common.h 28 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653
  1. /**
  2. * llama.cpp - commit ba1cb19cdd0d92e012e0f6e009e0620f854b6afd - do not edit this file
  3. *
  4. * MIT License
  5. *
  6. * Copyright (c) 2023-2024 The ggml authors
  7. *
  8. * Permission is hereby granted, free of charge, to any person obtaining a copy
  9. * of this software and associated documentation files (the "Software"), to deal
  10. * in the Software without restriction, including without limitation the rights
  11. * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
  12. * copies of the Software, and to permit persons to whom the Software is
  13. * furnished to do so, subject to the following conditions:
  14. *
  15. * The above copyright notice and this permission notice shall be included in all
  16. * copies or substantial portions of the Software.
  17. *
  18. * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
  19. * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
  20. * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
  21. * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
  22. * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
  23. * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
  24. * SOFTWARE.
  25. */
  26. // Various helper functions and utilities
  27. #pragma once
  28. #include "llama.h"
  29. #include <string>
  30. #include <vector>
  31. #include <sstream>
  32. #ifdef _WIN32
  33. #define DIRECTORY_SEPARATOR '\\'
  34. #else
  35. #define DIRECTORY_SEPARATOR '/'
  36. #endif // _WIN32
  37. #define die(msg) do { fputs("error: " msg "\n", stderr); exit(1); } while (0)
  38. #define die_fmt(fmt, ...) do { fprintf(stderr, "error: " fmt "\n", __VA_ARGS__); exit(1); } while (0)
  39. #define print_build_info() do { \
  40. fprintf(stderr, "%s: build = %d (%s)\n", __func__, LLAMA_BUILD_NUMBER, LLAMA_COMMIT); \
  41. fprintf(stderr, "%s: built with %s for %s\n", __func__, LLAMA_COMPILER, LLAMA_BUILD_TARGET); \
  42. } while(0)
  43. #define DEFAULT_MODEL_PATH "models/7B/ggml-model-f16.gguf"
  44. struct common_lora_adapter_info {
  45. std::string path;
  46. float scale;
  47. };
  48. struct common_lora_adapter_container : common_lora_adapter_info {
  49. struct llama_lora_adapter * adapter;
  50. };
  51. using llama_tokens = std::vector<llama_token>;
  52. // build info
  53. extern int LLAMA_BUILD_NUMBER;
  54. extern const char * LLAMA_COMMIT;
  55. extern const char * LLAMA_COMPILER;
  56. extern const char * LLAMA_BUILD_TARGET;
  57. struct common_control_vector_load_info;
  58. //
  59. // CPU utils
  60. //
  61. struct cpu_params {
  62. int n_threads = -1;
  63. bool cpumask[GGML_MAX_N_THREADS] = {false}; // CPU affinity mask.
  64. bool mask_valid = false; // Default: any CPU
  65. enum ggml_sched_priority priority = GGML_SCHED_PRIO_NORMAL; // Scheduling prio : (0 - normal, 1 - medium, 2 - high, 3 - realtime)
  66. bool strict_cpu = false; // Use strict CPU placement
  67. uint32_t poll = 50; // Polling (busywait) level (0 - no polling, 100 - mostly polling)
  68. };
  69. int32_t cpu_get_num_physical_cores();
  70. int32_t cpu_get_num_math();
  71. //
  72. // Common params
  73. //
  74. enum llama_example {
  75. LLAMA_EXAMPLE_COMMON,
  76. LLAMA_EXAMPLE_SPECULATIVE,
  77. LLAMA_EXAMPLE_MAIN,
  78. LLAMA_EXAMPLE_INFILL,
  79. LLAMA_EXAMPLE_EMBEDDING,
  80. LLAMA_EXAMPLE_PERPLEXITY,
  81. LLAMA_EXAMPLE_RETRIEVAL,
  82. LLAMA_EXAMPLE_PASSKEY,
  83. LLAMA_EXAMPLE_IMATRIX,
  84. LLAMA_EXAMPLE_BENCH,
  85. LLAMA_EXAMPLE_SERVER,
  86. LLAMA_EXAMPLE_CVECTOR_GENERATOR,
  87. LLAMA_EXAMPLE_EXPORT_LORA,
  88. LLAMA_EXAMPLE_LLAVA,
  89. LLAMA_EXAMPLE_LOOKUP,
  90. LLAMA_EXAMPLE_PARALLEL,
  91. LLAMA_EXAMPLE_COUNT,
  92. };
  93. enum common_sampler_type {
  94. COMMON_SAMPLER_TYPE_NONE = 0,
  95. COMMON_SAMPLER_TYPE_DRY = 1,
  96. COMMON_SAMPLER_TYPE_TOP_K = 2,
  97. COMMON_SAMPLER_TYPE_TOP_P = 3,
  98. COMMON_SAMPLER_TYPE_MIN_P = 4,
  99. //COMMON_SAMPLER_TYPE_TFS_Z = 5,
  100. COMMON_SAMPLER_TYPE_TYPICAL_P = 6,
  101. COMMON_SAMPLER_TYPE_TEMPERATURE = 7,
  102. COMMON_SAMPLER_TYPE_XTC = 8,
  103. COMMON_SAMPLER_TYPE_INFILL = 9,
  104. };
  105. // dimensionality reduction methods, used by cvector-generator
  106. enum dimre_method {
  107. DIMRE_METHOD_PCA,
  108. DIMRE_METHOD_MEAN,
  109. };
  110. // sampling parameters
  111. struct common_params_sampling {
  112. uint32_t seed = LLAMA_DEFAULT_SEED; // the seed used to initialize llama_sampler
  113. int32_t n_prev = 64; // number of previous tokens to remember
  114. int32_t n_probs = 0; // if greater than 0, output the probabilities of top n_probs tokens.
  115. int32_t min_keep = 0; // 0 = disabled, otherwise samplers should return at least min_keep tokens
  116. int32_t top_k = 40; // <= 0 to use vocab size
  117. float top_p = 0.95f; // 1.0 = disabled
  118. float min_p = 0.05f; // 0.0 = disabled
  119. float xtc_probability = 0.00f; // 0.0 = disabled
  120. float xtc_threshold = 0.10f; // > 0.5 disables XTC
  121. float typ_p = 1.00f; // typical_p, 1.0 = disabled
  122. float temp = 0.80f; // <= 0.0 to sample greedily, 0.0 to not output probabilities
  123. float dynatemp_range = 0.00f; // 0.0 = disabled
  124. float dynatemp_exponent = 1.00f; // controls how entropy maps to temperature in dynamic temperature sampler
  125. int32_t penalty_last_n = 64; // last n tokens to penalize (0 = disable penalty, -1 = context size)
  126. float penalty_repeat = 1.00f; // 1.0 = disabled
  127. float penalty_freq = 0.00f; // 0.0 = disabled
  128. float penalty_present = 0.00f; // 0.0 = disabled
  129. float dry_multiplier = 0.0f; // 0.0 = disabled; DRY repetition penalty for tokens extending repetition:
  130. float dry_base = 1.75f; // 0.0 = disabled; multiplier * base ^ (length of sequence before token - allowed length)
  131. int32_t dry_allowed_length = 2; // tokens extending repetitions beyond this receive penalty
  132. int32_t dry_penalty_last_n = -1; // how many tokens to scan for repetitions (0 = disable penalty, -1 = context size)
  133. int32_t mirostat = 0; // 0 = disabled, 1 = mirostat, 2 = mirostat 2.0
  134. float mirostat_tau = 5.00f; // target entropy
  135. float mirostat_eta = 0.10f; // learning rate
  136. bool penalize_nl = false; // consider newlines as a repeatable token
  137. bool ignore_eos = false;
  138. bool no_perf = false; // disable performance metrics
  139. bool timing_per_token = false;
  140. std::vector<std::string> dry_sequence_breakers = {"\n", ":", "\"", "*"}; // default sequence breakers for DRY
  141. std::vector<enum common_sampler_type> samplers = {
  142. COMMON_SAMPLER_TYPE_DRY,
  143. COMMON_SAMPLER_TYPE_TOP_K,
  144. COMMON_SAMPLER_TYPE_TYPICAL_P,
  145. COMMON_SAMPLER_TYPE_TOP_P,
  146. COMMON_SAMPLER_TYPE_MIN_P,
  147. COMMON_SAMPLER_TYPE_XTC,
  148. COMMON_SAMPLER_TYPE_TEMPERATURE,
  149. };
  150. std::string grammar; // optional BNF-like grammar to constrain sampling
  151. std::vector<llama_logit_bias> logit_bias; // logit biases to apply
  152. // print the parameters into a string
  153. std::string print() const;
  154. };
  155. struct common_params_speculative {
  156. std::vector<ggml_backend_dev_t> devices; // devices to use for offloading
  157. int32_t n_ctx = 0; // draft context size
  158. int32_t n_max = 16; // maximum number of tokens to draft during speculative decoding
  159. int32_t n_min = 5; // minimum number of draft tokens to use for speculative decoding
  160. int32_t n_gpu_layers = -1; // number of layers to store in VRAM for the draft model (-1 - use default)
  161. float p_split = 0.1f; // speculative decoding split probability
  162. float p_min = 0.9f; // minimum speculative decoding probability (greedy)
  163. struct cpu_params cpuparams;
  164. struct cpu_params cpuparams_batch;
  165. std::string model = ""; // draft model for speculative decoding // NOLINT
  166. };
  167. struct common_params {
  168. int32_t n_predict = -1; // new tokens to predict
  169. int32_t n_ctx = 4096; // context size
  170. int32_t n_batch = 2048; // logical batch size for prompt processing (must be >=32 to use BLAS)
  171. int32_t n_ubatch = 512; // physical batch size for prompt processing (must be >=32 to use BLAS)
  172. int32_t n_keep = 0; // number of tokens to keep from initial prompt
  173. int32_t n_chunks = -1; // max number of chunks to process (-1 = unlimited)
  174. int32_t n_parallel = 1; // number of parallel sequences to decode
  175. int32_t n_sequences = 1; // number of sequences to decode
  176. int32_t grp_attn_n = 1; // group-attention factor
  177. int32_t grp_attn_w = 512; // group-attention width
  178. int32_t n_print = -1; // print token count every n tokens (-1 = disabled)
  179. float rope_freq_base = 0.0f; // RoPE base frequency
  180. float rope_freq_scale = 0.0f; // RoPE frequency scaling factor
  181. float yarn_ext_factor = -1.0f; // YaRN extrapolation mix factor
  182. float yarn_attn_factor = 1.0f; // YaRN magnitude scaling factor
  183. float yarn_beta_fast = 32.0f; // YaRN low correction dim
  184. float yarn_beta_slow = 1.0f; // YaRN high correction dim
  185. int32_t yarn_orig_ctx = 0; // YaRN original context length
  186. float defrag_thold = 0.1f; // KV cache defragmentation threshold
  187. // offload params
  188. std::vector<ggml_backend_dev_t> devices; // devices to use for offloading
  189. int32_t n_gpu_layers = -1; // number of layers to store in VRAM (-1 - use default)
  190. int32_t main_gpu = 0; // the GPU that is used for scratch and small tensors
  191. float tensor_split[128] = {0}; // how split tensors should be distributed across GPUs
  192. enum llama_split_mode split_mode = LLAMA_SPLIT_MODE_LAYER; // how to split the model across GPUs
  193. struct cpu_params cpuparams;
  194. struct cpu_params cpuparams_batch;
  195. ggml_backend_sched_eval_callback cb_eval = nullptr;
  196. void * cb_eval_user_data = nullptr;
  197. ggml_numa_strategy numa = GGML_NUMA_STRATEGY_DISABLED;
  198. enum llama_rope_scaling_type rope_scaling_type = LLAMA_ROPE_SCALING_TYPE_UNSPECIFIED;
  199. enum llama_pooling_type pooling_type = LLAMA_POOLING_TYPE_UNSPECIFIED; // pooling type for embeddings
  200. enum llama_attention_type attention_type = LLAMA_ATTENTION_TYPE_UNSPECIFIED; // attention type for embeddings
  201. struct common_params_sampling sampling;
  202. struct common_params_speculative speculative;
  203. std::string model = ""; // model path // NOLINT
  204. std::string model_alias = ""; // model alias // NOLINT
  205. std::string model_url = ""; // model url to download // NOLINT
  206. std::string hf_token = ""; // HF token // NOLINT
  207. std::string hf_repo = ""; // HF repo // NOLINT
  208. std::string hf_file = ""; // HF file // NOLINT
  209. std::string prompt = ""; // NOLINT
  210. std::string prompt_file = ""; // store the external prompt file name // NOLINT
  211. std::string path_prompt_cache = ""; // path to file for saving/loading prompt eval state // NOLINT
  212. std::string input_prefix = ""; // string to prefix user inputs with // NOLINT
  213. std::string input_suffix = ""; // string to suffix user inputs with // NOLINT
  214. std::string lookup_cache_static = ""; // path of static ngram cache file for lookup decoding // NOLINT
  215. std::string lookup_cache_dynamic = ""; // path of dynamic ngram cache file for lookup decoding // NOLINT
  216. std::string logits_file = ""; // file for saving *all* logits // NOLINT
  217. std::string rpc_servers = ""; // comma separated list of RPC servers // NOLINT
  218. std::vector<std::string> in_files; // all input files
  219. std::vector<std::string> antiprompt; // strings upon which more user input is prompted (a.k.a. reverse prompts)
  220. std::vector<llama_model_kv_override> kv_overrides;
  221. bool lora_init_without_apply = false; // only load lora to memory, but do not apply it to ctx (user can manually apply lora later using llama_lora_adapter_apply)
  222. std::vector<common_lora_adapter_info> lora_adapters; // lora adapter path with user defined scale
  223. std::vector<common_control_vector_load_info> control_vectors; // control vector with user defined scale
  224. int32_t verbosity = 0;
  225. int32_t control_vector_layer_start = -1; // layer range for control vector
  226. int32_t control_vector_layer_end = -1; // layer range for control vector
  227. int32_t ppl_stride = 0; // stride for perplexity calculations. If left at 0, the pre-existing approach will be used.
  228. int32_t ppl_output_type = 0; // = 0 -> ppl output is as usual, = 1 -> ppl output is num_tokens, ppl, one per line
  229. // (which is more convenient to use for plotting)
  230. //
  231. bool hellaswag = false; // compute HellaSwag score over random tasks from datafile supplied in prompt
  232. size_t hellaswag_tasks = 400; // number of tasks to use when computing the HellaSwag score
  233. bool winogrande = false; // compute Winogrande score over random tasks from datafile supplied in prompt
  234. size_t winogrande_tasks = 0; // number of tasks to use when computing the Winogrande score. If 0, all tasks will be computed
  235. bool multiple_choice = false; // compute TruthfulQA score over random tasks from datafile supplied in prompt
  236. size_t multiple_choice_tasks = 0; // number of tasks to use when computing the TruthfulQA score. If 0, all tasks will be computed
  237. bool kl_divergence = false; // compute KL divergence
  238. bool usage = false; // print usage
  239. bool use_color = false; // use color to distinguish generations and inputs
  240. bool special = false; // enable special token output
  241. bool interactive = false; // interactive mode
  242. bool interactive_first = false; // wait for user input immediately
  243. bool conversation = false; // conversation mode (does not print special tokens and suffix/prefix)
  244. bool prompt_cache_all = false; // save user input and generations to prompt cache
  245. bool prompt_cache_ro = false; // open the prompt cache read-only and do not update it
  246. bool escape = true; // escape "\n", "\r", "\t", "\'", "\"", and "\\"
  247. bool multiline_input = false; // reverse the usage of `\`
  248. bool simple_io = false; // improves compatibility with subprocesses and limited consoles
  249. bool cont_batching = true; // insert new sequences for decoding on-the-fly
  250. bool flash_attn = false; // flash attention
  251. bool no_perf = false; // disable performance metrics
  252. bool ctx_shift = true; // context shift on inifinite text generation
  253. bool input_prefix_bos = false; // prefix BOS to user inputs, preceding input_prefix
  254. bool logits_all = false; // return logits for all tokens in the batch
  255. bool use_mmap = true; // use mmap for faster loads
  256. bool use_mlock = false; // use mlock to keep model in memory
  257. bool verbose_prompt = false; // print prompt tokens before generation
  258. bool display_prompt = true; // print prompt before generation
  259. bool dump_kv_cache = false; // dump the KV cache contents for debugging purposes
  260. bool no_kv_offload = false; // disable KV offloading
  261. bool warmup = true; // warmup run
  262. bool check_tensors = false; // validate tensor data
  263. ggml_type cache_type_k = GGML_TYPE_F16; // KV cache data type for the K
  264. ggml_type cache_type_v = GGML_TYPE_F16; // KV cache data type for the V
  265. // multimodal models (see examples/llava)
  266. std::string mmproj = ""; // path to multimodal projector // NOLINT
  267. std::vector<std::string> image; // path to image file(s)
  268. // embedding
  269. bool embedding = false; // get only sentence embedding
  270. int32_t embd_normalize = 2; // normalisation for embeddings (-1=none, 0=max absolute int16, 1=taxicab, 2=euclidean, >2=p-norm)
  271. std::string embd_out = ""; // empty = default, "array" = [[],[]...], "json" = openai style, "json+" = same "json" + cosine similarity matrix
  272. std::string embd_sep = "\n"; // separator of embeddings
  273. bool reranking = false; // enable reranking support on server
  274. // server params
  275. int32_t port = 8080; // server listens on this network port
  276. int32_t timeout_read = 600; // http read timeout in seconds
  277. int32_t timeout_write = timeout_read; // http write timeout in seconds
  278. int32_t n_threads_http = -1; // number of threads to process HTTP requests (TODO: support threadpool)
  279. int32_t n_cache_reuse = 0; // min chunk size to reuse from the cache via KV shifting
  280. std::string hostname = "127.0.0.1";
  281. std::string public_path = ""; // NOLINT
  282. std::string chat_template = ""; // NOLINT
  283. bool enable_chat_template = true;
  284. std::vector<std::string> api_keys;
  285. std::string ssl_file_key = ""; // NOLINT
  286. std::string ssl_file_cert = ""; // NOLINT
  287. // "advanced" endpoints are disabled by default for better security
  288. bool webui = true;
  289. bool endpoint_slots = false;
  290. bool endpoint_props = false; // only control POST requests, not GET
  291. bool endpoint_metrics = false;
  292. bool log_json = false;
  293. std::string slot_save_path;
  294. float slot_prompt_similarity = 0.5f;
  295. // batched-bench params
  296. bool is_pp_shared = false;
  297. std::vector<int32_t> n_pp;
  298. std::vector<int32_t> n_tg;
  299. std::vector<int32_t> n_pl;
  300. // retrieval params
  301. std::vector<std::string> context_files; // context files to embed
  302. int32_t chunk_size = 64; // chunk size for context embedding
  303. std::string chunk_separator = "\n"; // chunk separator for context embedding
  304. // passkey params
  305. int32_t n_junk = 250; // number of times to repeat the junk text
  306. int32_t i_pos = -1; // position of the passkey in the junk text
  307. // imatrix params
  308. std::string out_file = "imatrix.dat"; // save the resulting imatrix to this file
  309. int32_t n_out_freq = 10; // output the imatrix every n_out_freq iterations
  310. int32_t n_save_freq = 0; // save the imatrix every n_save_freq iterations
  311. int32_t i_chunk = 0; // start processing from this chunk
  312. bool process_output = false; // collect data for the output tensor
  313. bool compute_ppl = true; // whether to compute perplexity
  314. // cvector-generator params
  315. int n_pca_batch = 100;
  316. int n_pca_iterations = 1000;
  317. dimre_method cvector_dimre_method = DIMRE_METHOD_PCA;
  318. std::string cvector_outfile = "control_vector.gguf";
  319. std::string cvector_positive_file = "examples/cvector-generator/positive.txt";
  320. std::string cvector_negative_file = "examples/cvector-generator/negative.txt";
  321. bool spm_infill = false; // suffix/prefix/middle pattern for infill
  322. std::string lora_outfile = "ggml-lora-merged-f16.gguf";
  323. // batched-bench params
  324. bool batched_bench_output_jsonl = false;
  325. };
  326. // call once at the start of a program if it uses libcommon
  327. // initializes the logging system and prints info about the build
  328. void common_init();
  329. std::string common_params_get_system_info(const common_params & params);
  330. bool parse_cpu_range(const std::string & range, bool(&boolmask)[GGML_MAX_N_THREADS]);
  331. bool parse_cpu_mask(const std::string & mask, bool(&boolmask)[GGML_MAX_N_THREADS]);
  332. void postprocess_cpu_params(cpu_params & cpuparams, const cpu_params * role_model = nullptr);
  333. bool set_process_priority(enum ggml_sched_priority prio);
  334. //
  335. // String utils
  336. //
  337. #ifdef __GNUC__
  338. #ifdef __MINGW32__
  339. #define LLAMA_COMMON_ATTRIBUTE_FORMAT(...) __attribute__((format(gnu_printf, __VA_ARGS__)))
  340. #else
  341. #define LLAMA_COMMON_ATTRIBUTE_FORMAT(...) __attribute__((format(printf, __VA_ARGS__)))
  342. #endif
  343. #else
  344. #define LLAMA_COMMON_ATTRIBUTE_FORMAT(...)
  345. #endif
  346. LLAMA_COMMON_ATTRIBUTE_FORMAT(1, 2)
  347. std::string string_format(const char * fmt, ...);
  348. std::string string_strip(const std::string & str);
  349. std::string string_get_sortable_timestamp();
  350. void string_replace_all(std::string & s, const std::string & search, const std::string & replace);
  351. template<class T>
  352. static std::vector<T> string_split(const std::string & str, char delim) {
  353. static_assert(!std::is_same<T, std::string>::value, "Please use the specialized version for std::string");
  354. std::vector<T> values;
  355. std::istringstream str_stream(str);
  356. std::string token;
  357. while (std::getline(str_stream, token, delim)) {
  358. T value;
  359. std::istringstream token_stream(token);
  360. token_stream >> value;
  361. values.push_back(value);
  362. }
  363. return values;
  364. }
  365. template<>
  366. std::vector<std::string> string_split<std::string>(const std::string & input, char separator)
  367. {
  368. std::vector<std::string> parts;
  369. size_t begin_pos = 0;
  370. size_t separator_pos = input.find(separator);
  371. while (separator_pos != std::string::npos) {
  372. std::string part = input.substr(begin_pos, separator_pos - begin_pos);
  373. parts.emplace_back(part);
  374. begin_pos = separator_pos + 1;
  375. separator_pos = input.find(separator, begin_pos);
  376. }
  377. parts.emplace_back(input.substr(begin_pos, separator_pos - begin_pos));
  378. return parts;
  379. }
  380. static bool string_starts_with(const std::string & str,
  381. const std::string & prefix) { // While we wait for C++20's std::string::starts_with...
  382. return str.rfind(prefix, 0) == 0;
  383. }
  384. bool string_parse_kv_override(const char * data, std::vector<llama_model_kv_override> & overrides);
  385. void string_process_escapes(std::string & input);
  386. std::string string_from(bool value);
  387. std::string string_from(const std::vector<int> & values);
  388. std::string string_from(const struct llama_context * ctx, const std::vector<llama_token> & tokens);
  389. std::string string_from(const struct llama_context * ctx, const struct llama_batch & batch);
  390. //
  391. // Filesystem utils
  392. //
  393. bool fs_validate_filename(const std::string & filename);
  394. bool fs_create_directory_with_parents(const std::string & path);
  395. std::string fs_get_cache_directory();
  396. std::string fs_get_cache_file(const std::string & filename);
  397. //
  398. // Model utils
  399. //
  400. struct common_init_result {
  401. struct llama_model * model = nullptr;
  402. struct llama_context * context = nullptr;
  403. std::vector<common_lora_adapter_container> lora_adapters;
  404. };
  405. struct common_init_result common_init_from_params(common_params & params);
  406. struct llama_model_params common_model_params_to_llama ( common_params & params);
  407. struct llama_context_params common_context_params_to_llama(const common_params & params);
  408. struct ggml_threadpool_params ggml_threadpool_params_from_cpu_params(const cpu_params & params);
  409. struct llama_model * common_load_model_from_url(
  410. const std::string & model_url,
  411. const std::string & local_path,
  412. const std::string & hf_token,
  413. const struct llama_model_params & params);
  414. struct llama_model * common_load_model_from_hf(
  415. const std::string & repo,
  416. const std::string & remote_path,
  417. const std::string & local_path,
  418. const std::string & hf_token,
  419. const struct llama_model_params & params);
  420. // clear LoRA adapters from context, then apply new list of adapters
  421. void common_lora_adapters_apply(struct llama_context * ctx, std::vector<common_lora_adapter_container> & lora_adapters);
  422. //
  423. // Batch utils
  424. //
  425. void common_batch_clear(struct llama_batch & batch);
  426. void common_batch_add(
  427. struct llama_batch & batch,
  428. llama_token id,
  429. llama_pos pos,
  430. const std::vector<llama_seq_id> & seq_ids,
  431. bool logits);
  432. //
  433. // Token utils
  434. //
  435. // longest common prefix
  436. size_t common_lcp(const llama_tokens & a, const llama_tokens & b);
  437. // longet common subsequence
  438. size_t common_lcs(const llama_tokens & a, const llama_tokens & b);
  439. //
  440. // Vocab utils
  441. //
  442. // tokenizes a string into a vector of tokens
  443. // should work similar to Python's `tokenizer.encode`
  444. std::vector<llama_token> common_tokenize(
  445. const struct llama_context * ctx,
  446. const std::string & text,
  447. bool add_special,
  448. bool parse_special = false);
  449. std::vector<llama_token> common_tokenize(
  450. const struct llama_model * model,
  451. const std::string & text,
  452. bool add_special,
  453. bool parse_special = false);
  454. // tokenizes a token into a piece, optionally renders special/control tokens
  455. // should work similar to Python's `tokenizer.id_to_piece`
  456. std::string common_token_to_piece(
  457. const struct llama_context * ctx,
  458. llama_token token,
  459. bool special = true);
  460. // detokenizes a vector of tokens into a string
  461. // should work similar to Python's `tokenizer.decode`
  462. // optionally renders special/control tokens
  463. std::string common_detokenize(
  464. llama_context * ctx,
  465. const std::vector<llama_token> & tokens,
  466. bool special = true);
  467. //
  468. // Chat template utils
  469. //
  470. // same with llama_chat_message, but uses std::string
  471. struct common_chat_msg {
  472. std::string role;
  473. std::string content;
  474. };
  475. // Check if the template supplied via "--chat-template" is supported or not. Returns true if it's valid
  476. bool common_chat_verify_template(const std::string & tmpl);
  477. // CPP wrapper for llama_chat_apply_template
  478. // If the built-in template is not supported, we default to chatml
  479. // If the custom "tmpl" is not supported, we throw an error
  480. std::string common_chat_apply_template(const struct llama_model * model,
  481. const std::string & tmpl,
  482. const std::vector<common_chat_msg> & chat,
  483. bool add_ass);
  484. // Format single message, while taking into account the position of that message in chat history
  485. std::string common_chat_format_single(const struct llama_model * model,
  486. const std::string & tmpl,
  487. const std::vector<common_chat_msg> & past_msg,
  488. const common_chat_msg & new_msg,
  489. bool add_ass);
  490. // Returns an example of formatted chat
  491. std::string common_chat_format_example(const struct llama_model * model,
  492. const std::string & tmpl);
  493. //
  494. // KV cache utils
  495. //
  496. // Dump the KV cache view with the number of sequences per cell.
  497. void common_kv_cache_dump_view(const llama_kv_cache_view & view, int row_size = 80);
  498. // Dump the KV cache view showing individual sequences in each cell (long output).
  499. void common_kv_cache_dump_view_seqs(const llama_kv_cache_view & view, int row_size = 40);
  500. //
  501. // Embedding utils
  502. //
  503. void common_embd_normalize(const float * inp, float * out, int n, int embd_norm = 2);
  504. float common_embd_similarity_cos(const float * embd1, const float * embd2, int n);
  505. //
  506. // Control vector utils
  507. //
  508. struct common_control_vector_data {
  509. int n_embd;
  510. // stores data for layers [1, n_layer] where n_layer = data.size() / n_embd
  511. std::vector<float> data;
  512. };
  513. struct common_control_vector_load_info {
  514. float strength;
  515. std::string fname;
  516. };
  517. // Load control vectors, scale each by strength, and add them together.
  518. // On error, returns {-1, empty}
  519. common_control_vector_data common_control_vector_load(const std::vector<common_control_vector_load_info> & load_infos);
  520. //
  521. // Split utils
  522. //
  523. static const char * const LLM_KV_SPLIT_NO = "split.no";
  524. static const char * const LLM_KV_SPLIT_COUNT = "split.count";
  525. static const char * const LLM_KV_SPLIT_TENSORS_COUNT = "split.tensors.count";