358235923602361236223632364236523662367236823692370237123722373237423752376237723782379238023812382238323842385238623872388238923902391239223932394239523962397239823992400240124022403240424052406240724082409241024112412241324142415241624172418241924202421242224232424242524262427242824292430243124322433243424352436243724382439244024412442244324442445244624472448244924502451245224532454245524562457245824592460246124622463246424652466246724682469247024712472247324742475247624772478247924802481248224832484248524862487248824892490249124922493249424952496249724982499250025012502250325042505250625072508250925102511251225132514251525162517251825192520252125222523252425252526252725282529253025312532253325342535253625372538253925402541254225432544254525462547254825492550255125522553255425552556255725582559256025612562256325642565256625672568256925702571257225732574257525762577257825792580258125822583258425852586258725882589259025912592259325942595259625972598259926002601260226032604260526062607260826092610261126122613261426152616261726182619262026212622262326242625262626272628262926302631263226332634263526362637263826392640264126422643264426452646264726482649265026512652265326542655265626572658265926602661266226632664266526662667266826692670267126722673267426752676267726782679268026812682268326842685268626872688268926902691269226932694269526962697269826992700270127022703270427052706270727082709271027112712271327142715271627172718271927202721272227232724272527262727272827292730273127322733273427352736273727382739274027412742274327442745274627472748274927502751275227532754275527562757275827592760276127622763276427652766276727682769277027712772277327742775277627772778277927802781278227832784278527862787278827892790279127922793279427952796279727982799280028012802280328042805280628072808280928102811281228132814281528162817281828192820282128222823282428252826282728282829283028312832283328342835283628372838283928402841284228432844284528462847284828492850285128522853285428552856285728582859286028612862286328642865286628672868286928702871287228732874287528762877287828792880288128822883
  1. /**
  2. * llama.cpp - commit ba1cb19cdd0d92e012e0f6e009e0620f854b6afd - do not edit this file
  3. *
  4. * MIT License
  5. *
  6. * Copyright (c) 2023-2024 The ggml authors
  7. *
  8. * Permission is hereby granted, free of charge, to any person obtaining a copy
  9. * of this software and associated documentation files (the "Software"), to deal
  10. * in the Software without restriction, including without limitation the rights
  11. * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
  12. * copies of the Software, and to permit persons to whom the Software is
  13. * furnished to do so, subject to the following conditions:
  14. *
  15. * The above copyright notice and this permission notice shall be included in all
  16. * copies or substantial portions of the Software.
  17. *
  18. * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
  19. * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
  20. * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
  21. * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
  22. * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
  23. * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
  24. * SOFTWARE.
  25. */
  26. // NOTE: This is modified from clip.cpp only for LLaVA,
  27. // so there might be still unnecessary artifacts hanging around
  28. // I'll gradually clean and extend it
  29. // Note: Even when using identical normalized image inputs (see normalize_image_u8_to_f32()) we have a significant difference in resulting embeddings compared to pytorch
  30. #include "clip.h"
  31. #include "ggml.h"
  32. #include "ggml-cpu.h"
  33. #include "ggml-alloc.h"
  34. #include "ggml-backend.h"
  35. #ifdef GGML_USE_CUDA
  36. #include "ggml-cuda.h"
  37. #endif
  38. #ifdef GGML_USE_SYCL
  39. #include "ggml-sycl.h"
  40. #endif
  41. #ifdef GGML_USE_METAL
  42. #include "ggml-metal.h"
  43. #endif
  44. #ifdef GGML_USE_CANN
  45. #include "ggml-cann.h"
  46. #endif
  47. #ifdef GGML_USE_VULKAN
  48. #include "ggml-vulkan.h"
  49. #endif
  50. #define STB_IMAGE_IMPLEMENTATION
  51. #include "stb_image.h"
  52. #include <cassert>
  53. #include <cmath>
  54. #include <cstdlib>
  55. #include <cstring>
  56. #include <fstream>
  57. #include <map>
  58. #include <regex>
  59. #include <stdexcept>
  60. #include <vector>
  61. #include <sstream>
  62. #include <cinttypes>
  63. #include <limits>
  64. #if defined(LLAVA_LOG_OFF)
  65. # define LOG_INF(...)
  66. # define LOG_WRN(...)
  67. # define LOG_ERR(...)
  68. # define LOG_DBG(...)
  69. #else // defined(LLAVA_LOG_OFF)
  70. # define LOG_INF(...) do { fprintf(stdout, __VA_ARGS__); } while (0)
  71. # define LOG_WRN(...) do { fprintf(stderr, __VA_ARGS__); } while (0)
  72. # define LOG_ERR(...) do { fprintf(stderr, __VA_ARGS__); } while (0)
  73. # define LOG_DBG(...) do { fprintf(stdout, __VA_ARGS__); } while (0)
  74. #endif // defined(LLAVA_LOG_OFF)
  75. #if defined(_WIN32)
  76. #define WIN32_LEAN_AND_MEAN
  77. #ifndef NOMINMAX
  78. #define NOMINMAX
  79. #endif
  80. #include <windows.h>
  81. #if __GLIBCXX__
  82. #include <cstdio>
  83. #include <ext/stdio_filebuf.h>
  84. #include <fcntl.h>
  85. #endif
  86. #endif
  87. //#define CLIP_DEBUG_FUNCTIONS
  88. // RGB uint8 image
  89. struct clip_image_u8 {
  90. int nx;
  91. int ny;
  92. std::vector<uint8_t> buf;
  93. };
  94. // RGB float32 image (NHWC)
  95. // Memory layout: RGBRGBRGB...
  96. struct clip_image_f32 {
  97. int nx;
  98. int ny;
  99. std::vector<float> buf;
  100. };
  101. static std::string format(const char * fmt, ...) {
  102. va_list ap;
  103. va_list ap2;
  104. va_start(ap, fmt);
  105. va_copy(ap2, ap);
  106. int size = vsnprintf(NULL, 0, fmt, ap);
  107. GGML_ASSERT(size >= 0 && size < INT_MAX); // NOLINT
  108. std::vector<char> buf(size + 1);
  109. int size2 = vsnprintf(buf.data(), size + 1, fmt, ap2);
  110. GGML_ASSERT(size2 == size);
  111. va_end(ap2);
  112. va_end(ap);
  113. return std::string(buf.data(), buf.size());
  114. }
  115. //
  116. // key constants
  117. //
  118. #define KEY_FTYPE "general.file_type"
  119. #define KEY_NAME "general.name"
  120. #define KEY_DESCRIPTION "general.description"
  121. #define KEY_HAS_TEXT_ENC "clip.has_text_encoder"
  122. #define KEY_HAS_VIS_ENC "clip.has_vision_encoder"
  123. #define KEY_HAS_LLAVA_PROJ "clip.has_llava_projector"
  124. #define KEY_HAS_MINICPMV_PROJ "clip.has_minicpmv_projector"
  125. #define KEY_MINICPMV_VERSION "clip.minicpmv_version"
  126. #define KEY_HAS_QWEN2VL_MERGER "clip.has_qwen2vl_merger"
  127. #define KEY_USE_GELU "clip.use_gelu"
  128. #define KEY_USE_SILU "clip.use_silu"
  129. #define KEY_N_EMBD "clip.%s.embedding_length"
  130. #define KEY_N_FF "clip.%s.feed_forward_length"
  131. #define KEY_N_BLOCK "clip.%s.block_count"
  132. #define KEY_N_HEAD "clip.%s.attention.head_count"
  133. #define KEY_LAYER_NORM_EPS "clip.%s.attention.layer_norm_epsilon"
  134. #define KEY_PROJ_DIM "clip.%s.projection_dim"
  135. #define KEY_TOKENS "tokenizer.ggml.tokens"
  136. #define KEY_N_POSITIONS "clip.text.context_length"
  137. #define KEY_IMAGE_SIZE "clip.vision.image_size"
  138. #define KEY_PATCH_SIZE "clip.vision.patch_size"
  139. #define KEY_IMAGE_MEAN "clip.vision.image_mean"
  140. #define KEY_IMAGE_STD "clip.vision.image_std"
  141. #define KEY_PROJ_TYPE "clip.projector_type"
  142. #define KEY_MM_PATCH_MERGE_TYPE "clip.vision.mm_patch_merge_type"
  143. #define KEY_IMAGE_GRID_PINPOINTS "clip.vision.image_grid_pinpoints"
  144. #define KEY_IMAGE_CROP_RESOLUTION "clip.vision.image_crop_resolution"
  145. //
  146. // tensor name constants
  147. //
  148. #define TN_TOKEN_EMBD "%s.token_embd.weight"
  149. #define TN_POS_EMBD "%s.position_embd.weight"
  150. #define TN_CLASS_EMBD "v.class_embd"
  151. #define TN_PATCH_EMBD "v.patch_embd.weight" // not rename tensor with ".0" postfix for backwrad compat
  152. #define TN_PATCH_EMBD_1 "v.patch_embd.weight.1"
  153. #define TN_PATCH_BIAS "v.patch_embd.bias"
  154. #define TN_ATTN_K "%s.blk.%d.attn_k.%s"
  155. #define TN_ATTN_Q "%s.blk.%d.attn_q.%s"
  156. #define TN_ATTN_V "%s.blk.%d.attn_v.%s"
  157. #define TN_ATTN_OUTPUT "%s.blk.%d.attn_out.%s"
  158. #define TN_FFN_DOWN "%s.blk.%d.ffn_down.%s"
  159. #define TN_FFN_UP "%s.blk.%d.ffn_up.%s"
  160. #define TN_LN_1 "%s.blk.%d.ln1.%s"
  161. #define TN_LN_2 "%s.blk.%d.ln2.%s"
  162. #define TN_LN_PRE "%s.pre_ln.%s"
  163. #define TN_LN_POST "%s.post_ln.%s"
  164. #define TN_TEXT_PROJ "text_projection.weight"
  165. #define TN_VIS_PROJ "visual_projection.weight"
  166. #define TN_LLAVA_PROJ "mm.%d.%s"
  167. #define TN_MVLM_PROJ_MLP "mm.model.mlp.%d.%s"
  168. #define TN_MVLM_PROJ_BLOCK "mm.model.mb_block.%d.block.%d.%s"
  169. #define TN_MVLM_PROJ_PEG "mm.model.peg.%d.%s"
  170. #define TN_IMAGE_NEWLINE "model.image_newline"
  171. #define TN_MINICPMV_POS_EMBD_K "resampler.pos_embed_k"
  172. #define TN_MINICPMV_QUERY "resampler.query"
  173. #define TN_MINICPMV_PROJ "resampler.proj.weight"
  174. #define TN_MINICPMV_KV_PROJ "resampler.kv.weight"
  175. #define TN_MINICPMV_ATTN "resampler.attn.%s.%s"
  176. #define TN_MINICPMV_LN "resampler.ln_%s.%s"
  177. enum projector_type {
  178. PROJECTOR_TYPE_MLP,
  179. PROJECTOR_TYPE_MLP_NORM,
  180. PROJECTOR_TYPE_LDP,
  181. PROJECTOR_TYPE_LDPV2,
  182. PROJECTOR_TYPE_RESAMPLER,
  183. PROJECTOR_TYPE_MERGER,
  184. PROJECTOR_TYPE_UNKNOWN,
  185. };
  186. static std::map<projector_type, std::string> PROJECTOR_TYPE_NAMES = {
  187. { PROJECTOR_TYPE_MLP, "mlp" },
  188. { PROJECTOR_TYPE_LDP, "ldp" },
  189. { PROJECTOR_TYPE_LDPV2, "ldpv2"},
  190. { PROJECTOR_TYPE_RESAMPLER, "resampler"},
  191. { PROJECTOR_TYPE_MERGER, "qwen2vl_merger"},
  192. };
  193. //
  194. // utilities to get data from a gguf file
  195. //
  196. static int get_key_idx(const gguf_context * ctx, const char * key) {
  197. int i = gguf_find_key(ctx, key);
  198. if (i == -1) {
  199. LOG_ERR("key %s not found in file\n", key);
  200. throw std::runtime_error(format("Missing required key: %s", key));
  201. }
  202. return i;
  203. }
  204. static uint32_t get_u32(const gguf_context * ctx, const std::string & key) {
  205. const int i = get_key_idx(ctx, key.c_str());
  206. return gguf_get_val_u32(ctx, i);
  207. }
  208. static float get_f32(const gguf_context * ctx, const std::string & key) {
  209. const int i = get_key_idx(ctx, key.c_str());
  210. return gguf_get_val_f32(ctx, i);
  211. }
  212. static struct ggml_tensor * get_tensor(struct ggml_context * ctx, const std::string & name) {
  213. struct ggml_tensor * cur = ggml_get_tensor(ctx, name.c_str());
  214. if (!cur) {
  215. throw std::runtime_error(format("%s: unable to find tensor %s\n", __func__, name.c_str()));
  216. }
  217. return cur;
  218. }
  219. static std::string get_ftype(int ftype) {
  220. return ggml_type_name(static_cast<ggml_type>(ftype));
  221. }
  222. static std::string gguf_data_to_str(enum gguf_type type, const void * data, int i) {
  223. switch (type) {
  224. case GGUF_TYPE_UINT8: return std::to_string(((const uint8_t *)data)[i]);
  225. case GGUF_TYPE_INT8: return std::to_string(((const int8_t *)data)[i]);
  226. case GGUF_TYPE_UINT16: return std::to_string(((const uint16_t *)data)[i]);
  227. case GGUF_TYPE_INT16: return std::to_string(((const int16_t *)data)[i]);
  228. case GGUF_TYPE_UINT32: return std::to_string(((const uint32_t *)data)[i]);
  229. case GGUF_TYPE_INT32: return std::to_string(((const int32_t *)data)[i]);
  230. case GGUF_TYPE_UINT64: return std::to_string(((const uint64_t *)data)[i]);
  231. case GGUF_TYPE_INT64: return std::to_string(((const int64_t *)data)[i]);
  232. case GGUF_TYPE_FLOAT32: return std::to_string(((const float *)data)[i]);
  233. case GGUF_TYPE_FLOAT64: return std::to_string(((const double *)data)[i]);
  234. case GGUF_TYPE_BOOL: return ((const bool *)data)[i] ? "true" : "false";
  235. default: return format("unknown type %d", type);
  236. }
  237. }
  238. static void replace_all(std::string & s, const std::string & search, const std::string & replace) {
  239. if (search.empty()) {
  240. return;
  241. }
  242. std::string builder;
  243. builder.reserve(s.length());
  244. size_t pos = 0;
  245. size_t last_pos = 0;
  246. while ((pos = s.find(search, last_pos)) != std::string::npos) {
  247. builder.append(s, last_pos, pos - last_pos);
  248. builder.append(replace);
  249. last_pos = pos + search.length();
  250. }
  251. builder.append(s, last_pos, std::string::npos);
  252. s = std::move(builder);
  253. }
  254. static std::string gguf_kv_to_str(const struct gguf_context * ctx_gguf, int i) {
  255. const enum gguf_type type = gguf_get_kv_type(ctx_gguf, i);
  256. switch (type) {
  257. case GGUF_TYPE_STRING:
  258. return gguf_get_val_str(ctx_gguf, i);
  259. case GGUF_TYPE_ARRAY:
  260. {
  261. const enum gguf_type arr_type = gguf_get_arr_type(ctx_gguf, i);
  262. int arr_n = gguf_get_arr_n(ctx_gguf, i);
  263. const void * data = gguf_get_arr_data(ctx_gguf, i);
  264. std::stringstream ss;
  265. ss << "[";
  266. for (int j = 0; j < arr_n; j++) {
  267. if (arr_type == GGUF_TYPE_STRING) {
  268. std::string val = gguf_get_arr_str(ctx_gguf, i, j);
  269. // escape quotes
  270. replace_all(val, "\\", "\\\\");
  271. replace_all(val, "\"", "\\\"");
  272. ss << '"' << val << '"';
  273. } else if (arr_type == GGUF_TYPE_ARRAY) {
  274. ss << "???";
  275. } else {
  276. ss << gguf_data_to_str(arr_type, data, j);
  277. }
  278. if (j < arr_n - 1) {
  279. ss << ", ";
  280. }
  281. }
  282. ss << "]";
  283. return ss.str();
  284. }
  285. default:
  286. return gguf_data_to_str(type, gguf_get_val_data(ctx_gguf, i), 0);
  287. }
  288. }
  289. static void print_tensor_info(const ggml_tensor * tensor, const char * prefix = "") {
  290. size_t tensor_size = ggml_nbytes(tensor);
  291. LOG_INF("%s: n_dims = %d, name = %s, tensor_size=%zu, shape:[%" PRId64 ", %" PRId64 ", %" PRId64 ", %" PRId64 "], type = %s\n",
  292. prefix, ggml_n_dims(tensor), tensor->name, tensor_size,
  293. tensor->ne[0], tensor->ne[1], tensor->ne[2], tensor->ne[3], ggml_type_name(tensor->type));
  294. }
  295. static projector_type clip_projector_type_from_string(const std::string & name) {
  296. for (const auto & kv : PROJECTOR_TYPE_NAMES) { // NOLINT
  297. if (kv.second == name) {
  298. return kv.first;
  299. }
  300. }
  301. return PROJECTOR_TYPE_UNKNOWN;
  302. }
  303. #ifdef CLIP_DEBUG_FUNCTIONS
  304. static void clip_image_write_image_to_ppm(const clip_image_u8& img, const std::string& filename) {
  305. std::ofstream file(filename, std::ios::binary);
  306. if (!file.is_open()) {
  307. LOG_ERR("Failed to open file for writing: %s\n", filename.c_str());
  308. return;
  309. }
  310. // PPM header: P6 format, width, height, and max color value
  311. file << "P6\n" << img.nx << " " << img.ny << "\n255\n";
  312. // Write pixel data
  313. for (size_t i = 0; i < img.buf.size(); i += 3) {
  314. // PPM expects binary data in RGB format, which matches our image buffer
  315. file.write(reinterpret_cast<const char*>(&img.buf[i]), 3);
  316. }
  317. file.close();
  318. }
  319. static void clip_image_save_to_bmp(const clip_image_u8& img, const std::string& filename) {
  320. std::ofstream file(filename, std::ios::binary);
  321. if (!file.is_open()) {
  322. LOG_ERR("Failed to open file for writing: %s\n", filename.c_str());
  323. return;
  324. }
  325. int fileSize = 54 + 3 * img.nx * img.ny; // File header + info header + pixel data
  326. int bytesPerPixel = 3;
  327. int widthInBytes = img.nx * bytesPerPixel;
  328. int paddingAmount = (4 - (widthInBytes % 4)) % 4;
  329. int stride = widthInBytes + paddingAmount;
  330. // Bitmap file header
  331. unsigned char fileHeader[14] = {
  332. 'B','M', // Signature
  333. 0,0,0,0, // Image file size in bytes
  334. 0,0,0,0, // Reserved
  335. 54,0,0,0 // Start of pixel array
  336. };
  337. // Total file size
  338. fileSize = 54 + (stride * img.ny);
  339. fileHeader[2] = (unsigned char)(fileSize);
  340. fileHeader[3] = (unsigned char)(fileSize >> 8);
  341. fileHeader[4] = (unsigned char)(fileSize >> 16);
  342. fileHeader[5] = (unsigned char)(fileSize >> 24);
  343. // Bitmap information header (BITMAPINFOHEADER)
  344. unsigned char infoHeader[40] = {
  345. 40,0,0,0, // Size of this header (40 bytes)
  346. 0,0,0,0, // Image width
  347. 0,0,0,0, // Image height
  348. 1,0, // Number of color planes
  349. 24,0, // Bits per pixel
  350. 0,0,0,0, // No compression
  351. 0,0,0,0, // Image size (can be 0 for no compression)
  352. 0,0,0,0, // X pixels per meter (not specified)
  353. 0,0,0,0, // Y pixels per meter (not specified)
  354. 0,0,0,0, // Total colors (color table not used)
  355. 0,0,0,0 // Important colors (all are important)
  356. };
  357. // Width and height in the information header
  358. infoHeader[4] = (unsigned char)(img.nx);
  359. infoHeader[5] = (unsigned char)(img.nx >> 8);
  360. infoHeader[6] = (unsigned char)(img.nx >> 16);
  361. infoHeader[7] = (unsigned char)(img.nx >> 24);
  362. infoHeader[8] = (unsigned char)(img.ny);
  363. infoHeader[9] = (unsigned char)(img.ny >> 8);
  364. infoHeader[10] = (unsigned char)(img.ny >> 16);
  365. infoHeader[11] = (unsigned char)(img.ny >> 24);
  366. // Write file headers
  367. file.write(reinterpret_cast<char*>(fileHeader), sizeof(fileHeader));
  368. file.write(reinterpret_cast<char*>(infoHeader), sizeof(infoHeader));
  369. // Pixel data
  370. std::vector<unsigned char> padding(3, 0); // Max padding size to be added to each row
  371. for (int y = img.ny - 1; y >= 0; --y) { // BMP files are stored bottom-to-top
  372. for (int x = 0; x < img.nx; ++x) {
  373. // Each pixel
  374. size_t pixelIndex = (y * img.nx + x) * 3;
  375. unsigned char pixel[3] = {
  376. img.buf[pixelIndex + 2], // BMP stores pixels in BGR format
  377. img.buf[pixelIndex + 1],
  378. img.buf[pixelIndex]
  379. };
  380. file.write(reinterpret_cast<char*>(pixel), 3);
  381. }
  382. // Write padding for the row
  383. file.write(reinterpret_cast<char*>(padding.data()), paddingAmount);
  384. }
  385. file.close();
  386. }
  387. // debug function to convert f32 to u8
  388. static void clip_image_convert_f32_to_u8(const clip_image_f32& src, clip_image_u8& dst) {
  389. dst.nx = src.nx;
  390. dst.ny = src.ny;
  391. dst.buf.resize(3 * src.nx * src.ny);
  392. for (size_t i = 0; i < src.buf.size(); ++i) {
  393. dst.buf[i] = static_cast<uint8_t>(std::min(std::max(int(src.buf[i] * 255.0f), 0), 255));
  394. }
  395. }
  396. #endif
  397. //
  398. // clip layers
  399. //
  400. struct clip_hparams {
  401. int32_t image_size;
  402. int32_t patch_size;
  403. int32_t hidden_size;
  404. int32_t n_intermediate;
  405. int32_t projection_dim;
  406. int32_t n_head;
  407. int32_t n_layer;
  408. float eps;
  409. char mm_patch_merge_type[32] = "flat"; // spatial_unpad or flat (default)
  410. int32_t image_grid_pinpoints[32];
  411. int32_t image_crop_resolution;
  412. };
  413. struct clip_layer {
  414. // attention
  415. struct ggml_tensor * k_w;
  416. struct ggml_tensor * k_b;
  417. struct ggml_tensor * q_w;
  418. struct ggml_tensor * q_b;
  419. struct ggml_tensor * v_w;
  420. struct ggml_tensor * v_b;
  421. struct ggml_tensor * o_w;
  422. struct ggml_tensor * o_b;
  423. // layernorm 1
  424. struct ggml_tensor * ln_1_w;
  425. struct ggml_tensor * ln_1_b;
  426. // ff
  427. struct ggml_tensor * ff_i_w;
  428. struct ggml_tensor * ff_i_b;
  429. struct ggml_tensor * ff_o_w;
  430. struct ggml_tensor * ff_o_b;
  431. // layernorm 2
  432. struct ggml_tensor * ln_2_w;
  433. struct ggml_tensor * ln_2_b;
  434. };
  435. struct clip_vision_model {
  436. struct clip_hparams hparams;
  437. // embeddings
  438. struct ggml_tensor * class_embedding;
  439. struct ggml_tensor * patch_embeddings_0;
  440. struct ggml_tensor * patch_embeddings_1; // second Conv2D kernel when we decouple Conv3D along temproal dimension (Qwen2VL)
  441. struct ggml_tensor * patch_bias;
  442. struct ggml_tensor * position_embeddings;
  443. struct ggml_tensor * pre_ln_w;
  444. struct ggml_tensor * pre_ln_b;
  445. std::vector<clip_layer> layers;
  446. struct ggml_tensor * post_ln_w;
  447. struct ggml_tensor * post_ln_b;
  448. struct ggml_tensor * projection;
  449. // LLaVA projection
  450. struct ggml_tensor * mm_0_w = NULL;
  451. struct ggml_tensor * mm_0_b = NULL;
  452. struct ggml_tensor * mm_2_w = NULL;
  453. struct ggml_tensor * mm_2_b = NULL;
  454. struct ggml_tensor * image_newline = NULL;
  455. // Yi type models with mlp+normalization projection
  456. struct ggml_tensor * mm_1_w = NULL; // Yi type models have 0, 1, 3, 4
  457. struct ggml_tensor * mm_1_b = NULL;
  458. struct ggml_tensor * mm_3_w = NULL;
  459. struct ggml_tensor * mm_3_b = NULL;
  460. struct ggml_tensor * mm_4_w = NULL;
  461. struct ggml_tensor * mm_4_b = NULL;
  462. // MobileVLM projection
  463. struct ggml_tensor * mm_model_mlp_1_w;
  464. struct ggml_tensor * mm_model_mlp_1_b;
  465. struct ggml_tensor * mm_model_mlp_3_w;
  466. struct ggml_tensor * mm_model_mlp_3_b;
  467. struct ggml_tensor * mm_model_block_1_block_0_0_w;
  468. struct ggml_tensor * mm_model_block_1_block_0_1_w;
  469. struct ggml_tensor * mm_model_block_1_block_0_1_b;
  470. struct ggml_tensor * mm_model_block_1_block_1_fc1_w;
  471. struct ggml_tensor * mm_model_block_1_block_1_fc1_b;
  472. struct ggml_tensor * mm_model_block_1_block_1_fc2_w;
  473. struct ggml_tensor * mm_model_block_1_block_1_fc2_b;
  474. struct ggml_tensor * mm_model_block_1_block_2_0_w;
  475. struct ggml_tensor * mm_model_block_1_block_2_1_w;
  476. struct ggml_tensor * mm_model_block_1_block_2_1_b;
  477. struct ggml_tensor * mm_model_block_2_block_0_0_w;
  478. struct ggml_tensor * mm_model_block_2_block_0_1_w;
  479. struct ggml_tensor * mm_model_block_2_block_0_1_b;
  480. struct ggml_tensor * mm_model_block_2_block_1_fc1_w;
  481. struct ggml_tensor * mm_model_block_2_block_1_fc1_b;
  482. struct ggml_tensor * mm_model_block_2_block_1_fc2_w;
  483. struct ggml_tensor * mm_model_block_2_block_1_fc2_b;
  484. struct ggml_tensor * mm_model_block_2_block_2_0_w;
  485. struct ggml_tensor * mm_model_block_2_block_2_1_w;
  486. struct ggml_tensor * mm_model_block_2_block_2_1_b;
  487. // MobileVLM_V2 projection
  488. struct ggml_tensor * mm_model_mlp_0_w;
  489. struct ggml_tensor * mm_model_mlp_0_b;
  490. struct ggml_tensor * mm_model_mlp_2_w;
  491. struct ggml_tensor * mm_model_mlp_2_b;
  492. struct ggml_tensor * mm_model_peg_0_w;
  493. struct ggml_tensor * mm_model_peg_0_b;
  494. // MINICPMV projection
  495. struct ggml_tensor * mm_model_pos_embed_k;
  496. struct ggml_tensor * mm_model_query;
  497. struct ggml_tensor * mm_model_proj;
  498. struct ggml_tensor * mm_model_kv_proj;
  499. struct ggml_tensor * mm_model_attn_q_w;
  500. struct ggml_tensor * mm_model_attn_q_b;
  501. struct ggml_tensor * mm_model_attn_k_w;
  502. struct ggml_tensor * mm_model_attn_k_b;
  503. struct ggml_tensor * mm_model_attn_v_w;
  504. struct ggml_tensor * mm_model_attn_v_b;
  505. struct ggml_tensor * mm_model_attn_o_w;
  506. struct ggml_tensor * mm_model_attn_o_b;
  507. struct ggml_tensor * mm_model_ln_q_w;
  508. struct ggml_tensor * mm_model_ln_q_b;
  509. struct ggml_tensor * mm_model_ln_kv_w;
  510. struct ggml_tensor * mm_model_ln_kv_b;
  511. struct ggml_tensor * mm_model_ln_post_w;
  512. struct ggml_tensor * mm_model_ln_post_b;
  513. };
  514. struct clip_ctx {
  515. bool has_text_encoder = false;
  516. bool has_vision_encoder = false;
  517. bool has_llava_projector = false;
  518. bool has_minicpmv_projector = false;
  519. bool has_qwen2vl_merger = false;
  520. int minicpmv_version = 2;
  521. struct clip_vision_model vision_model;
  522. projector_type proj_type = PROJECTOR_TYPE_MLP;
  523. float image_mean[3];
  524. float image_std[3];
  525. bool use_gelu = false;
  526. bool use_silu = false;
  527. int32_t ftype = 1;
  528. bool has_class_embedding = true;
  529. bool has_pre_norm = true;
  530. bool has_post_norm = false;
  531. bool has_patch_bias = false;
  532. struct gguf_context * ctx_gguf;
  533. struct ggml_context * ctx_data;
  534. std::vector<uint8_t> buf_compute_meta;
  535. // memory buffers to evaluate the model
  536. ggml_backend_buffer_t params_buffer = NULL;
  537. ggml_backend_t backend = NULL;
  538. ggml_gallocr_t compute_alloc = NULL;
  539. struct clip_image_size * load_image_size;
  540. };
  541. static ggml_cgraph * clip_image_build_graph(clip_ctx * ctx, const clip_image_f32_batch * imgs, struct clip_image_size * load_image_size, bool is_inf = false) {
  542. if (!ctx->has_vision_encoder) {
  543. LOG_ERR("This gguf file seems to have no vision encoder\n");
  544. return nullptr;
  545. }
  546. const auto & model = ctx->vision_model;
  547. const auto & hparams = model.hparams;
  548. const int image_size = hparams.image_size;
  549. int image_size_width = image_size;
  550. int image_size_height = image_size;
  551. if (ctx->has_minicpmv_projector) {
  552. if (load_image_size == nullptr) {
  553. load_image_size = clip_image_size_init();
  554. }
  555. LOG_DBG("%s: %d %d\n", __func__, load_image_size->width, load_image_size->height);
  556. image_size_width = load_image_size->width;
  557. image_size_height = load_image_size->height;
  558. if (is_inf) {
  559. image_size_width = imgs->data->nx;
  560. image_size_height = imgs->data->ny;
  561. }
  562. }
  563. else if (ctx->has_qwen2vl_merger) {
  564. // use the image's native resolution when image is avaible
  565. if (is_inf) {
  566. // if (imgs->data->nx && imgs->data->ny) {
  567. image_size_width = imgs->data->nx;
  568. image_size_height = imgs->data->ny;
  569. }
  570. }
  571. const int patch_size = hparams.patch_size;
  572. const int num_patches = ((image_size_width / patch_size) * (image_size_height / patch_size));
  573. const int patches_w = image_size_width / patch_size;
  574. const int patches_h = image_size_height / patch_size;
  575. const int num_positions = num_patches + (ctx->has_class_embedding ? 1 : 0);
  576. const int num_position_ids = ctx->has_qwen2vl_merger ? num_positions * 4 : num_positions;
  577. const int hidden_size = hparams.hidden_size;
  578. const int n_head = hparams.n_head;
  579. const int d_head = hidden_size / n_head;
  580. int n_layer = hparams.n_layer;
  581. const float eps = hparams.eps;
  582. int mrope_sections[4] = {d_head/4, d_head/4, d_head/4, d_head/4};
  583. const int batch_size = imgs->size;
  584. if (ctx->has_llava_projector || ctx->has_minicpmv_projector) {
  585. GGML_ASSERT(batch_size == 1);
  586. }
  587. struct ggml_init_params params = {
  588. /*.mem_size =*/ ctx->buf_compute_meta.size(),
  589. /*.mem_buffer =*/ ctx->buf_compute_meta.data(),
  590. /*.no_alloc =*/ true,
  591. };
  592. struct ggml_context * ctx0 = ggml_init(params);
  593. struct ggml_cgraph * gf = ggml_new_graph(ctx0);
  594. struct ggml_tensor * inp_raw = ggml_new_tensor_4d(ctx0, GGML_TYPE_F32, image_size_width, image_size_height, 3, batch_size);
  595. ggml_set_name(inp_raw, "inp_raw");
  596. ggml_set_input(inp_raw);
  597. struct ggml_tensor * inp = ggml_conv_2d(ctx0, model.patch_embeddings_0, inp_raw, patch_size, patch_size, 0, 0, 1, 1);
  598. if (ctx->has_qwen2vl_merger) {
  599. GGML_ASSERT(image_size_width % (patch_size * 2) == 0);
  600. GGML_ASSERT(image_size_height % (patch_size * 2) == 0);
  601. auto inp_1 = ggml_conv_2d(ctx0, model.patch_embeddings_1, inp_raw, patch_size, patch_size, 0, 0, 1, 1);
  602. inp = ggml_add(ctx0, inp, inp_1);
  603. inp = ggml_cont(ctx0, ggml_permute(ctx0, inp, 1, 2, 0, 3)); // [w, h, c, b] -> [c, w, h, b]
  604. inp = ggml_reshape_4d(
  605. ctx0, inp,
  606. hidden_size * 2, patches_w / 2, patches_h, batch_size);
  607. inp = ggml_reshape_4d(
  608. ctx0, inp,
  609. hidden_size * 2, patches_w / 2, 2, batch_size * (patches_h / 2));
  610. inp = ggml_cont(ctx0, ggml_permute(ctx0, inp, 0, 2, 1, 3));
  611. inp = ggml_reshape_3d(
  612. ctx0, inp,
  613. hidden_size, patches_w * patches_h, batch_size);
  614. }
  615. else {
  616. inp = ggml_reshape_3d(ctx0, inp, num_patches, hidden_size, batch_size);
  617. inp = ggml_cont(ctx0, ggml_permute(ctx0, inp, 1, 0, 2, 3));
  618. }
  619. if (ctx->has_patch_bias) {
  620. // inp = ggml_add(ctx0, inp, ggml_repeat(ctx0, model.patch_bias, inp));
  621. inp = ggml_add(ctx0, inp, model.patch_bias);
  622. }
  623. struct ggml_tensor * embeddings = inp;
  624. struct ggml_tensor * pos_embed = nullptr;
  625. if (ctx->has_llava_projector) {
  626. // concat class_embeddings and patch_embeddings
  627. if (ctx->has_class_embedding) {
  628. embeddings = ggml_new_tensor_3d(ctx0, GGML_TYPE_F32, hidden_size, num_positions, batch_size);
  629. ggml_set_name(embeddings, "embeddings");
  630. ggml_set_input(embeddings);
  631. embeddings = ggml_acc(ctx0, embeddings, model.class_embedding,
  632. embeddings->nb[1], embeddings->nb[2], embeddings->nb[3], 0);
  633. embeddings = ggml_acc(ctx0, embeddings, inp,
  634. embeddings->nb[1], embeddings->nb[2], embeddings->nb[3], model.class_embedding->nb[1]);
  635. }
  636. }
  637. struct ggml_tensor * positions = ggml_new_tensor_1d(ctx0, GGML_TYPE_I32, num_position_ids);
  638. ggml_set_name(positions, "positions");
  639. ggml_set_input(positions);
  640. if (!ctx->has_qwen2vl_merger) { // qwen2vl use rope position embedding
  641. embeddings =
  642. ggml_add(ctx0, embeddings, ggml_get_rows(ctx0, model.position_embeddings, positions));
  643. }
  644. if (ctx->has_minicpmv_projector) {
  645. int pos_w = image_size_width/patch_size;
  646. int pos_h = image_size_height/patch_size;
  647. if (ctx->minicpmv_version == 2) {
  648. pos_embed = ggml_new_tensor_3d(ctx0, GGML_TYPE_F32, 4096, pos_w * pos_h, 1);
  649. }
  650. else if (ctx->minicpmv_version == 3) {
  651. pos_embed = ggml_new_tensor_3d(ctx0, GGML_TYPE_F32, 3584, pos_w * pos_h, 1);
  652. }
  653. ggml_set_name(pos_embed, "pos_embed");
  654. ggml_set_input(pos_embed);
  655. }
  656. // pre-layernorm
  657. if (ctx->has_pre_norm) {
  658. embeddings = ggml_norm(ctx0, embeddings, eps);
  659. ggml_set_name(embeddings, "pre_ln");
  660. embeddings = ggml_add(ctx0, ggml_mul(ctx0, embeddings, model.pre_ln_w), model.pre_ln_b);
  661. }
  662. // loop over layers
  663. if (ctx->has_minicpmv_projector || ctx->has_qwen2vl_merger) {
  664. // TODO: figure out why we doing thing in this way ???
  665. n_layer += 1;
  666. }
  667. for (int il = 0; il < n_layer - 1; il++) {
  668. struct ggml_tensor * cur = embeddings; // embeddings = residual, cur = hidden_states
  669. //const size_t nb_q_w = model.layers[il].q_w->nb[0];
  670. // layernorm1
  671. {
  672. cur = ggml_norm(ctx0, cur, eps);
  673. cur = ggml_add(ctx0, ggml_mul(ctx0, cur, model.layers[il].ln_1_w),
  674. model.layers[il].ln_1_b);
  675. }
  676. // self-attention
  677. {
  678. struct ggml_tensor * Q =
  679. ggml_add(ctx0, ggml_mul_mat(ctx0, model.layers[il].q_w, cur), model.layers[il].q_b);
  680. Q = ggml_reshape_4d(ctx0, Q, d_head, n_head, num_positions, batch_size);
  681. if (ctx->has_qwen2vl_merger) {
  682. Q = ggml_rope_multi(
  683. ctx0, Q, positions, nullptr,
  684. d_head/2, mrope_sections, GGML_ROPE_TYPE_VISION, 32768, 10000, 1, 0, 1, 32, 1);
  685. }
  686. Q = ggml_scale_inplace(ctx0, Q, 1.0f / sqrt((float)d_head));
  687. Q = ggml_cont(ctx0, ggml_permute(ctx0, Q, 0, 2, 1, 3));
  688. Q = ggml_reshape_3d(ctx0, Q, d_head, num_positions, n_head * batch_size);
  689. struct ggml_tensor * K =
  690. ggml_add(ctx0, ggml_mul_mat(ctx0, model.layers[il].k_w, cur), model.layers[il].k_b);
  691. K = ggml_reshape_4d(ctx0, K, d_head, n_head, num_positions, batch_size);
  692. if (ctx->has_qwen2vl_merger) {
  693. K = ggml_rope_multi(
  694. ctx0, K, positions, nullptr,
  695. d_head/2, mrope_sections, GGML_ROPE_TYPE_VISION, 32768, 10000, 1, 0, 1, 32, 1);
  696. }
  697. K = ggml_cont(ctx0, ggml_permute(ctx0, K, 0, 2, 1, 3));
  698. K = ggml_reshape_3d(ctx0, K, d_head, num_positions, n_head * batch_size);
  699. struct ggml_tensor * V =
  700. ggml_add(ctx0, ggml_mul_mat(ctx0, model.layers[il].v_w, cur), model.layers[il].v_b);
  701. V = ggml_reshape_4d(ctx0, V, d_head, n_head, num_positions, batch_size);
  702. V = ggml_cont(ctx0, ggml_permute(ctx0, V, 1, 2, 0, 3));
  703. V = ggml_reshape_3d(ctx0, V, num_positions, d_head, n_head * batch_size);
  704. struct ggml_tensor * KQ = ggml_mul_mat(ctx0, K, Q);
  705. KQ = ggml_soft_max_inplace(ctx0, KQ);
  706. struct ggml_tensor * KQV = ggml_mul_mat(ctx0, V, KQ);
  707. KQV = ggml_reshape_4d(ctx0, KQV, d_head, num_positions, n_head, batch_size);
  708. KQV = ggml_permute(ctx0, KQV, 0, 2, 1, 3);
  709. cur = ggml_cont_3d(ctx0, KQV, hidden_size, num_positions, batch_size);
  710. }
  711. // attention output
  712. cur = ggml_add(ctx0, ggml_mul_mat(ctx0, model.layers[il].o_w, cur), model.layers[il].o_b);
  713. // re-add the layer input, e.g., residual
  714. cur = ggml_add(ctx0, cur, embeddings);
  715. embeddings = cur; // embeddings = residual, cur = hidden_states
  716. // layernorm2
  717. {
  718. cur = ggml_norm(ctx0, cur, eps);
  719. cur = ggml_add(ctx0, ggml_mul(ctx0, cur, model.layers[il].ln_2_w), model.layers[il].ln_2_b);
  720. }
  721. cur = ggml_mul_mat(ctx0, model.layers[il].ff_i_w, cur);
  722. cur = ggml_add(ctx0, cur, model.layers[il].ff_i_b);
  723. if (ctx->use_gelu) {
  724. cur = ggml_gelu_inplace(ctx0, cur);
  725. } else if (ctx->use_silu) {
  726. cur = ggml_silu_inplace(ctx0, cur);
  727. } else {
  728. cur = ggml_gelu_quick_inplace(ctx0, cur);
  729. }
  730. cur = ggml_mul_mat(ctx0, model.layers[il].ff_o_w, cur);
  731. cur = ggml_add(ctx0, cur, model.layers[il].ff_o_b);
  732. // residual 2
  733. cur = ggml_add(ctx0, embeddings, cur);
  734. embeddings = cur;
  735. }
  736. // post-layernorm
  737. if (ctx->has_post_norm) {
  738. embeddings = ggml_norm(ctx0, embeddings, eps);
  739. ggml_set_name(embeddings, "post_ln");
  740. embeddings = ggml_add(ctx0, ggml_mul(ctx0, embeddings, model.post_ln_w), model.post_ln_b);
  741. }
  742. // llava projector
  743. if (ctx->has_llava_projector) {
  744. embeddings = ggml_reshape_2d(ctx0, embeddings, embeddings->ne[0], embeddings->ne[1]);
  745. struct ggml_tensor * patches = ggml_new_tensor_1d(ctx0, GGML_TYPE_I32, num_patches);
  746. ggml_set_name(patches, "patches");
  747. ggml_set_input(patches);
  748. // shape [1, 576, 1024]
  749. // ne is whcn, ne = [1024, 576, 1, 1]
  750. embeddings = ggml_get_rows(ctx0, embeddings, patches);
  751. // print_tensor_info(embeddings, "embeddings");
  752. // llava projector
  753. if (ctx->proj_type == PROJECTOR_TYPE_MLP) {
  754. embeddings = ggml_mul_mat(ctx0, model.mm_0_w, embeddings);
  755. embeddings = ggml_add(ctx0, embeddings, model.mm_0_b);
  756. embeddings = ggml_gelu(ctx0, embeddings);
  757. embeddings = ggml_mul_mat(ctx0, model.mm_2_w, embeddings);
  758. embeddings = ggml_add(ctx0, embeddings, model.mm_2_b);
  759. }
  760. else if (ctx->proj_type == PROJECTOR_TYPE_MLP_NORM) {
  761. embeddings = ggml_mul_mat(ctx0, model.mm_0_w, embeddings);
  762. embeddings = ggml_add(ctx0, embeddings, model.mm_0_b);
  763. // ggml_tensor_printf(embeddings, "mm_0_w",0,true,false);
  764. // First LayerNorm
  765. embeddings = ggml_norm(ctx0, embeddings, eps);
  766. embeddings = ggml_add(ctx0, ggml_mul(ctx0, embeddings, model.mm_1_w),
  767. model.mm_1_b);
  768. // GELU activation
  769. embeddings = ggml_gelu(ctx0, embeddings);
  770. // Second linear layer
  771. embeddings = ggml_mul_mat(ctx0, model.mm_3_w, embeddings);
  772. embeddings = ggml_add(ctx0, embeddings, model.mm_3_b);
  773. // Second LayerNorm
  774. embeddings = ggml_norm(ctx0, embeddings, eps);
  775. embeddings = ggml_add(ctx0, ggml_mul(ctx0, embeddings, model.mm_4_w),
  776. model.mm_4_b);
  777. }
  778. else if (ctx->proj_type == PROJECTOR_TYPE_LDP) {
  779. // MobileVLM projector
  780. int n_patch = 24;
  781. struct ggml_tensor * mlp_1 = ggml_mul_mat(ctx0, model.mm_model_mlp_1_w, embeddings);
  782. mlp_1 = ggml_add(ctx0, mlp_1, model.mm_model_mlp_1_b);
  783. mlp_1 = ggml_gelu(ctx0, mlp_1);
  784. struct ggml_tensor * mlp_3 = ggml_mul_mat(ctx0, model.mm_model_mlp_3_w, mlp_1);
  785. mlp_3 = ggml_add(ctx0, mlp_3, model.mm_model_mlp_3_b);
  786. // mlp_3 shape = [1, 576, 2048], ne = [2048, 576, 1, 1]
  787. // block 1
  788. struct ggml_tensor * block_1 = nullptr;
  789. {
  790. // transpose from [1, 576, 2048] --> [1, 2048, 576] --> [1, 2048, 24, 24]
  791. mlp_3 = ggml_cont(ctx0, ggml_permute(ctx0, mlp_3, 1, 0, 2, 3));
  792. mlp_3 = ggml_reshape_4d(ctx0, mlp_3, n_patch, n_patch, mlp_3->ne[1], mlp_3->ne[2]);
  793. // stride = 1, padding = 1, bias is nullptr
  794. block_1 = ggml_conv_depthwise_2d(ctx0, model.mm_model_block_1_block_0_0_w, mlp_3, 1, 1, 1, 1, 1, 1);
  795. // layer norm
  796. // // block_1 shape = [1, 2048, 24, 24], ne = [24, 24, 2048, 1]
  797. block_1 = ggml_cont(ctx0, ggml_permute(ctx0, block_1, 1, 2, 0, 3));
  798. // block_1 shape = [1, 24, 24, 2048], ne = [2048, 24, 24, 1]
  799. block_1 = ggml_norm(ctx0, block_1, eps);
  800. block_1 = ggml_add(ctx0, ggml_mul(ctx0, block_1, model.mm_model_block_1_block_0_1_w), model.mm_model_block_1_block_0_1_b);
  801. block_1 = ggml_cont(ctx0, ggml_permute(ctx0, block_1, 2, 0, 1, 3));
  802. // block_1 shape = [1, 2048, 24, 24], ne = [24, 24, 2048, 1]
  803. // hardswish
  804. struct ggml_tensor * block_1_hw = ggml_hardswish(ctx0, block_1);
  805. block_1 = ggml_pool_2d(ctx0, block_1_hw, GGML_OP_POOL_AVG, block_1_hw->ne[0], block_1_hw->ne[1], block_1_hw->ne[0], block_1_hw->ne[1], 0, 0);
  806. // block_1 shape = [1, 2048, 1, 1], ne = [1, 1, 2048, 1]
  807. // pointwise conv
  808. block_1 = ggml_reshape_2d(ctx0, block_1, block_1->ne[0]*block_1->ne[1]*block_1->ne[2], block_1->ne[3]);
  809. block_1 = ggml_mul_mat(ctx0, model.mm_model_block_1_block_1_fc1_w, block_1);
  810. block_1 = ggml_add(ctx0, block_1, model.mm_model_block_1_block_1_fc1_b);
  811. block_1 = ggml_relu(ctx0, block_1);
  812. block_1 = ggml_mul_mat(ctx0, model.mm_model_block_1_block_1_fc2_w, block_1);
  813. block_1 = ggml_add(ctx0, block_1, model.mm_model_block_1_block_1_fc2_b);
  814. block_1 = ggml_hardsigmoid(ctx0, block_1);
  815. // block_1_hw shape = [1, 2048, 24, 24], ne = [24, 24, 2048, 1], block_1 shape = [1, 2048], ne = [2048, 1, 1, 1]
  816. block_1 = ggml_reshape_4d(ctx0, block_1, 1, 1, block_1->ne[0], block_1->ne[1]);
  817. block_1 = ggml_mul(ctx0, block_1_hw, block_1);
  818. int w = block_1->ne[0], h = block_1->ne[1];
  819. block_1 = ggml_reshape_3d(ctx0, block_1, w*h, block_1->ne[2], block_1->ne[3]);
  820. block_1 = ggml_cont(ctx0, ggml_permute(ctx0, block_1, 1, 0, 2, 3));
  821. // block_1 shape = [1, 24*24, 2048], ne = [24*24, 2048, 1]
  822. block_1 = ggml_mul_mat(ctx0, model.mm_model_block_1_block_2_0_w, block_1);
  823. block_1 = ggml_reshape_4d(ctx0, block_1, block_1->ne[0], w, h, block_1->ne[3]);
  824. // block_1 shape = [1, 24, 24, 2048], ne = [2048, 24, 24, 1]
  825. block_1 = ggml_norm(ctx0, block_1, eps);
  826. block_1 = ggml_add(ctx0, ggml_mul(ctx0, block_1, model.mm_model_block_1_block_2_1_w), model.mm_model_block_1_block_2_1_b);
  827. block_1 = ggml_cont(ctx0, ggml_permute(ctx0, block_1, 2, 0, 1, 3));
  828. // block1 shape = [1, 2048, 24, 24], ne = [24, 24, 2048, 1]
  829. // residual
  830. block_1 = ggml_add(ctx0, mlp_3, block_1);
  831. }
  832. // block_2
  833. {
  834. // stride = 2
  835. block_1 = ggml_conv_depthwise_2d(ctx0, model.mm_model_block_2_block_0_0_w, block_1, 2, 2, 1, 1, 1, 1);
  836. // block_1 shape = [1, 2048, 12, 12], ne = [12, 12, 2048, 1]
  837. // layer norm
  838. block_1 = ggml_cont(ctx0, ggml_permute(ctx0, block_1, 1, 2, 0, 3));
  839. // block_1 shape = [1, 12, 12, 2048], ne = [2048, 12, 12, 1]
  840. block_1 = ggml_norm(ctx0, block_1, eps);
  841. block_1 = ggml_add(ctx0, ggml_mul(ctx0, block_1, model.mm_model_block_2_block_0_1_w), model.mm_model_block_2_block_0_1_b);
  842. block_1 = ggml_cont(ctx0, ggml_permute(ctx0, block_1, 2, 0, 1, 3));
  843. // block_1 shape = [1, 2048, 12, 12], ne = [12, 12, 2048, 1]
  844. // hardswish
  845. struct ggml_tensor * block_1_hw = ggml_hardswish(ctx0, block_1);
  846. // not sure the parameters is right for globalAvgPooling
  847. block_1 = ggml_pool_2d(ctx0, block_1_hw, GGML_OP_POOL_AVG, block_1_hw->ne[0], block_1_hw->ne[1], block_1_hw->ne[0], block_1_hw->ne[1], 0, 0);
  848. // block_1 shape = [1, 2048, 1, 1], ne = [1, 1, 2048, 1]
  849. // pointwise conv
  850. block_1 = ggml_reshape_2d(ctx0, block_1, block_1->ne[0]*block_1->ne[1]*block_1->ne[2], block_1->ne[3]);
  851. block_1 = ggml_mul_mat(ctx0, model.mm_model_block_2_block_1_fc1_w, block_1);
  852. block_1 = ggml_add(ctx0, block_1, model.mm_model_block_2_block_1_fc1_b);
  853. block_1 = ggml_relu(ctx0, block_1);
  854. block_1 = ggml_mul_mat(ctx0, model.mm_model_block_2_block_1_fc2_w, block_1);
  855. block_1 = ggml_add(ctx0, block_1, model.mm_model_block_2_block_1_fc2_b);
  856. block_1 = ggml_hardsigmoid(ctx0, block_1);
  857. // block_1_hw shape = [1, 2048, 12, 12], ne = [12, 12, 2048, 1], block_1 shape = [1, 2048, 1, 1], ne = [1, 1, 2048, 1]
  858. block_1 = ggml_reshape_4d(ctx0, block_1, 1, 1, block_1->ne[0], block_1->ne[1]);
  859. block_1 = ggml_mul(ctx0, block_1_hw, block_1);
  860. int w = block_1->ne[0], h = block_1->ne[1];
  861. block_1 = ggml_reshape_3d(ctx0, block_1, w*h, block_1->ne[2], block_1->ne[3]);
  862. block_1 = ggml_cont(ctx0, ggml_permute(ctx0, block_1, 1, 0, 2, 3));
  863. // block_1 shape = [1, 24*24, 2048], ne = [24*24, 2048, 1]
  864. block_1 = ggml_mul_mat(ctx0, model.mm_model_block_2_block_2_0_w, block_1);
  865. block_1 = ggml_reshape_4d(ctx0, block_1, block_1->ne[0], w, h, block_1->ne[3]);
  866. // block_1 shape = [1, 12, 12, 2048], ne = [2048, 12, 12, 1]
  867. block_1 = ggml_norm(ctx0, block_1, eps);
  868. block_1 = ggml_add(ctx0, ggml_mul(ctx0, block_1, model.mm_model_block_2_block_2_1_w), model.mm_model_block_2_block_2_1_b);
  869. block_1 = ggml_reshape_3d(ctx0, block_1, block_1->ne[0], block_1->ne[1] * block_1->ne[2], block_1->ne[3]);
  870. // block_1 shape = [1, 144, 2048], ne = [2048, 144, 1]
  871. }
  872. embeddings = block_1;
  873. }
  874. else if (ctx->proj_type == PROJECTOR_TYPE_LDPV2)
  875. {
  876. int n_patch = 24;
  877. struct ggml_tensor * mlp_0 = ggml_mul_mat(ctx0, model.mm_model_mlp_0_w, embeddings);
  878. mlp_0 = ggml_add(ctx0, mlp_0, model.mm_model_mlp_0_b);
  879. mlp_0 = ggml_gelu(ctx0, mlp_0);
  880. struct ggml_tensor * mlp_2 = ggml_mul_mat(ctx0, model.mm_model_mlp_2_w, mlp_0);
  881. mlp_2 = ggml_add(ctx0, mlp_2, model.mm_model_mlp_2_b);
  882. // mlp_2 ne = [2048, 576, 1, 1]
  883. // // AVG Pool Layer 2*2, strides = 2
  884. mlp_2 = ggml_cont(ctx0, ggml_permute(ctx0, mlp_2, 1, 0, 2, 3));
  885. // mlp_2 ne = [576, 2048, 1, 1]
  886. mlp_2 = ggml_reshape_4d(ctx0, mlp_2, n_patch, n_patch, mlp_2->ne[1], mlp_2->ne[2]);
  887. // mlp_2 ne [24, 24, 2048, 1]
  888. mlp_2 = ggml_pool_2d(ctx0, mlp_2, GGML_OP_POOL_AVG, 2, 2, 2, 2, 0, 0);
  889. // weight ne = [3, 3, 2048, 1]
  890. struct ggml_tensor * peg_0 = ggml_conv_depthwise_2d(ctx0, model.mm_model_peg_0_w, mlp_2, 1, 1, 1, 1, 1, 1);
  891. peg_0 = ggml_cont(ctx0, ggml_permute(ctx0, peg_0, 1, 2, 0, 3));
  892. peg_0 = ggml_add(ctx0, peg_0, model.mm_model_peg_0_b);
  893. mlp_2 = ggml_cont(ctx0, ggml_permute(ctx0, mlp_2, 1, 2, 0, 3));
  894. peg_0 = ggml_add(ctx0, peg_0, mlp_2);
  895. peg_0 = ggml_reshape_3d(ctx0, peg_0, peg_0->ne[0], peg_0->ne[1] * peg_0->ne[2], peg_0->ne[3]);
  896. embeddings = peg_0;
  897. }
  898. else {
  899. GGML_ABORT("fatal error");
  900. }
  901. }
  902. // minicpmv projector
  903. else if (ctx->has_minicpmv_projector)
  904. {
  905. if (ctx->proj_type == PROJECTOR_TYPE_RESAMPLER) {
  906. struct ggml_tensor * q = model.mm_model_query;
  907. { // layernorm
  908. q = ggml_norm(ctx0, q, eps);
  909. q = ggml_add(ctx0, ggml_mul(ctx0, q, model.mm_model_ln_q_w), model.mm_model_ln_q_b);
  910. }
  911. struct ggml_tensor * v = ggml_mul_mat(ctx0, model.mm_model_kv_proj, embeddings);
  912. { // layernorm
  913. v = ggml_norm(ctx0, v, eps);
  914. v = ggml_add(ctx0, ggml_mul(ctx0, v, model.mm_model_ln_kv_w), model.mm_model_ln_kv_b);
  915. }
  916. struct ggml_tensor * k;
  917. { // position
  918. // q = ggml_add(ctx0, q, model.mm_model_pos_embed);
  919. k = ggml_add(ctx0, v, pos_embed);
  920. }
  921. { // attention
  922. int hidden_size = 4096;
  923. const int d_head = 128;
  924. int n_head = hidden_size/d_head;
  925. int num_query = 96;
  926. if (ctx->minicpmv_version == 2) {
  927. hidden_size = 4096;
  928. n_head = hidden_size/d_head;
  929. num_query = 96;
  930. }
  931. else if (ctx->minicpmv_version == 3) {
  932. hidden_size = 3584;
  933. n_head = hidden_size/d_head;
  934. num_query = 64;
  935. }
  936. struct ggml_tensor * Q = ggml_add(ctx0, ggml_mul_mat(ctx0, model.mm_model_attn_q_w, q), model.mm_model_attn_q_b);
  937. Q = ggml_scale_inplace(ctx0, Q, 1.0f / sqrt((float)d_head));
  938. struct ggml_tensor * K = ggml_add(ctx0, ggml_mul_mat(ctx0, model.mm_model_attn_k_w, k), model.mm_model_attn_k_b);
  939. struct ggml_tensor * V = ggml_add(ctx0, ggml_mul_mat(ctx0, model.mm_model_attn_v_w, v), model.mm_model_attn_v_b);
  940. // permute
  941. Q = ggml_reshape_4d(ctx0, Q, d_head, n_head, num_query, batch_size);
  942. Q = ggml_cont(ctx0, ggml_permute(ctx0, Q, 0, 2, 1, 3));
  943. Q = ggml_reshape_3d(ctx0, Q, d_head, num_query, n_head * batch_size);
  944. K = ggml_reshape_4d(ctx0, K, d_head, n_head, num_positions, batch_size);
  945. K = ggml_cont(ctx0, ggml_permute(ctx0, K, 0, 2, 1, 3));
  946. K = ggml_reshape_3d(ctx0, K, d_head, num_positions, n_head * batch_size);
  947. V = ggml_reshape_4d(ctx0, V, d_head, n_head, num_positions, batch_size);
  948. V = ggml_cont(ctx0, ggml_permute(ctx0, V, 1, 2, 0, 3));
  949. V = ggml_reshape_3d(ctx0, V, num_positions, d_head, n_head * batch_size);
  950. struct ggml_tensor * KQ = ggml_mul_mat(ctx0, K, Q);
  951. KQ = ggml_soft_max_inplace(ctx0, KQ);
  952. struct ggml_tensor * KQV = ggml_mul_mat(ctx0, V, KQ);
  953. KQV = ggml_reshape_4d(ctx0, KQV, d_head, num_query, n_head, batch_size);
  954. KQV = ggml_permute(ctx0, KQV, 0, 2, 1, 3);
  955. KQV = ggml_cont_3d(ctx0, KQV, hidden_size, num_query, batch_size);
  956. embeddings = ggml_add(ctx0, ggml_mul_mat(ctx0, model.mm_model_attn_o_w, KQV), model.mm_model_attn_o_b);
  957. }
  958. { // layernorm
  959. embeddings = ggml_norm(ctx0, embeddings, eps);
  960. embeddings = ggml_add(ctx0, ggml_mul(ctx0, embeddings, model.mm_model_ln_post_w), model.mm_model_ln_post_b);
  961. }
  962. embeddings = ggml_mul_mat(ctx0, model.mm_model_proj, embeddings);
  963. }
  964. else {
  965. GGML_ASSERT(false);
  966. }
  967. }
  968. else if (ctx->proj_type == PROJECTOR_TYPE_MERGER) {
  969. embeddings = ggml_reshape_3d(ctx0, embeddings, hidden_size * 4, num_positions / 4, batch_size);
  970. embeddings = ggml_mul_mat(ctx0, model.mm_0_w, embeddings);
  971. embeddings = ggml_add(ctx0, embeddings, model.mm_0_b);
  972. // GELU activation
  973. embeddings = ggml_gelu(ctx0, embeddings);
  974. // Second linear layer
  975. embeddings = ggml_mul_mat(ctx0, model.mm_1_w, embeddings);
  976. embeddings = ggml_add(ctx0, embeddings, model.mm_1_b);
  977. }
  978. // build the graph
  979. ggml_build_forward_expand(gf, embeddings);
  980. ggml_free(ctx0);
  981. return gf;
  982. }
  983. // read and create ggml_context containing the tensors and their data
  984. struct clip_ctx * clip_model_load(const char * fname, const int verbosity = 1) {
  985. struct ggml_context * meta = NULL;
  986. struct gguf_init_params params = {
  987. /*.no_alloc = */ true,
  988. /*.ctx = */ &meta,
  989. };
  990. struct gguf_context * ctx = gguf_init_from_file(fname, params);
  991. if (!ctx) {
  992. throw std::runtime_error(format("%s: failed to load CLIP model from %s. Does this file exist?\n", __func__, fname));
  993. }
  994. if (verbosity >= 1) {
  995. const int n_tensors = gguf_get_n_tensors(ctx);
  996. const int n_kv = gguf_get_n_kv(ctx);
  997. const int ftype = get_u32(ctx, KEY_FTYPE);
  998. const std::string ftype_str = get_ftype(ftype);
  999. const int idx_desc = get_key_idx(ctx, KEY_DESCRIPTION);
  1000. const std::string description = gguf_get_val_str(ctx, idx_desc);
  1001. const int idx_name = gguf_find_key(ctx, KEY_NAME);
  1002. if (idx_name != -1) { // make name optional temporarily as some of the uploaded models missing it due to a bug
  1003. const std::string name = gguf_get_val_str(ctx, idx_name);
  1004. LOG_INF("%s: model name: %s\n", __func__, name.c_str());
  1005. }
  1006. LOG_INF("%s: description: %s\n", __func__, description.c_str());
  1007. LOG_INF("%s: GGUF version: %d\n", __func__, gguf_get_version(ctx));
  1008. LOG_INF("%s: alignment: %zu\n", __func__, gguf_get_alignment(ctx));
  1009. LOG_INF("%s: n_tensors: %d\n", __func__, n_tensors);
  1010. LOG_INF("%s: n_kv: %d\n", __func__, n_kv);
  1011. LOG_INF("%s: ftype: %s\n", __func__, ftype_str.c_str());
  1012. LOG_INF("\n");
  1013. }
  1014. const int n_tensors = gguf_get_n_tensors(ctx);
  1015. // kv
  1016. const int n_kv = gguf_get_n_kv(ctx);
  1017. LOG_INF("%s: loaded meta data with %d key-value pairs and %d tensors from %s\n",
  1018. __func__, n_kv, n_tensors, fname);
  1019. {
  1020. std::map<enum ggml_type, uint32_t> n_type;
  1021. for (int i = 0; i < n_tensors; i++) {
  1022. enum ggml_type type = gguf_get_tensor_type(ctx, i);
  1023. n_type[type]++;
  1024. }
  1025. LOG_INF("%s: Dumping metadata keys/values. Note: KV overrides do not apply in this output.\n", __func__);
  1026. for (int i = 0; i < n_kv; i++) {
  1027. const char * name = gguf_get_key(ctx, i);
  1028. const enum gguf_type type = gguf_get_kv_type(ctx, i);
  1029. const std::string type_name =
  1030. type == GGUF_TYPE_ARRAY
  1031. ? format("%s[%s,%d]", gguf_type_name(type), gguf_type_name(gguf_get_arr_type(ctx, i)), gguf_get_arr_n(ctx, i))
  1032. : gguf_type_name(type);
  1033. std::string value = gguf_kv_to_str(ctx, i);
  1034. const size_t MAX_VALUE_LEN = 40;
  1035. if (value.size() > MAX_VALUE_LEN) {
  1036. value = format("%s...", value.substr(0, MAX_VALUE_LEN - 3).c_str());
  1037. }
  1038. replace_all(value, "\n", "\\n");
  1039. LOG_INF("%s: - kv %3d: %42s %-16s = %s\n", __func__, i, name, type_name.c_str(), value.c_str());
  1040. }
  1041. // print type counts
  1042. for (auto & kv : n_type) {
  1043. if (kv.second == 0) {
  1044. continue;
  1045. }
  1046. LOG_INF("%s: - type %4s: %4d tensors\n", __func__, ggml_type_name(kv.first), kv.second);
  1047. }
  1048. }
  1049. // data
  1050. size_t model_size = 0;
  1051. {
  1052. for (int i = 0; i < n_tensors; ++i) {
  1053. const char * name = gguf_get_tensor_name(ctx, i);
  1054. const size_t offset = gguf_get_tensor_offset(ctx, i);
  1055. enum ggml_type type = gguf_get_tensor_type(ctx, i);
  1056. struct ggml_tensor * cur = ggml_get_tensor(meta, name);
  1057. size_t tensor_size = ggml_nbytes(cur);
  1058. model_size += tensor_size;
  1059. if (verbosity >= 3) {
  1060. LOG_INF("%s: tensor[%d]: n_dims = %d, name = %s, tensor_size=%zu, offset=%zu, shape:[%" PRIu64 ", %" PRIu64 ", %" PRIu64 ", %" PRIu64 "], type = %s\n",
  1061. __func__, i, ggml_n_dims(cur), cur->name, tensor_size, offset, cur->ne[0], cur->ne[1], cur->ne[2], cur->ne[3], ggml_type_name(type));
  1062. }
  1063. }
  1064. }
  1065. clip_ctx * new_clip = new clip_ctx{};
  1066. // update projector type
  1067. {
  1068. int idx = gguf_find_key(ctx, KEY_PROJ_TYPE);
  1069. if (idx != -1) {
  1070. const std::string proj_type = gguf_get_val_str(ctx, idx);
  1071. new_clip->proj_type = clip_projector_type_from_string(proj_type);
  1072. } else {
  1073. new_clip->proj_type = PROJECTOR_TYPE_MLP;
  1074. }
  1075. if (new_clip->proj_type == PROJECTOR_TYPE_MLP) {
  1076. if (gguf_find_tensor(ctx, format(TN_LLAVA_PROJ, 3, "weight").c_str()) != -1) {
  1077. new_clip->proj_type = PROJECTOR_TYPE_MLP_NORM;
  1078. }
  1079. }
  1080. }
  1081. #ifdef GGML_USE_CUDA
  1082. new_clip->backend = ggml_backend_cuda_init(0);
  1083. LOG_INF("%s: CLIP using CUDA backend\n", __func__);
  1084. #endif
  1085. #ifdef GGML_USE_METAL
  1086. new_clip->backend = ggml_backend_metal_init();
  1087. LOG_INF("%s: CLIP using Metal backend\n", __func__);
  1088. #endif
  1089. #ifdef GGML_USE_CANN
  1090. new_clip->backend = ggml_backend_cann_init(0);
  1091. LOG_INF("%s: CLIP using CANN backend\n", __func__);
  1092. #endif
  1093. #ifdef GGML_USE_VULKAN
  1094. new_clip->backend = ggml_backend_vk_init(0);
  1095. LOG_INF("%s: CLIP using Vulkan backend\n", __func__);
  1096. #endif
  1097. #ifdef GGML_USE_SYCL
  1098. new_clip->backend = ggml_backend_sycl_init(0);
  1099. LOG_INF("%s: CLIP using SYCL backend\n", __func__);
  1100. #endif
  1101. if (!new_clip->backend) {
  1102. new_clip->backend = ggml_backend_cpu_init();
  1103. LOG_INF("%s: CLIP using CPU backend\n", __func__);
  1104. }
  1105. // model size and capabilities
  1106. {
  1107. int idx = get_key_idx(ctx, KEY_HAS_TEXT_ENC);
  1108. new_clip->has_text_encoder = gguf_get_val_bool(ctx, idx);
  1109. idx = get_key_idx(ctx, KEY_HAS_VIS_ENC);
  1110. new_clip->has_vision_encoder = gguf_get_val_bool(ctx, idx);
  1111. idx = gguf_find_key(ctx, KEY_HAS_LLAVA_PROJ);
  1112. if (idx != -1) {
  1113. new_clip->has_llava_projector = gguf_get_val_bool(ctx, idx);
  1114. }
  1115. idx = gguf_find_key(ctx, KEY_HAS_MINICPMV_PROJ);
  1116. if (idx != -1) {
  1117. new_clip->has_minicpmv_projector = gguf_get_val_bool(ctx, idx);
  1118. }
  1119. idx = gguf_find_key(ctx, KEY_MINICPMV_VERSION);
  1120. if (idx != -1) {
  1121. new_clip->minicpmv_version = gguf_get_val_i32(ctx, idx);
  1122. }
  1123. idx = gguf_find_key(ctx, KEY_HAS_QWEN2VL_MERGER);
  1124. if (idx != -1) {
  1125. new_clip->has_qwen2vl_merger = gguf_get_val_bool(ctx, idx);
  1126. }
  1127. // GGML_ASSERT(new_clip->has_llava_projector); // see monatis/clip.cpp for image and/or text encoding for semantic search
  1128. GGML_ASSERT(new_clip->has_vision_encoder);
  1129. GGML_ASSERT(!new_clip->has_text_encoder);
  1130. idx = get_key_idx(ctx, KEY_USE_GELU);
  1131. new_clip->use_gelu = gguf_get_val_bool(ctx, idx);
  1132. try {
  1133. idx = get_key_idx(ctx, KEY_USE_SILU);
  1134. new_clip->use_silu = gguf_get_val_bool(ctx, idx);
  1135. } catch (std::runtime_error & /*e*/) {
  1136. new_clip->use_silu = false;
  1137. }
  1138. if (verbosity >= 1) {
  1139. LOG_INF("%s: text_encoder: %d\n", __func__, new_clip->has_text_encoder);
  1140. LOG_INF("%s: vision_encoder: %d\n", __func__, new_clip->has_vision_encoder);
  1141. LOG_INF("%s: llava_projector: %d\n", __func__, new_clip->has_llava_projector);
  1142. LOG_INF("%s: minicpmv_projector: %d\n", __func__, new_clip->has_minicpmv_projector);
  1143. LOG_INF("%s: model size: %.2f MB\n", __func__, model_size / 1024.0 / 1024.0);
  1144. LOG_INF("%s: metadata size: %.2f MB\n", __func__, ggml_get_mem_size(meta) / 1024.0 / 1024.0);
  1145. }
  1146. }
  1147. LOG_INF("%s: params backend buffer size = % 6.2f MB (%i tensors)\n", __func__, model_size / (1024.0 * 1024.0), n_tensors);
  1148. // load tensors
  1149. {
  1150. std::vector<uint8_t> read_buf;
  1151. struct ggml_init_params params = {
  1152. /*.mem_size =*/ (n_tensors + 1) * ggml_tensor_overhead(),
  1153. /*.mem_buffer =*/ NULL,
  1154. /*.no_alloc =*/ true,
  1155. };
  1156. new_clip->ctx_data = ggml_init(params);
  1157. if (!new_clip->ctx_data) {
  1158. LOG_ERR("%s: ggml_init() failed\n", __func__);
  1159. clip_free(new_clip);
  1160. gguf_free(ctx);
  1161. return nullptr;
  1162. }
  1163. #ifdef _WIN32
  1164. int wlen = MultiByteToWideChar(CP_UTF8, 0, fname, -1, NULL, 0);
  1165. if (!wlen) {
  1166. return NULL;
  1167. }
  1168. wchar_t * wbuf = (wchar_t *) malloc(wlen * sizeof(wchar_t));
  1169. wlen = MultiByteToWideChar(CP_UTF8, 0, fname, -1, wbuf, wlen);
  1170. if (!wlen) {
  1171. free(wbuf);
  1172. return NULL;
  1173. }
  1174. #if __GLIBCXX__
  1175. int fd = _wopen(wbuf, _O_RDONLY | _O_BINARY);
  1176. __gnu_cxx::stdio_filebuf<char> buffer(fd, std::ios_base::in);
  1177. std::istream fin(&buffer);
  1178. #else // MSVC
  1179. // unused in our current build
  1180. auto fin = std::ifstream(wbuf, std::ios::binary);
  1181. #endif
  1182. free(wbuf);
  1183. #else
  1184. auto fin = std::ifstream(fname, std::ios::binary);
  1185. #endif
  1186. if (!fin) {
  1187. LOG_ERR("cannot open model file for loading tensors\n");
  1188. clip_free(new_clip);
  1189. gguf_free(ctx);
  1190. return nullptr;
  1191. }
  1192. // add tensors to context
  1193. for (int i = 0; i < n_tensors; ++i) {
  1194. const char * name = gguf_get_tensor_name(ctx, i);
  1195. struct ggml_tensor * t = ggml_get_tensor(meta, name);
  1196. struct ggml_tensor * cur = ggml_dup_tensor(new_clip->ctx_data, t);
  1197. ggml_set_name(cur, name);
  1198. }
  1199. // alloc memory and offload data
  1200. new_clip->params_buffer = ggml_backend_alloc_ctx_tensors(new_clip->ctx_data, new_clip->backend);
  1201. for (int i = 0; i < n_tensors; ++i) {
  1202. const char * name = gguf_get_tensor_name(ctx, i);
  1203. struct ggml_tensor * cur = ggml_get_tensor(new_clip->ctx_data, name);
  1204. const size_t offset = gguf_get_data_offset(ctx) + gguf_get_tensor_offset(ctx, i);
  1205. fin.seekg(offset, std::ios::beg);
  1206. if (!fin) {
  1207. LOG_ERR("%s: failed to seek for tensor %s\n", __func__, name);
  1208. clip_free(new_clip);
  1209. gguf_free(ctx);
  1210. return nullptr;
  1211. }
  1212. int num_bytes = ggml_nbytes(cur);
  1213. if (ggml_backend_buffer_is_host(new_clip->params_buffer)) {
  1214. // for the CPU and Metal backend, we can read directly into the tensor
  1215. fin.read(reinterpret_cast<char *>(cur->data), num_bytes);
  1216. } else {
  1217. // read into a temporary buffer first, then copy to device memory
  1218. read_buf.resize(num_bytes);
  1219. fin.read(reinterpret_cast<char *>(read_buf.data()), num_bytes);
  1220. ggml_backend_tensor_set(cur, read_buf.data(), 0, num_bytes);
  1221. }
  1222. }
  1223. #if defined(_WIN32) && defined(__GLIBCXX__)
  1224. close(fd);
  1225. #else
  1226. fin.close();
  1227. #endif
  1228. }
  1229. // vision model
  1230. if (new_clip->has_vision_encoder) {
  1231. // load vision model
  1232. auto & vision_model = new_clip->vision_model;
  1233. auto & hparams = vision_model.hparams;
  1234. hparams.hidden_size = get_u32(ctx, format(KEY_N_EMBD, "vision"));
  1235. hparams.n_head = get_u32(ctx, format(KEY_N_HEAD, "vision"));
  1236. hparams.n_intermediate = get_u32(ctx, format(KEY_N_FF, "vision"));
  1237. hparams.n_layer = get_u32(ctx, format(KEY_N_BLOCK, "vision"));
  1238. hparams.image_size = get_u32(ctx, KEY_IMAGE_SIZE);
  1239. hparams.patch_size = get_u32(ctx, KEY_PATCH_SIZE);
  1240. hparams.projection_dim = get_u32(ctx, format(KEY_PROJ_DIM, "vision"));
  1241. hparams.eps = get_f32(ctx, format(KEY_LAYER_NORM_EPS, "vision"));
  1242. try {
  1243. int idx = get_key_idx(ctx, KEY_IMAGE_GRID_PINPOINTS);
  1244. int n = gguf_get_arr_n(ctx, idx);
  1245. const int32_t * pinpoints = (const int32_t *)gguf_get_arr_data(ctx, idx);
  1246. for (int i = 0; i < 32 && i < n && pinpoints[i] != 0; ++i) {
  1247. hparams.image_grid_pinpoints[i] = pinpoints[i];
  1248. }
  1249. if (n < 32)
  1250. hparams.image_grid_pinpoints[n] = 0;
  1251. } catch (std::runtime_error & /*e*/) {
  1252. hparams.image_grid_pinpoints[0]=0;
  1253. }
  1254. try {
  1255. int idx = get_key_idx(ctx, KEY_MM_PATCH_MERGE_TYPE);
  1256. strcpy(hparams.mm_patch_merge_type, gguf_get_val_str(ctx, idx));
  1257. } catch (std::runtime_error & /*e*/) {
  1258. strcpy(hparams.mm_patch_merge_type, "flat");
  1259. }
  1260. try {
  1261. hparams.image_crop_resolution = get_u32(ctx, KEY_IMAGE_CROP_RESOLUTION); // llava-1.6
  1262. } catch(const std::exception& /*e*/) {
  1263. hparams.image_crop_resolution = hparams.image_size;
  1264. }
  1265. int idx_mean = get_key_idx(ctx, KEY_IMAGE_MEAN);
  1266. int idx_std = get_key_idx(ctx, KEY_IMAGE_STD);
  1267. const float * mean_data = (const float *)gguf_get_arr_data(ctx, idx_mean);
  1268. const float * std_data = (const float *)gguf_get_arr_data(ctx, idx_std);
  1269. for (int i = 0; i < 3; ++i) {
  1270. new_clip->image_mean[i] = mean_data[i];
  1271. new_clip->image_std[i] = std_data[i];
  1272. }
  1273. if (verbosity >= 2) {
  1274. LOG_INF("\n%s: vision model hparams\n", __func__);
  1275. LOG_INF("image_size %d\n", hparams.image_size);
  1276. LOG_INF("patch_size %d\n", hparams.patch_size);
  1277. LOG_INF("v_hidden_size %d\n", hparams.hidden_size);
  1278. LOG_INF("v_n_intermediate %d\n", hparams.n_intermediate);
  1279. LOG_INF("v_projection_dim %d\n", hparams.projection_dim);
  1280. LOG_INF("v_n_head %d\n", hparams.n_head);
  1281. LOG_INF("v_n_layer %d\n", hparams.n_layer);
  1282. LOG_INF("v_eps %f\n", hparams.eps);
  1283. LOG_INF("v_image_mean %f %f %f\n", new_clip->image_mean[0], new_clip->image_mean[1], new_clip->image_mean[2]);
  1284. LOG_INF("v_image_std %f %f %f\n", new_clip->image_std[0], new_clip->image_std[1], new_clip->image_std[2]);
  1285. LOG_INF("v_image_grid_pinpoints: ");
  1286. for (int i = 0; i < 32 && (hparams.image_grid_pinpoints[i] != 0); ++i) {
  1287. LOG_INF("%d ", hparams.image_grid_pinpoints[i]);
  1288. }
  1289. LOG_INF("\n");
  1290. LOG_INF("v_mm_patch_merge_type: %s\n", hparams.mm_patch_merge_type);
  1291. }
  1292. try {
  1293. vision_model.class_embedding = get_tensor(new_clip->ctx_data, TN_CLASS_EMBD);
  1294. new_clip->has_class_embedding = true;
  1295. } catch (const std::exception& /*e*/) {
  1296. new_clip->has_class_embedding = false;
  1297. }
  1298. try {
  1299. vision_model.pre_ln_w = get_tensor(new_clip->ctx_data, format(TN_LN_PRE, "v", "weight"));
  1300. vision_model.pre_ln_b = get_tensor(new_clip->ctx_data, format(TN_LN_PRE, "v", "bias"));
  1301. new_clip->has_pre_norm = true;
  1302. } catch (std::exception & /*e*/) {
  1303. new_clip->has_pre_norm = false;
  1304. }
  1305. try {
  1306. vision_model.post_ln_w = get_tensor(new_clip->ctx_data, format(TN_LN_POST, "v", "weight"));
  1307. vision_model.post_ln_b = get_tensor(new_clip->ctx_data, format(TN_LN_POST, "v", "bias"));
  1308. new_clip->has_post_norm = true;
  1309. } catch (std::exception & /*e*/) {
  1310. new_clip->has_post_norm = false;
  1311. }
  1312. try {
  1313. vision_model.patch_bias = get_tensor(new_clip->ctx_data, TN_PATCH_BIAS);
  1314. new_clip->has_patch_bias = true;
  1315. } catch (std::exception & /*e*/) {
  1316. new_clip->has_patch_bias = false;
  1317. }
  1318. try {
  1319. vision_model.patch_embeddings_0 = get_tensor(new_clip->ctx_data, TN_PATCH_EMBD);
  1320. vision_model.position_embeddings = get_tensor(new_clip->ctx_data, format(TN_POS_EMBD, "v"));
  1321. } catch(const std::exception& /*e*/) {
  1322. LOG_ERR("%s: failed to load vision model tensors\n", __func__);
  1323. }
  1324. try {
  1325. vision_model.patch_embeddings_1 = get_tensor(new_clip->ctx_data, TN_PATCH_EMBD_1);
  1326. } catch(const std::exception& /*e*/) {
  1327. new_clip->has_qwen2vl_merger = false;
  1328. }
  1329. // LLaVA projection
  1330. if (new_clip->proj_type == PROJECTOR_TYPE_MLP || new_clip->proj_type == PROJECTOR_TYPE_MLP_NORM) {
  1331. vision_model.mm_0_w = get_tensor(new_clip->ctx_data, format(TN_LLAVA_PROJ, 0, "weight"));
  1332. vision_model.mm_0_b = get_tensor(new_clip->ctx_data, format(TN_LLAVA_PROJ, 0, "bias"));
  1333. try {
  1334. // Yi-type llava
  1335. vision_model.mm_1_w = get_tensor(new_clip->ctx_data, format(TN_LLAVA_PROJ, 1, "weight"));
  1336. vision_model.mm_1_b = get_tensor(new_clip->ctx_data, format(TN_LLAVA_PROJ, 1, "bias"));
  1337. } catch (std::runtime_error & /*e*/) { }
  1338. try {
  1339. // missing in Yi-type llava
  1340. vision_model.mm_2_w = get_tensor(new_clip->ctx_data, format(TN_LLAVA_PROJ, 2, "weight"));
  1341. vision_model.mm_2_b = get_tensor(new_clip->ctx_data, format(TN_LLAVA_PROJ, 2, "bias"));
  1342. } catch (std::runtime_error & /*e*/) { }
  1343. try {
  1344. // Yi-type llava
  1345. vision_model.mm_3_w = get_tensor(new_clip->ctx_data, format(TN_LLAVA_PROJ, 3, "weight"));
  1346. vision_model.mm_3_b = get_tensor(new_clip->ctx_data, format(TN_LLAVA_PROJ, 3, "bias"));
  1347. } catch (std::runtime_error & /*e*/) { }
  1348. try {
  1349. // Yi-type llava
  1350. vision_model.mm_4_w = get_tensor(new_clip->ctx_data, format(TN_LLAVA_PROJ, 4, "weight"));
  1351. vision_model.mm_4_b = get_tensor(new_clip->ctx_data, format(TN_LLAVA_PROJ, 4, "bias"));
  1352. } catch (std::runtime_error & /*e*/) { }
  1353. try {
  1354. vision_model.image_newline = get_tensor(new_clip->ctx_data, TN_IMAGE_NEWLINE);
  1355. // LOG_INF("%s: image_newline tensor (llava-1.6) found\n", __func__);
  1356. } catch (std::runtime_error & /*e*/) { }
  1357. } else if (new_clip->proj_type == PROJECTOR_TYPE_LDP) {
  1358. // MobileVLM projection
  1359. vision_model.mm_model_mlp_1_w = get_tensor(new_clip->ctx_data, format(TN_MVLM_PROJ_MLP, 1, "weight"));
  1360. vision_model.mm_model_mlp_1_b = get_tensor(new_clip->ctx_data, format(TN_MVLM_PROJ_MLP, 1, "bias"));
  1361. vision_model.mm_model_mlp_3_w = get_tensor(new_clip->ctx_data, format(TN_MVLM_PROJ_MLP, 3, "weight"));
  1362. vision_model.mm_model_mlp_3_b = get_tensor(new_clip->ctx_data, format(TN_MVLM_PROJ_MLP, 3, "bias"));
  1363. vision_model.mm_model_block_1_block_0_0_w = get_tensor(new_clip->ctx_data, format(TN_MVLM_PROJ_BLOCK, 1, 0, "0.weight"));
  1364. vision_model.mm_model_block_1_block_0_1_w = get_tensor(new_clip->ctx_data, format(TN_MVLM_PROJ_BLOCK, 1, 0, "1.weight"));
  1365. vision_model.mm_model_block_1_block_0_1_b = get_tensor(new_clip->ctx_data, format(TN_MVLM_PROJ_BLOCK, 1, 0, "1.bias"));
  1366. vision_model.mm_model_block_1_block_1_fc1_w = get_tensor(new_clip->ctx_data, format(TN_MVLM_PROJ_BLOCK, 1, 1, "fc1.weight"));
  1367. vision_model.mm_model_block_1_block_1_fc1_b = get_tensor(new_clip->ctx_data, format(TN_MVLM_PROJ_BLOCK, 1, 1, "fc1.bias"));
  1368. vision_model.mm_model_block_1_block_1_fc2_w = get_tensor(new_clip->ctx_data, format(TN_MVLM_PROJ_BLOCK, 1, 1, "fc2.weight"));
  1369. vision_model.mm_model_block_1_block_1_fc2_b = get_tensor(new_clip->ctx_data, format(TN_MVLM_PROJ_BLOCK, 1, 1, "fc2.bias"));
  1370. vision_model.mm_model_block_1_block_2_0_w = get_tensor(new_clip->ctx_data, format(TN_MVLM_PROJ_BLOCK, 1, 2, "0.weight"));
  1371. vision_model.mm_model_block_1_block_2_1_w = get_tensor(new_clip->ctx_data, format(TN_MVLM_PROJ_BLOCK, 1, 2, "1.weight"));
  1372. vision_model.mm_model_block_1_block_2_1_b = get_tensor(new_clip->ctx_data, format(TN_MVLM_PROJ_BLOCK, 1, 2, "1.bias"));
  1373. vision_model.mm_model_block_2_block_0_0_w = get_tensor(new_clip->ctx_data, format(TN_MVLM_PROJ_BLOCK, 2, 0, "0.weight"));
  1374. vision_model.mm_model_block_2_block_0_1_w = get_tensor(new_clip->ctx_data, format(TN_MVLM_PROJ_BLOCK, 2, 0, "1.weight"));
  1375. vision_model.mm_model_block_2_block_0_1_b = get_tensor(new_clip->ctx_data, format(TN_MVLM_PROJ_BLOCK, 2, 0, "1.bias"));
  1376. vision_model.mm_model_block_2_block_1_fc1_w = get_tensor(new_clip->ctx_data, format(TN_MVLM_PROJ_BLOCK, 2, 1, "fc1.weight"));
  1377. vision_model.mm_model_block_2_block_1_fc1_b = get_tensor(new_clip->ctx_data, format(TN_MVLM_PROJ_BLOCK, 2, 1, "fc1.bias"));
  1378. vision_model.mm_model_block_2_block_1_fc2_w = get_tensor(new_clip->ctx_data, format(TN_MVLM_PROJ_BLOCK, 2, 1, "fc2.weight"));
  1379. vision_model.mm_model_block_2_block_1_fc2_b = get_tensor(new_clip->ctx_data, format(TN_MVLM_PROJ_BLOCK, 2, 1, "fc2.bias"));
  1380. vision_model.mm_model_block_2_block_2_0_w = get_tensor(new_clip->ctx_data, format(TN_MVLM_PROJ_BLOCK, 2, 2, "0.weight"));
  1381. vision_model.mm_model_block_2_block_2_1_w = get_tensor(new_clip->ctx_data, format(TN_MVLM_PROJ_BLOCK, 2, 2, "1.weight"));
  1382. vision_model.mm_model_block_2_block_2_1_b = get_tensor(new_clip->ctx_data, format(TN_MVLM_PROJ_BLOCK, 2, 2, "1.bias"));
  1383. }
  1384. else if (new_clip->proj_type == PROJECTOR_TYPE_LDPV2)
  1385. {
  1386. // MobilVLM_V2 projection
  1387. vision_model.mm_model_mlp_0_w = get_tensor(new_clip->ctx_data, format(TN_MVLM_PROJ_MLP, 0, "weight"));
  1388. vision_model.mm_model_mlp_0_b = get_tensor(new_clip->ctx_data, format(TN_MVLM_PROJ_MLP, 0, "bias"));
  1389. vision_model.mm_model_mlp_2_w = get_tensor(new_clip->ctx_data, format(TN_MVLM_PROJ_MLP, 2, "weight"));
  1390. vision_model.mm_model_mlp_2_b = get_tensor(new_clip->ctx_data, format(TN_MVLM_PROJ_MLP, 2, "bias"));
  1391. vision_model.mm_model_peg_0_w = get_tensor(new_clip->ctx_data, format(TN_MVLM_PROJ_PEG, 0, "weight"));
  1392. vision_model.mm_model_peg_0_b = get_tensor(new_clip->ctx_data, format(TN_MVLM_PROJ_PEG, 0, "bias"));
  1393. }
  1394. else if (new_clip->proj_type == PROJECTOR_TYPE_RESAMPLER) {
  1395. // vision_model.mm_model_pos_embed = get_tensor(new_clip->ctx_data, TN_MINICPMV_POS_EMBD);
  1396. vision_model.mm_model_pos_embed_k = get_tensor(new_clip->ctx_data, TN_MINICPMV_POS_EMBD_K);
  1397. vision_model.mm_model_query = get_tensor(new_clip->ctx_data, TN_MINICPMV_QUERY);
  1398. vision_model.mm_model_proj = get_tensor(new_clip->ctx_data, TN_MINICPMV_PROJ);
  1399. vision_model.mm_model_kv_proj = get_tensor(new_clip->ctx_data, TN_MINICPMV_KV_PROJ);
  1400. vision_model.mm_model_attn_q_w = get_tensor(new_clip->ctx_data, format(TN_MINICPMV_ATTN, "q", "weight"));
  1401. vision_model.mm_model_attn_k_w = get_tensor(new_clip->ctx_data, format(TN_MINICPMV_ATTN, "k", "weight"));
  1402. vision_model.mm_model_attn_v_w = get_tensor(new_clip->ctx_data, format(TN_MINICPMV_ATTN, "v", "weight"));
  1403. vision_model.mm_model_attn_q_b = get_tensor(new_clip->ctx_data, format(TN_MINICPMV_ATTN, "q", "bias"));
  1404. vision_model.mm_model_attn_k_b = get_tensor(new_clip->ctx_data, format(TN_MINICPMV_ATTN, "k", "bias"));
  1405. vision_model.mm_model_attn_v_b = get_tensor(new_clip->ctx_data, format(TN_MINICPMV_ATTN, "v", "bias"));
  1406. vision_model.mm_model_attn_o_w = get_tensor(new_clip->ctx_data, format(TN_MINICPMV_ATTN, "out", "weight"));
  1407. vision_model.mm_model_attn_o_b = get_tensor(new_clip->ctx_data, format(TN_MINICPMV_ATTN, "out", "bias"));
  1408. vision_model.mm_model_ln_q_w = get_tensor(new_clip->ctx_data, format(TN_MINICPMV_LN, "q", "weight"));
  1409. vision_model.mm_model_ln_q_b = get_tensor(new_clip->ctx_data, format(TN_MINICPMV_LN, "q", "bias"));
  1410. vision_model.mm_model_ln_kv_w = get_tensor(new_clip->ctx_data, format(TN_MINICPMV_LN, "kv", "weight"));
  1411. vision_model.mm_model_ln_kv_b = get_tensor(new_clip->ctx_data, format(TN_MINICPMV_LN, "kv", "bias"));
  1412. vision_model.mm_model_ln_post_w = get_tensor(new_clip->ctx_data, format(TN_MINICPMV_LN, "post", "weight"));
  1413. vision_model.mm_model_ln_post_b = get_tensor(new_clip->ctx_data, format(TN_MINICPMV_LN, "post", "bias"));
  1414. }
  1415. else if (new_clip->proj_type == PROJECTOR_TYPE_MERGER) {
  1416. vision_model.mm_0_w = get_tensor(new_clip->ctx_data, format(TN_LLAVA_PROJ, 0, "weight"));
  1417. vision_model.mm_0_b = get_tensor(new_clip->ctx_data, format(TN_LLAVA_PROJ, 0, "bias"));
  1418. vision_model.mm_1_w = get_tensor(new_clip->ctx_data, format(TN_LLAVA_PROJ, 2, "weight"));
  1419. vision_model.mm_1_b = get_tensor(new_clip->ctx_data, format(TN_LLAVA_PROJ, 2, "bias"));
  1420. }
  1421. else {
  1422. std::string proj_type = PROJECTOR_TYPE_NAMES[new_clip->proj_type];
  1423. throw std::runtime_error(format("%s: don't support projector with: %s currently\n", __func__, proj_type.c_str()));
  1424. }
  1425. vision_model.layers.resize(hparams.n_layer);
  1426. for (int il = 0; il < hparams.n_layer; ++il) {
  1427. auto & layer = vision_model.layers[il];
  1428. layer.k_w = get_tensor(new_clip->ctx_data, format(TN_ATTN_K, "v", il, "weight"));
  1429. layer.q_w = get_tensor(new_clip->ctx_data, format(TN_ATTN_Q, "v", il, "weight"));
  1430. layer.v_w = get_tensor(new_clip->ctx_data, format(TN_ATTN_V, "v", il, "weight"));
  1431. layer.o_w = get_tensor(new_clip->ctx_data, format(TN_ATTN_OUTPUT, "v", il, "weight"));
  1432. layer.ln_1_w = get_tensor(new_clip->ctx_data, format(TN_LN_1, "v", il, "weight"));
  1433. layer.ln_2_w = get_tensor(new_clip->ctx_data, format(TN_LN_2, "v", il, "weight"));
  1434. layer.ff_i_w = get_tensor(new_clip->ctx_data, format(TN_FFN_DOWN, "v", il, "weight"));
  1435. layer.ff_o_w = get_tensor(new_clip->ctx_data, format(TN_FFN_UP, "v", il, "weight"));
  1436. layer.k_b = get_tensor(new_clip->ctx_data, format(TN_ATTN_K, "v", il, "bias"));
  1437. layer.q_b = get_tensor(new_clip->ctx_data, format(TN_ATTN_Q, "v", il, "bias"));
  1438. layer.v_b = get_tensor(new_clip->ctx_data, format(TN_ATTN_V, "v", il, "bias"));
  1439. layer.o_b = get_tensor(new_clip->ctx_data, format(TN_ATTN_OUTPUT, "v", il, "bias"));
  1440. layer.ln_1_b = get_tensor(new_clip->ctx_data, format(TN_LN_1, "v", il, "bias"));
  1441. layer.ln_2_b = get_tensor(new_clip->ctx_data, format(TN_LN_2, "v", il, "bias"));
  1442. layer.ff_i_b = get_tensor(new_clip->ctx_data, format(TN_FFN_DOWN, "v", il, "bias"));
  1443. layer.ff_o_b = get_tensor(new_clip->ctx_data, format(TN_FFN_UP, "v", il, "bias"));
  1444. }
  1445. }
  1446. ggml_free(meta);
  1447. new_clip->ctx_gguf = ctx;
  1448. // measure mem requirement and allocate
  1449. {
  1450. new_clip->buf_compute_meta.resize(GGML_DEFAULT_GRAPH_SIZE * ggml_tensor_overhead() + ggml_graph_overhead());
  1451. new_clip->compute_alloc = ggml_gallocr_new(ggml_backend_get_default_buffer_type(new_clip->backend));
  1452. clip_image_f32_batch batch;
  1453. batch.size = 1;
  1454. batch.data = nullptr;
  1455. ggml_cgraph * gf = clip_image_build_graph(new_clip, &batch, nullptr, false);
  1456. ggml_gallocr_reserve(new_clip->compute_alloc, gf);
  1457. size_t compute_memory_buffer_size = ggml_gallocr_get_buffer_size(new_clip->compute_alloc, 0);
  1458. LOG_INF("%s: compute allocated memory: %.2f MB\n", __func__, compute_memory_buffer_size /1024.0/1024.0);
  1459. }
  1460. return new_clip;
  1461. }
  1462. void clip_add_load_image_size(struct clip_ctx * ctx_clip, struct clip_image_size * load_image_size) {
  1463. ctx_clip->load_image_size = load_image_size;
  1464. }
  1465. struct clip_image_size * clip_get_load_image_size(struct clip_ctx * ctx_clip) {
  1466. return ctx_clip->load_image_size;
  1467. }
  1468. struct clip_image_size * clip_image_size_init() {
  1469. struct clip_image_size * load_image_size = new struct clip_image_size();
  1470. load_image_size->width = 448;
  1471. load_image_size->height = 448;
  1472. return load_image_size;
  1473. }
  1474. struct clip_image_u8 * clip_image_u8_init() {
  1475. return new clip_image_u8();
  1476. }
  1477. struct clip_image_f32 * clip_image_f32_init() {
  1478. return new clip_image_f32();
  1479. }
  1480. void clip_image_u8_free(struct clip_image_u8 * img) { delete img; }
  1481. void clip_image_f32_free(struct clip_image_f32 * img) { delete img; }
  1482. void clip_image_u8_batch_free(struct clip_image_u8_batch * batch) {
  1483. if (batch->size > 0) {
  1484. delete[] batch->data;
  1485. batch->size = 0;
  1486. }
  1487. }
  1488. void clip_image_f32_batch_free(struct clip_image_f32_batch * batch) {
  1489. if (batch->size > 0) {
  1490. delete[] batch->data;
  1491. batch->size = 0;
  1492. }
  1493. }
  1494. static void build_clip_img_from_data(const stbi_uc * data, int nx, int ny, clip_image_u8 * img) {
  1495. img->nx = nx;
  1496. img->ny = ny;
  1497. img->buf.resize(3 * nx * ny);
  1498. memcpy(img->buf.data(), data, img->buf.size());
  1499. }
  1500. bool clip_image_load_from_file(const char * fname, clip_image_u8 * img) {
  1501. int nx, ny, nc;
  1502. auto * data = stbi_load(fname, &nx, &ny, &nc, 3);
  1503. if (!data) {
  1504. LOG_ERR("%s: failed to load image '%s'\n", __func__, fname);
  1505. return false;
  1506. }
  1507. build_clip_img_from_data(data, nx, ny, img);
  1508. stbi_image_free(data);
  1509. return true;
  1510. }
  1511. bool clip_image_load_from_bytes(const unsigned char * bytes, size_t bytes_length, struct clip_image_u8 * img) {
  1512. int nx, ny, nc;
  1513. auto * data = stbi_load_from_memory(bytes, bytes_length, &nx, &ny, &nc, 3);
  1514. if (!data) {
  1515. LOG_ERR("%s: failed to decode image bytes\n", __func__);
  1516. return false;
  1517. }
  1518. build_clip_img_from_data(data, nx, ny, img);
  1519. stbi_image_free(data);
  1520. return true;
  1521. }
  1522. // Linear interpolation between two points
  1523. inline float clip_lerp(float s, float e, float t) {
  1524. return s + (e - s) * t;
  1525. }
  1526. // Bilinear resize function
  1527. static void bilinear_resize(const clip_image_u8& src, clip_image_u8& dst, int target_width, int target_height) {
  1528. dst.nx = target_width;
  1529. dst.ny = target_height;
  1530. dst.buf.resize(3 * target_width * target_height);
  1531. float x_ratio = static_cast<float>(src.nx - 1) / target_width;
  1532. float y_ratio = static_cast<float>(src.ny - 1) / target_height;
  1533. for (int y = 0; y < target_height; y++) {
  1534. for (int x = 0; x < target_width; x++) {
  1535. float px = x_ratio * x;
  1536. float py = y_ratio * y;
  1537. int x_floor = static_cast<int>(px);
  1538. int y_floor = static_cast<int>(py);
  1539. float x_lerp = px - x_floor;
  1540. float y_lerp = py - y_floor;
  1541. for (int c = 0; c < 3; c++) {
  1542. float top = clip_lerp(
  1543. static_cast<float>(src.buf[3 * (y_floor * src.nx + x_floor) + c]),
  1544. static_cast<float>(src.buf[3 * (y_floor * src.nx + (x_floor + 1)) + c]),
  1545. x_lerp
  1546. );
  1547. float bottom = clip_lerp(
  1548. static_cast<float>(src.buf[3 * ((y_floor + 1) * src.nx + x_floor) + c]),
  1549. static_cast<float>(src.buf[3 * ((y_floor + 1) * src.nx + (x_floor + 1)) + c]),
  1550. x_lerp
  1551. );
  1552. dst.buf[3 * (y * target_width + x) + c] = static_cast<uint8_t>(clip_lerp(top, bottom, y_lerp));
  1553. }
  1554. }
  1555. }
  1556. }
  1557. // Normalize image to float32 - careful with pytorch .to(model.device, dtype=torch.float16) - this sometimes reduces precision (32>16>32), sometimes not
  1558. static void normalize_image_u8_to_f32(const clip_image_u8* src, clip_image_f32* dst, const float mean[3], const float std[3]) {
  1559. dst->nx = src->nx;
  1560. dst->ny = src->ny;
  1561. dst->buf.resize(src->buf.size());
  1562. for (size_t i = 0; i < src->buf.size(); ++i) {
  1563. int c = i % 3; // rgb
  1564. dst->buf[i] = (static_cast<float>(src->buf[i]) / 255.0f - mean[c]) / std[c];
  1565. }
  1566. }
  1567. inline int clip(int x, int lower, int upper) {
  1568. return std::max(lower, std::min(x, upper));
  1569. }
  1570. static bool bicubic_resize(const clip_image_u8 &img, clip_image_u8 &dst, int target_width, int target_height) {
  1571. const int nx = img.nx;
  1572. const int ny = img.ny;
  1573. dst.nx = target_width;
  1574. dst.ny = target_height;
  1575. dst.buf.resize(3 * target_width * target_height);
  1576. float Cc;
  1577. float C[5];
  1578. float d0, d2, d3, a0, a1, a2, a3;
  1579. int i, j, k, jj;
  1580. int x, y;
  1581. float dx, dy;
  1582. float tx, ty;
  1583. tx = (float)nx / (float)target_width;
  1584. ty = (float)ny / (float)target_height;
  1585. // Bicubic interpolation; adapted from ViT.cpp, inspired from :
  1586. // -> https://github.com/yglukhov/bicubic-interpolation-image-processing/blob/master/libimage.c#L36
  1587. // -> https://en.wikipedia.org/wiki/Bicubic_interpolation
  1588. for (i = 0; i < target_height; i++) {
  1589. for (j = 0; j < target_width; j++) {
  1590. x = (int)(tx * j);
  1591. y = (int)(ty * i);
  1592. dx = tx * j - x;
  1593. dy = ty * i - y;
  1594. for (k = 0; k < 3; k++) {
  1595. for (jj = 0; jj <= 3; jj++) {
  1596. d0 = img.buf[(clip(y - 1 + jj, 0, ny - 1) * nx + clip(x - 1, 0, nx - 1)) * 3 + k] - img.buf[(clip(y - 1 + jj, 0, ny - 1) * nx + clip(x, 0, nx - 1)) * 3 + k];
  1597. d2 = img.buf[(clip(y - 1 + jj, 0, ny - 1) * nx + clip(x + 1, 0, nx - 1)) * 3 + k] - img.buf[(clip(y - 1 + jj, 0, ny - 1) * nx + clip(x, 0, nx - 1)) * 3 + k];
  1598. d3 = img.buf[(clip(y - 1 + jj, 0, ny - 1) * nx + clip(x + 2, 0, nx - 1)) * 3 + k] - img.buf[(clip(y - 1 + jj, 0, ny - 1) * nx + clip(x, 0, nx - 1)) * 3 + k];
  1599. a0 = img.buf[(clip(y - 1 + jj, 0, ny - 1) * nx + clip(x, 0, nx - 1)) * 3 + k];
  1600. a1 = -1.0 / 3 * d0 + d2 - 1.0 / 6 * d3;
  1601. a2 = 1.0 / 2 * d0 + 1.0 / 2 * d2;
  1602. a3 = -1.0 / 6 * d0 - 1.0 / 2 * d2 + 1.0 / 6 * d3;
  1603. C[jj] = a0 + a1 * dx + a2 * dx * dx + a3 * dx * dx * dx;
  1604. d0 = C[0] - C[1];
  1605. d2 = C[2] - C[1];
  1606. d3 = C[3] - C[1];
  1607. a0 = C[1];
  1608. a1 = -1.0 / 3 * d0 + d2 - 1.0 / 6 * d3;
  1609. a2 = 1.0 / 2 * d0 + 1.0 / 2 * d2;
  1610. a3 = -1.0 / 6 * d0 - 1.0 / 2 * d2 + 1.0 / 6 * d3;
  1611. Cc = a0 + a1 * dy + a2 * dy * dy + a3 * dy * dy * dy;
  1612. const uint8_t Cc2 = std::min(std::max(std::round(Cc), 0.0f), 255.0f);
  1613. dst.buf[(i * target_width + j) * 3 + k] = float(Cc2);
  1614. }
  1615. }
  1616. }
  1617. }
  1618. return true;
  1619. }
  1620. // llava-1.6 type of resize_and_pad (black)
  1621. static void resize_and_pad_image(const clip_image_u8& image, clip_image_u8 &image_output, const std::pair<int, int>& target_resolution) {
  1622. int target_width = target_resolution.first;
  1623. int target_height = target_resolution.second;
  1624. float scale_w = static_cast<float>(target_width) / image.nx;
  1625. float scale_h = static_cast<float>(target_height) / image.ny;
  1626. int new_width, new_height;
  1627. if (scale_w < scale_h) {
  1628. new_width = target_width;
  1629. new_height = std::min(static_cast<int>(std::ceil(image.ny * scale_w)), target_height);
  1630. } else {
  1631. new_height = target_height;
  1632. new_width = std::min(static_cast<int>(std::ceil(image.nx * scale_h)), target_width);
  1633. }
  1634. clip_image_u8 resized_image;
  1635. // bilinear_resize(image, resized_image, new_width, new_height);
  1636. bicubic_resize(image, resized_image, new_width, new_height);
  1637. clip_image_u8 padded_image;
  1638. padded_image.nx = target_width;
  1639. padded_image.ny = target_height;
  1640. padded_image.buf.resize(3 * target_width * target_height, 0); // Initialize with black
  1641. // Calculate padding offsets
  1642. int pad_x = (target_width - new_width) / 2;
  1643. int pad_y = (target_height - new_height) / 2;
  1644. // Copy the resized image into the center of the padded buffer
  1645. for (int y = 0; y < new_height; ++y) {
  1646. for (int x = 0; x < new_width; ++x) {
  1647. for (int c = 0; c < 3; ++c) {
  1648. padded_image.buf[3 * ((y + pad_y) * target_width + (x + pad_x)) + c] = resized_image.buf[3 * (y * new_width + x) + c];
  1649. }
  1650. }
  1651. }
  1652. image_output = std::move(padded_image);
  1653. }
  1654. /**
  1655. * Selects the best resolution from a list of possible resolutions based on the original size.
  1656. *
  1657. * @param original_size The original size of the image in the format (width, height).
  1658. * @param possible_resolutions A list of possible resolutions in the format [(width1, height1), (width2, height2), ...].
  1659. * @return The best fit resolution in the format (width, height).
  1660. */
  1661. static std::pair<int, int> select_best_resolution(const std::pair<int, int> & original_size, const std::vector<std::pair<int, int>> & possible_resolutions) {
  1662. int original_width = original_size.first;
  1663. int original_height = original_size.second;
  1664. std::pair<int, int> best_fit;
  1665. int max_effective_resolution = 0;
  1666. int min_wasted_resolution = std::numeric_limits<int>::max();
  1667. for (const auto& resolution : possible_resolutions) {
  1668. int width = resolution.first;
  1669. int height = resolution.second;
  1670. float scale = std::min(static_cast<float>(width) / original_width, static_cast<float>(height) / original_height);
  1671. int downscaled_width = static_cast<int>(original_width * scale);
  1672. int downscaled_height = static_cast<int>(original_height * scale);
  1673. int effective_resolution = std::min(downscaled_width * downscaled_height, original_width * original_height);
  1674. int wasted_resolution = (width * height) - effective_resolution;
  1675. // LOG_INF("resolution: %d %d, scale: %f, downscaled: %d %d, effective: %d, wasted: %d\n", width, height, scale, downscaled_width, downscaled_height, effective_resolution, wasted_resolution);
  1676. if (effective_resolution > max_effective_resolution || (effective_resolution == max_effective_resolution && wasted_resolution < min_wasted_resolution)) {
  1677. max_effective_resolution = effective_resolution;
  1678. min_wasted_resolution = wasted_resolution;
  1679. best_fit = resolution;
  1680. }
  1681. }
  1682. return best_fit;
  1683. }
  1684. static std::vector<clip_image_u8*> divide_to_patches_u8(const clip_image_u8 & image, int patch_size) {
  1685. std::vector<clip_image_u8*> patches;
  1686. int width = image.nx;
  1687. int height = image.ny;
  1688. for (int i = 0; i < height; i += patch_size) {
  1689. for (int j = 0; j < width; j += patch_size) {
  1690. clip_image_u8 *patch = clip_image_u8_init();
  1691. patch->nx = std::min(patch_size, width - j);
  1692. patch->ny = std::min(patch_size, height - i);
  1693. patch->buf.resize(3 * patch->nx * patch->ny);
  1694. for (int y = 0; y < patch->ny; ++y) {
  1695. for (int x = 0; x < patch->nx; ++x) {
  1696. for (int c = 0; c < 3; ++c) {
  1697. patch->buf[3 * (y * patch->nx + x) + c] = image.buf[3 * ((i + y) * width + (j + x)) + c];
  1698. }
  1699. }
  1700. }
  1701. patches.push_back(patch);
  1702. }
  1703. }
  1704. return patches;
  1705. }
  1706. static int ensure_divide(int length, int patch_size) {
  1707. return std::max(static_cast<int>(std::round(static_cast<float>(length) / patch_size) * patch_size), patch_size);
  1708. }
  1709. static std::pair<int, int> uhd_find_best_resize(std::pair<int, int> original_size, int scale_resolution, int patch_size, bool allow_upscale = false) {
  1710. int width = original_size.first;
  1711. int height = original_size.second;
  1712. if ((width * height > scale_resolution * scale_resolution) || allow_upscale) {
  1713. float r = static_cast<float>(width) / height;
  1714. height = static_cast<int>(scale_resolution / std::sqrt(r));
  1715. width = static_cast<int>(height * r);
  1716. }
  1717. int best_width = ensure_divide(width, patch_size);
  1718. int best_height = ensure_divide(height, patch_size);
  1719. return std::make_pair(best_width, best_height);
  1720. }
  1721. static std::pair<int, int> uhd_get_refine_size(std::pair<int, int> original_size, std::pair<int, int> grid, int scale_resolution, int patch_size, bool allow_upscale = false) {
  1722. int width, height;
  1723. std::tie(width, height) = original_size;
  1724. int grid_x, grid_y;
  1725. std::tie(grid_x, grid_y) = grid;
  1726. int refine_width = ensure_divide(width, grid_x);
  1727. int refine_height = ensure_divide(height, grid_y);
  1728. int grid_width = refine_width / grid_x;
  1729. int grid_height = refine_height / grid_y;
  1730. // auto best_grid_size = find_best_resize(std::make_tuple(grid_width, grid_height), scale_resolution, patch_size, allow_upscale); (old line)
  1731. auto best_grid_size = uhd_find_best_resize(std::make_pair(grid_width, grid_height), scale_resolution, patch_size, allow_upscale); // (new line) => fixes conversion for make_tuple to make_pair
  1732. int best_grid_width, best_grid_height;
  1733. std::tie(best_grid_width, best_grid_height) = best_grid_size;
  1734. // std::pair<int, int> refine_size = std::make_tuple(best_grid_width * grid_x, best_grid_height * grid_y); (old line)
  1735. std::pair<int, int> refine_size = std::make_pair(best_grid_width * grid_x, best_grid_height * grid_y); // (new line)
  1736. return refine_size;
  1737. }
  1738. static std::pair<int, int> uhd_best_grid(const int max_slice_nums, const int multiple, const float log_ratio) {
  1739. std::vector<int> candidate_split_grids_nums;
  1740. for (int i : {multiple - 1, multiple, multiple + 1}) {
  1741. if (i == 1 || i > max_slice_nums) {
  1742. continue;
  1743. }
  1744. candidate_split_grids_nums.push_back(i);
  1745. }
  1746. std::vector<std::pair<int, int>> candidate_grids;
  1747. for (int split_grids_nums : candidate_split_grids_nums) {
  1748. int m = 1;
  1749. while (m <= split_grids_nums) {
  1750. if (split_grids_nums % m == 0) {
  1751. candidate_grids.emplace_back(m, split_grids_nums / m);
  1752. }
  1753. ++m;
  1754. }
  1755. }
  1756. std::pair<int, int> best_grid{1, 1};
  1757. float min_error = std::numeric_limits<float>::infinity();
  1758. for (const auto& grid : candidate_grids) {
  1759. float error = std::abs(log_ratio - std::log(1.0 * grid.first / grid.second));
  1760. if (error < min_error) {
  1761. best_grid = grid;
  1762. min_error = error;
  1763. }
  1764. }
  1765. return best_grid;
  1766. }
  1767. // inspired from LLaVA-UHD:
  1768. // -> https://arxiv.org/pdf/2403.11703
  1769. // -> https://github.com/thunlp/LLaVA-UHD
  1770. // -> https://github.com/thunlp/LLaVA-UHD/blob/302301bc2175f7e717fb8548516188e89f649753/llava_uhd/train/llava-uhd/slice_logic.py#L118
  1771. static std::vector<std::vector<clip_image_u8 *>> uhd_slice_image(const clip_image_u8 * img, const int max_slice_nums=9, const int scale_resolution=448, const int patch_size=14) {
  1772. const std::pair<int, int> original_size={img->nx,img->ny};
  1773. const int original_width = img->nx;
  1774. const int original_height = img->ny;
  1775. const float log_ratio = log(1.0*original_width/original_height);
  1776. const float ratio = 1.0 * original_width * original_height/ (scale_resolution * scale_resolution);
  1777. const int multiple = fmin(ceil(ratio), max_slice_nums);
  1778. std::vector<std::vector<clip_image_u8 *>> images;
  1779. LOG_INF("%s: multiple %d\n", __func__, multiple);
  1780. images.push_back(std::vector<clip_image_u8 *>());
  1781. if (multiple <= 1) {
  1782. auto best_size = uhd_find_best_resize(original_size, scale_resolution, patch_size, true);
  1783. clip_image_u8 * source_image = clip_image_u8_init();
  1784. bicubic_resize(*img, *source_image, best_size.first, best_size.second);
  1785. // source_image = image.resize(best_size, Image.Resampling.BICUBIC)
  1786. images[images.size()-1].push_back(source_image);
  1787. }
  1788. else if (multiple > 1) {
  1789. auto best_size = uhd_find_best_resize(original_size, scale_resolution, patch_size);
  1790. clip_image_u8 * source_image = clip_image_u8_init();
  1791. bicubic_resize(*img, *source_image, best_size.first, best_size.second);
  1792. // source_image = image.copy().resize(best_resize, Image.Resampling.BICUBIC)
  1793. LOG_INF("%s: image_size: %d %d; source_image size: %d %d\n", __func__, img->nx, img->ny, best_size.first, best_size.second);
  1794. images[images.size()-1].push_back(source_image);
  1795. std::pair<int, int> best_grid = uhd_best_grid(max_slice_nums, multiple, log_ratio);
  1796. LOG_INF("%s: image_size: %d %d; best_grid: %d %d\n", __func__, img->nx, img->ny, best_grid.first, best_grid.second);
  1797. auto refine_size = uhd_get_refine_size(original_size, best_grid, scale_resolution, patch_size, true);
  1798. clip_image_u8 * refine_image = clip_image_u8_init();
  1799. bicubic_resize(*img, *refine_image, refine_size.first, refine_size.second);
  1800. LOG_INF("%s: refine_image_size: %d %d; refine_size: %d %d\n", __func__, refine_image->nx, refine_image->ny, refine_size.first, refine_size.second);
  1801. // split_to_patches
  1802. int width = refine_image->nx;
  1803. int height = refine_image->ny;
  1804. int grid_x = int(width / best_grid.first);
  1805. int grid_y = int(height / best_grid.second);
  1806. for (int patches_i = 0, ic = 0; patches_i < height && ic < best_grid.second; patches_i += grid_y, ic += 1){
  1807. images.push_back(std::vector<clip_image_u8 *>());
  1808. for(int patches_j = 0, jc = 0; patches_j < width && jc < best_grid.first; patches_j += grid_x, jc += 1){
  1809. clip_image_u8 * patch = clip_image_u8_init();
  1810. patch->nx = grid_x;
  1811. patch->ny = grid_y;
  1812. patch->buf.resize(3 * patch->nx * patch->ny);
  1813. for (int y = patches_i; y < patches_i + grid_y; ++y) {
  1814. for (int x = patches_j; x < patches_j + grid_x; ++x) {
  1815. const int i = 3 * (y * refine_image->nx + x);
  1816. const int j = 3 * ((y-patches_i) * patch->nx + (x-patches_j));
  1817. patch->buf[j] = refine_image->buf[i];
  1818. patch->buf[j+1] = refine_image->buf[i+1];
  1819. patch->buf[j+2] = refine_image->buf[i+2];
  1820. }
  1821. }
  1822. images[images.size()-1].push_back(patch);
  1823. }
  1824. }
  1825. }
  1826. return images;
  1827. }
  1828. int clip_uhd_num_image_embeds_col(struct clip_ctx * ctx_clip) {
  1829. const int max_slice_nums=9;
  1830. const int scale_resolution=448;
  1831. const int original_width = ctx_clip->load_image_size->width;
  1832. const int original_height = ctx_clip->load_image_size->height;
  1833. const float log_ratio = log(1.0*original_width/original_height);
  1834. const float ratio = 1.0 * original_width * original_height/ (scale_resolution * scale_resolution);
  1835. const int multiple = fmin(ceil(ratio), max_slice_nums);
  1836. std::pair<int, int> best_grid = uhd_best_grid(max_slice_nums, multiple, log_ratio);
  1837. return best_grid.first;
  1838. }
  1839. // returns the normalized float tensor for llava-1.5, for spatial_unpad with anyres processing for llava-1.6 it returns the normalized image patch tensors as a vector
  1840. // res_imgs memory is being allocated here, previous allocations will be freed if found
  1841. bool clip_image_preprocess(struct clip_ctx * ctx, const clip_image_u8 * img, clip_image_f32_batch * res_imgs) {
  1842. if(clip_is_minicpmv(ctx)){
  1843. int max_slice_nums = 9;
  1844. std::vector<std::vector<clip_image_u8 *>> imgs = uhd_slice_image(img, max_slice_nums);
  1845. res_imgs->size = 0;
  1846. for (size_t i = 0; i < imgs.size(); ++i){
  1847. res_imgs->size += imgs[i].size();
  1848. }
  1849. res_imgs->data = new clip_image_f32[res_imgs->size];
  1850. int idx = 0;
  1851. for (size_t i = 0; i < imgs.size(); ++i) {
  1852. for (size_t j = 0; j < imgs[i].size(); ++j) {
  1853. LOG_DBG("%s: %d %d\n", __func__,imgs[i][j]->nx,imgs[i][j]->ny);
  1854. clip_image_f32 * res = clip_image_f32_init();
  1855. normalize_image_u8_to_f32(imgs[i][j], res, ctx->image_mean, ctx->image_std);
  1856. res_imgs->data[idx++] = *res;
  1857. clip_image_f32_free(res);
  1858. }
  1859. }
  1860. return true;
  1861. }
  1862. else if (ctx->has_qwen2vl_merger) {
  1863. clip_image_u8 * resized = clip_image_u8_init();
  1864. auto patch_size = clip_patch_size(ctx) * 2;
  1865. int nx = ceil((float)img->nx / patch_size) * patch_size;
  1866. int ny = ceil((float)img->ny / patch_size) * patch_size;
  1867. bicubic_resize(*img, *resized, nx, ny);
  1868. res_imgs->data = new clip_image_f32[1];
  1869. // clip_image_f32 * res = clip_image_f32_init();
  1870. normalize_image_u8_to_f32(resized, res_imgs->data, ctx->image_mean, ctx->image_std);
  1871. // res_imgs->data[0] = *res;
  1872. res_imgs->size = 1;
  1873. // clip_image_f32_free(res);
  1874. clip_image_u8_free(resized);
  1875. return true;
  1876. }
  1877. bool pad_to_square = true;
  1878. if (!ctx->has_vision_encoder) {
  1879. LOG_ERR("This gguf file seems to have no vision encoder\n");
  1880. return false;
  1881. }
  1882. auto & params = ctx->vision_model.hparams;
  1883. // The model config actually contains all we need to decide on how to preprocess, here we automatically switch to the new llava-1.6 preprocessing
  1884. if (strcmp(params.mm_patch_merge_type, "spatial_unpad") == 0) {
  1885. pad_to_square = false;
  1886. }
  1887. // free the previous res_imgs if any set
  1888. if (res_imgs->size > 0) {
  1889. clip_image_f32_batch_free(res_imgs);
  1890. }
  1891. res_imgs->data = nullptr;
  1892. res_imgs->size = 0;
  1893. // the logic below is to pad the shorter side to the longer side with a background color: rgb(122, 116, 104)
  1894. // see https://github.com/haotian-liu/LLaVA/blob/e854a2bf85118c504f6f16bf5c3c7c92f8fa8c6b/llava/conversation.py#L113-L156
  1895. clip_image_u8 * temp = clip_image_u8_init(); // we will keep the input image data here temporarily
  1896. if (pad_to_square && img->nx != img->ny) {
  1897. int longer_side = std::max(img->nx, img->ny);
  1898. temp->nx = longer_side;
  1899. temp->ny = longer_side;
  1900. temp->buf.resize(3 * longer_side * longer_side);
  1901. const uint8_t bc[3] = {122, 116, 104}; // background color in RGB from LLaVA (this is the mean rgb color * 255)
  1902. // fill with background color
  1903. for (size_t i = 0; i < temp->buf.size(); i++) {
  1904. temp->buf[i] = bc[i % 3];
  1905. }
  1906. // copy from the input image
  1907. for (int y = 0; y < img->ny; y++) {
  1908. for (int x = 0; x < img->nx; x++) {
  1909. const int i = 3 * (y * img->nx + x);
  1910. const int j = 3 * (y * temp->nx + x);
  1911. temp->buf[j] = img->buf[i];
  1912. temp->buf[j+1] = img->buf[i+1];
  1913. temp->buf[j+2] = img->buf[i+2];
  1914. }
  1915. }
  1916. } else {
  1917. if (params.image_grid_pinpoints[0] != 0) {
  1918. // "spatial_unpad" with "anyres" processing for llava-1.6
  1919. std::vector<std::pair<int, int>> possible_resolutions;
  1920. for (int i = 0; i < 32 && params.image_grid_pinpoints[i] != 0; i+=2) {
  1921. possible_resolutions.push_back({params.image_grid_pinpoints[i], params.image_grid_pinpoints[i+1]});
  1922. }
  1923. std::pair<int, int> best_resolution = select_best_resolution({img->nx, img->ny}, possible_resolutions);
  1924. // clip_image_save_to_bmp(*img, "input.bmp");
  1925. resize_and_pad_image(*img, *temp, best_resolution); // we do not pad with mean-bg color anymore in llava-1.6
  1926. // clip_image_save_to_bmp(*temp, "resized.bmp");
  1927. // visually verify normalized image:
  1928. // normalize_image_u8_to_f32(*temp, *res, ctx->image_mean, ctx->image_std);
  1929. // {
  1930. // clip_image_u8 * temp2 = clip_image_u8_init();
  1931. // clip_image_convert_f32_to_u8(*res, *temp2);
  1932. // clip_image_save_to_bmp(*temp2, "resized_normalized_f32.bmp");
  1933. // clip_image_u8_free(temp2);
  1934. // }
  1935. std::vector<clip_image_u8 *> patches = divide_to_patches_u8(*temp, params.image_size); // prepare spatial sorted main patches of image_size each (336 in llava-1.6)
  1936. clip_image_u8 *image_original_resize = clip_image_u8_init();
  1937. // bilinear_resize(*img, *image_original_resize, params.image_size, params.image_size); // in python this is "shortest_edge", but all CLIP are square
  1938. bicubic_resize(*img, *image_original_resize, params.image_size, params.image_size); // in python this is "shortest_edge", but all CLIP are square
  1939. patches.insert(patches.begin(), image_original_resize);
  1940. // clip_image_f32_batch_init(patches.size());
  1941. res_imgs->size = patches.size();
  1942. res_imgs->data = new clip_image_f32[res_imgs->size];
  1943. int num=0;
  1944. for (auto& patch : patches) {
  1945. normalize_image_u8_to_f32(patch, &res_imgs->data[num], ctx->image_mean, ctx->image_std);
  1946. num++;
  1947. }
  1948. for (size_t i = 0; i < patches.size(); i++) {
  1949. // LOG_DBG("patch %d: %d %d\n", i, patches[i]->nx, patches[i]->ny);
  1950. clip_image_u8_free(patches[i]);
  1951. }
  1952. clip_image_u8_free(temp);
  1953. return true;
  1954. } else {
  1955. temp->nx = img->nx;
  1956. temp->ny = img->ny;
  1957. temp->buf.resize(img->buf.size());
  1958. memcpy(temp->buf.data(), img->buf.data(), temp->buf.size());
  1959. }
  1960. }
  1961. const int nx = temp->nx;
  1962. const int ny = temp->ny;
  1963. // clip_image_save_to_bmp(*temp, "resized_vanilla.bmp");
  1964. const int nx2 = ctx->vision_model.hparams.image_size;
  1965. const int ny2 = ctx->vision_model.hparams.image_size;
  1966. clip_image_f32 * res = clip_image_f32_init();
  1967. res->nx = nx2;
  1968. res->ny = ny2;
  1969. res->buf.resize(3 * nx2 * ny2);
  1970. const float scale = std::max(nx, ny) / (float)ctx->vision_model.hparams.image_size;
  1971. const int nx3 = int(nx / scale + 0.5f);
  1972. const int ny3 = int(ny / scale + 0.5f);
  1973. const auto & m3 = ctx->image_mean; // {0.48145466f, 0.4578275f, 0.40821073f};
  1974. const auto & s3 = ctx->image_std; // {0.26862954f, 0.26130258f, 0.27577711f};
  1975. for (int y = 0; y < ny3; y++) {
  1976. for (int x = 0; x < nx3; x++) {
  1977. for (int c = 0; c < 3; c++) {
  1978. // linear interpolation
  1979. const float sx = (x + 0.5f) * scale - 0.5f;
  1980. const float sy = (y + 0.5f) * scale - 0.5f;
  1981. const int x0 = std::max(0, (int)std::floor(sx));
  1982. const int y0 = std::max(0, (int)std::floor(sy));
  1983. const int x1 = std::min(x0 + 1, nx - 1);
  1984. const int y1 = std::min(y0 + 1, ny - 1);
  1985. const float dx = sx - x0;
  1986. const float dy = sy - y0;
  1987. const int j00 = 3 * (y0 * nx + x0) + c;
  1988. const int j01 = 3 * (y0 * nx + x1) + c;
  1989. const int j10 = 3 * (y1 * nx + x0) + c;
  1990. const int j11 = 3 * (y1 * nx + x1) + c;
  1991. const float v00 = temp->buf[j00];
  1992. const float v01 = temp->buf[j01];
  1993. const float v10 = temp->buf[j10];
  1994. const float v11 = temp->buf[j11];
  1995. const float v0 = v00 * (1.0f - dx) + v01 * dx;
  1996. const float v1 = v10 * (1.0f - dx) + v11 * dx;
  1997. const float v = v0 * (1.0f - dy) + v1 * dy;
  1998. const uint8_t v2 = std::min(std::max(std::round(v), 0.0f), 255.0f);
  1999. const int i = 3 * (y * nx3 + x) + c;
  2000. res->buf[i] = ((float(v2) / 255.0f) - m3[c]) / s3[c];
  2001. }
  2002. }
  2003. }
  2004. clip_image_u8_free(temp);
  2005. // {
  2006. // clip_image_u8 * temp2 = clip_image_u8_init();
  2007. // clip_image_convert_f32_to_u8(*res, *temp2);
  2008. // clip_image_save_to_bmp(*temp2, "resized_normalized_f32_vanilla.bmp");
  2009. // clip_image_u8_free(temp2);
  2010. // }
  2011. // res_imgs.push_back(res);
  2012. res_imgs->size = 1;
  2013. res_imgs->data = new clip_image_f32[res_imgs->size];
  2014. res_imgs->data[0] = *res;
  2015. clip_image_f32_free(res);
  2016. return true;
  2017. }
  2018. ggml_tensor * clip_get_newline_tensor(const struct clip_ctx * ctx) {
  2019. return ctx->vision_model.image_newline;
  2020. }
  2021. void clip_free(clip_ctx * ctx) {
  2022. ggml_free(ctx->ctx_data);
  2023. gguf_free(ctx->ctx_gguf);
  2024. ggml_backend_buffer_free(ctx->params_buffer);
  2025. ggml_backend_free(ctx->backend);
  2026. ggml_gallocr_free(ctx->compute_alloc);
  2027. delete ctx;
  2028. }
  2029. size_t clip_embd_nbytes(const struct clip_ctx * ctx) {
  2030. return clip_n_patches(ctx) * clip_n_mmproj_embd(ctx) * sizeof(float);
  2031. }
  2032. size_t clip_embd_nbytes_by_img(const struct clip_ctx * ctx, int img_h, int img_w) {
  2033. clip_image_f32 img;
  2034. img.nx = img_w;
  2035. img.ny = img_h;
  2036. return clip_n_patches_by_img(ctx, &img) * clip_n_mmproj_embd(ctx) * sizeof(float);
  2037. }
  2038. int32_t clip_image_size(const struct clip_ctx * ctx) {
  2039. return ctx->vision_model.hparams.image_size;
  2040. }
  2041. int32_t clip_patch_size(const struct clip_ctx * ctx) {
  2042. return ctx->vision_model.hparams.patch_size;
  2043. }
  2044. int32_t clip_hidden_size(const struct clip_ctx * ctx) {
  2045. return ctx->vision_model.hparams.hidden_size;
  2046. }
  2047. const char * clip_patch_merge_type(const struct clip_ctx * ctx) {
  2048. return ctx->vision_model.hparams.mm_patch_merge_type;
  2049. }
  2050. const int32_t * clip_image_grid(const struct clip_ctx * ctx) {
  2051. return ctx->vision_model.hparams.image_grid_pinpoints;
  2052. }
  2053. int clip_n_patches(const struct clip_ctx * ctx) {
  2054. clip_image_f32 img;
  2055. img.nx = ctx->vision_model.hparams.image_size;
  2056. img.ny = ctx->vision_model.hparams.image_size;
  2057. return clip_n_patches_by_img(ctx, &img);
  2058. }
  2059. int clip_n_patches_by_img(const struct clip_ctx * ctx, struct clip_image_f32 * img) {
  2060. const auto & params = ctx->vision_model.hparams;
  2061. int n_patches = (params.image_size / params.patch_size) * (params.image_size / params.patch_size);
  2062. if (ctx->proj_type == PROJECTOR_TYPE_LDP || ctx->proj_type == PROJECTOR_TYPE_LDPV2) {
  2063. n_patches /= 4;
  2064. } else if (ctx->proj_type == PROJECTOR_TYPE_RESAMPLER) {
  2065. if (ctx->minicpmv_version == 2) {
  2066. n_patches = 96;
  2067. }
  2068. else if (ctx->minicpmv_version == 3) {
  2069. n_patches = 64;
  2070. }
  2071. } else if (ctx->proj_type == PROJECTOR_TYPE_MERGER) {
  2072. int patch_size = params.patch_size * 2;
  2073. int x_patch = img->nx / patch_size + (int)(img->nx % patch_size > 0);
  2074. int y_patch = img->ny / patch_size + (int)(img->ny % patch_size > 0);
  2075. n_patches = x_patch * y_patch;
  2076. }
  2077. return n_patches;
  2078. }
  2079. static std::vector<std::vector<std::vector<float>>> get_1d_sincos_pos_embed_from_grid_new(int embed_dim, const std::vector<std::vector<float>> & pos) {
  2080. assert(embed_dim % 2 == 0);
  2081. int H = pos.size();
  2082. int W = pos[0].size();
  2083. std::vector<float> omega(embed_dim / 2);
  2084. for (int i = 0; i < embed_dim / 2; ++i) {
  2085. omega[i] = 1.0 / pow(10000.0, static_cast<float>(i) / (embed_dim / 2));
  2086. }
  2087. std::vector<std::vector<std::vector<float>>> emb(H, std::vector<std::vector<float>>(W, std::vector<float>(embed_dim)));
  2088. for (int h = 0; h < H; ++h) {
  2089. for (int w = 0; w < W; ++w) {
  2090. for (int d = 0; d < embed_dim / 2; ++d) {
  2091. float out_value = pos[h][w] * omega[d];
  2092. emb[h][w][d] = sin(out_value);
  2093. emb[h][w][d + embed_dim / 2] = cos(out_value);
  2094. }
  2095. }
  2096. }
  2097. return emb;
  2098. }
  2099. static std::vector<std::vector<std::vector<float>>> get_2d_sincos_pos_embed_from_grid(int embed_dim, const std::vector<std::vector<std::vector<float>>> & grid) {
  2100. assert(embed_dim % 2 == 0);
  2101. std::vector<std::vector<std::vector<float>>> emb_h = get_1d_sincos_pos_embed_from_grid_new(embed_dim / 2, grid[0]); // (H, W, D/2)
  2102. std::vector<std::vector<std::vector<float>>> emb_w = get_1d_sincos_pos_embed_from_grid_new(embed_dim / 2, grid[1]); // (H, W, D/2)
  2103. int H = emb_h.size();
  2104. int W = emb_h[0].size();
  2105. std::vector<std::vector<std::vector<float>>> emb(H, std::vector<std::vector<float>>(W, std::vector<float>(embed_dim)));
  2106. for (int h = 0; h < H; ++h) {
  2107. for (int w = 0; w < W; ++w) {
  2108. for (int d = 0; d < embed_dim / 2; ++d) {
  2109. emb[h][w][d] = emb_h[h][w][d];
  2110. emb[h][w][d + embed_dim / 2] = emb_w[h][w][d];
  2111. }
  2112. }
  2113. }
  2114. return emb;
  2115. }
  2116. static std::vector<std::vector<float>> get_2d_sincos_pos_embed(int embed_dim, const std::pair<int, int> image_size) {
  2117. int grid_h_size = image_size.first;
  2118. int grid_w_size = image_size.second;
  2119. std::vector<float> grid_h(grid_h_size);
  2120. std::vector<float> grid_w(grid_w_size);
  2121. for (int i = 0; i < grid_h_size; ++i) {
  2122. grid_h[i] = static_cast<float>(i);
  2123. }
  2124. for (int i = 0; i < grid_w_size; ++i) {
  2125. grid_w[i] = static_cast<float>(i);
  2126. }
  2127. std::vector<std::vector<float>> grid(grid_h_size, std::vector<float>(grid_w_size));
  2128. for (int h = 0; h < grid_h_size; ++h) {
  2129. for (int w = 0; w < grid_w_size; ++w) {
  2130. grid[h][w] = grid_w[w];
  2131. }
  2132. }
  2133. std::vector<std::vector<std::vector<float>>> grid_2d = {grid, grid};
  2134. for (int h = 0; h < grid_h_size; ++h) {
  2135. for (int w = 0; w < grid_w_size; ++w) {
  2136. grid_2d[0][h][w] = grid_h[h];
  2137. grid_2d[1][h][w] = grid_w[w];
  2138. }
  2139. }
  2140. std::vector<std::vector<std::vector<float>>> pos_embed_3d = get_2d_sincos_pos_embed_from_grid(embed_dim, grid_2d);
  2141. int H = image_size.first;
  2142. int W = image_size.second;
  2143. std::vector<std::vector<float>> pos_embed_2d(H * W, std::vector<float>(embed_dim));
  2144. for (int h = 0; h < H; ++h) {
  2145. for (int w = 0; w < W; ++w) {
  2146. pos_embed_2d[w * H + h] = pos_embed_3d[h][w];
  2147. }
  2148. }
  2149. return pos_embed_2d;
  2150. }
  2151. bool clip_image_encode(struct clip_ctx * ctx, const int n_threads, clip_image_f32 * img, float * vec) {
  2152. if (!ctx->has_vision_encoder) {
  2153. LOG_ERR("This gguf file seems to have no vision encoder\n");
  2154. return false;
  2155. }
  2156. clip_image_f32_batch imgs{};
  2157. imgs.size = 1;
  2158. imgs.data = img;
  2159. return clip_image_batch_encode(ctx, n_threads, &imgs, vec);
  2160. }
  2161. bool clip_image_batch_encode(clip_ctx * ctx, const int n_threads, const clip_image_f32_batch * imgs, float * vec) {
  2162. if (!ctx->has_vision_encoder) {
  2163. LOG_ERR("This gguf file seems to have no vision encoder\n");
  2164. return false;
  2165. }
  2166. int batch_size = imgs->size;
  2167. if (ctx->has_llava_projector) {
  2168. GGML_ASSERT(batch_size == 1); // TODO: support multiple images
  2169. }
  2170. if (ctx->has_minicpmv_projector) {
  2171. GGML_ASSERT(batch_size == 1);
  2172. }
  2173. // build the inference graph
  2174. ggml_cgraph * gf = clip_image_build_graph(ctx, imgs, ctx->load_image_size, true);
  2175. ggml_gallocr_alloc_graph(ctx->compute_alloc, gf);
  2176. // set inputs
  2177. const auto & model = ctx->vision_model;
  2178. const auto & hparams = model.hparams;
  2179. const int image_size = hparams.image_size;
  2180. int image_size_width = image_size;
  2181. int image_size_height = image_size;
  2182. if (ctx->has_minicpmv_projector | ctx->has_qwen2vl_merger) {
  2183. image_size_width = imgs->data[0].nx;
  2184. image_size_height = imgs->data[0].ny;
  2185. }
  2186. const int patch_size = hparams.patch_size;
  2187. const int num_patches = ((image_size_width / patch_size) * (image_size_height / patch_size));
  2188. const int num_positions = num_patches + (ctx->has_class_embedding ? 1 : 0);
  2189. if(ctx->load_image_size==nullptr){
  2190. ctx->load_image_size= clip_image_size_init();
  2191. }
  2192. const int pos_w = ctx->load_image_size->width/patch_size;
  2193. const int pos_h = ctx->load_image_size->height/patch_size;
  2194. {
  2195. struct ggml_tensor * inp_raw = ggml_graph_get_tensor(gf, "inp_raw");
  2196. float * data = (float *)malloc(ggml_nbytes(inp_raw));
  2197. for (size_t i = 0; i < imgs->size; i++) {
  2198. const int nx = imgs->data[i].nx;
  2199. const int ny = imgs->data[i].ny;
  2200. if (!(ctx->has_minicpmv_projector | ctx->has_qwen2vl_merger)) {
  2201. GGML_ASSERT(nx == image_size && ny == image_size);
  2202. }
  2203. const int n = nx * ny;
  2204. for (int b = 0; b < batch_size; b++) {
  2205. for (int k = 0; k < 3; k++) {
  2206. for (int y = 0; y < ny; y++) {
  2207. for (int x = 0; x < nx; x++) {
  2208. data[(b * 3 * n) + k * n + y * nx + x] = imgs->data[b].buf[3 * (y * nx + x) + k];
  2209. }
  2210. }
  2211. }
  2212. }
  2213. }
  2214. ggml_backend_tensor_set(inp_raw, data, 0, ggml_nbytes(inp_raw));
  2215. free(data);
  2216. }
  2217. if (ctx->has_minicpmv_projector) {
  2218. {
  2219. // inspired from siglip:
  2220. // -> https://huggingface.co/HuggingFaceM4/siglip-so400m-14-980-flash-attn2-navit
  2221. // -> https://huggingface.co/HuggingFaceM4/siglip-so400m-14-980-flash-attn2-navit/blob/d66538faeba44480d0bfaa42145eef26f9423199/modeling_siglip.py#L316
  2222. struct ggml_tensor * positions = ggml_graph_get_tensor(gf, "positions");
  2223. int* positions_data = (int*)malloc(ggml_nbytes(positions));
  2224. int bucket_coords_h[70];
  2225. int bucket_coords_w[70];
  2226. for (int i = 0; i < pos_h; i++){
  2227. bucket_coords_h[i] = std::floor(70.0*i/pos_h);
  2228. }
  2229. for (int i = 0; i < pos_w; i++){
  2230. bucket_coords_w[i] = std::floor(70.0*i/pos_w);
  2231. }
  2232. for (int i = 0, id = 0; i < pos_h; i++){
  2233. for (int j = 0; j < pos_w; j++){
  2234. positions_data[id++] = bucket_coords_h[i]*70 + bucket_coords_w[j];
  2235. }
  2236. }
  2237. ggml_backend_tensor_set(positions, positions_data, 0, ggml_nbytes(positions));
  2238. free(positions_data);
  2239. }
  2240. {
  2241. // inspired from resampler of Qwen-VL:
  2242. // -> https://huggingface.co/Qwen/Qwen-VL/tree/main
  2243. // -> https://huggingface.co/Qwen/Qwen-VL/blob/0547ed36a86561e2e42fecec8fd0c4f6953e33c4/visual.py#L23
  2244. struct ggml_tensor * pos_embed = ggml_graph_get_tensor(gf, "pos_embed");
  2245. int embed_dim = 4096;
  2246. if (ctx->minicpmv_version == 2) {
  2247. embed_dim = 4096;
  2248. }
  2249. else if (ctx->minicpmv_version == 3) {
  2250. embed_dim = 3584;
  2251. }
  2252. auto pos_embed_t = get_2d_sincos_pos_embed(embed_dim, std::make_pair(pos_w, pos_h));
  2253. float * pos_embed_data = (float *)malloc(ggml_nbytes(pos_embed));
  2254. for(int i=0;i < pos_w * pos_h; ++i){
  2255. for(int j=0; j < embed_dim; ++j){
  2256. pos_embed_data[i * embed_dim + j] = pos_embed_t[i][j];
  2257. }
  2258. }
  2259. ggml_backend_tensor_set(pos_embed, pos_embed_data, 0, ggml_nbytes(pos_embed));
  2260. free(pos_embed_data);
  2261. }
  2262. }
  2263. else{
  2264. {
  2265. if (ctx->has_class_embedding) {
  2266. struct ggml_tensor * embeddings = ggml_graph_get_tensor(gf, "embeddings");
  2267. void* zero_mem = malloc(ggml_nbytes(embeddings));
  2268. memset(zero_mem, 0, ggml_nbytes(embeddings));
  2269. ggml_backend_tensor_set(embeddings, zero_mem, 0, ggml_nbytes(embeddings));
  2270. free(zero_mem);
  2271. }
  2272. }
  2273. if (ctx->has_qwen2vl_merger) {
  2274. struct ggml_tensor * positions = ggml_graph_get_tensor(gf, "positions");
  2275. const int pw = image_size_width / patch_size;
  2276. const int ph = image_size_height / patch_size;
  2277. int* positions_data = (int*)malloc(ggml_nbytes(positions));
  2278. int ptr = 0;
  2279. for (int y = 0; y < ph; y+=2)
  2280. {
  2281. for (int x = 0; x < pw; x+=2)
  2282. {
  2283. for (int dy = 0; dy < 2; dy++) {
  2284. for (int dx = 0; dx < 2; dx++) {
  2285. positions_data[ptr] = y + dy;
  2286. positions_data[num_patches + ptr] = x + dx;
  2287. positions_data[num_patches * 2 + ptr] = y + dy;
  2288. positions_data[num_patches * 3 + ptr] = x + dx;
  2289. ptr++;
  2290. }
  2291. }
  2292. }
  2293. }
  2294. ggml_backend_tensor_set(positions, positions_data, 0, ggml_nbytes(positions));
  2295. free(positions_data);
  2296. }
  2297. else {
  2298. struct ggml_tensor * positions = ggml_graph_get_tensor(gf, "positions");
  2299. int* positions_data = (int*)malloc(ggml_nbytes(positions));
  2300. for (int i = 0; i < num_positions; i++) {
  2301. positions_data[i] = i;
  2302. }
  2303. ggml_backend_tensor_set(positions, positions_data, 0, ggml_nbytes(positions));
  2304. free(positions_data);
  2305. {
  2306. struct ggml_tensor * patches = ggml_graph_get_tensor(gf, "patches");
  2307. int* patches_data = (int*)malloc(ggml_nbytes(patches));
  2308. for (int i = 0; i < num_patches; i++) {
  2309. patches_data[i] = i + 1;
  2310. }
  2311. ggml_backend_tensor_set(patches, patches_data, 0, ggml_nbytes(patches));
  2312. free(patches_data);
  2313. }
  2314. }
  2315. }
  2316. if (ggml_backend_is_cpu(ctx->backend)) {
  2317. ggml_backend_cpu_set_n_threads(ctx->backend, n_threads);
  2318. }
  2319. ggml_backend_graph_compute(ctx->backend, gf);
  2320. // the last node is the embedding tensor
  2321. struct ggml_tensor * embeddings = ggml_graph_node(gf, -1);
  2322. // copy the embeddings to the location passed by the user
  2323. ggml_backend_tensor_get(embeddings, vec, 0, ggml_nbytes(embeddings));
  2324. return true;
  2325. }
  2326. bool clip_model_quantize(const char * fname_inp, const char * fname_out, const int itype) {
  2327. ggml_type type = GGML_TYPE_Q4_1;
  2328. assert(itype < GGML_TYPE_COUNT);
  2329. type = static_cast<ggml_type>(itype);
  2330. auto * ctx_clip = clip_model_load(fname_inp, 2);
  2331. const auto & ctx_src = ctx_clip->ctx_gguf;
  2332. const auto & ctx_data = ctx_clip->ctx_data;
  2333. auto * ctx_out = gguf_init_empty();
  2334. gguf_set_kv(ctx_out, ctx_src);
  2335. gguf_set_val_u32(ctx_out, "general.quantization_version", GGML_QNT_VERSION);
  2336. gguf_set_val_u32(ctx_out, "general.file_type", itype);
  2337. auto fout = std::ofstream(fname_out, std::ios::binary);
  2338. const int n_tensors = gguf_get_n_tensors(ctx_src);
  2339. for (int i = 0; i < n_tensors; ++i) {
  2340. const char * name = gguf_get_tensor_name(ctx_src, i);
  2341. struct ggml_tensor * cur = ggml_get_tensor(ctx_data, name);
  2342. gguf_add_tensor(ctx_out, cur);
  2343. }
  2344. const size_t meta_size = gguf_get_meta_size(ctx_out);
  2345. for (size_t i = 0; i < meta_size; ++i) {
  2346. fout.put(0);
  2347. }
  2348. // regexes of tensor names to be quantized
  2349. const std::vector<std::string> k_names = {
  2350. ".*weight",
  2351. };
  2352. std::vector<uint8_t> work(512);
  2353. std::vector<float> conv_buf(512);
  2354. size_t total_size_org = 0;
  2355. size_t total_size_new = 0;
  2356. for (int i = 0; i < n_tensors; ++i) {
  2357. const std::string name = gguf_get_tensor_name(ctx_src, i);
  2358. struct ggml_tensor * cur = ggml_get_tensor(ctx_data, name.c_str());
  2359. enum ggml_type new_type;
  2360. void * new_data;
  2361. size_t new_size;
  2362. bool quantize = false;
  2363. for (const auto & s : k_names) {
  2364. if (std::regex_match(name, std::regex(s))) {
  2365. quantize = true;
  2366. break;
  2367. }
  2368. }
  2369. // quantize only 2D tensors
  2370. quantize &= (ggml_n_dims(cur) == 2);
  2371. if (quantize) {
  2372. new_type = type;
  2373. if (new_type >= GGML_TYPE_Q2_K && name.find("embd") != std::string::npos) {
  2374. new_type = GGML_TYPE_Q8_0; // ggml_get_rows needs non K type
  2375. // LOG_ERR("%s: quantizing %s to %s\n", __func__, name.c_str(), ggml_type_name(new_type));
  2376. }
  2377. const size_t n_elms = ggml_nelements(cur);
  2378. float * f32_data;
  2379. switch (cur->type) {
  2380. case GGML_TYPE_F32:
  2381. f32_data = (float *)cur->data;
  2382. break;
  2383. case GGML_TYPE_F16:
  2384. if (conv_buf.size() < n_elms) {
  2385. conv_buf.resize(n_elms);
  2386. }
  2387. for (size_t j = 0; j < n_elms; ++j) {
  2388. conv_buf[j] = ggml_fp16_to_fp32(((ggml_fp16_t *)cur->data)[j]);
  2389. }
  2390. f32_data = (float *)conv_buf.data();
  2391. break;
  2392. default:
  2393. LOG_ERR("Please use an input file in f32 or f16\n");
  2394. gguf_free(ctx_out);
  2395. return false;
  2396. }
  2397. if (work.size() < n_elms * 4) {
  2398. work.resize(n_elms * 4);
  2399. }
  2400. new_data = work.data();
  2401. new_size = ggml_quantize_chunk(new_type, f32_data, new_data, 0, n_elms/cur->ne[0], cur->ne[0], nullptr);
  2402. } else {
  2403. new_type = cur->type;
  2404. new_data = cur->data;
  2405. new_size = ggml_nbytes(cur);
  2406. }
  2407. const size_t orig_size = ggml_nbytes(cur);
  2408. total_size_org += orig_size;
  2409. total_size_new += new_size;
  2410. gguf_set_tensor_type(ctx_out, name.c_str(), new_type);
  2411. gguf_set_tensor_data(ctx_out, name.c_str(), new_data, new_size);
  2412. fout.write((const char *)new_data, new_size);
  2413. size_t pad = GGML_PAD(new_size, gguf_get_alignment(ctx_out)) - new_size;
  2414. for (size_t j = 0; j < pad; ++j) {
  2415. fout.put(0);
  2416. }
  2417. LOG_INF("%s: n_dims = %d | quantize=%d | size = %f MB -> %f MB\n", name.c_str(), ggml_n_dims(cur), quantize,
  2418. orig_size / 1024.0 / 1024.0, new_size / 1024.0 / 1024.0);
  2419. }
  2420. // go back to beginning of file and write the updated metadata
  2421. fout.seekp(0, std::ios::beg);
  2422. std::vector<uint8_t> meta(meta_size);
  2423. gguf_get_meta_data(ctx_out, meta.data());
  2424. fout.write((const char *)meta.data(), meta_size);
  2425. fout.close();
  2426. clip_free(ctx_clip);
  2427. gguf_free(ctx_out);
  2428. {
  2429. LOG_INF("%s: original size = %8.2f MB\n", __func__, total_size_org / 1024.0 / 1024.0);
  2430. LOG_INF("%s: quantized size = %8.2f MB\n", __func__, total_size_new / 1024.0 / 1024.0);
  2431. }
  2432. return true;
  2433. }
  2434. int clip_n_mmproj_embd(const struct clip_ctx * ctx) {
  2435. if (ctx->proj_type == PROJECTOR_TYPE_LDP) {
  2436. return ctx->vision_model.mm_model_block_1_block_2_1_b->ne[0];
  2437. }
  2438. if (ctx->proj_type == PROJECTOR_TYPE_LDPV2) {
  2439. return ctx->vision_model.mm_model_peg_0_b->ne[0];
  2440. }
  2441. if (ctx->proj_type == PROJECTOR_TYPE_MLP) {
  2442. return ctx->vision_model.mm_2_b->ne[0];
  2443. }
  2444. if (ctx->proj_type == PROJECTOR_TYPE_MLP_NORM) {
  2445. return ctx->vision_model.mm_3_b->ne[0];
  2446. }
  2447. if (ctx->proj_type == PROJECTOR_TYPE_RESAMPLER) {
  2448. if (ctx->minicpmv_version == 2) {
  2449. return 4096;
  2450. }
  2451. else if (ctx->minicpmv_version == 3) {
  2452. return 3584;
  2453. }
  2454. }
  2455. if (ctx->proj_type == PROJECTOR_TYPE_MERGER) {
  2456. return ctx->vision_model.mm_1_b->ne[0];
  2457. }
  2458. std::string proj_type = PROJECTOR_TYPE_NAMES[ctx->proj_type];
  2459. throw std::runtime_error(format("%s: don't support projector with: %s currently\n", __func__, proj_type.c_str()));
  2460. }
  2461. int clip_is_minicpmv(const struct clip_ctx * ctx) {
  2462. if (ctx->has_minicpmv_projector) {
  2463. return ctx->minicpmv_version;
  2464. }
  2465. return 0;
  2466. }
  2467. bool clip_is_qwen2vl(const struct clip_ctx * ctx) {
  2468. return ctx->has_qwen2vl_merger;
  2469. }
  2470. bool clip_encode_float_image (struct clip_ctx * ctx, int n_threads, float * img, int h, int w, float * vec) {
  2471. clip_image_f32 clip_img;
  2472. clip_img.buf.resize(h * w * 3);
  2473. for (int i = 0; i < h*w*3; i++)
  2474. {
  2475. clip_img.buf[i] = img[i];
  2476. }
  2477. clip_img.nx = w;
  2478. clip_img.ny = h;
  2479. clip_image_encode(ctx, n_threads, &clip_img, vec);
  2480. return true;
  2481. }