123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121 |
- /**
- * llama.cpp - commit 3f1ae2e32cde00c39b96be6d01c2997c29bae555 - do not edit this file
- *
- * MIT License
- *
- * Copyright (c) 2023-2024 The ggml authors
- *
- * Permission is hereby granted, free of charge, to any person obtaining a copy
- * of this software and associated documentation files (the "Software"), to deal
- * in the Software without restriction, including without limitation the rights
- * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
- * copies of the Software, and to permit persons to whom the Software is
- * furnished to do so, subject to the following conditions:
- *
- * The above copyright notice and this permission notice shall be included in all
- * copies or substantial portions of the Software.
- *
- * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
- * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
- * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
- * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
- * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
- * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
- * SOFTWARE.
- */
- #include "pad.cuh"
- static __global__ void pad_f32(const float * x, float * dst, const int ne0, const int ne00, const int ne01, const int ne02, const int ne03) {
- // blockIdx.z: idx of ne2*ne3, aka ne02*ne03
- // blockIdx.y: idx of ne1
- // blockIDx.x: idx of ne0 / BLOCK_SIZE
- int nidx = threadIdx.x + blockIdx.x * blockDim.x;
- if (nidx >= ne0) {
- return;
- }
- // operation
- int offset_dst =
- nidx +
- blockIdx.y * ne0 +
- blockIdx.z * ne0 * gridDim.y;
- if (nidx < ne00 && blockIdx.y < ne01 && blockIdx.z < ne02*ne03) {
- int offset_src =
- nidx +
- blockIdx.y * ne00 +
- blockIdx.z * ne00 * ne01;
- dst[offset_dst] = x[offset_src];
- } else {
- dst[offset_dst] = 0.0f;
- }
- }
- static void pad_f32_cuda(const float * x, float * dst,
- const int ne00, const int ne01, const int ne02, const int ne03,
- const int ne0, const int ne1, const int ne2, const int ne3, cudaStream_t stream) {
- int num_blocks = (ne0 + CUDA_PAD_BLOCK_SIZE - 1) / CUDA_PAD_BLOCK_SIZE;
- dim3 gridDim(num_blocks, ne1, ne2*ne3);
- pad_f32<<<gridDim, CUDA_PAD_BLOCK_SIZE, 0, stream>>>(x, dst, ne0, ne00, ne01, ne02, ne03);
- }
- void ggml_cuda_op_pad(ggml_backend_cuda_context & ctx, ggml_tensor * dst) {
- const ggml_tensor * src0 = dst->src[0];
- const float * src0_d = (const float *)src0->data;
- float * dst_d = (float *)dst->data;
- cudaStream_t stream = ctx.stream();
- GGML_ASSERT(src0->type == GGML_TYPE_F32);
- GGML_ASSERT(dst->type == GGML_TYPE_F32);
- GGML_ASSERT(src0->ne[3] == 1 && dst->ne[3] == 1); // just 3D tensors
- pad_f32_cuda(src0_d, dst_d,
- src0->ne[0], src0->ne[1], src0->ne[2], src0->ne[3],
- dst->ne[0], dst->ne[1], dst->ne[2], dst->ne[3], stream);
- }
- static __global__ void unpad_f32(const float * x, float * dst, const int ne0, const int ne00, const int ne01, const int ne02, const int ne03) {
- // blockIdx.z: idx of ne2*ne3, aka ne02*ne03
- // blockIdx.y: idx of ne1
- // blockIDx.x: idx of ne0 / BLOCK_SIZE
- int nidx = threadIdx.x + blockIdx.x * blockDim.x;
- if (nidx >= ne0) {
- return;
- }
- // operation
- int offset_dst =
- nidx +
- blockIdx.y * ne0 +
- blockIdx.z * ne0 * gridDim.y;
- if (nidx < ne00 && blockIdx.y < ne01 && blockIdx.z < ne02*ne03) {
- int offset_src =
- nidx +
- blockIdx.y * ne00 +
- blockIdx.z * ne00 * ne01;
- dst[offset_dst] = x[offset_src];
- }
- }
- static void unpad_f32_cuda(const float * x, float * dst,
- const int ne00, const int ne01, const int ne02, const int ne03,
- const int ne0, const int ne1, const int ne2, const int ne3, cudaStream_t stream) {
- int num_blocks = (ne0 + CUDA_PAD_BLOCK_SIZE - 1) / CUDA_PAD_BLOCK_SIZE;
- dim3 gridDim(num_blocks, ne1, ne2*ne3);
- unpad_f32<<<gridDim, CUDA_PAD_BLOCK_SIZE, 0, stream>>>(x, dst, ne0, ne00, ne01, ne02, ne03);
- }
- void ggml_cuda_op_unpad(ggml_backend_cuda_context & ctx, ggml_tensor * dst) {
- const ggml_tensor * src0 = dst->src[0];
- const float * src0_d = (const float *)src0->data;
- float * dst_d = (float *)dst->data;
- cudaStream_t stream = ctx.stream();
- GGML_ASSERT(src0->type == GGML_TYPE_F32);
- GGML_ASSERT(dst->type == GGML_TYPE_F32);
- GGML_ASSERT(src0->ne[3] == 1 && dst->ne[3] == 1); // just 3D tensors
- unpad_f32_cuda(src0_d, dst_d,
- src0->ne[0], src0->ne[1], src0->ne[2], src0->ne[3],
- dst->ne[0], dst->ne[1], dst->ne[2], dst->ne[3], stream);
- }
|