mmq.cu 6.2 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180
  1. /**
  2. * llama.cpp - commit 3f1ae2e32cde00c39b96be6d01c2997c29bae555 - do not edit this file
  3. *
  4. * MIT License
  5. *
  6. * Copyright (c) 2023-2024 The ggml authors
  7. *
  8. * Permission is hereby granted, free of charge, to any person obtaining a copy
  9. * of this software and associated documentation files (the "Software"), to deal
  10. * in the Software without restriction, including without limitation the rights
  11. * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
  12. * copies of the Software, and to permit persons to whom the Software is
  13. * furnished to do so, subject to the following conditions:
  14. *
  15. * The above copyright notice and this permission notice shall be included in all
  16. * copies or substantial portions of the Software.
  17. *
  18. * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
  19. * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
  20. * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
  21. * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
  22. * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
  23. * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
  24. * SOFTWARE.
  25. */
  26. #include "mmq.cuh"
  27. void ggml_cuda_op_mul_mat_q(
  28. ggml_backend_cuda_context & ctx,
  29. const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst, const char * src0_dd_i, const float * src1_ddf_i,
  30. const char * src1_ddq_i, float * dst_dd_i, const int64_t row_low, const int64_t row_high, const int64_t src1_ncols,
  31. const int64_t src1_padded_row_size, cudaStream_t stream) {
  32. const int64_t ne00 = src0->ne[0];
  33. const int64_t nb01 = src0->nb[1];
  34. const int64_t ne10 = src1->ne[0];
  35. const int64_t ne11 = src1->ne[1];
  36. GGML_ASSERT(ne10 % QK8_1 == 0);
  37. const int64_t ne0 = dst->ne[0];
  38. const int64_t row_diff = row_high - row_low;
  39. const int64_t stride00 = nb01 / ggml_type_size(src0->type);
  40. int id = ggml_cuda_get_device();
  41. const int compute_capability = ggml_cuda_info().devices[id].cc;
  42. // the main device has a larger memory buffer to hold the results from all GPUs
  43. // nrows_dst == nrows of the matrix that the kernel writes into
  44. const int64_t nrows_dst = id == ctx.device ? ne0 : row_diff;
  45. // The stream-k decomposition is only faster for recent NVIDIA GPUs.
  46. // Also its fixup needs to allocate a temporary buffer in the memory pool.
  47. // There are multiple parallel CUDA streams for src1_ncols != ne11 which would introduce a race condition for this buffer.
  48. const bool use_stream_k = compute_capability >= CC_VOLTA && compute_capability < CC_OFFSET_AMD && src1_ncols == ne11;
  49. const mmq_args args = {src0_dd_i, src1_ddq_i, dst_dd_i, ne00, row_diff, stride00, src1_padded_row_size, src1_ncols, ne11, nrows_dst, use_stream_k};
  50. switch (src0->type) {
  51. case GGML_TYPE_Q4_0:
  52. mul_mat_q_case<GGML_TYPE_Q4_0>(ctx, args, stream);
  53. break;
  54. case GGML_TYPE_Q4_1:
  55. mul_mat_q_case<GGML_TYPE_Q4_1>(ctx, args, stream);
  56. break;
  57. case GGML_TYPE_Q5_0:
  58. mul_mat_q_case<GGML_TYPE_Q5_0>(ctx, args, stream);
  59. break;
  60. case GGML_TYPE_Q5_1:
  61. mul_mat_q_case<GGML_TYPE_Q5_1>(ctx, args, stream);
  62. break;
  63. case GGML_TYPE_Q8_0:
  64. mul_mat_q_case<GGML_TYPE_Q8_0>(ctx, args, stream);
  65. break;
  66. case GGML_TYPE_Q2_K:
  67. mul_mat_q_case<GGML_TYPE_Q2_K>(ctx, args, stream);
  68. break;
  69. case GGML_TYPE_Q3_K:
  70. mul_mat_q_case<GGML_TYPE_Q3_K>(ctx, args, stream);
  71. break;
  72. case GGML_TYPE_Q4_K:
  73. mul_mat_q_case<GGML_TYPE_Q4_K>(ctx, args, stream);
  74. break;
  75. case GGML_TYPE_Q5_K:
  76. mul_mat_q_case<GGML_TYPE_Q5_K>(ctx, args, stream);
  77. break;
  78. case GGML_TYPE_Q6_K:
  79. mul_mat_q_case<GGML_TYPE_Q6_K>(ctx, args, stream);
  80. break;
  81. case GGML_TYPE_IQ2_XXS:
  82. mul_mat_q_case<GGML_TYPE_IQ2_XXS>(ctx, args, stream);
  83. break;
  84. case GGML_TYPE_IQ2_XS:
  85. mul_mat_q_case<GGML_TYPE_IQ2_XS>(ctx, args, stream);
  86. break;
  87. case GGML_TYPE_IQ2_S:
  88. mul_mat_q_case<GGML_TYPE_IQ2_S>(ctx, args, stream);
  89. break;
  90. case GGML_TYPE_IQ3_XXS:
  91. mul_mat_q_case<GGML_TYPE_IQ3_XXS>(ctx, args, stream);
  92. break;
  93. case GGML_TYPE_IQ3_S:
  94. mul_mat_q_case<GGML_TYPE_IQ3_S>(ctx, args, stream);
  95. break;
  96. case GGML_TYPE_IQ1_S:
  97. mul_mat_q_case<GGML_TYPE_IQ1_S>(ctx, args, stream);
  98. break;
  99. case GGML_TYPE_IQ4_XS:
  100. mul_mat_q_case<GGML_TYPE_IQ4_XS>(ctx, args, stream);
  101. break;
  102. case GGML_TYPE_IQ4_NL:
  103. mul_mat_q_case<GGML_TYPE_IQ4_NL>(ctx, args, stream);
  104. break;
  105. default:
  106. GGML_ABORT("fatal error");
  107. break;
  108. }
  109. GGML_UNUSED(src1);
  110. GGML_UNUSED(dst);
  111. GGML_UNUSED(src1_ddf_i);
  112. }
  113. bool ggml_cuda_should_use_mmq(enum ggml_type type, int cc, int64_t ne11) {
  114. #ifdef GGML_CUDA_FORCE_CUBLAS
  115. return false;
  116. #endif // GGML_CUDA_FORCE_CUBLAS
  117. bool mmq_supported;
  118. switch (type) {
  119. case GGML_TYPE_Q4_0:
  120. case GGML_TYPE_Q4_1:
  121. case GGML_TYPE_Q5_0:
  122. case GGML_TYPE_Q5_1:
  123. case GGML_TYPE_Q8_0:
  124. case GGML_TYPE_Q2_K:
  125. case GGML_TYPE_Q3_K:
  126. case GGML_TYPE_Q4_K:
  127. case GGML_TYPE_Q5_K:
  128. case GGML_TYPE_Q6_K:
  129. case GGML_TYPE_IQ2_XXS:
  130. case GGML_TYPE_IQ2_XS:
  131. case GGML_TYPE_IQ2_S:
  132. case GGML_TYPE_IQ3_XXS:
  133. case GGML_TYPE_IQ3_S:
  134. case GGML_TYPE_IQ1_S:
  135. case GGML_TYPE_IQ4_XS:
  136. case GGML_TYPE_IQ4_NL:
  137. mmq_supported = true;
  138. break;
  139. default:
  140. mmq_supported = false;
  141. break;
  142. }
  143. if (!mmq_supported) {
  144. return false;
  145. }
  146. if (int8_mma_available(cc)) {
  147. return true;
  148. }
  149. if (cc < MIN_CC_DP4A) {
  150. return false;
  151. }
  152. #ifdef GGML_CUDA_FORCE_MMQ
  153. return true;
  154. #endif //GGML_CUDA_FORCE_MMQ
  155. if (cc < CC_OFFSET_AMD) {
  156. return cc < CC_VOLTA || ne11 < MMQ_DP4A_MAX_BATCH_SIZE;
  157. }
  158. return cc < CC_RDNA3 || ne11 < MMQ_DP4A_MAX_BATCH_SIZE;
  159. }