ggml-quants.c 678 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450245124522453245424552456245724582459246024612462246324642465246624672468246924702471247224732474247524762477247824792480248124822483248424852486248724882489249024912492249324942495249624972498249925002501250225032504250525062507250825092510251125122513251425152516251725182519252025212522252325242525252625272528252925302531253225332534253525362537253825392540254125422543254425452546254725482549255025512552255325542555255625572558255925602561256225632564256525662567256825692570257125722573257425752576257725782579258025812582258325842585258625872588258925902591259225932594259525962597259825992600260126022603260426052606260726082609261026112612261326142615261626172618261926202621262226232624262526262627262826292630263126322633263426352636263726382639264026412642264326442645264626472648264926502651265226532654265526562657265826592660266126622663266426652666266726682669267026712672267326742675267626772678267926802681268226832684268526862687268826892690269126922693269426952696269726982699270027012702270327042705270627072708270927102711271227132714271527162717271827192720272127222723272427252726272727282729273027312732273327342735273627372738273927402741274227432744274527462747274827492750275127522753275427552756275727582759276027612762276327642765276627672768276927702771277227732774277527762777277827792780278127822783278427852786278727882789279027912792279327942795279627972798279928002801280228032804280528062807280828092810281128122813281428152816281728182819282028212822282328242825282628272828282928302831283228332834283528362837283828392840284128422843284428452846284728482849285028512852285328542855285628572858285928602861286228632864286528662867286828692870287128722873287428752876287728782879288028812882288328842885288628872888288928902891289228932894289528962897289828992900290129022903290429052906290729082909291029112912291329142915291629172918291929202921292229232924292529262927292829292930293129322933293429352936293729382939294029412942294329442945294629472948294929502951295229532954295529562957295829592960296129622963296429652966296729682969297029712972297329742975297629772978297929802981298229832984298529862987298829892990299129922993299429952996299729982999300030013002300330043005300630073008300930103011301230133014301530163017301830193020302130223023302430253026302730283029303030313032303330343035303630373038303930403041304230433044304530463047304830493050305130523053305430553056305730583059306030613062306330643065306630673068306930703071307230733074307530763077307830793080308130823083308430853086308730883089309030913092309330943095309630973098309931003101310231033104310531063107310831093110311131123113311431153116311731183119312031213122312331243125312631273128312931303131313231333134313531363137313831393140314131423143314431453146314731483149315031513152315331543155315631573158315931603161316231633164316531663167316831693170317131723173317431753176317731783179318031813182318331843185318631873188318931903191319231933194319531963197319831993200320132023203320432053206320732083209321032113212321332143215321632173218321932203221322232233224322532263227322832293230323132323233323432353236323732383239324032413242324332443245324632473248324932503251325232533254325532563257325832593260326132623263326432653266326732683269327032713272327332743275327632773278327932803281328232833284328532863287328832893290329132923293329432953296329732983299330033013302330333043305330633073308330933103311331233133314331533163317331833193320332133223323332433253326332733283329333033313332333333343335333633373338333933403341334233433344334533463347334833493350335133523353335433553356335733583359336033613362336333643365336633673368336933703371337233733374337533763377337833793380338133823383338433853386338733883389339033913392339333943395339633973398339934003401340234033404340534063407340834093410341134123413341434153416341734183419342034213422342334243425342634273428342934303431343234333434343534363437343834393440344134423443344434453446344734483449345034513452345334543455345634573458345934603461346234633464346534663467346834693470347134723473347434753476347734783479348034813482348334843485348634873488348934903491349234933494349534963497349834993500350135023503350435053506350735083509351035113512351335143515351635173518351935203521352235233524352535263527352835293530353135323533353435353536353735383539354035413542354335443545354635473548354935503551355235533554355535563557355835593560356135623563356435653566356735683569357035713572357335743575357635773578357935803581358235833584358535863587358835893590359135923593359435953596359735983599360036013602360336043605360636073608360936103611361236133614361536163617361836193620362136223623362436253626362736283629363036313632363336343635363636373638363936403641364236433644364536463647364836493650365136523653365436553656365736583659366036613662366336643665366636673668366936703671367236733674367536763677367836793680368136823683368436853686368736883689369036913692369336943695369636973698369937003701370237033704370537063707370837093710371137123713371437153716371737183719372037213722372337243725372637273728372937303731373237333734373537363737373837393740374137423743374437453746374737483749375037513752375337543755375637573758375937603761376237633764376537663767376837693770377137723773377437753776377737783779378037813782378337843785378637873788378937903791379237933794379537963797379837993800380138023803380438053806380738083809381038113812381338143815381638173818381938203821382238233824382538263827382838293830383138323833383438353836383738383839384038413842384338443845384638473848384938503851385238533854385538563857385838593860386138623863386438653866386738683869387038713872387338743875387638773878387938803881388238833884388538863887388838893890389138923893389438953896389738983899390039013902390339043905390639073908390939103911391239133914391539163917391839193920392139223923392439253926392739283929393039313932393339343935393639373938393939403941394239433944394539463947394839493950395139523953395439553956395739583959396039613962396339643965396639673968396939703971397239733974397539763977397839793980398139823983398439853986398739883989399039913992399339943995399639973998399940004001400240034004400540064007400840094010401140124013401440154016401740184019402040214022402340244025402640274028402940304031403240334034403540364037403840394040404140424043404440454046404740484049405040514052405340544055405640574058405940604061406240634064406540664067406840694070407140724073407440754076407740784079408040814082408340844085408640874088408940904091409240934094409540964097409840994100410141024103410441054106410741084109411041114112411341144115411641174118411941204121412241234124412541264127412841294130413141324133413441354136413741384139414041414142414341444145414641474148414941504151415241534154415541564157415841594160416141624163416441654166416741684169417041714172417341744175417641774178417941804181418241834184418541864187418841894190419141924193419441954196419741984199420042014202420342044205420642074208420942104211421242134214421542164217421842194220422142224223422442254226422742284229423042314232423342344235423642374238423942404241424242434244424542464247424842494250425142524253425442554256425742584259426042614262426342644265426642674268426942704271427242734274427542764277427842794280428142824283428442854286428742884289429042914292429342944295429642974298429943004301430243034304430543064307430843094310431143124313431443154316431743184319432043214322432343244325432643274328432943304331433243334334433543364337433843394340434143424343434443454346434743484349435043514352435343544355435643574358435943604361436243634364436543664367436843694370437143724373437443754376437743784379438043814382438343844385438643874388438943904391439243934394439543964397439843994400440144024403440444054406440744084409441044114412441344144415441644174418441944204421442244234424442544264427442844294430443144324433443444354436443744384439444044414442444344444445444644474448444944504451445244534454445544564457445844594460446144624463446444654466446744684469447044714472447344744475447644774478447944804481448244834484448544864487448844894490449144924493449444954496449744984499450045014502450345044505450645074508450945104511451245134514451545164517451845194520452145224523452445254526452745284529453045314532453345344535453645374538453945404541454245434544454545464547454845494550455145524553455445554556455745584559456045614562456345644565456645674568456945704571457245734574457545764577457845794580458145824583458445854586458745884589459045914592459345944595459645974598459946004601460246034604460546064607460846094610461146124613461446154616461746184619462046214622462346244625462646274628462946304631463246334634463546364637463846394640464146424643464446454646464746484649465046514652465346544655465646574658465946604661466246634664466546664667466846694670467146724673467446754676467746784679468046814682468346844685468646874688468946904691469246934694469546964697469846994700470147024703470447054706470747084709471047114712471347144715471647174718471947204721472247234724472547264727472847294730473147324733473447354736473747384739474047414742474347444745474647474748474947504751475247534754475547564757475847594760476147624763476447654766476747684769477047714772477347744775477647774778477947804781478247834784478547864787478847894790479147924793479447954796479747984799480048014802480348044805480648074808480948104811481248134814481548164817481848194820482148224823482448254826482748284829483048314832483348344835483648374838483948404841484248434844484548464847484848494850485148524853485448554856485748584859486048614862486348644865486648674868486948704871487248734874487548764877487848794880488148824883488448854886488748884889489048914892489348944895489648974898489949004901490249034904490549064907490849094910491149124913491449154916491749184919492049214922492349244925492649274928492949304931493249334934493549364937493849394940494149424943494449454946494749484949495049514952495349544955495649574958495949604961496249634964496549664967496849694970497149724973497449754976497749784979498049814982498349844985498649874988498949904991499249934994499549964997499849995000500150025003500450055006500750085009501050115012501350145015501650175018501950205021502250235024502550265027502850295030503150325033503450355036503750385039504050415042504350445045504650475048504950505051505250535054505550565057505850595060506150625063506450655066506750685069507050715072507350745075507650775078507950805081508250835084508550865087508850895090509150925093509450955096509750985099510051015102510351045105510651075108510951105111511251135114511551165117511851195120512151225123512451255126512751285129513051315132513351345135513651375138513951405141514251435144514551465147514851495150515151525153515451555156515751585159516051615162516351645165516651675168516951705171517251735174517551765177517851795180518151825183518451855186518751885189519051915192519351945195519651975198519952005201520252035204520552065207520852095210521152125213521452155216521752185219522052215222522352245225522652275228522952305231523252335234523552365237523852395240524152425243524452455246524752485249525052515252525352545255525652575258525952605261526252635264526552665267526852695270527152725273527452755276527752785279528052815282528352845285528652875288528952905291529252935294529552965297529852995300530153025303530453055306530753085309531053115312531353145315531653175318531953205321532253235324532553265327532853295330533153325333533453355336533753385339534053415342534353445345534653475348534953505351535253535354535553565357535853595360536153625363536453655366536753685369537053715372537353745375537653775378537953805381538253835384538553865387538853895390539153925393539453955396539753985399540054015402540354045405540654075408540954105411541254135414541554165417541854195420542154225423542454255426542754285429543054315432543354345435543654375438543954405441544254435444544554465447544854495450545154525453545454555456545754585459546054615462546354645465546654675468546954705471547254735474547554765477547854795480548154825483548454855486548754885489549054915492549354945495549654975498549955005501550255035504550555065507550855095510551155125513551455155516551755185519552055215522552355245525552655275528552955305531553255335534553555365537553855395540554155425543554455455546554755485549555055515552555355545555555655575558555955605561556255635564556555665567556855695570557155725573557455755576557755785579558055815582558355845585558655875588558955905591559255935594559555965597559855995600560156025603560456055606560756085609561056115612561356145615561656175618561956205621562256235624562556265627562856295630563156325633563456355636563756385639564056415642564356445645564656475648564956505651565256535654565556565657565856595660566156625663566456655666566756685669567056715672567356745675567656775678567956805681568256835684568556865687568856895690569156925693569456955696569756985699570057015702570357045705570657075708570957105711571257135714571557165717571857195720572157225723572457255726572757285729573057315732573357345735573657375738573957405741574257435744574557465747574857495750575157525753575457555756575757585759576057615762576357645765576657675768576957705771577257735774577557765777577857795780578157825783578457855786578757885789579057915792579357945795579657975798579958005801580258035804580558065807580858095810581158125813581458155816581758185819582058215822582358245825582658275828582958305831583258335834583558365837583858395840584158425843584458455846584758485849585058515852585358545855585658575858585958605861586258635864586558665867586858695870587158725873587458755876587758785879588058815882588358845885588658875888588958905891589258935894589558965897589858995900590159025903590459055906590759085909591059115912591359145915591659175918591959205921592259235924592559265927592859295930593159325933593459355936593759385939594059415942594359445945594659475948594959505951595259535954595559565957595859595960596159625963596459655966596759685969597059715972597359745975597659775978597959805981598259835984598559865987598859895990599159925993599459955996599759985999600060016002600360046005600660076008600960106011601260136014601560166017601860196020602160226023602460256026602760286029603060316032603360346035603660376038603960406041604260436044604560466047604860496050605160526053605460556056605760586059606060616062606360646065606660676068606960706071607260736074607560766077607860796080608160826083608460856086608760886089609060916092609360946095609660976098609961006101610261036104610561066107610861096110611161126113611461156116611761186119612061216122612361246125612661276128612961306131613261336134613561366137613861396140614161426143614461456146614761486149615061516152615361546155615661576158615961606161616261636164616561666167616861696170617161726173617461756176617761786179618061816182618361846185618661876188618961906191619261936194619561966197619861996200620162026203620462056206620762086209621062116212621362146215621662176218621962206221622262236224622562266227622862296230623162326233623462356236623762386239624062416242624362446245624662476248624962506251625262536254625562566257625862596260626162626263626462656266626762686269627062716272627362746275627662776278627962806281628262836284628562866287628862896290629162926293629462956296629762986299630063016302630363046305630663076308630963106311631263136314631563166317631863196320632163226323632463256326632763286329633063316332633363346335633663376338633963406341634263436344634563466347634863496350635163526353635463556356635763586359636063616362636363646365636663676368636963706371637263736374637563766377637863796380638163826383638463856386638763886389639063916392639363946395639663976398639964006401640264036404640564066407640864096410641164126413641464156416641764186419642064216422642364246425642664276428642964306431643264336434643564366437643864396440644164426443644464456446644764486449645064516452645364546455645664576458645964606461646264636464646564666467646864696470647164726473647464756476647764786479648064816482648364846485648664876488648964906491649264936494649564966497649864996500650165026503650465056506650765086509651065116512651365146515651665176518651965206521652265236524652565266527652865296530653165326533653465356536653765386539654065416542654365446545654665476548654965506551655265536554655565566557655865596560656165626563656465656566656765686569657065716572657365746575657665776578657965806581658265836584658565866587658865896590659165926593659465956596659765986599660066016602660366046605660666076608660966106611661266136614661566166617661866196620662166226623662466256626662766286629663066316632663366346635663666376638663966406641664266436644664566466647664866496650665166526653665466556656665766586659666066616662666366646665666666676668666966706671667266736674667566766677667866796680668166826683668466856686668766886689669066916692669366946695669666976698669967006701670267036704670567066707670867096710671167126713671467156716671767186719672067216722672367246725672667276728672967306731673267336734673567366737673867396740674167426743674467456746674767486749675067516752675367546755675667576758675967606761676267636764676567666767676867696770677167726773677467756776677767786779678067816782678367846785678667876788678967906791679267936794679567966797679867996800680168026803680468056806680768086809681068116812681368146815681668176818681968206821682268236824682568266827682868296830683168326833683468356836683768386839684068416842684368446845684668476848684968506851685268536854685568566857685868596860686168626863686468656866686768686869687068716872687368746875687668776878687968806881688268836884688568866887688868896890689168926893689468956896689768986899690069016902690369046905690669076908690969106911691269136914691569166917691869196920692169226923692469256926692769286929693069316932693369346935693669376938693969406941694269436944694569466947694869496950695169526953695469556956695769586959696069616962696369646965696669676968696969706971697269736974697569766977697869796980698169826983698469856986698769886989699069916992699369946995699669976998699970007001700270037004700570067007700870097010701170127013701470157016701770187019702070217022702370247025702670277028702970307031703270337034703570367037703870397040704170427043704470457046704770487049705070517052705370547055705670577058705970607061706270637064706570667067706870697070707170727073707470757076707770787079708070817082708370847085708670877088708970907091709270937094709570967097709870997100710171027103710471057106710771087109711071117112711371147115711671177118711971207121712271237124712571267127712871297130713171327133713471357136713771387139714071417142714371447145714671477148714971507151715271537154715571567157715871597160716171627163716471657166716771687169717071717172717371747175717671777178717971807181718271837184718571867187718871897190719171927193719471957196719771987199720072017202720372047205720672077208720972107211721272137214721572167217721872197220722172227223722472257226722772287229723072317232723372347235723672377238723972407241724272437244724572467247724872497250725172527253725472557256725772587259726072617262726372647265726672677268726972707271727272737274727572767277727872797280728172827283728472857286728772887289729072917292729372947295729672977298729973007301730273037304730573067307730873097310731173127313731473157316731773187319732073217322732373247325732673277328732973307331733273337334733573367337733873397340734173427343734473457346734773487349735073517352735373547355735673577358735973607361736273637364736573667367736873697370737173727373737473757376737773787379738073817382738373847385738673877388738973907391739273937394739573967397739873997400740174027403740474057406740774087409741074117412741374147415741674177418741974207421742274237424742574267427742874297430743174327433743474357436743774387439744074417442744374447445744674477448744974507451745274537454745574567457745874597460746174627463746474657466746774687469747074717472747374747475747674777478747974807481748274837484748574867487748874897490749174927493749474957496749774987499750075017502750375047505750675077508750975107511751275137514751575167517751875197520752175227523752475257526752775287529753075317532753375347535753675377538753975407541754275437544754575467547754875497550755175527553755475557556755775587559756075617562756375647565756675677568756975707571757275737574757575767577757875797580758175827583758475857586758775887589759075917592759375947595759675977598759976007601760276037604760576067607760876097610761176127613761476157616761776187619762076217622762376247625762676277628762976307631763276337634763576367637763876397640764176427643764476457646764776487649765076517652765376547655765676577658765976607661766276637664766576667667766876697670767176727673767476757676767776787679768076817682768376847685768676877688768976907691769276937694769576967697769876997700770177027703770477057706770777087709771077117712771377147715771677177718771977207721772277237724772577267727772877297730773177327733773477357736773777387739774077417742774377447745774677477748774977507751775277537754775577567757775877597760776177627763776477657766776777687769777077717772777377747775777677777778777977807781778277837784778577867787778877897790779177927793779477957796779777987799780078017802780378047805780678077808780978107811781278137814781578167817781878197820782178227823782478257826782778287829783078317832783378347835783678377838783978407841784278437844784578467847784878497850785178527853785478557856785778587859786078617862786378647865786678677868786978707871787278737874787578767877787878797880788178827883788478857886788778887889789078917892789378947895789678977898789979007901790279037904790579067907790879097910791179127913791479157916791779187919792079217922792379247925792679277928792979307931793279337934793579367937793879397940794179427943794479457946794779487949795079517952795379547955795679577958795979607961796279637964796579667967796879697970797179727973797479757976797779787979798079817982798379847985798679877988798979907991799279937994799579967997799879998000800180028003800480058006800780088009801080118012801380148015801680178018801980208021802280238024802580268027802880298030803180328033803480358036803780388039804080418042804380448045804680478048804980508051805280538054805580568057805880598060806180628063806480658066806780688069807080718072807380748075807680778078807980808081808280838084808580868087808880898090809180928093809480958096809780988099810081018102810381048105810681078108810981108111811281138114811581168117811881198120812181228123812481258126812781288129813081318132813381348135813681378138813981408141814281438144814581468147814881498150815181528153815481558156815781588159816081618162816381648165816681678168816981708171817281738174817581768177817881798180818181828183818481858186818781888189819081918192819381948195819681978198819982008201820282038204820582068207820882098210821182128213821482158216821782188219822082218222822382248225822682278228822982308231823282338234823582368237823882398240824182428243824482458246824782488249825082518252825382548255825682578258825982608261826282638264826582668267826882698270827182728273827482758276827782788279828082818282828382848285828682878288828982908291829282938294829582968297829882998300830183028303830483058306830783088309831083118312831383148315831683178318831983208321832283238324832583268327832883298330833183328333833483358336833783388339834083418342834383448345834683478348834983508351835283538354835583568357835883598360836183628363836483658366836783688369837083718372837383748375837683778378837983808381838283838384838583868387838883898390839183928393839483958396839783988399840084018402840384048405840684078408840984108411841284138414841584168417841884198420842184228423842484258426842784288429843084318432843384348435843684378438843984408441844284438444844584468447844884498450845184528453845484558456845784588459846084618462846384648465846684678468846984708471847284738474847584768477847884798480848184828483848484858486848784888489849084918492849384948495849684978498849985008501850285038504850585068507850885098510851185128513851485158516851785188519852085218522852385248525852685278528852985308531853285338534853585368537853885398540854185428543854485458546854785488549855085518552855385548555855685578558855985608561856285638564856585668567856885698570857185728573857485758576857785788579858085818582858385848585858685878588858985908591859285938594859585968597859885998600860186028603860486058606860786088609861086118612861386148615861686178618861986208621862286238624862586268627862886298630863186328633863486358636863786388639864086418642864386448645864686478648864986508651865286538654865586568657865886598660866186628663866486658666866786688669867086718672867386748675867686778678867986808681868286838684868586868687868886898690869186928693869486958696869786988699870087018702870387048705870687078708870987108711871287138714871587168717871887198720872187228723872487258726872787288729873087318732873387348735873687378738873987408741874287438744874587468747874887498750875187528753875487558756875787588759876087618762876387648765876687678768876987708771877287738774877587768777877887798780878187828783878487858786878787888789879087918792879387948795879687978798879988008801880288038804880588068807880888098810881188128813881488158816881788188819882088218822882388248825882688278828882988308831883288338834883588368837883888398840884188428843884488458846884788488849885088518852885388548855885688578858885988608861886288638864886588668867886888698870887188728873887488758876887788788879888088818882888388848885888688878888888988908891889288938894889588968897889888998900890189028903890489058906890789088909891089118912891389148915891689178918891989208921892289238924892589268927892889298930893189328933893489358936893789388939894089418942894389448945894689478948894989508951895289538954895589568957895889598960896189628963896489658966896789688969897089718972897389748975897689778978897989808981898289838984898589868987898889898990899189928993899489958996899789988999900090019002900390049005900690079008900990109011901290139014901590169017901890199020902190229023902490259026902790289029903090319032903390349035903690379038903990409041904290439044904590469047904890499050905190529053905490559056905790589059906090619062906390649065906690679068906990709071907290739074907590769077907890799080908190829083908490859086908790889089909090919092909390949095909690979098909991009101910291039104910591069107910891099110911191129113911491159116911791189119912091219122912391249125912691279128912991309131913291339134913591369137913891399140914191429143914491459146914791489149915091519152915391549155915691579158915991609161916291639164916591669167916891699170917191729173917491759176917791789179918091819182918391849185918691879188918991909191919291939194919591969197919891999200920192029203920492059206920792089209921092119212921392149215921692179218921992209221922292239224922592269227922892299230923192329233923492359236923792389239924092419242924392449245924692479248924992509251925292539254925592569257925892599260926192629263926492659266926792689269927092719272927392749275927692779278927992809281928292839284928592869287928892899290929192929293929492959296929792989299930093019302930393049305930693079308930993109311931293139314931593169317931893199320932193229323932493259326932793289329933093319332933393349335933693379338933993409341934293439344934593469347934893499350935193529353935493559356935793589359936093619362936393649365936693679368936993709371937293739374937593769377937893799380938193829383938493859386938793889389939093919392939393949395939693979398939994009401940294039404940594069407940894099410941194129413941494159416941794189419942094219422942394249425942694279428942994309431943294339434943594369437943894399440944194429443944494459446944794489449945094519452945394549455945694579458945994609461946294639464946594669467946894699470947194729473947494759476947794789479948094819482948394849485948694879488948994909491949294939494949594969497949894999500950195029503950495059506950795089509951095119512951395149515951695179518951995209521952295239524952595269527952895299530953195329533953495359536953795389539954095419542954395449545954695479548954995509551955295539554955595569557955895599560956195629563956495659566956795689569957095719572957395749575957695779578957995809581958295839584958595869587958895899590959195929593959495959596959795989599960096019602960396049605960696079608960996109611961296139614961596169617961896199620962196229623962496259626962796289629963096319632963396349635963696379638963996409641964296439644964596469647964896499650965196529653965496559656965796589659966096619662966396649665966696679668966996709671967296739674967596769677967896799680968196829683968496859686968796889689969096919692969396949695969696979698969997009701970297039704970597069707970897099710971197129713971497159716971797189719972097219722972397249725972697279728972997309731973297339734973597369737973897399740974197429743974497459746974797489749975097519752975397549755975697579758975997609761976297639764976597669767976897699770977197729773977497759776977797789779978097819782978397849785978697879788978997909791979297939794979597969797979897999800980198029803980498059806980798089809981098119812981398149815981698179818981998209821982298239824982598269827982898299830983198329833983498359836983798389839984098419842984398449845984698479848984998509851985298539854985598569857985898599860986198629863986498659866986798689869987098719872987398749875987698779878987998809881988298839884988598869887988898899890989198929893989498959896989798989899990099019902990399049905990699079908990999109911991299139914991599169917991899199920992199229923992499259926992799289929993099319932993399349935993699379938993999409941994299439944994599469947994899499950995199529953995499559956995799589959996099619962996399649965996699679968996999709971997299739974997599769977997899799980998199829983998499859986998799889989999099919992999399949995999699979998999910000100011000210003100041000510006100071000810009100101001110012100131001410015100161001710018100191002010021100221002310024100251002610027100281002910030100311003210033100341003510036100371003810039100401004110042100431004410045100461004710048100491005010051100521005310054100551005610057100581005910060100611006210063100641006510066100671006810069100701007110072100731007410075100761007710078100791008010081100821008310084100851008610087100881008910090100911009210093100941009510096100971009810099101001010110102101031010410105101061010710108101091011010111101121011310114101151011610117101181011910120101211012210123101241012510126101271012810129101301013110132101331013410135101361013710138101391014010141101421014310144101451014610147101481014910150101511015210153101541015510156101571015810159101601016110162101631016410165101661016710168101691017010171101721017310174101751017610177101781017910180101811018210183101841018510186101871018810189101901019110192101931019410195101961019710198101991020010201102021020310204102051020610207102081020910210102111021210213102141021510216102171021810219102201022110222102231022410225102261022710228102291023010231102321023310234102351023610237102381023910240102411024210243102441024510246102471024810249102501025110252102531025410255102561025710258102591026010261102621026310264102651026610267102681026910270102711027210273102741027510276102771027810279102801028110282102831028410285102861028710288102891029010291102921029310294102951029610297102981029910300103011030210303103041030510306103071030810309103101031110312103131031410315103161031710318103191032010321103221032310324103251032610327103281032910330103311033210333103341033510336103371033810339103401034110342103431034410345103461034710348103491035010351103521035310354103551035610357103581035910360103611036210363103641036510366103671036810369103701037110372103731037410375103761037710378103791038010381103821038310384103851038610387103881038910390103911039210393103941039510396103971039810399104001040110402104031040410405104061040710408104091041010411104121041310414104151041610417104181041910420104211042210423104241042510426104271042810429104301043110432104331043410435104361043710438104391044010441104421044310444104451044610447104481044910450104511045210453104541045510456104571045810459104601046110462104631046410465104661046710468104691047010471104721047310474104751047610477104781047910480104811048210483104841048510486104871048810489104901049110492104931049410495104961049710498104991050010501105021050310504105051050610507105081050910510105111051210513105141051510516105171051810519105201052110522105231052410525105261052710528105291053010531105321053310534105351053610537105381053910540105411054210543105441054510546105471054810549105501055110552105531055410555105561055710558105591056010561105621056310564105651056610567105681056910570105711057210573105741057510576105771057810579105801058110582105831058410585105861058710588105891059010591105921059310594105951059610597105981059910600106011060210603106041060510606106071060810609106101061110612106131061410615106161061710618106191062010621106221062310624106251062610627106281062910630106311063210633106341063510636106371063810639106401064110642106431064410645106461064710648106491065010651106521065310654106551065610657106581065910660106611066210663106641066510666106671066810669106701067110672106731067410675106761067710678106791068010681106821068310684106851068610687106881068910690106911069210693106941069510696106971069810699107001070110702107031070410705107061070710708107091071010711107121071310714107151071610717107181071910720107211072210723107241072510726107271072810729107301073110732107331073410735107361073710738107391074010741107421074310744107451074610747107481074910750107511075210753107541075510756107571075810759107601076110762107631076410765107661076710768107691077010771107721077310774107751077610777107781077910780107811078210783107841078510786107871078810789107901079110792107931079410795107961079710798107991080010801108021080310804108051080610807108081080910810108111081210813108141081510816108171081810819108201082110822108231082410825108261082710828108291083010831108321083310834108351083610837108381083910840108411084210843108441084510846108471084810849108501085110852108531085410855108561085710858108591086010861108621086310864108651086610867108681086910870108711087210873108741087510876108771087810879108801088110882108831088410885108861088710888108891089010891108921089310894108951089610897108981089910900109011090210903109041090510906109071090810909109101091110912109131091410915109161091710918109191092010921109221092310924109251092610927109281092910930109311093210933109341093510936109371093810939109401094110942109431094410945109461094710948109491095010951109521095310954109551095610957109581095910960109611096210963109641096510966109671096810969109701097110972109731097410975109761097710978109791098010981109821098310984109851098610987109881098910990109911099210993109941099510996109971099810999110001100111002110031100411005110061100711008110091101011011110121101311014110151101611017110181101911020110211102211023110241102511026110271102811029110301103111032110331103411035110361103711038110391104011041110421104311044110451104611047110481104911050110511105211053110541105511056110571105811059110601106111062110631106411065110661106711068110691107011071110721107311074110751107611077110781107911080110811108211083110841108511086110871108811089110901109111092110931109411095110961109711098110991110011101111021110311104111051110611107111081110911110111111111211113111141111511116111171111811119111201112111122111231112411125111261112711128111291113011131111321113311134111351113611137111381113911140111411114211143111441114511146111471114811149111501115111152111531115411155111561115711158111591116011161111621116311164111651116611167111681116911170111711117211173111741117511176111771117811179111801118111182111831118411185111861118711188111891119011191111921119311194111951119611197111981119911200112011120211203112041120511206112071120811209112101121111212112131121411215112161121711218112191122011221112221122311224112251122611227112281122911230112311123211233112341123511236112371123811239112401124111242112431124411245112461124711248112491125011251112521125311254112551125611257112581125911260112611126211263112641126511266112671126811269112701127111272112731127411275112761127711278112791128011281112821128311284112851128611287112881128911290112911129211293112941129511296112971129811299113001130111302113031130411305113061130711308113091131011311113121131311314113151131611317113181131911320113211132211323113241132511326113271132811329113301133111332113331133411335113361133711338113391134011341113421134311344113451134611347113481134911350113511135211353113541135511356113571135811359113601136111362113631136411365113661136711368113691137011371113721137311374113751137611377113781137911380113811138211383113841138511386113871138811389113901139111392113931139411395113961139711398113991140011401114021140311404114051140611407114081140911410114111141211413114141141511416114171141811419114201142111422114231142411425114261142711428114291143011431114321143311434114351143611437114381143911440114411144211443114441144511446114471144811449114501145111452114531145411455114561145711458114591146011461114621146311464114651146611467114681146911470114711147211473114741147511476114771147811479114801148111482114831148411485114861148711488114891149011491114921149311494114951149611497114981149911500115011150211503115041150511506115071150811509115101151111512115131151411515115161151711518115191152011521115221152311524115251152611527115281152911530115311153211533115341153511536115371153811539115401154111542115431154411545115461154711548115491155011551115521155311554115551155611557115581155911560115611156211563115641156511566115671156811569115701157111572115731157411575115761157711578115791158011581115821158311584115851158611587115881158911590115911159211593115941159511596115971159811599116001160111602116031160411605116061160711608116091161011611116121161311614116151161611617116181161911620116211162211623116241162511626116271162811629116301163111632116331163411635116361163711638116391164011641116421164311644116451164611647116481164911650116511165211653116541165511656116571165811659116601166111662116631166411665116661166711668116691167011671116721167311674116751167611677116781167911680116811168211683116841168511686116871168811689116901169111692116931169411695116961169711698116991170011701117021170311704117051170611707117081170911710117111171211713117141171511716117171171811719117201172111722117231172411725117261172711728117291173011731117321173311734117351173611737117381173911740117411174211743117441174511746117471174811749117501175111752117531175411755117561175711758117591176011761117621176311764117651176611767117681176911770117711177211773117741177511776117771177811779117801178111782117831178411785117861178711788117891179011791117921179311794117951179611797117981179911800118011180211803118041180511806118071180811809118101181111812118131181411815118161181711818118191182011821118221182311824118251182611827118281182911830118311183211833118341183511836118371183811839118401184111842118431184411845118461184711848118491185011851118521185311854118551185611857118581185911860118611186211863118641186511866118671186811869118701187111872118731187411875118761187711878118791188011881118821188311884118851188611887118881188911890118911189211893118941189511896118971189811899119001190111902119031190411905119061190711908119091191011911119121191311914119151191611917119181191911920119211192211923119241192511926119271192811929119301193111932119331193411935119361193711938119391194011941119421194311944119451194611947119481194911950119511195211953119541195511956119571195811959119601196111962119631196411965119661196711968119691197011971119721197311974119751197611977119781197911980119811198211983119841198511986119871198811989119901199111992119931199411995119961199711998119991200012001120021200312004120051200612007120081200912010120111201212013120141201512016120171201812019120201202112022120231202412025120261202712028120291203012031120321203312034120351203612037120381203912040120411204212043120441204512046120471204812049120501205112052120531205412055120561205712058120591206012061120621206312064120651206612067120681206912070120711207212073120741207512076120771207812079120801208112082120831208412085120861208712088120891209012091120921209312094120951209612097120981209912100121011210212103121041210512106121071210812109121101211112112121131211412115121161211712118121191212012121121221212312124121251212612127121281212912130121311213212133121341213512136121371213812139121401214112142121431214412145121461214712148121491215012151121521215312154121551215612157121581215912160121611216212163121641216512166121671216812169121701217112172121731217412175121761217712178121791218012181121821218312184121851218612187121881218912190121911219212193121941219512196121971219812199122001220112202122031220412205122061220712208122091221012211122121221312214122151221612217122181221912220122211222212223122241222512226122271222812229122301223112232122331223412235122361223712238122391224012241122421224312244122451224612247122481224912250122511225212253122541225512256122571225812259122601226112262122631226412265122661226712268122691227012271122721227312274122751227612277122781227912280122811228212283122841228512286122871228812289122901229112292122931229412295122961229712298122991230012301123021230312304123051230612307123081230912310123111231212313123141231512316123171231812319123201232112322123231232412325123261232712328123291233012331123321233312334123351233612337123381233912340123411234212343123441234512346123471234812349123501235112352123531235412355123561235712358123591236012361123621236312364123651236612367123681236912370123711237212373123741237512376123771237812379123801238112382123831238412385123861238712388123891239012391123921239312394123951239612397123981239912400124011240212403124041240512406124071240812409124101241112412124131241412415124161241712418124191242012421124221242312424124251242612427124281242912430124311243212433124341243512436124371243812439124401244112442124431244412445124461244712448124491245012451124521245312454124551245612457124581245912460124611246212463124641246512466124671246812469124701247112472124731247412475124761247712478124791248012481124821248312484124851248612487124881248912490124911249212493124941249512496124971249812499125001250112502125031250412505125061250712508125091251012511125121251312514125151251612517125181251912520125211252212523125241252512526125271252812529125301253112532125331253412535125361253712538125391254012541125421254312544125451254612547125481254912550125511255212553125541255512556125571255812559125601256112562125631256412565125661256712568125691257012571125721257312574125751257612577125781257912580125811258212583125841258512586125871258812589125901259112592125931259412595125961259712598125991260012601126021260312604126051260612607126081260912610126111261212613126141261512616126171261812619126201262112622126231262412625126261262712628126291263012631126321263312634126351263612637126381263912640126411264212643126441264512646126471264812649126501265112652126531265412655126561265712658126591266012661126621266312664126651266612667126681266912670126711267212673126741267512676126771267812679126801268112682126831268412685126861268712688126891269012691126921269312694126951269612697126981269912700127011270212703127041270512706127071270812709127101271112712127131271412715127161271712718127191272012721127221272312724127251272612727127281272912730127311273212733127341273512736127371273812739127401274112742127431274412745127461274712748127491275012751127521275312754127551275612757127581275912760127611276212763127641276512766127671276812769127701277112772127731277412775127761277712778127791278012781127821278312784127851278612787127881278912790127911279212793127941279512796127971279812799128001280112802128031280412805128061280712808128091281012811128121281312814128151281612817128181281912820128211282212823128241282512826128271282812829128301283112832128331283412835128361283712838128391284012841128421284312844128451284612847128481284912850128511285212853128541285512856128571285812859128601286112862128631286412865128661286712868128691287012871128721287312874128751287612877128781287912880128811288212883128841288512886128871288812889128901289112892128931289412895128961289712898128991290012901129021290312904129051290612907129081290912910129111291212913129141291512916129171291812919129201292112922129231292412925129261292712928129291293012931129321293312934129351293612937129381293912940129411294212943129441294512946129471294812949129501295112952129531295412955129561295712958129591296012961129621296312964129651296612967129681296912970129711297212973129741297512976129771297812979129801298112982129831298412985129861298712988129891299012991129921299312994129951299612997129981299913000130011300213003130041300513006130071300813009130101301113012130131301413015130161301713018130191302013021130221302313024130251302613027130281302913030130311303213033130341303513036130371303813039130401304113042130431304413045130461304713048130491305013051130521305313054130551305613057130581305913060130611306213063130641306513066130671306813069130701307113072130731307413075130761307713078130791308013081130821308313084130851308613087130881308913090130911309213093130941309513096130971309813099131001310113102131031310413105131061310713108131091311013111131121311313114131151311613117131181311913120131211312213123131241312513126131271312813129131301313113132131331313413135131361313713138131391314013141131421314313144131451314613147131481314913150131511315213153131541315513156131571315813159131601316113162131631316413165131661316713168131691317013171131721317313174131751317613177131781317913180131811318213183131841318513186131871318813189131901319113192131931319413195131961319713198131991320013201132021320313204132051320613207132081320913210132111321213213132141321513216132171321813219132201322113222132231322413225132261322713228132291323013231132321323313234132351323613237132381323913240132411324213243132441324513246132471324813249132501325113252132531325413255132561325713258132591326013261132621326313264132651326613267132681326913270132711327213273132741327513276132771327813279132801328113282132831328413285132861328713288132891329013291132921329313294132951329613297132981329913300133011330213303133041330513306133071330813309133101331113312133131331413315133161331713318133191332013321133221332313324133251332613327133281332913330133311333213333133341333513336133371333813339133401334113342133431334413345133461334713348133491335013351133521335313354133551335613357133581335913360133611336213363133641336513366133671336813369133701337113372133731337413375133761337713378133791338013381133821338313384133851338613387133881338913390133911339213393133941339513396133971339813399134001340113402134031340413405134061340713408134091341013411134121341313414134151341613417134181341913420134211342213423134241342513426134271342813429134301343113432134331343413435134361343713438134391344013441134421344313444134451344613447134481344913450134511345213453134541345513456134571345813459134601346113462134631346413465134661346713468134691347013471134721347313474134751347613477134781347913480134811348213483134841348513486134871348813489134901349113492134931349413495134961349713498134991350013501135021350313504135051350613507135081350913510135111351213513135141351513516135171351813519135201352113522135231352413525135261352713528135291353013531135321353313534135351353613537135381353913540135411354213543135441354513546135471354813549135501355113552135531355413555135561355713558135591356013561135621356313564135651356613567135681356913570135711357213573135741357513576135771357813579135801358113582135831358413585135861358713588135891359013591135921359313594135951359613597135981359913600136011360213603136041360513606136071360813609136101361113612136131361413615136161361713618136191362013621136221362313624136251362613627136281362913630136311363213633136341363513636136371363813639136401364113642136431364413645136461364713648136491365013651136521365313654136551365613657136581365913660136611366213663136641366513666136671366813669136701367113672136731367413675136761367713678136791368013681136821368313684136851368613687136881368913690136911369213693136941369513696136971369813699137001370113702137031370413705137061370713708137091371013711137121371313714137151371613717137181371913720137211372213723137241372513726137271372813729137301373113732137331373413735137361373713738137391374013741137421374313744137451374613747137481374913750137511375213753137541375513756137571375813759137601376113762137631376413765137661376713768137691377013771137721377313774137751377613777137781377913780137811378213783137841378513786137871378813789137901379113792137931379413795137961379713798137991380013801138021380313804138051380613807138081380913810138111381213813138141381513816138171381813819138201382113822138231382413825138261382713828138291383013831138321383313834138351383613837138381383913840138411384213843138441384513846138471384813849138501385113852138531385413855138561385713858138591386013861138621386313864138651386613867138681386913870138711387213873138741387513876138771387813879138801388113882138831388413885138861388713888138891389013891138921389313894138951389613897138981389913900139011390213903139041390513906139071390813909139101391113912139131391413915139161391713918139191392013921139221392313924139251392613927139281392913930139311393213933139341393513936139371393813939139401394113942139431394413945139461394713948139491395013951139521395313954139551395613957139581395913960139611396213963139641396513966139671396813969139701397113972139731397413975139761397713978139791398013981139821398313984139851398613987139881398913990139911399213993139941399513996139971399813999140001400114002140031400414005140061400714008140091401014011140121401314014140151401614017140181401914020140211402214023140241402514026140271402814029140301403114032140331403414035140361403714038140391404014041140421404314044140451404614047140481404914050140511405214053140541405514056140571405814059140601406114062140631406414065140661406714068140691407014071140721407314074140751407614077140781407914080140811408214083140841408514086140871408814089140901409114092140931409414095140961409714098140991410014101141021410314104141051410614107141081410914110141111411214113141141411514116141171411814119141201412114122141231412414125141261412714128141291413014131141321413314134141351413614137141381413914140141411414214143141441414514146141471414814149141501415114152141531415414155141561415714158141591416014161141621416314164141651416614167141681416914170141711417214173141741417514176141771417814179141801418114182141831418414185141861418714188141891419014191141921419314194141951419614197141981419914200142011420214203142041420514206142071420814209142101421114212142131421414215142161421714218142191422014221142221422314224142251422614227142281422914230142311423214233142341423514236142371423814239142401424114242142431424414245142461424714248142491425014251142521425314254142551425614257142581425914260142611426214263142641426514266142671426814269142701427114272142731427414275142761427714278142791428014281142821428314284142851428614287142881428914290142911429214293142941429514296142971429814299143001430114302143031430414305143061430714308143091431014311143121431314314143151431614317143181431914320143211432214323143241432514326143271432814329143301433114332143331433414335143361433714338143391434014341143421434314344143451434614347143481434914350143511435214353143541435514356143571435814359143601436114362143631436414365143661436714368143691437014371143721437314374143751437614377143781437914380143811438214383143841438514386143871438814389143901439114392143931439414395143961439714398143991440014401144021440314404144051440614407144081440914410144111441214413144141441514416144171441814419144201442114422144231442414425144261442714428144291443014431144321443314434144351443614437144381443914440144411444214443144441444514446144471444814449144501445114452144531445414455144561445714458144591446014461144621446314464144651446614467144681446914470144711447214473144741447514476144771447814479144801448114482144831448414485144861448714488144891449014491144921449314494144951449614497144981449914500145011450214503145041450514506145071450814509145101451114512145131451414515145161451714518145191452014521145221452314524145251452614527145281452914530145311453214533145341453514536145371453814539145401454114542145431454414545145461454714548145491455014551145521455314554145551455614557145581455914560145611456214563145641456514566145671456814569145701457114572145731457414575145761457714578145791458014581145821458314584145851458614587145881458914590145911459214593145941459514596145971459814599146001460114602146031460414605146061460714608146091461014611146121461314614146151461614617146181461914620146211462214623146241462514626146271462814629146301463114632146331463414635146361463714638146391464014641146421464314644146451464614647146481464914650146511465214653146541465514656146571465814659146601466114662146631466414665146661466714668146691467014671146721467314674146751467614677146781467914680146811468214683146841468514686146871468814689146901469114692146931469414695146961469714698146991470014701147021470314704147051470614707147081470914710147111471214713147141471514716147171471814719147201472114722147231472414725147261472714728147291473014731147321473314734147351473614737147381473914740147411474214743147441474514746147471474814749147501475114752147531475414755147561475714758147591476014761147621476314764147651476614767147681476914770147711477214773147741477514776147771477814779147801478114782147831478414785147861478714788147891479014791147921479314794147951479614797147981479914800148011480214803148041480514806148071480814809148101481114812148131481414815148161481714818148191482014821148221482314824148251482614827148281482914830148311483214833148341483514836148371483814839148401484114842148431484414845148461484714848148491485014851148521485314854148551485614857148581485914860148611486214863148641486514866148671486814869148701487114872148731487414875148761487714878148791488014881148821488314884148851488614887148881488914890148911489214893148941489514896148971489814899149001490114902149031490414905149061490714908149091491014911149121491314914149151491614917149181491914920149211492214923149241492514926149271492814929149301493114932149331493414935149361493714938149391494014941149421494314944149451494614947149481494914950149511495214953149541495514956149571495814959149601496114962149631496414965149661496714968149691497014971149721497314974149751497614977149781497914980149811498214983149841498514986149871498814989149901499114992149931499414995149961499714998149991500015001150021500315004150051500615007150081500915010150111501215013150141501515016150171501815019150201502115022150231502415025150261502715028150291503015031150321503315034150351503615037150381503915040150411504215043150441504515046150471504815049150501505115052150531505415055150561505715058150591506015061150621506315064150651506615067150681506915070150711507215073150741507515076150771507815079150801508115082150831508415085150861508715088150891509015091150921509315094150951509615097150981509915100151011510215103151041510515106151071510815109151101511115112151131511415115151161511715118151191512015121151221512315124151251512615127151281512915130151311513215133151341513515136151371513815139151401514115142151431514415145151461514715148151491515015151151521515315154151551515615157151581515915160151611516215163151641516515166151671516815169151701517115172151731517415175151761517715178151791518015181151821518315184151851518615187151881518915190151911519215193151941519515196151971519815199152001520115202152031520415205152061520715208152091521015211152121521315214152151521615217152181521915220152211522215223152241522515226152271522815229152301523115232152331523415235152361523715238152391524015241152421524315244152451524615247152481524915250152511525215253152541525515256152571525815259152601526115262152631526415265152661526715268152691527015271152721527315274152751527615277152781527915280152811528215283152841528515286152871528815289152901529115292152931529415295152961529715298152991530015301153021530315304153051530615307153081530915310153111531215313153141531515316153171531815319153201532115322153231532415325153261532715328153291533015331153321533315334153351533615337153381533915340153411534215343153441534515346153471534815349153501535115352153531535415355153561535715358153591536015361153621536315364153651536615367153681536915370153711537215373153741537515376153771537815379153801538115382153831538415385153861538715388153891539015391153921539315394153951539615397153981539915400154011540215403154041540515406154071540815409154101541115412154131541415415154161541715418154191542015421154221542315424154251542615427154281542915430154311543215433154341543515436154371543815439154401544115442154431544415445154461544715448154491545015451154521545315454154551545615457154581545915460154611546215463154641546515466154671546815469154701547115472154731547415475154761547715478154791548015481154821548315484154851548615487154881548915490154911549215493154941549515496154971549815499155001550115502155031550415505155061550715508155091551015511155121551315514155151551615517155181551915520155211552215523155241552515526155271552815529155301553115532155331553415535155361553715538155391554015541155421554315544155451554615547155481554915550155511555215553155541555515556155571555815559155601556115562155631556415565155661556715568155691557015571155721557315574155751557615577155781557915580155811558215583155841558515586155871558815589155901559115592155931559415595155961559715598155991560015601156021560315604156051560615607156081560915610156111561215613156141561515616156171561815619156201562115622156231562415625156261562715628156291563015631156321563315634156351563615637156381563915640156411564215643156441564515646156471564815649156501565115652156531565415655156561565715658156591566015661156621566315664156651566615667156681566915670156711567215673156741567515676156771567815679156801568115682156831568415685156861568715688156891569015691156921569315694156951569615697156981569915700157011570215703157041570515706157071570815709157101571115712157131571415715157161571715718157191572015721157221572315724157251572615727157281572915730157311573215733157341573515736157371573815739157401574115742157431574415745157461574715748157491575015751157521575315754157551575615757157581575915760157611576215763157641576515766157671576815769157701577115772157731577415775157761577715778
  1. /**
  2. * llama.cpp - commit 3f1ae2e32cde00c39b96be6d01c2997c29bae555 - do not edit this file
  3. *
  4. * MIT License
  5. *
  6. * Copyright (c) 2023-2024 The ggml authors
  7. *
  8. * Permission is hereby granted, free of charge, to any person obtaining a copy
  9. * of this software and associated documentation files (the "Software"), to deal
  10. * in the Software without restriction, including without limitation the rights
  11. * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
  12. * copies of the Software, and to permit persons to whom the Software is
  13. * furnished to do so, subject to the following conditions:
  14. *
  15. * The above copyright notice and this permission notice shall be included in all
  16. * copies or substantial portions of the Software.
  17. *
  18. * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
  19. * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
  20. * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
  21. * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
  22. * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
  23. * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
  24. * SOFTWARE.
  25. */
  26. #define GGML_COMMON_IMPL_C
  27. #include "ggml-common.h"
  28. #include "ggml-quants.h"
  29. #include "ggml-impl.h"
  30. #include "ggml-cpu-impl.h"
  31. #include <math.h>
  32. #include <string.h>
  33. #include <assert.h>
  34. #include <float.h>
  35. #include <stdlib.h> // for qsort
  36. #include <stdio.h> // for GGML_ASSERT
  37. #define GROUP_MAX_EPS 1e-15f
  38. #define GROUP_MAX_EPS_IQ3_XXS 1e-8f
  39. #define GROUP_MAX_EPS_IQ2_S 1e-8f
  40. #define GROUP_MAX_EPS_IQ1_M 1e-7f
  41. #define GROUP_MAX_EPS_IQ1_S 1e-12f
  42. #if defined(_MSC_VER)
  43. // disable "possible loss of data" to avoid warnings for hundreds of casts
  44. // we should just be careful :)
  45. #pragma warning(disable: 4244 4267)
  46. #endif
  47. #define UNUSED GGML_UNUSED
  48. // some compilers don't provide _mm256_set_m128i, e.g. gcc 7
  49. #define MM256_SET_M128I(a, b) _mm256_insertf128_si256(_mm256_castsi128_si256(b), (a), 1)
  50. #if defined(__AVX__) || defined(__AVX2__) || defined(__AVX512F__) || defined(__SSSE3__)
  51. // multiply int8_t, add results pairwise twice
  52. static inline __m128i mul_sum_i8_pairs(const __m128i x, const __m128i y) {
  53. // Get absolute values of x vectors
  54. const __m128i ax = _mm_sign_epi8(x, x);
  55. // Sign the values of the y vectors
  56. const __m128i sy = _mm_sign_epi8(y, x);
  57. // Perform multiplication and create 16-bit values
  58. const __m128i dot = _mm_maddubs_epi16(ax, sy);
  59. const __m128i ones = _mm_set1_epi16(1);
  60. return _mm_madd_epi16(ones, dot);
  61. }
  62. #if __AVX__ || __AVX2__ || __AVX512F__
  63. // horizontally add 8 floats
  64. static inline float hsum_float_8(const __m256 x) {
  65. __m128 res = _mm256_extractf128_ps(x, 1);
  66. res = _mm_add_ps(res, _mm256_castps256_ps128(x));
  67. res = _mm_add_ps(res, _mm_movehl_ps(res, res));
  68. res = _mm_add_ss(res, _mm_movehdup_ps(res));
  69. return _mm_cvtss_f32(res);
  70. }
  71. // horizontally add 8 int32_t
  72. static inline int hsum_i32_8(const __m256i a) {
  73. const __m128i sum128 = _mm_add_epi32(_mm256_castsi256_si128(a), _mm256_extractf128_si256(a, 1));
  74. const __m128i hi64 = _mm_unpackhi_epi64(sum128, sum128);
  75. const __m128i sum64 = _mm_add_epi32(hi64, sum128);
  76. const __m128i hi32 = _mm_shuffle_epi32(sum64, _MM_SHUFFLE(2, 3, 0, 1));
  77. return _mm_cvtsi128_si32(_mm_add_epi32(sum64, hi32));
  78. }
  79. // horizontally add 4 int32_t
  80. static inline int hsum_i32_4(const __m128i a) {
  81. const __m128i hi64 = _mm_unpackhi_epi64(a, a);
  82. const __m128i sum64 = _mm_add_epi32(hi64, a);
  83. const __m128i hi32 = _mm_shuffle_epi32(sum64, _MM_SHUFFLE(2, 3, 0, 1));
  84. return _mm_cvtsi128_si32(_mm_add_epi32(sum64, hi32));
  85. }
  86. #if defined(__AVX2__) || defined(__AVX512F__)
  87. // spread 32 bits to 32 bytes { 0x00, 0xFF }
  88. static inline __m256i bytes_from_bits_32(const uint8_t * x) {
  89. uint32_t x32;
  90. memcpy(&x32, x, sizeof(uint32_t));
  91. const __m256i shuf_mask = _mm256_set_epi64x(
  92. 0x0303030303030303, 0x0202020202020202,
  93. 0x0101010101010101, 0x0000000000000000);
  94. __m256i bytes = _mm256_shuffle_epi8(_mm256_set1_epi32(x32), shuf_mask);
  95. const __m256i bit_mask = _mm256_set1_epi64x(0x7fbfdfeff7fbfdfe);
  96. bytes = _mm256_or_si256(bytes, bit_mask);
  97. return _mm256_cmpeq_epi8(bytes, _mm256_set1_epi64x(-1));
  98. }
  99. // Unpack 32 4-bit fields into 32 bytes
  100. // The output vector contains 32 bytes, each one in [ 0 .. 15 ] interval
  101. static inline __m256i bytes_from_nibbles_32(const uint8_t * rsi)
  102. {
  103. const __m128i tmp = _mm_loadu_si128((const __m128i *)rsi);
  104. const __m256i bytes = MM256_SET_M128I(_mm_srli_epi16(tmp, 4), tmp);
  105. const __m256i lowMask = _mm256_set1_epi8( 0xF );
  106. return _mm256_and_si256(lowMask, bytes);
  107. }
  108. // add int16_t pairwise and return as float vector
  109. static inline __m256 sum_i16_pairs_float(const __m256i x) {
  110. const __m256i ones = _mm256_set1_epi16(1);
  111. const __m256i summed_pairs = _mm256_madd_epi16(ones, x);
  112. return _mm256_cvtepi32_ps(summed_pairs);
  113. }
  114. static inline __m256 mul_sum_us8_pairs_float(const __m256i ax, const __m256i sy) {
  115. #if defined(__AVXVNNI__) || (defined(__AVX512VNNI__) && defined(__AVX512VL__))
  116. const __m256i zero = _mm256_setzero_si256();
  117. const __m256i summed_pairs = _mm256_dpbusd_epi32(zero, ax, sy);
  118. return _mm256_cvtepi32_ps(summed_pairs);
  119. #else
  120. // Perform multiplication and create 16-bit values
  121. const __m256i dot = _mm256_maddubs_epi16(ax, sy);
  122. return sum_i16_pairs_float(dot);
  123. #endif
  124. }
  125. // multiply int8_t, add results pairwise twice and return as float vector
  126. static inline __m256 mul_sum_i8_pairs_float(const __m256i x, const __m256i y) {
  127. #if __AVXVNNIINT8__
  128. const __m256i zero = _mm256_setzero_si256();
  129. const __m256i summed_pairs = _mm256_dpbssd_epi32(zero, x, y);
  130. return _mm256_cvtepi32_ps(summed_pairs);
  131. #else
  132. // Get absolute values of x vectors
  133. const __m256i ax = _mm256_sign_epi8(x, x);
  134. // Sign the values of the y vectors
  135. const __m256i sy = _mm256_sign_epi8(y, x);
  136. return mul_sum_us8_pairs_float(ax, sy);
  137. #endif
  138. }
  139. static inline __m128i packNibbles( __m256i bytes )
  140. {
  141. // Move bits within 16-bit lanes from 0000_abcd_0000_efgh into 0000_0000_abcd_efgh
  142. #if __AVX512F__
  143. const __m256i bytes_srli_4 = _mm256_srli_epi16(bytes, 4); // 0000_0000_abcd_0000
  144. bytes = _mm256_or_si256(bytes, bytes_srli_4); // 0000_abcd_abcd_efgh
  145. return _mm256_cvtepi16_epi8(bytes); // abcd_efgh
  146. #else
  147. const __m256i lowByte = _mm256_set1_epi16( 0xFF );
  148. __m256i high = _mm256_andnot_si256( lowByte, bytes );
  149. __m256i low = _mm256_and_si256( lowByte, bytes );
  150. high = _mm256_srli_epi16( high, 4 );
  151. bytes = _mm256_or_si256( low, high );
  152. // Compress uint16_t lanes into bytes
  153. __m128i r0 = _mm256_castsi256_si128( bytes );
  154. __m128i r1 = _mm256_extracti128_si256( bytes, 1 );
  155. return _mm_packus_epi16( r0, r1 );
  156. #endif
  157. }
  158. #elif defined(__AVX__)
  159. // spread 32 bits to 32 bytes { 0x00, 0xFF }
  160. static inline __m256i bytes_from_bits_32(const uint8_t * x) {
  161. uint32_t x32;
  162. memcpy(&x32, x, sizeof(uint32_t));
  163. const __m128i shuf_maskl = _mm_set_epi64x(0x0101010101010101, 0x0000000000000000);
  164. const __m128i shuf_maskh = _mm_set_epi64x(0x0303030303030303, 0x0202020202020202);
  165. __m128i bytesl = _mm_shuffle_epi8(_mm_set1_epi32(x32), shuf_maskl);
  166. __m128i bytesh = _mm_shuffle_epi8(_mm_set1_epi32(x32), shuf_maskh);
  167. const __m128i bit_mask = _mm_set1_epi64x(0x7fbfdfeff7fbfdfe);
  168. bytesl = _mm_or_si128(bytesl, bit_mask);
  169. bytesh = _mm_or_si128(bytesh, bit_mask);
  170. bytesl = _mm_cmpeq_epi8(bytesl, _mm_set1_epi64x(-1));
  171. bytesh = _mm_cmpeq_epi8(bytesh, _mm_set1_epi64x(-1));
  172. return MM256_SET_M128I(bytesh, bytesl);
  173. }
  174. // Unpack 32 4-bit fields into 32 bytes
  175. // The output vector contains 32 bytes, each one in [ 0 .. 15 ] interval
  176. static inline __m256i bytes_from_nibbles_32(const uint8_t * rsi)
  177. {
  178. // Load 16 bytes from memory
  179. __m128i tmpl = _mm_loadu_si128((const __m128i *)rsi);
  180. __m128i tmph = _mm_srli_epi16(tmpl, 4);
  181. const __m128i lowMask = _mm_set1_epi8(0xF);
  182. tmpl = _mm_and_si128(lowMask, tmpl);
  183. tmph = _mm_and_si128(lowMask, tmph);
  184. return MM256_SET_M128I(tmph, tmpl);
  185. }
  186. // add int16_t pairwise and return as float vector
  187. static inline __m256 sum_i16_pairs_float(const __m128i xh, const __m128i xl) {
  188. const __m128i ones = _mm_set1_epi16(1);
  189. const __m128i summed_pairsl = _mm_madd_epi16(ones, xl);
  190. const __m128i summed_pairsh = _mm_madd_epi16(ones, xh);
  191. const __m256i summed_pairs = MM256_SET_M128I(summed_pairsh, summed_pairsl);
  192. return _mm256_cvtepi32_ps(summed_pairs);
  193. }
  194. static inline __m256 mul_sum_us8_pairs_float(const __m256i ax, const __m256i sy) {
  195. const __m128i axl = _mm256_castsi256_si128(ax);
  196. const __m128i axh = _mm256_extractf128_si256(ax, 1);
  197. const __m128i syl = _mm256_castsi256_si128(sy);
  198. const __m128i syh = _mm256_extractf128_si256(sy, 1);
  199. // Perform multiplication and create 16-bit values
  200. const __m128i dotl = _mm_maddubs_epi16(axl, syl);
  201. const __m128i doth = _mm_maddubs_epi16(axh, syh);
  202. return sum_i16_pairs_float(doth, dotl);
  203. }
  204. // multiply int8_t, add results pairwise twice and return as float vector
  205. static inline __m256 mul_sum_i8_pairs_float(const __m256i x, const __m256i y) {
  206. const __m128i xl = _mm256_castsi256_si128(x);
  207. const __m128i xh = _mm256_extractf128_si256(x, 1);
  208. const __m128i yl = _mm256_castsi256_si128(y);
  209. const __m128i yh = _mm256_extractf128_si256(y, 1);
  210. // Get absolute values of x vectors
  211. const __m128i axl = _mm_sign_epi8(xl, xl);
  212. const __m128i axh = _mm_sign_epi8(xh, xh);
  213. // Sign the values of the y vectors
  214. const __m128i syl = _mm_sign_epi8(yl, xl);
  215. const __m128i syh = _mm_sign_epi8(yh, xh);
  216. // Perform multiplication and create 16-bit values
  217. const __m128i dotl = _mm_maddubs_epi16(axl, syl);
  218. const __m128i doth = _mm_maddubs_epi16(axh, syh);
  219. return sum_i16_pairs_float(doth, dotl);
  220. }
  221. static inline __m128i packNibbles( __m128i bytes1, __m128i bytes2 )
  222. {
  223. // Move bits within 16-bit lanes from 0000_abcd_0000_efgh into 0000_0000_abcd_efgh
  224. const __m128i lowByte = _mm_set1_epi16( 0xFF );
  225. __m128i high = _mm_andnot_si128( lowByte, bytes1 );
  226. __m128i low = _mm_and_si128( lowByte, bytes1 );
  227. high = _mm_srli_epi16( high, 4 );
  228. bytes1 = _mm_or_si128( low, high );
  229. high = _mm_andnot_si128( lowByte, bytes2 );
  230. low = _mm_and_si128( lowByte, bytes2 );
  231. high = _mm_srli_epi16( high, 4 );
  232. bytes2 = _mm_or_si128( low, high );
  233. return _mm_packus_epi16( bytes1, bytes2);
  234. }
  235. static inline __m128i mul_add_epi8_sse(const __m128i x, const __m128i y) {
  236. const __m128i ax = _mm_sign_epi8(x, x);
  237. const __m128i sy = _mm_sign_epi8(y, x);
  238. return _mm_maddubs_epi16(ax, sy);
  239. }
  240. #endif
  241. #elif defined(__SSSE3__)
  242. // horizontally add 4x4 floats
  243. static inline float hsum_float_4x4(const __m128 a, const __m128 b, const __m128 c, const __m128 d) {
  244. __m128 res_0 =_mm_hadd_ps(a, b);
  245. __m128 res_1 =_mm_hadd_ps(c, d);
  246. __m128 res =_mm_hadd_ps(res_0, res_1);
  247. res =_mm_hadd_ps(res, res);
  248. res =_mm_hadd_ps(res, res);
  249. return _mm_cvtss_f32(res);
  250. }
  251. #endif // __AVX__ || __AVX2__ || __AVX512F__
  252. #endif // defined(__AVX__) || defined(__AVX2__) || defined(__AVX512F__) || defined(__SSSE3__)
  253. #if defined(__ARM_NEON) || defined(__wasm_simd128__) || defined(__POWER9_VECTOR__)
  254. #define B1(c,s,n) 0x ## n ## c , 0x ## n ## s
  255. #define B2(c,s,n) B1(c,s,n ## c), B1(c,s,n ## s)
  256. #define B3(c,s,n) B2(c,s,n ## c), B2(c,s,n ## s)
  257. #define B4(c,s,n) B3(c,s,n ## c), B3(c,s,n ## s)
  258. #define B5(c,s,n) B4(c,s,n ## c), B4(c,s,n ## s)
  259. #define B6(c,s,n) B5(c,s,n ## c), B5(c,s,n ## s)
  260. #define B7(c,s,n) B6(c,s,n ## c), B6(c,s,n ## s)
  261. #define B8(c,s ) B7(c,s, c), B7(c,s, s)
  262. // precomputed tables for expanding 8bits to 8 bytes:
  263. static const uint64_t table_b2b_0[1 << 8] = { B8(00, 10) }; // ( b) << 4
  264. static const uint64_t table_b2b_1[1 << 8] = { B8(10, 00) }; // (!b) << 4
  265. #endif
  266. #if defined(__loongarch_asx)
  267. #ifdef __clang__
  268. #define VREGS_PREFIX "$vr"
  269. #define XREGS_PREFIX "$xr"
  270. #else // GCC
  271. #define VREGS_PREFIX "$f"
  272. #define XREGS_PREFIX "$f"
  273. #endif
  274. #define __ALL_REGS "0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31"
  275. // Convert __m128i to __m256i
  276. static inline __m256i ____m256i(__m128i in) {
  277. __m256i out = __lasx_xvldi(0);
  278. __asm__ volatile (
  279. ".irp i," __ALL_REGS "\n\t"
  280. " .ifc %[out], " XREGS_PREFIX"\\i \n\t"
  281. " .irp j," __ALL_REGS "\n\t"
  282. " .ifc %[in], " VREGS_PREFIX "\\j \n\t"
  283. " xvpermi.q $xr\\i, $xr\\j, 0x20 \n\t"
  284. " .endif \n\t"
  285. " .endr \n\t"
  286. " .endif \n\t"
  287. ".endr \n\t"
  288. : [out] "+f" (out) : [in] "f" (in)
  289. );
  290. return out;
  291. }
  292. // Convert two __m128i to __m256i
  293. static inline __m256i lasx_set_q(__m128i inhi, __m128i inlo) {
  294. __m256i out;
  295. __asm__ volatile (
  296. ".irp i," __ALL_REGS "\n\t"
  297. " .ifc %[hi], " VREGS_PREFIX "\\i \n\t"
  298. " .irp j," __ALL_REGS "\n\t"
  299. " .ifc %[lo], " VREGS_PREFIX "\\j \n\t"
  300. " xvpermi.q $xr\\i, $xr\\j, 0x20 \n\t"
  301. " .endif \n\t"
  302. " .endr \n\t"
  303. " .endif \n\t"
  304. ".endr \n\t"
  305. ".ifnc %[out], %[hi] \n\t"
  306. ".irp i," __ALL_REGS "\n\t"
  307. " .ifc %[out], " XREGS_PREFIX "\\i \n\t"
  308. " .irp j," __ALL_REGS "\n\t"
  309. " .ifc %[hi], " VREGS_PREFIX "\\j \n\t"
  310. " xvori.b $xr\\i, $xr\\j, 0 \n\t"
  311. " .endif \n\t"
  312. " .endr \n\t"
  313. " .endif \n\t"
  314. ".endr \n\t"
  315. ".endif \n\t"
  316. : [out] "=f" (out), [hi] "+f" (inhi)
  317. : [lo] "f" (inlo)
  318. );
  319. return out;
  320. }
  321. // Convert __m256i low part to __m128i
  322. static inline __m128i lasx_extracti128_lo(__m256i in) {
  323. __m128i out;
  324. __asm__ volatile (
  325. ".ifnc %[out], %[in] \n\t"
  326. ".irp i," __ALL_REGS "\n\t"
  327. " .ifc %[out], " VREGS_PREFIX "\\i \n\t"
  328. " .irp j," __ALL_REGS "\n\t"
  329. " .ifc %[in], " XREGS_PREFIX "\\j \n\t"
  330. " vori.b $vr\\i, $vr\\j, 0 \n\t"
  331. " .endif \n\t"
  332. " .endr \n\t"
  333. " .endif \n\t"
  334. ".endr \n\t"
  335. ".endif \n\t"
  336. : [out] "=f" (out) : [in] "f" (in)
  337. );
  338. return out;
  339. }
  340. // Convert __m256i high part to __m128i
  341. static inline __m128i lasx_extracti128_hi(__m256i in) {
  342. __m128i out;
  343. __asm__ volatile (
  344. ".irp i," __ALL_REGS "\n\t"
  345. " .ifc %[out], " VREGS_PREFIX "\\i \n\t"
  346. " .irp j," __ALL_REGS "\n\t"
  347. " .ifc %[in], " XREGS_PREFIX "\\j \n\t"
  348. " xvpermi.q $xr\\i, $xr\\j, 0x11 \n\t"
  349. " .endif \n\t"
  350. " .endr \n\t"
  351. " .endif \n\t"
  352. ".endr \n\t"
  353. : [out] "=f" (out) : [in] "f" (in)
  354. );
  355. return out;
  356. }
  357. static __m256i lasx_set_w(int e7, int e6, int e5, int e4, int e3, int e2, int e1, int e0) {
  358. v8i32 __ret = {e0, e1, e2, e3, e4, e5, e6, e7};
  359. return (__m256i)__ret;
  360. }
  361. static __m128i lsx_set_w(int32_t a, int32_t b, int32_t c, int32_t d) {
  362. v4i32 __ret = {d, c, b, a};
  363. return (__m128i)__ret;
  364. }
  365. static __m256i lasx_set_d(int64_t a, int64_t b, int64_t c, int64_t d) {
  366. v4i64 __ret = {d, c, b, a};
  367. return (__m256i)__ret;
  368. }
  369. static __m256i lasx_insertf128( __m128i x, __m128i y) {
  370. return lasx_set_q(x, y);
  371. }
  372. static __m128i lsx_shuffle_b(__m128i a, __m128i b) {
  373. __m128i mask_f, zero, tmp0, tmp2, mask;
  374. int f = 0x8f;
  375. mask_f = __lsx_vreplgr2vr_b(f);
  376. zero = __lsx_vldi(0);
  377. tmp0 = __lsx_vand_v(b, mask_f); // get mask with low 4 bit and sign bits
  378. tmp0 = __lsx_vori_b(tmp0, 0x10); // make each mask or with 0x10 prepare for positive
  379. mask = __lsx_vsle_b(zero, tmp0); // if mask >= 0, set mask
  380. tmp2 = __lsx_vand_v(tmp0, mask); // maskout the in2 < ones
  381. return __lsx_vshuf_b(a, zero, tmp2);
  382. }
  383. static __m256i lasx_shuffle_b(__m256i a, __m256i b) {
  384. __m256i mask_f, zero, tmp0, tmp2, mask;
  385. int f = 0x8f;
  386. mask_f = __lasx_xvreplgr2vr_b(f);
  387. zero = __lasx_xvldi(0);
  388. tmp0 = __lasx_xvand_v(b, mask_f); // get mask with low 4 bit and sign bits
  389. tmp0 = __lasx_xvori_b(tmp0, 0x10); // make each mask or with 0x10 prepare for positive
  390. mask = __lasx_xvsle_b(zero, tmp0); // if mask >= 0, set mask
  391. tmp2 = __lasx_xvand_v(tmp0, mask); // maskout the in2 < ones
  392. return __lasx_xvshuf_b(a, zero, tmp2);
  393. }
  394. static __m256i lasx_extu8_16(__m128i a) {
  395. __m128i zero = __lsx_vldi(0);
  396. __m128i vlo = __lsx_vilvl_b(zero, a);
  397. __m128i vhi = __lsx_vilvh_b(zero, a);
  398. return lasx_set_q(vhi, vlo);
  399. }
  400. static __m256i lasx_ext8_16(__m128i a) {
  401. __m128i sign = __lsx_vslti_b(a, 0);
  402. __m128i vlo = __lsx_vilvl_b(sign, a);
  403. __m128i vhi = __lsx_vilvh_b(sign, a);
  404. return lasx_set_q(vhi, vlo);
  405. }
  406. static __m256i lasx_ext16_32(__m128i a) {
  407. __m256i tmp1;
  408. tmp1 = __lasx_xvinsgr2vr_w(tmp1, __lsx_vpickve2gr_h(a, 0), 0);
  409. tmp1 = __lasx_xvinsgr2vr_w(tmp1, __lsx_vpickve2gr_h(a, 1), 1);
  410. tmp1 = __lasx_xvinsgr2vr_w(tmp1, __lsx_vpickve2gr_h(a, 2), 2);
  411. tmp1 = __lasx_xvinsgr2vr_w(tmp1, __lsx_vpickve2gr_h(a, 3), 3);
  412. tmp1 = __lasx_xvinsgr2vr_w(tmp1, __lsx_vpickve2gr_h(a, 4), 4);
  413. tmp1 = __lasx_xvinsgr2vr_w(tmp1, __lsx_vpickve2gr_h(a, 5), 5);
  414. tmp1 = __lasx_xvinsgr2vr_w(tmp1, __lsx_vpickve2gr_h(a, 6), 6);
  415. tmp1 = __lasx_xvinsgr2vr_w(tmp1, __lsx_vpickve2gr_h(a, 7), 7);
  416. return tmp1;
  417. }
  418. static __m128i lasx_extracti128( __m256i a, int pos) {
  419. __m128i ret;
  420. if( pos == 0)
  421. {
  422. ret = lasx_extracti128_lo(a);
  423. } else {
  424. ret = lasx_extracti128_hi(a);
  425. }
  426. return ret;
  427. }
  428. static __m128 lasx_extractf128( __m256 a, int pos) {
  429. __m128 ret;
  430. if( pos == 0)
  431. {
  432. ret = (__m128)lasx_extracti128_lo((__m256i)a);
  433. } else {
  434. ret = (__m128)lasx_extracti128_hi((__m256i)a);
  435. }
  436. return ret;
  437. }
  438. static __m128i lsx_hadd_h(__m128i a, __m128i b) {
  439. __m128i tmp1 = __lsx_vpickev_h(b, a);
  440. __m128i tmp2 = __lsx_vpickod_h(b, a);
  441. return __lsx_vadd_h(tmp1, tmp2);
  442. }
  443. static __m128i lsx_hadd_w(__m128i a, __m128i b) {
  444. __m128i tmp1 = __lsx_vpickev_w(b, a);
  445. __m128i tmp2 = __lsx_vpickod_w(b, a);
  446. return __lsx_vadd_w(tmp1, tmp2);
  447. }
  448. static __m128 lsx_hadd_s(__m128 a, __m128 b) {
  449. __m128 tmp1 = (__m128)__lsx_vpickev_w((__m128i)b, (__m128i)a);
  450. __m128 tmp2 = (__m128)__lsx_vpickod_w((__m128i)b, (__m128i)a);
  451. return __lsx_vfadd_s(tmp1, tmp2);
  452. }
  453. static __m256i lasx_maddubs_h(__m256i a, __m256i b) {
  454. __m256i tmp1, tmp2;
  455. tmp1 = __lasx_xvmulwev_h_b(a, b);
  456. tmp2 = __lasx_xvmulwod_h_b(a, b);
  457. return __lasx_xvsadd_h(tmp1, tmp2);
  458. }
  459. static __m256i lasx_madd_h(__m256i a, __m256i b) {
  460. __m256i tmp1, tmp2;
  461. tmp1 = __lasx_xvmulwev_w_h(a, b);
  462. tmp2 = __lasx_xvmulwod_w_h(a, b);
  463. return __lasx_xvadd_w(tmp1, tmp2);
  464. }
  465. static __m256i lasx_packs_w(__m256i a, __m256i b) {
  466. __m256i tmp, tmp1;
  467. tmp = __lasx_xvsat_w(a, 15);
  468. tmp1 = __lasx_xvsat_w(b, 15);
  469. return __lasx_xvpickev_h(tmp1, tmp);
  470. }
  471. static __m256i lasx_packs_h(__m256i a, __m256i b) {
  472. __m256i tmp, tmp1;
  473. tmp = __lasx_xvsat_h(a, 7);
  474. tmp1 = __lasx_xvsat_h(b, 7);
  475. return __lasx_xvpickev_b(tmp1, tmp);
  476. }
  477. static __m128i lsx_packs_w(__m128i a, __m128i b) {
  478. __m128i tmp, tmp1;
  479. tmp = __lsx_vsat_w(a, 15);
  480. tmp1 = __lsx_vsat_w(b, 15);
  481. return __lsx_vpickev_h(tmp1, tmp);
  482. }
  483. static __m128i lsx_packs_h(__m128i a, __m128i b) {
  484. __m128i tmp, tmp1;
  485. tmp = __lsx_vsat_h(a, 7);
  486. tmp1 = __lsx_vsat_h(b, 7);
  487. return __lsx_vpickev_b(tmp1, tmp);
  488. }
  489. static __m128i lsx_packus_h(__m128i a, __m128i b) {
  490. __m128i tmp, tmp1;
  491. tmp = __lsx_vsat_hu(a, 7);
  492. tmp1 = __lsx_vsat_hu(b, 7);
  493. return __lsx_vpickev_b(tmp1, tmp);
  494. }
  495. static __m128i lsx_maddubs_h(__m128i a, __m128i b) {
  496. __m128i tmp1, tmp2;
  497. tmp1 = __lsx_vmulwev_h_b(a, b);
  498. tmp2 = __lsx_vmulwod_h_b(a, b);
  499. return __lsx_vsadd_h(tmp1, tmp2);
  500. }
  501. static __m128i lsx_madd_h(__m128i a, __m128i b) {
  502. __m128i tmp1, tmp2;
  503. tmp1 = __lsx_vmulwev_w_h(a, b);
  504. tmp2 = __lsx_vmulwod_w_h(a, b);
  505. return __lsx_vadd_w(tmp1, tmp2);
  506. }
  507. // multiply int8_t, add results pairwise twice
  508. static inline __m128i mul_sum_i8_pairs(const __m128i x, const __m128i y) {
  509. // Get absolute values of x vectors
  510. const __m128i ax = __lsx_vsigncov_b(x, x);
  511. // Sign the values of the y vectors
  512. const __m128i sy = __lsx_vsigncov_b(x, y);
  513. // Perform multiplication and create 16-bit values
  514. const __m128i dot = lsx_maddubs_h(ax, sy);
  515. const __m128i ones = __lsx_vreplgr2vr_h(1);
  516. return lsx_madd_h(ones, dot);
  517. }
  518. // horizontally add 8 floats
  519. static inline float hsum_float_8(const __m256 x) {
  520. __m128 res = lasx_extractf128(x, 1);
  521. ft_union tmp;
  522. res = __lsx_vfadd_s(res, lasx_extractf128(x, 0));
  523. res = __lsx_vfadd_s(res, (__m128)__lsx_vpickod_d((__m128i)res, (__m128i)res));
  524. res = __lsx_vfadd_s(res, (__m128)__lsx_vinsgr2vr_w(__lsx_vldi(0), __lsx_vpickve2gr_w(res, 1), 0));
  525. tmp.i = __lsx_vpickve2gr_w(res, 0);
  526. return tmp.f;
  527. }
  528. // horizontally add 8 int32_t
  529. static inline int hsum_i32_8(const __m256i a) {
  530. __m256i tmp1 = __lasx_xvpermi_q(a, a, 0x11);
  531. __m256i tmp2 = __lasx_xvpermi_q(a, a, 0x00);
  532. __m128i tmp1_128 = lasx_extracti128_lo(tmp1);
  533. __m128i tmp2_128 = lasx_extracti128_lo(tmp2);
  534. __m128i sum128 = __lsx_vadd_w(tmp1_128, tmp2_128);
  535. __m128i ev = __lsx_vpickev_w(sum128, sum128);
  536. __m128i od = __lsx_vpickod_w(sum128, sum128);
  537. __m128i sum64 = __lsx_vadd_w(ev, od);
  538. int sum64_1, sum64_2;
  539. sum64_1 = __lsx_vpickve2gr_w(sum64, 0);
  540. sum64_2 = __lsx_vpickve2gr_w(sum64, 1);
  541. return sum64_1 + sum64_2;
  542. }
  543. // horizontally add 4 int32_t
  544. static inline int hsum_i32_4(const __m128i a) {
  545. __m128i ev = __lsx_vpickev_w(a, a);
  546. __m128i od = __lsx_vpickod_w(a, a);
  547. __m128i sum64 = __lsx_vadd_w(ev, od);
  548. int sum64_1, sum64_2;
  549. sum64_1 = __lsx_vpickve2gr_w(sum64, 0);
  550. sum64_2 = __lsx_vpickve2gr_w(sum64, 1);
  551. return sum64_1 + sum64_2;
  552. }
  553. // spread 32 bits to 32 bytes { 0x00, 0xFF }
  554. static inline __m256i bytes_from_bits_32(const uint8_t * x) {
  555. uint32_t x32;
  556. memcpy(&x32, x, sizeof(uint32_t));
  557. const __m256i shuf_mask = lasx_set_d(
  558. 0x0303030303030303, 0x0202020202020202,
  559. 0x0101010101010101, 0x0000000000000000);
  560. __m256i bytes = lasx_shuffle_b(__lasx_xvreplgr2vr_w(x32), shuf_mask);
  561. const __m256i bit_mask = __lasx_xvreplgr2vr_d(0x7fbfdfeff7fbfdfe);
  562. bytes = __lasx_xvor_v(bytes, bit_mask);
  563. return __lasx_xvseq_b(bytes, __lasx_xvreplgr2vr_d(-1));
  564. }
  565. // Unpack 32 4-bit fields into 32 bytes
  566. // The output vector contains 32 bytes, each one in [ 0 .. 15 ] interval
  567. static inline __m256i bytes_from_nibbles_32(const uint8_t * rsi) {
  568. const __m128i lo = __lsx_vld((const __m128i *)rsi, 0);
  569. __m128i hi = __lsx_vsrli_h(lo, 4);
  570. return __lasx_xvandi_b(lasx_insertf128(hi, lo), 0xf);
  571. }
  572. // add int16_t pairwise and return as float vector
  573. static inline __m256 sum_i16_pairs_float(const __m256i x) {
  574. __m256i v = __lasx_xvpackod_h(x, x);
  575. __m256i summed_pairs = __lasx_xvaddwev_w_h(x, v);
  576. return __lasx_xvffint_s_w(summed_pairs);
  577. }
  578. static inline __m256 mul_sum_us8_pairs_float(const __m256i ax, const __m256i sy) {
  579. // Perform multiplication and create 16-bit values
  580. const __m256i dot = lasx_maddubs_h(ax, sy);
  581. return sum_i16_pairs_float(dot);
  582. }
  583. // multiply int8_t, add results pairwise twice and return as float vector
  584. static inline __m256 mul_sum_i8_pairs_float(const __m256i x, const __m256i y) {
  585. // Get absolute values of x vectors
  586. const __m256i ax = __lasx_xvsigncov_b(x, x);
  587. // Sign the values of the y vectors
  588. const __m256i sy = __lasx_xvsigncov_b(x, y);
  589. return mul_sum_us8_pairs_float(ax, sy);
  590. }
  591. static inline __m128i packNibbles( __m256i bytes ) {
  592. // Move bits within 16-bit lanes from 0000_abcd_0000_efgh into 0000_0000_abcd_efgh
  593. const __m256i lowByte = __lasx_xvreplgr2vr_h(0xFF);
  594. __m256i high = __lasx_xvandn_v(lowByte, bytes);
  595. __m256i low = __lasx_xvand_v(lowByte, bytes);
  596. high = __lasx_xvsrli_h(high, 4);
  597. bytes = __lasx_xvor_v(low, high);
  598. // Compress uint16_t lanes into bytes
  599. __m128i *r0 = (__m128i *)&bytes;
  600. __m256i tmp_h128 = __lasx_xvpermi_q(bytes, bytes, 0x11);
  601. __m128i *r1 = (__m128i *)&tmp_h128;
  602. __m128i zero = __lsx_vldi(0);
  603. __m128i tmp, tmp2, tmp3;
  604. tmp = __lsx_vmax_h(zero, *r0);
  605. tmp2 = __lsx_vsat_hu(tmp, 7);
  606. tmp = __lsx_vmax_h(zero, *r1);
  607. tmp3 = __lsx_vsat_hu(tmp, 7);
  608. return __lsx_vpickev_b(tmp3, tmp2);
  609. }
  610. #endif //__loongarch_asx
  611. // reference implementation for deterministic creation of model files
  612. void quantize_row_q4_0_ref(const float * restrict x, block_q4_0 * restrict y, int64_t k) {
  613. static const int qk = QK4_0;
  614. assert(k % qk == 0);
  615. const int nb = k / qk;
  616. for (int i = 0; i < nb; i++) {
  617. float amax = 0.0f; // absolute max
  618. float max = 0.0f;
  619. for (int j = 0; j < qk; j++) {
  620. const float v = x[i*qk + j];
  621. if (amax < fabsf(v)) {
  622. amax = fabsf(v);
  623. max = v;
  624. }
  625. }
  626. const float d = max / -8;
  627. const float id = d ? 1.0f/d : 0.0f;
  628. y[i].d = GGML_FP32_TO_FP16(d);
  629. for (int j = 0; j < qk/2; ++j) {
  630. const float x0 = x[i*qk + 0 + j]*id;
  631. const float x1 = x[i*qk + qk/2 + j]*id;
  632. const uint8_t xi0 = MIN(15, (int8_t)(x0 + 8.5f));
  633. const uint8_t xi1 = MIN(15, (int8_t)(x1 + 8.5f));
  634. y[i].qs[j] = xi0;
  635. y[i].qs[j] |= xi1 << 4;
  636. }
  637. }
  638. }
  639. void quantize_row_q4_0(const float * restrict x, void * restrict y, int64_t k) {
  640. quantize_row_q4_0_ref(x, y, k);
  641. }
  642. void quantize_row_q4_1_ref(const float * restrict x, block_q4_1 * restrict y, int64_t k) {
  643. const int qk = QK4_1;
  644. assert(k % qk == 0);
  645. const int nb = k / qk;
  646. for (int i = 0; i < nb; i++) {
  647. float min = FLT_MAX;
  648. float max = -FLT_MAX;
  649. for (int j = 0; j < qk; j++) {
  650. const float v = x[i*qk + j];
  651. if (v < min) min = v;
  652. if (v > max) max = v;
  653. }
  654. const float d = (max - min) / ((1 << 4) - 1);
  655. const float id = d ? 1.0f/d : 0.0f;
  656. y[i].d = GGML_FP32_TO_FP16(d);
  657. y[i].m = GGML_FP32_TO_FP16(min);
  658. for (int j = 0; j < qk/2; ++j) {
  659. const float x0 = (x[i*qk + 0 + j] - min)*id;
  660. const float x1 = (x[i*qk + qk/2 + j] - min)*id;
  661. const uint8_t xi0 = MIN(15, (int8_t)(x0 + 0.5f));
  662. const uint8_t xi1 = MIN(15, (int8_t)(x1 + 0.5f));
  663. y[i].qs[j] = xi0;
  664. y[i].qs[j] |= xi1 << 4;
  665. }
  666. }
  667. }
  668. void quantize_row_q4_1(const float * restrict x, void * restrict y, int64_t k) {
  669. quantize_row_q4_1_ref(x, y, k);
  670. }
  671. void quantize_row_q5_0_ref(const float * restrict x, block_q5_0 * restrict y, int64_t k) {
  672. static const int qk = QK5_0;
  673. assert(k % qk == 0);
  674. const int nb = k / qk;
  675. for (int i = 0; i < nb; i++) {
  676. float amax = 0.0f; // absolute max
  677. float max = 0.0f;
  678. for (int j = 0; j < qk; j++) {
  679. const float v = x[i*qk + j];
  680. if (amax < fabsf(v)) {
  681. amax = fabsf(v);
  682. max = v;
  683. }
  684. }
  685. const float d = max / -16;
  686. const float id = d ? 1.0f/d : 0.0f;
  687. y[i].d = GGML_FP32_TO_FP16(d);
  688. uint32_t qh = 0;
  689. for (int j = 0; j < qk/2; ++j) {
  690. const float x0 = x[i*qk + 0 + j]*id;
  691. const float x1 = x[i*qk + qk/2 + j]*id;
  692. const uint8_t xi0 = MIN(31, (int8_t)(x0 + 16.5f));
  693. const uint8_t xi1 = MIN(31, (int8_t)(x1 + 16.5f));
  694. y[i].qs[j] = (xi0 & 0x0F) | ((xi1 & 0x0F) << 4);
  695. // get the 5-th bit and store it in qh at the right position
  696. qh |= ((xi0 & 0x10u) >> 4) << (j + 0);
  697. qh |= ((xi1 & 0x10u) >> 4) << (j + qk/2);
  698. }
  699. memcpy(&y[i].qh, &qh, sizeof(qh));
  700. }
  701. }
  702. void quantize_row_q5_0(const float * restrict x, void * restrict y, int64_t k) {
  703. quantize_row_q5_0_ref(x, y, k);
  704. }
  705. void quantize_row_q5_1_ref(const float * restrict x, block_q5_1 * restrict y, int64_t k) {
  706. const int qk = QK5_1;
  707. assert(k % qk == 0);
  708. const int nb = k / qk;
  709. for (int i = 0; i < nb; i++) {
  710. float min = FLT_MAX;
  711. float max = -FLT_MAX;
  712. for (int j = 0; j < qk; j++) {
  713. const float v = x[i*qk + j];
  714. if (v < min) min = v;
  715. if (v > max) max = v;
  716. }
  717. const float d = (max - min) / ((1 << 5) - 1);
  718. const float id = d ? 1.0f/d : 0.0f;
  719. y[i].d = GGML_FP32_TO_FP16(d);
  720. y[i].m = GGML_FP32_TO_FP16(min);
  721. uint32_t qh = 0;
  722. for (int j = 0; j < qk/2; ++j) {
  723. const float x0 = (x[i*qk + 0 + j] - min)*id;
  724. const float x1 = (x[i*qk + qk/2 + j] - min)*id;
  725. const uint8_t xi0 = (uint8_t)(x0 + 0.5f);
  726. const uint8_t xi1 = (uint8_t)(x1 + 0.5f);
  727. y[i].qs[j] = (xi0 & 0x0F) | ((xi1 & 0x0F) << 4);
  728. // get the 5-th bit and store it in qh at the right position
  729. qh |= ((xi0 & 0x10u) >> 4) << (j + 0);
  730. qh |= ((xi1 & 0x10u) >> 4) << (j + qk/2);
  731. }
  732. memcpy(&y[i].qh, &qh, sizeof(y[i].qh));
  733. }
  734. }
  735. void quantize_row_q5_1(const float * restrict x, void * restrict y, int64_t k) {
  736. quantize_row_q5_1_ref(x, y, k);
  737. }
  738. // reference implementation for deterministic creation of model files
  739. void quantize_row_q8_0_ref(const float * restrict x, block_q8_0 * restrict y, int64_t k) {
  740. assert(k % QK8_0 == 0);
  741. const int nb = k / QK8_0;
  742. for (int i = 0; i < nb; i++) {
  743. float amax = 0.0f; // absolute max
  744. for (int j = 0; j < QK8_0; j++) {
  745. const float v = x[i*QK8_0 + j];
  746. amax = MAX(amax, fabsf(v));
  747. }
  748. const float d = amax / ((1 << 7) - 1);
  749. const float id = d ? 1.0f/d : 0.0f;
  750. y[i].d = GGML_FP32_TO_FP16(d);
  751. for (int j = 0; j < QK8_0; ++j) {
  752. const float x0 = x[i*QK8_0 + j]*id;
  753. y[i].qs[j] = roundf(x0);
  754. }
  755. }
  756. }
  757. void quantize_row_q8_0(const float * restrict x, void * restrict vy, int64_t k) {
  758. assert(QK8_0 == 32);
  759. assert(k % QK8_0 == 0);
  760. const int nb = k / QK8_0;
  761. block_q8_0 * restrict y = vy;
  762. #if defined(__ARM_NEON)
  763. for (int i = 0; i < nb; i++) {
  764. float32x4_t srcv [8];
  765. float32x4_t asrcv[8];
  766. float32x4_t amaxv[8];
  767. for (int j = 0; j < 8; j++) srcv[j] = vld1q_f32(x + i*32 + 4*j);
  768. for (int j = 0; j < 8; j++) asrcv[j] = vabsq_f32(srcv[j]);
  769. for (int j = 0; j < 4; j++) amaxv[2*j] = vmaxq_f32(asrcv[2*j], asrcv[2*j+1]);
  770. for (int j = 0; j < 2; j++) amaxv[4*j] = vmaxq_f32(amaxv[4*j], amaxv[4*j+2]);
  771. for (int j = 0; j < 1; j++) amaxv[8*j] = vmaxq_f32(amaxv[8*j], amaxv[8*j+4]);
  772. const float amax = vmaxvq_f32(amaxv[0]);
  773. const float d = amax / ((1 << 7) - 1);
  774. const float id = d ? 1.0f/d : 0.0f;
  775. y[i].d = GGML_FP32_TO_FP16(d);
  776. for (int j = 0; j < 8; j++) {
  777. const float32x4_t v = vmulq_n_f32(srcv[j], id);
  778. const int32x4_t vi = vcvtnq_s32_f32(v);
  779. y[i].qs[4*j + 0] = vgetq_lane_s32(vi, 0);
  780. y[i].qs[4*j + 1] = vgetq_lane_s32(vi, 1);
  781. y[i].qs[4*j + 2] = vgetq_lane_s32(vi, 2);
  782. y[i].qs[4*j + 3] = vgetq_lane_s32(vi, 3);
  783. }
  784. }
  785. #elif defined(__wasm_simd128__)
  786. for (int i = 0; i < nb; i++) {
  787. v128_t srcv [8];
  788. v128_t asrcv[8];
  789. v128_t amaxv[8];
  790. for (int j = 0; j < 8; j++) srcv[j] = wasm_v128_load(x + i*32 + 4*j);
  791. for (int j = 0; j < 8; j++) asrcv[j] = wasm_f32x4_abs(srcv[j]);
  792. for (int j = 0; j < 4; j++) amaxv[2*j] = wasm_f32x4_max(asrcv[2*j], asrcv[2*j+1]);
  793. for (int j = 0; j < 2; j++) amaxv[4*j] = wasm_f32x4_max(amaxv[4*j], amaxv[4*j+2]);
  794. for (int j = 0; j < 1; j++) amaxv[8*j] = wasm_f32x4_max(amaxv[8*j], amaxv[8*j+4]);
  795. const float amax = MAX(MAX(wasm_f32x4_extract_lane(amaxv[0], 0),
  796. wasm_f32x4_extract_lane(amaxv[0], 1)),
  797. MAX(wasm_f32x4_extract_lane(amaxv[0], 2),
  798. wasm_f32x4_extract_lane(amaxv[0], 3)));
  799. const float d = amax / ((1 << 7) - 1);
  800. const float id = d ? 1.0f/d : 0.0f;
  801. y[i].d = GGML_FP32_TO_FP16(d);
  802. for (int j = 0; j < 8; j++) {
  803. const v128_t v = wasm_f32x4_mul(srcv[j], wasm_f32x4_splat(id));
  804. const v128_t vi = wasm_i32x4_trunc_sat_f32x4(v);
  805. y[i].qs[4*j + 0] = wasm_i32x4_extract_lane(vi, 0);
  806. y[i].qs[4*j + 1] = wasm_i32x4_extract_lane(vi, 1);
  807. y[i].qs[4*j + 2] = wasm_i32x4_extract_lane(vi, 2);
  808. y[i].qs[4*j + 3] = wasm_i32x4_extract_lane(vi, 3);
  809. }
  810. }
  811. #elif defined(__AVX2__) || defined(__AVX__)
  812. for (int i = 0; i < nb; i++) {
  813. // Load elements into 4 AVX vectors
  814. __m256 v0 = _mm256_loadu_ps( x );
  815. __m256 v1 = _mm256_loadu_ps( x + 8 );
  816. __m256 v2 = _mm256_loadu_ps( x + 16 );
  817. __m256 v3 = _mm256_loadu_ps( x + 24 );
  818. x += 32;
  819. // Compute max(abs(e)) for the block
  820. const __m256 signBit = _mm256_set1_ps( -0.0f );
  821. __m256 maxAbs = _mm256_andnot_ps( signBit, v0 );
  822. maxAbs = _mm256_max_ps( maxAbs, _mm256_andnot_ps( signBit, v1 ) );
  823. maxAbs = _mm256_max_ps( maxAbs, _mm256_andnot_ps( signBit, v2 ) );
  824. maxAbs = _mm256_max_ps( maxAbs, _mm256_andnot_ps( signBit, v3 ) );
  825. __m128 max4 = _mm_max_ps( _mm256_extractf128_ps( maxAbs, 1 ), _mm256_castps256_ps128( maxAbs ) );
  826. max4 = _mm_max_ps( max4, _mm_movehl_ps( max4, max4 ) );
  827. max4 = _mm_max_ss( max4, _mm_movehdup_ps( max4 ) );
  828. const float maxScalar = _mm_cvtss_f32( max4 );
  829. // Quantize these floats
  830. const float d = maxScalar / 127.f;
  831. y[i].d = GGML_FP32_TO_FP16(d);
  832. const float id = ( maxScalar != 0.0f ) ? 127.f / maxScalar : 0.0f;
  833. const __m256 mul = _mm256_set1_ps( id );
  834. // Apply the multiplier
  835. v0 = _mm256_mul_ps( v0, mul );
  836. v1 = _mm256_mul_ps( v1, mul );
  837. v2 = _mm256_mul_ps( v2, mul );
  838. v3 = _mm256_mul_ps( v3, mul );
  839. // Round to nearest integer
  840. v0 = _mm256_round_ps( v0, _MM_ROUND_NEAREST );
  841. v1 = _mm256_round_ps( v1, _MM_ROUND_NEAREST );
  842. v2 = _mm256_round_ps( v2, _MM_ROUND_NEAREST );
  843. v3 = _mm256_round_ps( v3, _MM_ROUND_NEAREST );
  844. // Convert floats to integers
  845. __m256i i0 = _mm256_cvtps_epi32( v0 );
  846. __m256i i1 = _mm256_cvtps_epi32( v1 );
  847. __m256i i2 = _mm256_cvtps_epi32( v2 );
  848. __m256i i3 = _mm256_cvtps_epi32( v3 );
  849. #if defined(__AVX2__)
  850. // Convert int32 to int16
  851. i0 = _mm256_packs_epi32( i0, i1 ); // 0, 1, 2, 3, 8, 9, 10, 11, 4, 5, 6, 7, 12, 13, 14, 15
  852. i2 = _mm256_packs_epi32( i2, i3 ); // 16, 17, 18, 19, 24, 25, 26, 27, 20, 21, 22, 23, 28, 29, 30, 31
  853. // Convert int16 to int8
  854. i0 = _mm256_packs_epi16( i0, i2 ); // 0, 1, 2, 3, 8, 9, 10, 11, 16, 17, 18, 19, 24, 25, 26, 27, 4, 5, 6, 7, 12, 13, 14, 15, 20, 21, 22, 23, 28, 29, 30, 31
  855. // We got our precious signed bytes, but the order is now wrong
  856. // These AVX2 pack instructions process 16-byte pieces independently
  857. // The following instruction is fixing the order
  858. const __m256i perm = _mm256_setr_epi32( 0, 4, 1, 5, 2, 6, 3, 7 );
  859. i0 = _mm256_permutevar8x32_epi32( i0, perm );
  860. _mm256_storeu_si256((__m256i *)y[i].qs, i0);
  861. #else
  862. // Since we don't have in AVX some necessary functions,
  863. // we split the registers in half and call AVX2 analogs from SSE
  864. __m128i ni0 = _mm256_castsi256_si128( i0 );
  865. __m128i ni1 = _mm256_extractf128_si256( i0, 1);
  866. __m128i ni2 = _mm256_castsi256_si128( i1 );
  867. __m128i ni3 = _mm256_extractf128_si256( i1, 1);
  868. __m128i ni4 = _mm256_castsi256_si128( i2 );
  869. __m128i ni5 = _mm256_extractf128_si256( i2, 1);
  870. __m128i ni6 = _mm256_castsi256_si128( i3 );
  871. __m128i ni7 = _mm256_extractf128_si256( i3, 1);
  872. // Convert int32 to int16
  873. ni0 = _mm_packs_epi32( ni0, ni1 );
  874. ni2 = _mm_packs_epi32( ni2, ni3 );
  875. ni4 = _mm_packs_epi32( ni4, ni5 );
  876. ni6 = _mm_packs_epi32( ni6, ni7 );
  877. // Convert int16 to int8
  878. ni0 = _mm_packs_epi16( ni0, ni2 );
  879. ni4 = _mm_packs_epi16( ni4, ni6 );
  880. _mm_storeu_si128((__m128i *)(y[i].qs + 0), ni0);
  881. _mm_storeu_si128((__m128i *)(y[i].qs + 16), ni4);
  882. #endif
  883. }
  884. #elif defined(__riscv_v_intrinsic)
  885. size_t vl = __riscv_vsetvl_e32m4(QK8_0);
  886. for (int i = 0; i < nb; i++) {
  887. // load elements
  888. vfloat32m4_t v_x = __riscv_vle32_v_f32m4(x+i*QK8_0, vl);
  889. vfloat32m4_t vfabs = __riscv_vfabs_v_f32m4(v_x, vl);
  890. vfloat32m1_t tmp = __riscv_vfmv_v_f_f32m1(0.0f, vl);
  891. vfloat32m1_t vmax = __riscv_vfredmax_vs_f32m4_f32m1(vfabs, tmp, vl);
  892. float amax = __riscv_vfmv_f_s_f32m1_f32(vmax);
  893. const float d = amax / ((1 << 7) - 1);
  894. const float id = d ? 1.0f/d : 0.0f;
  895. y[i].d = GGML_FP32_TO_FP16(d);
  896. vfloat32m4_t x0 = __riscv_vfmul_vf_f32m4(v_x, id, vl);
  897. // convert to integer
  898. vint16m2_t vi = __riscv_vfncvt_x_f_w_i16m2(x0, vl);
  899. vint8m1_t vs = __riscv_vncvt_x_x_w_i8m1(vi, vl);
  900. // store result
  901. __riscv_vse8_v_i8m1(y[i].qs , vs, vl);
  902. }
  903. #elif defined(__POWER9_VECTOR__)
  904. for (int i = 0; i < nb; i++) {
  905. vector float srcv [8];
  906. vector float asrcv[8];
  907. vector float amaxv[8];
  908. vector signed int vi[8];
  909. for (int j = 0; j < 8; j++) srcv[j] = vec_xl(0, x + i*32 + 4*j);
  910. for (int j = 0; j < 8; j++) asrcv[j] = vec_abs(srcv[j]);
  911. for (int j = 0; j < 4; j++) amaxv[2*j] = vec_max(asrcv[2*j], asrcv[2*j+1]);
  912. for (int j = 0; j < 2; j++) amaxv[4*j] = vec_max(amaxv[4*j], amaxv[4*j+2]);
  913. for (int j = 0; j < 1; j++) amaxv[8*j] = vec_max(amaxv[8*j], amaxv[8*j+4]);
  914. const float amax = MAX(MAX(vec_extract(amaxv[0], 0),
  915. vec_extract(amaxv[0], 1)),
  916. MAX(vec_extract(amaxv[0], 2),
  917. vec_extract(amaxv[0], 3)));
  918. const float d = amax / ((1 << 7) - 1);
  919. const float id = d ? 1.0f/d : 0.0f;
  920. const vector float vid = vec_splats(id);
  921. y[i].d = GGML_FP32_TO_FP16(d);
  922. for (int j = 0; j < 8; j++) {
  923. const vector float v = vec_round(vec_mul(srcv[j], vid));
  924. vi[j] = vec_cts(v, 0);
  925. }
  926. vec_xst(vec_pack(vec_pack(vi[0], vi[1]), vec_pack(vi[2], vi[3])), 0, &y[i].qs[0]);
  927. vec_xst(vec_pack(vec_pack(vi[4], vi[5]), vec_pack(vi[6], vi[7])), 16, &y[i].qs[0]);
  928. }
  929. #elif defined(__loongarch_asx)
  930. for (int i = 0; i < nb; i++) {
  931. ft_union fi;
  932. __m256 v0 = (__m256)__lasx_xvld( x , 0);
  933. __m256 v1 = (__m256)__lasx_xvld( x , 32);
  934. __m256 v2 = (__m256)__lasx_xvld( x , 64);
  935. __m256 v3 = (__m256)__lasx_xvld( x , 96);
  936. x += 32;
  937. // Compute max(abs(e)) for the block
  938. const __m256 sign_bit = __lasx_xvreplfr2vr_s( -0.0f );
  939. __m256 max_abs = (__m256)__lasx_xvandn_v( (__m256i)sign_bit, (__m256i)v0 );
  940. max_abs = __lasx_xvfmax_s( max_abs, (__m256)__lasx_xvandn_v( (__m256i)sign_bit, (__m256i)v1 ) );
  941. max_abs = __lasx_xvfmax_s( max_abs, (__m256)__lasx_xvandn_v( (__m256i)sign_bit, (__m256i)v2 ) );
  942. max_abs = __lasx_xvfmax_s( max_abs, (__m256)__lasx_xvandn_v( (__m256i)sign_bit, (__m256i)v3 ) );
  943. __m128 max4 = __lsx_vfmax_s( lasx_extractf128( max_abs, 1 ), lasx_extractf128( max_abs , 0) );
  944. max4 = __lsx_vfmax_s( max4, (__m128)__lsx_vpickod_d((__m128i) max4, (__m128i)max4 ) );
  945. __m128 tmp = max4;
  946. max4 = __lsx_vfmax_s( max4, (__m128)__lsx_vinsgr2vr_w(tmp, __lsx_vpickve2gr_w( max4, 1 ), 0 ));
  947. fi.i = __lsx_vpickve2gr_w( (__m128i)max4, 0 );
  948. const float max_scalar = fi.f;
  949. // Quantize these floats
  950. const float d = max_scalar / 127.f;
  951. y[i].d = GGML_FP32_TO_FP16(d);
  952. const float id = ( max_scalar != 0.0f ) ? 127.f / max_scalar : 0.0f;
  953. const __m256 mul = (__m256)__lasx_xvreplfr2vr_s( id );
  954. // Apply the multiplier
  955. v0 = __lasx_xvfmul_s( v0, mul );
  956. v1 = __lasx_xvfmul_s( v1, mul );
  957. v2 = __lasx_xvfmul_s( v2, mul );
  958. v3 = __lasx_xvfmul_s( v3, mul );
  959. // Round to nearest integer
  960. __m256i i0 = __lasx_xvftintrne_w_s( v0 );
  961. __m256i i1 = __lasx_xvftintrne_w_s( v1 );
  962. __m256i i2 = __lasx_xvftintrne_w_s( v2 );
  963. __m256i i3 = __lasx_xvftintrne_w_s( v3 );
  964. __m128i ni0 = lasx_extracti128( i0, 0 );
  965. __m128i ni1 = lasx_extracti128( i0, 1);
  966. __m128i ni2 = lasx_extracti128( i1, 0);
  967. __m128i ni3 = lasx_extracti128( i1, 1);
  968. __m128i ni4 = lasx_extracti128( i2, 0);
  969. __m128i ni5 = lasx_extracti128( i2, 1);
  970. __m128i ni6 = lasx_extracti128( i3, 0);
  971. __m128i ni7 = lasx_extracti128( i3, 1);
  972. // Convert int32 to int16
  973. ni0 = lsx_packs_w( ni0, ni1 );
  974. ni2 = lsx_packs_w( ni2, ni3 );
  975. ni4 = lsx_packs_w( ni4, ni5 );
  976. ni6 = lsx_packs_w( ni6, ni7 );
  977. // Convert int16 to int8
  978. ni0 = lsx_packs_h( ni0, ni2 );
  979. ni4 = lsx_packs_h( ni4, ni6 );
  980. __lsx_vst(ni0, (__m128i *)(y[i].qs + 0), 0);
  981. __lsx_vst(ni4, (__m128i *)(y[i].qs + 16), 0);
  982. }
  983. #else
  984. GGML_UNUSED(nb);
  985. // scalar
  986. quantize_row_q8_0_ref(x, y, k);
  987. #endif
  988. }
  989. // reference implementation for deterministic creation of model files
  990. void quantize_row_q8_1_ref(const float * restrict x, block_q8_1 * restrict y, int64_t k) {
  991. assert(QK8_1 == 32);
  992. assert(k % QK8_1 == 0);
  993. const int nb = k / QK8_1;
  994. for (int i = 0; i < nb; i++) {
  995. float amax = 0.0f; // absolute max
  996. for (int j = 0; j < QK8_1; j++) {
  997. const float v = x[i*QK8_1 + j];
  998. amax = MAX(amax, fabsf(v));
  999. }
  1000. const float d = amax / ((1 << 7) - 1);
  1001. const float id = d ? 1.0f/d : 0.0f;
  1002. y[i].d = GGML_FP32_TO_FP16(d);
  1003. int sum = 0;
  1004. for (int j = 0; j < QK8_1/2; ++j) {
  1005. const float v0 = x[i*QK8_1 + j]*id;
  1006. const float v1 = x[i*QK8_1 + QK8_1/2 + j]*id;
  1007. y[i].qs[ j] = roundf(v0);
  1008. y[i].qs[QK8_1/2 + j] = roundf(v1);
  1009. sum += y[i].qs[ j];
  1010. sum += y[i].qs[QK8_1/2 + j];
  1011. }
  1012. y[i].s = GGML_FP32_TO_FP16(sum*d);
  1013. }
  1014. }
  1015. void quantize_row_q8_1(const float * restrict x, void * restrict vy, int64_t k) {
  1016. assert(k % QK8_1 == 0);
  1017. const int nb = k / QK8_1;
  1018. block_q8_1 * restrict y = vy;
  1019. #if defined(__ARM_NEON)
  1020. for (int i = 0; i < nb; i++) {
  1021. float32x4_t srcv [8];
  1022. float32x4_t asrcv[8];
  1023. float32x4_t amaxv[8];
  1024. for (int j = 0; j < 8; j++) srcv[j] = vld1q_f32(x + i*32 + 4*j);
  1025. for (int j = 0; j < 8; j++) asrcv[j] = vabsq_f32(srcv[j]);
  1026. for (int j = 0; j < 4; j++) amaxv[2*j] = vmaxq_f32(asrcv[2*j], asrcv[2*j+1]);
  1027. for (int j = 0; j < 2; j++) amaxv[4*j] = vmaxq_f32(amaxv[4*j], amaxv[4*j+2]);
  1028. for (int j = 0; j < 1; j++) amaxv[8*j] = vmaxq_f32(amaxv[8*j], amaxv[8*j+4]);
  1029. const float amax = vmaxvq_f32(amaxv[0]);
  1030. const float d = amax / ((1 << 7) - 1);
  1031. const float id = d ? 1.0f/d : 0.0f;
  1032. y[i].d = GGML_FP32_TO_FP16(d);
  1033. int32x4_t accv = vdupq_n_s32(0);
  1034. for (int j = 0; j < 8; j++) {
  1035. const float32x4_t v = vmulq_n_f32(srcv[j], id);
  1036. const int32x4_t vi = vcvtnq_s32_f32(v);
  1037. y[i].qs[4*j + 0] = vgetq_lane_s32(vi, 0);
  1038. y[i].qs[4*j + 1] = vgetq_lane_s32(vi, 1);
  1039. y[i].qs[4*j + 2] = vgetq_lane_s32(vi, 2);
  1040. y[i].qs[4*j + 3] = vgetq_lane_s32(vi, 3);
  1041. accv = vaddq_s32(accv, vi);
  1042. }
  1043. y[i].s = GGML_FP32_TO_FP16(d * vaddvq_s32(accv));
  1044. }
  1045. #elif defined(__wasm_simd128__)
  1046. for (int i = 0; i < nb; i++) {
  1047. v128_t srcv [8];
  1048. v128_t asrcv[8];
  1049. v128_t amaxv[8];
  1050. for (int j = 0; j < 8; j++) srcv[j] = wasm_v128_load(x + i*32 + 4*j);
  1051. for (int j = 0; j < 8; j++) asrcv[j] = wasm_f32x4_abs(srcv[j]);
  1052. for (int j = 0; j < 4; j++) amaxv[2*j] = wasm_f32x4_max(asrcv[2*j], asrcv[2*j+1]);
  1053. for (int j = 0; j < 2; j++) amaxv[4*j] = wasm_f32x4_max(amaxv[4*j], amaxv[4*j+2]);
  1054. for (int j = 0; j < 1; j++) amaxv[8*j] = wasm_f32x4_max(amaxv[8*j], amaxv[8*j+4]);
  1055. const float amax = MAX(MAX(wasm_f32x4_extract_lane(amaxv[0], 0),
  1056. wasm_f32x4_extract_lane(amaxv[0], 1)),
  1057. MAX(wasm_f32x4_extract_lane(amaxv[0], 2),
  1058. wasm_f32x4_extract_lane(amaxv[0], 3)));
  1059. const float d = amax / ((1 << 7) - 1);
  1060. const float id = d ? 1.0f/d : 0.0f;
  1061. y[i].d = GGML_FP32_TO_FP16(d);
  1062. v128_t accv = wasm_i32x4_splat(0);
  1063. for (int j = 0; j < 8; j++) {
  1064. const v128_t v = wasm_f32x4_mul(srcv[j], wasm_f32x4_splat(id));
  1065. const v128_t vi = wasm_i32x4_trunc_sat_f32x4(v);
  1066. y[i].qs[4*j + 0] = wasm_i32x4_extract_lane(vi, 0);
  1067. y[i].qs[4*j + 1] = wasm_i32x4_extract_lane(vi, 1);
  1068. y[i].qs[4*j + 2] = wasm_i32x4_extract_lane(vi, 2);
  1069. y[i].qs[4*j + 3] = wasm_i32x4_extract_lane(vi, 3);
  1070. accv = wasm_i32x4_add(accv, vi);
  1071. }
  1072. y[i].s = GGML_FP32_TO_FP16(
  1073. d * (wasm_i32x4_extract_lane(accv, 0) +
  1074. wasm_i32x4_extract_lane(accv, 1) +
  1075. wasm_i32x4_extract_lane(accv, 2) +
  1076. wasm_i32x4_extract_lane(accv, 3)));
  1077. }
  1078. #elif defined(__AVX2__) || defined(__AVX__)
  1079. for (int i = 0; i < nb; i++) {
  1080. // Load elements into 4 AVX vectors
  1081. __m256 v0 = _mm256_loadu_ps( x );
  1082. __m256 v1 = _mm256_loadu_ps( x + 8 );
  1083. __m256 v2 = _mm256_loadu_ps( x + 16 );
  1084. __m256 v3 = _mm256_loadu_ps( x + 24 );
  1085. x += 32;
  1086. // Compute max(abs(e)) for the block
  1087. const __m256 signBit = _mm256_set1_ps( -0.0f );
  1088. __m256 maxAbs = _mm256_andnot_ps( signBit, v0 );
  1089. maxAbs = _mm256_max_ps( maxAbs, _mm256_andnot_ps( signBit, v1 ) );
  1090. maxAbs = _mm256_max_ps( maxAbs, _mm256_andnot_ps( signBit, v2 ) );
  1091. maxAbs = _mm256_max_ps( maxAbs, _mm256_andnot_ps( signBit, v3 ) );
  1092. __m128 max4 = _mm_max_ps( _mm256_extractf128_ps( maxAbs, 1 ), _mm256_castps256_ps128( maxAbs ) );
  1093. max4 = _mm_max_ps( max4, _mm_movehl_ps( max4, max4 ) );
  1094. max4 = _mm_max_ss( max4, _mm_movehdup_ps( max4 ) );
  1095. const float max_scalar = _mm_cvtss_f32( max4 );
  1096. // Quantize these floats
  1097. const float d = max_scalar / 127.f;
  1098. y[i].d = GGML_FP32_TO_FP16(d);
  1099. const float id = ( max_scalar != 0.0f ) ? 127.f / max_scalar : 0.0f;
  1100. const __m256 mul = _mm256_set1_ps( id );
  1101. // Apply the multiplier
  1102. v0 = _mm256_mul_ps( v0, mul );
  1103. v1 = _mm256_mul_ps( v1, mul );
  1104. v2 = _mm256_mul_ps( v2, mul );
  1105. v3 = _mm256_mul_ps( v3, mul );
  1106. // Round to nearest integer
  1107. v0 = _mm256_round_ps( v0, _MM_ROUND_NEAREST );
  1108. v1 = _mm256_round_ps( v1, _MM_ROUND_NEAREST );
  1109. v2 = _mm256_round_ps( v2, _MM_ROUND_NEAREST );
  1110. v3 = _mm256_round_ps( v3, _MM_ROUND_NEAREST );
  1111. // Convert floats to integers
  1112. __m256i i0 = _mm256_cvtps_epi32( v0 );
  1113. __m256i i1 = _mm256_cvtps_epi32( v1 );
  1114. __m256i i2 = _mm256_cvtps_epi32( v2 );
  1115. __m256i i3 = _mm256_cvtps_epi32( v3 );
  1116. #if defined(__AVX2__)
  1117. // Compute the sum of the quants and set y[i].s
  1118. y[i].s = GGML_FP32_TO_FP16(d * hsum_i32_8(_mm256_add_epi32(_mm256_add_epi32(i0, i1), _mm256_add_epi32(i2, i3))));
  1119. // Convert int32 to int16
  1120. i0 = _mm256_packs_epi32( i0, i1 ); // 0, 1, 2, 3, 8, 9, 10, 11, 4, 5, 6, 7, 12, 13, 14, 15
  1121. i2 = _mm256_packs_epi32( i2, i3 ); // 16, 17, 18, 19, 24, 25, 26, 27, 20, 21, 22, 23, 28, 29, 30, 31
  1122. // Convert int16 to int8
  1123. i0 = _mm256_packs_epi16( i0, i2 ); // 0, 1, 2, 3, 8, 9, 10, 11, 16, 17, 18, 19, 24, 25, 26, 27, 4, 5, 6, 7, 12, 13, 14, 15, 20, 21, 22, 23, 28, 29, 30, 31
  1124. // We got our precious signed bytes, but the order is now wrong
  1125. // These AVX2 pack instructions process 16-byte pieces independently
  1126. // The following instruction is fixing the order
  1127. const __m256i perm = _mm256_setr_epi32( 0, 4, 1, 5, 2, 6, 3, 7 );
  1128. i0 = _mm256_permutevar8x32_epi32( i0, perm );
  1129. _mm256_storeu_si256((__m256i *)y[i].qs, i0);
  1130. #else
  1131. // Since we don't have in AVX some necessary functions,
  1132. // we split the registers in half and call AVX2 analogs from SSE
  1133. __m128i ni0 = _mm256_castsi256_si128( i0 );
  1134. __m128i ni1 = _mm256_extractf128_si256( i0, 1);
  1135. __m128i ni2 = _mm256_castsi256_si128( i1 );
  1136. __m128i ni3 = _mm256_extractf128_si256( i1, 1);
  1137. __m128i ni4 = _mm256_castsi256_si128( i2 );
  1138. __m128i ni5 = _mm256_extractf128_si256( i2, 1);
  1139. __m128i ni6 = _mm256_castsi256_si128( i3 );
  1140. __m128i ni7 = _mm256_extractf128_si256( i3, 1);
  1141. // Compute the sum of the quants and set y[i].s
  1142. const __m128i s0 = _mm_add_epi32(_mm_add_epi32(ni0, ni1), _mm_add_epi32(ni2, ni3));
  1143. const __m128i s1 = _mm_add_epi32(_mm_add_epi32(ni4, ni5), _mm_add_epi32(ni6, ni7));
  1144. y[i].s = GGML_FP32_TO_FP16(d * hsum_i32_4(_mm_add_epi32(s0, s1)));
  1145. // Convert int32 to int16
  1146. ni0 = _mm_packs_epi32( ni0, ni1 );
  1147. ni2 = _mm_packs_epi32( ni2, ni3 );
  1148. ni4 = _mm_packs_epi32( ni4, ni5 );
  1149. ni6 = _mm_packs_epi32( ni6, ni7 );
  1150. // Convert int16 to int8
  1151. ni0 = _mm_packs_epi16( ni0, ni2 );
  1152. ni4 = _mm_packs_epi16( ni4, ni6 );
  1153. _mm_storeu_si128((__m128i *)(y[i].qs + 0), ni0);
  1154. _mm_storeu_si128((__m128i *)(y[i].qs + 16), ni4);
  1155. #endif
  1156. }
  1157. #elif defined(__riscv_v_intrinsic)
  1158. size_t vl = __riscv_vsetvl_e32m4(QK8_1);
  1159. for (int i = 0; i < nb; i++) {
  1160. // load elements
  1161. vfloat32m4_t v_x = __riscv_vle32_v_f32m4(x+i*QK8_1, vl);
  1162. vfloat32m4_t vfabs = __riscv_vfabs_v_f32m4(v_x, vl);
  1163. vfloat32m1_t tmp = __riscv_vfmv_v_f_f32m1(0.0, vl);
  1164. vfloat32m1_t vmax = __riscv_vfredmax_vs_f32m4_f32m1(vfabs, tmp, vl);
  1165. float amax = __riscv_vfmv_f_s_f32m1_f32(vmax);
  1166. const float d = amax / ((1 << 7) - 1);
  1167. const float id = d ? 1.0f/d : 0.0f;
  1168. y[i].d = GGML_FP32_TO_FP16(d);
  1169. vfloat32m4_t x0 = __riscv_vfmul_vf_f32m4(v_x, id, vl);
  1170. // convert to integer
  1171. vint16m2_t vi = __riscv_vfncvt_x_f_w_i16m2(x0, vl);
  1172. vint8m1_t vs = __riscv_vncvt_x_x_w_i8m1(vi, vl);
  1173. // store result
  1174. __riscv_vse8_v_i8m1(y[i].qs , vs, vl);
  1175. // compute sum for y[i].s
  1176. vint16m1_t tmp2 = __riscv_vmv_v_x_i16m1(0, vl);
  1177. vint16m1_t vwrs = __riscv_vwredsum_vs_i8m1_i16m1(vs, tmp2, vl);
  1178. // set y[i].s
  1179. int sum = __riscv_vmv_x_s_i16m1_i16(vwrs);
  1180. y[i].s = GGML_FP32_TO_FP16(sum*d);
  1181. }
  1182. #elif defined(__POWER9_VECTOR__)
  1183. for (int i = 0; i < nb; i++) {
  1184. vector float srcv [8];
  1185. vector float asrcv[8];
  1186. vector float amaxv[8];
  1187. vector signed int vi[8];
  1188. for (int j = 0; j < 8; j++) srcv[j] = vec_xl(0, x + i*32 + 4*j);
  1189. for (int j = 0; j < 8; j++) asrcv[j] = vec_abs(srcv[j]);
  1190. for (int j = 0; j < 4; j++) amaxv[2*j] = vec_max(asrcv[2*j], asrcv[2*j+1]);
  1191. for (int j = 0; j < 2; j++) amaxv[4*j] = vec_max(amaxv[4*j], amaxv[4*j+2]);
  1192. for (int j = 0; j < 1; j++) amaxv[8*j] = vec_max(amaxv[8*j], amaxv[8*j+4]);
  1193. const float amax = MAX(MAX(vec_extract(amaxv[0], 0),
  1194. vec_extract(amaxv[0], 1)),
  1195. MAX(vec_extract(amaxv[0], 2),
  1196. vec_extract(amaxv[0], 3)));
  1197. const float d = amax / ((1 << 7) - 1);
  1198. const float id = d ? 1.0f/d : 0.0f;
  1199. const vector float vid = vec_splats(id);
  1200. y[i].d = GGML_FP32_TO_FP16(d);
  1201. vector int accv = vec_splats(0);
  1202. for (int j = 0; j < 8; j++) {
  1203. const vector float v = vec_round(vec_mul(srcv[j], vid));
  1204. vi[j] = vec_cts(v, 0);
  1205. accv = vec_add(accv, vi[j]);
  1206. }
  1207. vec_xst(vec_pack(vec_pack(vi[0], vi[1]), vec_pack(vi[2], vi[3])), 0, &y[i].qs[0]);
  1208. vec_xst(vec_pack(vec_pack(vi[4], vi[5]), vec_pack(vi[6], vi[7])), 16, &y[i].qs[0]);
  1209. accv = vec_add(accv, vec_sld(accv, accv, 4));
  1210. accv = vec_add(accv, vec_sld(accv, accv, 8));
  1211. y[i].s = GGML_FP32_TO_FP16(d * vec_extract(accv, 0));
  1212. }
  1213. #elif defined(__loongarch_asx)
  1214. for (int i = 0; i < nb; i++) {
  1215. ft_union ft;
  1216. __m256 v0 = (__m256)__lasx_xvld( x , 0 );
  1217. __m256 v1 = (__m256)__lasx_xvld( x , 32 );
  1218. __m256 v2 = (__m256)__lasx_xvld( x , 64 );
  1219. __m256 v3 = (__m256)__lasx_xvld( x , 96 );
  1220. x += 32;
  1221. // Compute max(abs(e)) for the block
  1222. const __m256 sign_bit = __lasx_xvreplfr2vr_s( -0.0f );
  1223. __m256 max_abs = (__m256)__lasx_xvandn_v( (__m256i)sign_bit, (__m256i)v0 );
  1224. max_abs = __lasx_xvfmax_s( max_abs, (__m256)__lasx_xvandn_v( (__m256i)sign_bit, (__m256i)v1 ) );
  1225. max_abs = __lasx_xvfmax_s( max_abs, (__m256)__lasx_xvandn_v( (__m256i)sign_bit, (__m256i)v2 ) );
  1226. max_abs = __lasx_xvfmax_s( max_abs, (__m256)__lasx_xvandn_v( (__m256i)sign_bit, (__m256i)v3 ) );
  1227. __m128 max4 = __lsx_vfmax_s( lasx_extractf128( max_abs, 1 ), lasx_extractf128( max_abs, 0) );
  1228. max4 = __lsx_vfmax_s( max4, (__m128)__lsx_vpickod_d((__m128i) max4, (__m128i)max4 ) );
  1229. __m128 tmp = max4;
  1230. max4 = __lsx_vfmax_s( max4, (__m128)__lsx_vextrins_w((__m128i)tmp, (__m128i)max4, 0x10 ));
  1231. ft.i = __lsx_vpickve2gr_w( (__m128i)max4, 0 );
  1232. const float max_scalar = ft.f;
  1233. // Quantize these floats
  1234. const float d = max_scalar / 127.f;
  1235. y[i].d = GGML_FP32_TO_FP16(d);
  1236. const float id = ( max_scalar != 0.0f ) ? 127.f / max_scalar : 0.0f;
  1237. const __m256 mul = __lasx_xvreplfr2vr_s( id );
  1238. // Apply the multiplier
  1239. v0 = __lasx_xvfmul_s( v0, mul );
  1240. v1 = __lasx_xvfmul_s( v1, mul );
  1241. v2 = __lasx_xvfmul_s( v2, mul );
  1242. v3 = __lasx_xvfmul_s( v3, mul );
  1243. // Round to nearest integer
  1244. __m256i i0 = __lasx_xvftintrne_w_s( v0 );
  1245. __m256i i1 = __lasx_xvftintrne_w_s( v1 );
  1246. __m256i i2 = __lasx_xvftintrne_w_s( v2 );
  1247. __m256i i3 = __lasx_xvftintrne_w_s( v3 );
  1248. __m128i ni0 = lasx_extracti128(i0, 0);
  1249. __m128i ni1 = lasx_extracti128( i0, 1);
  1250. __m128i ni2 = lasx_extracti128( i1, 0);
  1251. __m128i ni3 = lasx_extracti128( i1, 1);
  1252. __m128i ni4 = lasx_extracti128( i2, 0 );
  1253. __m128i ni5 = lasx_extracti128( i2, 1);
  1254. __m128i ni6 = lasx_extracti128( i3, 0);
  1255. __m128i ni7 = lasx_extracti128( i3, 1);
  1256. // Compute the sum of the quants and set y[i].s
  1257. const __m128i s0 = __lsx_vadd_w(__lsx_vadd_w(ni0, ni1), __lsx_vadd_w(ni2, ni3));
  1258. const __m128i s1 = __lsx_vadd_w(__lsx_vadd_w(ni4, ni5), __lsx_vadd_w(ni6, ni7));
  1259. y[i].s = GGML_FP32_TO_FP16(d * hsum_i32_4(__lsx_vadd_w(s0, s1)));
  1260. // Convert int32 to int16
  1261. ni0 = lsx_packs_w( ni0, ni1 );
  1262. ni2 = lsx_packs_w( ni2, ni3 );
  1263. ni4 = lsx_packs_w( ni4, ni5 );
  1264. ni6 = lsx_packs_w( ni6, ni7 );
  1265. // Convert int16 to int8
  1266. ni0 = lsx_packs_h( ni0, ni2 );
  1267. ni4 = lsx_packs_h( ni4, ni6 );
  1268. __lsx_vst(ni0, (__m128i *)(y[i].qs + 0), 0);
  1269. __lsx_vst(ni4, (__m128i *)(y[i].qs + 16), 0);
  1270. }
  1271. #else
  1272. GGML_UNUSED(nb);
  1273. // scalar
  1274. quantize_row_q8_1_ref(x, y, k);
  1275. #endif
  1276. }
  1277. void dequantize_row_q4_0(const block_q4_0 * restrict x, float * restrict y, int64_t k) {
  1278. static const int qk = QK4_0;
  1279. assert(k % qk == 0);
  1280. const int nb = k / qk;
  1281. for (int i = 0; i < nb; i++) {
  1282. const float d = GGML_FP16_TO_FP32(x[i].d);
  1283. for (int j = 0; j < qk/2; ++j) {
  1284. const int x0 = (x[i].qs[j] & 0x0F) - 8;
  1285. const int x1 = (x[i].qs[j] >> 4) - 8;
  1286. y[i*qk + j + 0 ] = x0*d;
  1287. y[i*qk + j + qk/2] = x1*d;
  1288. }
  1289. }
  1290. }
  1291. void dequantize_row_q4_1(const block_q4_1 * restrict x, float * restrict y, int64_t k) {
  1292. static const int qk = QK4_1;
  1293. assert(k % qk == 0);
  1294. const int nb = k / qk;
  1295. for (int i = 0; i < nb; i++) {
  1296. const float d = GGML_FP16_TO_FP32(x[i].d);
  1297. const float m = GGML_FP16_TO_FP32(x[i].m);
  1298. for (int j = 0; j < qk/2; ++j) {
  1299. const int x0 = (x[i].qs[j] & 0x0F);
  1300. const int x1 = (x[i].qs[j] >> 4);
  1301. y[i*qk + j + 0 ] = x0*d + m;
  1302. y[i*qk + j + qk/2] = x1*d + m;
  1303. }
  1304. }
  1305. }
  1306. void dequantize_row_q5_0(const block_q5_0 * restrict x, float * restrict y, int64_t k) {
  1307. static const int qk = QK5_0;
  1308. assert(k % qk == 0);
  1309. const int nb = k / qk;
  1310. for (int i = 0; i < nb; i++) {
  1311. const float d = GGML_FP16_TO_FP32(x[i].d);
  1312. uint32_t qh;
  1313. memcpy(&qh, x[i].qh, sizeof(qh));
  1314. for (int j = 0; j < qk/2; ++j) {
  1315. const uint8_t xh_0 = ((qh >> (j + 0)) << 4) & 0x10;
  1316. const uint8_t xh_1 = ((qh >> (j + 12)) ) & 0x10;
  1317. const int32_t x0 = ((x[i].qs[j] & 0x0F) | xh_0) - 16;
  1318. const int32_t x1 = ((x[i].qs[j] >> 4) | xh_1) - 16;
  1319. y[i*qk + j + 0 ] = x0*d;
  1320. y[i*qk + j + qk/2] = x1*d;
  1321. }
  1322. }
  1323. }
  1324. void dequantize_row_q5_1(const block_q5_1 * restrict x, float * restrict y, int64_t k) {
  1325. static const int qk = QK5_1;
  1326. assert(k % qk == 0);
  1327. const int nb = k / qk;
  1328. for (int i = 0; i < nb; i++) {
  1329. const float d = GGML_FP16_TO_FP32(x[i].d);
  1330. const float m = GGML_FP16_TO_FP32(x[i].m);
  1331. uint32_t qh;
  1332. memcpy(&qh, x[i].qh, sizeof(qh));
  1333. for (int j = 0; j < qk/2; ++j) {
  1334. const uint8_t xh_0 = ((qh >> (j + 0)) << 4) & 0x10;
  1335. const uint8_t xh_1 = ((qh >> (j + 12)) ) & 0x10;
  1336. const int x0 = (x[i].qs[j] & 0x0F) | xh_0;
  1337. const int x1 = (x[i].qs[j] >> 4) | xh_1;
  1338. y[i*qk + j + 0 ] = x0*d + m;
  1339. y[i*qk + j + qk/2] = x1*d + m;
  1340. }
  1341. }
  1342. }
  1343. void dequantize_row_q8_0(const block_q8_0 * restrict x, float * restrict y, int64_t k) {
  1344. static const int qk = QK8_0;
  1345. assert(k % qk == 0);
  1346. const int nb = k / qk;
  1347. for (int i = 0; i < nb; i++) {
  1348. const float d = GGML_FP16_TO_FP32(x[i].d);
  1349. for (int j = 0; j < qk; ++j) {
  1350. y[i*qk + j] = x[i].qs[j]*d;
  1351. }
  1352. }
  1353. }
  1354. //
  1355. // 2-6 bit quantization in super-blocks
  1356. //
  1357. //
  1358. // ===================== Helper functions
  1359. //
  1360. static inline int nearest_int(float fval) {
  1361. assert(fabsf(fval) <= 4194303.f);
  1362. float val = fval + 12582912.f;
  1363. int i; memcpy(&i, &val, sizeof(int));
  1364. return (i & 0x007fffff) - 0x00400000;
  1365. }
  1366. static float make_qx_quants(int n, int nmax, const float * restrict x, int8_t * restrict L, int rmse_type,
  1367. const float * restrict qw) {
  1368. float max = 0;
  1369. float amax = 0;
  1370. for (int i = 0; i < n; ++i) {
  1371. float ax = fabsf(x[i]);
  1372. if (ax > amax) { amax = ax; max = x[i]; }
  1373. }
  1374. if (amax < GROUP_MAX_EPS) { // all zero
  1375. for (int i = 0; i < n; ++i) {
  1376. L[i] = 0;
  1377. }
  1378. return 0.f;
  1379. }
  1380. float iscale = -nmax / max;
  1381. if (rmse_type == 0) {
  1382. for (int i = 0; i < n; ++i) {
  1383. int l = nearest_int(iscale * x[i]);
  1384. L[i] = nmax + MAX(-nmax, MIN(nmax-1, l));
  1385. }
  1386. return 1/iscale;
  1387. }
  1388. bool return_early = false;
  1389. if (rmse_type < 0) {
  1390. rmse_type = -rmse_type;
  1391. return_early = true;
  1392. }
  1393. float sumlx = 0;
  1394. float suml2 = 0;
  1395. #ifdef HAVE_BUGGY_APPLE_LINKER
  1396. // use 'volatile' to prevent unroll and work around a bug in Apple ld64 1015.7
  1397. for (volatile int i = 0; i < n; ++i) {
  1398. #else
  1399. for (int i = 0; i < n; ++i) {
  1400. #endif
  1401. int l = nearest_int(iscale * x[i]);
  1402. l = MAX(-nmax, MIN(nmax-1, l));
  1403. L[i] = l + nmax;
  1404. float w = qw ? qw[i] : rmse_type == 1 ? x[i] * x[i] : rmse_type == 2 ? 1 : rmse_type == 3 ? fabsf(x[i]) : sqrtf(fabsf(x[i]));
  1405. sumlx += w*x[i]*l;
  1406. suml2 += w*l*l;
  1407. }
  1408. float scale = suml2 ? sumlx/suml2 : 0.0f;
  1409. if (return_early) return suml2 > 0 ? 0.5f*(scale + 1/iscale) : 1/iscale;
  1410. float best = scale * sumlx;
  1411. for (int is = -9; is <= 9; ++is) {
  1412. if (is == 0) {
  1413. continue;
  1414. }
  1415. iscale = -(nmax + 0.1f*is) / max;
  1416. sumlx = suml2 = 0;
  1417. for (int i = 0; i < n; ++i) {
  1418. int l = nearest_int(iscale * x[i]);
  1419. l = MAX(-nmax, MIN(nmax-1, l));
  1420. float w = qw ? qw[i] : rmse_type == 1 ? x[i] * x[i] : rmse_type == 2 ? 1 : rmse_type == 3 ? fabsf(x[i]) : sqrtf(fabsf(x[i]));
  1421. sumlx += w*x[i]*l;
  1422. suml2 += w*l*l;
  1423. }
  1424. if (suml2 > 0 && sumlx*sumlx > best*suml2) {
  1425. for (int i = 0; i < n; ++i) {
  1426. int l = nearest_int(iscale * x[i]);
  1427. L[i] = nmax + MAX(-nmax, MIN(nmax-1, l));
  1428. }
  1429. scale = sumlx/suml2; best = scale*sumlx;
  1430. }
  1431. }
  1432. return scale;
  1433. }
  1434. static float make_q3_quants(int n, int nmax, const float * restrict x, int8_t * restrict L, bool do_rmse) {
  1435. float max = 0;
  1436. float amax = 0;
  1437. for (int i = 0; i < n; ++i) {
  1438. float ax = fabsf(x[i]);
  1439. if (ax > amax) { amax = ax; max = x[i]; }
  1440. }
  1441. if (amax < GROUP_MAX_EPS) { // all zero
  1442. for (int i = 0; i < n; ++i) { L[i] = 0; }
  1443. return 0.f;
  1444. }
  1445. float iscale = -nmax / max;
  1446. if (do_rmse) {
  1447. float sumlx = 0;
  1448. float suml2 = 0;
  1449. for (int i = 0; i < n; ++i) {
  1450. int l = nearest_int(iscale * x[i]);
  1451. l = MAX(-nmax, MIN(nmax-1, l));
  1452. L[i] = l;
  1453. float w = x[i]*x[i];
  1454. sumlx += w*x[i]*l;
  1455. suml2 += w*l*l;
  1456. }
  1457. for (int itry = 0; itry < 5; ++itry) {
  1458. int n_changed = 0;
  1459. for (int i = 0; i < n; ++i) {
  1460. float w = x[i]*x[i];
  1461. float slx = sumlx - w*x[i]*L[i];
  1462. if (slx > 0) {
  1463. float sl2 = suml2 - w*L[i]*L[i];
  1464. int new_l = nearest_int(x[i] * sl2 / slx);
  1465. new_l = MAX(-nmax, MIN(nmax-1, new_l));
  1466. if (new_l != L[i]) {
  1467. slx += w*x[i]*new_l;
  1468. sl2 += w*new_l*new_l;
  1469. if (sl2 > 0 && slx*slx*suml2 > sumlx*sumlx*sl2) {
  1470. L[i] = new_l; sumlx = slx; suml2 = sl2;
  1471. ++n_changed;
  1472. }
  1473. }
  1474. }
  1475. }
  1476. if (!n_changed) {
  1477. break;
  1478. }
  1479. }
  1480. for (int i = 0; i < n; ++i) {
  1481. L[i] += nmax;
  1482. }
  1483. return sumlx / suml2;
  1484. }
  1485. for (int i = 0; i < n; ++i) {
  1486. int l = nearest_int(iscale * x[i]);
  1487. l = MAX(-nmax, MIN(nmax-1, l));
  1488. L[i] = l + nmax;
  1489. }
  1490. return 1/iscale;
  1491. }
  1492. static float make_qkx1_quants(int n, int nmax, const float * restrict x, uint8_t * restrict L, float * restrict the_min,
  1493. int ntry, float alpha) {
  1494. float min = x[0];
  1495. float max = x[0];
  1496. for (int i = 1; i < n; ++i) {
  1497. if (x[i] < min) min = x[i];
  1498. if (x[i] > max) max = x[i];
  1499. }
  1500. if (max == min) {
  1501. for (int i = 0; i < n; ++i) L[i] = 0;
  1502. *the_min = 0;
  1503. return 0.f;
  1504. }
  1505. if (min > 0) min = 0;
  1506. float iscale = nmax/(max - min);
  1507. float scale = 1/iscale;
  1508. for (int itry = 0; itry < ntry; ++itry) {
  1509. float sumlx = 0; int suml2 = 0;
  1510. bool did_change = false;
  1511. for (int i = 0; i < n; ++i) {
  1512. int l = nearest_int(iscale*(x[i] - min));
  1513. l = MAX(0, MIN(nmax, l));
  1514. if (l != L[i]) {
  1515. L[i] = l;
  1516. did_change = true;
  1517. }
  1518. sumlx += (x[i] - min)*l;
  1519. suml2 += l*l;
  1520. }
  1521. scale = sumlx/suml2;
  1522. float sum = 0;
  1523. for (int i = 0; i < n; ++i) {
  1524. sum += x[i] - scale*L[i];
  1525. }
  1526. min = alpha*min + (1 - alpha)*sum/n;
  1527. if (min > 0) min = 0;
  1528. iscale = 1/scale;
  1529. if (!did_change) break;
  1530. }
  1531. *the_min = -min;
  1532. return scale;
  1533. }
  1534. static float make_qkx2_quants(int n, int nmax, const float * restrict x, const float * restrict weights,
  1535. uint8_t * restrict L, float * restrict the_min, uint8_t * restrict Laux,
  1536. float rmin, float rdelta, int nstep, bool use_mad) {
  1537. float min = x[0];
  1538. float max = x[0];
  1539. float sum_w = weights[0];
  1540. float sum_x = sum_w * x[0];
  1541. #ifdef HAVE_BUGGY_APPLE_LINKER
  1542. // use 'volatile' to prevent unroll and work around a bug in Apple ld64 1015.7
  1543. for (volatile int i = 1; i < n; ++i) {
  1544. #else
  1545. for (int i = 1; i < n; ++i) {
  1546. #endif
  1547. if (x[i] < min) min = x[i];
  1548. if (x[i] > max) max = x[i];
  1549. float w = weights[i];
  1550. sum_w += w;
  1551. sum_x += w * x[i];
  1552. }
  1553. if (min > 0) min = 0;
  1554. if (max == min) {
  1555. for (int i = 0; i < n; ++i) L[i] = 0;
  1556. *the_min = -min;
  1557. return 0.f;
  1558. }
  1559. float iscale = nmax/(max - min);
  1560. float scale = 1/iscale;
  1561. float best_mad = 0;
  1562. for (int i = 0; i < n; ++i) {
  1563. int l = nearest_int(iscale*(x[i] - min));
  1564. L[i] = MAX(0, MIN(nmax, l));
  1565. float diff = scale * L[i] + min - x[i];
  1566. diff = use_mad ? fabsf(diff) : diff * diff;
  1567. float w = weights[i];
  1568. best_mad += w * diff;
  1569. }
  1570. if (nstep < 1) {
  1571. *the_min = -min;
  1572. return scale;
  1573. }
  1574. for (int is = 0; is <= nstep; ++is) {
  1575. iscale = (rmin + rdelta*is + nmax)/(max - min);
  1576. float sum_l = 0, sum_l2 = 0, sum_xl = 0;
  1577. for (int i = 0; i < n; ++i) {
  1578. int l = nearest_int(iscale*(x[i] - min));
  1579. l = MAX(0, MIN(nmax, l));
  1580. Laux[i] = l;
  1581. float w = weights[i];
  1582. sum_l += w*l;
  1583. sum_l2 += w*l*l;
  1584. sum_xl += w*l*x[i];
  1585. }
  1586. float D = sum_w * sum_l2 - sum_l * sum_l;
  1587. if (D > 0) {
  1588. float this_scale = (sum_w * sum_xl - sum_x * sum_l)/D;
  1589. float this_min = (sum_l2 * sum_x - sum_l * sum_xl)/D;
  1590. if (this_min > 0) {
  1591. this_min = 0;
  1592. this_scale = sum_xl / sum_l2;
  1593. }
  1594. float mad = 0;
  1595. for (int i = 0; i < n; ++i) {
  1596. float diff = this_scale * Laux[i] + this_min - x[i];
  1597. diff = use_mad ? fabsf(diff) : diff * diff;
  1598. float w = weights[i];
  1599. mad += w * diff;
  1600. }
  1601. if (mad < best_mad) {
  1602. for (int i = 0; i < n; ++i) {
  1603. L[i] = Laux[i];
  1604. }
  1605. best_mad = mad;
  1606. scale = this_scale;
  1607. min = this_min;
  1608. }
  1609. }
  1610. }
  1611. *the_min = -min;
  1612. return scale;
  1613. }
  1614. static inline void get_scale_min_k4(int j, const uint8_t * restrict q, uint8_t * restrict d, uint8_t * restrict m) {
  1615. if (j < 4) {
  1616. *d = q[j] & 63; *m = q[j + 4] & 63;
  1617. } else {
  1618. *d = (q[j+4] & 0xF) | ((q[j-4] >> 6) << 4);
  1619. *m = (q[j+4] >> 4) | ((q[j-0] >> 6) << 4);
  1620. }
  1621. }
  1622. //========================- 2-bit (de)-quantization
  1623. void quantize_row_q2_K_ref(const float * restrict x, block_q2_K * restrict y, int64_t k) {
  1624. assert(k % QK_K == 0);
  1625. const int nb = k / QK_K;
  1626. uint8_t L[QK_K];
  1627. uint8_t Laux[16];
  1628. float weights[16];
  1629. float mins[QK_K/16];
  1630. float scales[QK_K/16];
  1631. const float q4scale = 15.f;
  1632. for (int i = 0; i < nb; i++) {
  1633. float max_scale = 0; // as we are deducting the min, scales are always positive
  1634. float max_min = 0;
  1635. for (int j = 0; j < QK_K/16; ++j) {
  1636. for (int l = 0; l < 16; ++l) weights[l] = fabsf(x[16*j + l]);
  1637. scales[j] = make_qkx2_quants(16, 3, x + 16*j, weights, L + 16*j, &mins[j], Laux, -0.5f, 0.1f, 15, true);
  1638. float scale = scales[j];
  1639. if (scale > max_scale) {
  1640. max_scale = scale;
  1641. }
  1642. float min = mins[j];
  1643. if (min > max_min) {
  1644. max_min = min;
  1645. }
  1646. }
  1647. if (max_scale > 0) {
  1648. float iscale = q4scale/max_scale;
  1649. for (int j = 0; j < QK_K/16; ++j) {
  1650. int l = nearest_int(iscale*scales[j]);
  1651. y[i].scales[j] = l;
  1652. }
  1653. y[i].d = GGML_FP32_TO_FP16(max_scale/q4scale);
  1654. } else {
  1655. for (int j = 0; j < QK_K/16; ++j) y[i].scales[j] = 0;
  1656. y[i].d = GGML_FP32_TO_FP16(0.f);
  1657. }
  1658. if (max_min > 0) {
  1659. float iscale = q4scale/max_min;
  1660. for (int j = 0; j < QK_K/16; ++j) {
  1661. int l = nearest_int(iscale*mins[j]);
  1662. y[i].scales[j] |= (l << 4);
  1663. }
  1664. y[i].dmin = GGML_FP32_TO_FP16(max_min/q4scale);
  1665. } else {
  1666. y[i].dmin = GGML_FP32_TO_FP16(0.f);
  1667. }
  1668. for (int j = 0; j < QK_K/16; ++j) {
  1669. const float d = GGML_FP16_TO_FP32(y[i].d) * (y[i].scales[j] & 0xF);
  1670. if (!d) continue;
  1671. const float dm = GGML_FP16_TO_FP32(y[i].dmin) * (y[i].scales[j] >> 4);
  1672. for (int ii = 0; ii < 16; ++ii) {
  1673. int l = nearest_int((x[16*j + ii] + dm)/d);
  1674. l = MAX(0, MIN(3, l));
  1675. L[16*j + ii] = l;
  1676. }
  1677. }
  1678. for (int j = 0; j < QK_K; j += 128) {
  1679. for (int l = 0; l < 32; ++l) {
  1680. y[i].qs[j/4 + l] = L[j + l] | (L[j + l + 32] << 2) | (L[j + l + 64] << 4) | (L[j + l + 96] << 6);
  1681. }
  1682. }
  1683. x += QK_K;
  1684. }
  1685. }
  1686. void dequantize_row_q2_K(const block_q2_K * restrict x, float * restrict y, int64_t k) {
  1687. assert(k % QK_K == 0);
  1688. const int nb = k / QK_K;
  1689. for (int i = 0; i < nb; i++) {
  1690. const float d = GGML_FP16_TO_FP32(x[i].d);
  1691. const float min = GGML_FP16_TO_FP32(x[i].dmin);
  1692. const uint8_t * q = x[i].qs;
  1693. int is = 0;
  1694. float dl, ml;
  1695. for (int n = 0; n < QK_K; n += 128) {
  1696. int shift = 0;
  1697. for (int j = 0; j < 4; ++j) {
  1698. uint8_t sc = x[i].scales[is++];
  1699. dl = d * (sc & 0xF); ml = min * (sc >> 4);
  1700. for (int l = 0; l < 16; ++l) *y++ = dl * ((int8_t)((q[l] >> shift) & 3)) - ml;
  1701. sc = x[i].scales[is++];
  1702. dl = d * (sc & 0xF); ml = min * (sc >> 4);
  1703. for (int l = 0; l < 16; ++l) *y++ = dl * ((int8_t)((q[l+16] >> shift) & 3)) - ml;
  1704. shift += 2;
  1705. }
  1706. q += 32;
  1707. }
  1708. }
  1709. }
  1710. void quantize_row_q2_K(const float * restrict x, void * restrict vy, int64_t k) {
  1711. quantize_row_q2_K_ref(x, vy, k);
  1712. }
  1713. static float make_qkx3_quants(int n, int nmax, const float * restrict x, const float * restrict weights,
  1714. uint8_t * restrict L, float * restrict the_min, uint8_t * restrict Laux,
  1715. float rmin, float rdelta, int nstep, bool use_mad) {
  1716. float min = x[0];
  1717. float max = x[0];
  1718. float sum_w = weights ? weights[0] : x[0]*x[0];
  1719. float sum_x = sum_w * x[0];
  1720. #ifdef HAVE_BUGGY_APPLE_LINKER
  1721. // use 'volatile' to prevent unroll and work around a bug in Apple ld64 1015.7
  1722. for (volatile int i = 1; i < n; ++i) {
  1723. #else
  1724. for (int i = 1; i < n; ++i) {
  1725. #endif
  1726. if (x[i] < min) min = x[i];
  1727. if (x[i] > max) max = x[i];
  1728. float w = weights ? weights[i] : x[i]*x[i];
  1729. sum_w += w;
  1730. sum_x += w * x[i];
  1731. }
  1732. if (min > 0) {
  1733. min = 0;
  1734. }
  1735. if (max <= min) {
  1736. memset(L, 0, n);
  1737. *the_min = -min;
  1738. return 0.f;
  1739. }
  1740. float iscale = nmax/(max - min);
  1741. float scale = 1/iscale;
  1742. float best_mad = 0;
  1743. for (int i = 0; i < n; ++i) {
  1744. int l = nearest_int(iscale*(x[i] - min));
  1745. L[i] = MAX(0, MIN(nmax, l));
  1746. float diff = scale * L[i] + min - x[i];
  1747. diff = use_mad ? fabsf(diff) : diff*diff;
  1748. float w = weights ? weights[i] : x[i]*x[i];
  1749. best_mad += w * diff;
  1750. }
  1751. if (nstep < 1) {
  1752. *the_min = -min;
  1753. return scale;
  1754. }
  1755. for (int is = 0; is <= nstep; ++is) {
  1756. iscale = (rmin + rdelta*is + nmax)/(max - min);
  1757. float sum_l = 0, sum_l2 = 0, sum_xl = 0;
  1758. for (int i = 0; i < n; ++i) {
  1759. int l = nearest_int(iscale*(x[i] - min));
  1760. l = MAX(0, MIN(nmax, l));
  1761. Laux[i] = l;
  1762. float w = weights ? weights[i] : x[i]*x[i];
  1763. sum_l += w*l;
  1764. sum_l2 += w*l*l;
  1765. sum_xl += w*l*x[i];
  1766. }
  1767. float D = sum_w * sum_l2 - sum_l * sum_l;
  1768. if (D > 0) {
  1769. float this_scale = (sum_w * sum_xl - sum_x * sum_l)/D;
  1770. float this_min = (sum_l2 * sum_x - sum_l * sum_xl)/D;
  1771. if (this_min > 0) {
  1772. this_min = 0;
  1773. this_scale = sum_xl / sum_l2;
  1774. }
  1775. float mad = 0;
  1776. for (int i = 0; i < n; ++i) {
  1777. float diff = this_scale * Laux[i] + this_min - x[i];
  1778. diff = use_mad ? fabsf(diff) : diff*diff;
  1779. float w = weights ? weights[i] : x[i]*x[i];
  1780. mad += w * diff;
  1781. }
  1782. if (mad < best_mad) {
  1783. for (int i = 0; i < n; ++i) {
  1784. L[i] = Laux[i];
  1785. }
  1786. best_mad = mad;
  1787. scale = this_scale;
  1788. min = this_min;
  1789. }
  1790. }
  1791. }
  1792. *the_min = -min;
  1793. return scale;
  1794. }
  1795. static float make_qp_quants(int n, int nmax, const float * restrict x, uint8_t * restrict L, const float * quant_weights) {
  1796. float max = 0;
  1797. for (int i = 0; i < n; ++i) {
  1798. max = MAX(max, x[i]);
  1799. }
  1800. if (!max) { // all zero
  1801. for (int i = 0; i < n; ++i) { L[i] = 0; }
  1802. return 0.f;
  1803. }
  1804. float iscale = nmax / max;
  1805. for (int i = 0; i < n; ++i) {
  1806. L[i] = nearest_int(iscale * x[i]);
  1807. }
  1808. float scale = 1/iscale;
  1809. float best_mse = 0;
  1810. for (int i = 0; i < n; ++i) {
  1811. float diff = x[i] - scale*L[i];
  1812. float w = quant_weights[i];
  1813. best_mse += w*diff*diff;
  1814. }
  1815. for (int is = -4; is <= 4; ++is) {
  1816. if (is == 0) continue;
  1817. float iscale_is = (0.1f*is + nmax)/max;
  1818. float scale_is = 1/iscale_is;
  1819. float mse = 0;
  1820. for (int i = 0; i < n; ++i) {
  1821. int l = nearest_int(iscale_is*x[i]);
  1822. l = MIN(nmax, l);
  1823. float diff = x[i] - scale_is*l;
  1824. float w = quant_weights[i];
  1825. mse += w*diff*diff;
  1826. }
  1827. if (mse < best_mse) {
  1828. best_mse = mse;
  1829. iscale = iscale_is;
  1830. }
  1831. }
  1832. float sumlx = 0;
  1833. float suml2 = 0;
  1834. for (int i = 0; i < n; ++i) {
  1835. int l = nearest_int(iscale * x[i]);
  1836. l = MIN(nmax, l);
  1837. L[i] = l;
  1838. float w = quant_weights[i];
  1839. sumlx += w*x[i]*l;
  1840. suml2 += w*l*l;
  1841. }
  1842. for (int itry = 0; itry < 5; ++itry) {
  1843. int n_changed = 0;
  1844. for (int i = 0; i < n; ++i) {
  1845. float w = quant_weights[i];
  1846. float slx = sumlx - w*x[i]*L[i];
  1847. float sl2 = suml2 - w*L[i]*L[i];
  1848. if (slx > 0 && sl2 > 0) {
  1849. int new_l = nearest_int(x[i] * sl2 / slx);
  1850. new_l = MIN(nmax, new_l);
  1851. if (new_l != L[i]) {
  1852. slx += w*x[i]*new_l;
  1853. sl2 += w*new_l*new_l;
  1854. if (slx*slx*suml2 > sumlx*sumlx*sl2) {
  1855. L[i] = new_l; sumlx = slx; suml2 = sl2;
  1856. ++n_changed;
  1857. }
  1858. }
  1859. }
  1860. }
  1861. if (!n_changed) {
  1862. break;
  1863. }
  1864. }
  1865. return sumlx/suml2;
  1866. }
  1867. static void quantize_row_q2_K_impl(const float * restrict x, block_q2_K * restrict y, int k, const float * restrict quant_weights) {
  1868. GGML_ASSERT(quant_weights);
  1869. assert(k % QK_K == 0);
  1870. const int nb = k / QK_K;
  1871. const bool requantize = true;
  1872. uint8_t L[QK_K];
  1873. uint8_t Laux[16];
  1874. float mins[QK_K/16];
  1875. float scales[QK_K/16];
  1876. float sw[QK_K/16];
  1877. float weight[16];
  1878. uint8_t Ls[QK_K/16], Lm[QK_K/16];
  1879. for (int i = 0; i < nb; i++) {
  1880. memset(sw, 0, QK_K/16*sizeof(float));
  1881. float sumx2 = 0;
  1882. for (int j = 0; j < QK_K; ++j) sumx2 += x[j]*x[j];
  1883. float sigma2 = sumx2/QK_K;
  1884. for (int j = 0; j < QK_K/16; ++j) {
  1885. const float * restrict qw = quant_weights + QK_K * i + 16*j;
  1886. for (int l = 0; l < 16; ++l) weight[l] = qw[l] * sqrtf(sigma2 + x[16*j + l]*x[16*j + l]);
  1887. for (int l = 0; l < QK_K/16; ++l) sw[j] += weight[l];
  1888. scales[j] = make_qkx3_quants(16, 3, x + 16*j, weight, L + 16*j, &mins[j], Laux, -0.9f, 0.05f, 36, false);
  1889. }
  1890. float dm, mm;
  1891. dm = make_qp_quants(QK_K/16, 15, scales, Ls, sw);
  1892. mm = make_qp_quants(QK_K/16, 15, mins, Lm, sw);
  1893. y[i].d = GGML_FP32_TO_FP16(dm);
  1894. y[i].dmin = GGML_FP32_TO_FP16(mm);
  1895. dm = GGML_FP16_TO_FP32(y[i].d);
  1896. mm = GGML_FP16_TO_FP32(y[i].dmin);
  1897. for (int j = 0; j < QK_K/16; ++j) {
  1898. y[i].scales[j] = Ls[j] | (Lm[j] << 4);
  1899. }
  1900. if (requantize) {
  1901. for (int j = 0; j < QK_K/16; ++j) {
  1902. const float d = dm * (y[i].scales[j] & 0xF);
  1903. if (!d) continue;
  1904. const float m = mm * (y[i].scales[j] >> 4);
  1905. for (int ii = 0; ii < 16; ++ii) {
  1906. int l = nearest_int((x[16*j + ii] + m)/d);
  1907. l = MAX(0, MIN(3, l));
  1908. L[16*j + ii] = l;
  1909. }
  1910. }
  1911. }
  1912. for (int j = 0; j < QK_K; j += 128) {
  1913. for (int l = 0; l < 32; ++l) {
  1914. y[i].qs[j/4 + l] = L[j + l] | (L[j + l + 32] << 2) | (L[j + l + 64] << 4) | (L[j + l + 96] << 6);
  1915. }
  1916. }
  1917. x += QK_K;
  1918. }
  1919. }
  1920. size_t quantize_q2_K(const float * restrict src, void * restrict dst, int64_t nrow, int64_t n_per_row, const float * quant_weights) {
  1921. size_t row_size = ggml_row_size(GGML_TYPE_Q2_K, n_per_row);
  1922. if (!quant_weights) {
  1923. quantize_row_q2_K_ref(src, dst, (int64_t)nrow*n_per_row);
  1924. }
  1925. else {
  1926. char * qrow = (char *)dst;
  1927. for (int64_t row = 0; row < nrow; ++row) {
  1928. quantize_row_q2_K_impl(src, (block_q2_K*)qrow, n_per_row, quant_weights);
  1929. src += n_per_row;
  1930. qrow += row_size;
  1931. }
  1932. }
  1933. return nrow * row_size;
  1934. }
  1935. //========================= 3-bit (de)-quantization
  1936. void quantize_row_q3_K_ref(const float * restrict x, block_q3_K * restrict y, int64_t k) {
  1937. assert(k % QK_K == 0);
  1938. const int nb = k / QK_K;
  1939. int8_t L[QK_K];
  1940. float scales[QK_K / 16];
  1941. for (int i = 0; i < nb; i++) {
  1942. float max_scale = 0;
  1943. float amax = 0;
  1944. for (int j = 0; j < QK_K/16; ++j) {
  1945. scales[j] = make_q3_quants(16, 4, x + 16*j, L + 16*j, true);
  1946. float scale = fabsf(scales[j]);
  1947. if (scale > amax) {
  1948. amax = scale; max_scale = scales[j];
  1949. }
  1950. }
  1951. memset(y[i].scales, 0, 12);
  1952. if (max_scale) {
  1953. float iscale = -32.f/max_scale;
  1954. for (int j = 0; j < QK_K/16; ++j) {
  1955. int8_t l = nearest_int(iscale*scales[j]);
  1956. l = MAX(-32, MIN(31, l)) + 32;
  1957. if (j < 8) {
  1958. y[i].scales[j] = l & 0xF;
  1959. } else {
  1960. y[i].scales[j-8] |= ((l & 0xF) << 4);
  1961. }
  1962. l >>= 4;
  1963. y[i].scales[j%4 + 8] |= (l << (2*(j/4)));
  1964. }
  1965. y[i].d = GGML_FP32_TO_FP16(1/iscale);
  1966. } else {
  1967. y[i].d = GGML_FP32_TO_FP16(0.f);
  1968. }
  1969. int8_t sc;
  1970. for (int j = 0; j < QK_K/16; ++j) {
  1971. sc = j < 8 ? y[i].scales[j] & 0xF : y[i].scales[j-8] >> 4;
  1972. sc = (sc | (((y[i].scales[8 + j%4] >> (2*(j/4))) & 3) << 4)) - 32;
  1973. float d = GGML_FP16_TO_FP32(y[i].d) * sc;
  1974. if (!d) {
  1975. continue;
  1976. }
  1977. for (int ii = 0; ii < 16; ++ii) {
  1978. int l = nearest_int(x[16*j + ii]/d);
  1979. l = MAX(-4, MIN(3, l));
  1980. L[16*j + ii] = l + 4;
  1981. }
  1982. }
  1983. memset(y[i].hmask, 0, QK_K/8);
  1984. // We put the high-bit for the 1st 8 quants into bit 0, the next 8 into bit 1, etc.
  1985. int m = 0;
  1986. uint8_t hm = 1;
  1987. for (int j = 0; j < QK_K; ++j) {
  1988. if (L[j] > 3) {
  1989. y[i].hmask[m] |= hm;
  1990. L[j] -= 4;
  1991. }
  1992. if (++m == QK_K/8) {
  1993. m = 0; hm <<= 1;
  1994. }
  1995. }
  1996. for (int j = 0; j < QK_K; j += 128) {
  1997. for (int l = 0; l < 32; ++l) {
  1998. y[i].qs[j/4 + l] = L[j + l] | (L[j + l + 32] << 2) | (L[j + l + 64] << 4) | (L[j + l + 96] << 6);
  1999. }
  2000. }
  2001. x += QK_K;
  2002. }
  2003. }
  2004. void dequantize_row_q3_K(const block_q3_K * restrict x, float * restrict y, int64_t k) {
  2005. assert(k % QK_K == 0);
  2006. const int nb = k / QK_K;
  2007. const uint32_t kmask1 = 0x03030303;
  2008. const uint32_t kmask2 = 0x0f0f0f0f;
  2009. uint32_t aux[4];
  2010. const int8_t * scales = (const int8_t*)aux;
  2011. for (int i = 0; i < nb; i++) {
  2012. const float d_all = GGML_FP16_TO_FP32(x[i].d);
  2013. const uint8_t * restrict q = x[i].qs;
  2014. const uint8_t * restrict hm = x[i].hmask;
  2015. uint8_t m = 1;
  2016. memcpy(aux, x[i].scales, 12);
  2017. uint32_t tmp = aux[2];
  2018. aux[2] = ((aux[0] >> 4) & kmask2) | (((tmp >> 4) & kmask1) << 4);
  2019. aux[3] = ((aux[1] >> 4) & kmask2) | (((tmp >> 6) & kmask1) << 4);
  2020. aux[0] = (aux[0] & kmask2) | (((tmp >> 0) & kmask1) << 4);
  2021. aux[1] = (aux[1] & kmask2) | (((tmp >> 2) & kmask1) << 4);
  2022. int is = 0;
  2023. float dl;
  2024. for (int n = 0; n < QK_K; n += 128) {
  2025. int shift = 0;
  2026. for (int j = 0; j < 4; ++j) {
  2027. dl = d_all * (scales[is++] - 32);
  2028. for (int l = 0; l < 16; ++l) {
  2029. *y++ = dl * ((int8_t)((q[l+ 0] >> shift) & 3) - ((hm[l+ 0] & m) ? 0 : 4));
  2030. }
  2031. dl = d_all * (scales[is++] - 32);
  2032. for (int l = 0; l < 16; ++l) {
  2033. *y++ = dl * ((int8_t)((q[l+16] >> shift) & 3) - ((hm[l+16] & m) ? 0 : 4));
  2034. }
  2035. shift += 2;
  2036. m <<= 1;
  2037. }
  2038. q += 32;
  2039. }
  2040. }
  2041. }
  2042. void quantize_row_q3_K(const float * restrict x, void * restrict vy, int64_t k) {
  2043. quantize_row_q3_K_ref(x, vy, k);
  2044. }
  2045. static void quantize_row_q3_K_impl(const float * restrict x, block_q3_K * restrict y, int64_t n_per_row, const float * restrict quant_weights) {
  2046. assert(n_per_row % QK_K == 0);
  2047. const int nb = n_per_row / QK_K;
  2048. int8_t L[QK_K];
  2049. float scales[QK_K / 16];
  2050. float weight[16];
  2051. float sw[QK_K / 16];
  2052. int8_t Ls[QK_K / 16];
  2053. for (int i = 0; i < nb; i++) {
  2054. float sumx2 = 0;
  2055. for (int j = 0; j < QK_K; ++j) sumx2 += x[j]*x[j];
  2056. float sigma2 = 2*sumx2/QK_K;
  2057. for (int j = 0; j < QK_K/16; ++j) {
  2058. if (quant_weights) {
  2059. const float * qw = quant_weights + QK_K * i + 16*j;
  2060. for (int l = 0; l < 16; ++l) weight[l] = qw[l] * sqrtf(sigma2 + x[16*j+l]*x[16*j+l]);
  2061. } else {
  2062. for (int l = 0; l < 16; ++l) weight[l] = x[16*j+l]*x[16*j+l];
  2063. }
  2064. float sumw = 0;
  2065. for (int l = 0; l < 16; ++l) sumw += weight[l];
  2066. sw[j] = sumw;
  2067. scales[j] = make_qx_quants(16, 4, x + 16*j, L + 16*j, 1, weight);
  2068. }
  2069. memset(y[i].scales, 0, 12);
  2070. float d_block = make_qx_quants(QK_K/16, 32, scales, Ls, 1, sw);
  2071. for (int j = 0; j < QK_K/16; ++j) {
  2072. int l = Ls[j];
  2073. if (j < 8) {
  2074. y[i].scales[j] = l & 0xF;
  2075. } else {
  2076. y[i].scales[j-8] |= ((l & 0xF) << 4);
  2077. }
  2078. l >>= 4;
  2079. y[i].scales[j%4 + 8] |= (l << (2*(j/4)));
  2080. }
  2081. y[i].d = GGML_FP32_TO_FP16(d_block);
  2082. int8_t sc;
  2083. for (int j = 0; j < QK_K/16; ++j) {
  2084. sc = j < 8 ? y[i].scales[j] & 0xF : y[i].scales[j-8] >> 4;
  2085. sc = (sc | (((y[i].scales[8 + j%4] >> (2*(j/4))) & 3) << 4)) - 32;
  2086. float d = GGML_FP16_TO_FP32(y[i].d) * sc;
  2087. if (!d) {
  2088. continue;
  2089. }
  2090. for (int ii = 0; ii < 16; ++ii) {
  2091. int l = nearest_int(x[16*j + ii]/d);
  2092. l = MAX(-4, MIN(3, l));
  2093. L[16*j + ii] = l + 4;
  2094. }
  2095. }
  2096. memset(y[i].hmask, 0, QK_K/8);
  2097. // We put the high-bit for the 1st 8 quants into bit 0, the next 8 into bit 1, etc.
  2098. int m = 0;
  2099. uint8_t hm = 1;
  2100. for (int j = 0; j < QK_K; ++j) {
  2101. if (L[j] > 3) {
  2102. y[i].hmask[m] |= hm;
  2103. L[j] -= 4;
  2104. }
  2105. if (++m == QK_K/8) {
  2106. m = 0; hm <<= 1;
  2107. }
  2108. }
  2109. for (int j = 0; j < QK_K; j += 128) {
  2110. for (int l = 0; l < 32; ++l) {
  2111. y[i].qs[j/4 + l] = L[j + l] | (L[j + l + 32] << 2) | (L[j + l + 64] << 4) | (L[j + l + 96] << 6);
  2112. }
  2113. }
  2114. x += QK_K;
  2115. }
  2116. }
  2117. size_t quantize_q3_K(const float * restrict src, void * restrict dst, int64_t nrow, int64_t n_per_row, const float * quant_weights) {
  2118. size_t row_size = ggml_row_size(GGML_TYPE_Q3_K, n_per_row);
  2119. if (!quant_weights) {
  2120. quantize_row_q3_K_ref(src, dst, (int64_t)nrow*n_per_row);
  2121. }
  2122. else {
  2123. char * qrow = (char *)dst;
  2124. for (int64_t row = 0; row < nrow; ++row) {
  2125. quantize_row_q3_K_impl(src, (block_q3_K*)qrow, n_per_row, quant_weights);
  2126. src += n_per_row;
  2127. qrow += row_size;
  2128. }
  2129. }
  2130. return nrow * row_size;
  2131. }
  2132. // ====================== 4-bit (de)-quantization
  2133. void quantize_row_q4_K_ref(const float * restrict x, block_q4_K * restrict y, int64_t k) {
  2134. assert(k % QK_K == 0);
  2135. const int nb = k / QK_K;
  2136. uint8_t L[QK_K];
  2137. uint8_t Laux[32];
  2138. float weights[32];
  2139. float mins[QK_K/32];
  2140. float scales[QK_K/32];
  2141. for (int i = 0; i < nb; i++) {
  2142. float max_scale = 0; // as we are deducting the min, scales are always positive
  2143. float max_min = 0;
  2144. for (int j = 0; j < QK_K/32; ++j) {
  2145. //scales[j] = make_qkx1_quants(32, 15, x + 32*j, L + 32*j, &mins[j], 9, 0.5f);
  2146. float sum_x2 = 0;
  2147. for (int l = 0; l < 32; ++l) sum_x2 += x[32*j + l] * x[32*j + l];
  2148. float av_x = sqrtf(sum_x2/32);
  2149. for (int l = 0; l < 32; ++l) weights[l] = av_x + fabsf(x[32*j + l]);
  2150. scales[j] = make_qkx2_quants(32, 15, x + 32*j, weights, L + 32*j, &mins[j], Laux, -1.f, 0.1f, 20, false);
  2151. float scale = scales[j];
  2152. if (scale > max_scale) {
  2153. max_scale = scale;
  2154. }
  2155. float min = mins[j];
  2156. if (min > max_min) {
  2157. max_min = min;
  2158. }
  2159. }
  2160. float inv_scale = max_scale > 0 ? 63.f/max_scale : 0.f;
  2161. float inv_min = max_min > 0 ? 63.f/max_min : 0.f;
  2162. for (int j = 0; j < QK_K/32; ++j) {
  2163. uint8_t ls = nearest_int(inv_scale*scales[j]);
  2164. uint8_t lm = nearest_int(inv_min*mins[j]);
  2165. ls = MIN(63, ls);
  2166. lm = MIN(63, lm);
  2167. if (j < 4) {
  2168. y[i].scales[j] = ls;
  2169. y[i].scales[j+4] = lm;
  2170. } else {
  2171. y[i].scales[j+4] = (ls & 0xF) | ((lm & 0xF) << 4);
  2172. y[i].scales[j-4] |= ((ls >> 4) << 6);
  2173. y[i].scales[j-0] |= ((lm >> 4) << 6);
  2174. }
  2175. }
  2176. y[i].d = GGML_FP32_TO_FP16(max_scale/63.f);
  2177. y[i].dmin = GGML_FP32_TO_FP16(max_min/63.f);
  2178. uint8_t sc, m;
  2179. for (int j = 0; j < QK_K/32; ++j) {
  2180. get_scale_min_k4(j, y[i].scales, &sc, &m);
  2181. const float d = GGML_FP16_TO_FP32(y[i].d) * sc;
  2182. if (!d) continue;
  2183. const float dm = GGML_FP16_TO_FP32(y[i].dmin) * m;
  2184. for (int ii = 0; ii < 32; ++ii) {
  2185. int l = nearest_int((x[32*j + ii] + dm)/d);
  2186. l = MAX(0, MIN(15, l));
  2187. L[32*j + ii] = l;
  2188. }
  2189. }
  2190. uint8_t * q = y[i].qs;
  2191. for (int j = 0; j < QK_K; j += 64) {
  2192. for (int l = 0; l < 32; ++l) q[l] = L[j + l] | (L[j + l + 32] << 4);
  2193. q += 32;
  2194. }
  2195. x += QK_K;
  2196. }
  2197. }
  2198. void dequantize_row_q4_K(const block_q4_K * restrict x, float * restrict y, int64_t k) {
  2199. assert(k % QK_K == 0);
  2200. const int nb = k / QK_K;
  2201. for (int i = 0; i < nb; i++) {
  2202. const uint8_t * q = x[i].qs;
  2203. const float d = GGML_FP16_TO_FP32(x[i].d);
  2204. const float min = GGML_FP16_TO_FP32(x[i].dmin);
  2205. int is = 0;
  2206. uint8_t sc, m;
  2207. for (int j = 0; j < QK_K; j += 64) {
  2208. get_scale_min_k4(is + 0, x[i].scales, &sc, &m);
  2209. const float d1 = d * sc; const float m1 = min * m;
  2210. get_scale_min_k4(is + 1, x[i].scales, &sc, &m);
  2211. const float d2 = d * sc; const float m2 = min * m;
  2212. for (int l = 0; l < 32; ++l) *y++ = d1 * (q[l] & 0xF) - m1;
  2213. for (int l = 0; l < 32; ++l) *y++ = d2 * (q[l] >> 4) - m2;
  2214. q += 32; is += 2;
  2215. }
  2216. }
  2217. }
  2218. void quantize_row_q4_K(const float * restrict x, void * restrict vy, int64_t k) {
  2219. assert(k % QK_K == 0);
  2220. block_q4_K * restrict y = vy;
  2221. quantize_row_q4_K_ref(x, y, k);
  2222. }
  2223. static void quantize_row_q4_K_impl(const float * restrict x, block_q4_K * restrict y, int64_t n_per_row, const float * quant_weights) {
  2224. assert(n_per_row % QK_K == 0);
  2225. const int64_t nb = n_per_row / QK_K;
  2226. uint8_t L[QK_K];
  2227. uint8_t Laux[32];
  2228. uint8_t Ls[QK_K/32];
  2229. uint8_t Lm[QK_K/32];
  2230. float weights[32];
  2231. float sw[QK_K/32];
  2232. float mins[QK_K/32];
  2233. float scales[QK_K/32];
  2234. for (int i = 0; i < nb; i++) {
  2235. float sum_x2 = 0;
  2236. for (int l = 0; l < QK_K; ++l) sum_x2 += x[l] * x[l];
  2237. float sigma2 = 2*sum_x2/QK_K;
  2238. float av_x = sqrtf(sigma2);
  2239. for (int j = 0; j < QK_K/32; ++j) {
  2240. if (quant_weights) {
  2241. const float * qw = quant_weights + QK_K*i + 32*j;
  2242. for (int l = 0; l < 32; ++l) weights[l] = qw[l] * sqrtf(sigma2 + x[32*j + l]*x[32*j + l]);
  2243. } else {
  2244. for (int l = 0; l < 32; ++l) weights[l] = av_x + fabsf(x[32*j + l]);
  2245. }
  2246. float sumw = 0;
  2247. for (int l = 0; l < 32; ++l) sumw += weights[l];
  2248. sw[j] = sumw;
  2249. scales[j] = make_qkx3_quants(32, 15, x + 32*j, weights, L + 32*j, &mins[j], Laux, -0.9f, 0.05f, 36, false);
  2250. }
  2251. float d_block = make_qp_quants(QK_K/32, 63, scales, Ls, sw);
  2252. float m_block = make_qp_quants(QK_K/32, 63, mins, Lm, sw);
  2253. for (int j = 0; j < QK_K/32; ++j) {
  2254. uint8_t ls = Ls[j];
  2255. uint8_t lm = Lm[j];
  2256. if (j < 4) {
  2257. y[i].scales[j] = ls;
  2258. y[i].scales[j+4] = lm;
  2259. } else {
  2260. y[i].scales[j+4] = (ls & 0xF) | ((lm & 0xF) << 4);
  2261. y[i].scales[j-4] |= ((ls >> 4) << 6);
  2262. y[i].scales[j-0] |= ((lm >> 4) << 6);
  2263. }
  2264. }
  2265. y[i].d = GGML_FP32_TO_FP16(d_block);
  2266. y[i].dmin = GGML_FP32_TO_FP16(m_block);
  2267. uint8_t sc, m;
  2268. for (int j = 0; j < QK_K/32; ++j) {
  2269. get_scale_min_k4(j, y[i].scales, &sc, &m);
  2270. const float d = GGML_FP16_TO_FP32(y[i].d) * sc;
  2271. if (!d) continue;
  2272. const float dm = GGML_FP16_TO_FP32(y[i].dmin) * m;
  2273. for (int ii = 0; ii < 32; ++ii) {
  2274. int l = nearest_int((x[32*j + ii] + dm)/d);
  2275. l = MAX(0, MIN(15, l));
  2276. L[32*j + ii] = l;
  2277. }
  2278. }
  2279. uint8_t * q = y[i].qs;
  2280. for (int j = 0; j < QK_K; j += 64) {
  2281. for (int l = 0; l < 32; ++l) q[l] = L[j + l] | (L[j + l + 32] << 4);
  2282. q += 32;
  2283. }
  2284. x += QK_K;
  2285. }
  2286. }
  2287. size_t quantize_q4_K(const float * restrict src, void * restrict dst, int64_t nrow, int64_t n_per_row, const float * quant_weights) {
  2288. size_t row_size = ggml_row_size(GGML_TYPE_Q4_K, n_per_row);
  2289. if (!quant_weights) {
  2290. quantize_row_q4_K_ref(src, dst, (int64_t)nrow*n_per_row);
  2291. }
  2292. else {
  2293. char * qrow = (char *)dst;
  2294. for (int64_t row = 0; row < nrow; ++row) {
  2295. quantize_row_q4_K_impl(src, (block_q4_K*)qrow, n_per_row, quant_weights);
  2296. src += n_per_row;
  2297. qrow += row_size;
  2298. }
  2299. }
  2300. return nrow * row_size;
  2301. }
  2302. // ====================== 5-bit (de)-quantization
  2303. void quantize_row_q5_K_ref(const float * restrict x, block_q5_K * restrict y, int64_t k) {
  2304. assert(k % QK_K == 0);
  2305. const int64_t nb = k / QK_K;
  2306. uint8_t L[QK_K];
  2307. float mins[QK_K/32];
  2308. float scales[QK_K/32];
  2309. float weights[32];
  2310. uint8_t Laux[32];
  2311. for (int i = 0; i < nb; i++) {
  2312. float max_scale = 0; // as we are deducting the min, scales are always positive
  2313. float max_min = 0;
  2314. for (int j = 0; j < QK_K/32; ++j) {
  2315. //scales[j] = make_qkx1_quants(32, 31, x + 32*j, L + 32*j, &mins[j], 9, 0.5f);
  2316. float sum_x2 = 0;
  2317. for (int l = 0; l < 32; ++l) sum_x2 += x[32*j + l] * x[32*j + l];
  2318. float av_x = sqrtf(sum_x2/32);
  2319. for (int l = 0; l < 32; ++l) weights[l] = av_x + fabsf(x[32*j + l]);
  2320. scales[j] = make_qkx2_quants(32, 31, x + 32*j, weights, L + 32*j, &mins[j], Laux, -0.5f, 0.1f, 15, false);
  2321. float scale = scales[j];
  2322. if (scale > max_scale) {
  2323. max_scale = scale;
  2324. }
  2325. float min = mins[j];
  2326. if (min > max_min) {
  2327. max_min = min;
  2328. }
  2329. }
  2330. float inv_scale = max_scale > 0 ? 63.f/max_scale : 0.f;
  2331. float inv_min = max_min > 0 ? 63.f/max_min : 0.f;
  2332. for (int j = 0; j < QK_K/32; ++j) {
  2333. uint8_t ls = nearest_int(inv_scale*scales[j]);
  2334. uint8_t lm = nearest_int(inv_min*mins[j]);
  2335. ls = MIN(63, ls);
  2336. lm = MIN(63, lm);
  2337. if (j < 4) {
  2338. y[i].scales[j] = ls;
  2339. y[i].scales[j+4] = lm;
  2340. } else {
  2341. y[i].scales[j+4] = (ls & 0xF) | ((lm & 0xF) << 4);
  2342. y[i].scales[j-4] |= ((ls >> 4) << 6);
  2343. y[i].scales[j-0] |= ((lm >> 4) << 6);
  2344. }
  2345. }
  2346. y[i].d = GGML_FP32_TO_FP16(max_scale/63.f);
  2347. y[i].dmin = GGML_FP32_TO_FP16(max_min/63.f);
  2348. uint8_t sc, m;
  2349. for (int j = 0; j < QK_K/32; ++j) {
  2350. get_scale_min_k4(j, y[i].scales, &sc, &m);
  2351. const float d = GGML_FP16_TO_FP32(y[i].d) * sc;
  2352. if (!d) continue;
  2353. const float dm = GGML_FP16_TO_FP32(y[i].dmin) * m;
  2354. for (int ii = 0; ii < 32; ++ii) {
  2355. int l = nearest_int((x[32*j + ii] + dm)/d);
  2356. l = MAX(0, MIN(31, l));
  2357. L[32*j + ii] = l;
  2358. }
  2359. }
  2360. uint8_t * restrict qh = y[i].qh;
  2361. uint8_t * restrict ql = y[i].qs;
  2362. memset(qh, 0, QK_K/8);
  2363. uint8_t m1 = 1, m2 = 2;
  2364. for (int n = 0; n < QK_K; n += 64) {
  2365. for (int j = 0; j < 32; ++j) {
  2366. int l1 = L[n + j];
  2367. if (l1 > 15) {
  2368. l1 -= 16; qh[j] |= m1;
  2369. }
  2370. int l2 = L[n + j + 32];
  2371. if (l2 > 15) {
  2372. l2 -= 16; qh[j] |= m2;
  2373. }
  2374. ql[j] = l1 | (l2 << 4);
  2375. }
  2376. m1 <<= 2; m2 <<= 2;
  2377. ql += 32;
  2378. }
  2379. x += QK_K;
  2380. }
  2381. }
  2382. void dequantize_row_q5_K(const block_q5_K * restrict x, float * restrict y, int64_t k) {
  2383. assert(k % QK_K == 0);
  2384. const int64_t nb = k / QK_K;
  2385. for (int i = 0; i < nb; i++) {
  2386. const uint8_t * ql = x[i].qs;
  2387. const uint8_t * qh = x[i].qh;
  2388. const float d = GGML_FP16_TO_FP32(x[i].d);
  2389. const float min = GGML_FP16_TO_FP32(x[i].dmin);
  2390. int is = 0;
  2391. uint8_t sc, m;
  2392. uint8_t u1 = 1, u2 = 2;
  2393. for (int j = 0; j < QK_K; j += 64) {
  2394. get_scale_min_k4(is + 0, x[i].scales, &sc, &m);
  2395. const float d1 = d * sc; const float m1 = min * m;
  2396. get_scale_min_k4(is + 1, x[i].scales, &sc, &m);
  2397. const float d2 = d * sc; const float m2 = min * m;
  2398. for (int l = 0; l < 32; ++l) *y++ = d1 * ((ql[l] & 0xF) + (qh[l] & u1 ? 16 : 0)) - m1;
  2399. for (int l = 0; l < 32; ++l) *y++ = d2 * ((ql[l] >> 4) + (qh[l] & u2 ? 16 : 0)) - m2;
  2400. ql += 32; is += 2;
  2401. u1 <<= 2; u2 <<= 2;
  2402. }
  2403. }
  2404. }
  2405. void quantize_row_q5_K(const float * restrict x, void * restrict vy, int64_t k) {
  2406. assert(k % QK_K == 0);
  2407. block_q5_K * restrict y = vy;
  2408. quantize_row_q5_K_ref(x, y, k);
  2409. }
  2410. static void quantize_row_q5_K_impl(const float * restrict x, block_q5_K * restrict y, int64_t n_per_row, const float * quant_weights) {
  2411. assert(n_per_row % QK_K == 0);
  2412. const int64_t nb = n_per_row / QK_K;
  2413. uint8_t L[QK_K];
  2414. uint8_t Laux[32];
  2415. uint8_t Ls[QK_K/32];
  2416. uint8_t Lm[QK_K/32];
  2417. float mins[QK_K/32];
  2418. float scales[QK_K/32];
  2419. float sw[QK_K/32];
  2420. float weights[32];
  2421. for (int i = 0; i < nb; i++) {
  2422. float sum_x2 = 0;
  2423. for (int l = 0; l < QK_K; ++l) sum_x2 += x[l] * x[l];
  2424. float sigma2 = 2*sum_x2/QK_K;
  2425. float av_x = sqrtf(sigma2);
  2426. for (int j = 0; j < QK_K/32; ++j) {
  2427. if (quant_weights) {
  2428. const float * qw = quant_weights + QK_K*i + 32*j;
  2429. for (int l = 0; l < 32; ++l) weights[l] = qw[l] * sqrtf(sigma2 + x[32*j + l]*x[32*j + l]);
  2430. } else {
  2431. for (int l = 0; l < 32; ++l) weights[l] = av_x + fabsf(x[32*j + l]);
  2432. }
  2433. float sumw = 0;
  2434. for (int l = 0; l < 32; ++l) sumw += weights[l];
  2435. sw[j] = sumw;
  2436. scales[j] = make_qkx3_quants(32, 31, x + 32*j, weights, L + 32*j, &mins[j], Laux, -0.9f, 0.05f, 36, false);
  2437. }
  2438. float d_block = make_qp_quants(QK_K/32, 63, scales, Ls, sw);
  2439. float m_block = make_qp_quants(QK_K/32, 63, mins, Lm, sw);
  2440. for (int j = 0; j < QK_K/32; ++j) {
  2441. uint8_t ls = Ls[j];
  2442. uint8_t lm = Lm[j];
  2443. ls = MIN(63, ls);
  2444. lm = MIN(63, lm);
  2445. if (j < 4) {
  2446. y[i].scales[j] = ls;
  2447. y[i].scales[j+4] = lm;
  2448. } else {
  2449. y[i].scales[j+4] = (ls & 0xF) | ((lm & 0xF) << 4);
  2450. y[i].scales[j-4] |= ((ls >> 4) << 6);
  2451. y[i].scales[j-0] |= ((lm >> 4) << 6);
  2452. }
  2453. }
  2454. y[i].d = GGML_FP32_TO_FP16(d_block);
  2455. y[i].dmin = GGML_FP32_TO_FP16(m_block);
  2456. uint8_t sc, m;
  2457. for (int j = 0; j < QK_K/32; ++j) {
  2458. get_scale_min_k4(j, y[i].scales, &sc, &m);
  2459. const float d = GGML_FP16_TO_FP32(y[i].d) * sc;
  2460. if (!d) continue;
  2461. const float dm = GGML_FP16_TO_FP32(y[i].dmin) * m;
  2462. for (int ii = 0; ii < 32; ++ii) {
  2463. int l = nearest_int((x[32*j + ii] + dm)/d);
  2464. l = MAX(0, MIN(31, l));
  2465. L[32*j + ii] = l;
  2466. }
  2467. }
  2468. uint8_t * restrict qh = y[i].qh;
  2469. uint8_t * restrict ql = y[i].qs;
  2470. memset(qh, 0, QK_K/8);
  2471. uint8_t m1 = 1, m2 = 2;
  2472. for (int n = 0; n < QK_K; n += 64) {
  2473. for (int j = 0; j < 32; ++j) {
  2474. int l1 = L[n + j];
  2475. if (l1 > 15) {
  2476. l1 -= 16; qh[j] |= m1;
  2477. }
  2478. int l2 = L[n + j + 32];
  2479. if (l2 > 15) {
  2480. l2 -= 16; qh[j] |= m2;
  2481. }
  2482. ql[j] = l1 | (l2 << 4);
  2483. }
  2484. m1 <<= 2; m2 <<= 2;
  2485. ql += 32;
  2486. }
  2487. x += QK_K;
  2488. }
  2489. }
  2490. size_t quantize_q5_K(const float * restrict src, void * restrict dst, int64_t nrow, int64_t n_per_row, const float * quant_weights) {
  2491. size_t row_size = ggml_row_size(GGML_TYPE_Q5_K, n_per_row);
  2492. if (!quant_weights) {
  2493. quantize_row_q5_K_ref(src, dst, (int64_t)nrow*n_per_row);
  2494. }
  2495. else {
  2496. char * qrow = (char *)dst;
  2497. for (int64_t row = 0; row < nrow; ++row) {
  2498. quantize_row_q5_K_impl(src, (block_q5_K*)qrow, n_per_row, quant_weights);
  2499. src += n_per_row;
  2500. qrow += row_size;
  2501. }
  2502. }
  2503. return nrow * row_size;
  2504. }
  2505. // ====================== 6-bit (de)-quantization
  2506. void quantize_row_q6_K_ref(const float * restrict x, block_q6_K * restrict y, int64_t k) {
  2507. assert(k % QK_K == 0);
  2508. const int64_t nb = k / QK_K;
  2509. int8_t L[QK_K];
  2510. float scales[QK_K/16];
  2511. for (int i = 0; i < nb; i++) {
  2512. float max_scale = 0;
  2513. float max_abs_scale = 0;
  2514. for (int ib = 0; ib < QK_K/16; ++ib) {
  2515. const float scale = make_qx_quants(16, 32, x + 16*ib, L + 16*ib, 1, NULL);
  2516. scales[ib] = scale;
  2517. const float abs_scale = fabsf(scale);
  2518. if (abs_scale > max_abs_scale) {
  2519. max_abs_scale = abs_scale;
  2520. max_scale = scale;
  2521. }
  2522. }
  2523. if (max_abs_scale < GROUP_MAX_EPS) {
  2524. memset(&y[i], 0, sizeof(block_q6_K));
  2525. y[i].d = GGML_FP32_TO_FP16(0.f);
  2526. x += QK_K;
  2527. continue;
  2528. }
  2529. float iscale = -128.f/max_scale;
  2530. y[i].d = GGML_FP32_TO_FP16(1/iscale);
  2531. for (int ib = 0; ib < QK_K/16; ++ib) {
  2532. y[i].scales[ib] = MIN(127, nearest_int(iscale*scales[ib]));
  2533. }
  2534. for (int j = 0; j < QK_K/16; ++j) {
  2535. float d = GGML_FP16_TO_FP32(y[i].d) * y[i].scales[j];
  2536. if (!d) {
  2537. continue;
  2538. }
  2539. for (int ii = 0; ii < 16; ++ii) {
  2540. int l = nearest_int(x[16*j + ii]/d);
  2541. l = MAX(-32, MIN(31, l));
  2542. L[16*j + ii] = l + 32;
  2543. }
  2544. }
  2545. uint8_t * restrict ql = y[i].ql;
  2546. uint8_t * restrict qh = y[i].qh;
  2547. for (int j = 0; j < QK_K; j += 128) {
  2548. for (int l = 0; l < 32; ++l) {
  2549. const uint8_t q1 = L[j + l + 0] & 0xF;
  2550. const uint8_t q2 = L[j + l + 32] & 0xF;
  2551. const uint8_t q3 = L[j + l + 64] & 0xF;
  2552. const uint8_t q4 = L[j + l + 96] & 0xF;
  2553. ql[l+ 0] = q1 | (q3 << 4);
  2554. ql[l+32] = q2 | (q4 << 4);
  2555. qh[l] = (L[j + l] >> 4) | ((L[j + l + 32] >> 4) << 2) | ((L[j + l + 64] >> 4) << 4) | ((L[j + l + 96] >> 4) << 6);
  2556. }
  2557. ql += 64;
  2558. qh += 32;
  2559. }
  2560. x += QK_K;
  2561. }
  2562. }
  2563. void dequantize_row_q6_K(const block_q6_K * restrict x, float * restrict y, int64_t k) {
  2564. assert(k % QK_K == 0);
  2565. const int64_t nb = k / QK_K;
  2566. for (int i = 0; i < nb; i++) {
  2567. const float d = GGML_FP16_TO_FP32(x[i].d);
  2568. const uint8_t * restrict ql = x[i].ql;
  2569. const uint8_t * restrict qh = x[i].qh;
  2570. const int8_t * restrict sc = x[i].scales;
  2571. for (int n = 0; n < QK_K; n += 128) {
  2572. for (int l = 0; l < 32; ++l) {
  2573. int is = l/16;
  2574. const int8_t q1 = (int8_t)((ql[l + 0] & 0xF) | (((qh[l] >> 0) & 3) << 4)) - 32;
  2575. const int8_t q2 = (int8_t)((ql[l + 32] & 0xF) | (((qh[l] >> 2) & 3) << 4)) - 32;
  2576. const int8_t q3 = (int8_t)((ql[l + 0] >> 4) | (((qh[l] >> 4) & 3) << 4)) - 32;
  2577. const int8_t q4 = (int8_t)((ql[l + 32] >> 4) | (((qh[l] >> 6) & 3) << 4)) - 32;
  2578. y[l + 0] = d * sc[is + 0] * q1;
  2579. y[l + 32] = d * sc[is + 2] * q2;
  2580. y[l + 64] = d * sc[is + 4] * q3;
  2581. y[l + 96] = d * sc[is + 6] * q4;
  2582. }
  2583. y += 128;
  2584. ql += 64;
  2585. qh += 32;
  2586. sc += 8;
  2587. }
  2588. }
  2589. }
  2590. void quantize_row_q6_K(const float * restrict x, void * restrict vy, int64_t k) {
  2591. assert(k % QK_K == 0);
  2592. block_q6_K * restrict y = vy;
  2593. quantize_row_q6_K_ref(x, y, k);
  2594. }
  2595. static void quantize_row_q6_K_impl(const float * restrict x, block_q6_K * restrict y, int64_t n_per_row, const float * quant_weights) {
  2596. assert(n_per_row % QK_K == 0);
  2597. const int64_t nb = n_per_row / QK_K;
  2598. int8_t L[QK_K];
  2599. float scales[QK_K/16];
  2600. //float weights[16];
  2601. for (int i = 0; i < nb; i++) {
  2602. //float sum_x2 = 0;
  2603. //for (int j = 0; j < QK_K; ++j) sum_x2 += x[j]*x[j];
  2604. //float sigma2 = sum_x2/QK_K;
  2605. float max_scale = 0;
  2606. float max_abs_scale = 0;
  2607. for (int ib = 0; ib < QK_K/16; ++ib) {
  2608. float scale;
  2609. if (quant_weights) {
  2610. const float * qw = quant_weights + QK_K*i + 16*ib;
  2611. //for (int j = 0; j < 16; ++j) weights[j] = qw[j] * sqrtf(sigma2 + x[16*ib + j]*x[16*ib + j]);
  2612. //scale = make_qx_quants(16, 32, x + 16*ib, L + 16*ib, 1, weights);
  2613. scale = make_qx_quants(16, 32, x + 16*ib, L + 16*ib, 1, qw);
  2614. } else {
  2615. scale = make_qx_quants(16, 32, x + 16*ib, L + 16*ib, 1, NULL);
  2616. }
  2617. scales[ib] = scale;
  2618. const float abs_scale = fabsf(scale);
  2619. if (abs_scale > max_abs_scale) {
  2620. max_abs_scale = abs_scale;
  2621. max_scale = scale;
  2622. }
  2623. }
  2624. if (max_abs_scale < GROUP_MAX_EPS) {
  2625. memset(&y[i], 0, sizeof(block_q6_K));
  2626. y[i].d = GGML_FP32_TO_FP16(0.f);
  2627. x += QK_K;
  2628. continue;
  2629. }
  2630. float iscale = -128.f/max_scale;
  2631. y[i].d = GGML_FP32_TO_FP16(1/iscale);
  2632. for (int ib = 0; ib < QK_K/16; ++ib) {
  2633. y[i].scales[ib] = MIN(127, nearest_int(iscale*scales[ib]));
  2634. }
  2635. for (int j = 0; j < QK_K/16; ++j) {
  2636. float d = GGML_FP16_TO_FP32(y[i].d) * y[i].scales[j];
  2637. if (!d) {
  2638. continue;
  2639. }
  2640. for (int ii = 0; ii < 16; ++ii) {
  2641. int l = nearest_int(x[16*j + ii]/d);
  2642. l = MAX(-32, MIN(31, l));
  2643. L[16*j + ii] = l + 32;
  2644. }
  2645. }
  2646. uint8_t * restrict ql = y[i].ql;
  2647. uint8_t * restrict qh = y[i].qh;
  2648. for (int j = 0; j < QK_K; j += 128) {
  2649. for (int l = 0; l < 32; ++l) {
  2650. const uint8_t q1 = L[j + l + 0] & 0xF;
  2651. const uint8_t q2 = L[j + l + 32] & 0xF;
  2652. const uint8_t q3 = L[j + l + 64] & 0xF;
  2653. const uint8_t q4 = L[j + l + 96] & 0xF;
  2654. ql[l+ 0] = q1 | (q3 << 4);
  2655. ql[l+32] = q2 | (q4 << 4);
  2656. qh[l] = (L[j + l] >> 4) | ((L[j + l + 32] >> 4) << 2) | ((L[j + l + 64] >> 4) << 4) | ((L[j + l + 96] >> 4) << 6);
  2657. }
  2658. ql += 64;
  2659. qh += 32;
  2660. }
  2661. x += QK_K;
  2662. }
  2663. }
  2664. size_t quantize_q6_K(const float * restrict src, void * restrict dst, int64_t nrow, int64_t n_per_row, const float * quant_weights) {
  2665. size_t row_size = ggml_row_size(GGML_TYPE_Q6_K, n_per_row);
  2666. if (!quant_weights) {
  2667. quantize_row_q6_K_ref(src, dst, (int64_t)nrow*n_per_row);
  2668. }
  2669. else {
  2670. char * qrow = (char *)dst;
  2671. for (int64_t row = 0; row < nrow; ++row) {
  2672. quantize_row_q6_K_impl(src, (block_q6_K*)qrow, n_per_row, quant_weights);
  2673. src += n_per_row;
  2674. qrow += row_size;
  2675. }
  2676. }
  2677. return nrow * row_size;
  2678. }
  2679. static void quantize_row_q4_0_impl(const float * restrict x, block_q4_0 * restrict y, int64_t n_per_row, const float * quant_weights) {
  2680. static_assert(QK4_0 == 32, "QK4_0 must be 32");
  2681. if (!quant_weights) {
  2682. quantize_row_q4_0_ref(x, y, n_per_row);
  2683. return;
  2684. }
  2685. float weight[QK4_0];
  2686. int8_t L[QK4_0];
  2687. float sum_x2 = 0;
  2688. for (int j = 0; j < n_per_row; ++j) sum_x2 += x[j]*x[j];
  2689. float sigma2 = sum_x2/n_per_row;
  2690. const int64_t nb = n_per_row/QK4_0;
  2691. for (int ib = 0; ib < nb; ++ib) {
  2692. const float * xb = x + QK4_0 * ib;
  2693. const float * qw = quant_weights + QK4_0 * ib;
  2694. for (int j = 0; j < QK4_0; ++j) weight[j] = qw[j] * sqrtf(sigma2 + xb[j]*xb[j]);
  2695. float d = make_qx_quants(QK4_0, 8, xb, L, 1, weight);
  2696. y[ib].d = GGML_FP32_TO_FP16(d);
  2697. for (int j = 0; j < 16; ++j) {
  2698. y[ib].qs[j] = L[j] | (L[j+16] << 4);
  2699. }
  2700. }
  2701. }
  2702. size_t quantize_q4_0(const float * restrict src, void * restrict dst, int64_t nrow, int64_t n_per_row, const float * quant_weights) {
  2703. if (!quant_weights) {
  2704. quantize_row_q4_0_ref(src, dst, (int64_t)nrow*n_per_row);
  2705. return nrow * ggml_row_size(GGML_TYPE_Q4_0, n_per_row);
  2706. }
  2707. size_t row_size = ggml_row_size(GGML_TYPE_Q4_0, n_per_row);
  2708. char * qrow = (char *)dst;
  2709. for (int64_t row = 0; row < nrow; ++row) {
  2710. quantize_row_q4_0_impl(src, (block_q4_0*)qrow, n_per_row, quant_weights);
  2711. src += n_per_row;
  2712. qrow += row_size;
  2713. }
  2714. return nrow * row_size;
  2715. }
  2716. static void quantize_row_q4_1_impl(const float * restrict x, block_q4_1 * restrict y, int64_t n_per_row, const float * quant_weights) {
  2717. static_assert(QK4_1 == 32, "QK4_1 must be 32");
  2718. if (!quant_weights) {
  2719. quantize_row_q4_1_ref(x, y, n_per_row);
  2720. return;
  2721. }
  2722. float weight[QK4_1];
  2723. uint8_t L[QK4_1], Laux[QK4_1];
  2724. float sum_x2 = 0;
  2725. for (int j = 0; j < n_per_row; ++j) sum_x2 += x[j]*x[j];
  2726. float sigma2 = sum_x2/n_per_row;
  2727. const int64_t nb = n_per_row/QK4_1;
  2728. for (int ib = 0; ib < nb; ++ib) {
  2729. const float * xb = x + QK4_1 * ib;
  2730. const float * qw = quant_weights + QK4_1 * ib;
  2731. for (int j = 0; j < QK4_1; ++j) weight[j] = qw[j] * sqrtf(sigma2 + xb[j]*xb[j]);
  2732. float min;
  2733. float d = make_qkx3_quants(QK4_1, 15, xb, weight, L, &min, Laux, -0.9f, 0.05f, 36, false);
  2734. y[ib].d = GGML_FP32_TO_FP16(d);
  2735. y[ib].m = GGML_FP32_TO_FP16(-min);
  2736. for (int j = 0; j < 16; ++j) {
  2737. y[ib].qs[j] = L[j] | (L[j+16] << 4);
  2738. }
  2739. }
  2740. }
  2741. size_t quantize_q4_1(const float * restrict src, void * restrict dst, int64_t nrow, int64_t n_per_row, const float * quant_weights) {
  2742. if (!quant_weights) {
  2743. quantize_row_q4_1_ref(src, dst, (int64_t)nrow*n_per_row);
  2744. return nrow * ggml_row_size(GGML_TYPE_Q4_1, n_per_row);
  2745. }
  2746. size_t row_size = ggml_row_size(GGML_TYPE_Q4_1, n_per_row);
  2747. char * qrow = (char *)dst;
  2748. for (int64_t row = 0; row < nrow; ++row) {
  2749. quantize_row_q4_1_impl(src, (block_q4_1*)qrow, n_per_row, quant_weights);
  2750. src += n_per_row;
  2751. qrow += row_size;
  2752. }
  2753. return nrow * row_size;
  2754. }
  2755. static void quantize_row_q5_0_impl(const float * restrict x, block_q5_0 * restrict y, int64_t n_per_row, const float * quant_weights) {
  2756. static_assert(QK5_0 == 32, "QK5_0 must be 32");
  2757. if (!quant_weights) {
  2758. quantize_row_q5_0_ref(x, y, n_per_row);
  2759. return;
  2760. }
  2761. float weight[QK5_0];
  2762. int8_t L[QK5_0];
  2763. float sum_x2 = 0;
  2764. for (int j = 0; j < n_per_row; ++j) sum_x2 += x[j]*x[j];
  2765. float sigma2 = sum_x2/n_per_row;
  2766. const int64_t nb = n_per_row/QK5_0;
  2767. for (int ib = 0; ib < nb; ++ib) {
  2768. const float * xb = x + QK5_0 * ib;
  2769. const float * qw = quant_weights + QK5_0 * ib;
  2770. for (int j = 0; j < QK5_0; ++j) weight[j] = qw[j] * sqrtf(sigma2 + xb[j]*xb[j]);
  2771. float d = make_qx_quants(QK5_0, 16, xb, L, 1, weight);
  2772. y[ib].d = GGML_FP32_TO_FP16(d);
  2773. uint32_t qh = 0;
  2774. for (int j = 0; j < 16; ++j) {
  2775. const uint8_t xi0 = L[j];
  2776. const uint8_t xi1 = L[j+16];
  2777. y[ib].qs[j] = (xi0 & 0x0F) | ((xi1 & 0x0F) << 4);
  2778. // get the 5-th bit and store it in qh at the right position
  2779. qh |= ((xi0 & 0x10u) >> 4) << (j + 0);
  2780. qh |= ((xi1 & 0x10u) >> 4) << (j + QK5_0/2);
  2781. }
  2782. memcpy(&y[ib].qh, &qh, sizeof(qh));
  2783. }
  2784. }
  2785. size_t quantize_q5_0(const float * restrict src, void * restrict dst, int64_t nrow, int64_t n_per_row, const float * quant_weights) {
  2786. if (!quant_weights) {
  2787. quantize_row_q5_0_ref(src, dst, (int64_t)nrow*n_per_row);
  2788. return nrow * ggml_row_size(GGML_TYPE_Q5_0, n_per_row);
  2789. }
  2790. size_t row_size = ggml_row_size(GGML_TYPE_Q5_0, n_per_row);
  2791. char * qrow = (char *)dst;
  2792. for (int64_t row = 0; row < nrow; ++row) {
  2793. quantize_row_q5_0_impl(src, (block_q5_0*)qrow, n_per_row, quant_weights);
  2794. src += n_per_row;
  2795. qrow += row_size;
  2796. }
  2797. return nrow * row_size;
  2798. }
  2799. static void quantize_row_q5_1_impl(const float * restrict x, block_q5_1 * restrict y, int64_t n_per_row, const float * quant_weights) {
  2800. static_assert(QK5_1 == 32, "QK5_1 must be 32");
  2801. if (!quant_weights) {
  2802. quantize_row_q5_1_ref(x, y, n_per_row);
  2803. return;
  2804. }
  2805. float weight[QK5_1];
  2806. uint8_t L[QK5_1], Laux[QK5_1];
  2807. float sum_x2 = 0;
  2808. for (int j = 0; j < n_per_row; ++j) sum_x2 += x[j]*x[j];
  2809. float sigma2 = sum_x2/n_per_row;
  2810. const int64_t nb = n_per_row/QK5_1;
  2811. for (int ib = 0; ib < nb; ++ib) {
  2812. const float * xb = x + QK5_1 * ib;
  2813. const float * qw = quant_weights + QK5_1 * ib;
  2814. for (int j = 0; j < QK5_1; ++j) weight[j] = qw[j] * sqrtf(sigma2 + xb[j]*xb[j]);
  2815. float min;
  2816. float d = make_qkx3_quants(QK5_1, 31, xb, weight, L, &min, Laux, -0.9f, 0.05f, 36, false);
  2817. y[ib].d = GGML_FP32_TO_FP16(d);
  2818. y[ib].m = GGML_FP32_TO_FP16(-min);
  2819. uint32_t qh = 0;
  2820. for (int j = 0; j < 16; ++j) {
  2821. const uint8_t xi0 = L[j];
  2822. const uint8_t xi1 = L[j+16];
  2823. y[ib].qs[j] = (xi0 & 0x0F) | ((xi1 & 0x0F) << 4);
  2824. // get the 5-th bit and store it in qh at the right position
  2825. qh |= ((xi0 & 0x10u) >> 4) << (j + 0);
  2826. qh |= ((xi1 & 0x10u) >> 4) << (j + QK5_0/2);
  2827. }
  2828. memcpy(&y[ib].qh, &qh, sizeof(qh));
  2829. }
  2830. }
  2831. size_t quantize_q5_1(const float * restrict src, void * restrict dst, int64_t nrow, int64_t n_per_row, const float * quant_weights) {
  2832. if (!quant_weights) {
  2833. quantize_row_q5_1_ref(src, dst, (int64_t)nrow*n_per_row);
  2834. return nrow * ggml_row_size(GGML_TYPE_Q5_1, n_per_row);
  2835. }
  2836. size_t row_size = ggml_row_size(GGML_TYPE_Q5_1, n_per_row);
  2837. char * qrow = (char *)dst;
  2838. for (int64_t row = 0; row < nrow; ++row) {
  2839. quantize_row_q5_1_impl(src, (block_q5_1*)qrow, n_per_row, quant_weights);
  2840. src += n_per_row;
  2841. qrow += row_size;
  2842. }
  2843. return nrow * row_size;
  2844. }
  2845. size_t quantize_q8_0(const float * restrict src, void * restrict dst, int64_t nrow, int64_t n_per_row, const float * quant_weights) {
  2846. (void)quant_weights; // not used
  2847. const size_t row_size = ggml_row_size(GGML_TYPE_Q8_0, n_per_row);
  2848. quantize_row_q8_0_ref(src, dst, (int64_t)nrow*n_per_row);
  2849. return nrow * row_size;
  2850. }
  2851. // ====================== Ternary (de)-quantization (BitNet b1.58 and TriLMs)
  2852. void quantize_row_tq1_0_ref(const float * restrict x, block_tq1_0 * restrict y, int64_t k) {
  2853. assert(k % QK_K == 0);
  2854. const int64_t nb = k / QK_K;
  2855. for (int64_t i = 0; i < nb; i++) {
  2856. float amax = 0.0f; // absolute max
  2857. for (int j = 0; j < QK_K; j++) {
  2858. const float v = x[j];
  2859. amax = MAX(amax, fabsf(v));
  2860. }
  2861. const float d = amax;
  2862. const float id = d ? 1.0f/d : 0.0f;
  2863. y[i].d = GGML_FP32_TO_FP16(d);
  2864. // 5 elements per byte, along 32 bytes
  2865. for (size_t j = 0; j < sizeof(y->qs) - sizeof(y->qs) % 32; j += 32) {
  2866. for (size_t m = 0; m < 32; ++m) {
  2867. uint8_t q = 0;
  2868. for (size_t n = 0; n < 5; ++n) {
  2869. int xi = lroundf(x[m + n*32] * id) + 1; // -1, 0, 1 -> 0, 1, 2
  2870. q *= 3;
  2871. q += xi;
  2872. }
  2873. // ceiling division (243 == pow(3, 5))
  2874. q = ((uint16_t)q * 256 + (243 - 1)) / 243;
  2875. y[i].qs[j + m] = q;
  2876. }
  2877. x += 5*32;
  2878. }
  2879. // along 16 bytes
  2880. for (size_t j = sizeof(y->qs) - sizeof(y->qs) % 32; j < sizeof(y->qs); j += 16) {
  2881. for (size_t m = 0; m < 16; ++m) {
  2882. uint8_t q = 0;
  2883. for (size_t n = 0; n < 5; ++n) {
  2884. int xi = lroundf(x[m + n*16] * id) + 1; // -1, 0, 1 -> 0, 1, 2
  2885. q *= 3;
  2886. q += xi;
  2887. }
  2888. // ceiling division (243 == pow(3, 5))
  2889. q = ((uint16_t)q * 256 + (243 - 1)) / 243;
  2890. y[i].qs[j + m] = q;
  2891. }
  2892. x += 5*16;
  2893. }
  2894. // 4 elements per byte
  2895. for (size_t j = 0; j < sizeof(y->qh); ++j) {
  2896. uint8_t q = 0;
  2897. for (size_t m = 0; m < 4; ++m) {
  2898. // -1, 0, 1 -> 0, 1, 2
  2899. int xi = lroundf(x[j + m*sizeof(y->qh)] * id) + 1;
  2900. q *= 3;
  2901. q += xi;
  2902. }
  2903. // shift the first value to the most significant trit
  2904. q *= 3;
  2905. // ceiling division (243 == pow(3, 5))
  2906. q = ((uint16_t)q * 256 + (243 - 1)) / 243;
  2907. y[i].qh[j] = q;
  2908. }
  2909. x += 4*sizeof(y->qh);
  2910. }
  2911. }
  2912. void quantize_row_tq2_0_ref(const float * restrict x, block_tq2_0 * restrict y, int64_t k) {
  2913. assert(k % QK_K == 0);
  2914. const int64_t nb = k / QK_K;
  2915. for (int64_t i = 0; i < nb; i++) {
  2916. float amax = 0.0f; // absolute max
  2917. for (int j = 0; j < QK_K; j++) {
  2918. const float v = x[j];
  2919. amax = MAX(amax, fabsf(v));
  2920. }
  2921. const float d = amax;
  2922. const float id = d ? 1.0f/d : 0.0f;
  2923. y[i].d = GGML_FP32_TO_FP16(d);
  2924. for (size_t j = 0; j < sizeof(y->qs); j += 32) {
  2925. for (size_t m = 0; m < 32; ++m) {
  2926. uint8_t q = 0;
  2927. for (size_t n = 0; n < 4; ++n) {
  2928. // -1, 0, 1 -> 0, 1, 2
  2929. int xi = lroundf(x[m + n*32] * id) + 1;
  2930. q += (xi & 3) << (2*n);
  2931. }
  2932. y[i].qs[j + m] = q;
  2933. }
  2934. x += 4*32;
  2935. }
  2936. }
  2937. }
  2938. void quantize_row_tq1_0(const float * restrict x, void * restrict vy, int64_t k) {
  2939. assert(k % QK_K == 0);
  2940. block_tq1_0 * restrict y = vy;
  2941. quantize_row_tq1_0_ref(x, y, k);
  2942. }
  2943. void quantize_row_tq2_0(const float * restrict x, void * restrict vy, int64_t k) {
  2944. assert(k % QK_K == 0);
  2945. block_tq2_0 * restrict y = vy;
  2946. quantize_row_tq2_0_ref(x, y, k);
  2947. }
  2948. size_t quantize_tq1_0(const float * restrict src, void * restrict dst, int64_t nrow, int64_t n_per_row, const float * quant_weights) {
  2949. (void)quant_weights; // not used
  2950. const size_t row_size = ggml_row_size(GGML_TYPE_TQ1_0, n_per_row);
  2951. quantize_row_tq1_0(src, dst, (int64_t)nrow*n_per_row);
  2952. return nrow * row_size;
  2953. }
  2954. size_t quantize_tq2_0(const float * restrict src, void * restrict dst, int64_t nrow, int64_t n_per_row, const float * quant_weights) {
  2955. (void)quant_weights; // not used
  2956. const size_t row_size = ggml_row_size(GGML_TYPE_TQ2_0, n_per_row);
  2957. quantize_row_tq2_0(src, dst, (int64_t)nrow*n_per_row);
  2958. return nrow * row_size;
  2959. }
  2960. void dequantize_row_tq1_0(const block_tq1_0 * restrict x, float * restrict y, int64_t k) {
  2961. assert(k % QK_K == 0);
  2962. const int64_t nb = k / QK_K;
  2963. const uint8_t pow3[6] = {1, 3, 9, 27, 81, 243};
  2964. for (int64_t i = 0; i < nb; ++i) {
  2965. const float d = GGML_FP16_TO_FP32(x[i].d);
  2966. for (size_t j = 0; j < sizeof(x->qs) - sizeof(x->qs) % 32; j += 32) {
  2967. for (size_t n = 0; n < 5; ++n) {
  2968. for (size_t m = 0; m < 32; ++m) {
  2969. uint8_t q = x[i].qs[j + m] * pow3[n];
  2970. int16_t xi = ((uint16_t) q * 3) >> 8;
  2971. *y++ = (float) (xi - 1) * d;
  2972. }
  2973. }
  2974. }
  2975. for (size_t j = sizeof(x->qs) - sizeof(x->qs) % 32; j < sizeof(x->qs); j += 16) {
  2976. for (size_t n = 0; n < 5; ++n) {
  2977. for (size_t m = 0; m < 16; ++m) {
  2978. uint8_t q = x[i].qs[j + m] * pow3[n];
  2979. int16_t xi = ((uint16_t) q * 3) >> 8;
  2980. *y++ = (float) (xi - 1) * d;
  2981. }
  2982. }
  2983. }
  2984. for (size_t n = 0; n < 4; ++n) {
  2985. for (size_t j = 0; j < sizeof(x->qh); ++j) {
  2986. uint8_t q = x[i].qh[j] * pow3[n];
  2987. int16_t xi = ((uint16_t) q * 3) >> 8;
  2988. *y++ = (float) (xi - 1) * d;
  2989. }
  2990. }
  2991. }
  2992. }
  2993. void dequantize_row_tq2_0(const block_tq2_0 * restrict x, float * restrict y, int64_t k) {
  2994. assert(k % QK_K == 0);
  2995. const int64_t nb = k / QK_K;
  2996. for (int64_t i = 0; i < nb; ++i) {
  2997. const float d = GGML_FP16_TO_FP32(x[i].d);
  2998. for (size_t j = 0; j < sizeof(x->qs); j += 32) {
  2999. for (size_t l = 0; l < 4; ++l) {
  3000. for (size_t m = 0; m < 32; ++m) {
  3001. int8_t q = (x[i].qs[j + m] >> (l*2)) & 3;
  3002. *y++ = (float) (q - 1) * d;
  3003. }
  3004. }
  3005. }
  3006. }
  3007. }
  3008. // ====================== "True" 2-bit (de)-quantization
  3009. void dequantize_row_iq2_xxs(const block_iq2_xxs * restrict x, float * restrict y, int64_t k) {
  3010. assert(k % QK_K == 0);
  3011. const int64_t nb = k / QK_K;
  3012. uint32_t aux32[2];
  3013. const uint8_t * aux8 = (const uint8_t *)aux32;
  3014. for (int i = 0; i < nb; i++) {
  3015. const float d = GGML_FP16_TO_FP32(x[i].d);
  3016. for (int ib32 = 0; ib32 < QK_K/32; ++ib32) {
  3017. memcpy(aux32, x[i].qs + 4*ib32, 2*sizeof(uint32_t));
  3018. const float db = d * (0.5f + (aux32[1] >> 28)) * 0.25f;
  3019. for (int l = 0; l < 4; ++l) {
  3020. const uint8_t * grid = (const uint8_t *)(iq2xxs_grid + aux8[l]);
  3021. const uint8_t signs = ksigns_iq2xs[(aux32[1] >> 7*l) & 127];
  3022. for (int j = 0; j < 8; ++j) {
  3023. y[j] = db * grid[j] * (signs & kmask_iq2xs[j] ? -1.f : 1.f);
  3024. }
  3025. y += 8;
  3026. }
  3027. }
  3028. }
  3029. }
  3030. // ====================== 2.3125 bpw (de)-quantization
  3031. void dequantize_row_iq2_xs(const block_iq2_xs * restrict x, float * restrict y, int64_t k) {
  3032. assert(k % QK_K == 0);
  3033. const int64_t nb = k / QK_K;
  3034. float db[2];
  3035. for (int i = 0; i < nb; i++) {
  3036. const float d = GGML_FP16_TO_FP32(x[i].d);
  3037. for (int ib32 = 0; ib32 < QK_K/32; ++ib32) {
  3038. db[0] = d * (0.5f + (x[i].scales[ib32] & 0xf)) * 0.25f;
  3039. db[1] = d * (0.5f + (x[i].scales[ib32] >> 4)) * 0.25f;
  3040. for (int l = 0; l < 4; ++l) {
  3041. const uint8_t * grid = (const uint8_t *)(iq2xs_grid + (x[i].qs[4*ib32 + l] & 511));
  3042. const uint8_t signs = ksigns_iq2xs[x[i].qs[4*ib32 + l] >> 9];
  3043. for (int j = 0; j < 8; ++j) {
  3044. y[j] = db[l/2] * grid[j] * (signs & kmask_iq2xs[j] ? -1.f : 1.f);
  3045. }
  3046. y += 8;
  3047. }
  3048. }
  3049. }
  3050. }
  3051. // ====================== 2.5625 bpw (de)-quantization
  3052. void dequantize_row_iq2_s(const block_iq2_s * restrict x, float * restrict y, int64_t k) {
  3053. assert(k % QK_K == 0);
  3054. const int64_t nb = k / QK_K;
  3055. float db[2];
  3056. for (int i = 0; i < nb; i++) {
  3057. const float d = GGML_FP16_TO_FP32(x[i].d);
  3058. const uint8_t * qs = x[i].qs;
  3059. const uint8_t * qh = x[i].qh;
  3060. const uint8_t * signs = qs + QK_K/8;
  3061. for (int ib32 = 0; ib32 < QK_K/32; ++ib32) {
  3062. db[0] = d * (0.5f + (x[i].scales[ib32] & 0xf)) * 0.25f;
  3063. db[1] = d * (0.5f + (x[i].scales[ib32] >> 4)) * 0.25f;
  3064. for (int l = 0; l < 4; ++l) {
  3065. const float dl = db[l/2];
  3066. const uint8_t * grid = (const uint8_t *)(iq2s_grid + (qs[l] | (qh[ib32] << (8-2*l) & 0x300)));
  3067. for (int j = 0; j < 8; ++j) {
  3068. y[j] = dl * grid[j] * (signs[l] & kmask_iq2xs[j] ? -1.f : 1.f);
  3069. }
  3070. y += 8;
  3071. }
  3072. qs += 4;
  3073. signs += 4;
  3074. }
  3075. }
  3076. }
  3077. // ====================== 3.0625 bpw (de)-quantization
  3078. void dequantize_row_iq3_xxs(const block_iq3_xxs * restrict x, float * restrict y, int64_t k) {
  3079. assert(k % QK_K == 0);
  3080. const int64_t nb = k / QK_K;
  3081. uint32_t aux32;
  3082. for (int i = 0; i < nb; i++) {
  3083. const float d = GGML_FP16_TO_FP32(x[i].d);
  3084. const uint8_t * qs = x[i].qs;
  3085. const uint8_t * scales_and_signs = qs + QK_K/4;
  3086. for (int ib32 = 0; ib32 < QK_K/32; ++ib32) {
  3087. memcpy(&aux32, scales_and_signs + 4*ib32, sizeof(uint32_t));
  3088. const float db = d * (0.5f + (aux32 >> 28)) * 0.5f;
  3089. for (int l = 0; l < 4; ++l) {
  3090. const uint8_t signs = ksigns_iq2xs[(aux32 >> 7*l) & 127];
  3091. const uint8_t * grid1 = (const uint8_t *)(iq3xxs_grid + qs[2*l+0]);
  3092. const uint8_t * grid2 = (const uint8_t *)(iq3xxs_grid + qs[2*l+1]);
  3093. for (int j = 0; j < 4; ++j) {
  3094. y[j+0] = db * grid1[j] * (signs & kmask_iq2xs[j+0] ? -1.f : 1.f);
  3095. y[j+4] = db * grid2[j] * (signs & kmask_iq2xs[j+4] ? -1.f : 1.f);
  3096. }
  3097. y += 8;
  3098. }
  3099. qs += 8;
  3100. }
  3101. }
  3102. }
  3103. // ====================== 3.3125 bpw (de)-quantization
  3104. void dequantize_row_iq3_s(const block_iq3_s * restrict x, float * restrict y, int64_t k) {
  3105. assert(k % QK_K == 0);
  3106. const int64_t nb = k / QK_K;
  3107. for (int i = 0; i < nb; i++) {
  3108. const float d = GGML_FP16_TO_FP32(x[i].d);
  3109. const uint8_t * qs = x[i].qs;
  3110. const uint8_t * qh = x[i].qh;
  3111. const uint8_t * signs = x[i].signs;
  3112. for (int ib32 = 0; ib32 < QK_K/32; ib32 += 2) {
  3113. const float db1 = d * (1 + 2*(x[i].scales[ib32/2] & 0xf));
  3114. const float db2 = d * (1 + 2*(x[i].scales[ib32/2] >> 4));
  3115. for (int l = 0; l < 4; ++l) {
  3116. const uint8_t * grid1 = (const uint8_t *)(iq3s_grid + (qs[2*l+0] | ((qh[0] << (8-2*l)) & 256)));
  3117. const uint8_t * grid2 = (const uint8_t *)(iq3s_grid + (qs[2*l+1] | ((qh[0] << (7-2*l)) & 256)));
  3118. for (int j = 0; j < 4; ++j) {
  3119. y[j+0] = db1 * grid1[j] * (signs[l] & kmask_iq2xs[j+0] ? -1.f : 1.f);
  3120. y[j+4] = db1 * grid2[j] * (signs[l] & kmask_iq2xs[j+4] ? -1.f : 1.f);
  3121. }
  3122. y += 8;
  3123. }
  3124. qs += 8;
  3125. signs += 4;
  3126. for (int l = 0; l < 4; ++l) {
  3127. const uint8_t * grid1 = (const uint8_t *)(iq3s_grid + (qs[2*l+0] | ((qh[1] << (8-2*l)) & 256)));
  3128. const uint8_t * grid2 = (const uint8_t *)(iq3s_grid + (qs[2*l+1] | ((qh[1] << (7-2*l)) & 256)));
  3129. for (int j = 0; j < 4; ++j) {
  3130. y[j+0] = db2 * grid1[j] * (signs[l] & kmask_iq2xs[j+0] ? -1.f : 1.f);
  3131. y[j+4] = db2 * grid2[j] * (signs[l] & kmask_iq2xs[j+4] ? -1.f : 1.f);
  3132. }
  3133. y += 8;
  3134. }
  3135. qh += 2;
  3136. qs += 8;
  3137. signs += 4;
  3138. }
  3139. }
  3140. }
  3141. // ====================== 1.5625 bpw (de)-quantization
  3142. void dequantize_row_iq1_s(const block_iq1_s * restrict x, float * restrict y, int64_t k) {
  3143. assert(k % QK_K == 0);
  3144. const int64_t nb = k / QK_K;
  3145. for (int i = 0; i < nb; i++) {
  3146. const float d = GGML_FP16_TO_FP32(x[i].d);
  3147. const uint8_t * qs = x[i].qs;
  3148. const uint16_t * qh = x[i].qh;
  3149. for (int ib = 0; ib < QK_K/32; ++ib) {
  3150. const float dl = d * (2*((qh[ib] >> 12) & 7) + 1);
  3151. const float delta = qh[ib] & 0x8000 ? -IQ1S_DELTA : IQ1S_DELTA;
  3152. for (int l = 0; l < 4; ++l) {
  3153. const int8_t * grid = (const int8_t *)(iq1s_grid + (qs[l] | (((qh[ib] >> 3*l) & 7) << 8)));
  3154. for (int j = 0; j < 8; ++j) {
  3155. y[j] = dl * (grid[j] + delta);
  3156. }
  3157. y += 8;
  3158. }
  3159. qs += 4;
  3160. }
  3161. }
  3162. }
  3163. void dequantize_row_iq1_m(const block_iq1_m * restrict x, float * restrict y, int64_t k) {
  3164. assert(k % QK_K == 0);
  3165. const int64_t nb = k / QK_K;
  3166. float delta[4];
  3167. uint16_t idx[4];
  3168. iq1m_scale_t scale;
  3169. for (int i = 0; i < nb; i++) {
  3170. const uint16_t * sc = (const uint16_t *)x[i].scales;
  3171. scale.u16 = (sc[0] >> 12) | ((sc[1] >> 8) & 0x00f0) | ((sc[2] >> 4) & 0x0f00) | (sc[3] & 0xf000);
  3172. const float d = GGML_FP16_TO_FP32(scale.f16);
  3173. const uint8_t * qs = x[i].qs;
  3174. const uint8_t * qh = x[i].qh;
  3175. for (int ib = 0; ib < QK_K/32; ++ib) {
  3176. const float dl1 = d * (2*((sc[ib/2] >> (6*(ib%2)+0)) & 0x7) + 1);
  3177. const float dl2 = d * (2*((sc[ib/2] >> (6*(ib%2)+3)) & 0x7) + 1);
  3178. idx[0] = qs[0] | ((qh[0] << 8) & 0x700);
  3179. idx[1] = qs[1] | ((qh[0] << 4) & 0x700);
  3180. idx[2] = qs[2] | ((qh[1] << 8) & 0x700);
  3181. idx[3] = qs[3] | ((qh[1] << 4) & 0x700);
  3182. delta[0] = qh[0] & 0x08 ? -IQ1S_DELTA : IQ1S_DELTA;
  3183. delta[1] = qh[0] & 0x80 ? -IQ1S_DELTA : IQ1S_DELTA;
  3184. delta[2] = qh[1] & 0x08 ? -IQ1S_DELTA : IQ1S_DELTA;
  3185. delta[3] = qh[1] & 0x80 ? -IQ1S_DELTA : IQ1S_DELTA;
  3186. for (int l = 0; l < 2; ++l) {
  3187. const int8_t * grid = (const int8_t *)(iq1s_grid + idx[l]);
  3188. for (int j = 0; j < 8; ++j) {
  3189. y[j] = dl1 * (grid[j] + delta[l]);
  3190. }
  3191. y += 8;
  3192. }
  3193. for (int l = 2; l < 4; ++l) {
  3194. const int8_t * grid = (const int8_t *)(iq1s_grid + idx[l]);
  3195. for (int j = 0; j < 8; ++j) {
  3196. y[j] = dl2 * (grid[j] + delta[l]);
  3197. }
  3198. y += 8;
  3199. }
  3200. qs += 4;
  3201. qh += 2;
  3202. }
  3203. }
  3204. }
  3205. static const int8_t kvalues_iq4nl[16] = {-127, -104, -83, -65, -49, -35, -22, -10, 1, 13, 25, 38, 53, 69, 89, 113};
  3206. void dequantize_row_iq4_nl(const block_iq4_nl * restrict x, float * restrict y, int64_t k) {
  3207. assert(k % QK4_NL == 0);
  3208. const int64_t nb = k / QK4_NL;
  3209. for (int i = 0; i < nb; i++) {
  3210. const uint8_t * qs = x[i].qs;
  3211. const float d = GGML_FP16_TO_FP32(x[i].d);
  3212. for (int j = 0; j < QK4_NL/2; ++j) {
  3213. y[j+ 0] = d * kvalues_iq4nl[qs[j] & 0xf];
  3214. y[j+QK4_NL/2] = d * kvalues_iq4nl[qs[j] >> 4];
  3215. }
  3216. y += QK4_NL;
  3217. qs += QK4_NL/2;
  3218. }
  3219. }
  3220. void dequantize_row_iq4_xs(const block_iq4_xs * restrict x, float * restrict y, int64_t k) {
  3221. assert(k % QK_K == 0);
  3222. const int64_t nb = k / QK_K;
  3223. for (int i = 0; i < nb; i++) {
  3224. const uint8_t * qs = x[i].qs;
  3225. const float d = GGML_FP16_TO_FP32(x[i].d);
  3226. for (int ib = 0; ib < QK_K/32; ++ib) {
  3227. const int ls = ((x[i].scales_l[ib/2] >> 4*(ib%2)) & 0xf) | (((x[i].scales_h >> 2*ib) & 3) << 4);
  3228. const float dl = d * (ls - 32);
  3229. for (int j = 0; j < 16; ++j) {
  3230. y[j+ 0] = dl * kvalues_iq4nl[qs[j] & 0xf];
  3231. y[j+16] = dl * kvalues_iq4nl[qs[j] >> 4];
  3232. }
  3233. y += 32;
  3234. qs += 16;
  3235. }
  3236. }
  3237. }
  3238. //===================================== Q8_K ==============================================
  3239. void quantize_row_q8_K_ref(const float * restrict x, block_q8_K * restrict y, int64_t k) {
  3240. assert(k % QK_K == 0);
  3241. const int64_t nb = k / QK_K;
  3242. for (int i = 0; i < nb; i++) {
  3243. float max = 0;
  3244. float amax = 0;
  3245. for (int j = 0; j < QK_K; ++j) {
  3246. float ax = fabsf(x[j]);
  3247. if (ax > amax) {
  3248. amax = ax; max = x[j];
  3249. }
  3250. }
  3251. if (!amax) {
  3252. y[i].d = 0;
  3253. memset(y[i].qs, 0, QK_K);
  3254. x += QK_K;
  3255. continue;
  3256. }
  3257. //const float iscale = -128.f/max;
  3258. // We need this change for IQ2_XXS, else the AVX implementation becomes very awkward
  3259. const float iscale = -127.f/max;
  3260. for (int j = 0; j < QK_K; ++j) {
  3261. int v = nearest_int(iscale*x[j]);
  3262. y[i].qs[j] = MIN(127, v);
  3263. }
  3264. for (int j = 0; j < QK_K/16; ++j) {
  3265. int sum = 0;
  3266. for (int ii = 0; ii < 16; ++ii) {
  3267. sum += y[i].qs[j*16 + ii];
  3268. }
  3269. y[i].bsums[j] = sum;
  3270. }
  3271. y[i].d = 1/iscale;
  3272. x += QK_K;
  3273. }
  3274. }
  3275. void dequantize_row_q8_K(const block_q8_K * restrict x, float * restrict y, int64_t k) {
  3276. assert(k % QK_K == 0);
  3277. const int64_t nb = k / QK_K;
  3278. for (int i = 0; i < nb; i++) {
  3279. for (int j = 0; j < QK_K; ++j) {
  3280. *y++ = x[i].d * x[i].qs[j];
  3281. }
  3282. }
  3283. }
  3284. void quantize_row_q8_K(const float * restrict x, void * restrict y, int64_t k) {
  3285. quantize_row_q8_K_ref(x, y, k);
  3286. }
  3287. //===================================== Dot products =================================
  3288. //
  3289. // Helper functions
  3290. //
  3291. #if __AVX__ || __AVX2__ || __AVX512F__
  3292. // shuffles to pick the required scales in dot products
  3293. static inline __m256i get_scale_shuffle_q3k(int i) {
  3294. static const uint8_t k_shuffle[128] = {
  3295. 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3,
  3296. 4, 5, 4, 5, 4, 5, 4, 5, 4, 5, 4, 5, 4, 5, 4, 5, 6, 7, 6, 7, 6, 7, 6, 7, 6, 7, 6, 7, 6, 7, 6, 7,
  3297. 8, 9, 8, 9, 8, 9, 8, 9, 8, 9, 8, 9, 8, 9, 8, 9, 10,11,10,11,10,11,10,11,10,11,10,11,10,11,10,11,
  3298. 12,13,12,13,12,13,12,13,12,13,12,13,12,13,12,13, 14,15,14,15,14,15,14,15,14,15,14,15,14,15,14,15,
  3299. };
  3300. return _mm256_loadu_si256((const __m256i*)k_shuffle + i);
  3301. }
  3302. static inline __m256i get_scale_shuffle_k4(int i) {
  3303. static const uint8_t k_shuffle[256] = {
  3304. 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1,
  3305. 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3,
  3306. 4, 5, 4, 5, 4, 5, 4, 5, 4, 5, 4, 5, 4, 5, 4, 5, 4, 5, 4, 5, 4, 5, 4, 5, 4, 5, 4, 5, 4, 5, 4, 5,
  3307. 6, 7, 6, 7, 6, 7, 6, 7, 6, 7, 6, 7, 6, 7, 6, 7, 6, 7, 6, 7, 6, 7, 6, 7, 6, 7, 6, 7, 6, 7, 6, 7,
  3308. 8, 9, 8, 9, 8, 9, 8, 9, 8, 9, 8, 9, 8, 9, 8, 9, 8, 9, 8, 9, 8, 9, 8, 9, 8, 9, 8, 9, 8, 9, 8, 9,
  3309. 10,11,10,11,10,11,10,11,10,11,10,11,10,11,10,11,10,11,10,11,10,11,10,11,10,11,10,11,10,11,10,11,
  3310. 12,13,12,13,12,13,12,13,12,13,12,13,12,13,12,13,12,13,12,13,12,13,12,13,12,13,12,13,12,13,12,13,
  3311. 14,15,14,15,14,15,14,15,14,15,14,15,14,15,14,15,14,15,14,15,14,15,14,15,14,15,14,15,14,15,14,15
  3312. };
  3313. return _mm256_loadu_si256((const __m256i*)k_shuffle + i);
  3314. }
  3315. static inline __m128i get_scale_shuffle(int i) {
  3316. static const uint8_t k_shuffle[128] = {
  3317. 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1,
  3318. 2, 2, 2, 2, 2, 2, 2, 2, 3, 3, 3, 3, 3, 3, 3, 3,
  3319. 4, 4, 4, 4, 4, 4, 4, 4, 5, 5, 5, 5, 5, 5, 5, 5,
  3320. 6, 6, 6, 6, 6, 6, 6, 6, 7, 7, 7, 7, 7, 7, 7, 7,
  3321. 8, 8, 8, 8, 8, 8, 8, 8, 9, 9, 9, 9, 9, 9, 9, 9,
  3322. 10,10,10,10,10,10,10,10, 11,11,11,11,11,11,11,11,
  3323. 12,12,12,12,12,12,12,12, 13,13,13,13,13,13,13,13,
  3324. 14,14,14,14,14,14,14,14, 15,15,15,15,15,15,15,15
  3325. };
  3326. return _mm_loadu_si128((const __m128i*)k_shuffle + i);
  3327. }
  3328. #elif defined(__loongarch_asx)
  3329. // shuffles to pick the required scales in dot products
  3330. static inline __m256i get_scale_shuffle_q3k(int i) {
  3331. static const uint8_t k_shuffle[128] = {
  3332. 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3,
  3333. 4, 5, 4, 5, 4, 5, 4, 5, 4, 5, 4, 5, 4, 5, 4, 5, 6, 7, 6, 7, 6, 7, 6, 7, 6, 7, 6, 7, 6, 7, 6, 7,
  3334. 8, 9, 8, 9, 8, 9, 8, 9, 8, 9, 8, 9, 8, 9, 8, 9, 10,11,10,11,10,11,10,11,10,11,10,11,10,11,10,11,
  3335. 12,13,12,13,12,13,12,13,12,13,12,13,12,13,12,13, 14,15,14,15,14,15,14,15,14,15,14,15,14,15,14,15,
  3336. };
  3337. return __lasx_xvld((const __m256i*)k_shuffle + i, 0);
  3338. }
  3339. static inline __m256i get_scale_shuffle_k4(int i) {
  3340. static const uint8_t k_shuffle[256] = {
  3341. 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1,
  3342. 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3,
  3343. 4, 5, 4, 5, 4, 5, 4, 5, 4, 5, 4, 5, 4, 5, 4, 5, 4, 5, 4, 5, 4, 5, 4, 5, 4, 5, 4, 5, 4, 5, 4, 5,
  3344. 6, 7, 6, 7, 6, 7, 6, 7, 6, 7, 6, 7, 6, 7, 6, 7, 6, 7, 6, 7, 6, 7, 6, 7, 6, 7, 6, 7, 6, 7, 6, 7,
  3345. 8, 9, 8, 9, 8, 9, 8, 9, 8, 9, 8, 9, 8, 9, 8, 9, 8, 9, 8, 9, 8, 9, 8, 9, 8, 9, 8, 9, 8, 9, 8, 9,
  3346. 10,11,10,11,10,11,10,11,10,11,10,11,10,11,10,11,10,11,10,11,10,11,10,11,10,11,10,11,10,11,10,11,
  3347. 12,13,12,13,12,13,12,13,12,13,12,13,12,13,12,13,12,13,12,13,12,13,12,13,12,13,12,13,12,13,12,13,
  3348. 14,15,14,15,14,15,14,15,14,15,14,15,14,15,14,15,14,15,14,15,14,15,14,15,14,15,14,15,14,15,14,15
  3349. };
  3350. return __lasx_xvld((const __m256i*)k_shuffle + i, 0);
  3351. }
  3352. static inline __m128i get_scale_shuffle(int i) {
  3353. static const uint8_t k_shuffle[128] = {
  3354. 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1,
  3355. 2, 2, 2, 2, 2, 2, 2, 2, 3, 3, 3, 3, 3, 3, 3, 3,
  3356. 4, 4, 4, 4, 4, 4, 4, 4, 5, 5, 5, 5, 5, 5, 5, 5,
  3357. 6, 6, 6, 6, 6, 6, 6, 6, 7, 7, 7, 7, 7, 7, 7, 7,
  3358. 8, 8, 8, 8, 8, 8, 8, 8, 9, 9, 9, 9, 9, 9, 9, 9,
  3359. 10,10,10,10,10,10,10,10, 11,11,11,11,11,11,11,11,
  3360. 12,12,12,12,12,12,12,12, 13,13,13,13,13,13,13,13,
  3361. 14,14,14,14,14,14,14,14, 15,15,15,15,15,15,15,15
  3362. };
  3363. return __lsx_vld((const __m128i*)k_shuffle + i, 0);
  3364. }
  3365. #endif
  3366. void ggml_vec_dot_q4_0_q8_0(int n, float * restrict s, size_t bs, const void * restrict vx, size_t bx, const void * restrict vy, size_t by, int nrc) {
  3367. const int qk = QK8_0;
  3368. const int nb = n / qk;
  3369. assert(n % qk == 0);
  3370. #if defined(__ARM_FEATURE_MATMUL_INT8)
  3371. assert((nrc == 2) || (nrc == 1));
  3372. #else
  3373. assert(nrc == 1);
  3374. #endif
  3375. UNUSED(nrc);
  3376. UNUSED(bx);
  3377. UNUSED(by);
  3378. UNUSED(bs);
  3379. const block_q4_0 * restrict x = vx;
  3380. const block_q8_0 * restrict y = vy;
  3381. #if defined(__ARM_FEATURE_MATMUL_INT8)
  3382. if (nrc == 2) {
  3383. const block_q4_0 * restrict vx0 = vx;
  3384. const block_q4_0 * restrict vx1 = (const block_q4_0 *) ((const uint8_t*)vx + bx);
  3385. const block_q8_0 * restrict vy0 = vy;
  3386. const block_q8_0 * restrict vy1 = (const block_q8_0 *) ((const uint8_t*)vy + by);
  3387. float32x4_t sumv0 = vdupq_n_f32(0.0f);
  3388. for (int i = 0; i < nb; i++) {
  3389. const block_q4_0 * restrict b_x0 = &vx0[i];
  3390. const block_q4_0 * restrict b_x1 = &vx1[i];
  3391. const block_q8_0 * restrict b_y0 = &vy0[i];
  3392. const block_q8_0 * restrict b_y1 = &vy1[i];
  3393. const uint8x16_t m4b = vdupq_n_u8(0x0F);
  3394. const int8x16_t s8b = vdupq_n_s8(0x8);
  3395. const uint8x16_t v0_0 = vld1q_u8(b_x0->qs);
  3396. const uint8x16_t v0_1 = vld1q_u8(b_x1->qs);
  3397. // 4-bit -> 8-bit
  3398. const int8x16_t v0_0l = vreinterpretq_s8_u8(vandq_u8 (v0_0, m4b));
  3399. const int8x16_t v0_0h = vreinterpretq_s8_u8(vshrq_n_u8(v0_0, 4));
  3400. const int8x16_t v0_1l = vreinterpretq_s8_u8(vandq_u8 (v0_1, m4b));
  3401. const int8x16_t v0_1h = vreinterpretq_s8_u8(vshrq_n_u8(v0_1, 4));
  3402. // sub 8
  3403. const int8x16_t x0_l = vsubq_s8(v0_0l, s8b);
  3404. const int8x16_t x0_h = vsubq_s8(v0_0h, s8b);
  3405. const int8x16_t x1_l = vsubq_s8(v0_1l, s8b);
  3406. const int8x16_t x1_h = vsubq_s8(v0_1h, s8b);
  3407. // load y
  3408. const int8x16_t y0_l = vld1q_s8(b_y0->qs);
  3409. const int8x16_t y0_h = vld1q_s8(b_y0->qs + 16);
  3410. const int8x16_t y1_l = vld1q_s8(b_y1->qs);
  3411. const int8x16_t y1_h = vld1q_s8(b_y1->qs + 16);
  3412. float32_t _scale[4] = { GGML_FP16_TO_FP32(b_x0->d)*GGML_FP16_TO_FP32(b_y0->d),
  3413. GGML_FP16_TO_FP32(b_x0->d)*GGML_FP16_TO_FP32(b_y1->d),
  3414. GGML_FP16_TO_FP32(b_x1->d)*GGML_FP16_TO_FP32(b_y0->d),
  3415. GGML_FP16_TO_FP32(b_x1->d)*GGML_FP16_TO_FP32(b_y1->d)};
  3416. float32x4_t scale = vld1q_f32(_scale);
  3417. int8x16_t l0 = vreinterpretq_s8_s64(vzip1q_s64(vreinterpretq_s64_s8(x0_l), vreinterpretq_s64_s8(x1_l)));
  3418. int8x16_t l1 = vreinterpretq_s8_s64(vzip2q_s64(vreinterpretq_s64_s8(x0_l), vreinterpretq_s64_s8(x1_l)));
  3419. int8x16_t l2 = vreinterpretq_s8_s64(vzip1q_s64(vreinterpretq_s64_s8(x0_h), vreinterpretq_s64_s8(x1_h)));
  3420. int8x16_t l3 = vreinterpretq_s8_s64(vzip2q_s64(vreinterpretq_s64_s8(x0_h), vreinterpretq_s64_s8(x1_h)));
  3421. int8x16_t r0 = vreinterpretq_s8_s64(vzip1q_s64(vreinterpretq_s64_s8(y0_l), vreinterpretq_s64_s8(y1_l)));
  3422. int8x16_t r1 = vreinterpretq_s8_s64(vzip2q_s64(vreinterpretq_s64_s8(y0_l), vreinterpretq_s64_s8(y1_l)));
  3423. int8x16_t r2 = vreinterpretq_s8_s64(vzip1q_s64(vreinterpretq_s64_s8(y0_h), vreinterpretq_s64_s8(y1_h)));
  3424. int8x16_t r3 = vreinterpretq_s8_s64(vzip2q_s64(vreinterpretq_s64_s8(y0_h), vreinterpretq_s64_s8(y1_h)));
  3425. sumv0 = vmlaq_f32(sumv0,(vcvtq_f32_s32(vmmlaq_s32((vmmlaq_s32((vmmlaq_s32((vmmlaq_s32(vdupq_n_s32(0), l0, r0)),
  3426. l1, r1)), l2, r2)), l3, r3))), scale);
  3427. }
  3428. float32x4_t sumv1 = vextq_f32(sumv0, sumv0, 2);
  3429. float32x4_t sumv2 = vzip1q_f32(sumv0, sumv1);
  3430. vst1_f32(s, vget_low_f32(sumv2));
  3431. vst1_f32(s + bs, vget_high_f32(sumv2));
  3432. return;
  3433. }
  3434. #endif
  3435. int ib = 0;
  3436. float sumf = 0;
  3437. #if defined(__ARM_FEATURE_SVE)
  3438. svfloat32_t sumv0 = svdup_n_f32(0.0f);
  3439. svfloat32_t sumv1 = svdup_n_f32(0.0f);
  3440. const int vector_length = ggml_cpu_get_sve_cnt()*8;
  3441. // VLA Implementation using switch case
  3442. switch (vector_length) {
  3443. case 128:
  3444. {
  3445. // predicate for activating higher lanes for 4 float32 elements
  3446. const svbool_t ph4 = svptrue_pat_b32(SV_VL4);
  3447. for (; ib + 1 < nb; ib += 2) {
  3448. const block_q4_0 * restrict x0 = &x[ib + 0];
  3449. const block_q4_0 * restrict x1 = &x[ib + 1];
  3450. const block_q8_0 * restrict y0 = &y[ib + 0];
  3451. const block_q8_0 * restrict y1 = &y[ib + 1];
  3452. // load x
  3453. const svuint8_t qx0r = svld1rq_u8(svptrue_b8(), x0->qs);
  3454. const svuint8_t qx1r = svld1rq_u8(svptrue_b8(), x1->qs);
  3455. // 4-bit -> 8-bit
  3456. const svint8_t qx0l = svreinterpret_s8_u8(svand_n_u8_m(svptrue_b8(), qx0r, 0x0F));
  3457. const svint8_t qx0h = svreinterpret_s8_u8(svlsr_n_u8_m(svptrue_b8(), qx0r, 0x04));
  3458. const svint8_t qx1l = svreinterpret_s8_u8(svand_n_u8_m(svptrue_b8(), qx1r, 0x0F));
  3459. const svint8_t qx1h = svreinterpret_s8_u8(svlsr_n_u8_m(svptrue_b8(), qx1r, 0x04));
  3460. // sub 8
  3461. const svint8_t qx0ls = svsub_n_s8_x(svptrue_b8(), qx0h, 8);
  3462. const svint8_t qx0hs = svsub_n_s8_x(svptrue_b8(), qx0l, 8);
  3463. const svint8_t qx1ls = svsub_n_s8_x(svptrue_b8(), qx1h, 8);
  3464. const svint8_t qx1hs = svsub_n_s8_x(svptrue_b8(), qx1l, 8);
  3465. // load y
  3466. const svint8_t qy0h = svld1_s8(svptrue_b8(), y0->qs);
  3467. const svint8_t qy0l = svld1_s8(svptrue_b8(), y0->qs + 16);
  3468. const svint8_t qy1h = svld1_s8(svptrue_b8(), y1->qs);
  3469. const svint8_t qy1l = svld1_s8(svptrue_b8(), y1->qs + 16);
  3470. // dot product
  3471. sumv0 = svmla_n_f32_x(ph4, sumv0, svcvt_f32_s32_x(ph4, svadd_x(ph4,
  3472. svdot_s32(svdup_n_s32(0), qx0ls, qy0l),
  3473. svdot_s32(svdup_n_s32(0), qx0hs, qy0h))), GGML_FP16_TO_FP32(x0->d)*GGML_FP16_TO_FP32(y0->d));
  3474. sumv1 = svmla_n_f32_x(ph4, sumv1, svcvt_f32_s32_x(ph4, svadd_x(ph4,
  3475. svdot_s32(svdup_n_s32(0), qx1ls, qy1l),
  3476. svdot_s32(svdup_n_s32(0), qx1hs, qy1h))), GGML_FP16_TO_FP32(x1->d)*GGML_FP16_TO_FP32(y1->d));
  3477. }
  3478. sumf = svaddv_f32(svptrue_b32(), svadd_f32_x(svptrue_b32(), sumv0, sumv1));
  3479. } break;
  3480. case 256:
  3481. {
  3482. // predicate for activating higher lanes for 16 int8 elements
  3483. const svbool_t ph16 = svptrue_pat_b8(SV_VL16);
  3484. // predicate for activating lower lanes for 16 int8 elements
  3485. const svbool_t pl16 = svnot_b_z(svptrue_b8(), ph16);
  3486. for (; ib + 1 < nb; ib += 2) {
  3487. const block_q4_0 * restrict x0 = &x[ib + 0];
  3488. const block_q4_0 * restrict x1 = &x[ib + 1];
  3489. const block_q8_0 * restrict y0 = &y[ib + 0];
  3490. const block_q8_0 * restrict y1 = &y[ib + 1];
  3491. // load x
  3492. const svuint8_t qx0r = svld1rq_u8(svptrue_b8(), x0->qs);
  3493. const svuint8_t qx1r = svld1rq_u8(svptrue_b8(), x1->qs);
  3494. // 4-bit -> 8-bit
  3495. const svint8_t qx0 = svreinterpret_s8_u8(svlsr_n_u8_m(pl16, svand_n_u8_m(ph16, qx0r, 0x0F), 0x04));
  3496. const svint8_t qx1 = svreinterpret_s8_u8(svlsr_n_u8_m(pl16, svand_n_u8_m(ph16, qx1r, 0x0F), 0x04));
  3497. // sub 8
  3498. const svint8_t qx0s = svsub_n_s8_x(svptrue_b8(), qx0, 8);
  3499. const svint8_t qx1s = svsub_n_s8_x(svptrue_b8(), qx1, 8);
  3500. // load y
  3501. const svint8_t qy0 = svld1_s8(svptrue_b8(), y0->qs);
  3502. const svint8_t qy1 = svld1_s8(svptrue_b8(), y1->qs);
  3503. // dot product
  3504. sumv0 = svmla_n_f32_x(svptrue_b32(), sumv0, svcvt_f32_s32_x(svptrue_b32(),
  3505. svdot_s32(svdup_n_s32(0), qx0s, qy0)), GGML_FP16_TO_FP32(x0->d)*GGML_FP16_TO_FP32(y0->d));
  3506. sumv1 = svmla_n_f32_x(svptrue_b32(), sumv1, svcvt_f32_s32_x(svptrue_b32(),
  3507. svdot_s32(svdup_n_s32(0), qx1s, qy1)), GGML_FP16_TO_FP32(x1->d)*GGML_FP16_TO_FP32(y1->d));
  3508. }
  3509. sumf = svaddv_f32(svptrue_b32(), svadd_f32_x(svptrue_b32(), sumv0, sumv1));
  3510. } break;
  3511. case 512:
  3512. {
  3513. // predicate for activating higher lanes for 32 int8 elements
  3514. const svbool_t ph32 = svptrue_pat_b8(SV_VL32);
  3515. // predicate for activating higher lanes for 16 int8 elements
  3516. const svbool_t ph16 = svptrue_pat_b8(SV_VL16);
  3517. // predicate for activating lower lanes for 16 int8 elements from first 32 int8 activated lanes
  3518. const svbool_t pl16 = svnot_b_z(ph32, ph16);
  3519. for (; ib + 1 < nb; ib += 2) {
  3520. const block_q4_0 * restrict x0 = &x[ib + 0];
  3521. const block_q4_0 * restrict x1 = &x[ib + 1];
  3522. const block_q8_0 * restrict y0 = &y[ib + 0];
  3523. const block_q8_0 * restrict y1 = &y[ib + 1];
  3524. // load x
  3525. const svuint8_t qx0r = svld1rq_u8(ph32, x0->qs);
  3526. const svuint8_t qx1r = svld1rq_u8(ph32, x1->qs);
  3527. // 4-bit -> 8-bit
  3528. const svint8_t qx0 = svreinterpret_s8_u8(svlsr_n_u8_m(pl16, svand_n_u8_m(ph16, qx0r, 0x0F), 0x04));
  3529. const svint8_t qx1 = svreinterpret_s8_u8(svlsr_n_u8_m(pl16, svand_n_u8_m(ph16, qx1r, 0x0F), 0x04));
  3530. // sub 8
  3531. const svint8_t qx0s = svsub_n_s8_x(ph32, qx0, 8);
  3532. const svint8_t qx1s = svsub_n_s8_x(ph32, qx1, 8);
  3533. // load y
  3534. const svint8_t qy0 = svld1_s8(ph32, y0->qs);
  3535. const svint8_t qy1 = svld1_s8(ph32, y1->qs);
  3536. // dot product
  3537. sumv0 = svmla_n_f32_x(ph32, sumv0, svcvt_f32_s32_x(ph32,
  3538. svdot_s32(svdup_n_s32(0), qx0s, qy0)), GGML_FP16_TO_FP32(x0->d)*GGML_FP16_TO_FP32(y0->d));
  3539. sumv1 = svmla_n_f32_x(ph32, sumv1, svcvt_f32_s32_x(ph32,
  3540. svdot_s32(svdup_n_s32(0), qx1s, qy1)), GGML_FP16_TO_FP32(x1->d)*GGML_FP16_TO_FP32(y1->d));
  3541. }
  3542. sumf = svaddv_f32(ph32, svadd_f32_x(ph32, sumv0, sumv1));
  3543. } break;
  3544. default:
  3545. assert(false && "Unsupported vector length");
  3546. break;
  3547. }
  3548. #elif defined(__ARM_NEON)
  3549. float32x4_t sumv0 = vdupq_n_f32(0.0f);
  3550. float32x4_t sumv1 = vdupq_n_f32(0.0f);
  3551. for (; ib + 1 < nb; ib += 2) {
  3552. const block_q4_0 * restrict x0 = &x[ib + 0];
  3553. const block_q4_0 * restrict x1 = &x[ib + 1];
  3554. const block_q8_0 * restrict y0 = &y[ib + 0];
  3555. const block_q8_0 * restrict y1 = &y[ib + 1];
  3556. const uint8x16_t m4b = vdupq_n_u8(0x0F);
  3557. const int8x16_t s8b = vdupq_n_s8(0x8);
  3558. const uint8x16_t v0_0 = vld1q_u8(x0->qs);
  3559. const uint8x16_t v0_1 = vld1q_u8(x1->qs);
  3560. // 4-bit -> 8-bit
  3561. const int8x16_t v0_0l = vreinterpretq_s8_u8(vandq_u8 (v0_0, m4b));
  3562. const int8x16_t v0_0h = vreinterpretq_s8_u8(vshrq_n_u8(v0_0, 4));
  3563. const int8x16_t v0_1l = vreinterpretq_s8_u8(vandq_u8 (v0_1, m4b));
  3564. const int8x16_t v0_1h = vreinterpretq_s8_u8(vshrq_n_u8(v0_1, 4));
  3565. // sub 8
  3566. const int8x16_t v0_0ls = vsubq_s8(v0_0l, s8b);
  3567. const int8x16_t v0_0hs = vsubq_s8(v0_0h, s8b);
  3568. const int8x16_t v0_1ls = vsubq_s8(v0_1l, s8b);
  3569. const int8x16_t v0_1hs = vsubq_s8(v0_1h, s8b);
  3570. // load y
  3571. const int8x16_t v1_0l = vld1q_s8(y0->qs);
  3572. const int8x16_t v1_0h = vld1q_s8(y0->qs + 16);
  3573. const int8x16_t v1_1l = vld1q_s8(y1->qs);
  3574. const int8x16_t v1_1h = vld1q_s8(y1->qs + 16);
  3575. // dot product into int32x4_t
  3576. const int32x4_t p_0 = ggml_vdotq_s32(ggml_vdotq_s32(vdupq_n_s32(0), v0_0ls, v1_0l), v0_0hs, v1_0h);
  3577. const int32x4_t p_1 = ggml_vdotq_s32(ggml_vdotq_s32(vdupq_n_s32(0), v0_1ls, v1_1l), v0_1hs, v1_1h);
  3578. sumv0 = vmlaq_n_f32(sumv0, vcvtq_f32_s32(p_0), GGML_FP16_TO_FP32(x0->d)*GGML_FP16_TO_FP32(y0->d));
  3579. sumv1 = vmlaq_n_f32(sumv1, vcvtq_f32_s32(p_1), GGML_FP16_TO_FP32(x1->d)*GGML_FP16_TO_FP32(y1->d));
  3580. }
  3581. sumf = vaddvq_f32(sumv0) + vaddvq_f32(sumv1);
  3582. #elif defined(__AVX2__)
  3583. // Initialize accumulator with zeros
  3584. __m256 acc = _mm256_setzero_ps();
  3585. // Main loop
  3586. for (; ib < nb; ++ib) {
  3587. /* Compute combined scale for the block */
  3588. const __m256 d = _mm256_set1_ps( GGML_FP16_TO_FP32(x[ib].d) * GGML_FP16_TO_FP32(y[ib].d) );
  3589. __m256i qx = bytes_from_nibbles_32(x[ib].qs);
  3590. // Now we have a vector with bytes in [ 0 .. 15 ] interval. Offset them into [ -8 .. +7 ] interval.
  3591. const __m256i off = _mm256_set1_epi8( 8 );
  3592. qx = _mm256_sub_epi8( qx, off );
  3593. __m256i qy = _mm256_loadu_si256((const __m256i *)y[ib].qs);
  3594. const __m256 q = mul_sum_i8_pairs_float(qx, qy);
  3595. /* Multiply q with scale and accumulate */
  3596. acc = _mm256_fmadd_ps( d, q, acc );
  3597. }
  3598. sumf = hsum_float_8(acc);
  3599. #elif defined(__AVX__)
  3600. const __m128i mone = _mm_set1_epi16(1);
  3601. __m256 accum1 = _mm256_setzero_ps();
  3602. __m256 accum2 = _mm256_setzero_ps();
  3603. for (; ib + 1 < nb; ib += 2) {
  3604. const __m128i q4bits_1 = _mm_loadu_si128((const __m128i *)x[ib + 0].qs);
  3605. const __m128i q4bits_2 = _mm_loadu_si128((const __m128i *)x[ib + 1].qs);
  3606. const __m128i q8b_1_0 = _mm_loadu_si128((const __m128i *)y[ib + 0].qs);
  3607. const __m128i q8b_1_1 = _mm_loadu_si128((const __m128i *)y[ib + 0].qs + 1);
  3608. const __m128i q8b_2_0 = _mm_loadu_si128((const __m128i *)y[ib + 1].qs);
  3609. const __m128i q8b_2_1 = _mm_loadu_si128((const __m128i *)y[ib + 1].qs + 1);
  3610. const __m128i q4b_1_0 = _mm_sub_epi8(_mm_and_si128(_mm_set1_epi8(15), q4bits_1), _mm_set1_epi8(8));
  3611. const __m128i q4b_1_1 = _mm_sub_epi8(_mm_and_si128(_mm_set1_epi8(15), _mm_srli_epi16(q4bits_1, 4)), _mm_set1_epi8(8));
  3612. const __m128i q4b_2_0 = _mm_sub_epi8(_mm_and_si128(_mm_set1_epi8(15), q4bits_2), _mm_set1_epi8(8));
  3613. const __m128i q4b_2_1 = _mm_sub_epi8(_mm_and_si128(_mm_set1_epi8(15), _mm_srli_epi16(q4bits_2, 4)), _mm_set1_epi8(8));
  3614. const __m128i p16_1_0 = mul_add_epi8_sse(q4b_1_0, q8b_1_0);
  3615. const __m128i p16_1_1 = mul_add_epi8_sse(q4b_1_1, q8b_1_1);
  3616. const __m128i p16_2_0 = mul_add_epi8_sse(q4b_2_0, q8b_2_0);
  3617. const __m128i p16_2_1 = mul_add_epi8_sse(q4b_2_1, q8b_2_1);
  3618. const __m128i p_1_0 = _mm_madd_epi16(p16_1_0, mone);
  3619. const __m128i p_1_1 = _mm_madd_epi16(p16_1_1, mone);
  3620. const __m128i p_2_0 = _mm_madd_epi16(p16_2_0, mone);
  3621. const __m128i p_2_1 = _mm_madd_epi16(p16_2_1, mone);
  3622. accum1 = _mm256_add_ps(_mm256_mul_ps(_mm256_set1_ps(GGML_FP16_TO_FP32(y[ib + 0].d)*GGML_FP16_TO_FP32(x[ib + 0].d)),
  3623. _mm256_cvtepi32_ps(MM256_SET_M128I(p_1_1, p_1_0))), accum1);
  3624. accum2 = _mm256_add_ps(_mm256_mul_ps(_mm256_set1_ps(GGML_FP16_TO_FP32(y[ib + 1].d)*GGML_FP16_TO_FP32(x[ib + 1].d)),
  3625. _mm256_cvtepi32_ps(MM256_SET_M128I(p_2_1, p_2_0))), accum2);
  3626. }
  3627. sumf = hsum_float_8(_mm256_add_ps(accum1, accum2));
  3628. #elif defined(__SSSE3__)
  3629. // set constants
  3630. const __m128i lowMask = _mm_set1_epi8(0xF);
  3631. const __m128i off = _mm_set1_epi8(8);
  3632. // Initialize accumulator with zeros
  3633. __m128 acc_0 = _mm_setzero_ps();
  3634. __m128 acc_1 = _mm_setzero_ps();
  3635. __m128 acc_2 = _mm_setzero_ps();
  3636. __m128 acc_3 = _mm_setzero_ps();
  3637. for (; ib + 1 < nb; ib += 2) {
  3638. _mm_prefetch(&x[ib] + sizeof(block_q4_0), _MM_HINT_T0);
  3639. _mm_prefetch(&y[ib] + sizeof(block_q8_0), _MM_HINT_T0);
  3640. // Compute combined scale for the block 0 and 1
  3641. const __m128 d_0_1 = _mm_set1_ps( GGML_FP16_TO_FP32(x[ib].d) * GGML_FP16_TO_FP32(y[ib].d) );
  3642. const __m128i tmp_0_1 = _mm_loadu_si128((const __m128i *)x[ib].qs);
  3643. __m128i bx_0 = _mm_and_si128(lowMask, tmp_0_1);
  3644. __m128i by_0 = _mm_loadu_si128((const __m128i *)y[ib].qs);
  3645. bx_0 = _mm_sub_epi8(bx_0, off);
  3646. const __m128i i32_0 = mul_sum_i8_pairs(bx_0, by_0);
  3647. __m128i bx_1 = _mm_and_si128(lowMask, _mm_srli_epi64(tmp_0_1, 4));
  3648. __m128i by_1 = _mm_loadu_si128((const __m128i *)(y[ib].qs + 16));
  3649. bx_1 = _mm_sub_epi8(bx_1, off);
  3650. const __m128i i32_1 = mul_sum_i8_pairs(bx_1, by_1);
  3651. _mm_prefetch(&x[ib] + 2 * sizeof(block_q4_0), _MM_HINT_T0);
  3652. _mm_prefetch(&y[ib] + 2 * sizeof(block_q8_0), _MM_HINT_T0);
  3653. // Compute combined scale for the block 2 and 3
  3654. const __m128 d_2_3 = _mm_set1_ps( GGML_FP16_TO_FP32(x[ib + 1].d) * GGML_FP16_TO_FP32(y[ib + 1].d) );
  3655. const __m128i tmp_2_3 = _mm_loadu_si128((const __m128i *)x[ib + 1].qs);
  3656. __m128i bx_2 = _mm_and_si128(lowMask, tmp_2_3);
  3657. __m128i by_2 = _mm_loadu_si128((const __m128i *)y[ib + 1].qs);
  3658. bx_2 = _mm_sub_epi8(bx_2, off);
  3659. const __m128i i32_2 = mul_sum_i8_pairs(bx_2, by_2);
  3660. __m128i bx_3 = _mm_and_si128(lowMask, _mm_srli_epi64(tmp_2_3, 4));
  3661. __m128i by_3 = _mm_loadu_si128((const __m128i *)(y[ib + 1].qs + 16));
  3662. bx_3 = _mm_sub_epi8(bx_3, off);
  3663. const __m128i i32_3 = mul_sum_i8_pairs(bx_3, by_3);
  3664. // Convert int32_t to float
  3665. __m128 p0 = _mm_cvtepi32_ps(i32_0);
  3666. __m128 p1 = _mm_cvtepi32_ps(i32_1);
  3667. __m128 p2 = _mm_cvtepi32_ps(i32_2);
  3668. __m128 p3 = _mm_cvtepi32_ps(i32_3);
  3669. // Apply the scale
  3670. __m128 p0_d = _mm_mul_ps( d_0_1, p0 );
  3671. __m128 p1_d = _mm_mul_ps( d_0_1, p1 );
  3672. __m128 p2_d = _mm_mul_ps( d_2_3, p2 );
  3673. __m128 p3_d = _mm_mul_ps( d_2_3, p3 );
  3674. // Acummulate
  3675. acc_0 = _mm_add_ps(p0_d, acc_0);
  3676. acc_1 = _mm_add_ps(p1_d, acc_1);
  3677. acc_2 = _mm_add_ps(p2_d, acc_2);
  3678. acc_3 = _mm_add_ps(p3_d, acc_3);
  3679. }
  3680. sumf = hsum_float_4x4(acc_0, acc_1, acc_2, acc_3);
  3681. #elif defined(__riscv_v_intrinsic)
  3682. size_t vl = __riscv_vsetvl_e8m1(qk/2);
  3683. for (; ib < nb; ++ib) {
  3684. // load elements
  3685. vuint8mf2_t tx = __riscv_vle8_v_u8mf2(x[ib].qs, vl);
  3686. vint8mf2_t y0 = __riscv_vle8_v_i8mf2(y[ib].qs, vl);
  3687. vint8mf2_t y1 = __riscv_vle8_v_i8mf2(y[ib].qs+16, vl);
  3688. // mask and store lower part of x, and then upper part
  3689. vuint8mf2_t x_a = __riscv_vand_vx_u8mf2(tx, 0x0F, vl);
  3690. vuint8mf2_t x_l = __riscv_vsrl_vx_u8mf2(tx, 0x04, vl);
  3691. vint8mf2_t x_ai = __riscv_vreinterpret_v_u8mf2_i8mf2(x_a);
  3692. vint8mf2_t x_li = __riscv_vreinterpret_v_u8mf2_i8mf2(x_l);
  3693. // subtract offset
  3694. vint8mf2_t v0 = __riscv_vsub_vx_i8mf2(x_ai, 8, vl);
  3695. vint8mf2_t v1 = __riscv_vsub_vx_i8mf2(x_li, 8, vl);
  3696. vint16m1_t vec_mul1 = __riscv_vwmul_vv_i16m1(v0, y0, vl);
  3697. vint16m1_t vec_mul2 = __riscv_vwmul_vv_i16m1(v1, y1, vl);
  3698. vint32m1_t vec_zero = __riscv_vmv_v_x_i32m1(0, vl);
  3699. vint32m1_t vs1 = __riscv_vwredsum_vs_i16m1_i32m1(vec_mul1, vec_zero, vl);
  3700. vint32m1_t vs2 = __riscv_vwredsum_vs_i16m1_i32m1(vec_mul2, vs1, vl);
  3701. int sumi = __riscv_vmv_x_s_i32m1_i32(vs2);
  3702. sumf += sumi*GGML_FP16_TO_FP32(x[ib].d)*GGML_FP16_TO_FP32(y[ib].d);
  3703. }
  3704. #elif defined(__POWER9_VECTOR__)
  3705. const vector signed char lowMask = vec_splats((signed char)0xF);
  3706. const vector signed int v0 = vec_splats((int32_t)0);
  3707. const vector unsigned char v4 = vec_splats((unsigned char)0x4);
  3708. const vector signed char v8 = vec_splats((signed char)0x8);
  3709. vector float vsumf0 = vec_splats(0.0f);
  3710. #pragma GCC unroll 8
  3711. for (; ib < nb; ++ib) {
  3712. __builtin_prefetch(x[ib].qs, 0, 1);
  3713. __builtin_prefetch(y[ib].qs, 0, 1);
  3714. vector float vxd = vec_splats(GGML_FP16_TO_FP32(x[ib].d));
  3715. vector float vyd = vec_splats(GGML_FP16_TO_FP32(y[ib].d));
  3716. vector float vd = vec_mul(vxd, vyd);
  3717. vector signed char qxs = (vector signed char)vec_xl( 0, x[ib].qs);
  3718. vector signed char q8y0 = vec_xl( 0, y[ib].qs);
  3719. vector signed char q8y1 = vec_xl(16, y[ib].qs);
  3720. vector signed char q4x0 = vec_and(qxs, lowMask);
  3721. vector signed char q4x1 = vec_sr(qxs, v4);
  3722. q4x0 = vec_sub(q4x0, v8);
  3723. q4x1 = vec_sub(q4x1, v8);
  3724. vector signed short qv0 = vec_add(vec_mule(q4x0, q8y0), vec_mulo(q4x0, q8y0));
  3725. vector signed short qv1 = vec_add(vec_mule(q4x1, q8y1), vec_mulo(q4x1, q8y1));
  3726. vector signed int vsumi0 = v0;
  3727. vsumi0 = vec_sum4s(qv0, vsumi0);
  3728. vsumi0 = vec_sum4s(qv1, vsumi0);
  3729. vsumf0 = vec_madd(vec_ctf(vsumi0, 0), vd, vsumf0);
  3730. }
  3731. vsumf0 = vec_add(vsumf0, vec_sld(vsumf0, vsumf0, 4));
  3732. vsumf0 = vec_add(vsumf0, vec_sld(vsumf0, vsumf0, 8));
  3733. sumf = vec_extract(vsumf0, 0);
  3734. #elif defined(__loongarch_asx)
  3735. // Initialize accumulator with zeros
  3736. __m256 acc = (__m256)__lasx_xvldi(0);
  3737. // Main loop
  3738. for (; ib < nb; ++ib) {
  3739. /* Compute combined scale for the block */
  3740. const __m256 d = __lasx_xvreplfr2vr_s( GGML_FP16_TO_FP32(x[ib].d) * GGML_FP16_TO_FP32(y[ib].d) );
  3741. __m256i qx = bytes_from_nibbles_32(x[ib].qs);
  3742. // Now we have a vector with bytes in [ 0 .. 15 ] interval. Offset them into [ -8 .. +7 ] interval.
  3743. const __m256i off = __lasx_xvreplgr2vr_b( 8 );
  3744. qx = __lasx_xvsub_b( qx, off );
  3745. __m256i qy = __lasx_xvld((const __m256i *)y[ib].qs, 0);
  3746. const __m256 q = mul_sum_i8_pairs_float(qx, qy);
  3747. /* Multiply q with scale and accumulate */
  3748. acc = __lasx_xvfmadd_s( d, q, acc );
  3749. }
  3750. sumf = hsum_float_8(acc);
  3751. #elif defined(__loongarch_sx)
  3752. // set constants
  3753. const __m128i low_mask = __lsx_vreplgr2vr_b(0xF);
  3754. const __m128i off = __lsx_vreplgr2vr_b(8);
  3755. // Initialize accumulator with zeros
  3756. __m128 acc_0 = __lsx_vldi(0);
  3757. __m128 acc_1 = __lsx_vldi(0);
  3758. __m128 acc_2 = __lsx_vldi(0);
  3759. __m128 acc_3 = __lsx_vldi(0);
  3760. for (; ib + 1 < nb; ib += 2) {
  3761. // Compute combined scale for the block 0 and 1
  3762. const __m128 d_0_1 = __lsx_vreplgr2vr_w( GGML_FP16_TO_FP32(x[ib].d) * GGML_FP16_TO_FP32(y[ib].d) );
  3763. const __m128i tmp_0_1 = __lsx_vld((const __m128i *)x[ib].qs, 0);
  3764. __m128i bx_0 = __lsx_vand_v(low_mask, tmp_0_1);
  3765. __m128i by_0 = __lsx_vld((const __m128i *)y[ib].qs, 0);
  3766. bx_0 = __lsx_vsub_b(bx_0, off);
  3767. const __m128i i32_0 = mul_sum_i8_pairs(bx_0, by_0);
  3768. __m128i bx_1 = __lsx_vand_v(low_mask, __lsx_vsrli_d(tmp_0_1, 4));
  3769. __m128i by_1 = __lsx_vld((const __m128i *)(y[ib].qs + 16), 0);
  3770. bx_1 = __lsx_vsub_b(bx_1, off);
  3771. const __m128i i32_1 = mul_sum_i8_pairs(bx_1, by_1);
  3772. //_mm_prefetch(&x[ib] + 2 * sizeof(block_q4_0), _MM_HINT_T0);
  3773. //_mm_prefetch(&y[ib] + 2 * sizeof(block_q8_0), _MM_HINT_T0);
  3774. // Compute combined scale for the block 2 and 3
  3775. const __m128 d_2_3 = __lsx_vreplgr2vr_w( GGML_FP16_TO_FP32(x[ib + 1].d) * GGML_FP16_TO_FP32(y[ib + 1].d) );
  3776. const __m128i tmp_2_3 = __lsx_vld((const __m128i *)x[ib + 1].qs, 0);
  3777. __m128i bx_2 = __lsx_vand_v(low_mask, tmp_2_3);
  3778. __m128i by_2 = __lsx_vld((const __m128i *)y[ib + 1].qs, 0);
  3779. bx_2 = __lsx_vsub_b(bx_2, off);
  3780. const __m128i i32_2 = mul_sum_i8_pairs(bx_2, by_2);
  3781. __m128i bx_3 = __lsx_vand_v(low_mask, __lsx_vsrli_d(tmp_2_3, 4));
  3782. __m128i by_3 = __lsx_vld((const __m128i *)(y[ib + 1].qs + 16), 0);
  3783. bx_3 = __lsx_vsub_b(bx_3, off);
  3784. const __m128i i32_3 = mul_sum_i8_pairs(bx_3, by_3);
  3785. // Convert int32_t to float
  3786. __m128 p0 = __lsx_vffint_s_w(i32_0);
  3787. __m128 p1 = __lsx_vffint_s_w(i32_1);
  3788. __m128 p2 = __lsx_vffint_s_w(i32_2);
  3789. __m128 p3 = __lsx_vffint_s_w(i32_3);
  3790. // Apply the scale
  3791. __m128 p0_d = __lsx_vfmul_s( d_0_1, p0 );
  3792. __m128 p1_d = __lsx_vfmul_s( d_0_1, p1 );
  3793. __m128 p2_d = __lsx_vfmul_s( d_2_3, p2 );
  3794. __m128 p3_d = __lsx_vfmul_s( d_2_3, p3 );
  3795. // Acummulate
  3796. acc_0 = __lsx_vfadd_s(p0_d, acc_0);
  3797. acc_1 = __lsx_vfadd_s(p1_d, acc_1);
  3798. acc_2 = __lsx_vfadd_s(p2_d, acc_2);
  3799. acc_3 = __lsx_vfadd_s(p3_d, acc_3);
  3800. }
  3801. sumf = hsum_float_4x4(acc_0, acc_1, acc_2, acc_3);
  3802. #endif
  3803. for (; ib < nb; ++ib) {
  3804. int sumi0 = 0;
  3805. int sumi1 = 0;
  3806. for (int j = 0; j < qk/2; ++j) {
  3807. const int v0 = (x[ib].qs[j] & 0x0F) - 8;
  3808. const int v1 = (x[ib].qs[j] >> 4) - 8;
  3809. sumi0 += (v0 * y[ib].qs[j]);
  3810. sumi1 += (v1 * y[ib].qs[j + qk/2]);
  3811. }
  3812. int sumi = sumi0 + sumi1;
  3813. sumf += sumi*GGML_FP16_TO_FP32(x[ib].d)*GGML_FP16_TO_FP32(y[ib].d);
  3814. }
  3815. *s = sumf;
  3816. }
  3817. void ggml_vec_dot_q4_1_q8_1(int n, float * restrict s, size_t bs, const void * restrict vx, size_t bx, const void * restrict vy, size_t by, int nrc) {
  3818. const int qk = QK8_1;
  3819. const int nb = n / qk;
  3820. assert(n % qk == 0);
  3821. #if defined(__ARM_FEATURE_MATMUL_INT8)
  3822. assert((nrc == 2) || (nrc == 1));
  3823. #else
  3824. assert(nrc == 1);
  3825. #endif
  3826. UNUSED(nrc);
  3827. UNUSED(bx);
  3828. UNUSED(by);
  3829. UNUSED(bs);
  3830. const block_q4_1 * restrict x = vx;
  3831. const block_q8_1 * restrict y = vy;
  3832. #if defined(__ARM_FEATURE_MATMUL_INT8)
  3833. if (nrc == 2) {
  3834. const block_q4_1 * restrict vx0 = vx;
  3835. const block_q4_1 * restrict vx1 = (const block_q4_1 *) ((const uint8_t*)vx + bx);
  3836. const block_q8_1 * restrict vy0 = vy;
  3837. const block_q8_1 * restrict vy1 = (const block_q8_1 *) ((const uint8_t*)vy + by);
  3838. float32x4_t sumv0 = vdupq_n_f32(0.0f);
  3839. float32x4_t summs0 = vdupq_n_f32(0.0f);
  3840. for (int i = 0; i < nb; i++) {
  3841. const block_q4_1 * restrict b_x0 = &vx0[i];
  3842. const block_q4_1 * restrict b_x1 = &vx1[i];
  3843. const block_q8_1 * restrict b_y0 = &vy0[i];
  3844. const block_q8_1 * restrict b_y1 = &vy1[i];
  3845. float32_t summs_t[4] = {GGML_FP16_TO_FP32(b_x0->m) * GGML_FP16_TO_FP32(b_y0->s),
  3846. GGML_FP16_TO_FP32(b_x1->m) * GGML_FP16_TO_FP32(b_y0->s),
  3847. GGML_FP16_TO_FP32(b_x0->m) * GGML_FP16_TO_FP32(b_y1->s),
  3848. GGML_FP16_TO_FP32(b_x1->m) * GGML_FP16_TO_FP32(b_y1->s)};
  3849. summs0 = vaddq_f32(summs0, vld1q_f32(summs_t));
  3850. const uint8x16_t m4b = vdupq_n_u8(0x0F);
  3851. const uint8x16_t v0_0 = vld1q_u8(b_x0->qs);
  3852. const uint8x16_t v0_1 = vld1q_u8(b_x1->qs);
  3853. // 4-bit -> 8-bit
  3854. const int8x16_t x0_l = vreinterpretq_s8_u8(vandq_u8 (v0_0, m4b));
  3855. const int8x16_t x0_h = vreinterpretq_s8_u8(vshrq_n_u8(v0_0, 4));
  3856. const int8x16_t x1_l = vreinterpretq_s8_u8(vandq_u8 (v0_1, m4b));
  3857. const int8x16_t x1_h = vreinterpretq_s8_u8(vshrq_n_u8(v0_1, 4));
  3858. // load y
  3859. const int8x16_t y0_l = vld1q_s8(b_y0->qs);
  3860. const int8x16_t y0_h = vld1q_s8(b_y0->qs + 16);
  3861. const int8x16_t y1_l = vld1q_s8(b_y1->qs);
  3862. const int8x16_t y1_h = vld1q_s8(b_y1->qs + 16);
  3863. // mmla into int32x4_t
  3864. float32_t _scale[4] = {GGML_FP16_TO_FP32(b_x0->d)*b_y0->d,
  3865. GGML_FP16_TO_FP32(b_x0->d)*b_y1->d,
  3866. GGML_FP16_TO_FP32(b_x1->d)*b_y0->d,
  3867. GGML_FP16_TO_FP32(b_x1->d)*b_y1->d};
  3868. float32x4_t scale = vld1q_f32(_scale);
  3869. int8x16_t l0 = vreinterpretq_s8_s64(vzip1q_s64(vreinterpretq_s64_s8(x0_l), vreinterpretq_s64_s8(x1_l)));
  3870. int8x16_t l1 = vreinterpretq_s8_s64(vzip2q_s64(vreinterpretq_s64_s8(x0_l), vreinterpretq_s64_s8(x1_l)));
  3871. int8x16_t l2 = vreinterpretq_s8_s64(vzip1q_s64(vreinterpretq_s64_s8(x0_h), vreinterpretq_s64_s8(x1_h)));
  3872. int8x16_t l3 = vreinterpretq_s8_s64(vzip2q_s64(vreinterpretq_s64_s8(x0_h), vreinterpretq_s64_s8(x1_h)));
  3873. int8x16_t r0 = vreinterpretq_s8_s64(vzip1q_s64(vreinterpretq_s64_s8(y0_l), vreinterpretq_s64_s8(y1_l)));
  3874. int8x16_t r1 = vreinterpretq_s8_s64(vzip2q_s64(vreinterpretq_s64_s8(y0_l), vreinterpretq_s64_s8(y1_l)));
  3875. int8x16_t r2 = vreinterpretq_s8_s64(vzip1q_s64(vreinterpretq_s64_s8(y0_h), vreinterpretq_s64_s8(y1_h)));
  3876. int8x16_t r3 = vreinterpretq_s8_s64(vzip2q_s64(vreinterpretq_s64_s8(y0_h), vreinterpretq_s64_s8(y1_h)));
  3877. sumv0 = vmlaq_f32(sumv0,(vcvtq_f32_s32(vmmlaq_s32((vmmlaq_s32((vmmlaq_s32((vmmlaq_s32(vdupq_n_s32(0), l0, r0)),
  3878. l1, r1)), l2, r2)), l3, r3))), scale);
  3879. }
  3880. float32x4_t sumv1 = vextq_f32(sumv0, sumv0, 2);
  3881. float32x4_t sumv2 = vzip1q_f32(sumv0, sumv1);
  3882. sumv2 = vaddq_f32(sumv2, summs0);
  3883. vst1_f32(s, vget_low_f32 (sumv2));
  3884. vst1_f32(s + bs, vget_high_f32(sumv2));
  3885. return;
  3886. }
  3887. #endif
  3888. int ib = 0;
  3889. float sumf = 0;
  3890. // TODO: add WASM SIMD
  3891. #if defined(__ARM_NEON)
  3892. float32x4_t sumv0 = vdupq_n_f32(0.0f);
  3893. float32x4_t sumv1 = vdupq_n_f32(0.0f);
  3894. float summs = 0;
  3895. for (; ib + 1 < nb; ib += 2) {
  3896. const block_q4_1 * restrict x0 = &x[ib + 0];
  3897. const block_q4_1 * restrict x1 = &x[ib + 1];
  3898. const block_q8_1 * restrict y0 = &y[ib + 0];
  3899. const block_q8_1 * restrict y1 = &y[ib + 1];
  3900. summs += GGML_FP16_TO_FP32(x0->m) * GGML_FP16_TO_FP32(y0->s) + GGML_FP16_TO_FP32(x1->m) * GGML_FP16_TO_FP32(y1->s);
  3901. const uint8x16_t m4b = vdupq_n_u8(0x0F);
  3902. const uint8x16_t v0_0 = vld1q_u8(x0->qs);
  3903. const uint8x16_t v0_1 = vld1q_u8(x1->qs);
  3904. // 4-bit -> 8-bit
  3905. const int8x16_t v0_0l = vreinterpretq_s8_u8(vandq_u8 (v0_0, m4b));
  3906. const int8x16_t v0_0h = vreinterpretq_s8_u8(vshrq_n_u8(v0_0, 4));
  3907. const int8x16_t v0_1l = vreinterpretq_s8_u8(vandq_u8 (v0_1, m4b));
  3908. const int8x16_t v0_1h = vreinterpretq_s8_u8(vshrq_n_u8(v0_1, 4));
  3909. // load y
  3910. const int8x16_t v1_0l = vld1q_s8(y0->qs);
  3911. const int8x16_t v1_0h = vld1q_s8(y0->qs + 16);
  3912. const int8x16_t v1_1l = vld1q_s8(y1->qs);
  3913. const int8x16_t v1_1h = vld1q_s8(y1->qs + 16);
  3914. // dot product into int32x4_t
  3915. const int32x4_t p_0 = ggml_vdotq_s32(ggml_vdotq_s32(vdupq_n_s32(0), v0_0l, v1_0l), v0_0h, v1_0h);
  3916. const int32x4_t p_1 = ggml_vdotq_s32(ggml_vdotq_s32(vdupq_n_s32(0), v0_1l, v1_1l), v0_1h, v1_1h);
  3917. sumv0 = vmlaq_n_f32(sumv0, vcvtq_f32_s32(p_0), GGML_FP16_TO_FP32(x0->d)*GGML_FP16_TO_FP32(y0->d));
  3918. sumv1 = vmlaq_n_f32(sumv1, vcvtq_f32_s32(p_1), GGML_FP16_TO_FP32(x1->d)*GGML_FP16_TO_FP32(y1->d));
  3919. }
  3920. sumf = vaddvq_f32(sumv0) + vaddvq_f32(sumv1) + summs;
  3921. #elif defined(__AVX2__) || defined(__AVX__)
  3922. // Initialize accumulator with zeros
  3923. __m256 acc = _mm256_setzero_ps();
  3924. float summs = 0;
  3925. // Main loop
  3926. for (; ib < nb; ++ib) {
  3927. const float d0 = GGML_FP16_TO_FP32(x[ib].d);
  3928. const float d1 = GGML_FP16_TO_FP32(y[ib].d);
  3929. summs += GGML_FP16_TO_FP32(x[ib].m) * GGML_FP16_TO_FP32(y[ib].s);
  3930. const __m256 d0v = _mm256_set1_ps( d0 );
  3931. const __m256 d1v = _mm256_set1_ps( d1 );
  3932. // Compute combined scales
  3933. const __m256 d0d1 = _mm256_mul_ps( d0v, d1v );
  3934. // Load 16 bytes, and unpack 4 bit fields into bytes, making 32 bytes
  3935. const __m256i qx = bytes_from_nibbles_32(x[ib].qs);
  3936. const __m256i qy = _mm256_loadu_si256( (const __m256i *)y[ib].qs );
  3937. const __m256 xy = mul_sum_us8_pairs_float(qx, qy);
  3938. // Accumulate d0*d1*x*y
  3939. #if defined(__AVX2__)
  3940. acc = _mm256_fmadd_ps( d0d1, xy, acc );
  3941. #else
  3942. acc = _mm256_add_ps( _mm256_mul_ps( d0d1, xy ), acc );
  3943. #endif
  3944. }
  3945. sumf = hsum_float_8(acc) + summs;
  3946. #elif defined(__riscv_v_intrinsic)
  3947. size_t vl = __riscv_vsetvl_e8m1(qk/2);
  3948. for (; ib < nb; ++ib) {
  3949. // load elements
  3950. vuint8mf2_t tx = __riscv_vle8_v_u8mf2(x[ib].qs, vl);
  3951. vint8mf2_t y0 = __riscv_vle8_v_i8mf2(y[ib].qs, vl);
  3952. vint8mf2_t y1 = __riscv_vle8_v_i8mf2(y[ib].qs+16, vl);
  3953. // mask and store lower part of x, and then upper part
  3954. vuint8mf2_t x_a = __riscv_vand_vx_u8mf2(tx, 0x0F, vl);
  3955. vuint8mf2_t x_l = __riscv_vsrl_vx_u8mf2(tx, 0x04, vl);
  3956. vint8mf2_t v0 = __riscv_vreinterpret_v_u8mf2_i8mf2(x_a);
  3957. vint8mf2_t v1 = __riscv_vreinterpret_v_u8mf2_i8mf2(x_l);
  3958. vint16m1_t vec_mul1 = __riscv_vwmul_vv_i16m1(v0, y0, vl);
  3959. vint16m1_t vec_mul2 = __riscv_vwmul_vv_i16m1(v1, y1, vl);
  3960. vint32m1_t vec_zero = __riscv_vmv_v_x_i32m1(0, vl);
  3961. vint32m1_t vs1 = __riscv_vwredsum_vs_i16m1_i32m1(vec_mul1, vec_zero, vl);
  3962. vint32m1_t vs2 = __riscv_vwredsum_vs_i16m1_i32m1(vec_mul2, vs1, vl);
  3963. int sumi = __riscv_vmv_x_s_i32m1_i32(vs2);
  3964. sumf += (GGML_FP16_TO_FP32(x[ib].d)*GGML_FP16_TO_FP32(y[ib].d))*sumi + GGML_FP16_TO_FP32(x[ib].m)*GGML_FP16_TO_FP32(y[ib].s);
  3965. }
  3966. #elif defined(__POWER9_VECTOR__)
  3967. const vector signed char lowMask = vec_splats((signed char)0xF);
  3968. const vector signed int v0 = vec_splats((int32_t)0);
  3969. const vector unsigned char v4 = vec_splats((unsigned char)0x4);
  3970. vector float vsumf0 = vec_splats(0.0f);
  3971. #pragma GCC unroll 4
  3972. for (; ib < nb; ++ib) {
  3973. __builtin_prefetch(x[ib].qs, 0, 1);
  3974. __builtin_prefetch(y[ib].qs, 0, 1);
  3975. vector float vxd = vec_splats(GGML_FP16_TO_FP32(x[ib].d));
  3976. vector float vyd = vec_splats(GGML_FP16_TO_FP32(y[ib].d));
  3977. vector float vd = vec_mul(vxd, vyd);
  3978. vector float vxmin = vec_splats(GGML_FP16_TO_FP32(x[ib].m));
  3979. vector float vys = {GGML_FP16_TO_FP32(y[ib].s), 0.0f, 0.0f, 0.0f};
  3980. vsumf0 = vec_madd(vxmin, vys, vsumf0);
  3981. vector signed char qxs = (vector signed char)vec_xl( 0, x[ib].qs);
  3982. vector signed char q8y0 = vec_xl( 0, y[ib].qs);
  3983. vector signed char q8y1 = vec_xl(16, y[ib].qs);
  3984. vector unsigned char q4x0 = (vector unsigned char)vec_and(qxs, lowMask);
  3985. vector unsigned char q4x1 = (vector unsigned char)vec_sr(qxs, v4);
  3986. vector signed int vsumi0 = v0;
  3987. vsumi0 = vec_msum(q8y0, q4x0, vsumi0);
  3988. vsumi0 = vec_msum(q8y1, q4x1, vsumi0);
  3989. vsumf0 = vec_madd(vec_ctf(vsumi0, 0), vd, vsumf0);
  3990. }
  3991. vsumf0 = vec_add(vsumf0, vec_sld(vsumf0, vsumf0, 4));
  3992. vsumf0 = vec_add(vsumf0, vec_sld(vsumf0, vsumf0, 8));
  3993. sumf = vec_extract(vsumf0, 0);
  3994. #elif defined(__loongarch_asx)
  3995. // Initialize accumulator with zeros
  3996. __m256 acc = (__m256)__lasx_xvldi(0);
  3997. float summs = 0;
  3998. // Main loop
  3999. for (; ib < nb; ++ib) {
  4000. const float d0 = GGML_FP16_TO_FP32(x[ib].d);
  4001. const float d1 = GGML_FP16_TO_FP32(y[ib].d);
  4002. summs += GGML_FP16_TO_FP32(x[ib].m) * GGML_FP16_TO_FP32(y[ib].s);
  4003. const __m256 d0v = __lasx_xvreplfr2vr_s( d0 );
  4004. const __m256 d1v = __lasx_xvreplfr2vr_s( d1 );
  4005. // Compute combined scales
  4006. const __m256 d0d1 = __lasx_xvfmul_s( d0v, d1v );
  4007. // Load 16 bytes, and unpack 4 bit fields into bytes, making 32 bytes
  4008. const __m256i qx = bytes_from_nibbles_32(x[ib].qs);
  4009. const __m256i qy = __lasx_xvld( (const __m256i *)y[ib].qs, 0);
  4010. const __m256 xy = mul_sum_us8_pairs_float(qx, qy);
  4011. // Accumulate d0*d1*x*y
  4012. acc = __lasx_xvfmadd_s( d0d1, xy, acc );
  4013. }
  4014. sumf = hsum_float_8(acc) + summs;
  4015. #endif
  4016. for (; ib < nb; ++ib) {
  4017. int sumi0 = 0;
  4018. int sumi1 = 0;
  4019. for (int j = 0; j < qk/2; ++j) {
  4020. const int v0 = (x[ib].qs[j] & 0x0F);
  4021. const int v1 = (x[ib].qs[j] >> 4);
  4022. sumi0 += (v0 * y[ib].qs[j]);
  4023. sumi1 += (v1 * y[ib].qs[j + qk/2]);
  4024. }
  4025. int sumi = sumi0 + sumi1;
  4026. sumf += (GGML_FP16_TO_FP32(x[ib].d)*GGML_FP16_TO_FP32(y[ib].d))*sumi + GGML_FP16_TO_FP32(x[ib].m)*GGML_FP16_TO_FP32(y[ib].s);
  4027. }
  4028. *s = sumf;
  4029. }
  4030. void ggml_vec_dot_q5_0_q8_0(int n, float * restrict s, size_t bs, const void * restrict vx, size_t bx, const void * restrict vy, size_t by, int nrc) {
  4031. const int qk = QK8_0;
  4032. const int nb = n / qk;
  4033. int ib = 0;
  4034. float sumf = 0;
  4035. assert(n % qk == 0);
  4036. assert(qk == QK5_0);
  4037. assert(nrc == 1);
  4038. UNUSED(nrc);
  4039. UNUSED(bx);
  4040. UNUSED(by);
  4041. UNUSED(bs);
  4042. const block_q5_0 * restrict x = vx;
  4043. const block_q8_0 * restrict y = vy;
  4044. #if defined(__ARM_NEON)
  4045. float32x4_t sumv0 = vdupq_n_f32(0.0f);
  4046. float32x4_t sumv1 = vdupq_n_f32(0.0f);
  4047. uint32_t qh0;
  4048. uint32_t qh1;
  4049. uint64_t tmp0[4];
  4050. uint64_t tmp1[4];
  4051. for (; ib + 1 < nb; ib += 2) {
  4052. const block_q5_0 * restrict x0 = &x[ib];
  4053. const block_q5_0 * restrict x1 = &x[ib + 1];
  4054. const block_q8_0 * restrict y0 = &y[ib];
  4055. const block_q8_0 * restrict y1 = &y[ib + 1];
  4056. const uint8x16_t m4b = vdupq_n_u8(0x0F);
  4057. // extract the 5th bit via lookup table ((!b) << 4)
  4058. memcpy(&qh0, x0->qh, sizeof(qh0));
  4059. memcpy(&qh1, x1->qh, sizeof(qh1));
  4060. tmp0[0] = table_b2b_1[(qh0 >> 0) & 0xFF];
  4061. tmp0[1] = table_b2b_1[(qh0 >> 8) & 0xFF];
  4062. tmp0[2] = table_b2b_1[(qh0 >> 16) & 0xFF];
  4063. tmp0[3] = table_b2b_1[(qh0 >> 24) ];
  4064. tmp1[0] = table_b2b_1[(qh1 >> 0) & 0xFF];
  4065. tmp1[1] = table_b2b_1[(qh1 >> 8) & 0xFF];
  4066. tmp1[2] = table_b2b_1[(qh1 >> 16) & 0xFF];
  4067. tmp1[3] = table_b2b_1[(qh1 >> 24) ];
  4068. const int8x16_t qhl0 = vld1q_s8((const int8_t *)(tmp0 + 0));
  4069. const int8x16_t qhh0 = vld1q_s8((const int8_t *)(tmp0 + 2));
  4070. const int8x16_t qhl1 = vld1q_s8((const int8_t *)(tmp1 + 0));
  4071. const int8x16_t qhh1 = vld1q_s8((const int8_t *)(tmp1 + 2));
  4072. const uint8x16_t v0_0 = vld1q_u8(x0->qs);
  4073. const uint8x16_t v0_1 = vld1q_u8(x1->qs);
  4074. // 4-bit -> 8-bit
  4075. int8x16_t v0_0l = vreinterpretq_s8_u8(vandq_u8 (v0_0, m4b));
  4076. int8x16_t v0_0h = vreinterpretq_s8_u8(vshrq_n_u8(v0_0, 4));
  4077. int8x16_t v0_1l = vreinterpretq_s8_u8(vandq_u8 (v0_1, m4b));
  4078. int8x16_t v0_1h = vreinterpretq_s8_u8(vshrq_n_u8(v0_1, 4));
  4079. // add high bit and sub 16 (equivalent to sub 0x10 when bit is zero)
  4080. const int8x16_t v0_0lf = vsubq_s8(v0_0l, qhl0);
  4081. const int8x16_t v0_0hf = vsubq_s8(v0_0h, qhh0);
  4082. const int8x16_t v0_1lf = vsubq_s8(v0_1l, qhl1);
  4083. const int8x16_t v0_1hf = vsubq_s8(v0_1h, qhh1);
  4084. // load y
  4085. const int8x16_t v1_0l = vld1q_s8(y0->qs);
  4086. const int8x16_t v1_0h = vld1q_s8(y0->qs + 16);
  4087. const int8x16_t v1_1l = vld1q_s8(y1->qs);
  4088. const int8x16_t v1_1h = vld1q_s8(y1->qs + 16);
  4089. sumv0 = vmlaq_n_f32(sumv0, vcvtq_f32_s32(vaddq_s32(
  4090. ggml_vdotq_s32(vdupq_n_s32(0), v0_0lf, v1_0l),
  4091. ggml_vdotq_s32(vdupq_n_s32(0), v0_0hf, v1_0h))), GGML_FP16_TO_FP32(x0->d)*GGML_FP16_TO_FP32(y0->d));
  4092. sumv1 = vmlaq_n_f32(sumv1, vcvtq_f32_s32(vaddq_s32(
  4093. ggml_vdotq_s32(vdupq_n_s32(0), v0_1lf, v1_1l),
  4094. ggml_vdotq_s32(vdupq_n_s32(0), v0_1hf, v1_1h))), GGML_FP16_TO_FP32(x1->d)*GGML_FP16_TO_FP32(y1->d));
  4095. }
  4096. sumf = vaddvq_f32(sumv0) + vaddvq_f32(sumv1);
  4097. #elif defined(__wasm_simd128__)
  4098. v128_t sumv = wasm_f32x4_splat(0.0f);
  4099. uint32_t qh;
  4100. uint64_t tmp[4];
  4101. // TODO: check if unrolling this is better
  4102. for (; ib < nb; ++ib) {
  4103. const block_q5_0 * restrict x0 = &x[ib];
  4104. const block_q8_0 * restrict y0 = &y[ib];
  4105. const v128_t m4b = wasm_i8x16_splat(0x0F);
  4106. // extract the 5th bit
  4107. memcpy(&qh, x0->qh, sizeof(qh));
  4108. tmp[0] = table_b2b_1[(qh >> 0) & 0xFF];
  4109. tmp[1] = table_b2b_1[(qh >> 8) & 0xFF];
  4110. tmp[2] = table_b2b_1[(qh >> 16) & 0xFF];
  4111. tmp[3] = table_b2b_1[(qh >> 24) ];
  4112. const v128_t qhl = wasm_v128_load(tmp + 0);
  4113. const v128_t qhh = wasm_v128_load(tmp + 2);
  4114. const v128_t v0 = wasm_v128_load(x0->qs);
  4115. // 4-bit -> 8-bit
  4116. const v128_t v0l = wasm_v128_and (v0, m4b);
  4117. const v128_t v0h = wasm_u8x16_shr(v0, 4);
  4118. // add high bit and sub 16 (equivalent to sub 0x10 when bit is zero)
  4119. const v128_t v0lf = wasm_i8x16_sub(v0l, qhl);
  4120. const v128_t v0hf = wasm_i8x16_sub(v0h, qhh);
  4121. // load y
  4122. const v128_t v1l = wasm_v128_load(y0->qs);
  4123. const v128_t v1h = wasm_v128_load(y0->qs + 16);
  4124. // int8x16 -> int16x8
  4125. const v128_t v0lfl = wasm_i16x8_extend_low_i8x16 (v0lf);
  4126. const v128_t v0lfh = wasm_i16x8_extend_high_i8x16(v0lf);
  4127. const v128_t v0hfl = wasm_i16x8_extend_low_i8x16 (v0hf);
  4128. const v128_t v0hfh = wasm_i16x8_extend_high_i8x16(v0hf);
  4129. const v128_t v1ll = wasm_i16x8_extend_low_i8x16 (v1l);
  4130. const v128_t v1lh = wasm_i16x8_extend_high_i8x16(v1l);
  4131. const v128_t v1hl = wasm_i16x8_extend_low_i8x16 (v1h);
  4132. const v128_t v1hh = wasm_i16x8_extend_high_i8x16(v1h);
  4133. // dot product
  4134. sumv = wasm_f32x4_add(sumv, wasm_f32x4_mul(wasm_f32x4_convert_i32x4(
  4135. wasm_i32x4_add(
  4136. wasm_i32x4_add(wasm_i32x4_dot_i16x8(v0lfl, v1ll),
  4137. wasm_i32x4_dot_i16x8(v0lfh, v1lh)),
  4138. wasm_i32x4_add(wasm_i32x4_dot_i16x8(v0hfl, v1hl),
  4139. wasm_i32x4_dot_i16x8(v0hfh, v1hh)))),
  4140. wasm_f32x4_splat(GGML_FP16_TO_FP32(x0->d) * GGML_FP16_TO_FP32(y0->d))));
  4141. }
  4142. sumf = wasm_f32x4_extract_lane(sumv, 0) + wasm_f32x4_extract_lane(sumv, 1) +
  4143. wasm_f32x4_extract_lane(sumv, 2) + wasm_f32x4_extract_lane(sumv, 3);
  4144. #elif defined(__AVX2__)
  4145. // Initialize accumulator with zeros
  4146. __m256 acc = _mm256_setzero_ps();
  4147. // Main loop
  4148. for (; ib < nb; ++ib) {
  4149. /* Compute combined scale for the block */
  4150. const __m256 d = _mm256_set1_ps(GGML_FP16_TO_FP32(x[ib].d) * GGML_FP16_TO_FP32(y[ib].d));
  4151. __m256i qx = bytes_from_nibbles_32(x[ib].qs);
  4152. __m256i bxhi = bytes_from_bits_32(x[ib].qh);
  4153. bxhi = _mm256_andnot_si256(bxhi, _mm256_set1_epi8((char)0xF0));
  4154. qx = _mm256_or_si256(qx, bxhi);
  4155. __m256i qy = _mm256_loadu_si256((const __m256i *)y[ib].qs);
  4156. const __m256 q = mul_sum_i8_pairs_float(qx, qy);
  4157. /* Multiply q with scale and accumulate */
  4158. acc = _mm256_fmadd_ps(d, q, acc);
  4159. }
  4160. sumf = hsum_float_8(acc);
  4161. #elif defined(__AVX__)
  4162. // Initialize accumulator with zeros
  4163. __m256 acc = _mm256_setzero_ps();
  4164. __m128i mask = _mm_set1_epi8((char)0xF0);
  4165. // Main loop
  4166. for (; ib < nb; ++ib) {
  4167. /* Compute combined scale for the block */
  4168. const __m256 d = _mm256_set1_ps(GGML_FP16_TO_FP32(x[ib].d) * GGML_FP16_TO_FP32(y[ib].d));
  4169. __m256i bx_0 = bytes_from_nibbles_32(x[ib].qs);
  4170. const __m256i bxhi = bytes_from_bits_32(x[ib].qh);
  4171. __m128i bxhil = _mm256_castsi256_si128(bxhi);
  4172. __m128i bxhih = _mm256_extractf128_si256(bxhi, 1);
  4173. bxhil = _mm_andnot_si128(bxhil, mask);
  4174. bxhih = _mm_andnot_si128(bxhih, mask);
  4175. __m128i bxl = _mm256_castsi256_si128(bx_0);
  4176. __m128i bxh = _mm256_extractf128_si256(bx_0, 1);
  4177. bxl = _mm_or_si128(bxl, bxhil);
  4178. bxh = _mm_or_si128(bxh, bxhih);
  4179. bx_0 = MM256_SET_M128I(bxh, bxl);
  4180. const __m256i by_0 = _mm256_loadu_si256((const __m256i *)y[ib].qs);
  4181. const __m256 q = mul_sum_i8_pairs_float(bx_0, by_0);
  4182. /* Multiply q with scale and accumulate */
  4183. acc = _mm256_add_ps(_mm256_mul_ps(d, q), acc);
  4184. }
  4185. sumf = hsum_float_8(acc);
  4186. #elif defined(__riscv_v_intrinsic)
  4187. uint32_t qh;
  4188. size_t vl = __riscv_vsetvl_e8m1(qk/2);
  4189. // These temporary registers are for masking and shift operations
  4190. vuint32m2_t vt_1 = __riscv_vid_v_u32m2(vl);
  4191. vuint32m2_t vt_2 = __riscv_vsll_vv_u32m2(__riscv_vmv_v_x_u32m2(1, vl), vt_1, vl);
  4192. vuint32m2_t vt_3 = __riscv_vsll_vx_u32m2(vt_2, 16, vl);
  4193. vuint32m2_t vt_4 = __riscv_vadd_vx_u32m2(vt_1, 12, vl);
  4194. for (; ib < nb; ++ib) {
  4195. memcpy(&qh, x[ib].qh, sizeof(uint32_t));
  4196. // ((qh & (1u << (j + 0 ))) >> (j + 0 )) << 4;
  4197. vuint32m2_t xha_0 = __riscv_vand_vx_u32m2(vt_2, qh, vl);
  4198. vuint32m2_t xhr_0 = __riscv_vsrl_vv_u32m2(xha_0, vt_1, vl);
  4199. vuint32m2_t xhl_0 = __riscv_vsll_vx_u32m2(xhr_0, 4, vl);
  4200. // ((qh & (1u << (j + 16))) >> (j + 12));
  4201. vuint32m2_t xha_1 = __riscv_vand_vx_u32m2(vt_3, qh, vl);
  4202. vuint32m2_t xhl_1 = __riscv_vsrl_vv_u32m2(xha_1, vt_4, vl);
  4203. // narrowing
  4204. vuint16m1_t xhc_0 = __riscv_vncvt_x_x_w_u16m1(xhl_0, vl);
  4205. vuint8mf2_t xh_0 = __riscv_vncvt_x_x_w_u8mf2(xhc_0, vl);
  4206. vuint16m1_t xhc_1 = __riscv_vncvt_x_x_w_u16m1(xhl_1, vl);
  4207. vuint8mf2_t xh_1 = __riscv_vncvt_x_x_w_u8mf2(xhc_1, vl);
  4208. // load
  4209. vuint8mf2_t tx = __riscv_vle8_v_u8mf2(x[ib].qs, vl);
  4210. vint8mf2_t y0 = __riscv_vle8_v_i8mf2(y[ib].qs, vl);
  4211. vint8mf2_t y1 = __riscv_vle8_v_i8mf2(y[ib].qs+16, vl);
  4212. vuint8mf2_t x_at = __riscv_vand_vx_u8mf2(tx, 0x0F, vl);
  4213. vuint8mf2_t x_lt = __riscv_vsrl_vx_u8mf2(tx, 0x04, vl);
  4214. vuint8mf2_t x_a = __riscv_vor_vv_u8mf2(x_at, xh_0, vl);
  4215. vuint8mf2_t x_l = __riscv_vor_vv_u8mf2(x_lt, xh_1, vl);
  4216. vint8mf2_t x_ai = __riscv_vreinterpret_v_u8mf2_i8mf2(x_a);
  4217. vint8mf2_t x_li = __riscv_vreinterpret_v_u8mf2_i8mf2(x_l);
  4218. vint8mf2_t v0 = __riscv_vsub_vx_i8mf2(x_ai, 16, vl);
  4219. vint8mf2_t v1 = __riscv_vsub_vx_i8mf2(x_li, 16, vl);
  4220. vint16m1_t vec_mul1 = __riscv_vwmul_vv_i16m1(v0, y0, vl);
  4221. vint16m1_t vec_mul2 = __riscv_vwmul_vv_i16m1(v1, y1, vl);
  4222. vint32m1_t vec_zero = __riscv_vmv_v_x_i32m1(0, vl);
  4223. vint32m1_t vs1 = __riscv_vwredsum_vs_i16m1_i32m1(vec_mul1, vec_zero, vl);
  4224. vint32m1_t vs2 = __riscv_vwredsum_vs_i16m1_i32m1(vec_mul2, vs1, vl);
  4225. int sumi = __riscv_vmv_x_s_i32m1_i32(vs2);
  4226. sumf += (GGML_FP16_TO_FP32(x[ib].d)*GGML_FP16_TO_FP32(y[ib].d)) * sumi;
  4227. }
  4228. #elif defined(__POWER9_VECTOR__)
  4229. const vector signed char lowMask = vec_splats((signed char)0xF);
  4230. const vector unsigned char v4 = vec_splats((unsigned char)4);
  4231. vector float vsumf0 = vec_splats(0.0f);
  4232. #pragma GCC unroll 4
  4233. for (; ib < nb; ++ib) {
  4234. __builtin_prefetch(x[ib].qs, 0, 1);
  4235. __builtin_prefetch(y[ib].qs, 0, 1);
  4236. vector float vxd = vec_splats(GGML_FP16_TO_FP32(x[ib].d));
  4237. vector float vyd = vec_splats(GGML_FP16_TO_FP32(y[ib].d));
  4238. vector float vd = vec_mul(vxd, vyd);
  4239. vector signed long long aux64x2_0 = {(uint64_t)(table_b2b_1[x[ib].qh[0]]), (uint64_t)(table_b2b_1[x[ib].qh[1]])};
  4240. vector signed long long aux64x2_1 = {(uint64_t)(table_b2b_1[x[ib].qh[2]]), (uint64_t)(table_b2b_1[x[ib].qh[3]])};
  4241. vector signed char qh0 = (vector signed char)aux64x2_0;
  4242. vector signed char qh1 = (vector signed char)aux64x2_1;
  4243. vector signed char qxs = (vector signed char)vec_xl( 0, x[ib].qs);
  4244. vector signed char q5x0 = vec_sub(vec_and (qxs, lowMask), qh0);
  4245. vector signed char q5x1 = vec_sub(vec_sr(qxs, v4), qh1);
  4246. vector signed char q8y0 = vec_xl( 0, y[ib].qs);
  4247. vector signed char q8y1 = vec_xl( 16, y[ib].qs);
  4248. vector signed short qv0 = vec_add(vec_mule(q5x0, q8y0), vec_mulo(q5x0, q8y0));
  4249. vector signed short qv1 = vec_add(vec_mule(q5x1, q8y1), vec_mulo(q5x1, q8y1));
  4250. qv0 = vec_add(qv0, qv1);
  4251. vector signed int vsumi0 = vec_add(vec_unpackh(qv0), vec_unpackl(qv0));
  4252. vsumf0 = vec_madd(vec_ctf(vsumi0, 0), vd, vsumf0);
  4253. }
  4254. vsumf0 = vec_add(vsumf0, vec_sld(vsumf0, vsumf0, 4));
  4255. vsumf0 = vec_add(vsumf0, vec_sld(vsumf0, vsumf0, 8));
  4256. sumf = vec_extract(vsumf0, 0);
  4257. #elif defined(__loongarch_asx)
  4258. // Initialize accumulator with zeros
  4259. __m256 acc = (__m256)__lasx_xvldi(0);
  4260. // Main loop
  4261. for (; ib < nb; ++ib) {
  4262. /* Compute combined scale for the block */
  4263. const __m256 d = __lasx_xvreplfr2vr_s(GGML_FP16_TO_FP32(x[ib].d) * GGML_FP16_TO_FP32(y[ib].d)); //FIXME
  4264. __m256i qx = bytes_from_nibbles_32(x[ib].qs);
  4265. __m256i bxhi = bytes_from_bits_32(x[ib].qh);
  4266. bxhi = __lasx_xvandn_v(bxhi, __lasx_xvreplgr2vr_b((char)0xF0));
  4267. qx = __lasx_xvor_v(qx, bxhi);
  4268. __m256i qy = __lasx_xvld((const __m256i *)y[ib].qs, 0);
  4269. const __m256 q = mul_sum_i8_pairs_float(qx, qy);
  4270. /* Multiply q with scale and accumulate */
  4271. acc = __lasx_xvfmadd_s(d, q, acc);
  4272. }
  4273. sumf = hsum_float_8(acc);
  4274. #endif
  4275. for (; ib < nb; ++ib) {
  4276. uint32_t qh;
  4277. memcpy(&qh, x[ib].qh, sizeof(qh));
  4278. int sumi0 = 0;
  4279. int sumi1 = 0;
  4280. for (int j = 0; j < qk/2; ++j) {
  4281. const uint8_t xh_0 = ((qh & (1u << (j + 0 ))) >> (j + 0 )) << 4;
  4282. const uint8_t xh_1 = ((qh & (1u << (j + 16))) >> (j + 12));
  4283. const int32_t x0 = (int8_t)(((x[ib].qs[j] & 0x0F) | xh_0) - 16);
  4284. const int32_t x1 = (int8_t)(((x[ib].qs[j] >> 4) | xh_1) - 16);
  4285. sumi0 += (x0 * y[ib].qs[j]);
  4286. sumi1 += (x1 * y[ib].qs[j + qk/2]);
  4287. }
  4288. int sumi = sumi0 + sumi1;
  4289. sumf += (GGML_FP16_TO_FP32(x[ib].d)*GGML_FP16_TO_FP32(y[ib].d)) * sumi;
  4290. }
  4291. *s = sumf;
  4292. }
  4293. void ggml_vec_dot_q5_1_q8_1(int n, float * restrict s, size_t bs, const void * restrict vx, size_t bx, const void * restrict vy, size_t by, int nrc) {
  4294. const int qk = QK8_1;
  4295. const int nb = n / qk;
  4296. int ib = 0;
  4297. float sumf = 0;
  4298. assert(n % qk == 0);
  4299. assert(qk == QK5_1);
  4300. assert(nrc == 1);
  4301. UNUSED(nrc);
  4302. UNUSED(bx);
  4303. UNUSED(by);
  4304. UNUSED(bs);
  4305. const block_q5_1 * restrict x = vx;
  4306. const block_q8_1 * restrict y = vy;
  4307. #if defined(__ARM_NEON)
  4308. float32x4_t sumv0 = vdupq_n_f32(0.0f);
  4309. float32x4_t sumv1 = vdupq_n_f32(0.0f);
  4310. float summs0 = 0.0f;
  4311. float summs1 = 0.0f;
  4312. uint32_t qh0;
  4313. uint32_t qh1;
  4314. uint64_t tmp0[4];
  4315. uint64_t tmp1[4];
  4316. for (; ib + 1 < nb; ib += 2) {
  4317. const block_q5_1 * restrict x0 = &x[ib];
  4318. const block_q5_1 * restrict x1 = &x[ib + 1];
  4319. const block_q8_1 * restrict y0 = &y[ib];
  4320. const block_q8_1 * restrict y1 = &y[ib + 1];
  4321. const uint8x16_t m4b = vdupq_n_u8(0x0F);
  4322. summs0 += GGML_FP16_TO_FP32(x0->m) * GGML_FP16_TO_FP32(y0->s);
  4323. summs1 += GGML_FP16_TO_FP32(x1->m) * GGML_FP16_TO_FP32(y1->s);
  4324. // extract the 5th bit via lookup table ((b) << 4)
  4325. memcpy(&qh0, x0->qh, sizeof(qh0));
  4326. memcpy(&qh1, x1->qh, sizeof(qh1));
  4327. tmp0[0] = table_b2b_0[(qh0 >> 0) & 0xFF];
  4328. tmp0[1] = table_b2b_0[(qh0 >> 8) & 0xFF];
  4329. tmp0[2] = table_b2b_0[(qh0 >> 16) & 0xFF];
  4330. tmp0[3] = table_b2b_0[(qh0 >> 24) ];
  4331. tmp1[0] = table_b2b_0[(qh1 >> 0) & 0xFF];
  4332. tmp1[1] = table_b2b_0[(qh1 >> 8) & 0xFF];
  4333. tmp1[2] = table_b2b_0[(qh1 >> 16) & 0xFF];
  4334. tmp1[3] = table_b2b_0[(qh1 >> 24) ];
  4335. const int8x16_t qhl0 = vld1q_s8((const int8_t *)(tmp0 + 0));
  4336. const int8x16_t qhh0 = vld1q_s8((const int8_t *)(tmp0 + 2));
  4337. const int8x16_t qhl1 = vld1q_s8((const int8_t *)(tmp1 + 0));
  4338. const int8x16_t qhh1 = vld1q_s8((const int8_t *)(tmp1 + 2));
  4339. const uint8x16_t v0_0 = vld1q_u8(x0->qs);
  4340. const uint8x16_t v0_1 = vld1q_u8(x1->qs);
  4341. // 4-bit -> 8-bit
  4342. const int8x16_t v0_0l = vreinterpretq_s8_u8(vandq_u8 (v0_0, m4b));
  4343. const int8x16_t v0_0h = vreinterpretq_s8_u8(vshrq_n_u8(v0_0, 4));
  4344. const int8x16_t v0_1l = vreinterpretq_s8_u8(vandq_u8 (v0_1, m4b));
  4345. const int8x16_t v0_1h = vreinterpretq_s8_u8(vshrq_n_u8(v0_1, 4));
  4346. // add high bit
  4347. const int8x16_t v0_0lf = vorrq_s8(v0_0l, qhl0);
  4348. const int8x16_t v0_0hf = vorrq_s8(v0_0h, qhh0);
  4349. const int8x16_t v0_1lf = vorrq_s8(v0_1l, qhl1);
  4350. const int8x16_t v0_1hf = vorrq_s8(v0_1h, qhh1);
  4351. // load y
  4352. const int8x16_t v1_0l = vld1q_s8(y0->qs);
  4353. const int8x16_t v1_0h = vld1q_s8(y0->qs + 16);
  4354. const int8x16_t v1_1l = vld1q_s8(y1->qs);
  4355. const int8x16_t v1_1h = vld1q_s8(y1->qs + 16);
  4356. sumv0 = vmlaq_n_f32(sumv0, vcvtq_f32_s32(vaddq_s32(
  4357. ggml_vdotq_s32(vdupq_n_s32(0), v0_0lf, v1_0l),
  4358. ggml_vdotq_s32(vdupq_n_s32(0), v0_0hf, v1_0h))), GGML_FP16_TO_FP32(x0->d)*GGML_FP16_TO_FP32(y0->d));
  4359. sumv1 = vmlaq_n_f32(sumv1, vcvtq_f32_s32(vaddq_s32(
  4360. ggml_vdotq_s32(vdupq_n_s32(0), v0_1lf, v1_1l),
  4361. ggml_vdotq_s32(vdupq_n_s32(0), v0_1hf, v1_1h))), GGML_FP16_TO_FP32(x1->d)*GGML_FP16_TO_FP32(y1->d));
  4362. }
  4363. sumf = vaddvq_f32(sumv0) + vaddvq_f32(sumv1) + summs0 + summs1;
  4364. #elif defined(__wasm_simd128__)
  4365. v128_t sumv = wasm_f32x4_splat(0.0f);
  4366. float summs = 0.0f;
  4367. uint32_t qh;
  4368. uint64_t tmp[4];
  4369. // TODO: check if unrolling this is better
  4370. for (; ib < nb; ++ib) {
  4371. const block_q5_1 * restrict x0 = &x[ib];
  4372. const block_q8_1 * restrict y0 = &y[ib];
  4373. summs += GGML_FP16_TO_FP32(x0->m) * GGML_FP16_TO_FP32(y0->s);
  4374. const v128_t m4b = wasm_i8x16_splat(0x0F);
  4375. // extract the 5th bit
  4376. memcpy(&qh, x0->qh, sizeof(qh));
  4377. tmp[0] = table_b2b_0[(qh >> 0) & 0xFF];
  4378. tmp[1] = table_b2b_0[(qh >> 8) & 0xFF];
  4379. tmp[2] = table_b2b_0[(qh >> 16) & 0xFF];
  4380. tmp[3] = table_b2b_0[(qh >> 24) ];
  4381. const v128_t qhl = wasm_v128_load(tmp + 0);
  4382. const v128_t qhh = wasm_v128_load(tmp + 2);
  4383. const v128_t v0 = wasm_v128_load(x0->qs);
  4384. // 4-bit -> 8-bit
  4385. const v128_t v0l = wasm_v128_and (v0, m4b);
  4386. const v128_t v0h = wasm_u8x16_shr(v0, 4);
  4387. // add high bit
  4388. const v128_t v0lf = wasm_v128_or(v0l, qhl);
  4389. const v128_t v0hf = wasm_v128_or(v0h, qhh);
  4390. // load y
  4391. const v128_t v1l = wasm_v128_load(y0->qs);
  4392. const v128_t v1h = wasm_v128_load(y0->qs + 16);
  4393. // int8x16 -> int16x8
  4394. const v128_t v0lfl = wasm_i16x8_extend_low_i8x16 (v0lf);
  4395. const v128_t v0lfh = wasm_i16x8_extend_high_i8x16(v0lf);
  4396. const v128_t v0hfl = wasm_i16x8_extend_low_i8x16 (v0hf);
  4397. const v128_t v0hfh = wasm_i16x8_extend_high_i8x16(v0hf);
  4398. const v128_t v1ll = wasm_i16x8_extend_low_i8x16 (v1l);
  4399. const v128_t v1lh = wasm_i16x8_extend_high_i8x16(v1l);
  4400. const v128_t v1hl = wasm_i16x8_extend_low_i8x16 (v1h);
  4401. const v128_t v1hh = wasm_i16x8_extend_high_i8x16(v1h);
  4402. // dot product
  4403. sumv = wasm_f32x4_add(sumv,
  4404. wasm_f32x4_mul(wasm_f32x4_convert_i32x4(wasm_i32x4_add(
  4405. wasm_i32x4_add(wasm_i32x4_dot_i16x8(v0lfl, v1ll),
  4406. wasm_i32x4_dot_i16x8(v0lfh, v1lh)),
  4407. wasm_i32x4_add(wasm_i32x4_dot_i16x8(v0hfl, v1hl),
  4408. wasm_i32x4_dot_i16x8(v0hfh, v1hh)))),
  4409. wasm_f32x4_splat(GGML_FP16_TO_FP32(x0->d) * GGML_FP16_TO_FP32(y0->d))));
  4410. }
  4411. sumf = wasm_f32x4_extract_lane(sumv, 0) + wasm_f32x4_extract_lane(sumv, 1) +
  4412. wasm_f32x4_extract_lane(sumv, 2) + wasm_f32x4_extract_lane(sumv, 3) + summs;
  4413. #elif defined(__AVX2__)
  4414. // Initialize accumulator with zeros
  4415. __m256 acc = _mm256_setzero_ps();
  4416. float summs = 0.0f;
  4417. // Main loop
  4418. for (; ib < nb; ++ib) {
  4419. const __m256 dx = _mm256_set1_ps(GGML_FP16_TO_FP32(x[ib].d));
  4420. summs += GGML_FP16_TO_FP32(x[ib].m) * GGML_FP16_TO_FP32(y[ib].s);
  4421. __m256i qx = bytes_from_nibbles_32(x[ib].qs);
  4422. __m256i bxhi = bytes_from_bits_32(x[ib].qh);
  4423. bxhi = _mm256_and_si256(bxhi, _mm256_set1_epi8(0x10));
  4424. qx = _mm256_or_si256(qx, bxhi);
  4425. const __m256 dy = _mm256_set1_ps(GGML_FP16_TO_FP32(y[ib].d));
  4426. const __m256i qy = _mm256_loadu_si256((const __m256i *)y[ib].qs);
  4427. const __m256 q = mul_sum_us8_pairs_float(qx, qy);
  4428. acc = _mm256_fmadd_ps(q, _mm256_mul_ps(dx, dy), acc);
  4429. }
  4430. sumf = hsum_float_8(acc) + summs;
  4431. #elif defined(__AVX__)
  4432. // Initialize accumulator with zeros
  4433. __m256 acc = _mm256_setzero_ps();
  4434. __m128i mask = _mm_set1_epi8(0x10);
  4435. float summs = 0.0f;
  4436. // Main loop
  4437. for (; ib < nb; ++ib) {
  4438. const __m256 dx = _mm256_set1_ps(GGML_FP16_TO_FP32(x[ib].d));
  4439. summs += GGML_FP16_TO_FP32(x[ib].m) * GGML_FP16_TO_FP32(y[ib].s);
  4440. __m256i bx_0 = bytes_from_nibbles_32(x[ib].qs);
  4441. const __m256i bxhi = bytes_from_bits_32(x[ib].qh);
  4442. __m128i bxhil = _mm256_castsi256_si128(bxhi);
  4443. __m128i bxhih = _mm256_extractf128_si256(bxhi, 1);
  4444. bxhil = _mm_and_si128(bxhil, mask);
  4445. bxhih = _mm_and_si128(bxhih, mask);
  4446. __m128i bxl = _mm256_castsi256_si128(bx_0);
  4447. __m128i bxh = _mm256_extractf128_si256(bx_0, 1);
  4448. bxl = _mm_or_si128(bxl, bxhil);
  4449. bxh = _mm_or_si128(bxh, bxhih);
  4450. bx_0 = MM256_SET_M128I(bxh, bxl);
  4451. const __m256 dy = _mm256_set1_ps(GGML_FP16_TO_FP32(y[ib].d));
  4452. const __m256i by_0 = _mm256_loadu_si256((const __m256i *)y[ib].qs);
  4453. const __m256 q = mul_sum_us8_pairs_float(bx_0, by_0);
  4454. acc = _mm256_add_ps(_mm256_mul_ps(q, _mm256_mul_ps(dx, dy)), acc);
  4455. }
  4456. sumf = hsum_float_8(acc) + summs;
  4457. #elif defined(__riscv_v_intrinsic)
  4458. uint32_t qh;
  4459. size_t vl = __riscv_vsetvl_e8m1(qk/2);
  4460. // temporary registers for shift operations
  4461. vuint32m2_t vt_1 = __riscv_vid_v_u32m2(vl);
  4462. vuint32m2_t vt_2 = __riscv_vadd_vx_u32m2(vt_1, 12, vl);
  4463. for (; ib < nb; ++ib) {
  4464. memcpy(&qh, x[ib].qh, sizeof(uint32_t));
  4465. // load qh
  4466. vuint32m2_t vqh = __riscv_vmv_v_x_u32m2(qh, vl);
  4467. // ((qh >> (j + 0)) << 4) & 0x10;
  4468. vuint32m2_t xhr_0 = __riscv_vsrl_vv_u32m2(vqh, vt_1, vl);
  4469. vuint32m2_t xhl_0 = __riscv_vsll_vx_u32m2(xhr_0, 4, vl);
  4470. vuint32m2_t xha_0 = __riscv_vand_vx_u32m2(xhl_0, 0x10, vl);
  4471. // ((qh >> (j + 12)) ) & 0x10;
  4472. vuint32m2_t xhr_1 = __riscv_vsrl_vv_u32m2(vqh, vt_2, vl);
  4473. vuint32m2_t xha_1 = __riscv_vand_vx_u32m2(xhr_1, 0x10, vl);
  4474. // narrowing
  4475. vuint16m1_t xhc_0 = __riscv_vncvt_x_x_w_u16m1(xha_0, vl);
  4476. vuint8mf2_t xh_0 = __riscv_vncvt_x_x_w_u8mf2(xhc_0, vl);
  4477. vuint16m1_t xhc_1 = __riscv_vncvt_x_x_w_u16m1(xha_1, vl);
  4478. vuint8mf2_t xh_1 = __riscv_vncvt_x_x_w_u8mf2(xhc_1, vl);
  4479. // load
  4480. vuint8mf2_t tx = __riscv_vle8_v_u8mf2(x[ib].qs, vl);
  4481. vint8mf2_t y0 = __riscv_vle8_v_i8mf2(y[ib].qs, vl);
  4482. vint8mf2_t y1 = __riscv_vle8_v_i8mf2(y[ib].qs+16, vl);
  4483. vuint8mf2_t x_at = __riscv_vand_vx_u8mf2(tx, 0x0F, vl);
  4484. vuint8mf2_t x_lt = __riscv_vsrl_vx_u8mf2(tx, 0x04, vl);
  4485. vuint8mf2_t x_a = __riscv_vor_vv_u8mf2(x_at, xh_0, vl);
  4486. vuint8mf2_t x_l = __riscv_vor_vv_u8mf2(x_lt, xh_1, vl);
  4487. vint8mf2_t v0 = __riscv_vreinterpret_v_u8mf2_i8mf2(x_a);
  4488. vint8mf2_t v1 = __riscv_vreinterpret_v_u8mf2_i8mf2(x_l);
  4489. vint16m1_t vec_mul1 = __riscv_vwmul_vv_i16m1(v0, y0, vl);
  4490. vint16m1_t vec_mul2 = __riscv_vwmul_vv_i16m1(v1, y1, vl);
  4491. vint32m1_t vec_zero = __riscv_vmv_v_x_i32m1(0, vl);
  4492. vint32m1_t vs1 = __riscv_vwredsum_vs_i16m1_i32m1(vec_mul1, vec_zero, vl);
  4493. vint32m1_t vs2 = __riscv_vwredsum_vs_i16m1_i32m1(vec_mul2, vs1, vl);
  4494. int sumi = __riscv_vmv_x_s_i32m1_i32(vs2);
  4495. sumf += (GGML_FP16_TO_FP32(x[ib].d)*GGML_FP16_TO_FP32(y[ib].d))*sumi + GGML_FP16_TO_FP32(x[ib].m)*GGML_FP16_TO_FP32(y[ib].s);
  4496. }
  4497. #elif defined(__POWER9_VECTOR__)
  4498. const vector signed char lowMask = vec_splats((signed char)0xF);
  4499. const vector signed int v0 = vec_splats((int32_t)0);
  4500. const vector unsigned char v4 = vec_splats((unsigned char)0x4);
  4501. vector float vsumf0 = vec_splats(0.0f);
  4502. #pragma GCC unroll 4
  4503. for (; ib < nb; ++ib) {
  4504. __builtin_prefetch(x[ib].qs, 0, 1);
  4505. __builtin_prefetch(y[ib].qs, 0, 1);
  4506. vector float vxd = vec_splats(GGML_FP16_TO_FP32(x[ib].d));
  4507. vector float vyd = vec_splats(GGML_FP16_TO_FP32(y[ib].d));
  4508. vector float vd = vec_mul(vxd, vyd);
  4509. vector float vxmin = vec_splats(GGML_FP16_TO_FP32(x[ib].m));
  4510. vector float vys = {GGML_FP16_TO_FP32(y[ib].s), 0.f, 0.f, 0.f};
  4511. vsumf0 = vec_madd(vxmin, vys, vsumf0);
  4512. vector unsigned long long aux64x2_0 = {(uint64_t)(table_b2b_0[x[ib].qh[0]]), (uint64_t)(table_b2b_0[x[ib].qh[1]])};
  4513. vector unsigned long long aux64x2_1 = {(uint64_t)(table_b2b_0[x[ib].qh[2]]), (uint64_t)(table_b2b_0[x[ib].qh[3]])};
  4514. vector signed char qh0 = (vector signed char)aux64x2_0;
  4515. vector signed char qh1 = (vector signed char)aux64x2_1;
  4516. vector signed char qxs = (vector signed char)vec_xl( 0, x[ib].qs);
  4517. vector unsigned char q5x0 = (vector unsigned char)vec_or(vec_and(qxs, lowMask), qh0);
  4518. vector unsigned char q5x1 = (vector unsigned char)vec_or(vec_sr(qxs, v4), qh1);
  4519. vector signed char q8y0 = vec_xl( 0, y[ib].qs);
  4520. vector signed char q8y1 = vec_xl( 16, y[ib].qs);
  4521. vector signed int vsumi0 = v0;
  4522. vsumi0 = vec_msum(q8y0, q5x0, vsumi0);
  4523. vsumi0 = vec_msum(q8y1, q5x1, vsumi0);
  4524. vsumf0 = vec_madd(vec_ctf(vsumi0, 0), vd, vsumf0);
  4525. }
  4526. vsumf0 = vec_add(vsumf0, vec_sld(vsumf0, vsumf0, 4));
  4527. vsumf0 = vec_add(vsumf0, vec_sld(vsumf0, vsumf0, 8));
  4528. sumf = vec_extract(vsumf0, 0);
  4529. #elif defined(__loongarch_asx)
  4530. // Initialize accumulator with zeros
  4531. __m256 acc = (__m256)__lasx_xvldi(0);
  4532. float summs = 0.0f;
  4533. // Main loop
  4534. for (; ib < nb; ++ib) {
  4535. const __m256 dx = __lasx_xvreplfr2vr_s(GGML_FP16_TO_FP32(x[ib].d));
  4536. summs += GGML_FP16_TO_FP32(x[ib].m) * GGML_FP16_TO_FP32(y[ib].s);
  4537. __m256i qx = bytes_from_nibbles_32(x[ib].qs);
  4538. __m256i bxhi = bytes_from_bits_32(x[ib].qh);
  4539. bxhi = __lasx_xvand_v(bxhi, __lasx_xvreplgr2vr_b(0x10));
  4540. qx = __lasx_xvor_v(qx, bxhi);
  4541. const __m256 dy = __lasx_xvreplfr2vr_s(GGML_FP16_TO_FP32(y[ib].d));
  4542. const __m256i qy = __lasx_xvld((const __m256i *)y[ib].qs, 0);
  4543. const __m256 q = mul_sum_us8_pairs_float(qx, qy);
  4544. acc = __lasx_xvfmadd_s(q, __lasx_xvfmul_s(dx, dy), acc);
  4545. }
  4546. sumf = hsum_float_8(acc) + summs;
  4547. #endif
  4548. for (; ib < nb; ++ib) {
  4549. uint32_t qh;
  4550. memcpy(&qh, x[ib].qh, sizeof(qh));
  4551. int sumi0 = 0;
  4552. int sumi1 = 0;
  4553. for (int j = 0; j < qk/2; ++j) {
  4554. const uint8_t xh_0 = ((qh >> (j + 0)) << 4) & 0x10;
  4555. const uint8_t xh_1 = ((qh >> (j + 12)) ) & 0x10;
  4556. const int32_t x0 = (x[ib].qs[j] & 0xF) | xh_0;
  4557. const int32_t x1 = (x[ib].qs[j] >> 4) | xh_1;
  4558. sumi0 += (x0 * y[ib].qs[j]);
  4559. sumi1 += (x1 * y[ib].qs[j + qk/2]);
  4560. }
  4561. int sumi = sumi0 + sumi1;
  4562. sumf += (GGML_FP16_TO_FP32(x[ib].d)*GGML_FP16_TO_FP32(y[ib].d))*sumi + GGML_FP16_TO_FP32(x[ib].m)*GGML_FP16_TO_FP32(y[ib].s);
  4563. }
  4564. *s = sumf;
  4565. }
  4566. void ggml_vec_dot_q8_0_q8_0(int n, float * restrict s, size_t bs, const void * restrict vx, size_t bx, const void * restrict vy, size_t by, int nrc) {
  4567. const int qk = QK8_0;
  4568. const int nb = n / qk;
  4569. assert(n % qk == 0);
  4570. #if defined(__ARM_FEATURE_MATMUL_INT8)
  4571. assert((nrc == 2) || (nrc == 1));
  4572. #else
  4573. assert(nrc == 1);
  4574. #endif
  4575. UNUSED(nrc);
  4576. UNUSED(bx);
  4577. UNUSED(by);
  4578. UNUSED(bs);
  4579. const block_q8_0 * restrict x = vx;
  4580. const block_q8_0 * restrict y = vy;
  4581. #if defined(__ARM_FEATURE_MATMUL_INT8)
  4582. if (nrc == 2) {
  4583. const block_q8_0 * restrict vx0 = vx;
  4584. const block_q8_0 * restrict vx1 = (const block_q8_0 *) ((const uint8_t*)vx + bx);
  4585. const block_q8_0 * restrict vy0 = vy;
  4586. const block_q8_0 * restrict vy1 = (const block_q8_0 *) ((const uint8_t*)vy + by);
  4587. float32x4_t sumv0 = vdupq_n_f32(0.0f);
  4588. for (int i = 0; i < nb; i++) {
  4589. const block_q8_0 * restrict b_x0 = &vx0[i];
  4590. const block_q8_0 * restrict b_y0 = &vy0[i];
  4591. const block_q8_0 * restrict b_x1 = &vx1[i];
  4592. const block_q8_0 * restrict b_y1 = &vy1[i];
  4593. const int8x16_t x0_l = vld1q_s8(b_x0->qs);
  4594. const int8x16_t x0_h = vld1q_s8(b_x0->qs + 16);
  4595. const int8x16_t x1_l = vld1q_s8(b_x1->qs);
  4596. const int8x16_t x1_h = vld1q_s8(b_x1->qs + 16);
  4597. // load y
  4598. const int8x16_t y0_l = vld1q_s8(b_y0->qs);
  4599. const int8x16_t y0_h = vld1q_s8(b_y0->qs + 16);
  4600. const int8x16_t y1_l = vld1q_s8(b_y1->qs);
  4601. const int8x16_t y1_h = vld1q_s8(b_y1->qs + 16);
  4602. float32_t _scale[4] = {GGML_FP16_TO_FP32(b_x0->d)*GGML_FP16_TO_FP32(b_y0->d),
  4603. GGML_FP16_TO_FP32(b_x0->d)*GGML_FP16_TO_FP32(b_y1->d),
  4604. GGML_FP16_TO_FP32(b_x1->d)*GGML_FP16_TO_FP32(b_y0->d),
  4605. GGML_FP16_TO_FP32(b_x1->d)*GGML_FP16_TO_FP32(b_y1->d)};
  4606. float32x4_t scale = vld1q_f32(_scale);
  4607. int8x16_t l0 = vreinterpretq_s8_s64(vzip1q_s64(vreinterpretq_s64_s8(x0_l), vreinterpretq_s64_s8(x1_l)));
  4608. int8x16_t l1 = vreinterpretq_s8_s64(vzip2q_s64(vreinterpretq_s64_s8(x0_l), vreinterpretq_s64_s8(x1_l)));
  4609. int8x16_t l2 = vreinterpretq_s8_s64(vzip1q_s64(vreinterpretq_s64_s8(x0_h), vreinterpretq_s64_s8(x1_h)));
  4610. int8x16_t l3 = vreinterpretq_s8_s64(vzip2q_s64(vreinterpretq_s64_s8(x0_h), vreinterpretq_s64_s8(x1_h)));
  4611. int8x16_t r0 = vreinterpretq_s8_s64(vzip1q_s64(vreinterpretq_s64_s8(y0_l), vreinterpretq_s64_s8(y1_l)));
  4612. int8x16_t r1 = vreinterpretq_s8_s64(vzip2q_s64(vreinterpretq_s64_s8(y0_l), vreinterpretq_s64_s8(y1_l)));
  4613. int8x16_t r2 = vreinterpretq_s8_s64(vzip1q_s64(vreinterpretq_s64_s8(y0_h), vreinterpretq_s64_s8(y1_h)));
  4614. int8x16_t r3 = vreinterpretq_s8_s64(vzip2q_s64(vreinterpretq_s64_s8(y0_h), vreinterpretq_s64_s8(y1_h)));
  4615. sumv0 = vmlaq_f32(sumv0,(vcvtq_f32_s32(vmmlaq_s32((vmmlaq_s32((vmmlaq_s32((vmmlaq_s32(vdupq_n_s32(0), l0, r0)),
  4616. l1, r1)), l2, r2)), l3, r3))), scale);
  4617. }
  4618. float32x4_t sumv1 = vextq_f32(sumv0, sumv0, 2);
  4619. float32x4_t sumv2 = vzip1q_f32(sumv0, sumv1);
  4620. vst1_f32(s, vget_low_f32(sumv2));
  4621. vst1_f32(s + bs, vget_high_f32(sumv2));
  4622. return;
  4623. }
  4624. #endif
  4625. int ib = 0;
  4626. float sumf = 0;
  4627. #if defined(__ARM_FEATURE_SVE)
  4628. svfloat32_t sumv0 = svdup_n_f32(0.0f);
  4629. svfloat32_t sumv1 = svdup_n_f32(0.0f);
  4630. const int vector_length = ggml_cpu_get_sve_cnt()*8;
  4631. //VLA Implemenation for SVE
  4632. switch (vector_length) {
  4633. case 128:
  4634. {
  4635. // predicate for activating lanes for 16 Int8 elements
  4636. const svbool_t ph16 = svptrue_pat_b8 (SV_VL16);
  4637. const svbool_t pl16 = svptrue_pat_b32(SV_VL4);
  4638. for (; ib + 1 < nb; ib += 2) {
  4639. const block_q8_0 * restrict x0 = &x[ib + 0];
  4640. const block_q8_0 * restrict x1 = &x[ib + 1];
  4641. const block_q8_0 * restrict y0 = &y[ib + 0];
  4642. const block_q8_0 * restrict y1 = &y[ib + 1];
  4643. // load x
  4644. const svint8_t qx0_0 = svld1_s8(ph16, x0->qs);
  4645. const svint8_t qx0_1 = svld1_s8(ph16, x0->qs+16);
  4646. const svint8_t qx1_0 = svld1_s8(ph16, x1->qs);
  4647. const svint8_t qx1_1 = svld1_s8(ph16, x1->qs+16);
  4648. // load y
  4649. const svint8_t qy0_0 = svld1_s8(ph16, y0->qs);
  4650. const svint8_t qy0_1 = svld1_s8(ph16, y0->qs+16);
  4651. const svint8_t qy1_0 = svld1_s8(ph16, y1->qs);
  4652. const svint8_t qy1_1 = svld1_s8(ph16, y1->qs+16);
  4653. sumv0 = svmla_n_f32_x(pl16, sumv0, svcvt_f32_s32_x(pl16, svadd_x(pl16,
  4654. svdot_s32(svdup_n_s32(0), qx0_0, qy0_0),
  4655. svdot_s32(svdup_n_s32(0), qx0_1, qy0_1))), GGML_FP16_TO_FP32(x0->d)*GGML_FP16_TO_FP32(y0->d));
  4656. sumv1 = svmla_n_f32_x(pl16, sumv1, svcvt_f32_s32_x(pl16, svadd_x(pl16,
  4657. svdot_s32(svdup_n_s32(0), qx1_0, qy1_0),
  4658. svdot_s32(svdup_n_s32(0), qx1_1, qy1_1))), GGML_FP16_TO_FP32(x1->d)*GGML_FP16_TO_FP32(y1->d));
  4659. }
  4660. sumf = svaddv_f32(pl16, svadd_f32_x(pl16, sumv0, sumv1));
  4661. } break;
  4662. case 256:
  4663. {
  4664. //printf("sve256");
  4665. for (; ib + 1 < nb; ib += 2) {
  4666. const block_q8_0 * restrict x0 = &x[ib + 0];
  4667. const block_q8_0 * restrict x1 = &x[ib + 1];
  4668. const block_q8_0 * restrict y0 = &y[ib + 0];
  4669. const block_q8_0 * restrict y1 = &y[ib + 1];
  4670. // load x
  4671. const svint8_t qx0 = svld1_s8(svptrue_b8(), x0->qs);
  4672. const svint8_t qx1 = svld1_s8(svptrue_b8(), x1->qs);
  4673. // load y
  4674. const svint8_t qy0 = svld1_s8(svptrue_b8(), y0->qs);
  4675. const svint8_t qy1 = svld1_s8(svptrue_b8(), y1->qs);
  4676. sumv0 = svmla_n_f32_x(svptrue_b32(), sumv0, svcvt_f32_s32_x(svptrue_b32(),
  4677. svdot_s32(svdup_n_s32(0), qx0, qy0)), GGML_FP16_TO_FP32(x0->d)*GGML_FP16_TO_FP32(y0->d));
  4678. sumv1 = svmla_n_f32_x(svptrue_b32(), sumv1, svcvt_f32_s32_x(svptrue_b32(),
  4679. svdot_s32(svdup_n_s32(0), qx1, qy1)), GGML_FP16_TO_FP32(x1->d)*GGML_FP16_TO_FP32(y1->d));
  4680. }
  4681. sumf = svaddv_f32(svptrue_b32(), svadd_f32_x(svptrue_b32(), sumv0, sumv1));
  4682. } break;
  4683. case 512:
  4684. {
  4685. // predicate for activating high 256 bit
  4686. const svbool_t ph32 = svptrue_pat_b8(SV_VL32);
  4687. // predicate for activating low 256 bit
  4688. const svbool_t pl32 = svnot_b_z(svptrue_b8(), ph32);
  4689. // predicate for activating high lanes for 8 float32 elements
  4690. const svbool_t ph8 = svptrue_pat_b32(SV_VL8);
  4691. // predicate for activating low lanes for 8 float32 elements
  4692. const svbool_t pl8 = svnot_b_z(svptrue_b32(), ph8);
  4693. svfloat32_t sumv00 = svdup_n_f32(0.0f);
  4694. for (; ib + 1 < nb; ib += 2) {
  4695. const block_q8_0 * restrict x0 = &x[ib + 0];
  4696. const block_q8_0 * restrict x1 = &x[ib + 1];
  4697. const block_q8_0 * restrict y0 = &y[ib + 0];
  4698. const block_q8_0 * restrict y1 = &y[ib + 1];
  4699. //load 32 int8_t in first half of vector and put another 32 int8_t in second vector lower bits
  4700. // and add them to make one 64 element vector
  4701. // load x
  4702. const svint8_t qx_32 = svld1_s8(ph32, x0->qs);
  4703. svint8_t qx_64 = svld1_s8(pl32, x0->qs + 2);
  4704. qx_64 = svadd_s8_x(svptrue_b8(), qx_32, qx_64);
  4705. // load y
  4706. const svint8_t qy_32 = svld1_s8(ph32, y0->qs);
  4707. svint8_t qy_64 = svld1_s8(pl32, y0->qs + 2);
  4708. qy_64 = svadd_s8_x(svptrue_b8(), qy_32, qy_64);
  4709. // scale creation
  4710. const float32_t deq1 = GGML_FP16_TO_FP32(x0->d)*GGML_FP16_TO_FP32(y0->d);
  4711. const float32_t deq2 = GGML_FP16_TO_FP32(x1->d)*GGML_FP16_TO_FP32(y1->d);
  4712. // duplicate deq1 in first half of vector and deq2 in second half of vector
  4713. const svfloat32_t temp = svdup_f32_m(svdup_f32_z(ph8, deq1), pl8, deq2);
  4714. const svfloat32_t sumvt = svcvt_f32_s32_x(svptrue_b32(), svdot_s32(svdup_n_s32(0), qx_64, qy_64));
  4715. sumv00 = svmla_f32_m(svptrue_b32(), sumv00, sumvt, temp);
  4716. }
  4717. sumf = svaddv_f32(svptrue_b32(), sumv00);
  4718. break;
  4719. }
  4720. default:
  4721. assert(false && "Unsupported vector length");
  4722. break;
  4723. }
  4724. #elif defined(__ARM_NEON)
  4725. float32x4_t sumv0 = vdupq_n_f32(0.0f);
  4726. float32x4_t sumv1 = vdupq_n_f32(0.0f);
  4727. for (; ib + 1 < nb; ib += 2) {
  4728. const block_q8_0 * restrict x0 = &x[ib + 0];
  4729. const block_q8_0 * restrict x1 = &x[ib + 1];
  4730. const block_q8_0 * restrict y0 = &y[ib + 0];
  4731. const block_q8_0 * restrict y1 = &y[ib + 1];
  4732. const int8x16_t x0_0 = vld1q_s8(x0->qs);
  4733. const int8x16_t x0_1 = vld1q_s8(x0->qs + 16);
  4734. const int8x16_t x1_0 = vld1q_s8(x1->qs);
  4735. const int8x16_t x1_1 = vld1q_s8(x1->qs + 16);
  4736. // load y
  4737. const int8x16_t y0_0 = vld1q_s8(y0->qs);
  4738. const int8x16_t y0_1 = vld1q_s8(y0->qs + 16);
  4739. const int8x16_t y1_0 = vld1q_s8(y1->qs);
  4740. const int8x16_t y1_1 = vld1q_s8(y1->qs + 16);
  4741. sumv0 = vmlaq_n_f32(sumv0, vcvtq_f32_s32(vaddq_s32(
  4742. ggml_vdotq_s32(vdupq_n_s32(0), x0_0, y0_0),
  4743. ggml_vdotq_s32(vdupq_n_s32(0), x0_1, y0_1))), GGML_FP16_TO_FP32(x0->d)*GGML_FP16_TO_FP32(y0->d));
  4744. sumv1 = vmlaq_n_f32(sumv1, vcvtq_f32_s32(vaddq_s32(
  4745. ggml_vdotq_s32(vdupq_n_s32(0), x1_0, y1_0),
  4746. ggml_vdotq_s32(vdupq_n_s32(0), x1_1, y1_1))), GGML_FP16_TO_FP32(x1->d)*GGML_FP16_TO_FP32(y1->d));
  4747. }
  4748. sumf = vaddvq_f32(sumv0) + vaddvq_f32(sumv1);
  4749. #elif defined(__AVX2__) || defined(__AVX__)
  4750. // Initialize accumulator with zeros
  4751. __m256 acc = _mm256_setzero_ps();
  4752. // Main loop
  4753. for (; ib < nb; ++ib) {
  4754. // Compute combined scale for the block
  4755. const __m256 d = _mm256_set1_ps(GGML_FP16_TO_FP32(x[ib].d) * GGML_FP16_TO_FP32(y[ib].d));
  4756. __m256i qx = _mm256_loadu_si256((const __m256i *)x[ib].qs);
  4757. __m256i qy = _mm256_loadu_si256((const __m256i *)y[ib].qs);
  4758. const __m256 q = mul_sum_i8_pairs_float(qx, qy);
  4759. // Multiply q with scale and accumulate
  4760. #if defined(__AVX2__)
  4761. acc = _mm256_fmadd_ps( d, q, acc );
  4762. #else
  4763. acc = _mm256_add_ps( _mm256_mul_ps( d, q ), acc );
  4764. #endif
  4765. }
  4766. sumf = hsum_float_8(acc);
  4767. #elif defined(__riscv_v_intrinsic)
  4768. size_t vl = __riscv_vsetvl_e8m1(qk);
  4769. for (; ib < nb; ++ib) {
  4770. // load elements
  4771. vint8m1_t bx_0 = __riscv_vle8_v_i8m1(x[ib].qs, vl);
  4772. vint8m1_t by_0 = __riscv_vle8_v_i8m1(y[ib].qs, vl);
  4773. vint16m2_t vw_mul = __riscv_vwmul_vv_i16m2(bx_0, by_0, vl);
  4774. vint32m1_t v_zero = __riscv_vmv_v_x_i32m1(0, vl);
  4775. vint32m1_t v_sum = __riscv_vwredsum_vs_i16m2_i32m1(vw_mul, v_zero, vl);
  4776. int sumi = __riscv_vmv_x_s_i32m1_i32(v_sum);
  4777. sumf += sumi*(GGML_FP16_TO_FP32(x[ib].d)*GGML_FP16_TO_FP32(y[ib].d));
  4778. }
  4779. #elif defined(__POWER9_VECTOR__)
  4780. const vector signed int v0 = vec_splats((int32_t)0);
  4781. vector float vsumf0 = vec_splats(0.0f);
  4782. #pragma GCC unroll 8
  4783. for (; ib < nb; ++ib) {
  4784. __builtin_prefetch(x[ib].qs, 0, 1);
  4785. __builtin_prefetch(y[ib].qs, 0, 1);
  4786. vector float vxd = vec_splats(GGML_FP16_TO_FP32(x[ib].d));
  4787. vector float vyd = vec_splats(GGML_FP16_TO_FP32(y[ib].d));
  4788. vector float vd = vec_mul(vxd, vyd);
  4789. vector signed char q8x0 = vec_xl( 0, x[ib].qs);
  4790. vector signed char q8x1 = vec_xl(16, x[ib].qs);
  4791. vector signed char q8y0 = vec_xl( 0, y[ib].qs);
  4792. vector signed char q8y1 = vec_xl(16, y[ib].qs);
  4793. vector signed short qv0 = vec_mule(q8x0, q8y0);
  4794. vector signed short qv1 = vec_mulo(q8x0, q8y0);
  4795. vector signed short qv2 = vec_mule(q8x1, q8y1);
  4796. vector signed short qv3 = vec_mulo(q8x1, q8y1);
  4797. vector signed int vsumi0 = v0;
  4798. vector signed int vsumi1 = v0;
  4799. vsumi0 = vec_sum4s(qv0, vsumi0);
  4800. vsumi1 = vec_sum4s(qv1, vsumi1);
  4801. vsumi0 = vec_sum4s(qv2, vsumi0);
  4802. vsumi1 = vec_sum4s(qv3, vsumi1);
  4803. vsumi0 = vec_add(vsumi0, vsumi1);
  4804. vsumf0 = vec_madd(vec_ctf(vsumi0, 0), vd, vsumf0);
  4805. }
  4806. vsumf0 = vec_add(vsumf0, vec_sld(vsumf0, vsumf0, 4));
  4807. vsumf0 = vec_add(vsumf0, vec_sld(vsumf0, vsumf0, 8));
  4808. sumf = vec_extract(vsumf0, 0);
  4809. #elif defined(__loongarch_asx)
  4810. // Initialize accumulator with zeros
  4811. __m256 acc = (__m256)__lasx_xvldi(0);
  4812. // Main loop
  4813. for (; ib < nb; ++ib) {
  4814. // Compute combined scale for the block
  4815. const __m256 d = __lasx_xvreplfr2vr_s(GGML_FP16_TO_FP32(x[ib].d) * GGML_FP16_TO_FP32(y[ib].d));
  4816. __m256i qx = __lasx_xvld((const __m256i *)x[ib].qs, 0);
  4817. __m256i qy = __lasx_xvld((const __m256i *)y[ib].qs, 0);
  4818. const __m256 q = mul_sum_i8_pairs_float(qx, qy);
  4819. // Multiply q with scale and accumulate
  4820. acc = __lasx_xvfmadd_s( d, q, acc );
  4821. }
  4822. sumf = hsum_float_8(acc);
  4823. #endif
  4824. for (; ib < nb; ++ib) {
  4825. int sumi = 0;
  4826. for (int j = 0; j < qk; j++) {
  4827. sumi += x[ib].qs[j]*y[ib].qs[j];
  4828. }
  4829. sumf += sumi*(GGML_FP16_TO_FP32(x[ib].d)*GGML_FP16_TO_FP32(y[ib].d));
  4830. }
  4831. *s = sumf;
  4832. }
  4833. void ggml_vec_dot_tq1_0_q8_K(int n, float * restrict s, size_t bs, const void * restrict vx, size_t bx, const void * restrict vy, size_t by, int nrc) {
  4834. assert(nrc == 1);
  4835. UNUSED(nrc);
  4836. UNUSED(bx);
  4837. UNUSED(by);
  4838. UNUSED(bs);
  4839. const block_tq1_0 * restrict x = vx;
  4840. const block_q8_K * restrict y = vy;
  4841. const int nb = n / QK_K;
  4842. #if defined(__ARM_NEON)
  4843. float sumf = 0.0f;
  4844. uint8_t k_shift[16] = {1, 1, 1, 1, 3, 3, 3, 3, 9, 9, 9, 9, 27, 27, 27, 27};
  4845. const uint8x16_t shift = vld1q_u8(k_shift);
  4846. for (int i = 0; i < nb; ++i) {
  4847. #if defined(__ARM_FEATURE_DOTPROD)
  4848. int32x4_t sumi0 = vdupq_n_s32(0);
  4849. int32x4_t sumi1 = vdupq_n_s32(0);
  4850. #else
  4851. int16x8_t sumi0 = vdupq_n_s16(0);
  4852. int16x8_t sumi1 = vdupq_n_s16(0);
  4853. #endif
  4854. // first 32 bytes of 5 elements
  4855. {
  4856. uint8x16_t qx0 = vld1q_u8(x[i].qs + 0);
  4857. uint8x16_t qx1 = vld1q_u8(x[i].qs + 16);
  4858. uint8x16_t qx2 = vmulq_u8(qx0, vdupq_n_u8(3));
  4859. uint8x16_t qx3 = vmulq_u8(qx1, vdupq_n_u8(3));
  4860. uint8x16_t qx4 = vmulq_u8(qx0, vdupq_n_u8(9));
  4861. uint8x16_t qx5 = vmulq_u8(qx1, vdupq_n_u8(9));
  4862. uint8x16_t qx6 = vmulq_u8(qx0, vdupq_n_u8(27));
  4863. uint8x16_t qx7 = vmulq_u8(qx1, vdupq_n_u8(27));
  4864. uint8x16_t qx8 = vmulq_u8(qx0, vdupq_n_u8(81));
  4865. uint8x16_t qx9 = vmulq_u8(qx1, vdupq_n_u8(81));
  4866. // multiply by 3 and keep the 2 bits above 8 bits
  4867. int8x16_t sqx0 = vreinterpretq_s8_u8(vshrq_n_u8(vhaddq_u8(qx0, vshrq_n_u8(qx0, 1)), 6));
  4868. int8x16_t sqx1 = vreinterpretq_s8_u8(vshrq_n_u8(vhaddq_u8(qx1, vshrq_n_u8(qx1, 1)), 6));
  4869. int8x16_t sqx2 = vreinterpretq_s8_u8(vshrq_n_u8(vhaddq_u8(qx2, vshrq_n_u8(qx2, 1)), 6));
  4870. int8x16_t sqx3 = vreinterpretq_s8_u8(vshrq_n_u8(vhaddq_u8(qx3, vshrq_n_u8(qx3, 1)), 6));
  4871. int8x16_t sqx4 = vreinterpretq_s8_u8(vshrq_n_u8(vhaddq_u8(qx4, vshrq_n_u8(qx4, 1)), 6));
  4872. int8x16_t sqx5 = vreinterpretq_s8_u8(vshrq_n_u8(vhaddq_u8(qx5, vshrq_n_u8(qx5, 1)), 6));
  4873. int8x16_t sqx6 = vreinterpretq_s8_u8(vshrq_n_u8(vhaddq_u8(qx6, vshrq_n_u8(qx6, 1)), 6));
  4874. int8x16_t sqx7 = vreinterpretq_s8_u8(vshrq_n_u8(vhaddq_u8(qx7, vshrq_n_u8(qx7, 1)), 6));
  4875. int8x16_t sqx8 = vreinterpretq_s8_u8(vshrq_n_u8(vhaddq_u8(qx8, vshrq_n_u8(qx8, 1)), 6));
  4876. int8x16_t sqx9 = vreinterpretq_s8_u8(vshrq_n_u8(vhaddq_u8(qx9, vshrq_n_u8(qx9, 1)), 6));
  4877. const int8x16_t qy0 = vld1q_s8(y[i].qs + 0);
  4878. const int8x16_t qy1 = vld1q_s8(y[i].qs + 16);
  4879. const int8x16_t qy2 = vld1q_s8(y[i].qs + 32);
  4880. const int8x16_t qy3 = vld1q_s8(y[i].qs + 48);
  4881. const int8x16_t qy4 = vld1q_s8(y[i].qs + 64);
  4882. const int8x16_t qy5 = vld1q_s8(y[i].qs + 80);
  4883. const int8x16_t qy6 = vld1q_s8(y[i].qs + 96);
  4884. const int8x16_t qy7 = vld1q_s8(y[i].qs + 112);
  4885. const int8x16_t qy8 = vld1q_s8(y[i].qs + 128);
  4886. const int8x16_t qy9 = vld1q_s8(y[i].qs + 144);
  4887. #if defined(__ARM_FEATURE_DOTPROD)
  4888. sumi0 = vdotq_s32(sumi0, sqx0, qy0);
  4889. sumi1 = vdotq_s32(sumi1, sqx1, qy1);
  4890. sumi0 = vdotq_s32(sumi0, sqx2, qy2);
  4891. sumi1 = vdotq_s32(sumi1, sqx3, qy3);
  4892. sumi0 = vdotq_s32(sumi0, sqx4, qy4);
  4893. sumi1 = vdotq_s32(sumi1, sqx5, qy5);
  4894. sumi0 = vdotq_s32(sumi0, sqx6, qy6);
  4895. sumi1 = vdotq_s32(sumi1, sqx7, qy7);
  4896. sumi0 = vdotq_s32(sumi0, sqx8, qy8);
  4897. sumi1 = vdotq_s32(sumi1, sqx9, qy9);
  4898. #else
  4899. sumi0 = vmlal_s8(sumi0, vget_low_s8(sqx0), vget_low_s8(qy0));
  4900. sumi1 = vmlal_s8(sumi1, vget_high_s8(sqx0), vget_high_s8(qy0));
  4901. sumi0 = vmlal_s8(sumi0, vget_low_s8(sqx1), vget_low_s8(qy1));
  4902. sumi1 = vmlal_s8(sumi1, vget_high_s8(sqx1), vget_high_s8(qy1));
  4903. sumi0 = vmlal_s8(sumi0, vget_low_s8(sqx2), vget_low_s8(qy2));
  4904. sumi1 = vmlal_s8(sumi1, vget_high_s8(sqx2), vget_high_s8(qy2));
  4905. sumi0 = vmlal_s8(sumi0, vget_low_s8(sqx3), vget_low_s8(qy3));
  4906. sumi1 = vmlal_s8(sumi1, vget_high_s8(sqx3), vget_high_s8(qy3));
  4907. sumi0 = vmlal_s8(sumi0, vget_low_s8(sqx4), vget_low_s8(qy4));
  4908. sumi1 = vmlal_s8(sumi1, vget_high_s8(sqx4), vget_high_s8(qy4));
  4909. sumi0 = vmlal_s8(sumi0, vget_low_s8(sqx5), vget_low_s8(qy5));
  4910. sumi1 = vmlal_s8(sumi1, vget_high_s8(sqx5), vget_high_s8(qy5));
  4911. sumi0 = vmlal_s8(sumi0, vget_low_s8(sqx6), vget_low_s8(qy6));
  4912. sumi1 = vmlal_s8(sumi1, vget_high_s8(sqx6), vget_high_s8(qy6));
  4913. sumi0 = vmlal_s8(sumi0, vget_low_s8(sqx7), vget_low_s8(qy7));
  4914. sumi1 = vmlal_s8(sumi1, vget_high_s8(sqx7), vget_high_s8(qy7));
  4915. sumi0 = vmlal_s8(sumi0, vget_low_s8(sqx8), vget_low_s8(qy8));
  4916. sumi1 = vmlal_s8(sumi1, vget_high_s8(sqx8), vget_high_s8(qy8));
  4917. sumi0 = vmlal_s8(sumi0, vget_low_s8(sqx9), vget_low_s8(qy9));
  4918. sumi1 = vmlal_s8(sumi1, vget_high_s8(sqx9), vget_high_s8(qy9));
  4919. #endif
  4920. }
  4921. // last 16 bytes of 5-element, along with the 4 bytes of 4 elements
  4922. {
  4923. uint8x16_t qx0 = vld1q_u8(x[i].qs + 32);
  4924. uint8x16_t qx1 = vmulq_u8(qx0, vdupq_n_u8(3));
  4925. uint8x16_t qx2 = vmulq_u8(qx0, vdupq_n_u8(9));
  4926. uint8x16_t qx3 = vmulq_u8(qx0, vdupq_n_u8(27));
  4927. uint8x16_t qx4 = vmulq_u8(qx0, vdupq_n_u8(81));
  4928. uint32_t qh;
  4929. memcpy(&qh, x[i].qh, sizeof(qh)); // potentially unaligned
  4930. uint8x16_t qx5 = vreinterpretq_u8_u32(vdupq_n_u32(qh));
  4931. qx5 = vmulq_u8(qx5, shift);
  4932. // multiply by 3 and keep the 2 bits above 8 bits
  4933. int8x16_t sqx0 = vreinterpretq_s8_u8(vshrq_n_u8(vhaddq_u8(qx0, vshrq_n_u8(qx0, 1)), 6));
  4934. int8x16_t sqx1 = vreinterpretq_s8_u8(vshrq_n_u8(vhaddq_u8(qx1, vshrq_n_u8(qx1, 1)), 6));
  4935. int8x16_t sqx2 = vreinterpretq_s8_u8(vshrq_n_u8(vhaddq_u8(qx2, vshrq_n_u8(qx2, 1)), 6));
  4936. int8x16_t sqx3 = vreinterpretq_s8_u8(vshrq_n_u8(vhaddq_u8(qx3, vshrq_n_u8(qx3, 1)), 6));
  4937. int8x16_t sqx4 = vreinterpretq_s8_u8(vshrq_n_u8(vhaddq_u8(qx4, vshrq_n_u8(qx4, 1)), 6));
  4938. int8x16_t sqx5 = vreinterpretq_s8_u8(vshrq_n_u8(vhaddq_u8(qx5, vshrq_n_u8(qx5, 1)), 6));
  4939. const int8x16_t qy0 = vld1q_s8(y[i].qs + 160);
  4940. const int8x16_t qy1 = vld1q_s8(y[i].qs + 176);
  4941. const int8x16_t qy2 = vld1q_s8(y[i].qs + 192);
  4942. const int8x16_t qy3 = vld1q_s8(y[i].qs + 208);
  4943. const int8x16_t qy4 = vld1q_s8(y[i].qs + 224);
  4944. const int8x16_t qy5 = vld1q_s8(y[i].qs + 240);
  4945. #if defined(__ARM_FEATURE_DOTPROD)
  4946. sumi0 = vdotq_s32(sumi0, sqx0, qy0);
  4947. sumi1 = vdotq_s32(sumi1, sqx1, qy1);
  4948. sumi0 = vdotq_s32(sumi0, sqx2, qy2);
  4949. sumi1 = vdotq_s32(sumi1, sqx3, qy3);
  4950. sumi0 = vdotq_s32(sumi0, sqx4, qy4);
  4951. sumi1 = vdotq_s32(sumi1, sqx5, qy5);
  4952. #else
  4953. sumi0 = vmlal_s8(sumi0, vget_low_s8(sqx0), vget_low_s8(qy0));
  4954. sumi1 = vmlal_s8(sumi1, vget_high_s8(sqx0), vget_high_s8(qy0));
  4955. sumi0 = vmlal_s8(sumi0, vget_low_s8(sqx1), vget_low_s8(qy1));
  4956. sumi1 = vmlal_s8(sumi1, vget_high_s8(sqx1), vget_high_s8(qy1));
  4957. sumi0 = vmlal_s8(sumi0, vget_low_s8(sqx2), vget_low_s8(qy2));
  4958. sumi1 = vmlal_s8(sumi1, vget_high_s8(sqx2), vget_high_s8(qy2));
  4959. sumi0 = vmlal_s8(sumi0, vget_low_s8(sqx3), vget_low_s8(qy3));
  4960. sumi1 = vmlal_s8(sumi1, vget_high_s8(sqx3), vget_high_s8(qy3));
  4961. sumi0 = vmlal_s8(sumi0, vget_low_s8(sqx4), vget_low_s8(qy4));
  4962. sumi1 = vmlal_s8(sumi1, vget_high_s8(sqx4), vget_high_s8(qy4));
  4963. sumi0 = vmlal_s8(sumi0, vget_low_s8(sqx5), vget_low_s8(qy5));
  4964. sumi1 = vmlal_s8(sumi1, vget_high_s8(sqx5), vget_high_s8(qy5));
  4965. #endif
  4966. }
  4967. const int16x8_t ysum0 = vld1q_s16(y[i].bsums);
  4968. const int16x8_t ysum1 = vld1q_s16(y[i].bsums + 8);
  4969. const float d = GGML_FP16_TO_FP32(x[i].d) * y[i].d;
  4970. #if defined(__ARM_FEATURE_DOTPROD)
  4971. sumi0 = vaddq_s32(sumi0, sumi1);
  4972. sumi0 = vsubq_s32(sumi0, vpaddlq_s16(vaddq_s16(ysum0, ysum1)));
  4973. sumf += d * (float) vaddvq_s32(sumi0);
  4974. #else
  4975. sumi0 = vaddq_s16(sumi0, sumi1);
  4976. sumi0 = vsubq_s16(sumi0, vaddq_s16(ysum0, ysum1));
  4977. sumf += d * (float) vaddlvq_s16(sumi0);
  4978. #endif
  4979. }
  4980. *s = sumf;
  4981. #elif defined(__AVX2__)
  4982. __m256 sumf = _mm256_setzero_ps();
  4983. for (int i = 0; i < nb; ++i) {
  4984. // 16-bit sums
  4985. __m256i sumi0 = _mm256_setzero_si256();
  4986. __m256i sumi1 = _mm256_setzero_si256();
  4987. __m256i sumi2 = _mm256_setzero_si256();
  4988. // first 32 bytes of 5 elements
  4989. {
  4990. __m256i qx0 = _mm256_loadu_si256((const __m256i *) (x[i].qs));
  4991. // 8-bit multiplies with shifts, masks and adds
  4992. __m256i qx1 = _mm256_add_epi8(qx0, _mm256_add_epi8(qx0, qx0)); // 1 * 3
  4993. __m256i qx2 = _mm256_add_epi8(_mm256_and_si256(_mm256_slli_epi16(qx0, 3), _mm256_set1_epi8(-8)), qx0); // 1 * 9
  4994. __m256i qx3 = _mm256_add_epi8(_mm256_and_si256(_mm256_slli_epi16(qx1, 3), _mm256_set1_epi8(-8)), qx1); // 3 * 9
  4995. __m256i qx4 = _mm256_add_epi8(_mm256_and_si256(_mm256_slli_epi16(qx2, 3), _mm256_set1_epi8(-8)), qx2); // 9 * 9
  4996. // TODO: can _mm256_mulhi_epu16 be faster even if 16-bits?
  4997. // Cancel the +1 from avg so that it behaves like a halving add
  4998. qx0 = _mm256_subs_epu8(qx0, _mm256_set1_epi8(1));
  4999. qx1 = _mm256_subs_epu8(qx1, _mm256_set1_epi8(1));
  5000. qx2 = _mm256_subs_epu8(qx2, _mm256_set1_epi8(1));
  5001. qx3 = _mm256_subs_epu8(qx3, _mm256_set1_epi8(1));
  5002. qx4 = _mm256_subs_epu8(qx4, _mm256_set1_epi8(1));
  5003. // Multiply by 3 and get the top 2 bits
  5004. qx0 = _mm256_avg_epu8(qx0, _mm256_avg_epu8(qx0, _mm256_setzero_si256()));
  5005. qx1 = _mm256_avg_epu8(qx1, _mm256_avg_epu8(qx1, _mm256_setzero_si256()));
  5006. qx2 = _mm256_avg_epu8(qx2, _mm256_avg_epu8(qx2, _mm256_setzero_si256()));
  5007. qx3 = _mm256_avg_epu8(qx3, _mm256_avg_epu8(qx3, _mm256_setzero_si256()));
  5008. qx4 = _mm256_avg_epu8(qx4, _mm256_avg_epu8(qx4, _mm256_setzero_si256()));
  5009. qx0 = _mm256_and_si256(_mm256_srli_epi16(qx0, 6), _mm256_set1_epi8(3));
  5010. qx1 = _mm256_and_si256(_mm256_srli_epi16(qx1, 6), _mm256_set1_epi8(3));
  5011. qx2 = _mm256_and_si256(_mm256_srli_epi16(qx2, 6), _mm256_set1_epi8(3));
  5012. qx3 = _mm256_and_si256(_mm256_srli_epi16(qx3, 6), _mm256_set1_epi8(3));
  5013. qx4 = _mm256_and_si256(_mm256_srli_epi16(qx4, 6), _mm256_set1_epi8(3));
  5014. const __m256i qy0 = _mm256_loadu_si256((const __m256i *) (y[i].qs + 0));
  5015. const __m256i qy1 = _mm256_loadu_si256((const __m256i *) (y[i].qs + 32));
  5016. const __m256i qy2 = _mm256_loadu_si256((const __m256i *) (y[i].qs + 64));
  5017. const __m256i qy3 = _mm256_loadu_si256((const __m256i *) (y[i].qs + 96));
  5018. const __m256i qy4 = _mm256_loadu_si256((const __m256i *) (y[i].qs + 128));
  5019. qx0 = _mm256_maddubs_epi16(qx0, qy0);
  5020. qx1 = _mm256_maddubs_epi16(qx1, qy1);
  5021. qx2 = _mm256_maddubs_epi16(qx2, qy2);
  5022. qx3 = _mm256_maddubs_epi16(qx3, qy3);
  5023. qx4 = _mm256_maddubs_epi16(qx4, qy4);
  5024. sumi0 = _mm256_add_epi16(sumi0, _mm256_add_epi16(qx0, qx1));
  5025. sumi1 = _mm256_add_epi16(sumi1, _mm256_add_epi16(qx2, qx3));
  5026. sumi2 = _mm256_add_epi16(sumi2, qx4);
  5027. }
  5028. // last 16 bytes of 5-element, along with the 4 bytes of 4 elements
  5029. {
  5030. __m128i qx0 = _mm_loadu_si128((const __m128i *) (x[i].qs + 32));
  5031. uint32_t qh;
  5032. memcpy(&qh, x[i].qh, sizeof(qh)); // potentially unaligned
  5033. __m256i qx5_l = _mm256_cvtepu8_epi16(_mm_set1_epi32(qh));
  5034. __m128i qx1 = _mm_add_epi8(qx0, _mm_add_epi8(qx0, qx0)); // 1 * 3
  5035. __m128i qx2 = _mm_add_epi8(_mm_and_si128(_mm_slli_epi16(qx0, 3), _mm_set1_epi8(-8)), qx0); // 1 * 9
  5036. __m128i qx3 = _mm_add_epi8(_mm_and_si128(_mm_slli_epi16(qx1, 3), _mm_set1_epi8(-8)), qx1); // 3 * 9
  5037. __m128i qx4 = _mm_add_epi8(_mm_and_si128(_mm_slli_epi16(qx2, 3), _mm_set1_epi8(-8)), qx2); // 9 * 9
  5038. __m256i qx01 = MM256_SET_M128I(qx1, qx0);
  5039. __m256i qx23 = MM256_SET_M128I(qx3, qx2);
  5040. // avx2 does not have 8-bit multiplies, so 16-bit it is.
  5041. qx5_l = _mm256_mullo_epi16(qx5_l, _mm256_set_epi16(27, 27, 27, 27, 9, 9, 9, 9, 3, 3, 3, 3, 1, 1, 1, 1));
  5042. qx5_l = _mm256_and_si256(qx5_l, _mm256_set1_epi16(0xFF));
  5043. __m128i qx5 = _mm_packus_epi16(_mm256_castsi256_si128(qx5_l), _mm256_extracti128_si256(qx5_l, 1));
  5044. __m256i qx45 = MM256_SET_M128I(qx5, qx4);
  5045. // Cancel the +1 from avg so that it behaves like a halving add
  5046. qx01 = _mm256_subs_epu8(qx01, _mm256_set1_epi8(1));
  5047. qx23 = _mm256_subs_epu8(qx23, _mm256_set1_epi8(1));
  5048. qx45 = _mm256_subs_epu8(qx45, _mm256_set1_epi8(1));
  5049. // Multiply by 3 and get the top 2 bits
  5050. qx01 = _mm256_avg_epu8(qx01, _mm256_avg_epu8(qx01, _mm256_setzero_si256()));
  5051. qx23 = _mm256_avg_epu8(qx23, _mm256_avg_epu8(qx23, _mm256_setzero_si256()));
  5052. qx45 = _mm256_avg_epu8(qx45, _mm256_avg_epu8(qx45, _mm256_setzero_si256()));
  5053. qx01 = _mm256_and_si256(_mm256_srli_epi16(qx01, 6), _mm256_set1_epi8(3));
  5054. qx23 = _mm256_and_si256(_mm256_srli_epi16(qx23, 6), _mm256_set1_epi8(3));
  5055. qx45 = _mm256_and_si256(_mm256_srli_epi16(qx45, 6), _mm256_set1_epi8(3));
  5056. const __m256i qy01 = _mm256_loadu_si256((const __m256i *) (y[i].qs + 160));
  5057. const __m256i qy23 = _mm256_loadu_si256((const __m256i *) (y[i].qs + 192));
  5058. const __m256i qy45 = _mm256_loadu_si256((const __m256i *) (y[i].qs + 224));
  5059. qx01 = _mm256_maddubs_epi16(qx01, qy01);
  5060. qx23 = _mm256_maddubs_epi16(qx23, qy23);
  5061. qx45 = _mm256_maddubs_epi16(qx45, qy45);
  5062. sumi0 = _mm256_add_epi16(sumi0, qx01);
  5063. sumi1 = _mm256_add_epi16(sumi1, qx23);
  5064. sumi2 = _mm256_add_epi16(sumi2, qx45);
  5065. }
  5066. const __m256i ysum = _mm256_loadu_si256((const __m256i *) y[i].bsums);
  5067. const __m256 d = _mm256_set1_ps(y[i].d * GGML_FP16_TO_FP32(x[i].d));
  5068. sumi0 = _mm256_sub_epi16(sumi0, ysum);
  5069. sumi0 = _mm256_add_epi16(sumi0, _mm256_add_epi16(sumi1, sumi2));
  5070. sumi0 = _mm256_madd_epi16(sumi0, _mm256_set1_epi16(1));
  5071. sumf = _mm256_add_ps(_mm256_mul_ps(_mm256_cvtepi32_ps(sumi0), d), sumf);
  5072. }
  5073. *s = hsum_float_8(sumf);
  5074. #else
  5075. const uint8_t pow3[6] = {1, 3, 9, 27, 81, 243};
  5076. float sumf = 0.0f;
  5077. for (int i = 0; i < nb; ++i) {
  5078. int sum = 0;
  5079. for (size_t j = 0; j < sizeof(x->qs) - sizeof(x->qs) % 32; j += 32) {
  5080. for (size_t l = 0; l < 5; ++l) {
  5081. for (size_t m = 0; m < 32; ++m) {
  5082. uint8_t q = x[i].qs[j + m] * pow3[l];
  5083. uint16_t xi = ((uint16_t) q * 3) >> 8;
  5084. sum += (xi - 1) * y[i].qs[j*5 + l*32 + m];
  5085. }
  5086. }
  5087. }
  5088. for (size_t j = sizeof(x->qs) - sizeof(x->qs) % 32; j < sizeof(x->qs); j += 16) {
  5089. for (size_t l = 0; l < 5; ++l) {
  5090. for (size_t m = 0; m < 16; ++m) {
  5091. uint8_t q = x[i].qs[j + m] * pow3[l];
  5092. uint16_t xi = ((uint16_t) q * 3) >> 8;
  5093. sum += (xi - 1) * y[i].qs[j*5 + l*16 + m];
  5094. }
  5095. }
  5096. }
  5097. for (size_t l = 0; l < 4; ++l) {
  5098. for (size_t j = 0; j < sizeof(x->qh); ++j) {
  5099. uint8_t q = x[i].qh[j] * pow3[l];
  5100. uint16_t xi = ((uint16_t) q * 3) >> 8;
  5101. sum += (xi - 1) * y[i].qs[sizeof(x->qs)*5 + l*sizeof(x->qh) + j];
  5102. }
  5103. }
  5104. sumf += (float) sum * (GGML_FP16_TO_FP32(x[i].d) * y[i].d);
  5105. }
  5106. *s = sumf;
  5107. #endif
  5108. }
  5109. void ggml_vec_dot_tq2_0_q8_K(int n, float * restrict s, size_t bs, const void * restrict vx, size_t bx, const void * restrict vy, size_t by, int nrc) {
  5110. assert(nrc == 1);
  5111. UNUSED(nrc);
  5112. UNUSED(bx);
  5113. UNUSED(by);
  5114. UNUSED(bs);
  5115. const block_tq2_0 * restrict x = vx;
  5116. const block_q8_K * restrict y = vy;
  5117. const int nb = n / QK_K;
  5118. #if defined(__ARM_NEON)
  5119. float sumf = 0.0f;
  5120. const uint8x16_t m3 = vdupq_n_u8(3);
  5121. for (int i = 0; i < nb; ++i) {
  5122. #if defined(__ARM_FEATURE_DOTPROD)
  5123. int32x4_t sumi0 = vdupq_n_s32(0);
  5124. int32x4_t sumi1 = vdupq_n_s32(0);
  5125. #else
  5126. int16x8_t sumi0 = vdupq_n_s16(0);
  5127. int16x8_t sumi1 = vdupq_n_s16(0);
  5128. #endif
  5129. for (size_t j = 0; j < sizeof(x->qs); j += 32) {
  5130. uint8x16_t qx0 = vld1q_u8(x[i].qs + j);
  5131. uint8x16_t qx1 = vld1q_u8(x[i].qs + j + 16);
  5132. uint8x16_t qx2 = vshrq_n_u8(qx0, 2);
  5133. uint8x16_t qx3 = vshrq_n_u8(qx1, 2);
  5134. uint8x16_t qx4 = vshrq_n_u8(qx0, 4);
  5135. uint8x16_t qx5 = vshrq_n_u8(qx1, 4);
  5136. uint8x16_t qx6 = vshrq_n_u8(qx0, 6);
  5137. uint8x16_t qx7 = vshrq_n_u8(qx1, 6);
  5138. int8x16_t sqx0 = vreinterpretq_s8_u8(vandq_u8(qx0, m3));
  5139. int8x16_t sqx1 = vreinterpretq_s8_u8(vandq_u8(qx1, m3));
  5140. int8x16_t sqx2 = vreinterpretq_s8_u8(vandq_u8(qx2, m3));
  5141. int8x16_t sqx3 = vreinterpretq_s8_u8(vandq_u8(qx3, m3));
  5142. int8x16_t sqx4 = vreinterpretq_s8_u8(vandq_u8(qx4, m3));
  5143. int8x16_t sqx5 = vreinterpretq_s8_u8(vandq_u8(qx5, m3));
  5144. int8x16_t sqx6 = vreinterpretq_s8_u8(vandq_u8(qx6, m3));
  5145. int8x16_t sqx7 = vreinterpretq_s8_u8(vandq_u8(qx7, m3));
  5146. const int8x16_t qy0 = vld1q_s8(y[i].qs + j*4 + 0);
  5147. const int8x16_t qy1 = vld1q_s8(y[i].qs + j*4 + 16);
  5148. const int8x16_t qy2 = vld1q_s8(y[i].qs + j*4 + 32);
  5149. const int8x16_t qy3 = vld1q_s8(y[i].qs + j*4 + 48);
  5150. const int8x16_t qy4 = vld1q_s8(y[i].qs + j*4 + 64);
  5151. const int8x16_t qy5 = vld1q_s8(y[i].qs + j*4 + 80);
  5152. const int8x16_t qy6 = vld1q_s8(y[i].qs + j*4 + 96);
  5153. const int8x16_t qy7 = vld1q_s8(y[i].qs + j*4 + 112);
  5154. #if defined(__ARM_FEATURE_DOTPROD)
  5155. sumi0 = vdotq_s32(sumi0, sqx0, qy0);
  5156. sumi1 = vdotq_s32(sumi1, sqx1, qy1);
  5157. sumi0 = vdotq_s32(sumi0, sqx2, qy2);
  5158. sumi1 = vdotq_s32(sumi1, sqx3, qy3);
  5159. sumi0 = vdotq_s32(sumi0, sqx4, qy4);
  5160. sumi1 = vdotq_s32(sumi1, sqx5, qy5);
  5161. sumi0 = vdotq_s32(sumi0, sqx6, qy6);
  5162. sumi1 = vdotq_s32(sumi1, sqx7, qy7);
  5163. #else
  5164. sumi0 = vmlal_s8(sumi0, vget_low_s8(sqx0), vget_low_s8(qy0));
  5165. sumi1 = vmlal_s8(sumi1, vget_high_s8(sqx0), vget_high_s8(qy0));
  5166. sumi0 = vmlal_s8(sumi0, vget_low_s8(sqx1), vget_low_s8(qy1));
  5167. sumi1 = vmlal_s8(sumi1, vget_high_s8(sqx1), vget_high_s8(qy1));
  5168. sumi0 = vmlal_s8(sumi0, vget_low_s8(sqx2), vget_low_s8(qy2));
  5169. sumi1 = vmlal_s8(sumi1, vget_high_s8(sqx2), vget_high_s8(qy2));
  5170. sumi0 = vmlal_s8(sumi0, vget_low_s8(sqx3), vget_low_s8(qy3));
  5171. sumi1 = vmlal_s8(sumi1, vget_high_s8(sqx3), vget_high_s8(qy3));
  5172. sumi0 = vmlal_s8(sumi0, vget_low_s8(sqx4), vget_low_s8(qy4));
  5173. sumi1 = vmlal_s8(sumi1, vget_high_s8(sqx4), vget_high_s8(qy4));
  5174. sumi0 = vmlal_s8(sumi0, vget_low_s8(sqx5), vget_low_s8(qy5));
  5175. sumi1 = vmlal_s8(sumi1, vget_high_s8(sqx5), vget_high_s8(qy5));
  5176. sumi0 = vmlal_s8(sumi0, vget_low_s8(sqx6), vget_low_s8(qy6));
  5177. sumi1 = vmlal_s8(sumi1, vget_high_s8(sqx6), vget_high_s8(qy6));
  5178. sumi0 = vmlal_s8(sumi0, vget_low_s8(sqx7), vget_low_s8(qy7));
  5179. sumi1 = vmlal_s8(sumi1, vget_high_s8(sqx7), vget_high_s8(qy7));
  5180. #endif
  5181. }
  5182. const int16x8_t ysum0 = vld1q_s16(y[i].bsums);
  5183. const int16x8_t ysum1 = vld1q_s16(y[i].bsums + 8);
  5184. const float d = GGML_FP16_TO_FP32(x[i].d) * y[i].d;
  5185. #if defined(__ARM_FEATURE_DOTPROD)
  5186. sumi0 = vaddq_s32(sumi0, sumi1);
  5187. sumi0 = vsubq_s32(sumi0, vpaddlq_s16(vaddq_s16(ysum0, ysum1)));
  5188. sumf += d * (float) vaddvq_s32(sumi0);
  5189. #else
  5190. sumi0 = vaddq_s16(sumi0, sumi1);
  5191. sumi0 = vsubq_s16(sumi0, vaddq_s16(ysum0, ysum1));
  5192. sumf += d * (float) vaddlvq_s16(sumi0);
  5193. #endif
  5194. }
  5195. *s = sumf;
  5196. #elif defined(__AVX2__)
  5197. __m256 sumf = _mm256_setzero_ps();
  5198. for (int i = 0; i < nb; ++i) {
  5199. // 16-bit sums, because 256*127 still fits
  5200. __m256i sumi0 = _mm256_setzero_si256();
  5201. __m256i sumi1 = _mm256_setzero_si256();
  5202. for (size_t j = 0; j < sizeof(x->qs); j += 32) {
  5203. __m256i qx0 = _mm256_loadu_si256((const __m256i *) (x[i].qs + j));
  5204. __m256i qx1 = _mm256_srli_epi16(qx0, 2);
  5205. __m256i qx2 = _mm256_srli_epi16(qx0, 4);
  5206. __m256i qx3 = _mm256_srli_epi16(qx0, 6);
  5207. // 0, 1, 2 (should not be 3)
  5208. qx0 = _mm256_and_si256(qx0, _mm256_set1_epi8(3));
  5209. qx1 = _mm256_and_si256(qx1, _mm256_set1_epi8(3));
  5210. qx2 = _mm256_and_si256(qx2, _mm256_set1_epi8(3));
  5211. qx3 = _mm256_and_si256(qx3, _mm256_set1_epi8(3));
  5212. const __m256i qy0 = _mm256_loadu_si256((const __m256i *) (y[i].qs + j*4 + 0));
  5213. const __m256i qy1 = _mm256_loadu_si256((const __m256i *) (y[i].qs + j*4 + 32));
  5214. const __m256i qy2 = _mm256_loadu_si256((const __m256i *) (y[i].qs + j*4 + 64));
  5215. const __m256i qy3 = _mm256_loadu_si256((const __m256i *) (y[i].qs + j*4 + 96));
  5216. qx0 = _mm256_maddubs_epi16(qx0, qy0);
  5217. qx1 = _mm256_maddubs_epi16(qx1, qy1);
  5218. qx2 = _mm256_maddubs_epi16(qx2, qy2);
  5219. qx3 = _mm256_maddubs_epi16(qx3, qy3);
  5220. sumi0 = _mm256_add_epi16(sumi0, _mm256_add_epi16(qx0, qx1));
  5221. sumi1 = _mm256_add_epi16(sumi1, _mm256_add_epi16(qx2, qx3));
  5222. }
  5223. const __m256i ysum = _mm256_loadu_si256((const __m256i *) y[i].bsums);
  5224. const __m256 d = _mm256_set1_ps(y[i].d * GGML_FP16_TO_FP32(x[i].d));
  5225. sumi0 = _mm256_add_epi16(sumi0, sumi1);
  5226. sumi0 = _mm256_sub_epi16(sumi0, ysum);
  5227. sumi0 = _mm256_madd_epi16(sumi0, _mm256_set1_epi16(1));
  5228. sumf = _mm256_add_ps(_mm256_mul_ps(_mm256_cvtepi32_ps(sumi0), d), sumf);
  5229. }
  5230. *s = hsum_float_8(sumf);
  5231. #else
  5232. float sumf = 0.0f;
  5233. for (int i = 0; i < nb; ++i) {
  5234. int32_t sumi = 0;
  5235. for (size_t j = 0; j < sizeof(x->qs); j += 32) {
  5236. for (size_t l = 0; l < 4; ++l) {
  5237. for (size_t k = 0; k < 32; ++k) {
  5238. sumi += y[i].qs[j*4 + l*32 + k] * (((x[i].qs[j + k] >> (l*2)) & 3) - 1);
  5239. }
  5240. }
  5241. }
  5242. const float d = y[i].d * GGML_FP16_TO_FP32(x[i].d);
  5243. sumf += (float) sumi * d;
  5244. }
  5245. *s = sumf;
  5246. #endif
  5247. }
  5248. void ggml_vec_dot_q2_K_q8_K(int n, float * restrict s, size_t bs, const void * restrict vx, size_t bx, const void * restrict vy, size_t by, int nrc) {
  5249. assert(nrc == 1);
  5250. UNUSED(nrc);
  5251. UNUSED(bx);
  5252. UNUSED(by);
  5253. UNUSED(bs);
  5254. const block_q2_K * restrict x = vx;
  5255. const block_q8_K * restrict y = vy;
  5256. const int nb = n / QK_K;
  5257. #ifdef __ARM_NEON
  5258. const uint8x16_t m3 = vdupq_n_u8(0x3);
  5259. const uint8x16_t m4 = vdupq_n_u8(0xF);
  5260. const int32x4_t vzero = vdupq_n_s32(0);
  5261. ggml_int8x16x2_t q2bytes;
  5262. uint8_t aux[16];
  5263. float sum = 0;
  5264. for (int i = 0; i < nb; ++i) {
  5265. const float d = y[i].d * GGML_FP16_TO_FP32(x[i].d);
  5266. const float dmin = -y[i].d * GGML_FP16_TO_FP32(x[i].dmin);
  5267. const uint8_t * restrict q2 = x[i].qs;
  5268. const int8_t * restrict q8 = y[i].qs;
  5269. const uint8_t * restrict sc = x[i].scales;
  5270. const uint8x16_t mins_and_scales = vld1q_u8(sc);
  5271. const uint8x16_t scales = vandq_u8(mins_and_scales, m4);
  5272. vst1q_u8(aux, scales);
  5273. const uint8x16_t mins = vshrq_n_u8(mins_and_scales, 4);
  5274. const ggml_int16x8x2_t q8sums = ggml_vld1q_s16_x2(y[i].bsums);
  5275. const ggml_int16x8x2_t mins16 = {{vreinterpretq_s16_u16(vmovl_u8(vget_low_u8(mins))), vreinterpretq_s16_u16(vmovl_u8(vget_high_u8(mins)))}};
  5276. const int32x4_t s0 = vaddq_s32(vmull_s16(vget_low_s16 (mins16.val[0]), vget_low_s16 (q8sums.val[0])),
  5277. vmull_s16(vget_high_s16(mins16.val[0]), vget_high_s16(q8sums.val[0])));
  5278. const int32x4_t s1 = vaddq_s32(vmull_s16(vget_low_s16 (mins16.val[1]), vget_low_s16 (q8sums.val[1])),
  5279. vmull_s16(vget_high_s16(mins16.val[1]), vget_high_s16(q8sums.val[1])));
  5280. sum += dmin * vaddvq_s32(vaddq_s32(s0, s1));
  5281. int isum = 0;
  5282. int is = 0;
  5283. // We use this macro instead of a function call because for some reason
  5284. // the code runs 2-3% slower, even if the function is declared inline
  5285. #define MULTIPLY_ACCUM_WITH_SCALE(index)\
  5286. isum += vaddvq_s32(ggml_vdotq_s32(vzero, q2bytes.val[0], q8bytes.val[0])) * aux[is+(index)];\
  5287. isum += vaddvq_s32(ggml_vdotq_s32(vzero, q2bytes.val[1], q8bytes.val[1])) * aux[is+1+(index)];
  5288. #define SHIFT_MULTIPLY_ACCUM_WITH_SCALE(shift, index)\
  5289. q8bytes = ggml_vld1q_s8_x2(q8); q8 += 32;\
  5290. q2bytes.val[0] = vreinterpretq_s8_u8(vandq_u8(vshrq_n_u8(q2bits.val[0], (shift)), m3));\
  5291. q2bytes.val[1] = vreinterpretq_s8_u8(vandq_u8(vshrq_n_u8(q2bits.val[1], (shift)), m3));\
  5292. MULTIPLY_ACCUM_WITH_SCALE((index));
  5293. for (int j = 0; j < QK_K/128; ++j) {
  5294. const ggml_uint8x16x2_t q2bits = ggml_vld1q_u8_x2(q2); q2 += 32;
  5295. ggml_int8x16x2_t q8bytes = ggml_vld1q_s8_x2(q8); q8 += 32;
  5296. q2bytes.val[0] = vreinterpretq_s8_u8(vandq_u8(q2bits.val[0], m3));
  5297. q2bytes.val[1] = vreinterpretq_s8_u8(vandq_u8(q2bits.val[1], m3));
  5298. MULTIPLY_ACCUM_WITH_SCALE(0);
  5299. SHIFT_MULTIPLY_ACCUM_WITH_SCALE(2, 2);
  5300. SHIFT_MULTIPLY_ACCUM_WITH_SCALE(4, 4);
  5301. SHIFT_MULTIPLY_ACCUM_WITH_SCALE(6, 6);
  5302. is += 8;
  5303. }
  5304. sum += d * isum;
  5305. }
  5306. *s = sum;
  5307. #elif defined __AVX2__
  5308. const __m256i m3 = _mm256_set1_epi8(3);
  5309. const __m128i m4 = _mm_set1_epi8(0xF);
  5310. __m256 acc = _mm256_setzero_ps();
  5311. for (int i = 0; i < nb; ++i) {
  5312. const float d = y[i].d * GGML_FP16_TO_FP32(x[i].d);
  5313. const float dmin = -y[i].d * GGML_FP16_TO_FP32(x[i].dmin);
  5314. const uint8_t * restrict q2 = x[i].qs;
  5315. const int8_t * restrict q8 = y[i].qs;
  5316. const __m128i mins_and_scales = _mm_loadu_si128((const __m128i*)x[i].scales);
  5317. const __m128i scales8 = _mm_and_si128(mins_and_scales, m4);
  5318. const __m128i mins8 = _mm_and_si128(_mm_srli_epi16(mins_and_scales, 4), m4);
  5319. const __m256i mins = _mm256_cvtepi8_epi16(mins8);
  5320. const __m256i prod = _mm256_madd_epi16(mins, _mm256_loadu_si256((const __m256i*)y[i].bsums));
  5321. acc = _mm256_fmadd_ps(_mm256_broadcast_ss(&dmin), _mm256_cvtepi32_ps(prod), acc);
  5322. const __m256i all_scales = _mm256_cvtepi8_epi16(scales8);
  5323. const __m128i l_scales = _mm256_extracti128_si256(all_scales, 0);
  5324. const __m128i h_scales = _mm256_extracti128_si256(all_scales, 1);
  5325. const __m256i scales[2] = {MM256_SET_M128I(l_scales, l_scales), MM256_SET_M128I(h_scales, h_scales)};
  5326. __m256i sumi = _mm256_setzero_si256();
  5327. for (int j = 0; j < QK_K/128; ++j) {
  5328. const __m256i q2bits = _mm256_loadu_si256((const __m256i*)q2); q2 += 32;
  5329. const __m256i q8_0 = _mm256_loadu_si256((const __m256i*)q8); q8 += 32;
  5330. const __m256i q8_1 = _mm256_loadu_si256((const __m256i*)q8); q8 += 32;
  5331. const __m256i q8_2 = _mm256_loadu_si256((const __m256i*)q8); q8 += 32;
  5332. const __m256i q8_3 = _mm256_loadu_si256((const __m256i*)q8); q8 += 32;
  5333. const __m256i q2_0 = _mm256_and_si256(q2bits, m3);
  5334. const __m256i q2_1 = _mm256_and_si256(_mm256_srli_epi16(q2bits, 2), m3);
  5335. const __m256i q2_2 = _mm256_and_si256(_mm256_srli_epi16(q2bits, 4), m3);
  5336. const __m256i q2_3 = _mm256_and_si256(_mm256_srli_epi16(q2bits, 6), m3);
  5337. __m256i p0 = _mm256_maddubs_epi16(q2_0, q8_0);
  5338. __m256i p1 = _mm256_maddubs_epi16(q2_1, q8_1);
  5339. __m256i p2 = _mm256_maddubs_epi16(q2_2, q8_2);
  5340. __m256i p3 = _mm256_maddubs_epi16(q2_3, q8_3);
  5341. p0 = _mm256_madd_epi16(_mm256_shuffle_epi8(scales[j], get_scale_shuffle_q3k(0)), p0);
  5342. p1 = _mm256_madd_epi16(_mm256_shuffle_epi8(scales[j], get_scale_shuffle_q3k(1)), p1);
  5343. p2 = _mm256_madd_epi16(_mm256_shuffle_epi8(scales[j], get_scale_shuffle_q3k(2)), p2);
  5344. p3 = _mm256_madd_epi16(_mm256_shuffle_epi8(scales[j], get_scale_shuffle_q3k(3)), p3);
  5345. p0 = _mm256_add_epi32(p0, p1);
  5346. p2 = _mm256_add_epi32(p2, p3);
  5347. sumi = _mm256_add_epi32(sumi, _mm256_add_epi32(p0, p2));
  5348. }
  5349. acc = _mm256_fmadd_ps(_mm256_broadcast_ss(&d), _mm256_cvtepi32_ps(sumi), acc);
  5350. }
  5351. *s = hsum_float_8(acc);
  5352. #elif defined __AVX__
  5353. const __m128i m3 = _mm_set1_epi8(0x3);
  5354. const __m128i m4 = _mm_set1_epi8(0xF);
  5355. const __m128i m2 = _mm_set1_epi8(0x2);
  5356. __m256 acc = _mm256_setzero_ps();
  5357. for (int i = 0; i < nb; ++i) {
  5358. const float dall = y[i].d * GGML_FP16_TO_FP32(x[i].d);
  5359. const float dmin = -y[i].d * GGML_FP16_TO_FP32(x[i].dmin);
  5360. const uint8_t * restrict q2 = x[i].qs;
  5361. const int8_t * restrict q8 = y[i].qs;
  5362. // load mins and scales from block_q2_K.scales[QK_K/16]
  5363. const __m128i mins_and_scales = _mm_loadu_si128((const __m128i*)x[i].scales);
  5364. const __m128i scales16 = _mm_and_si128(mins_and_scales, m4);
  5365. const __m128i mins16 = _mm_and_si128(_mm_srli_epi16(mins_and_scales, 4), m4);
  5366. const __m128i mins_0 = _mm_cvtepi8_epi16(mins16);
  5367. const __m128i mins_1 = _mm_cvtepi8_epi16(_mm_unpackhi_epi64(mins16, mins16));
  5368. // summs = y[i].bsums * (x[i].scales >> 4) in 16bits*8*2 to 32bits*4*2
  5369. const __m128i summs_0 = _mm_madd_epi16(mins_0, _mm_loadu_si128((const __m128i*)&y[i].bsums[0]));
  5370. const __m128i summs_1 = _mm_madd_epi16(mins_1, _mm_loadu_si128((const __m128i*)&y[i].bsums[8]));
  5371. // sumf += -dmin * summs in 32bits*8
  5372. acc = _mm256_add_ps(_mm256_mul_ps(_mm256_broadcast_ss(&dmin), _mm256_cvtepi32_ps(MM256_SET_M128I(summs_1, summs_0))), acc);
  5373. const __m128i scales_0 = _mm_cvtepi8_epi16(scales16);
  5374. const __m128i scales_1 = _mm_cvtepi8_epi16(_mm_unpackhi_epi64(scales16, scales16));
  5375. const __m128i scales[2] = { scales_0, scales_1 };
  5376. __m128i sumi_0 = _mm_setzero_si128();
  5377. __m128i sumi_1 = _mm_setzero_si128();
  5378. for (int j = 0; j < QK_K/128; ++j) {
  5379. // load Q8 quants int8*16*8 from block_q8_K.qs[QK_K]
  5380. const __m128i q8_0 = _mm_loadu_si128((const __m128i*)q8); q8 += 16;
  5381. const __m128i q8_1 = _mm_loadu_si128((const __m128i*)q8); q8 += 16;
  5382. const __m128i q8_2 = _mm_loadu_si128((const __m128i*)q8); q8 += 16;
  5383. const __m128i q8_3 = _mm_loadu_si128((const __m128i*)q8); q8 += 16;
  5384. const __m128i q8_4 = _mm_loadu_si128((const __m128i*)q8); q8 += 16;
  5385. const __m128i q8_5 = _mm_loadu_si128((const __m128i*)q8); q8 += 16;
  5386. const __m128i q8_6 = _mm_loadu_si128((const __m128i*)q8); q8 += 16;
  5387. const __m128i q8_7 = _mm_loadu_si128((const __m128i*)q8); q8 += 16;
  5388. // load 2bits*16*8 from block_q2_K.qs[QK_K/4]
  5389. __m128i q2bits = _mm_loadu_si128((const __m128i*)q2); q2 += 16;
  5390. const __m128i q2_0 = _mm_and_si128(q2bits, m3);
  5391. const __m128i q2_2 = _mm_and_si128(_mm_srli_epi16(q2bits, 2), m3);
  5392. const __m128i q2_4 = _mm_and_si128(_mm_srli_epi16(q2bits, 4), m3);
  5393. const __m128i q2_6 = _mm_and_si128(_mm_srli_epi16(q2bits, 6), m3);
  5394. q2bits = _mm_loadu_si128((const __m128i*)q2); q2 += 16;
  5395. const __m128i q2_1 = _mm_and_si128(q2bits, m3);
  5396. const __m128i q2_3 = _mm_and_si128(_mm_srli_epi16(q2bits, 2), m3);
  5397. const __m128i q2_5 = _mm_and_si128(_mm_srli_epi16(q2bits, 4), m3);
  5398. const __m128i q2_7 = _mm_and_si128(_mm_srli_epi16(q2bits, 6), m3);
  5399. // isuml = q8[l] * ((q2[l] >> shift) & 3) in 8bits*16*8 to 16bits*8*8
  5400. __m128i p0 = _mm_maddubs_epi16(q2_0, q8_0);
  5401. __m128i p1 = _mm_maddubs_epi16(q2_1, q8_1);
  5402. __m128i p2 = _mm_maddubs_epi16(q2_2, q8_2);
  5403. __m128i p3 = _mm_maddubs_epi16(q2_3, q8_3);
  5404. __m128i p4 = _mm_maddubs_epi16(q2_4, q8_4);
  5405. __m128i p5 = _mm_maddubs_epi16(q2_5, q8_5);
  5406. __m128i p6 = _mm_maddubs_epi16(q2_6, q8_6);
  5407. __m128i p7 = _mm_maddubs_epi16(q2_7, q8_7);
  5408. // isum += (x[i].scales[is++] & 0xF) * isuml in 16bits*8*8 to 32bits*4*8
  5409. __m128i shuffle = _mm_set1_epi16(0x0100);
  5410. p0 = _mm_madd_epi16(_mm_shuffle_epi8(scales[j], shuffle), p0);
  5411. shuffle = _mm_add_epi16(shuffle, m2);
  5412. p1 = _mm_madd_epi16(_mm_shuffle_epi8(scales[j], shuffle), p1);
  5413. shuffle = _mm_add_epi16(shuffle, m2);
  5414. p2 = _mm_madd_epi16(_mm_shuffle_epi8(scales[j], shuffle), p2);
  5415. shuffle = _mm_add_epi16(shuffle, m2);
  5416. p3 = _mm_madd_epi16(_mm_shuffle_epi8(scales[j], shuffle), p3);
  5417. shuffle = _mm_add_epi16(shuffle, m2);
  5418. p4 = _mm_madd_epi16(_mm_shuffle_epi8(scales[j], shuffle), p4);
  5419. shuffle = _mm_add_epi16(shuffle, m2);
  5420. p5 = _mm_madd_epi16(_mm_shuffle_epi8(scales[j], shuffle), p5);
  5421. shuffle = _mm_add_epi16(shuffle, m2);
  5422. p6 = _mm_madd_epi16(_mm_shuffle_epi8(scales[j], shuffle), p6);
  5423. shuffle = _mm_add_epi16(shuffle, m2);
  5424. p7 = _mm_madd_epi16(_mm_shuffle_epi8(scales[j], shuffle), p7);
  5425. p0 = _mm_add_epi32(p0, p1);
  5426. p2 = _mm_add_epi32(p2, p3);
  5427. p4 = _mm_add_epi32(p4, p5);
  5428. p6 = _mm_add_epi32(p6, p7);
  5429. // isum in 32bits*4*2
  5430. sumi_0 = _mm_add_epi32(sumi_0, _mm_add_epi32(p0, p2));
  5431. sumi_1 = _mm_add_epi32(sumi_1, _mm_add_epi32(p4, p6));
  5432. }
  5433. // sumf += dall * isum - dmin * summs in 32bits
  5434. __m256i sumi = MM256_SET_M128I(sumi_1, sumi_0);
  5435. acc = _mm256_add_ps(_mm256_mul_ps(_mm256_broadcast_ss(&dall), _mm256_cvtepi32_ps(sumi)), acc);
  5436. }
  5437. *s = hsum_float_8(acc);
  5438. #elif defined __riscv_v_intrinsic
  5439. float sumf = 0;
  5440. uint8_t temp_01[32] = {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
  5441. 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1};
  5442. for (int i = 0; i < nb; ++i) {
  5443. const uint8_t * q2 = x[i].qs;
  5444. const int8_t * q8 = y[i].qs;
  5445. const uint8_t * sc = x[i].scales;
  5446. const float dall = y[i].d * GGML_FP16_TO_FP32(x[i].d);
  5447. const float dmin = -y[i].d * GGML_FP16_TO_FP32(x[i].dmin);
  5448. size_t vl = 16;
  5449. vuint8m1_t scales = __riscv_vle8_v_u8m1(sc, vl);
  5450. vuint8m1_t aux = __riscv_vand_vx_u8m1(scales, 0x0F, vl);
  5451. vint16m1_t q8sums = __riscv_vle16_v_i16m1(y[i].bsums, vl);
  5452. vuint8mf2_t scales_2 = __riscv_vle8_v_u8mf2(sc, vl);
  5453. vuint8mf2_t mins8 = __riscv_vsrl_vx_u8mf2(scales_2, 0x4, vl);
  5454. vint16m1_t mins = __riscv_vreinterpret_v_u16m1_i16m1(__riscv_vzext_vf2_u16m1(mins8, vl));
  5455. vint32m2_t prod = __riscv_vwmul_vv_i32m2(q8sums, mins, vl);
  5456. vint32m1_t vsums = __riscv_vredsum_vs_i32m2_i32m1(prod, __riscv_vmv_v_x_i32m1(0, 1), vl);
  5457. sumf += dmin * __riscv_vmv_x_s_i32m1_i32(vsums);
  5458. vl = 32;
  5459. vint32m1_t vzero = __riscv_vmv_v_x_i32m1(0, 1);
  5460. vuint8m1_t v_b = __riscv_vle8_v_u8m1(temp_01, vl);
  5461. uint8_t is=0;
  5462. int isum=0;
  5463. for (int j = 0; j < QK_K/128; ++j) {
  5464. // load Q2
  5465. vuint8m1_t q2_x = __riscv_vle8_v_u8m1(q2, vl);
  5466. vuint8m1_t q2_0 = __riscv_vand_vx_u8m1(q2_x, 0x03, vl);
  5467. vuint8m1_t q2_1 = __riscv_vand_vx_u8m1(__riscv_vsrl_vx_u8m1(q2_x, 0x2, vl), 0x03 , vl);
  5468. vuint8m1_t q2_2 = __riscv_vand_vx_u8m1(__riscv_vsrl_vx_u8m1(q2_x, 0x4, vl), 0x03 , vl);
  5469. vuint8m1_t q2_3 = __riscv_vand_vx_u8m1(__riscv_vsrl_vx_u8m1(q2_x, 0x6, vl), 0x03 , vl);
  5470. // duplicate scale elements for product
  5471. vuint8m1_t sc0 = __riscv_vrgather_vv_u8m1(aux, __riscv_vadd_vx_u8m1(v_b, 0+is, vl), vl);
  5472. vuint8m1_t sc1 = __riscv_vrgather_vv_u8m1(aux, __riscv_vadd_vx_u8m1(v_b, 2+is, vl), vl);
  5473. vuint8m1_t sc2 = __riscv_vrgather_vv_u8m1(aux, __riscv_vadd_vx_u8m1(v_b, 4+is, vl), vl);
  5474. vuint8m1_t sc3 = __riscv_vrgather_vv_u8m1(aux, __riscv_vadd_vx_u8m1(v_b, 6+is, vl), vl);
  5475. vint16m2_t p0 = __riscv_vreinterpret_v_u16m2_i16m2(__riscv_vwmulu_vv_u16m2(q2_0, sc0, vl));
  5476. vint16m2_t p1 = __riscv_vreinterpret_v_u16m2_i16m2(__riscv_vwmulu_vv_u16m2(q2_1, sc1, vl));
  5477. vint16m2_t p2 = __riscv_vreinterpret_v_u16m2_i16m2(__riscv_vwmulu_vv_u16m2(q2_2, sc2, vl));
  5478. vint16m2_t p3 = __riscv_vreinterpret_v_u16m2_i16m2(__riscv_vwmulu_vv_u16m2(q2_3, sc3, vl));
  5479. // load Q8
  5480. vint8m1_t q8_0 = __riscv_vle8_v_i8m1(q8, vl);
  5481. vint8m1_t q8_1 = __riscv_vle8_v_i8m1(q8+32, vl);
  5482. vint8m1_t q8_2 = __riscv_vle8_v_i8m1(q8+64, vl);
  5483. vint8m1_t q8_3 = __riscv_vle8_v_i8m1(q8+96, vl);
  5484. vint32m4_t s0 = __riscv_vwmul_vv_i32m4(p0, __riscv_vwcvt_x_x_v_i16m2(q8_0, vl), vl);
  5485. vint32m4_t s1 = __riscv_vwmul_vv_i32m4(p1, __riscv_vwcvt_x_x_v_i16m2(q8_1, vl), vl);
  5486. vint32m4_t s2 = __riscv_vwmul_vv_i32m4(p2, __riscv_vwcvt_x_x_v_i16m2(q8_2, vl), vl);
  5487. vint32m4_t s3 = __riscv_vwmul_vv_i32m4(p3, __riscv_vwcvt_x_x_v_i16m2(q8_3, vl), vl);
  5488. vint32m1_t isum0 = __riscv_vredsum_vs_i32m4_i32m1(__riscv_vadd_vv_i32m4(s0, s1, vl), vzero, vl);
  5489. vint32m1_t isum1 = __riscv_vredsum_vs_i32m4_i32m1(__riscv_vadd_vv_i32m4(s2, s3, vl), isum0, vl);
  5490. isum += __riscv_vmv_x_s_i32m1_i32(isum1);
  5491. q2+=32; q8+=128; is=8;
  5492. }
  5493. sumf += dall * isum;
  5494. }
  5495. *s = sumf;
  5496. #elif defined(__POWER9_VECTOR__)
  5497. const vector signed char lowMask = vec_splats((signed char)0x3);
  5498. const vector signed char lowScaleMask = vec_splats((signed char)0xF);
  5499. const vector int v0 = vec_splats((int32_t)0);
  5500. const vector unsigned char v2 = vec_splats((unsigned char)0x2);
  5501. const vector unsigned char v6 = vec_splats((unsigned char)0x6);
  5502. const vector unsigned char v4 = vec_splats((unsigned char)0x4);
  5503. vector float vsumf0 = vec_splats(0.0f);
  5504. vector float vsumf1 = vec_splats(0.0f);
  5505. vector float vsumf2 = vec_splats(0.0f);
  5506. vector float vsumf3 = vec_splats(0.0f);
  5507. for (int i = 0; i < nb; ++i) {
  5508. vector float vxd = vec_splats(GGML_FP16_TO_FP32(x[i].d));
  5509. vector float vyd = vec_splats(y[i].d);
  5510. vector float vd = vec_mul(vxd, vyd);
  5511. vector float vxmin = vec_splats(GGML_FP16_TO_FP32(x[i].dmin));
  5512. vector float vdmin = vec_mul(vxmin, vyd);
  5513. vector signed short q8ysums0 = vec_xl( 0, y[i].bsums);
  5514. vector signed short q8ysums1 = vec_xl(16, y[i].bsums);
  5515. vector signed char q2xmins = (vector signed char)vec_xl( 0, x[i].scales);
  5516. vector signed char vscales = vec_and(q2xmins, lowScaleMask);
  5517. q2xmins = vec_sr(q2xmins, v4);
  5518. vector signed short q2xmins0 = vec_unpackh(q2xmins);
  5519. vector signed short q2xmins1 = vec_unpackl(q2xmins);
  5520. vector signed int prod0 = vec_mule(q2xmins0, q8ysums0);
  5521. vector signed int prod1 = vec_mulo(q2xmins0, q8ysums0);
  5522. vector signed int prod2 = vec_mule(q2xmins1, q8ysums1);
  5523. vector signed int prod3 = vec_mulo(q2xmins1, q8ysums1);
  5524. vsumf0 = vec_nmsub(vec_ctf(prod0, 0), vdmin, vsumf0);
  5525. vsumf1 = vec_nmsub(vec_ctf(prod1, 0), vdmin, vsumf1);
  5526. vsumf2 = vec_nmsub(vec_ctf(prod2, 0), vdmin, vsumf2);
  5527. vsumf3 = vec_nmsub(vec_ctf(prod3, 0), vdmin, vsumf3);
  5528. vector signed int vsumi0 = v0;
  5529. vector signed int vsumi1 = v0;
  5530. vector signed int vsumi2 = v0;
  5531. vector signed int vsumi3 = v0;
  5532. vector signed int vsumi4 = v0;
  5533. vector signed int vsumi5 = v0;
  5534. vector signed int vsumi6 = v0;
  5535. vector signed int vsumi7 = v0;
  5536. const uint8_t * restrict q2 = x[i].qs;
  5537. const int8_t * restrict q8 = y[i].qs;
  5538. for (int j = 0; j < QK_K/128; ++j) {
  5539. __builtin_prefetch(q2, 0, 1);
  5540. __builtin_prefetch(q8, 0, 1);
  5541. vector signed char qxs0 = (vector signed char)vec_xl( 0, q2);
  5542. vector signed char qxs1 = (vector signed char)vec_xl(16, q2);
  5543. q2 += 32;
  5544. vector unsigned char q2x00 = (vector unsigned char)vec_and(qxs0, lowMask);
  5545. vector unsigned char q2x01 = (vector unsigned char)vec_and(vec_sr(qxs0, v2), lowMask);
  5546. vector unsigned char q2x02 = (vector unsigned char)vec_and(vec_sr(qxs0, v4), lowMask);
  5547. vector unsigned char q2x03 = (vector unsigned char)vec_and(vec_sr(qxs0, v6), lowMask);
  5548. vector unsigned char q2x10 = (vector unsigned char)vec_and(qxs1, lowMask);
  5549. vector unsigned char q2x11 = (vector unsigned char)vec_and(vec_sr(qxs1, v2), lowMask);
  5550. vector unsigned char q2x12 = (vector unsigned char)vec_and(vec_sr(qxs1, v4), lowMask);
  5551. vector unsigned char q2x13 = (vector unsigned char)vec_and(vec_sr(qxs1, v6), lowMask);
  5552. vector signed char q8y00 = vec_xl( 0, q8);
  5553. vector signed char q8y10 = vec_xl( 16, q8);
  5554. vector signed char q8y01 = vec_xl( 32, q8);
  5555. vector signed char q8y11 = vec_xl( 48, q8);
  5556. vector signed char q8y02 = vec_xl( 64, q8);
  5557. vector signed char q8y12 = vec_xl( 80, q8);
  5558. vector signed char q8y03 = vec_xl( 96, q8);
  5559. vector signed char q8y13 = vec_xl(112, q8);
  5560. q8 += 128;
  5561. vector signed int qv0 = vec_msum(q8y00, q2x00, v0);
  5562. vector signed int qv1 = vec_msum(q8y01, q2x01, v0);
  5563. vector signed int qv2 = vec_msum(q8y02, q2x02, v0);
  5564. vector signed int qv3 = vec_msum(q8y03, q2x03, v0);
  5565. vector signed int qv4 = vec_msum(q8y10, q2x10, v0);
  5566. vector signed int qv5 = vec_msum(q8y11, q2x11, v0);
  5567. vector signed int qv6 = vec_msum(q8y12, q2x12, v0);
  5568. vector signed int qv7 = vec_msum(q8y13, q2x13, v0);
  5569. vector signed short vscales_07 = vec_unpackh(vscales);
  5570. vector signed int vscales_03 = vec_unpackh(vscales_07);
  5571. vector signed int vscales_47 = vec_unpackl(vscales_07);
  5572. vector signed int vs0 = vec_splat(vscales_03, 0);
  5573. vector signed int vs1 = vec_splat(vscales_03, 1);
  5574. vector signed int vs2 = vec_splat(vscales_03, 2);
  5575. vector signed int vs3 = vec_splat(vscales_03, 3);
  5576. vector signed int vs4 = vec_splat(vscales_47, 0);
  5577. vector signed int vs5 = vec_splat(vscales_47, 1);
  5578. vector signed int vs6 = vec_splat(vscales_47, 2);
  5579. vector signed int vs7 = vec_splat(vscales_47, 3);
  5580. vscales = vec_sld(vscales, vscales, 8);
  5581. vsumi0 = vec_add(vec_mul(qv0, vs0), vsumi0);
  5582. vsumi1 = vec_add(vec_mul(qv1, vs2), vsumi1);
  5583. vsumi2 = vec_add(vec_mul(qv2, vs4), vsumi2);
  5584. vsumi3 = vec_add(vec_mul(qv3, vs6), vsumi3);
  5585. vsumi4 = vec_add(vec_mul(qv4, vs1), vsumi4);
  5586. vsumi5 = vec_add(vec_mul(qv5, vs3), vsumi5);
  5587. vsumi6 = vec_add(vec_mul(qv6, vs5), vsumi6);
  5588. vsumi7 = vec_add(vec_mul(qv7, vs7), vsumi7);
  5589. }
  5590. vsumi0 = vec_add(vsumi0, vsumi4);
  5591. vsumi1 = vec_add(vsumi1, vsumi5);
  5592. vsumi2 = vec_add(vsumi2, vsumi6);
  5593. vsumi3 = vec_add(vsumi3, vsumi7);
  5594. vsumf0 = vec_madd(vec_ctf(vsumi0, 0), vd, vsumf0);
  5595. vsumf1 = vec_madd(vec_ctf(vsumi1, 0), vd, vsumf1);
  5596. vsumf2 = vec_madd(vec_ctf(vsumi2, 0), vd, vsumf2);
  5597. vsumf3 = vec_madd(vec_ctf(vsumi3, 0), vd, vsumf3);
  5598. }
  5599. vsumf0 = vec_add(vsumf0, vsumf2);
  5600. vsumf1 = vec_add(vsumf1, vsumf3);
  5601. vsumf0 = vec_add(vsumf0, vsumf1);
  5602. vsumf0 = vec_add(vsumf0, vec_sld(vsumf0, vsumf0, 4));
  5603. vsumf0 = vec_add(vsumf0, vec_sld(vsumf0, vsumf0, 8));
  5604. *s = vec_extract(vsumf0, 0);
  5605. #elif defined __loongarch_asx
  5606. const __m256i m3 = __lasx_xvreplgr2vr_b(3);
  5607. const __m128i m4 = __lsx_vreplgr2vr_b(0xF);
  5608. __m256 acc = (__m256)__lasx_xvldi(0);
  5609. for (int i = 0; i < nb; ++i) {
  5610. const float d = y[i].d * GGML_FP16_TO_FP32(x[i].d);
  5611. const float dmin = -y[i].d * GGML_FP16_TO_FP32(x[i].dmin);
  5612. const uint8_t * restrict q2 = x[i].qs;
  5613. const int8_t * restrict q8 = y[i].qs;
  5614. const __m128i mins_and_scales = __lsx_vld((const __m128i*)x[i].scales, 0);
  5615. const __m128i scales8 = __lsx_vand_v(mins_and_scales, m4);
  5616. const __m128i mins8 = __lsx_vand_v(__lsx_vsrli_h(mins_and_scales, 4), m4);
  5617. const __m256i mins = lasx_ext8_16(mins8);
  5618. const __m256i prod = lasx_madd_h(mins, __lasx_xvld((const __m256i*)y[i].bsums, 0));
  5619. acc = __lasx_xvfmadd_s(__lasx_xvreplfr2vr_s(dmin), __lasx_xvffint_s_w(prod), acc);
  5620. const __m256i all_scales = lasx_ext8_16(scales8);
  5621. const __m128i l_scales = lasx_extracti128(all_scales, 0);
  5622. const __m128i h_scales = lasx_extracti128(all_scales, 1);
  5623. const __m256i scales[2] = {lasx_insertf128(l_scales, l_scales), lasx_insertf128(h_scales, h_scales)};
  5624. __m256i sumi = __lasx_xvldi(0);
  5625. for (int j = 0; j < QK_K/128; ++j) {
  5626. const __m256i q2bits = __lasx_xvld((const __m256i*)q2, 0); q2 += 32;
  5627. const __m256i q8_0 = __lasx_xvld((const __m256i*)q8, 0); q8 += 32;
  5628. const __m256i q8_1 = __lasx_xvld((const __m256i*)q8, 0); q8 += 32;
  5629. const __m256i q8_2 = __lasx_xvld((const __m256i*)q8, 0); q8 += 32;
  5630. const __m256i q8_3 = __lasx_xvld((const __m256i*)q8, 0); q8 += 32;
  5631. const __m256i q2_0 = __lasx_xvand_v(q2bits, m3);
  5632. const __m256i q2_1 = __lasx_xvand_v(__lasx_xvsrli_h(q2bits, 2), m3);
  5633. const __m256i q2_2 = __lasx_xvand_v(__lasx_xvsrli_h(q2bits, 4), m3);
  5634. const __m256i q2_3 = __lasx_xvand_v(__lasx_xvsrli_h(q2bits, 6), m3);
  5635. __m256i p0 = lasx_maddubs_h(q2_0, q8_0);
  5636. __m256i p1 = lasx_maddubs_h(q2_1, q8_1);
  5637. __m256i p2 = lasx_maddubs_h(q2_2, q8_2);
  5638. __m256i p3 = lasx_maddubs_h(q2_3, q8_3);
  5639. p0 = lasx_madd_h(lasx_shuffle_b(scales[j], get_scale_shuffle_q3k(0)), p0);
  5640. p1 = lasx_madd_h(lasx_shuffle_b(scales[j], get_scale_shuffle_q3k(1)), p1);
  5641. p2 = lasx_madd_h(lasx_shuffle_b(scales[j], get_scale_shuffle_q3k(2)), p2);
  5642. p3 = lasx_madd_h(lasx_shuffle_b(scales[j], get_scale_shuffle_q3k(3)), p3);
  5643. p0 = __lasx_xvadd_w(p0, p1);
  5644. p2 = __lasx_xvadd_w(p2, p3);
  5645. sumi = __lasx_xvadd_w(sumi, __lasx_xvadd_w(p0, p2));
  5646. }
  5647. acc = __lasx_xvfmadd_s(__lasx_xvreplfr2vr_s(d), __lasx_xvffint_s_w(sumi), acc);
  5648. }
  5649. *s = hsum_float_8(acc);
  5650. #else
  5651. float sumf = 0;
  5652. for (int i = 0; i < nb; ++i) {
  5653. const uint8_t * q2 = x[i].qs;
  5654. const int8_t * q8 = y[i].qs;
  5655. const uint8_t * sc = x[i].scales;
  5656. int summs = 0;
  5657. for (int j = 0; j < 16; ++j) {
  5658. summs += y[i].bsums[j] * (sc[j] >> 4);
  5659. }
  5660. const float dall = y[i].d * GGML_FP16_TO_FP32(x[i].d);
  5661. const float dmin = y[i].d * GGML_FP16_TO_FP32(x[i].dmin);
  5662. int isum = 0;
  5663. int is = 0;
  5664. int d;
  5665. for (int k = 0; k < QK_K/128; ++k) {
  5666. int shift = 0;
  5667. for (int j = 0; j < 4; ++j) {
  5668. d = sc[is++] & 0xF;
  5669. int isuml = 0;
  5670. for (int l = 0; l < 16; ++l) isuml += q8[l] * ((q2[l] >> shift) & 3);
  5671. isum += d * isuml;
  5672. d = sc[is++] & 0xF;
  5673. isuml = 0;
  5674. for (int l = 16; l < 32; ++l) isuml += q8[l] * ((q2[l] >> shift) & 3);
  5675. isum += d * isuml;
  5676. shift += 2;
  5677. q8 += 32;
  5678. }
  5679. q2 += 32;
  5680. }
  5681. sumf += dall * isum - dmin * summs;
  5682. }
  5683. *s = sumf;
  5684. #endif
  5685. }
  5686. void ggml_vec_dot_q3_K_q8_K(int n, float * restrict s, size_t bs, const void * restrict vx, size_t bx, const void * restrict vy, size_t by, int nrc) {
  5687. assert(n % QK_K == 0);
  5688. assert(nrc == 1);
  5689. UNUSED(nrc);
  5690. UNUSED(bx);
  5691. UNUSED(by);
  5692. UNUSED(bs);
  5693. const uint32_t kmask1 = 0x03030303;
  5694. const uint32_t kmask2 = 0x0f0f0f0f;
  5695. const block_q3_K * restrict x = vx;
  5696. const block_q8_K * restrict y = vy;
  5697. const int nb = n / QK_K;
  5698. #ifdef __ARM_NEON
  5699. uint32_t aux[3];
  5700. uint32_t utmp[4];
  5701. const uint8x16_t m3b = vdupq_n_u8(0x3);
  5702. const int32x4_t vzero = vdupq_n_s32(0);
  5703. const uint8x16_t m0 = vdupq_n_u8(1);
  5704. const uint8x16_t m1 = vshlq_n_u8(m0, 1);
  5705. const uint8x16_t m2 = vshlq_n_u8(m0, 2);
  5706. const uint8x16_t m3 = vshlq_n_u8(m0, 3);
  5707. const int8_t m32 = 32;
  5708. ggml_int8x16x4_t q3bytes;
  5709. float sum = 0;
  5710. for (int i = 0; i < nb; ++i) {
  5711. const float d = y[i].d * GGML_FP16_TO_FP32(x[i].d);
  5712. const uint8_t * restrict q3 = x[i].qs;
  5713. const uint8_t * restrict qh = x[i].hmask;
  5714. const int8_t * restrict q8 = y[i].qs;
  5715. ggml_uint8x16x2_t qhbits = ggml_vld1q_u8_x2(qh);
  5716. ggml_uint8x16x4_t q3h;
  5717. int32_t isum = 0;
  5718. // Set up scales
  5719. memcpy(aux, x[i].scales, 12);
  5720. utmp[3] = ((aux[1] >> 4) & kmask2) | (((aux[2] >> 6) & kmask1) << 4);
  5721. utmp[2] = ((aux[0] >> 4) & kmask2) | (((aux[2] >> 4) & kmask1) << 4);
  5722. utmp[1] = (aux[1] & kmask2) | (((aux[2] >> 2) & kmask1) << 4);
  5723. utmp[0] = (aux[0] & kmask2) | (((aux[2] >> 0) & kmask1) << 4);
  5724. int8_t * scale = (int8_t *)utmp;
  5725. for (int j = 0; j < 16; ++j) scale[j] -= m32;
  5726. for (int j = 0; j < QK_K/128; ++j) {
  5727. const ggml_uint8x16x2_t q3bits = ggml_vld1q_u8_x2(q3); q3 += 32;
  5728. const ggml_int8x16x4_t q8bytes_1 = ggml_vld1q_s8_x4(q8); q8 += 64;
  5729. const ggml_int8x16x4_t q8bytes_2 = ggml_vld1q_s8_x4(q8); q8 += 64;
  5730. q3h.val[0] = vshlq_n_u8(vbicq_u8(m0, qhbits.val[0]), 2);
  5731. q3h.val[1] = vshlq_n_u8(vbicq_u8(m0, qhbits.val[1]), 2);
  5732. q3h.val[2] = vshlq_n_u8(vbicq_u8(m1, qhbits.val[0]), 1);
  5733. q3h.val[3] = vshlq_n_u8(vbicq_u8(m1, qhbits.val[1]), 1);
  5734. q3bytes.val[0] = vsubq_s8(vreinterpretq_s8_u8(vandq_u8(q3bits.val[0], m3b)), vreinterpretq_s8_u8(q3h.val[0]));
  5735. q3bytes.val[1] = vsubq_s8(vreinterpretq_s8_u8(vandq_u8(q3bits.val[1], m3b)), vreinterpretq_s8_u8(q3h.val[1]));
  5736. q3bytes.val[2] = vsubq_s8(vreinterpretq_s8_u8(vandq_u8(vshrq_n_u8(q3bits.val[0], 2), m3b)), vreinterpretq_s8_u8(q3h.val[2]));
  5737. q3bytes.val[3] = vsubq_s8(vreinterpretq_s8_u8(vandq_u8(vshrq_n_u8(q3bits.val[1], 2), m3b)), vreinterpretq_s8_u8(q3h.val[3]));
  5738. isum += vaddvq_s32(ggml_vdotq_s32(vzero, q3bytes.val[0], q8bytes_1.val[0])) * scale[0];
  5739. isum += vaddvq_s32(ggml_vdotq_s32(vzero, q3bytes.val[1], q8bytes_1.val[1])) * scale[1];
  5740. isum += vaddvq_s32(ggml_vdotq_s32(vzero, q3bytes.val[2], q8bytes_1.val[2])) * scale[2];
  5741. isum += vaddvq_s32(ggml_vdotq_s32(vzero, q3bytes.val[3], q8bytes_1.val[3])) * scale[3];
  5742. scale += 4;
  5743. q3h.val[0] = vbicq_u8(m2, qhbits.val[0]);
  5744. q3h.val[1] = vbicq_u8(m2, qhbits.val[1]);
  5745. q3h.val[2] = vshrq_n_u8(vbicq_u8(m3, qhbits.val[0]), 1);
  5746. q3h.val[3] = vshrq_n_u8(vbicq_u8(m3, qhbits.val[1]), 1);
  5747. q3bytes.val[0] = vsubq_s8(vreinterpretq_s8_u8(vandq_u8(vshrq_n_u8(q3bits.val[0], 4), m3b)), vreinterpretq_s8_u8(q3h.val[0]));
  5748. q3bytes.val[1] = vsubq_s8(vreinterpretq_s8_u8(vandq_u8(vshrq_n_u8(q3bits.val[1], 4), m3b)), vreinterpretq_s8_u8(q3h.val[1]));
  5749. q3bytes.val[2] = vsubq_s8(vreinterpretq_s8_u8(vandq_u8(vshrq_n_u8(q3bits.val[0], 6), m3b)), vreinterpretq_s8_u8(q3h.val[2]));
  5750. q3bytes.val[3] = vsubq_s8(vreinterpretq_s8_u8(vandq_u8(vshrq_n_u8(q3bits.val[1], 6), m3b)), vreinterpretq_s8_u8(q3h.val[3]));
  5751. isum += vaddvq_s32(ggml_vdotq_s32(vzero, q3bytes.val[0], q8bytes_2.val[0])) * scale[0];
  5752. isum += vaddvq_s32(ggml_vdotq_s32(vzero, q3bytes.val[1], q8bytes_2.val[1])) * scale[1];
  5753. isum += vaddvq_s32(ggml_vdotq_s32(vzero, q3bytes.val[2], q8bytes_2.val[2])) * scale[2];
  5754. isum += vaddvq_s32(ggml_vdotq_s32(vzero, q3bytes.val[3], q8bytes_2.val[3])) * scale[3];
  5755. scale += 4;
  5756. if (j == 0) {
  5757. qhbits.val[0] = vshrq_n_u8(qhbits.val[0], 4);
  5758. qhbits.val[1] = vshrq_n_u8(qhbits.val[1], 4);
  5759. }
  5760. }
  5761. sum += d * isum;
  5762. }
  5763. *s = sum;
  5764. #elif defined __AVX2__
  5765. const __m256i m3 = _mm256_set1_epi8(3);
  5766. const __m256i mone = _mm256_set1_epi8(1);
  5767. const __m128i m32 = _mm_set1_epi8(32);
  5768. __m256 acc = _mm256_setzero_ps();
  5769. uint32_t aux[3];
  5770. for (int i = 0; i < nb; ++i) {
  5771. const float d = y[i].d * GGML_FP16_TO_FP32(x[i].d);
  5772. const uint8_t * restrict q3 = x[i].qs;
  5773. const int8_t * restrict q8 = y[i].qs;
  5774. // Set up scales
  5775. memcpy(aux, x[i].scales, 12);
  5776. __m128i scales128 = _mm_set_epi32(
  5777. ((aux[1] >> 4) & kmask2) | (((aux[2] >> 6) & kmask1) << 4),
  5778. ((aux[0] >> 4) & kmask2) | (((aux[2] >> 4) & kmask1) << 4),
  5779. (aux[1] & kmask2) | (((aux[2] >> 2) & kmask1) << 4),
  5780. (aux[0] & kmask2) | (((aux[2] >> 0) & kmask1) << 4));
  5781. scales128 = _mm_sub_epi8(scales128, m32);
  5782. const __m256i all_scales = _mm256_cvtepi8_epi16(scales128);
  5783. const __m128i l_scales = _mm256_extracti128_si256(all_scales, 0);
  5784. const __m128i h_scales = _mm256_extracti128_si256(all_scales, 1);
  5785. const __m256i scales[2] = {MM256_SET_M128I(l_scales, l_scales), MM256_SET_M128I(h_scales, h_scales)};
  5786. // high bit
  5787. const __m256i hbits = _mm256_loadu_si256((const __m256i*)x[i].hmask);
  5788. // integer accumulator
  5789. __m256i sumi = _mm256_setzero_si256();
  5790. int bit = 0;
  5791. int is = 0;
  5792. for (int j = 0; j < QK_K/128; ++j) {
  5793. // load low 2 bits
  5794. const __m256i q3bits = _mm256_loadu_si256((const __m256i*)q3); q3 += 32;
  5795. // prepare low and high bits
  5796. const __m256i q3l_0 = _mm256_and_si256(q3bits, m3);
  5797. const __m256i q3h_0 = _mm256_slli_epi16(_mm256_srli_epi16(_mm256_andnot_si256(hbits, _mm256_slli_epi16(mone, bit)), bit), 2);
  5798. ++bit;
  5799. const __m256i q3l_1 = _mm256_and_si256(_mm256_srli_epi16(q3bits, 2), m3);
  5800. const __m256i q3h_1 = _mm256_slli_epi16(_mm256_srli_epi16(_mm256_andnot_si256(hbits, _mm256_slli_epi16(mone, bit)), bit), 2);
  5801. ++bit;
  5802. const __m256i q3l_2 = _mm256_and_si256(_mm256_srli_epi16(q3bits, 4), m3);
  5803. const __m256i q3h_2 = _mm256_slli_epi16(_mm256_srli_epi16(_mm256_andnot_si256(hbits, _mm256_slli_epi16(mone, bit)), bit), 2);
  5804. ++bit;
  5805. const __m256i q3l_3 = _mm256_and_si256(_mm256_srli_epi16(q3bits, 6), m3);
  5806. const __m256i q3h_3 = _mm256_slli_epi16(_mm256_srli_epi16(_mm256_andnot_si256(hbits, _mm256_slli_epi16(mone, bit)), bit), 2);
  5807. ++bit;
  5808. // load Q8 quants
  5809. const __m256i q8_0 = _mm256_loadu_si256((const __m256i*)q8); q8 += 32;
  5810. const __m256i q8_1 = _mm256_loadu_si256((const __m256i*)q8); q8 += 32;
  5811. const __m256i q8_2 = _mm256_loadu_si256((const __m256i*)q8); q8 += 32;
  5812. const __m256i q8_3 = _mm256_loadu_si256((const __m256i*)q8); q8 += 32;
  5813. // Dot product: we multiply the 2 low bits and 1 high bit part separately, so we can use _mm256_maddubs_epi16,
  5814. // and then subtract. The high bit part has the 2 already subtracted (and so, it is zero if the high bit was not set,
  5815. // and 2 if the high bit was set)
  5816. __m256i q8s_0 = _mm256_maddubs_epi16(q3h_0, q8_0);
  5817. __m256i q8s_1 = _mm256_maddubs_epi16(q3h_1, q8_1);
  5818. __m256i q8s_2 = _mm256_maddubs_epi16(q3h_2, q8_2);
  5819. __m256i q8s_3 = _mm256_maddubs_epi16(q3h_3, q8_3);
  5820. __m256i p16_0 = _mm256_maddubs_epi16(q3l_0, q8_0);
  5821. __m256i p16_1 = _mm256_maddubs_epi16(q3l_1, q8_1);
  5822. __m256i p16_2 = _mm256_maddubs_epi16(q3l_2, q8_2);
  5823. __m256i p16_3 = _mm256_maddubs_epi16(q3l_3, q8_3);
  5824. p16_0 = _mm256_sub_epi16(p16_0, q8s_0);
  5825. p16_1 = _mm256_sub_epi16(p16_1, q8s_1);
  5826. p16_2 = _mm256_sub_epi16(p16_2, q8s_2);
  5827. p16_3 = _mm256_sub_epi16(p16_3, q8s_3);
  5828. // multiply with scales
  5829. p16_0 = _mm256_madd_epi16(_mm256_shuffle_epi8(scales[j], get_scale_shuffle_q3k(is + 0)), p16_0);
  5830. p16_1 = _mm256_madd_epi16(_mm256_shuffle_epi8(scales[j], get_scale_shuffle_q3k(is + 1)), p16_1);
  5831. p16_2 = _mm256_madd_epi16(_mm256_shuffle_epi8(scales[j], get_scale_shuffle_q3k(is + 2)), p16_2);
  5832. p16_3 = _mm256_madd_epi16(_mm256_shuffle_epi8(scales[j], get_scale_shuffle_q3k(is + 3)), p16_3);
  5833. // accumulate
  5834. p16_0 = _mm256_add_epi32(p16_0, p16_1);
  5835. p16_2 = _mm256_add_epi32(p16_2, p16_3);
  5836. sumi = _mm256_add_epi32(sumi, _mm256_add_epi32(p16_0, p16_2));
  5837. }
  5838. // multiply with block scale and accumulate
  5839. acc = _mm256_fmadd_ps(_mm256_broadcast_ss(&d), _mm256_cvtepi32_ps(sumi), acc);
  5840. }
  5841. *s = hsum_float_8(acc);
  5842. #elif defined __AVX__
  5843. const __m128i m3 = _mm_set1_epi8(3);
  5844. const __m128i mone = _mm_set1_epi8(1);
  5845. const __m128i m32 = _mm_set1_epi8(32);
  5846. const __m128i m2 = _mm_set1_epi8(2);
  5847. __m256 acc = _mm256_setzero_ps();
  5848. const uint32_t *aux;
  5849. for (int i = 0; i < nb; ++i) {
  5850. const float d = y[i].d * GGML_FP16_TO_FP32(x[i].d);
  5851. const uint8_t * restrict q3 = x[i].qs;
  5852. const int8_t * restrict q8 = y[i].qs;
  5853. // Set up scales
  5854. aux = (const uint32_t *)x[i].scales;
  5855. __m128i scales128 = _mm_set_epi32(
  5856. ((aux[1] >> 4) & kmask2) | (((aux[2] >> 6) & kmask1) << 4),
  5857. ((aux[0] >> 4) & kmask2) | (((aux[2] >> 4) & kmask1) << 4),
  5858. (aux[1] & kmask2) | (((aux[2] >> 2) & kmask1) << 4),
  5859. (aux[0] & kmask2) | (((aux[2] >> 0) & kmask1) << 4));
  5860. scales128 = _mm_sub_epi8(scales128, m32);
  5861. const __m128i scales_0 = _mm_cvtepi8_epi16(scales128);
  5862. const __m128i scales_1 = _mm_cvtepi8_epi16(_mm_unpackhi_epi64(scales128, scales128));
  5863. const __m128i scales[2] = { scales_0, scales_1 };
  5864. // high bit *128*2 from block_q3_K.hmask[QK_K/8]
  5865. const __m128i hbits_0 = _mm_loadu_si128((const __m128i*)&x[i].hmask[0]);
  5866. const __m128i hbits_1 = _mm_loadu_si128((const __m128i*)&x[i].hmask[16]);
  5867. // integer accumulator
  5868. __m128i sumi_0 = _mm_setzero_si128();
  5869. __m128i sumi_1 = _mm_setzero_si128();
  5870. for (int j = 0; j < QK_K/128; ++j) {
  5871. // load low 2 bits *64*2 from block_q3_K.qs[QK_K/4]
  5872. const __m128i q3bits_0 = _mm_loadu_si128((const __m128i*)q3); q3 += 16;
  5873. const __m128i q3bits_1 = _mm_loadu_si128((const __m128i*)q3); q3 += 16;
  5874. // prepare low and high bits
  5875. const int bit = j << 2;
  5876. const __m128i q3l_0 = _mm_and_si128(q3bits_0, m3);
  5877. const __m128i q3l_1 = _mm_and_si128(q3bits_1, m3);
  5878. const __m128i q3h_0 = _mm_slli_epi16(_mm_srli_epi16(_mm_andnot_si128(hbits_0, _mm_slli_epi16(mone, bit)), bit), 2);
  5879. const __m128i q3h_1 = _mm_slli_epi16(_mm_srli_epi16(_mm_andnot_si128(hbits_1, _mm_slli_epi16(mone, bit)), bit), 2);
  5880. const __m128i q3l_2 = _mm_and_si128(_mm_srli_epi16(q3bits_0, 2), m3);
  5881. const __m128i q3l_3 = _mm_and_si128(_mm_srli_epi16(q3bits_1, 2), m3);
  5882. const __m128i q3h_2 = _mm_slli_epi16(_mm_srli_epi16(_mm_andnot_si128(hbits_0, _mm_slli_epi16(mone, bit+1)), bit+1), 2);
  5883. const __m128i q3h_3 = _mm_slli_epi16(_mm_srli_epi16(_mm_andnot_si128(hbits_1, _mm_slli_epi16(mone, bit+1)), bit+1), 2);
  5884. const __m128i q3l_4 = _mm_and_si128(_mm_srli_epi16(q3bits_0, 4), m3);
  5885. const __m128i q3l_5 = _mm_and_si128(_mm_srli_epi16(q3bits_1, 4), m3);
  5886. const __m128i q3h_4 = _mm_slli_epi16(_mm_srli_epi16(_mm_andnot_si128(hbits_0, _mm_slli_epi16(mone, bit+2)), bit+2), 2);
  5887. const __m128i q3h_5 = _mm_slli_epi16(_mm_srli_epi16(_mm_andnot_si128(hbits_1, _mm_slli_epi16(mone, bit+2)), bit+2), 2);
  5888. const __m128i q3l_6 = _mm_and_si128(_mm_srli_epi16(q3bits_0, 6), m3);
  5889. const __m128i q3l_7 = _mm_and_si128(_mm_srli_epi16(q3bits_1, 6), m3);
  5890. const __m128i q3h_6 = _mm_slli_epi16(_mm_srli_epi16(_mm_andnot_si128(hbits_0, _mm_slli_epi16(mone, bit+3)), bit+3), 2);
  5891. const __m128i q3h_7 = _mm_slli_epi16(_mm_srli_epi16(_mm_andnot_si128(hbits_1, _mm_slli_epi16(mone, bit+3)), bit+3), 2);
  5892. // load Q8 quants from block_q8_K.qs[QK_K]
  5893. const __m128i q8_0 = _mm_loadu_si128((const __m128i*)q8); q8 += 16;
  5894. const __m128i q8_1 = _mm_loadu_si128((const __m128i*)q8); q8 += 16;
  5895. const __m128i q8_2 = _mm_loadu_si128((const __m128i*)q8); q8 += 16;
  5896. const __m128i q8_3 = _mm_loadu_si128((const __m128i*)q8); q8 += 16;
  5897. const __m128i q8_4 = _mm_loadu_si128((const __m128i*)q8); q8 += 16;
  5898. const __m128i q8_5 = _mm_loadu_si128((const __m128i*)q8); q8 += 16;
  5899. const __m128i q8_6 = _mm_loadu_si128((const __m128i*)q8); q8 += 16;
  5900. const __m128i q8_7 = _mm_loadu_si128((const __m128i*)q8); q8 += 16;
  5901. // Dot product: we multiply the 2 low bits and 1 high bit part separately, so we can use _mm256_maddubs_epi16,
  5902. // and then subtract. The high bit part has the 2 already subtracted (and so, it is zero if the high bit was not set,
  5903. // and 2 if the high bit was set)
  5904. __m128i q8s_0 = _mm_maddubs_epi16(q3h_0, q8_0);
  5905. __m128i q8s_1 = _mm_maddubs_epi16(q3h_1, q8_1);
  5906. __m128i q8s_2 = _mm_maddubs_epi16(q3h_2, q8_2);
  5907. __m128i q8s_3 = _mm_maddubs_epi16(q3h_3, q8_3);
  5908. __m128i q8s_4 = _mm_maddubs_epi16(q3h_4, q8_4);
  5909. __m128i q8s_5 = _mm_maddubs_epi16(q3h_5, q8_5);
  5910. __m128i q8s_6 = _mm_maddubs_epi16(q3h_6, q8_6);
  5911. __m128i q8s_7 = _mm_maddubs_epi16(q3h_7, q8_7);
  5912. __m128i p16_0 = _mm_maddubs_epi16(q3l_0, q8_0);
  5913. __m128i p16_1 = _mm_maddubs_epi16(q3l_1, q8_1);
  5914. __m128i p16_2 = _mm_maddubs_epi16(q3l_2, q8_2);
  5915. __m128i p16_3 = _mm_maddubs_epi16(q3l_3, q8_3);
  5916. __m128i p16_4 = _mm_maddubs_epi16(q3l_4, q8_4);
  5917. __m128i p16_5 = _mm_maddubs_epi16(q3l_5, q8_5);
  5918. __m128i p16_6 = _mm_maddubs_epi16(q3l_6, q8_6);
  5919. __m128i p16_7 = _mm_maddubs_epi16(q3l_7, q8_7);
  5920. p16_0 = _mm_sub_epi16(p16_0, q8s_0);
  5921. p16_1 = _mm_sub_epi16(p16_1, q8s_1);
  5922. p16_2 = _mm_sub_epi16(p16_2, q8s_2);
  5923. p16_3 = _mm_sub_epi16(p16_3, q8s_3);
  5924. p16_4 = _mm_sub_epi16(p16_4, q8s_4);
  5925. p16_5 = _mm_sub_epi16(p16_5, q8s_5);
  5926. p16_6 = _mm_sub_epi16(p16_6, q8s_6);
  5927. p16_7 = _mm_sub_epi16(p16_7, q8s_7);
  5928. // multiply with scales
  5929. __m128i shuffle = _mm_set1_epi16(0x0100);
  5930. p16_0 = _mm_madd_epi16(_mm_shuffle_epi8(scales[j], shuffle), p16_0);
  5931. shuffle = _mm_add_epi16(shuffle, m2);
  5932. p16_1 = _mm_madd_epi16(_mm_shuffle_epi8(scales[j], shuffle), p16_1);
  5933. shuffle = _mm_add_epi16(shuffle, m2);
  5934. p16_2 = _mm_madd_epi16(_mm_shuffle_epi8(scales[j], shuffle), p16_2);
  5935. shuffle = _mm_add_epi16(shuffle, m2);
  5936. p16_3 = _mm_madd_epi16(_mm_shuffle_epi8(scales[j], shuffle), p16_3);
  5937. shuffle = _mm_add_epi16(shuffle, m2);
  5938. p16_4 = _mm_madd_epi16(_mm_shuffle_epi8(scales[j], shuffle), p16_4);
  5939. shuffle = _mm_add_epi16(shuffle, m2);
  5940. p16_5 = _mm_madd_epi16(_mm_shuffle_epi8(scales[j], shuffle), p16_5);
  5941. shuffle = _mm_add_epi16(shuffle, m2);
  5942. p16_6 = _mm_madd_epi16(_mm_shuffle_epi8(scales[j], shuffle), p16_6);
  5943. shuffle = _mm_add_epi16(shuffle, m2);
  5944. p16_7 = _mm_madd_epi16(_mm_shuffle_epi8(scales[j], shuffle), p16_7);
  5945. // accumulate
  5946. p16_0 = _mm_add_epi32(p16_0, p16_1);
  5947. p16_2 = _mm_add_epi32(p16_2, p16_3);
  5948. p16_4 = _mm_add_epi32(p16_4, p16_5);
  5949. p16_6 = _mm_add_epi32(p16_6, p16_7);
  5950. sumi_0 = _mm_add_epi32(sumi_0, _mm_add_epi32(p16_0, p16_2));
  5951. sumi_1 = _mm_add_epi32(sumi_1, _mm_add_epi32(p16_4, p16_6));
  5952. }
  5953. // multiply with block scale and accumulate
  5954. __m256i sumi = MM256_SET_M128I(sumi_1, sumi_0);
  5955. acc = _mm256_add_ps(_mm256_mul_ps(_mm256_broadcast_ss(&d), _mm256_cvtepi32_ps(sumi)), acc);
  5956. }
  5957. *s = hsum_float_8(acc);
  5958. #elif defined __riscv_v_intrinsic
  5959. uint32_t aux[3];
  5960. uint32_t utmp[4];
  5961. float sumf = 0;
  5962. for (int i = 0; i < nb; ++i) {
  5963. const uint8_t * restrict q3 = x[i].qs;
  5964. const uint8_t * restrict qh = x[i].hmask;
  5965. const int8_t * restrict q8 = y[i].qs;
  5966. memcpy(aux, x[i].scales, 12);
  5967. utmp[3] = ((aux[1] >> 4) & kmask2) | (((aux[2] >> 6) & kmask1) << 4);
  5968. utmp[2] = ((aux[0] >> 4) & kmask2) | (((aux[2] >> 4) & kmask1) << 4);
  5969. utmp[1] = (aux[1] & kmask2) | (((aux[2] >> 2) & kmask1) << 4);
  5970. utmp[0] = (aux[0] & kmask2) | (((aux[2] >> 0) & kmask1) << 4);
  5971. int8_t * scale = (int8_t *)utmp;
  5972. for (int j = 0; j < 16; ++j) scale[j] -= 32;
  5973. size_t vl = 32;
  5974. uint8_t m = 1;
  5975. vint32m1_t vzero = __riscv_vmv_v_x_i32m1(0, 1);
  5976. vuint8m1_t vqh = __riscv_vle8_v_u8m1(qh, vl);
  5977. int sum_t = 0;
  5978. for (int j = 0; j < QK_K; j += 128) {
  5979. vl = 32;
  5980. // load Q3
  5981. vuint8m1_t q3_x = __riscv_vle8_v_u8m1(q3, vl);
  5982. vint8m1_t q3_0 = __riscv_vreinterpret_v_u8m1_i8m1(__riscv_vand_vx_u8m1(q3_x, 0x03, vl));
  5983. vint8m1_t q3_1 = __riscv_vreinterpret_v_u8m1_i8m1(__riscv_vand_vx_u8m1(__riscv_vsrl_vx_u8m1(q3_x, 0x2, vl), 0x03 , vl));
  5984. vint8m1_t q3_2 = __riscv_vreinterpret_v_u8m1_i8m1(__riscv_vand_vx_u8m1(__riscv_vsrl_vx_u8m1(q3_x, 0x4, vl), 0x03 , vl));
  5985. vint8m1_t q3_3 = __riscv_vreinterpret_v_u8m1_i8m1(__riscv_vand_vx_u8m1(__riscv_vsrl_vx_u8m1(q3_x, 0x6, vl), 0x03 , vl));
  5986. // compute mask for subtraction
  5987. vuint8m1_t qh_m0 = __riscv_vand_vx_u8m1(vqh, m, vl);
  5988. vbool8_t vmask_0 = __riscv_vmseq_vx_u8m1_b8(qh_m0, 0, vl);
  5989. vint8m1_t q3_m0 = __riscv_vsub_vx_i8m1_mu(vmask_0, q3_0, q3_0, 0x4, vl);
  5990. m <<= 1;
  5991. vuint8m1_t qh_m1 = __riscv_vand_vx_u8m1(vqh, m, vl);
  5992. vbool8_t vmask_1 = __riscv_vmseq_vx_u8m1_b8(qh_m1, 0, vl);
  5993. vint8m1_t q3_m1 = __riscv_vsub_vx_i8m1_mu(vmask_1, q3_1, q3_1, 0x4, vl);
  5994. m <<= 1;
  5995. vuint8m1_t qh_m2 = __riscv_vand_vx_u8m1(vqh, m, vl);
  5996. vbool8_t vmask_2 = __riscv_vmseq_vx_u8m1_b8(qh_m2, 0, vl);
  5997. vint8m1_t q3_m2 = __riscv_vsub_vx_i8m1_mu(vmask_2, q3_2, q3_2, 0x4, vl);
  5998. m <<= 1;
  5999. vuint8m1_t qh_m3 = __riscv_vand_vx_u8m1(vqh, m, vl);
  6000. vbool8_t vmask_3 = __riscv_vmseq_vx_u8m1_b8(qh_m3, 0, vl);
  6001. vint8m1_t q3_m3 = __riscv_vsub_vx_i8m1_mu(vmask_3, q3_3, q3_3, 0x4, vl);
  6002. m <<= 1;
  6003. // load Q8 and take product with Q3
  6004. vint16m2_t a0 = __riscv_vwmul_vv_i16m2(q3_m0, __riscv_vle8_v_i8m1(q8, vl), vl);
  6005. vint16m2_t a1 = __riscv_vwmul_vv_i16m2(q3_m1, __riscv_vle8_v_i8m1(q8+32, vl), vl);
  6006. vint16m2_t a2 = __riscv_vwmul_vv_i16m2(q3_m2, __riscv_vle8_v_i8m1(q8+64, vl), vl);
  6007. vint16m2_t a3 = __riscv_vwmul_vv_i16m2(q3_m3, __riscv_vle8_v_i8m1(q8+96, vl), vl);
  6008. vl = 16;
  6009. // retrieve lane to multiply with scale
  6010. vint32m2_t aux0_0 = __riscv_vwmul_vx_i32m2(__riscv_vget_v_i16m2_i16m1(a0, 0), (scale[0]), vl);
  6011. vint32m2_t aux0_1 = __riscv_vwmul_vx_i32m2(__riscv_vget_v_i16m2_i16m1(a0, 1), (scale[1]), vl);
  6012. vint32m2_t aux1_0 = __riscv_vwmul_vx_i32m2(__riscv_vget_v_i16m2_i16m1(a1, 0), (scale[2]), vl);
  6013. vint32m2_t aux1_1 = __riscv_vwmul_vx_i32m2(__riscv_vget_v_i16m2_i16m1(a1, 1), (scale[3]), vl);
  6014. vint32m2_t aux2_0 = __riscv_vwmul_vx_i32m2(__riscv_vget_v_i16m2_i16m1(a2, 0), (scale[4]), vl);
  6015. vint32m2_t aux2_1 = __riscv_vwmul_vx_i32m2(__riscv_vget_v_i16m2_i16m1(a2, 1), (scale[5]), vl);
  6016. vint32m2_t aux3_0 = __riscv_vwmul_vx_i32m2(__riscv_vget_v_i16m2_i16m1(a3, 0), (scale[6]), vl);
  6017. vint32m2_t aux3_1 = __riscv_vwmul_vx_i32m2(__riscv_vget_v_i16m2_i16m1(a3, 1), (scale[7]), vl);
  6018. vint32m1_t isum0 = __riscv_vredsum_vs_i32m2_i32m1(__riscv_vadd_vv_i32m2(aux0_0, aux0_1, vl), vzero, vl);
  6019. vint32m1_t isum1 = __riscv_vredsum_vs_i32m2_i32m1(__riscv_vadd_vv_i32m2(aux1_0, aux1_1, vl), isum0, vl);
  6020. vint32m1_t isum2 = __riscv_vredsum_vs_i32m2_i32m1(__riscv_vadd_vv_i32m2(aux2_0, aux2_1, vl), isum1, vl);
  6021. vint32m1_t isum3 = __riscv_vredsum_vs_i32m2_i32m1(__riscv_vadd_vv_i32m2(aux3_0, aux3_1, vl), isum2, vl);
  6022. sum_t += __riscv_vmv_x_s_i32m1_i32(isum3);
  6023. q3 += 32; q8 += 128; scale += 8;
  6024. }
  6025. const float d = GGML_FP16_TO_FP32(x[i].d) * y[i].d;
  6026. sumf += d*sum_t;
  6027. }
  6028. *s = sumf;
  6029. #elif defined(__POWER9_VECTOR__)
  6030. const vector signed char lowMask = vec_splats((signed char)0x3);
  6031. const vector signed char lowMask1 = vec_splats((int8_t)0xf);
  6032. const vector signed char lowMask2 = vec_splats((int8_t)0x30);
  6033. const vector int v0 = vec_splats((int32_t)0);
  6034. const vector signed char v1 = vec_splats((signed char)0x1);
  6035. const vector unsigned char v2 = vec_splats((unsigned char)0x2);
  6036. const vector unsigned char v3 = vec_splats((unsigned char)0x3);
  6037. const vector unsigned char v4 = vec_splats((unsigned char)0x4);
  6038. const vector unsigned char v6 = vec_splats((unsigned char)0x6);
  6039. const vector signed char off = vec_splats((signed char)0x20);
  6040. vector float vsumf0 = vec_splats(0.0f);
  6041. vector float vsumf1 = vec_splats(0.0f);
  6042. vector float vsumf2 = vec_splats(0.0f);
  6043. vector float vsumf3 = vec_splats(0.0f);
  6044. for (int i = 0; i < nb; ++i) {
  6045. vector float vxd = vec_splats(GGML_FP16_TO_FP32(x[i].d));
  6046. vector float vyd = vec_splats(y[i].d);
  6047. vector float vd = vec_mul(vxd, vyd);
  6048. UNUSED(kmask1);
  6049. UNUSED(kmask2);
  6050. vector signed char u0 = (vector signed char)vec_xl_len(x[i].scales, 8);
  6051. vector signed char u1 = vec_and(u0, lowMask1);
  6052. vector signed char u2 = (vector signed char)vec_xl_len(x[i].scales + 8, 4);
  6053. vector signed char u3 = (vector signed char)vec_mergeh((vector signed int)u2, (vector signed int)vec_sr(u2, v2));
  6054. vector signed char u30 = vec_sl(vec_and(u3, lowMask), v4);
  6055. vector signed char u31 = vec_and(u3, lowMask2);
  6056. u1 = vec_or(u1, u30);
  6057. u2 = vec_or(vec_sr(u0, v4), u31);
  6058. vector signed char vscales = (vector signed char)vec_mergeh((vector signed long long)u1, (vector signed long long)u2);
  6059. vector signed char qxhs0 = (vector signed char)vec_xl( 0, x[i].hmask);
  6060. vector signed char qxhs1 = (vector signed char)vec_xl(16, x[i].hmask);
  6061. vscales = vec_sub(vscales, off);
  6062. vector signed int vsumi0 = v0;
  6063. vector signed int vsumi1 = v0;
  6064. vector signed int vsumi2 = v0;
  6065. vector signed int vsumi3 = v0;
  6066. vector signed int vsumi4 = v0;
  6067. vector signed int vsumi5 = v0;
  6068. vector signed int vsumi6 = v0;
  6069. vector signed int vsumi7 = v0;
  6070. const uint8_t * restrict q3 = x[i].qs;
  6071. const int8_t * restrict q8 = y[i].qs;
  6072. for (int j = 0; j < QK_K/128; ++j) {
  6073. __builtin_prefetch(q3, 0, 1);
  6074. __builtin_prefetch(q8, 0, 1);
  6075. vector signed char qxs0 = (vector signed char)vec_xl( 0, q3);
  6076. vector signed char qxs1 = (vector signed char)vec_xl(16, q3);
  6077. q3 += 32;
  6078. //the low 2 bits
  6079. vector signed char qxs00 = vec_and(qxs0, lowMask);
  6080. vector signed char qxs01 = vec_and(vec_sr(qxs0, v2), lowMask);
  6081. vector signed char qxs02 = vec_and(vec_sr(qxs0, v4), lowMask);
  6082. vector signed char qxs03 = vec_and(vec_sr(qxs0, v6), lowMask);
  6083. vector signed char qxs10 = vec_and(qxs1, lowMask);
  6084. vector signed char qxs11 = vec_and(vec_sr(qxs1, v2), lowMask);
  6085. vector signed char qxs12 = vec_and(vec_sr(qxs1, v4), lowMask);
  6086. vector signed char qxs13 = vec_and(vec_sr(qxs1, v6), lowMask);
  6087. //the 3rd bit
  6088. vector signed char qxh00 = vec_sl(vec_andc(v1, qxhs0), v2);
  6089. vector signed char qxh01 = vec_sl(vec_andc(v1, vec_sr(qxhs0, (vector unsigned char)v1)), v2);
  6090. vector signed char qxh02 = vec_sl(vec_andc(v1, vec_sr(qxhs0, v2)), v2);
  6091. vector signed char qxh03 = vec_sl(vec_andc(v1, vec_sr(qxhs0, v3)), v2);
  6092. vector signed char qxh10 = vec_sl(vec_andc(v1, qxhs1), v2);
  6093. vector signed char qxh11 = vec_sl(vec_andc(v1, vec_sr(qxhs1, (vector unsigned char)v1)), v2);
  6094. vector signed char qxh12 = vec_sl(vec_andc(v1, vec_sr(qxhs1, v2)), v2);
  6095. vector signed char qxh13 = vec_sl(vec_andc(v1, vec_sr(qxhs1, v3)), v2);
  6096. qxhs0 = vec_sr(qxhs0, v4);
  6097. qxhs1 = vec_sr(qxhs1, v4);
  6098. vector signed char q3x00 = vec_sub(qxs00, qxh00);
  6099. vector signed char q3x01 = vec_sub(qxs01, qxh01);
  6100. vector signed char q3x02 = vec_sub(qxs02, qxh02);
  6101. vector signed char q3x03 = vec_sub(qxs03, qxh03);
  6102. vector signed char q3x10 = vec_sub(qxs10, qxh10);
  6103. vector signed char q3x11 = vec_sub(qxs11, qxh11);
  6104. vector signed char q3x12 = vec_sub(qxs12, qxh12);
  6105. vector signed char q3x13 = vec_sub(qxs13, qxh13);
  6106. vector signed char q8y00 = vec_xl( 0, q8);
  6107. vector signed char q8y10 = vec_xl( 16, q8);
  6108. vector signed char q8y01 = vec_xl( 32, q8);
  6109. vector signed char q8y11 = vec_xl( 48, q8);
  6110. vector signed char q8y02 = vec_xl( 64, q8);
  6111. vector signed char q8y12 = vec_xl( 80, q8);
  6112. vector signed char q8y03 = vec_xl( 96, q8);
  6113. vector signed char q8y13 = vec_xl(112, q8);
  6114. q8 += 128;
  6115. vector signed short vscales_h = vec_unpackh(vscales);
  6116. vector signed short vs0 = vec_splat(vscales_h, 0);
  6117. vector signed short vs1 = vec_splat(vscales_h, 1);
  6118. vector signed short vs2 = vec_splat(vscales_h, 2);
  6119. vector signed short vs3 = vec_splat(vscales_h, 3);
  6120. vector signed short vs4 = vec_splat(vscales_h, 4);
  6121. vector signed short vs5 = vec_splat(vscales_h, 5);
  6122. vector signed short vs6 = vec_splat(vscales_h, 6);
  6123. vector signed short vs7 = vec_splat(vscales_h, 7);
  6124. vscales = vec_sld(vscales, vscales, 8);
  6125. vector signed short qv00 = vec_add(vec_mule(q3x00, q8y00), vec_mulo(q3x00, q8y00));
  6126. vector signed short qv01 = vec_add(vec_mule(q3x01, q8y01), vec_mulo(q3x01, q8y01));
  6127. vector signed short qv02 = vec_add(vec_mule(q3x02, q8y02), vec_mulo(q3x02, q8y02));
  6128. vector signed short qv03 = vec_add(vec_mule(q3x03, q8y03), vec_mulo(q3x03, q8y03));
  6129. vector signed short qv10 = vec_add(vec_mule(q3x10, q8y10), vec_mulo(q3x10, q8y10));
  6130. vector signed short qv11 = vec_add(vec_mule(q3x11, q8y11), vec_mulo(q3x11, q8y11));
  6131. vector signed short qv12 = vec_add(vec_mule(q3x12, q8y12), vec_mulo(q3x12, q8y12));
  6132. vector signed short qv13 = vec_add(vec_mule(q3x13, q8y13), vec_mulo(q3x13, q8y13));
  6133. vsumi0 = vec_msum(qv00, vs0, vsumi0);
  6134. vsumi1 = vec_msum(qv01, vs2, vsumi1);
  6135. vsumi2 = vec_msum(qv02, vs4, vsumi2);
  6136. vsumi3 = vec_msum(qv03, vs6, vsumi3);
  6137. vsumi4 = vec_msum(qv10, vs1, vsumi4);
  6138. vsumi5 = vec_msum(qv11, vs3, vsumi5);
  6139. vsumi6 = vec_msum(qv12, vs5, vsumi6);
  6140. vsumi7 = vec_msum(qv13, vs7, vsumi7);
  6141. }
  6142. vsumi0 = vec_add(vsumi0, vsumi4);
  6143. vsumi1 = vec_add(vsumi1, vsumi5);
  6144. vsumi2 = vec_add(vsumi2, vsumi6);
  6145. vsumi3 = vec_add(vsumi3, vsumi7);
  6146. vsumf0 = vec_madd(vec_ctf(vsumi0, 0), vd, vsumf0);
  6147. vsumf1 = vec_madd(vec_ctf(vsumi1, 0), vd, vsumf1);
  6148. vsumf2 = vec_madd(vec_ctf(vsumi2, 0), vd, vsumf2);
  6149. vsumf3 = vec_madd(vec_ctf(vsumi3, 0), vd, vsumf3);
  6150. }
  6151. vsumf0 = vec_add(vsumf0, vsumf2);
  6152. vsumf1 = vec_add(vsumf1, vsumf3);
  6153. vsumf0 = vec_add(vsumf0, vsumf1);
  6154. vsumf0 = vec_add(vsumf0, vec_sld(vsumf0, vsumf0, 4));
  6155. vsumf0 = vec_add(vsumf0, vec_sld(vsumf0, vsumf0, 8));
  6156. *s = vec_extract(vsumf0, 0);
  6157. #elif defined __loongarch_asx
  6158. const __m256i m3 = __lasx_xvreplgr2vr_b(3);
  6159. const __m256i mone = __lasx_xvreplgr2vr_b(1);
  6160. const __m128i m32 = __lsx_vreplgr2vr_b(32);
  6161. __m256 acc = (__m256)__lasx_xvldi(0);
  6162. uint32_t aux[3];
  6163. for (int i = 0; i < nb; ++i) {
  6164. const float d = y[i].d * GGML_FP16_TO_FP32(x[i].d);
  6165. const uint8_t * restrict q3 = x[i].qs;
  6166. const int8_t * restrict q8 = y[i].qs;
  6167. // Set up scales
  6168. memcpy(aux, x[i].scales, 12);
  6169. __m128i scales128 = lsx_set_w(
  6170. ((aux[1] >> 4) & kmask2) | (((aux[2] >> 6) & kmask1) << 4),
  6171. ((aux[0] >> 4) & kmask2) | (((aux[2] >> 4) & kmask1) << 4),
  6172. (aux[1] & kmask2) | (((aux[2] >> 2) & kmask1) << 4),
  6173. (aux[0] & kmask2) | (((aux[2] >> 0) & kmask1) << 4));
  6174. scales128 = __lsx_vsub_b(scales128, m32);
  6175. const __m256i all_scales = lasx_ext8_16(scales128);
  6176. const __m128i l_scales = lasx_extracti128(all_scales, 0);
  6177. const __m128i h_scales = lasx_extracti128(all_scales, 1);
  6178. const __m256i scales[2] = {lasx_insertf128(l_scales, l_scales), lasx_insertf128(h_scales, h_scales)};
  6179. // high bit
  6180. const __m256i hbits = __lasx_xvld((const __m256i*)x[i].hmask, 0);
  6181. // integer accumulator
  6182. __m256i sumi = __lasx_xvldi(0);
  6183. int bit = 0;
  6184. int is = 0;
  6185. __m256i xvbit;
  6186. for (int j = 0; j < QK_K/128; ++j) {
  6187. // load low 2 bits
  6188. const __m256i q3bits = __lasx_xvld((const __m256i*)q3, 0); q3 += 32;
  6189. xvbit = __lasx_xvreplgr2vr_h(bit);
  6190. // prepare low and high bits
  6191. const __m256i q3l_0 = __lasx_xvand_v(q3bits, m3);
  6192. const __m256i q3h_0 = __lasx_xvslli_h(__lasx_xvsrl_h(__lasx_xvandn_v(hbits, __lasx_xvsll_h(mone, xvbit)), xvbit), 2);
  6193. ++bit;
  6194. xvbit = __lasx_xvreplgr2vr_h(bit);
  6195. const __m256i q3l_1 = __lasx_xvand_v(__lasx_xvsrli_h(q3bits, 2), m3);
  6196. const __m256i q3h_1 = __lasx_xvslli_h(__lasx_xvsrl_h(__lasx_xvandn_v(hbits, __lasx_xvsll_h(mone, xvbit)), xvbit), 2);
  6197. ++bit;
  6198. xvbit = __lasx_xvreplgr2vr_h(bit);
  6199. const __m256i q3l_2 = __lasx_xvand_v(__lasx_xvsrli_h(q3bits, 4), m3);
  6200. const __m256i q3h_2 = __lasx_xvslli_h(__lasx_xvsrl_h(__lasx_xvandn_v(hbits, __lasx_xvsll_h(mone, xvbit)), xvbit), 2);
  6201. ++bit;
  6202. xvbit = __lasx_xvreplgr2vr_h(bit);
  6203. const __m256i q3l_3 = __lasx_xvand_v(__lasx_xvsrli_h(q3bits, 6), m3);
  6204. const __m256i q3h_3 = __lasx_xvslli_h(__lasx_xvsrl_h(__lasx_xvandn_v(hbits, __lasx_xvsll_h(mone, xvbit)), xvbit), 2);
  6205. ++bit;
  6206. // load Q8 quants
  6207. const __m256i q8_0 = __lasx_xvld((const __m256i*)q8, 0); q8 += 32;
  6208. const __m256i q8_1 = __lasx_xvld((const __m256i*)q8, 0); q8 += 32;
  6209. const __m256i q8_2 = __lasx_xvld((const __m256i*)q8, 0); q8 += 32;
  6210. const __m256i q8_3 = __lasx_xvld((const __m256i*)q8, 0); q8 += 32;
  6211. // Dot product: we multiply the 2 low bits and 1 high bit part separately, so we can use lasx_maddubs_h,
  6212. // and then subtract. The high bit part has the 2 already subtracted (and so, it is zero if the high bit was not set,
  6213. // and 2 if the high bit was set)
  6214. __m256i q8s_0 = lasx_maddubs_h(q3h_0, q8_0);
  6215. __m256i q8s_1 = lasx_maddubs_h(q3h_1, q8_1);
  6216. __m256i q8s_2 = lasx_maddubs_h(q3h_2, q8_2);
  6217. __m256i q8s_3 = lasx_maddubs_h(q3h_3, q8_3);
  6218. __m256i p16_0 = lasx_maddubs_h(q3l_0, q8_0);
  6219. __m256i p16_1 = lasx_maddubs_h(q3l_1, q8_1);
  6220. __m256i p16_2 = lasx_maddubs_h(q3l_2, q8_2);
  6221. __m256i p16_3 = lasx_maddubs_h(q3l_3, q8_3);
  6222. p16_0 = __lasx_xvsub_h(p16_0, q8s_0);
  6223. p16_1 = __lasx_xvsub_h(p16_1, q8s_1);
  6224. p16_2 = __lasx_xvsub_h(p16_2, q8s_2);
  6225. p16_3 = __lasx_xvsub_h(p16_3, q8s_3);
  6226. // multiply with scales
  6227. p16_0 = lasx_madd_h(lasx_shuffle_b(scales[j], get_scale_shuffle_q3k(is + 0)), p16_0);
  6228. p16_1 = lasx_madd_h(lasx_shuffle_b(scales[j], get_scale_shuffle_q3k(is + 1)), p16_1);
  6229. p16_2 = lasx_madd_h(lasx_shuffle_b(scales[j], get_scale_shuffle_q3k(is + 2)), p16_2);
  6230. p16_3 = lasx_madd_h(lasx_shuffle_b(scales[j], get_scale_shuffle_q3k(is + 3)), p16_3);
  6231. // accumulate
  6232. p16_0 = __lasx_xvadd_w(p16_0, p16_1);
  6233. p16_2 = __lasx_xvadd_w(p16_2, p16_3);
  6234. sumi = __lasx_xvadd_w(sumi, __lasx_xvadd_w(p16_0, p16_2));
  6235. }
  6236. // multiply with block scale and accumulate
  6237. acc = __lasx_xvfmadd_s(__lasx_xvreplfr2vr_s(d), __lasx_xvffint_s_w(sumi), acc);//FIXME
  6238. }
  6239. *s = hsum_float_8(acc);
  6240. #else
  6241. // scalar version
  6242. // This function is written like this so the compiler can manage to vectorize most of it
  6243. // Using -Ofast, GCC and clang manage to produce code that is within a factor of 2 or so from the
  6244. // manually vectorized version above. Every other version I tried would run at least 4 times slower.
  6245. // The ideal situation would be if we could just write the code once, and the compiler would
  6246. // automatically produce the best possible set of machine instructions, instead of us having to manually
  6247. // write vectorized versions for AVX, ARM_NEON, etc.
  6248. int8_t aux8[QK_K];
  6249. int16_t aux16[8];
  6250. float sums [8];
  6251. int32_t aux32[8];
  6252. memset(sums, 0, 8*sizeof(float));
  6253. uint32_t auxs[4];
  6254. const int8_t * scales = (const int8_t*)auxs;
  6255. float sumf = 0;
  6256. for (int i = 0; i < nb; ++i) {
  6257. const uint8_t * restrict q3 = x[i].qs;
  6258. const uint8_t * restrict hm = x[i].hmask;
  6259. const int8_t * restrict q8 = y[i].qs;
  6260. memset(aux32, 0, 8*sizeof(int32_t));
  6261. int8_t * restrict a = aux8;
  6262. uint8_t m = 1;
  6263. for (int j = 0; j < QK_K; j += 128) {
  6264. for (int l = 0; l < 32; ++l) a[l] = q3[l] & 3;
  6265. for (int l = 0; l < 32; ++l) a[l] -= (hm[l] & m ? 0 : 4);
  6266. a += 32; m <<= 1;
  6267. for (int l = 0; l < 32; ++l) a[l] = (q3[l] >> 2) & 3;
  6268. for (int l = 0; l < 32; ++l) a[l] -= (hm[l] & m ? 0 : 4);
  6269. a += 32; m <<= 1;
  6270. for (int l = 0; l < 32; ++l) a[l] = (q3[l] >> 4) & 3;
  6271. for (int l = 0; l < 32; ++l) a[l] -= (hm[l] & m ? 0 : 4);
  6272. a += 32; m <<= 1;
  6273. for (int l = 0; l < 32; ++l) a[l] = (q3[l] >> 6) & 3;
  6274. for (int l = 0; l < 32; ++l) a[l] -= (hm[l] & m ? 0 : 4);
  6275. a += 32; m <<= 1;
  6276. q3 += 32;
  6277. }
  6278. a = aux8;
  6279. memcpy(auxs, x[i].scales, 12);
  6280. uint32_t tmp = auxs[2];
  6281. auxs[2] = ((auxs[0] >> 4) & kmask2) | (((tmp >> 4) & kmask1) << 4);
  6282. auxs[3] = ((auxs[1] >> 4) & kmask2) | (((tmp >> 6) & kmask1) << 4);
  6283. auxs[0] = (auxs[0] & kmask2) | (((tmp >> 0) & kmask1) << 4);
  6284. auxs[1] = (auxs[1] & kmask2) | (((tmp >> 2) & kmask1) << 4);
  6285. for (int j = 0; j < QK_K/16; ++j) {
  6286. for (int l = 0; l < 8; ++l) aux16[l] = q8[l] * a[l];
  6287. for (int l = 0; l < 8; ++l) aux32[l] += (scales[j] - 32) * aux16[l];
  6288. q8 += 8; a += 8;
  6289. for (int l = 0; l < 8; ++l) aux16[l] = q8[l] * a[l];
  6290. for (int l = 0; l < 8; ++l) aux32[l] += (scales[j] - 32) * aux16[l];
  6291. q8 += 8; a += 8;
  6292. }
  6293. const float d = GGML_FP16_TO_FP32(x[i].d) * y[i].d;
  6294. for (int l = 0; l < 8; ++l) sums[l] += d * aux32[l];
  6295. }
  6296. for (int l = 0; l < 8; ++l) sumf += sums[l];
  6297. *s = sumf;
  6298. #endif
  6299. }
  6300. void ggml_vec_dot_q4_K_q8_K(int n, float * restrict s, size_t bs, const void * restrict vx, size_t bx, const void * restrict vy, size_t by, int nrc) {
  6301. assert(n % QK_K == 0);
  6302. assert(nrc == 1);
  6303. UNUSED(nrc);
  6304. UNUSED(bx);
  6305. UNUSED(by);
  6306. UNUSED(bs);
  6307. const block_q4_K * restrict x = vx;
  6308. const block_q8_K * restrict y = vy;
  6309. const int nb = n / QK_K;
  6310. static const uint32_t kmask1 = 0x3f3f3f3f;
  6311. static const uint32_t kmask2 = 0x0f0f0f0f;
  6312. static const uint32_t kmask3 = 0x03030303;
  6313. uint32_t utmp[4];
  6314. #ifdef __ARM_NEON
  6315. const uint8x16_t m4b = vdupq_n_u8(0xf);
  6316. const int32x4_t mzero = vdupq_n_s32(0);
  6317. ggml_int8x16x2_t q4bytes;
  6318. ggml_int8x16x2_t q8bytes;
  6319. float sumf = 0;
  6320. for (int i = 0; i < nb; ++i) {
  6321. const float d = y[i].d * GGML_FP16_TO_FP32(x[i].d);
  6322. const float dmin = y[i].d * GGML_FP16_TO_FP32(x[i].dmin);
  6323. const int16x8_t q8sums = vpaddq_s16(vld1q_s16(y[i].bsums), vld1q_s16(y[i].bsums + 8));
  6324. memcpy(utmp, x[i].scales, 12);
  6325. uint32x2_t mins8 = { 0 };
  6326. mins8 = vset_lane_u32(utmp[1] & kmask1, mins8, 0);
  6327. mins8 = vset_lane_u32(((utmp[2] >> 4) & kmask2) | (((utmp[1] >> 6) & kmask3) << 4), mins8, 1);
  6328. utmp[1] = (utmp[2] & kmask2) | (((utmp[0] >> 6) & kmask3) << 4);
  6329. utmp[0] &= kmask1;
  6330. const int16x8_t mins = vreinterpretq_s16_u16(vmovl_u8(vreinterpret_u8_u32(mins8)));
  6331. const int32x4_t prod = vaddq_s32(vmull_s16(vget_low_s16 (q8sums), vget_low_s16 (mins)),
  6332. vmull_s16(vget_high_s16(q8sums), vget_high_s16(mins)));
  6333. sumf -= dmin * vaddvq_s32(prod);
  6334. const uint8_t * scales = (const uint8_t *)utmp;
  6335. const uint8_t * restrict q4 = x[i].qs;
  6336. const int8_t * restrict q8 = y[i].qs;
  6337. int32_t sumi1 = 0;
  6338. int32_t sumi2 = 0;
  6339. for (int j = 0; j < QK_K/64; ++j) {
  6340. const ggml_uint8x16x2_t q4bits = ggml_vld1q_u8_x2(q4); q4 += 32;
  6341. q8bytes = ggml_vld1q_s8_x2(q8); q8 += 32;
  6342. q4bytes.val[0] = vreinterpretq_s8_u8(vandq_u8 (q4bits.val[0], m4b));
  6343. q4bytes.val[1] = vreinterpretq_s8_u8(vandq_u8 (q4bits.val[1], m4b));
  6344. const int32x4_t p1 = ggml_vdotq_s32(ggml_vdotq_s32(mzero, q4bytes.val[0], q8bytes.val[0]), q4bytes.val[1], q8bytes.val[1]);
  6345. sumi1 += vaddvq_s32(p1) * scales[2*j+0];
  6346. q8bytes = ggml_vld1q_s8_x2(q8); q8 += 32;
  6347. q4bytes.val[0] = vreinterpretq_s8_u8(vshrq_n_u8(q4bits.val[0], 4));
  6348. q4bytes.val[1] = vreinterpretq_s8_u8(vshrq_n_u8(q4bits.val[1], 4));
  6349. const int32x4_t p2 = ggml_vdotq_s32(ggml_vdotq_s32(mzero, q4bytes.val[0], q8bytes.val[0]), q4bytes.val[1], q8bytes.val[1]);
  6350. sumi2 += vaddvq_s32(p2) * scales[2*j+1];
  6351. }
  6352. sumf += d * (sumi1 + sumi2);
  6353. }
  6354. *s = sumf;
  6355. #elif defined __AVX2__
  6356. const __m256i m4 = _mm256_set1_epi8(0xF);
  6357. __m256 acc = _mm256_setzero_ps();
  6358. __m128 acc_m = _mm_setzero_ps();
  6359. for (int i = 0; i < nb; ++i) {
  6360. const float d = y[i].d * GGML_FP16_TO_FP32(x[i].d);
  6361. const float dmin = -y[i].d * GGML_FP16_TO_FP32(x[i].dmin);
  6362. memcpy(utmp, x[i].scales, 12);
  6363. utmp[3] = ((utmp[2] >> 4) & kmask2) | (((utmp[1] >> 6) & kmask3) << 4);
  6364. const uint32_t uaux = utmp[1] & kmask1;
  6365. utmp[1] = (utmp[2] & kmask2) | (((utmp[0] >> 6) & kmask3) << 4);
  6366. utmp[2] = uaux;
  6367. utmp[0] &= kmask1;
  6368. const uint8_t * restrict q4 = x[i].qs;
  6369. const int8_t * restrict q8 = y[i].qs;
  6370. const __m256i mins_and_scales = _mm256_cvtepu8_epi16(_mm_set_epi32(utmp[3], utmp[2], utmp[1], utmp[0]));
  6371. const __m256i q8sums = _mm256_loadu_si256((const __m256i*)y[i].bsums);
  6372. const __m128i q8s = _mm_hadd_epi16(_mm256_extracti128_si256(q8sums, 0), _mm256_extracti128_si256(q8sums, 1));
  6373. const __m128i prod = _mm_madd_epi16(_mm256_extracti128_si256(mins_and_scales, 1), q8s);
  6374. acc_m = _mm_fmadd_ps(_mm_set1_ps(dmin), _mm_cvtepi32_ps(prod), acc_m);
  6375. const __m128i sc128 = _mm256_extracti128_si256(mins_and_scales, 0);
  6376. const __m256i scales = MM256_SET_M128I(sc128, sc128);
  6377. __m256i sumi = _mm256_setzero_si256();
  6378. for (int j = 0; j < QK_K/64; ++j) {
  6379. const __m256i scale_l = _mm256_shuffle_epi8(scales, get_scale_shuffle_k4(2*j+0));
  6380. const __m256i scale_h = _mm256_shuffle_epi8(scales, get_scale_shuffle_k4(2*j+1));
  6381. const __m256i q4bits = _mm256_loadu_si256((const __m256i*)q4); q4 += 32;
  6382. const __m256i q4l = _mm256_and_si256(q4bits, m4);
  6383. const __m256i q4h = _mm256_and_si256(_mm256_srli_epi16(q4bits, 4), m4);
  6384. const __m256i q8l = _mm256_loadu_si256((const __m256i*)q8); q8 += 32;
  6385. __m256i p16l = _mm256_maddubs_epi16(q4l, q8l);
  6386. p16l = _mm256_madd_epi16(scale_l, p16l);
  6387. const __m256i q8h = _mm256_loadu_si256((const __m256i*)q8); q8 += 32;
  6388. __m256i p16h = _mm256_maddubs_epi16(q4h, q8h);
  6389. p16h = _mm256_madd_epi16(scale_h, p16h);
  6390. const __m256i sumj = _mm256_add_epi32(p16l, p16h);
  6391. sumi = _mm256_add_epi32(sumi, sumj);
  6392. }
  6393. __m256 vd = _mm256_set1_ps(d);
  6394. acc = _mm256_fmadd_ps(vd, _mm256_cvtepi32_ps(sumi), acc);
  6395. }
  6396. acc_m = _mm_add_ps(acc_m, _mm_movehl_ps(acc_m, acc_m));
  6397. acc_m = _mm_add_ss(acc_m, _mm_movehdup_ps(acc_m));
  6398. *s = hsum_float_8(acc) + _mm_cvtss_f32(acc_m);
  6399. #elif defined __AVX__
  6400. const __m128i m4 = _mm_set1_epi8(0xF);
  6401. const __m128i m2 = _mm_set1_epi8(0x2);
  6402. __m256 acc = _mm256_setzero_ps();
  6403. __m128 acc_m = _mm_setzero_ps();
  6404. for (int i = 0; i < nb; ++i) {
  6405. const float d = y[i].d * GGML_FP16_TO_FP32(x[i].d);
  6406. const float dmin = -y[i].d * GGML_FP16_TO_FP32(x[i].dmin);
  6407. const uint8_t * restrict q4 = x[i].qs;
  6408. const int8_t * restrict q8 = y[i].qs;
  6409. memcpy(utmp, x[i].scales, 12);
  6410. utmp[3] = ((utmp[2] >> 4) & kmask2) | (((utmp[1] >> 6) & kmask3) << 4);
  6411. const uint32_t uaux = utmp[1] & kmask1;
  6412. utmp[1] = (utmp[2] & kmask2) | (((utmp[0] >> 6) & kmask3) << 4);
  6413. utmp[2] = uaux;
  6414. utmp[0] &= kmask1;
  6415. const __m128i utmps = _mm_set_epi32(utmp[3], utmp[2], utmp[1], utmp[0]);
  6416. const __m128i scales = _mm_cvtepu8_epi16(utmps);
  6417. const __m128i mins = _mm_cvtepu8_epi16(_mm_unpackhi_epi64(utmps, utmps));
  6418. const __m128i q8sums_0 = _mm_loadu_si128((const __m128i*)&y[i].bsums[0]);
  6419. const __m128i q8sums_1 = _mm_loadu_si128((const __m128i*)&y[i].bsums[8]);
  6420. const __m128i q8s = _mm_hadd_epi16(q8sums_0, q8sums_1);
  6421. const __m128i prod = _mm_madd_epi16(mins, q8s);
  6422. acc_m = _mm_add_ps(_mm_mul_ps(_mm_set1_ps(dmin), _mm_cvtepi32_ps(prod)), acc_m);
  6423. __m128i sumi_0 = _mm_setzero_si128();
  6424. __m128i sumi_1 = _mm_setzero_si128();
  6425. __m128i shuffle = _mm_set1_epi16(0x0100);
  6426. for (int j = 0; j < QK_K/64; ++j) {
  6427. const __m128i scale_l = _mm_shuffle_epi8(scales, shuffle);
  6428. shuffle = _mm_add_epi16(shuffle, m2);
  6429. const __m128i scale_h = _mm_shuffle_epi8(scales, shuffle);
  6430. shuffle = _mm_add_epi16(shuffle, m2);
  6431. __m128i q4bits = _mm_loadu_si128((const __m128i*)q4); q4 += 16;
  6432. const __m128i q4l_0 = _mm_and_si128(q4bits, m4);
  6433. const __m128i q4h_0 = _mm_and_si128(_mm_srli_epi16(q4bits, 4), m4);
  6434. q4bits = _mm_loadu_si128((const __m128i*)q4); q4 += 16;
  6435. const __m128i q4l_1 = _mm_and_si128(q4bits, m4);
  6436. const __m128i q4h_1 = _mm_and_si128(_mm_srli_epi16(q4bits, 4), m4);
  6437. const __m128i q8l_0 = _mm_loadu_si128((const __m128i*)q8); q8 += 16;
  6438. __m128i p16l = _mm_maddubs_epi16(q4l_0, q8l_0);
  6439. p16l = _mm_madd_epi16(scale_l, p16l);
  6440. sumi_0 = _mm_add_epi32(sumi_0, p16l);
  6441. const __m128i q8l_1 = _mm_loadu_si128((const __m128i*)q8); q8 += 16;
  6442. p16l = _mm_maddubs_epi16(q4l_1, q8l_1);
  6443. p16l = _mm_madd_epi16(scale_l, p16l);
  6444. sumi_1 = _mm_add_epi32(sumi_1, p16l);
  6445. const __m128i q8h_0 = _mm_loadu_si128((const __m128i*)q8); q8 += 16;
  6446. __m128i p16h = _mm_maddubs_epi16(q4h_0, q8h_0);
  6447. p16h = _mm_madd_epi16(scale_h, p16h);
  6448. sumi_0 = _mm_add_epi32(sumi_0, p16h);
  6449. const __m128i q8h_1 = _mm_loadu_si128((const __m128i*)q8); q8 += 16;
  6450. p16h = _mm_maddubs_epi16(q4h_1, q8h_1);
  6451. p16h = _mm_madd_epi16(scale_h, p16h);
  6452. sumi_1 = _mm_add_epi32(sumi_1, p16h);
  6453. }
  6454. __m256 vd = _mm256_set1_ps(d);
  6455. __m256i sumi = MM256_SET_M128I(sumi_1, sumi_0);
  6456. acc = _mm256_add_ps(_mm256_mul_ps(vd, _mm256_cvtepi32_ps(sumi)), acc);
  6457. }
  6458. acc_m = _mm_add_ps(acc_m, _mm_movehl_ps(acc_m, acc_m));
  6459. acc_m = _mm_add_ss(acc_m, _mm_movehdup_ps(acc_m));
  6460. *s = hsum_float_8(acc) + _mm_cvtss_f32(acc_m);
  6461. #elif defined __riscv_v_intrinsic
  6462. const uint8_t * scales = (const uint8_t*)&utmp[0];
  6463. const uint8_t * mins = (const uint8_t*)&utmp[2];
  6464. float sumf = 0;
  6465. for (int i = 0; i < nb; ++i) {
  6466. size_t vl = 8;
  6467. const float d = y[i].d * GGML_FP16_TO_FP32(x[i].d);
  6468. const float dmin = y[i].d * GGML_FP16_TO_FP32(x[i].dmin);
  6469. vint16mf2_t q8sums_0 = __riscv_vlse16_v_i16mf2(y[i].bsums, 4, vl);
  6470. vint16mf2_t q8sums_1 = __riscv_vlse16_v_i16mf2(y[i].bsums+1, 4, vl);
  6471. vint16mf2_t q8sums = __riscv_vadd_vv_i16mf2(q8sums_0, q8sums_1, vl);
  6472. memcpy(utmp, x[i].scales, 12);
  6473. utmp[3] = ((utmp[2] >> 4) & kmask2) | (((utmp[1] >> 6) & kmask3) << 4);
  6474. const uint32_t uaux = utmp[1] & kmask1;
  6475. utmp[1] = (utmp[2] & kmask2) | (((utmp[0] >> 6) & kmask3) << 4);
  6476. utmp[2] = uaux;
  6477. utmp[0] &= kmask1;
  6478. vuint8mf4_t mins8 = __riscv_vle8_v_u8mf4(mins, vl);
  6479. vint16mf2_t v_mins = __riscv_vreinterpret_v_u16mf2_i16mf2(__riscv_vzext_vf2_u16mf2(mins8, vl));
  6480. vint32m1_t prod = __riscv_vwmul_vv_i32m1(q8sums, v_mins, vl);
  6481. vint32m1_t sumi = __riscv_vredsum_vs_i32m1_i32m1(prod, __riscv_vmv_v_x_i32m1(0, 1), vl);
  6482. sumf -= dmin * __riscv_vmv_x_s_i32m1_i32(sumi);
  6483. const uint8_t * restrict q4 = x[i].qs;
  6484. const int8_t * restrict q8 = y[i].qs;
  6485. vl = 32;
  6486. int32_t sum_1 = 0;
  6487. int32_t sum_2 = 0;
  6488. vint16m1_t vzero = __riscv_vmv_v_x_i16m1(0, 1);
  6489. for (int j = 0; j < QK_K/64; ++j) {
  6490. // load Q4
  6491. vuint8m1_t q4_x = __riscv_vle8_v_u8m1(q4, vl);
  6492. // load Q8 and multiply it with lower Q4 nibble
  6493. vint8m1_t q8_0 = __riscv_vle8_v_i8m1(q8, vl);
  6494. vint8m1_t q4_0 = __riscv_vreinterpret_v_u8m1_i8m1(__riscv_vand_vx_u8m1(q4_x, 0x0F, vl));
  6495. vint16m2_t qv_0 = __riscv_vwmul_vv_i16m2(q4_0, q8_0, vl);
  6496. vint16m1_t vs_0 = __riscv_vredsum_vs_i16m2_i16m1(qv_0, vzero, vl);
  6497. sum_1 += __riscv_vmv_x_s_i16m1_i16(vs_0) * scales[2*j+0];
  6498. // load Q8 and multiply it with upper Q4 nibble
  6499. vint8m1_t q8_1 = __riscv_vle8_v_i8m1(q8+32, vl);
  6500. vint8m1_t q4_1 = __riscv_vreinterpret_v_u8m1_i8m1(__riscv_vsrl_vx_u8m1(q4_x, 0x04, vl));
  6501. vint16m2_t qv_1 = __riscv_vwmul_vv_i16m2(q4_1, q8_1, vl);
  6502. vint16m1_t vs_1 = __riscv_vredsum_vs_i16m2_i16m1(qv_1, vzero, vl);
  6503. sum_2 += __riscv_vmv_x_s_i16m1_i16(vs_1) * scales[2*j+1];
  6504. q4 += 32; q8 += 64;
  6505. }
  6506. sumf += d*(sum_1 + sum_2);
  6507. }
  6508. *s = sumf;
  6509. #elif defined(__POWER9_VECTOR__)
  6510. const vector signed char lowMask = vec_splats((signed char)0xF);
  6511. const vector signed char lowMask1 = vec_splats((int8_t)0x3f);
  6512. const vector signed char lowMask2 = vec_splats((int8_t)0x30);
  6513. const vector int v0 = vec_splats((int32_t)0);
  6514. const vector unsigned char v2 = vec_splats((uint8_t)2);
  6515. const vector unsigned char v4 = vec_splats((unsigned char)0x4);
  6516. vector float vsumf0 = vec_splats(0.0f);
  6517. vector float vsumf1 = vec_splats(0.0f);
  6518. vector float vsumf2 = vec_splats(0.0f);
  6519. vector float vsumf3 = vec_splats(0.0f);
  6520. for (int i = 0; i < nb; ++i) {
  6521. vector float vxd = vec_splats(GGML_FP16_TO_FP32(x[i].d));
  6522. vector float vyd = vec_splats(y[i].d);
  6523. vector float vd = vec_mul(vxd, vyd);
  6524. vector float vxmin = vec_splats(GGML_FP16_TO_FP32(x[i].dmin));
  6525. vector float vdmin = vec_mul(vxmin, vyd);
  6526. vector signed short q8ysums0 = vec_xl( 0, y[i].bsums);
  6527. vector signed short q8ysums1 = vec_xl(16, y[i].bsums);
  6528. UNUSED(kmask1);
  6529. UNUSED(kmask2);
  6530. UNUSED(kmask3);
  6531. UNUSED(utmp);
  6532. vector signed char u0 = (vector signed char)vec_xl_len(x[i].scales, 8);
  6533. vector signed char u1 = vec_and(vec_sr(u0, v2), lowMask2);
  6534. vector signed char u2 = (vector signed char)vec_xl_len(x[i].scales + 8, 4);
  6535. vector signed char u3 = vec_sr(u2, v4);
  6536. vector signed char u30 = u1;
  6537. vector signed char u31 = (vector signed char)vec_mergeh((vector signed int)vec_and(u2, lowMask), (vector signed int)u3);
  6538. u1 = vec_and(u0, lowMask1);
  6539. u2 = vec_or(u30, u31);
  6540. vector signed char utmps = (vector signed char)vec_mergeh((vector signed int)u1, (vector signed int)u2);
  6541. vector signed short vscales = vec_unpackh(utmps);
  6542. vector signed short q4xmins = vec_unpackl(utmps);
  6543. vector signed short q4xmins0 = vec_mergeh(q4xmins, q4xmins);
  6544. vector signed short q4xmins1 = vec_mergel(q4xmins, q4xmins);
  6545. vector signed int prod0 = vec_mule(q4xmins0, q8ysums0);
  6546. vector signed int prod1 = vec_mule(q4xmins1, q8ysums1);
  6547. vector signed int prod2 = vec_mulo(q4xmins0, q8ysums0);
  6548. vector signed int prod3 = vec_mulo(q4xmins1, q8ysums1);
  6549. vsumf0 = vec_nmsub(vec_ctf(prod0, 0), vdmin, vsumf0);
  6550. vsumf1 = vec_nmsub(vec_ctf(prod1, 0), vdmin, vsumf1);
  6551. vsumf2 = vec_nmsub(vec_ctf(prod2, 0), vdmin, vsumf2);
  6552. vsumf3 = vec_nmsub(vec_ctf(prod3, 0), vdmin, vsumf3);
  6553. vector signed int vsumi0 = v0;
  6554. vector signed int vsumi1 = v0;
  6555. vector signed int vsumi2 = v0;
  6556. vector signed int vsumi3 = v0;
  6557. const uint8_t * restrict q4 = x[i].qs;
  6558. const int8_t * restrict q8 = y[i].qs;
  6559. for (int j = 0; j < QK_K/64; j+=2) {
  6560. __builtin_prefetch(q4, 0, 1);
  6561. __builtin_prefetch(q8, 0, 1);
  6562. vector signed char qxs0 = (vector signed char)vec_xl( 0, q4);
  6563. vector signed char qxs1 = (vector signed char)vec_xl(16, q4);
  6564. vector signed char qxs2 = (vector signed char)vec_xl(32, q4);
  6565. vector signed char qxs3 = (vector signed char)vec_xl(48, q4);
  6566. q4 += 64;
  6567. vector unsigned char q4x00 = (vector unsigned char)vec_and(qxs0, lowMask);
  6568. vector unsigned char q4x01 = (vector unsigned char)vec_sr(qxs0, v4);
  6569. vector unsigned char q4x10 = (vector unsigned char)vec_and(qxs1, lowMask);
  6570. vector unsigned char q4x11 = (vector unsigned char)vec_sr(qxs1, v4);
  6571. vector unsigned char q4x20 = (vector unsigned char)vec_and(qxs2, lowMask);
  6572. vector unsigned char q4x21 = (vector unsigned char)vec_sr(qxs2, v4);
  6573. vector unsigned char q4x30 = (vector unsigned char)vec_and(qxs3, lowMask);
  6574. vector unsigned char q4x31 = (vector unsigned char)vec_sr(qxs3, v4);
  6575. vector signed char q8y00 = vec_xl( 0, q8);
  6576. vector signed char q8y10 = vec_xl( 16, q8);
  6577. vector signed char q8y01 = vec_xl( 32, q8);
  6578. vector signed char q8y11 = vec_xl( 48, q8);
  6579. vector signed char q8y20 = vec_xl( 64, q8);
  6580. vector signed char q8y30 = vec_xl( 80, q8);
  6581. vector signed char q8y21 = vec_xl( 96, q8);
  6582. vector signed char q8y31 = vec_xl(112, q8);
  6583. q8 += 128;
  6584. vector signed int qv00 = vec_msum(q8y00, q4x00, v0);
  6585. vector signed int qv01 = vec_msum(q8y01, q4x01, v0);
  6586. vector signed int qv10 = vec_msum(q8y10, q4x10, v0);
  6587. vector signed int qv11 = vec_msum(q8y11, q4x11, v0);
  6588. vector signed int qv20 = vec_msum(q8y20, q4x20, v0);
  6589. vector signed int qv21 = vec_msum(q8y21, q4x21, v0);
  6590. vector signed int qv30 = vec_msum(q8y30, q4x30, v0);
  6591. vector signed int qv31 = vec_msum(q8y31, q4x31, v0);
  6592. vector signed int vscales_h = vec_unpackh(vscales);
  6593. vector signed int vs0 = vec_splat(vscales_h, 0);
  6594. vector signed int vs1 = vec_splat(vscales_h, 1);
  6595. vector signed int vs2 = vec_splat(vscales_h, 2);
  6596. vector signed int vs3 = vec_splat(vscales_h, 3);
  6597. vscales = vec_sld(vscales, vscales, 8);
  6598. vsumi0 = vec_add(vec_mul(qv00, vs0), vsumi0);
  6599. vsumi1 = vec_add(vec_mul(qv01, vs1), vsumi1);
  6600. vsumi2 = vec_add(vec_mul(qv20, vs2), vsumi2);
  6601. vsumi3 = vec_add(vec_mul(qv21, vs3), vsumi3);
  6602. vsumi0 = vec_add(vec_mul(qv10, vs0), vsumi0);
  6603. vsumi1 = vec_add(vec_mul(qv11, vs1), vsumi1);
  6604. vsumi2 = vec_add(vec_mul(qv30, vs2), vsumi2);
  6605. vsumi3 = vec_add(vec_mul(qv31, vs3), vsumi3);
  6606. }
  6607. vsumf0 = vec_madd(vec_ctf(vsumi0, 0), vd, vsumf0);
  6608. vsumf1 = vec_madd(vec_ctf(vsumi1, 0), vd, vsumf1);
  6609. vsumf2 = vec_madd(vec_ctf(vsumi2, 0), vd, vsumf2);
  6610. vsumf3 = vec_madd(vec_ctf(vsumi3, 0), vd, vsumf3);
  6611. }
  6612. vsumf0 = vec_add(vsumf0, vsumf2);
  6613. vsumf1 = vec_add(vsumf1, vsumf3);
  6614. vsumf0 = vec_add(vsumf0, vsumf1);
  6615. vsumf0 = vec_add(vsumf0, vec_sld(vsumf0, vsumf0, 4));
  6616. vsumf0 = vec_add(vsumf0, vec_sld(vsumf0, vsumf0, 8));
  6617. *s = vec_extract(vsumf0, 0);
  6618. #elif defined __loongarch_asx
  6619. GGML_UNUSED(kmask1);
  6620. GGML_UNUSED(kmask2);
  6621. GGML_UNUSED(kmask3);
  6622. const __m256i m4 = __lasx_xvreplgr2vr_b(0xF);
  6623. __m256 acc = (__m256)__lasx_xvldi(0);
  6624. __m128 acc_m = (__m128)__lsx_vldi(0);
  6625. for (int i = 0; i < nb; ++i) {
  6626. const float d = y[i].d * GGML_FP16_TO_FP32(x[i].d);
  6627. const float dmin = -y[i].d * GGML_FP16_TO_FP32(x[i].dmin);
  6628. memcpy(utmp, x[i].scales, 12);
  6629. utmp[3] = ((utmp[2] >> 4) & kmask2) | (((utmp[1] >> 6) & kmask3) << 4);
  6630. const uint32_t uaux = utmp[1] & kmask1;
  6631. utmp[1] = (utmp[2] & kmask2) | (((utmp[0] >> 6) & kmask3) << 4);
  6632. utmp[2] = uaux;
  6633. utmp[0] &= kmask1;
  6634. const uint8_t * restrict q4 = x[i].qs;
  6635. const int8_t * restrict q8 = y[i].qs;
  6636. const __m256i mins_and_scales = lasx_extu8_16(lsx_set_w(utmp[3], utmp[2], utmp[1], utmp[0]));
  6637. const __m256i q8sums = __lasx_xvld((const __m256i*)y[i].bsums, 0);
  6638. const __m128i q8s = lsx_hadd_h(lasx_extracti128(q8sums, 0), lasx_extracti128(q8sums, 1));
  6639. const __m128i prod = lsx_madd_h(lasx_extracti128(mins_and_scales, 1), q8s);
  6640. acc_m = __lsx_vfmadd_s(__lsx_vreplfr2vr_s(dmin), __lsx_vffint_s_w(prod), acc_m);
  6641. const __m128i sc128 = lasx_extracti128(mins_and_scales, 0);
  6642. const __m256i scales = lasx_insertf128(sc128, sc128);
  6643. __m256i sumi = __lasx_xvldi(0);
  6644. for (int j = 0; j < QK_K/64; ++j) {
  6645. const __m256i scale_l = lasx_shuffle_b(scales, get_scale_shuffle_k4(2*j+0));
  6646. const __m256i scale_h = lasx_shuffle_b(scales, get_scale_shuffle_k4(2*j+1));
  6647. const __m256i q4bits = __lasx_xvld((const __m256i*)q4, 0); q4 += 32;
  6648. const __m256i q4l = __lasx_xvand_v(q4bits, m4);
  6649. const __m256i q4h = __lasx_xvand_v(__lasx_xvsrli_h(q4bits, 4), m4);
  6650. const __m256i q8l = __lasx_xvld((const __m256i*)q8, 0); q8 += 32;
  6651. __m256i p16l = lasx_maddubs_h(q4l, q8l);
  6652. p16l = lasx_madd_h(scale_l, p16l);
  6653. const __m256i q8h = __lasx_xvld((const __m256i*)q8, 0); q8 += 32;
  6654. __m256i p16h = lasx_maddubs_h(q4h, q8h);
  6655. p16h = lasx_madd_h(scale_h, p16h);
  6656. const __m256i sumj = __lasx_xvadd_w(p16l, p16h);
  6657. sumi = __lasx_xvadd_w(sumi, sumj);
  6658. }
  6659. __m256 vd = __lasx_xvreplfr2vr_s(d);
  6660. acc = __lasx_xvfmadd_s(vd, __lasx_xvffint_s_w(sumi), acc);
  6661. }
  6662. acc_m = __lsx_vfadd_s(acc_m, (__m128)__lsx_vpermi_w((__m128i)acc_m, (__m128i)acc_m, 0xee));
  6663. __m128i tmp1 = __lsx_vinsgr2vr_w(__lsx_vldi(0), __lsx_vpickve2gr_w((__m128i)acc_m, 1), 0);
  6664. acc_m = __lsx_vfadd_s(acc_m, (__m128)tmp1);
  6665. ft_union fi;
  6666. fi.i = __lsx_vpickve2gr_w(acc_m, 0);
  6667. *s = hsum_float_8(acc) + fi.f ;
  6668. #else
  6669. const uint8_t * scales = (const uint8_t*)&utmp[0];
  6670. const uint8_t * mins = (const uint8_t*)&utmp[2];
  6671. int8_t aux8[QK_K];
  6672. int16_t aux16[8];
  6673. float sums [8];
  6674. int32_t aux32[8];
  6675. memset(sums, 0, 8*sizeof(float));
  6676. float sumf = 0;
  6677. for (int i = 0; i < nb; ++i) {
  6678. const uint8_t * restrict q4 = x[i].qs;
  6679. const int8_t * restrict q8 = y[i].qs;
  6680. memset(aux32, 0, 8*sizeof(int32_t));
  6681. int8_t * restrict a = aux8;
  6682. for (int j = 0; j < QK_K/64; ++j) {
  6683. for (int l = 0; l < 32; ++l) a[l] = (int8_t)(q4[l] & 0xF);
  6684. a += 32;
  6685. for (int l = 0; l < 32; ++l) a[l] = (int8_t)(q4[l] >> 4);
  6686. a += 32; q4 += 32;
  6687. }
  6688. memcpy(utmp, x[i].scales, 12);
  6689. utmp[3] = ((utmp[2] >> 4) & kmask2) | (((utmp[1] >> 6) & kmask3) << 4);
  6690. const uint32_t uaux = utmp[1] & kmask1;
  6691. utmp[1] = (utmp[2] & kmask2) | (((utmp[0] >> 6) & kmask3) << 4);
  6692. utmp[2] = uaux;
  6693. utmp[0] &= kmask1;
  6694. int sumi = 0;
  6695. for (int j = 0; j < QK_K/16; ++j) sumi += y[i].bsums[j] * mins[j/2];
  6696. a = aux8;
  6697. int is = 0;
  6698. for (int j = 0; j < QK_K/32; ++j) {
  6699. int32_t scale = scales[is++];
  6700. for (int l = 0; l < 8; ++l) aux16[l] = q8[l] * a[l];
  6701. for (int l = 0; l < 8; ++l) aux32[l] += scale * aux16[l];
  6702. q8 += 8; a += 8;
  6703. for (int l = 0; l < 8; ++l) aux16[l] = q8[l] * a[l];
  6704. for (int l = 0; l < 8; ++l) aux32[l] += scale * aux16[l];
  6705. q8 += 8; a += 8;
  6706. for (int l = 0; l < 8; ++l) aux16[l] = q8[l] * a[l];
  6707. for (int l = 0; l < 8; ++l) aux32[l] += scale * aux16[l];
  6708. q8 += 8; a += 8;
  6709. for (int l = 0; l < 8; ++l) aux16[l] = q8[l] * a[l];
  6710. for (int l = 0; l < 8; ++l) aux32[l] += scale * aux16[l];
  6711. q8 += 8; a += 8;
  6712. }
  6713. const float d = GGML_FP16_TO_FP32(x[i].d) * y[i].d;
  6714. for (int l = 0; l < 8; ++l) sums[l] += d * aux32[l];
  6715. const float dmin = GGML_FP16_TO_FP32(x[i].dmin) * y[i].d;
  6716. sumf -= dmin * sumi;
  6717. }
  6718. for (int l = 0; l < 8; ++l) sumf += sums[l];
  6719. *s = sumf;
  6720. #endif
  6721. }
  6722. void ggml_vec_dot_q5_K_q8_K(int n, float * restrict s, size_t bs, const void * restrict vx, size_t bx, const void * restrict vy, size_t by, int nrc) {
  6723. assert(n % QK_K == 0);
  6724. assert(nrc == 1);
  6725. UNUSED(nrc);
  6726. UNUSED(bx);
  6727. UNUSED(by);
  6728. UNUSED(bs);
  6729. const block_q5_K * restrict x = vx;
  6730. const block_q8_K * restrict y = vy;
  6731. const int nb = n / QK_K;
  6732. static const uint32_t kmask1 = 0x3f3f3f3f;
  6733. static const uint32_t kmask2 = 0x0f0f0f0f;
  6734. static const uint32_t kmask3 = 0x03030303;
  6735. uint32_t utmp[4];
  6736. #ifdef __ARM_NEON
  6737. const uint8x16_t m4b = vdupq_n_u8(0xf);
  6738. const uint8x16_t mone = vdupq_n_u8(1);
  6739. const uint8x16_t mtwo = vdupq_n_u8(2);
  6740. const int32x4_t mzero = vdupq_n_s32(0);
  6741. ggml_int8x16x4_t q5bytes;
  6742. float sumf = 0;
  6743. for (int i = 0; i < nb; ++i) {
  6744. const float d = y[i].d * GGML_FP16_TO_FP32(x[i].d);
  6745. const float dmin = y[i].d * GGML_FP16_TO_FP32(x[i].dmin);
  6746. const int16x8_t q8sums = vpaddq_s16(vld1q_s16(y[i].bsums), vld1q_s16(y[i].bsums + 8));
  6747. memcpy(utmp, x[i].scales, 12);
  6748. utmp[3] = ((utmp[2] >> 4) & kmask2) | (((utmp[1] >> 6) & kmask3) << 4);
  6749. const uint32_t uaux = utmp[1] & kmask1;
  6750. utmp[1] = (utmp[2] & kmask2) | (((utmp[0] >> 6) & kmask3) << 4);
  6751. utmp[2] = uaux;
  6752. utmp[0] &= kmask1;
  6753. const uint8x8_t mins8 = vld1_u8((const uint8_t*)utmp + 8);
  6754. const int16x8_t mins = vreinterpretq_s16_u16(vmovl_u8(mins8));
  6755. const int32x4_t prod = vaddq_s32(vmull_s16(vget_low_s16 (q8sums), vget_low_s16 (mins)),
  6756. vmull_s16(vget_high_s16(q8sums), vget_high_s16(mins)));
  6757. int32_t sumi_mins = vaddvq_s32(prod);
  6758. const uint8_t * scales = (const uint8_t *)utmp;
  6759. const uint8_t * restrict q5 = x[i].qs;
  6760. const uint8_t * restrict qh = x[i].qh;
  6761. const int8_t * restrict q8 = y[i].qs;
  6762. ggml_uint8x16x2_t qhbits = ggml_vld1q_u8_x2(qh);
  6763. ggml_uint8x16x4_t q5h;
  6764. int32_t sumi = 0;
  6765. for (int j = 0; j < QK_K/64; ++j) {
  6766. const ggml_uint8x16x2_t q5bits = ggml_vld1q_u8_x2(q5); q5 += 32;
  6767. const ggml_int8x16x4_t q8bytes = ggml_vld1q_s8_x4(q8); q8 += 64;
  6768. q5h.val[0] = vshlq_n_u8(vandq_u8(mone, qhbits.val[0]), 4);
  6769. q5h.val[1] = vshlq_n_u8(vandq_u8(mone, qhbits.val[1]), 4);
  6770. q5h.val[2] = vshlq_n_u8(vandq_u8(mtwo, qhbits.val[0]), 3);
  6771. q5h.val[3] = vshlq_n_u8(vandq_u8(mtwo, qhbits.val[1]), 3);
  6772. qhbits.val[0] = vshrq_n_u8(qhbits.val[0], 2);
  6773. qhbits.val[1] = vshrq_n_u8(qhbits.val[1], 2);
  6774. q5bytes.val[0] = vreinterpretq_s8_u8(vorrq_u8(vandq_u8(q5bits.val[0], m4b), q5h.val[0]));
  6775. q5bytes.val[1] = vreinterpretq_s8_u8(vorrq_u8(vandq_u8(q5bits.val[1], m4b), q5h.val[1]));
  6776. q5bytes.val[2] = vreinterpretq_s8_u8(vorrq_u8(vshrq_n_u8(q5bits.val[0], 4), q5h.val[2]));
  6777. q5bytes.val[3] = vreinterpretq_s8_u8(vorrq_u8(vshrq_n_u8(q5bits.val[1], 4), q5h.val[3]));
  6778. sumi += vaddvq_s32(ggml_vdotq_s32(ggml_vdotq_s32(mzero, q5bytes.val[0], q8bytes.val[0]), q5bytes.val[1], q8bytes.val[1])) * *scales++;
  6779. sumi += vaddvq_s32(ggml_vdotq_s32(ggml_vdotq_s32(mzero, q5bytes.val[2], q8bytes.val[2]), q5bytes.val[3], q8bytes.val[3])) * *scales++;
  6780. }
  6781. sumf += d * sumi - dmin * sumi_mins;
  6782. }
  6783. *s = sumf;
  6784. #elif defined __AVX2__
  6785. const __m256i m4 = _mm256_set1_epi8(0xF);
  6786. const __m128i mzero = _mm_setzero_si128();
  6787. const __m256i mone = _mm256_set1_epi8(1);
  6788. __m256 acc = _mm256_setzero_ps();
  6789. float summs = 0.f;
  6790. for (int i = 0; i < nb; ++i) {
  6791. const uint8_t * restrict q5 = x[i].qs;
  6792. const int8_t * restrict q8 = y[i].qs;
  6793. const float d = y[i].d * GGML_FP16_TO_FP32(x[i].d);
  6794. const float dmin = -y[i].d * GGML_FP16_TO_FP32(x[i].dmin);
  6795. memcpy(utmp, x[i].scales, 12);
  6796. utmp[3] = ((utmp[2] >> 4) & kmask2) | (((utmp[1] >> 6) & kmask3) << 4);
  6797. const uint32_t uaux = utmp[1] & kmask1;
  6798. utmp[1] = (utmp[2] & kmask2) | (((utmp[0] >> 6) & kmask3) << 4);
  6799. utmp[2] = uaux;
  6800. utmp[0] &= kmask1;
  6801. const __m256i mins_and_scales = _mm256_cvtepu8_epi16(_mm_set_epi32(utmp[3], utmp[2], utmp[1], utmp[0]));
  6802. const __m256i q8sums = _mm256_loadu_si256((const __m256i*)y[i].bsums);
  6803. const __m128i q8s = _mm_hadd_epi16(_mm256_extracti128_si256(q8sums, 0), _mm256_extracti128_si256(q8sums, 1));
  6804. const __m128i prod = _mm_madd_epi16(_mm256_extracti128_si256(mins_and_scales, 1), q8s);
  6805. const __m128i hsum = _mm_hadd_epi32(_mm_hadd_epi32(prod, mzero), mzero);
  6806. summs += dmin * _mm_extract_epi32(hsum, 0);
  6807. const __m128i sc128 = _mm256_extracti128_si256(mins_and_scales, 0);
  6808. const __m256i scales = MM256_SET_M128I(sc128, sc128);
  6809. const __m256i hbits = _mm256_loadu_si256((const __m256i*)x[i].qh);
  6810. __m256i hmask = mone;
  6811. __m256i sumi = _mm256_setzero_si256();
  6812. int bit = 0;
  6813. for (int j = 0; j < QK_K/64; ++j) {
  6814. const __m256i scale_0 = _mm256_shuffle_epi8(scales, get_scale_shuffle_k4(2*j+0));
  6815. const __m256i scale_1 = _mm256_shuffle_epi8(scales, get_scale_shuffle_k4(2*j+1));
  6816. const __m256i q5bits = _mm256_loadu_si256((const __m256i*)q5); q5 += 32;
  6817. const __m256i q5l_0 = _mm256_and_si256(q5bits, m4);
  6818. const __m256i q5h_0 = _mm256_slli_epi16(_mm256_srli_epi16(_mm256_and_si256(hbits, hmask), bit++), 4);
  6819. const __m256i q5_0 = _mm256_add_epi8(q5l_0, q5h_0);
  6820. hmask = _mm256_slli_epi16(hmask, 1);
  6821. const __m256i q5l_1 = _mm256_and_si256(_mm256_srli_epi16(q5bits, 4), m4);
  6822. const __m256i q5h_1 = _mm256_slli_epi16(_mm256_srli_epi16(_mm256_and_si256(hbits, hmask), bit++), 4);
  6823. const __m256i q5_1 = _mm256_add_epi8(q5l_1, q5h_1);
  6824. hmask = _mm256_slli_epi16(hmask, 1);
  6825. const __m256i q8_0 = _mm256_loadu_si256((const __m256i*)q8); q8 += 32;
  6826. const __m256i q8_1 = _mm256_loadu_si256((const __m256i*)q8); q8 += 32;
  6827. __m256i p16_0 = _mm256_maddubs_epi16(q5_0, q8_0);
  6828. __m256i p16_1 = _mm256_maddubs_epi16(q5_1, q8_1);
  6829. p16_0 = _mm256_madd_epi16(scale_0, p16_0);
  6830. p16_1 = _mm256_madd_epi16(scale_1, p16_1);
  6831. sumi = _mm256_add_epi32(sumi, _mm256_add_epi32(p16_0, p16_1));
  6832. }
  6833. __m256 vd = _mm256_set1_ps(d);
  6834. acc = _mm256_fmadd_ps(vd, _mm256_cvtepi32_ps(sumi), acc);
  6835. }
  6836. *s = hsum_float_8(acc) + summs;
  6837. #elif defined __AVX__
  6838. const __m128i m4 = _mm_set1_epi8(0xF);
  6839. const __m128i mzero = _mm_setzero_si128();
  6840. const __m128i mone = _mm_set1_epi8(1);
  6841. const __m128i m2 = _mm_set1_epi8(2);
  6842. __m256 acc = _mm256_setzero_ps();
  6843. float summs = 0.f;
  6844. for (int i = 0; i < nb; ++i) {
  6845. const float d = y[i].d * GGML_FP16_TO_FP32(x[i].d);
  6846. const float dmin = -y[i].d * GGML_FP16_TO_FP32(x[i].dmin);
  6847. const uint8_t * restrict q5 = x[i].qs;
  6848. const int8_t * restrict q8 = y[i].qs;
  6849. memcpy(utmp, x[i].scales, 12);
  6850. utmp[3] = ((utmp[2] >> 4) & kmask2) | (((utmp[1] >> 6) & kmask3) << 4);
  6851. const uint32_t uaux = utmp[1] & kmask1;
  6852. utmp[1] = (utmp[2] & kmask2) | (((utmp[0] >> 6) & kmask3) << 4);
  6853. utmp[2] = uaux;
  6854. utmp[0] &= kmask1;
  6855. const __m128i utmps = _mm_set_epi32(utmp[3], utmp[2], utmp[1], utmp[0]);
  6856. const __m128i scales = _mm_cvtepu8_epi16(utmps);
  6857. const __m128i mins = _mm_cvtepu8_epi16(_mm_unpackhi_epi64(utmps, utmps));
  6858. const __m128i q8sums_0 = _mm_loadu_si128((const __m128i*)&y[i].bsums[0]);
  6859. const __m128i q8sums_1 = _mm_loadu_si128((const __m128i*)&y[i].bsums[8]);
  6860. const __m128i q8s = _mm_hadd_epi16(q8sums_0, q8sums_1);
  6861. const __m128i prod = _mm_madd_epi16(mins, q8s);
  6862. const __m128i hsum = _mm_hadd_epi32(_mm_hadd_epi32(prod, mzero), mzero);
  6863. summs += dmin * _mm_extract_epi32(hsum, 0);
  6864. const __m128i hbits_0 = _mm_loadu_si128((const __m128i*)&x[i].qh[0]);
  6865. const __m128i hbits_1 = _mm_loadu_si128((const __m128i*)&x[i].qh[16]);
  6866. __m128i hmask = mone;
  6867. __m128i sumi_0 = _mm_setzero_si128();
  6868. __m128i sumi_1 = _mm_setzero_si128();
  6869. int bit = 0;
  6870. __m128i shuffle = _mm_set1_epi16(0x0100);
  6871. for (int j = 0; j < QK_K/64; ++j) {
  6872. const __m128i scale_0 = _mm_shuffle_epi8(scales, shuffle);
  6873. shuffle = _mm_add_epi16(shuffle, m2);
  6874. const __m128i scale_1 = _mm_shuffle_epi8(scales, shuffle);
  6875. shuffle = _mm_add_epi16(shuffle, m2);
  6876. const __m128i q5bits_0 = _mm_loadu_si128((const __m128i*)q5); q5 += 16;
  6877. const __m128i q5bits_1 = _mm_loadu_si128((const __m128i*)q5); q5 += 16;
  6878. __m128i q5l_0 = _mm_and_si128(q5bits_0, m4);
  6879. __m128i q5l_1 = _mm_and_si128(q5bits_1, m4);
  6880. __m128i q5h_0 = _mm_slli_epi16(_mm_srli_epi16(_mm_and_si128(hbits_0, hmask), bit), 4);
  6881. __m128i q5h_1 = _mm_slli_epi16(_mm_srli_epi16(_mm_and_si128(hbits_1, hmask), bit++), 4);
  6882. __m128i q5_0 = _mm_add_epi8(q5l_0, q5h_0);
  6883. __m128i q5_1 = _mm_add_epi8(q5l_1, q5h_1);
  6884. hmask = _mm_slli_epi16(hmask, 1);
  6885. __m128i q8_0 = _mm_loadu_si128((const __m128i*)q8); q8 += 16;
  6886. __m128i q8_1 = _mm_loadu_si128((const __m128i*)q8); q8 += 16;
  6887. __m128i p16_0 = _mm_maddubs_epi16(q5_0, q8_0);
  6888. __m128i p16_1 = _mm_maddubs_epi16(q5_1, q8_1);
  6889. p16_0 = _mm_madd_epi16(scale_0, p16_0);
  6890. p16_1 = _mm_madd_epi16(scale_0, p16_1);
  6891. q5l_0 = _mm_and_si128(_mm_srli_epi16(q5bits_0, 4), m4);
  6892. q5l_1 = _mm_and_si128(_mm_srli_epi16(q5bits_1, 4), m4);
  6893. q5h_0 = _mm_slli_epi16(_mm_srli_epi16(_mm_and_si128(hbits_0, hmask), bit), 4);
  6894. q5h_1 = _mm_slli_epi16(_mm_srli_epi16(_mm_and_si128(hbits_1, hmask), bit++), 4);
  6895. q5_0 = _mm_add_epi8(q5l_0, q5h_0);
  6896. q5_1 = _mm_add_epi8(q5l_1, q5h_1);
  6897. hmask = _mm_slli_epi16(hmask, 1);
  6898. q8_0 = _mm_loadu_si128((const __m128i*)q8); q8 += 16;
  6899. q8_1 = _mm_loadu_si128((const __m128i*)q8); q8 += 16;
  6900. __m128i p16_2 = _mm_maddubs_epi16(q5_0, q8_0);
  6901. __m128i p16_3 = _mm_maddubs_epi16(q5_1, q8_1);
  6902. p16_2 = _mm_madd_epi16(scale_1, p16_2);
  6903. p16_3 = _mm_madd_epi16(scale_1, p16_3);
  6904. sumi_0 = _mm_add_epi32(sumi_0, _mm_add_epi32(p16_0, p16_2));
  6905. sumi_1 = _mm_add_epi32(sumi_1, _mm_add_epi32(p16_1, p16_3));
  6906. }
  6907. __m256 vd = _mm256_set1_ps(d);
  6908. __m256i sumi = MM256_SET_M128I(sumi_1, sumi_0);
  6909. acc = _mm256_add_ps(_mm256_mul_ps(vd, _mm256_cvtepi32_ps(sumi)), acc);
  6910. }
  6911. *s = hsum_float_8(acc) + summs;
  6912. #elif defined __riscv_v_intrinsic
  6913. const uint8_t * scales = (const uint8_t*)&utmp[0];
  6914. const uint8_t * mins = (const uint8_t*)&utmp[2];
  6915. float sumf = 0;
  6916. float sums = 0.0;
  6917. size_t vl;
  6918. for (int i = 0; i < nb; ++i) {
  6919. vl = 8;
  6920. const uint8_t * restrict q5 = x[i].qs;
  6921. const uint8_t * restrict hm = x[i].qh;
  6922. const int8_t * restrict q8 = y[i].qs;
  6923. const float d = GGML_FP16_TO_FP32(x[i].d) * y[i].d;
  6924. const float dmin = GGML_FP16_TO_FP32(x[i].dmin) * y[i].d;
  6925. vint16mf2_t q8sums_0 = __riscv_vlse16_v_i16mf2(y[i].bsums, 4, vl);
  6926. vint16mf2_t q8sums_1 = __riscv_vlse16_v_i16mf2(y[i].bsums+1, 4, vl);
  6927. vint16mf2_t q8sums = __riscv_vadd_vv_i16mf2(q8sums_0, q8sums_1, vl);
  6928. memcpy(utmp, x[i].scales, 12);
  6929. utmp[3] = ((utmp[2] >> 4) & kmask2) | (((utmp[1] >> 6) & kmask3) << 4);
  6930. const uint32_t uaux = utmp[1] & kmask1;
  6931. utmp[1] = (utmp[2] & kmask2) | (((utmp[0] >> 6) & kmask3) << 4);
  6932. utmp[2] = uaux;
  6933. utmp[0] &= kmask1;
  6934. vuint8mf4_t mins8 = __riscv_vle8_v_u8mf4(mins, vl);
  6935. vint16mf2_t v_mins = __riscv_vreinterpret_v_u16mf2_i16mf2(__riscv_vzext_vf2_u16mf2(mins8, vl));
  6936. vint32m1_t prod = __riscv_vwmul_vv_i32m1(q8sums, v_mins, vl);
  6937. vint32m1_t sumi = __riscv_vredsum_vs_i32m1_i32m1(prod, __riscv_vmv_v_x_i32m1(0, 1), vl);
  6938. sumf -= dmin * __riscv_vmv_x_s_i32m1_i32(sumi);
  6939. vl = 32;
  6940. int32_t aux32 = 0;
  6941. int is = 0;
  6942. uint8_t m = 1;
  6943. vint32m1_t vzero = __riscv_vmv_v_x_i32m1(0, 1);
  6944. vuint8m1_t vqh = __riscv_vle8_v_u8m1(hm, vl);
  6945. for (int j = 0; j < QK_K/64; ++j) {
  6946. // load Q5 and Q8
  6947. vuint8m1_t q5_x = __riscv_vle8_v_u8m1(q5, vl);
  6948. vint8m1_t q8_y1 = __riscv_vle8_v_i8m1(q8, vl);
  6949. vint8m1_t q8_y2 = __riscv_vle8_v_i8m1(q8+32, vl);
  6950. // compute mask for addition
  6951. vint8m1_t q5_a = __riscv_vreinterpret_v_u8m1_i8m1(__riscv_vand_vx_u8m1(q5_x, 0x0F, vl));
  6952. vuint8m1_t qh_m1 = __riscv_vand_vx_u8m1(vqh, m, vl);
  6953. vbool8_t vmask_1 = __riscv_vmsne_vx_u8m1_b8(qh_m1, 0, vl);
  6954. vint8m1_t q5_m1 = __riscv_vadd_vx_i8m1_mu(vmask_1, q5_a, q5_a, 16, vl);
  6955. m <<= 1;
  6956. vint8m1_t q5_l = __riscv_vreinterpret_v_u8m1_i8m1(__riscv_vsrl_vx_u8m1(q5_x, 0x04, vl));
  6957. vuint8m1_t qh_m2 = __riscv_vand_vx_u8m1(vqh, m, vl);
  6958. vbool8_t vmask_2 = __riscv_vmsne_vx_u8m1_b8(qh_m2, 0, vl);
  6959. vint8m1_t q5_m2 = __riscv_vadd_vx_i8m1_mu(vmask_2, q5_l, q5_l, 16, vl);
  6960. m <<= 1;
  6961. vint16m2_t v0 = __riscv_vwmul_vv_i16m2(q5_m1, q8_y1, vl);
  6962. vint16m2_t v1 = __riscv_vwmul_vv_i16m2(q5_m2, q8_y2, vl);
  6963. vint32m4_t vs1 = __riscv_vwmul_vx_i32m4(v0, scales[is++], vl);
  6964. vint32m4_t vs2 = __riscv_vwmul_vx_i32m4(v1, scales[is++], vl);
  6965. vint32m1_t vacc1 = __riscv_vredsum_vs_i32m4_i32m1(vs1, vzero, vl);
  6966. vint32m1_t vacc2 = __riscv_vredsum_vs_i32m4_i32m1(vs2, vzero, vl);
  6967. aux32 += __riscv_vmv_x_s_i32m1_i32(vacc1) + __riscv_vmv_x_s_i32m1_i32(vacc2);
  6968. q5 += 32; q8 += 64;
  6969. }
  6970. vfloat32m1_t vaux = __riscv_vfmul_vf_f32m1(__riscv_vfmv_v_f_f32m1(aux32, 1), d, 1);
  6971. sums += __riscv_vfmv_f_s_f32m1_f32(vaux);
  6972. }
  6973. *s = sumf+sums;
  6974. #elif defined(__POWER9_VECTOR__)
  6975. const vector signed char lowMask = vec_splats((signed char)0xF);
  6976. const vector signed char lowMask1 = vec_splats((int8_t)0x3f);
  6977. const vector signed char lowMask2 = vec_splats((int8_t)0x30);
  6978. const vector int v0 = vec_splats((int32_t)0);
  6979. const vector unsigned char v1 = vec_splats((unsigned char)0x1);
  6980. const vector unsigned char v2 = vec_splats((unsigned char)0x2);
  6981. const vector unsigned char v3 = vec_splats((unsigned char)0x3);
  6982. const vector unsigned char v4 = vec_splats((unsigned char)0x4);
  6983. vector float vsumf0 = vec_splats(0.0f);
  6984. vector float vsumf1 = vec_splats(0.0f);
  6985. vector float vsumf2 = vec_splats(0.0f);
  6986. vector float vsumf3 = vec_splats(0.0f);
  6987. for (int i = 0; i < nb; ++i) {
  6988. vector float vxd = vec_splats(GGML_FP16_TO_FP32(x[i].d));
  6989. vector float vyd = vec_splats(y[i].d);
  6990. vector float vd = vec_mul(vxd, vyd);
  6991. vector float vxmin = vec_splats(GGML_FP16_TO_FP32(x[i].dmin));
  6992. vector float vdmin = vec_mul(vxmin, vyd);
  6993. UNUSED(kmask1);
  6994. UNUSED(kmask2);
  6995. UNUSED(kmask3);
  6996. UNUSED(utmp);
  6997. vector signed char u0 = (vector signed char)vec_xl_len(x[i].scales, 8);
  6998. vector signed char u1 = vec_and(vec_sr(u0, v2), lowMask2);
  6999. vector signed char u2 = (vector signed char)vec_xl_len(x[i].scales + 8, 4);
  7000. vector signed char u3 = vec_sr(u2, v4);
  7001. vector signed char u30 = u1;
  7002. vector signed char u31 = (vector signed char)vec_mergeh((vector signed int)vec_and(u2, lowMask), (vector signed int)u3);
  7003. u1 = vec_and(u0, lowMask1);
  7004. u2 = vec_or(u30, u31);
  7005. vector signed char utmps = (vector signed char)vec_mergeh((vector signed int)u1, (vector signed int)u2);
  7006. vector signed short q8ysums0 = vec_xl( 0, y[i].bsums);
  7007. vector signed short q8ysums1 = vec_xl(16, y[i].bsums);
  7008. vector signed short vscales = vec_unpackh(utmps);
  7009. vector signed short q5xmins = vec_unpackl(utmps);
  7010. vector signed short q5xmins0 = vec_mergeh(q5xmins, q5xmins);
  7011. vector signed short q5xmins1 = vec_mergel(q5xmins, q5xmins);
  7012. vector signed int prod0 = vec_mule(q5xmins0, q8ysums0);
  7013. vector signed int prod1 = vec_mule(q5xmins1, q8ysums1);
  7014. vector signed int prod2 = vec_mulo(q5xmins0, q8ysums0);
  7015. vector signed int prod3 = vec_mulo(q5xmins1, q8ysums1);
  7016. vsumf0 = vec_nmsub(vec_ctf(prod0, 0), vdmin, vsumf0);
  7017. vsumf1 = vec_nmsub(vec_ctf(prod1, 0), vdmin, vsumf1);
  7018. vsumf2 = vec_nmsub(vec_ctf(prod2, 0), vdmin, vsumf2);
  7019. vsumf3 = vec_nmsub(vec_ctf(prod3, 0), vdmin, vsumf3);
  7020. vector signed char qxhs0 = (vector signed char)vec_xl( 0, x[i].qh);
  7021. vector signed char qxhs1 = (vector signed char)vec_xl(16, x[i].qh);
  7022. vector signed int vsumi0 = v0;
  7023. vector signed int vsumi1 = v0;
  7024. vector signed int vsumi2 = v0;
  7025. vector signed int vsumi3 = v0;
  7026. const uint8_t * restrict q5 = x[i].qs;
  7027. const int8_t * restrict q8 = y[i].qs;
  7028. for (int j = 0; j < QK_K/64; ++j) {
  7029. __builtin_prefetch(q5, 0, 1);
  7030. __builtin_prefetch(q8, 0, 1);
  7031. vector signed char qxs0 = (vector signed char)vec_xl( 0, q5);
  7032. vector signed char qxs1 = (vector signed char)vec_xl(16, q5);
  7033. q5 += 32;
  7034. vector signed char qxs00 = vec_and(qxs0, lowMask);
  7035. vector signed char qxs01 = vec_sr(qxs0, v4);
  7036. vector signed char qxs10 = vec_and(qxs1, lowMask);
  7037. vector signed char qxs11 = vec_sr(qxs1, v4);
  7038. vector signed char q5h00 = vec_sl(vec_and((vector signed char)v1, qxhs0), v4);
  7039. vector signed char q5h01 = vec_sl(vec_and((vector signed char)v2, qxhs0), v3);
  7040. vector signed char q5h10 = vec_sl(vec_and((vector signed char)v1, qxhs1), v4);
  7041. vector signed char q5h11 = vec_sl(vec_and((vector signed char)v2, qxhs1), v3);
  7042. qxhs0 = vec_sr(qxhs0, v2);
  7043. qxhs1 = vec_sr(qxhs1, v2);
  7044. vector unsigned char q5x00 = (vector unsigned char)vec_or(q5h00, qxs00);
  7045. vector unsigned char q5x01 = (vector unsigned char)vec_or(q5h01, qxs01);
  7046. vector unsigned char q5x10 = (vector unsigned char)vec_or(q5h10, qxs10);
  7047. vector unsigned char q5x11 = (vector unsigned char)vec_or(q5h11, qxs11);
  7048. vector signed char q8y00 = vec_xl( 0, q8);
  7049. vector signed char q8y10 = vec_xl(16, q8);
  7050. vector signed char q8y01 = vec_xl(32, q8);
  7051. vector signed char q8y11 = vec_xl(48, q8);
  7052. q8 += 64;
  7053. vector signed int qv00 = vec_msum(q8y00, q5x00, v0);
  7054. vector signed int qv01 = vec_msum(q8y01, q5x01, v0);
  7055. vector signed int qv10 = vec_msum(q8y10, q5x10, v0);
  7056. vector signed int qv11 = vec_msum(q8y11, q5x11, v0);
  7057. vector signed int vscales_h = vec_unpackh(vscales);
  7058. vector signed int vs0 = vec_splat(vscales_h, 0);
  7059. vector signed int vs1 = vec_splat(vscales_h, 1);
  7060. vscales = vec_sld(vscales, vscales, 12);
  7061. vsumi0 = vec_add(vec_mul(qv00, vs0), vsumi0);
  7062. vsumi1 = vec_add(vec_mul(qv10, vs0), vsumi1);
  7063. vsumi2 = vec_add(vec_mul(qv01, vs1), vsumi2);
  7064. vsumi3 = vec_add(vec_mul(qv11, vs1), vsumi3);
  7065. }
  7066. vsumf0 = vec_madd(vec_ctf(vsumi0, 0), vd, vsumf0);
  7067. vsumf1 = vec_madd(vec_ctf(vsumi1, 0), vd, vsumf1);
  7068. vsumf2 = vec_madd(vec_ctf(vsumi2, 0), vd, vsumf2);
  7069. vsumf3 = vec_madd(vec_ctf(vsumi3, 0), vd, vsumf3);
  7070. }
  7071. vsumf0 = vec_add(vsumf0, vsumf2);
  7072. vsumf1 = vec_add(vsumf1, vsumf3);
  7073. vsumf0 = vec_add(vsumf0, vsumf1);
  7074. vsumf0 = vec_add(vsumf0, vec_sld(vsumf0, vsumf0, 4));
  7075. vsumf0 = vec_add(vsumf0, vec_sld(vsumf0, vsumf0, 8));
  7076. *s = vec_extract(vsumf0, 0);
  7077. #elif defined __loongarch_asx
  7078. GGML_UNUSED(kmask1);
  7079. GGML_UNUSED(kmask2);
  7080. GGML_UNUSED(kmask3);
  7081. const __m256i m4 = __lasx_xvreplgr2vr_b(0xF);
  7082. const __m128i mzero = __lsx_vldi(0);
  7083. const __m256i mone = __lasx_xvreplgr2vr_b(1);
  7084. __m256 acc = (__m256)__lasx_xvldi(0);
  7085. float summs = 0.f;
  7086. for (int i = 0; i < nb; ++i) {
  7087. const uint8_t * restrict q5 = x[i].qs;
  7088. const int8_t * restrict q8 = y[i].qs;
  7089. const float d = y[i].d * GGML_FP16_TO_FP32(x[i].d);
  7090. const float dmin = -y[i].d * GGML_FP16_TO_FP32(x[i].dmin);
  7091. memcpy(utmp, x[i].scales, 12);
  7092. utmp[3] = ((utmp[2] >> 4) & kmask2) | (((utmp[1] >> 6) & kmask3) << 4);
  7093. const uint32_t uaux = utmp[1] & kmask1;
  7094. utmp[1] = (utmp[2] & kmask2) | (((utmp[0] >> 6) & kmask3) << 4);
  7095. utmp[2] = uaux;
  7096. utmp[0] &= kmask1;
  7097. const __m256i mins_and_scales = lasx_extu8_16(lsx_set_w(utmp[3], utmp[2], utmp[1], utmp[0]));
  7098. const __m256i q8sums = __lasx_xvld((const __m256i*)y[i].bsums, 0);
  7099. const __m128i q8s = lsx_hadd_h(lasx_extracti128(q8sums, 0), lasx_extracti128(q8sums, 1));
  7100. const __m128i prod = lsx_madd_h(lasx_extracti128(mins_and_scales, 1), q8s);
  7101. const __m128i hsum = lsx_hadd_w(lsx_hadd_w(prod, mzero), mzero);
  7102. summs += dmin * __lsx_vpickve2gr_w(hsum, 0); //TODO check
  7103. const __m128i sc128 = lasx_extracti128(mins_and_scales, 0);
  7104. const __m256i scales = lasx_insertf128(sc128, sc128);
  7105. const __m256i hbits = __lasx_xvld((const __m256i*)x[i].qh, 0);
  7106. __m256i hmask = mone;
  7107. __m256i sumi = __lasx_xvldi(0);
  7108. int bit = 0;
  7109. __m256i xvbit;
  7110. for (int j = 0; j < QK_K/64; ++j) {
  7111. const __m256i scale_0 = lasx_shuffle_b(scales, get_scale_shuffle_k4(2*j+0));
  7112. const __m256i scale_1 = lasx_shuffle_b(scales, get_scale_shuffle_k4(2*j+1));
  7113. const __m256i q5bits = __lasx_xvld((const __m256i*)q5, 0); q5 += 32;
  7114. xvbit = __lasx_xvreplgr2vr_h(bit++);
  7115. const __m256i q5l_0 = __lasx_xvand_v(q5bits, m4);
  7116. const __m256i q5h_0 = __lasx_xvslli_h(__lasx_xvsrl_h(__lasx_xvand_v(hbits, hmask), xvbit), 4);
  7117. const __m256i q5_0 = __lasx_xvadd_b(q5l_0, q5h_0);
  7118. hmask = __lasx_xvslli_h(hmask, 1);
  7119. xvbit = __lasx_xvreplgr2vr_h(bit++);
  7120. const __m256i q5l_1 = __lasx_xvand_v(__lasx_xvsrli_h(q5bits, 4), m4);
  7121. const __m256i q5h_1 = __lasx_xvslli_h(__lasx_xvsrl_h(__lasx_xvand_v(hbits, hmask), xvbit), 4);
  7122. const __m256i q5_1 = __lasx_xvadd_b(q5l_1, q5h_1);
  7123. hmask = __lasx_xvslli_h(hmask, 1);
  7124. const __m256i q8_0 = __lasx_xvld((const __m256i*)q8, 0); q8 += 32;
  7125. const __m256i q8_1 = __lasx_xvld((const __m256i*)q8, 0); q8 += 32;
  7126. __m256i p16_0 = lasx_maddubs_h(q5_0, q8_0);
  7127. __m256i p16_1 = lasx_maddubs_h(q5_1, q8_1);
  7128. p16_0 = lasx_madd_h(scale_0, p16_0);
  7129. p16_1 = lasx_madd_h(scale_1, p16_1);
  7130. sumi = __lasx_xvadd_w(sumi, __lasx_xvadd_w(p16_0, p16_1));
  7131. }
  7132. __m256 vd = __lasx_xvreplfr2vr_s(d);
  7133. acc = __lasx_xvfmadd_s(vd, __lasx_xvffint_s_w(sumi), acc);
  7134. }
  7135. *s = hsum_float_8(acc) + summs;
  7136. #else
  7137. const uint8_t * scales = (const uint8_t*)&utmp[0];
  7138. const uint8_t * mins = (const uint8_t*)&utmp[2];
  7139. int8_t aux8[QK_K];
  7140. int16_t aux16[8];
  7141. float sums [8];
  7142. int32_t aux32[8];
  7143. memset(sums, 0, 8*sizeof(float));
  7144. float sumf = 0;
  7145. for (int i = 0; i < nb; ++i) {
  7146. const uint8_t * restrict q4 = x[i].qs;
  7147. const uint8_t * restrict hm = x[i].qh;
  7148. const int8_t * restrict q8 = y[i].qs;
  7149. memset(aux32, 0, 8*sizeof(int32_t));
  7150. int8_t * restrict a = aux8;
  7151. uint8_t m = 1;
  7152. for (int j = 0; j < QK_K/64; ++j) {
  7153. for (int l = 0; l < 32; ++l) a[l] = (int8_t)(q4[l] & 0xF);
  7154. for (int l = 0; l < 32; ++l) a[l] += (hm[l] & m ? 16 : 0);
  7155. a += 32; m <<= 1;
  7156. for (int l = 0; l < 32; ++l) a[l] = (int8_t)(q4[l] >> 4);
  7157. for (int l = 0; l < 32; ++l) a[l] += (hm[l] & m ? 16 : 0);
  7158. a += 32; m <<= 1;
  7159. q4 += 32;
  7160. }
  7161. memcpy(utmp, x[i].scales, 12);
  7162. utmp[3] = ((utmp[2] >> 4) & kmask2) | (((utmp[1] >> 6) & kmask3) << 4);
  7163. const uint32_t uaux = utmp[1] & kmask1;
  7164. utmp[1] = (utmp[2] & kmask2) | (((utmp[0] >> 6) & kmask3) << 4);
  7165. utmp[2] = uaux;
  7166. utmp[0] &= kmask1;
  7167. int sumi = 0;
  7168. for (int j = 0; j < QK_K/16; ++j) sumi += y[i].bsums[j] * mins[j/2];
  7169. a = aux8;
  7170. int is = 0;
  7171. for (int j = 0; j < QK_K/32; ++j) {
  7172. int32_t scale = scales[is++];
  7173. for (int l = 0; l < 8; ++l) aux16[l] = q8[l] * a[l];
  7174. for (int l = 0; l < 8; ++l) aux32[l] += scale * aux16[l];
  7175. q8 += 8; a += 8;
  7176. for (int l = 0; l < 8; ++l) aux16[l] = q8[l] * a[l];
  7177. for (int l = 0; l < 8; ++l) aux32[l] += scale * aux16[l];
  7178. q8 += 8; a += 8;
  7179. for (int l = 0; l < 8; ++l) aux16[l] = q8[l] * a[l];
  7180. for (int l = 0; l < 8; ++l) aux32[l] += scale * aux16[l];
  7181. q8 += 8; a += 8;
  7182. for (int l = 0; l < 8; ++l) aux16[l] = q8[l] * a[l];
  7183. for (int l = 0; l < 8; ++l) aux32[l] += scale * aux16[l];
  7184. q8 += 8; a += 8;
  7185. }
  7186. const float d = GGML_FP16_TO_FP32(x[i].d) * y[i].d;
  7187. for (int l = 0; l < 8; ++l) sums[l] += d * aux32[l];
  7188. const float dmin = GGML_FP16_TO_FP32(x[i].dmin) * y[i].d;
  7189. sumf -= dmin * sumi;
  7190. }
  7191. for (int l = 0; l < 8; ++l) sumf += sums[l];
  7192. *s = sumf;
  7193. #endif
  7194. }
  7195. void ggml_vec_dot_q6_K_q8_K(int n, float * restrict s, size_t bs, const void * restrict vx, size_t bx, const void * restrict vy, size_t by, int nrc) {
  7196. assert(n % QK_K == 0);
  7197. assert(nrc == 1);
  7198. UNUSED(nrc);
  7199. UNUSED(bx);
  7200. UNUSED(by);
  7201. UNUSED(bs);
  7202. const block_q6_K * restrict x = vx;
  7203. const block_q8_K * restrict y = vy;
  7204. const int nb = n / QK_K;
  7205. #ifdef __ARM_NEON
  7206. float sum = 0;
  7207. const uint8x16_t m4b = vdupq_n_u8(0xF);
  7208. const int32x4_t vzero = vdupq_n_s32(0);
  7209. //const int8x16_t m32s = vdupq_n_s8(32);
  7210. const uint8x16_t mone = vdupq_n_u8(3);
  7211. ggml_int8x16x4_t q6bytes;
  7212. ggml_uint8x16x4_t q6h;
  7213. for (int i = 0; i < nb; ++i) {
  7214. const float d_all = GGML_FP16_TO_FP32(x[i].d);
  7215. const uint8_t * restrict q6 = x[i].ql;
  7216. const uint8_t * restrict qh = x[i].qh;
  7217. const int8_t * restrict q8 = y[i].qs;
  7218. const int8_t * restrict scale = x[i].scales;
  7219. const ggml_int16x8x2_t q8sums = ggml_vld1q_s16_x2(y[i].bsums);
  7220. const int8x16_t scales = vld1q_s8(scale);
  7221. const ggml_int16x8x2_t q6scales = {{vmovl_s8(vget_low_s8(scales)), vmovl_s8(vget_high_s8(scales))}};
  7222. const int32x4_t prod = vaddq_s32(vaddq_s32(vmull_s16(vget_low_s16 (q8sums.val[0]), vget_low_s16 (q6scales.val[0])),
  7223. vmull_s16(vget_high_s16(q8sums.val[0]), vget_high_s16(q6scales.val[0]))),
  7224. vaddq_s32(vmull_s16(vget_low_s16 (q8sums.val[1]), vget_low_s16 (q6scales.val[1])),
  7225. vmull_s16(vget_high_s16(q8sums.val[1]), vget_high_s16(q6scales.val[1]))));
  7226. int32_t isum_mins = vaddvq_s32(prod);
  7227. int32_t isum = 0;
  7228. for (int j = 0; j < QK_K/128; ++j) {
  7229. ggml_uint8x16x2_t qhbits = ggml_vld1q_u8_x2(qh); qh += 32;
  7230. ggml_uint8x16x4_t q6bits = ggml_vld1q_u8_x4(q6); q6 += 64;
  7231. ggml_int8x16x4_t q8bytes = ggml_vld1q_s8_x4(q8); q8 += 64;
  7232. q6h.val[0] = vshlq_n_u8(vandq_u8(mone, qhbits.val[0]), 4);
  7233. q6h.val[1] = vshlq_n_u8(vandq_u8(mone, qhbits.val[1]), 4);
  7234. uint8x16_t shifted = vshrq_n_u8(qhbits.val[0], 2);
  7235. q6h.val[2] = vshlq_n_u8(vandq_u8(mone, shifted), 4);
  7236. shifted = vshrq_n_u8(qhbits.val[1], 2);
  7237. q6h.val[3] = vshlq_n_u8(vandq_u8(mone, shifted), 4);
  7238. //q6bytes.val[0] = vsubq_s8(vreinterpretq_s8_u8(vorrq_u8(vandq_u8(q6bits.val[0], m4b), q6h.val[0])), m32s);
  7239. //q6bytes.val[1] = vsubq_s8(vreinterpretq_s8_u8(vorrq_u8(vandq_u8(q6bits.val[1], m4b), q6h.val[1])), m32s);
  7240. //q6bytes.val[2] = vsubq_s8(vreinterpretq_s8_u8(vorrq_u8(vandq_u8(q6bits.val[2], m4b), q6h.val[2])), m32s);
  7241. //q6bytes.val[3] = vsubq_s8(vreinterpretq_s8_u8(vorrq_u8(vandq_u8(q6bits.val[3], m4b), q6h.val[3])), m32s);
  7242. q6bytes.val[0] = vreinterpretq_s8_u8(vorrq_u8(vandq_u8(q6bits.val[0], m4b), q6h.val[0]));
  7243. q6bytes.val[1] = vreinterpretq_s8_u8(vorrq_u8(vandq_u8(q6bits.val[1], m4b), q6h.val[1]));
  7244. q6bytes.val[2] = vreinterpretq_s8_u8(vorrq_u8(vandq_u8(q6bits.val[2], m4b), q6h.val[2]));
  7245. q6bytes.val[3] = vreinterpretq_s8_u8(vorrq_u8(vandq_u8(q6bits.val[3], m4b), q6h.val[3]));
  7246. isum += vaddvq_s32(ggml_vdotq_s32(vzero, q6bytes.val[0], q8bytes.val[0])) * scale[0] +
  7247. vaddvq_s32(ggml_vdotq_s32(vzero, q6bytes.val[1], q8bytes.val[1])) * scale[1] +
  7248. vaddvq_s32(ggml_vdotq_s32(vzero, q6bytes.val[2], q8bytes.val[2])) * scale[2] +
  7249. vaddvq_s32(ggml_vdotq_s32(vzero, q6bytes.val[3], q8bytes.val[3])) * scale[3];
  7250. scale += 4;
  7251. q8bytes = ggml_vld1q_s8_x4(q8); q8 += 64;
  7252. shifted = vshrq_n_u8(qhbits.val[0], 4);
  7253. q6h.val[0] = vshlq_n_u8(vandq_u8(mone, shifted), 4);
  7254. shifted = vshrq_n_u8(qhbits.val[1], 4);
  7255. q6h.val[1] = vshlq_n_u8(vandq_u8(mone, shifted), 4);
  7256. shifted = vshrq_n_u8(qhbits.val[0], 6);
  7257. q6h.val[2] = vshlq_n_u8(vandq_u8(mone, shifted), 4);
  7258. shifted = vshrq_n_u8(qhbits.val[1], 6);
  7259. q6h.val[3] = vshlq_n_u8(vandq_u8(mone, shifted), 4);
  7260. //q6bytes.val[0] = vsubq_s8(vreinterpretq_s8_u8(vorrq_u8(vshrq_n_u8(q6bits.val[0], 4), q6h.val[0])), m32s);
  7261. //q6bytes.val[1] = vsubq_s8(vreinterpretq_s8_u8(vorrq_u8(vshrq_n_u8(q6bits.val[1], 4), q6h.val[1])), m32s);
  7262. //q6bytes.val[2] = vsubq_s8(vreinterpretq_s8_u8(vorrq_u8(vshrq_n_u8(q6bits.val[2], 4), q6h.val[2])), m32s);
  7263. //q6bytes.val[3] = vsubq_s8(vreinterpretq_s8_u8(vorrq_u8(vshrq_n_u8(q6bits.val[3], 4), q6h.val[3])), m32s);
  7264. q6bytes.val[0] = vreinterpretq_s8_u8(vorrq_u8(vshrq_n_u8(q6bits.val[0], 4), q6h.val[0]));
  7265. q6bytes.val[1] = vreinterpretq_s8_u8(vorrq_u8(vshrq_n_u8(q6bits.val[1], 4), q6h.val[1]));
  7266. q6bytes.val[2] = vreinterpretq_s8_u8(vorrq_u8(vshrq_n_u8(q6bits.val[2], 4), q6h.val[2]));
  7267. q6bytes.val[3] = vreinterpretq_s8_u8(vorrq_u8(vshrq_n_u8(q6bits.val[3], 4), q6h.val[3]));
  7268. isum += vaddvq_s32(ggml_vdotq_s32(vzero, q6bytes.val[0], q8bytes.val[0])) * scale[0] +
  7269. vaddvq_s32(ggml_vdotq_s32(vzero, q6bytes.val[1], q8bytes.val[1])) * scale[1] +
  7270. vaddvq_s32(ggml_vdotq_s32(vzero, q6bytes.val[2], q8bytes.val[2])) * scale[2] +
  7271. vaddvq_s32(ggml_vdotq_s32(vzero, q6bytes.val[3], q8bytes.val[3])) * scale[3];
  7272. scale += 4;
  7273. }
  7274. //sum += isum * d_all * y[i].d;
  7275. sum += d_all * y[i].d * (isum - 32 * isum_mins);
  7276. }
  7277. *s = sum;
  7278. #elif defined __AVX2__
  7279. const __m256i m4 = _mm256_set1_epi8(0xF);
  7280. const __m256i m2 = _mm256_set1_epi8(3);
  7281. const __m256i m32s = _mm256_set1_epi8(32);
  7282. __m256 acc = _mm256_setzero_ps();
  7283. for (int i = 0; i < nb; ++i) {
  7284. const float d = y[i].d * GGML_FP16_TO_FP32(x[i].d);
  7285. const uint8_t * restrict q4 = x[i].ql;
  7286. const uint8_t * restrict qh = x[i].qh;
  7287. const int8_t * restrict q8 = y[i].qs;
  7288. const __m128i scales = _mm_loadu_si128((const __m128i*)x[i].scales);
  7289. __m256i sumi = _mm256_setzero_si256();
  7290. int is = 0;
  7291. for (int j = 0; j < QK_K/128; ++j) {
  7292. const __m128i scale_0 = _mm_shuffle_epi8(scales, get_scale_shuffle(is + 0));
  7293. const __m128i scale_1 = _mm_shuffle_epi8(scales, get_scale_shuffle(is + 1));
  7294. const __m128i scale_2 = _mm_shuffle_epi8(scales, get_scale_shuffle(is + 2));
  7295. const __m128i scale_3 = _mm_shuffle_epi8(scales, get_scale_shuffle(is + 3));
  7296. is += 4;
  7297. const __m256i q4bits1 = _mm256_loadu_si256((const __m256i*)q4); q4 += 32;
  7298. const __m256i q4bits2 = _mm256_loadu_si256((const __m256i*)q4); q4 += 32;
  7299. const __m256i q4bitsH = _mm256_loadu_si256((const __m256i*)qh); qh += 32;
  7300. const __m256i q4h_0 = _mm256_slli_epi16(_mm256_and_si256(q4bitsH, m2), 4);
  7301. const __m256i q4h_1 = _mm256_slli_epi16(_mm256_and_si256(_mm256_srli_epi16(q4bitsH, 2), m2), 4);
  7302. const __m256i q4h_2 = _mm256_slli_epi16(_mm256_and_si256(_mm256_srli_epi16(q4bitsH, 4), m2), 4);
  7303. const __m256i q4h_3 = _mm256_slli_epi16(_mm256_and_si256(_mm256_srli_epi16(q4bitsH, 6), m2), 4);
  7304. const __m256i q4_0 = _mm256_or_si256(_mm256_and_si256(q4bits1, m4), q4h_0);
  7305. const __m256i q4_1 = _mm256_or_si256(_mm256_and_si256(q4bits2, m4), q4h_1);
  7306. const __m256i q4_2 = _mm256_or_si256(_mm256_and_si256(_mm256_srli_epi16(q4bits1, 4), m4), q4h_2);
  7307. const __m256i q4_3 = _mm256_or_si256(_mm256_and_si256(_mm256_srli_epi16(q4bits2, 4), m4), q4h_3);
  7308. const __m256i q8_0 = _mm256_loadu_si256((const __m256i*)q8); q8 += 32;
  7309. const __m256i q8_1 = _mm256_loadu_si256((const __m256i*)q8); q8 += 32;
  7310. const __m256i q8_2 = _mm256_loadu_si256((const __m256i*)q8); q8 += 32;
  7311. const __m256i q8_3 = _mm256_loadu_si256((const __m256i*)q8); q8 += 32;
  7312. __m256i q8s_0 = _mm256_maddubs_epi16(m32s, q8_0);
  7313. __m256i q8s_1 = _mm256_maddubs_epi16(m32s, q8_1);
  7314. __m256i q8s_2 = _mm256_maddubs_epi16(m32s, q8_2);
  7315. __m256i q8s_3 = _mm256_maddubs_epi16(m32s, q8_3);
  7316. __m256i p16_0 = _mm256_maddubs_epi16(q4_0, q8_0);
  7317. __m256i p16_1 = _mm256_maddubs_epi16(q4_1, q8_1);
  7318. __m256i p16_2 = _mm256_maddubs_epi16(q4_2, q8_2);
  7319. __m256i p16_3 = _mm256_maddubs_epi16(q4_3, q8_3);
  7320. p16_0 = _mm256_sub_epi16(p16_0, q8s_0);
  7321. p16_1 = _mm256_sub_epi16(p16_1, q8s_1);
  7322. p16_2 = _mm256_sub_epi16(p16_2, q8s_2);
  7323. p16_3 = _mm256_sub_epi16(p16_3, q8s_3);
  7324. p16_0 = _mm256_madd_epi16(_mm256_cvtepi8_epi16(scale_0), p16_0);
  7325. p16_1 = _mm256_madd_epi16(_mm256_cvtepi8_epi16(scale_1), p16_1);
  7326. p16_2 = _mm256_madd_epi16(_mm256_cvtepi8_epi16(scale_2), p16_2);
  7327. p16_3 = _mm256_madd_epi16(_mm256_cvtepi8_epi16(scale_3), p16_3);
  7328. sumi = _mm256_add_epi32(sumi, _mm256_add_epi32(p16_0, p16_1));
  7329. sumi = _mm256_add_epi32(sumi, _mm256_add_epi32(p16_2, p16_3));
  7330. }
  7331. acc = _mm256_fmadd_ps(_mm256_broadcast_ss(&d), _mm256_cvtepi32_ps(sumi), acc);
  7332. }
  7333. *s = hsum_float_8(acc);
  7334. #elif defined __AVX__
  7335. const __m128i m4 = _mm_set1_epi8(0xF);
  7336. const __m128i m3 = _mm_set1_epi8(3);
  7337. const __m128i m32s = _mm_set1_epi8(32);
  7338. const __m128i m2 = _mm_set1_epi8(2);
  7339. __m256 acc = _mm256_setzero_ps();
  7340. for (int i = 0; i < nb; ++i) {
  7341. const float d = y[i].d * GGML_FP16_TO_FP32(x[i].d);
  7342. const uint8_t * restrict q4 = x[i].ql;
  7343. const uint8_t * restrict qh = x[i].qh;
  7344. const int8_t * restrict q8 = y[i].qs;
  7345. const __m128i scales = _mm_loadu_si128((const __m128i*)x[i].scales);
  7346. __m128i sumi_0 = _mm_setzero_si128();
  7347. __m128i sumi_1 = _mm_setzero_si128();
  7348. __m128i shuffle = _mm_set_epi64x(0x0101010101010101, 0x0000000000000000);
  7349. for (int j = 0; j < QK_K/128; ++j) {
  7350. const __m128i q4bitsH_0 = _mm_loadu_si128((const __m128i*)qh); qh += 16;
  7351. const __m128i q4bitsH_1 = _mm_loadu_si128((const __m128i*)qh); qh += 16;
  7352. const __m128i q4h_0 = _mm_slli_epi16(_mm_and_si128(q4bitsH_0, m3), 4);
  7353. const __m128i q4h_1 = _mm_slli_epi16(_mm_and_si128(q4bitsH_1, m3), 4);
  7354. const __m128i q4h_2 = _mm_slli_epi16(_mm_and_si128(_mm_srli_epi16(q4bitsH_0, 2), m3), 4);
  7355. const __m128i q4h_3 = _mm_slli_epi16(_mm_and_si128(_mm_srli_epi16(q4bitsH_1, 2), m3), 4);
  7356. const __m128i q4h_4 = _mm_slli_epi16(_mm_and_si128(_mm_srli_epi16(q4bitsH_0, 4), m3), 4);
  7357. const __m128i q4h_5 = _mm_slli_epi16(_mm_and_si128(_mm_srli_epi16(q4bitsH_1, 4), m3), 4);
  7358. const __m128i q4h_6 = _mm_slli_epi16(_mm_and_si128(_mm_srli_epi16(q4bitsH_0, 6), m3), 4);
  7359. const __m128i q4h_7 = _mm_slli_epi16(_mm_and_si128(_mm_srli_epi16(q4bitsH_1, 6), m3), 4);
  7360. const __m128i q4bits1_0 = _mm_loadu_si128((const __m128i*)q4); q4 += 16;
  7361. const __m128i q4bits1_1 = _mm_loadu_si128((const __m128i*)q4); q4 += 16;
  7362. const __m128i q4bits2_0 = _mm_loadu_si128((const __m128i*)q4); q4 += 16;
  7363. const __m128i q4bits2_1 = _mm_loadu_si128((const __m128i*)q4); q4 += 16;
  7364. const __m128i q4_0 = _mm_or_si128(_mm_and_si128(q4bits1_0, m4), q4h_0);
  7365. const __m128i q4_1 = _mm_or_si128(_mm_and_si128(q4bits1_1, m4), q4h_1);
  7366. const __m128i q4_2 = _mm_or_si128(_mm_and_si128(q4bits2_0, m4), q4h_2);
  7367. const __m128i q4_3 = _mm_or_si128(_mm_and_si128(q4bits2_1, m4), q4h_3);
  7368. const __m128i q4_4 = _mm_or_si128(_mm_and_si128(_mm_srli_epi16(q4bits1_0, 4), m4), q4h_4);
  7369. const __m128i q4_5 = _mm_or_si128(_mm_and_si128(_mm_srli_epi16(q4bits1_1, 4), m4), q4h_5);
  7370. const __m128i q4_6 = _mm_or_si128(_mm_and_si128(_mm_srli_epi16(q4bits2_0, 4), m4), q4h_6);
  7371. const __m128i q4_7 = _mm_or_si128(_mm_and_si128(_mm_srli_epi16(q4bits2_1, 4), m4), q4h_7);
  7372. const __m128i q8_0 = _mm_loadu_si128((const __m128i*)q8); q8 += 16;
  7373. const __m128i q8_1 = _mm_loadu_si128((const __m128i*)q8); q8 += 16;
  7374. const __m128i q8_2 = _mm_loadu_si128((const __m128i*)q8); q8 += 16;
  7375. const __m128i q8_3 = _mm_loadu_si128((const __m128i*)q8); q8 += 16;
  7376. const __m128i q8_4 = _mm_loadu_si128((const __m128i*)q8); q8 += 16;
  7377. const __m128i q8_5 = _mm_loadu_si128((const __m128i*)q8); q8 += 16;
  7378. const __m128i q8_6 = _mm_loadu_si128((const __m128i*)q8); q8 += 16;
  7379. const __m128i q8_7 = _mm_loadu_si128((const __m128i*)q8); q8 += 16;
  7380. __m128i q8s_0 = _mm_maddubs_epi16(m32s, q8_0);
  7381. __m128i q8s_1 = _mm_maddubs_epi16(m32s, q8_1);
  7382. __m128i q8s_2 = _mm_maddubs_epi16(m32s, q8_2);
  7383. __m128i q8s_3 = _mm_maddubs_epi16(m32s, q8_3);
  7384. __m128i q8s_4 = _mm_maddubs_epi16(m32s, q8_4);
  7385. __m128i q8s_5 = _mm_maddubs_epi16(m32s, q8_5);
  7386. __m128i q8s_6 = _mm_maddubs_epi16(m32s, q8_6);
  7387. __m128i q8s_7 = _mm_maddubs_epi16(m32s, q8_7);
  7388. __m128i p16_0 = _mm_maddubs_epi16(q4_0, q8_0);
  7389. __m128i p16_1 = _mm_maddubs_epi16(q4_1, q8_1);
  7390. __m128i p16_2 = _mm_maddubs_epi16(q4_2, q8_2);
  7391. __m128i p16_3 = _mm_maddubs_epi16(q4_3, q8_3);
  7392. __m128i p16_4 = _mm_maddubs_epi16(q4_4, q8_4);
  7393. __m128i p16_5 = _mm_maddubs_epi16(q4_5, q8_5);
  7394. __m128i p16_6 = _mm_maddubs_epi16(q4_6, q8_6);
  7395. __m128i p16_7 = _mm_maddubs_epi16(q4_7, q8_7);
  7396. p16_0 = _mm_sub_epi16(p16_0, q8s_0);
  7397. p16_1 = _mm_sub_epi16(p16_1, q8s_1);
  7398. p16_2 = _mm_sub_epi16(p16_2, q8s_2);
  7399. p16_3 = _mm_sub_epi16(p16_3, q8s_3);
  7400. p16_4 = _mm_sub_epi16(p16_4, q8s_4);
  7401. p16_5 = _mm_sub_epi16(p16_5, q8s_5);
  7402. p16_6 = _mm_sub_epi16(p16_6, q8s_6);
  7403. p16_7 = _mm_sub_epi16(p16_7, q8s_7);
  7404. const __m128i scale_0 = _mm_shuffle_epi8(scales, shuffle);
  7405. shuffle = _mm_add_epi8(shuffle, m2);
  7406. const __m128i scale_1 = _mm_shuffle_epi8(scales, shuffle);
  7407. shuffle = _mm_add_epi8(shuffle, m2);
  7408. const __m128i scale_2 = _mm_shuffle_epi8(scales, shuffle);
  7409. shuffle = _mm_add_epi8(shuffle, m2);
  7410. const __m128i scale_3 = _mm_shuffle_epi8(scales, shuffle);
  7411. shuffle = _mm_add_epi8(shuffle, m2);
  7412. p16_0 = _mm_madd_epi16(_mm_cvtepi8_epi16(scale_0), p16_0);
  7413. p16_1 = _mm_madd_epi16(_mm_cvtepi8_epi16(_mm_unpackhi_epi64(scale_0, scale_0)), p16_1);
  7414. p16_2 = _mm_madd_epi16(_mm_cvtepi8_epi16(scale_1), p16_2);
  7415. p16_3 = _mm_madd_epi16(_mm_cvtepi8_epi16(_mm_unpackhi_epi64(scale_1, scale_1)), p16_3);
  7416. p16_4 = _mm_madd_epi16(_mm_cvtepi8_epi16(scale_2), p16_4);
  7417. p16_5 = _mm_madd_epi16(_mm_cvtepi8_epi16(_mm_unpackhi_epi64(scale_2, scale_2)), p16_5);
  7418. p16_6 = _mm_madd_epi16(_mm_cvtepi8_epi16(scale_3), p16_6);
  7419. p16_7 = _mm_madd_epi16(_mm_cvtepi8_epi16(_mm_unpackhi_epi64(scale_3, scale_3)), p16_7);
  7420. sumi_0 = _mm_add_epi32(sumi_0, _mm_add_epi32(p16_0, p16_2));
  7421. sumi_1 = _mm_add_epi32(sumi_1, _mm_add_epi32(p16_1, p16_3));
  7422. sumi_0 = _mm_add_epi32(sumi_0, _mm_add_epi32(p16_4, p16_6));
  7423. sumi_1 = _mm_add_epi32(sumi_1, _mm_add_epi32(p16_5, p16_7));
  7424. }
  7425. __m256i sumi = MM256_SET_M128I(sumi_1, sumi_0);
  7426. acc = _mm256_add_ps(_mm256_mul_ps(_mm256_broadcast_ss(&d), _mm256_cvtepi32_ps(sumi)), acc);
  7427. }
  7428. *s = hsum_float_8(acc);
  7429. #elif defined __riscv_v_intrinsic
  7430. float sumf = 0;
  7431. for (int i = 0; i < nb; ++i) {
  7432. const float d = GGML_FP16_TO_FP32(x[i].d) * y[i].d;
  7433. const uint8_t * restrict q6 = x[i].ql;
  7434. const uint8_t * restrict qh = x[i].qh;
  7435. const int8_t * restrict q8 = y[i].qs;
  7436. const int8_t * restrict scale = x[i].scales;
  7437. size_t vl;
  7438. vint32m1_t vzero = __riscv_vmv_v_x_i32m1(0, 1);
  7439. int sum_t = 0;
  7440. int is = 0;
  7441. for (int j = 0; j < QK_K/128; ++j) {
  7442. vl = 32;
  7443. // load qh
  7444. vuint8m1_t qh_x = __riscv_vle8_v_u8m1(qh, vl);
  7445. // load Q6
  7446. vuint8m1_t q6_0 = __riscv_vle8_v_u8m1(q6, vl);
  7447. vuint8m1_t q6_1 = __riscv_vle8_v_u8m1(q6+32, vl);
  7448. vuint8m1_t q6a_0 = __riscv_vand_vx_u8m1(q6_0, 0x0F, vl);
  7449. vuint8m1_t q6a_1 = __riscv_vand_vx_u8m1(q6_1, 0x0F, vl);
  7450. vuint8m1_t q6s_0 = __riscv_vsrl_vx_u8m1(q6_0, 0x04, vl);
  7451. vuint8m1_t q6s_1 = __riscv_vsrl_vx_u8m1(q6_1, 0x04, vl);
  7452. vuint8m1_t qh_0 = __riscv_vand_vx_u8m1(qh_x, 0x03, vl);
  7453. vuint8m1_t qh_1 = __riscv_vand_vx_u8m1(__riscv_vsrl_vx_u8m1(qh_x, 0x2, vl), 0x03 , vl);
  7454. vuint8m1_t qh_2 = __riscv_vand_vx_u8m1(__riscv_vsrl_vx_u8m1(qh_x, 0x4, vl), 0x03 , vl);
  7455. vuint8m1_t qh_3 = __riscv_vand_vx_u8m1(__riscv_vsrl_vx_u8m1(qh_x, 0x6, vl), 0x03 , vl);
  7456. vuint8m1_t qhi_0 = __riscv_vor_vv_u8m1(q6a_0, __riscv_vsll_vx_u8m1(qh_0, 0x04, vl), vl);
  7457. vuint8m1_t qhi_1 = __riscv_vor_vv_u8m1(q6a_1, __riscv_vsll_vx_u8m1(qh_1, 0x04, vl), vl);
  7458. vuint8m1_t qhi_2 = __riscv_vor_vv_u8m1(q6s_0, __riscv_vsll_vx_u8m1(qh_2, 0x04, vl), vl);
  7459. vuint8m1_t qhi_3 = __riscv_vor_vv_u8m1(q6s_1, __riscv_vsll_vx_u8m1(qh_3, 0x04, vl), vl);
  7460. vint8m1_t a_0 = __riscv_vsub_vx_i8m1(__riscv_vreinterpret_v_u8m1_i8m1(qhi_0), 32, vl);
  7461. vint8m1_t a_1 = __riscv_vsub_vx_i8m1(__riscv_vreinterpret_v_u8m1_i8m1(qhi_1), 32, vl);
  7462. vint8m1_t a_2 = __riscv_vsub_vx_i8m1(__riscv_vreinterpret_v_u8m1_i8m1(qhi_2), 32, vl);
  7463. vint8m1_t a_3 = __riscv_vsub_vx_i8m1(__riscv_vreinterpret_v_u8m1_i8m1(qhi_3), 32, vl);
  7464. // load Q8 and take product
  7465. vint16m2_t va_q_0 = __riscv_vwmul_vv_i16m2(a_0, __riscv_vle8_v_i8m1(q8, vl), vl);
  7466. vint16m2_t va_q_1 = __riscv_vwmul_vv_i16m2(a_1, __riscv_vle8_v_i8m1(q8+32, vl), vl);
  7467. vint16m2_t va_q_2 = __riscv_vwmul_vv_i16m2(a_2, __riscv_vle8_v_i8m1(q8+64, vl), vl);
  7468. vint16m2_t va_q_3 = __riscv_vwmul_vv_i16m2(a_3, __riscv_vle8_v_i8m1(q8+96, vl), vl);
  7469. vl = 16;
  7470. vint32m2_t vaux_0 = __riscv_vwmul_vx_i32m2(__riscv_vget_v_i16m2_i16m1(va_q_0, 0), scale[is+0], vl);
  7471. vint32m2_t vaux_1 = __riscv_vwmul_vx_i32m2(__riscv_vget_v_i16m2_i16m1(va_q_0, 1), scale[is+1], vl);
  7472. vint32m2_t vaux_2 = __riscv_vwmul_vx_i32m2(__riscv_vget_v_i16m2_i16m1(va_q_1, 0), scale[is+2], vl);
  7473. vint32m2_t vaux_3 = __riscv_vwmul_vx_i32m2(__riscv_vget_v_i16m2_i16m1(va_q_1, 1), scale[is+3], vl);
  7474. vint32m2_t vaux_4 = __riscv_vwmul_vx_i32m2(__riscv_vget_v_i16m2_i16m1(va_q_2, 0), scale[is+4], vl);
  7475. vint32m2_t vaux_5 = __riscv_vwmul_vx_i32m2(__riscv_vget_v_i16m2_i16m1(va_q_2, 1), scale[is+5], vl);
  7476. vint32m2_t vaux_6 = __riscv_vwmul_vx_i32m2(__riscv_vget_v_i16m2_i16m1(va_q_3, 0), scale[is+6], vl);
  7477. vint32m2_t vaux_7 = __riscv_vwmul_vx_i32m2(__riscv_vget_v_i16m2_i16m1(va_q_3, 1), scale[is+7], vl);
  7478. vint32m1_t isum0 = __riscv_vredsum_vs_i32m2_i32m1(__riscv_vadd_vv_i32m2(vaux_0, vaux_1, vl), vzero, vl);
  7479. vint32m1_t isum1 = __riscv_vredsum_vs_i32m2_i32m1(__riscv_vadd_vv_i32m2(vaux_2, vaux_3, vl), isum0, vl);
  7480. vint32m1_t isum2 = __riscv_vredsum_vs_i32m2_i32m1(__riscv_vadd_vv_i32m2(vaux_4, vaux_5, vl), isum1, vl);
  7481. vint32m1_t isum3 = __riscv_vredsum_vs_i32m2_i32m1(__riscv_vadd_vv_i32m2(vaux_6, vaux_7, vl), isum2, vl);
  7482. sum_t += __riscv_vmv_x_s_i32m1_i32(isum3);
  7483. q6 += 64; qh += 32; q8 += 128; is=8;
  7484. }
  7485. sumf += d * sum_t;
  7486. }
  7487. *s = sumf;
  7488. #elif defined(__POWER9_VECTOR__)
  7489. const vector signed char lowMask = vec_splats((signed char)0xF);
  7490. const vector int v0 = vec_splats((int32_t)0);
  7491. const vector unsigned char v2 = vec_splats((unsigned char)0x2);
  7492. const vector unsigned char v3 = vec_splats((unsigned char)0x3);
  7493. const vector unsigned char v4 = vec_splats((unsigned char)0x4);
  7494. const vector unsigned char v6 = vec_splats((unsigned char)0x6);
  7495. const vector signed char off = vec_splats((signed char)0x20);
  7496. vector float vsumf0 = vec_splats(0.0f);
  7497. vector float vsumf1 = vec_splats(0.0f);
  7498. vector float vsumf2 = vec_splats(0.0f);
  7499. vector float vsumf3 = vec_splats(0.0f);
  7500. for (int i = 0; i < nb; ++i) {
  7501. vector float vxd = vec_splats(GGML_FP16_TO_FP32(x[i].d));
  7502. vector float vyd = vec_splats(y[i].d);
  7503. vector float vd = vec_mul(vxd, vyd);
  7504. vector signed int vsumi0 = v0;
  7505. vector signed int vsumi1 = v0;
  7506. vector signed int vsumi2 = v0;
  7507. vector signed int vsumi3 = v0;
  7508. vector signed int vsumi4 = v0;
  7509. vector signed int vsumi5 = v0;
  7510. vector signed int vsumi6 = v0;
  7511. vector signed int vsumi7 = v0;
  7512. const uint8_t * restrict q6 = x[i].ql;
  7513. const uint8_t * restrict qh = x[i].qh;
  7514. const int8_t * restrict qs = x[i].scales;
  7515. const int8_t * restrict q8 = y[i].qs;
  7516. for (int j = 0; j < QK_K/128; ++j) {
  7517. __builtin_prefetch(q6, 0, 0);
  7518. __builtin_prefetch(qh, 0, 0);
  7519. __builtin_prefetch(q8, 0, 0);
  7520. vector signed char qxs0 = (vector signed char)vec_xl( 0, q6);
  7521. vector signed char qxs1 = (vector signed char)vec_xl(16, q6);
  7522. vector signed char qxs2 = (vector signed char)vec_xl(32, q6);
  7523. vector signed char qxs3 = (vector signed char)vec_xl(48, q6);
  7524. q6 += 64;
  7525. vector signed char qxs00 = vec_and(qxs0, lowMask);
  7526. vector signed char qxs01 = vec_sr(qxs0, v4);
  7527. vector signed char qxs10 = vec_and(qxs1, lowMask);
  7528. vector signed char qxs11 = vec_sr(qxs1, v4);
  7529. vector signed char qxs20 = vec_and(qxs2, lowMask);
  7530. vector signed char qxs21 = vec_sr(qxs2, v4);
  7531. vector signed char qxs30 = vec_and(qxs3, lowMask);
  7532. vector signed char qxs31 = vec_sr(qxs3, v4);
  7533. vector signed char qxhs0 = (vector signed char)vec_xl( 0, qh);
  7534. vector signed char qxhs1 = (vector signed char)vec_xl(16, qh);
  7535. qh += 32;
  7536. vector signed char qxh00 = vec_sl(vec_and((vector signed char)v3, qxhs0), v4);
  7537. vector signed char qxh01 = vec_sl(vec_and((vector signed char)v3, vec_sr(qxhs0, v4)), v4);
  7538. vector signed char qxh10 = vec_sl(vec_and((vector signed char)v3, qxhs1), v4);
  7539. vector signed char qxh11 = vec_sl(vec_and((vector signed char)v3, vec_sr(qxhs1, v4)), v4);
  7540. vector signed char qxh20 = vec_sl(vec_and((vector signed char)v3, vec_sr(qxhs0, v2)), v4);
  7541. vector signed char qxh21 = vec_sl(vec_and((vector signed char)v3, vec_sr(qxhs0, v6)), v4);
  7542. vector signed char qxh30 = vec_sl(vec_and((vector signed char)v3, vec_sr(qxhs1, v2)), v4);
  7543. vector signed char qxh31 = vec_sl(vec_and((vector signed char)v3, vec_sr(qxhs1, v6)), v4);
  7544. vector signed char q6x00 = vec_sub(vec_or(qxh00, qxs00), off);
  7545. vector signed char q6x01 = vec_sub(vec_or(qxh01, qxs01), off);
  7546. vector signed char q6x10 = vec_sub(vec_or(qxh10, qxs10), off);
  7547. vector signed char q6x11 = vec_sub(vec_or(qxh11, qxs11), off);
  7548. vector signed char q6x20 = vec_sub(vec_or(qxh20, qxs20), off);
  7549. vector signed char q6x21 = vec_sub(vec_or(qxh21, qxs21), off);
  7550. vector signed char q6x30 = vec_sub(vec_or(qxh30, qxs30), off);
  7551. vector signed char q6x31 = vec_sub(vec_or(qxh31, qxs31), off);
  7552. vector signed char q8y00 = vec_xl( 0, q8);
  7553. vector signed char q8y10 = vec_xl( 16, q8);
  7554. vector signed char q8y20 = vec_xl( 32, q8);
  7555. vector signed char q8y30 = vec_xl( 48, q8);
  7556. vector signed char q8y01 = vec_xl( 64, q8);
  7557. vector signed char q8y11 = vec_xl( 80, q8);
  7558. vector signed char q8y21 = vec_xl( 96, q8);
  7559. vector signed char q8y31 = vec_xl(112, q8);
  7560. q8 += 128;
  7561. vector signed short qv00 = vec_add(vec_mule(q6x00, q8y00), vec_mulo(q6x00, q8y00));
  7562. vector signed short qv10 = vec_add(vec_mule(q6x10, q8y10), vec_mulo(q6x10, q8y10));
  7563. vector signed short qv20 = vec_add(vec_mule(q6x20, q8y20), vec_mulo(q6x20, q8y20));
  7564. vector signed short qv30 = vec_add(vec_mule(q6x30, q8y30), vec_mulo(q6x30, q8y30));
  7565. vector signed short qv01 = vec_add(vec_mule(q6x01, q8y01), vec_mulo(q6x01, q8y01));
  7566. vector signed short qv11 = vec_add(vec_mule(q6x11, q8y11), vec_mulo(q6x11, q8y11));
  7567. vector signed short qv21 = vec_add(vec_mule(q6x21, q8y21), vec_mulo(q6x21, q8y21));
  7568. vector signed short qv31 = vec_add(vec_mule(q6x31, q8y31), vec_mulo(q6x31, q8y31));
  7569. vector signed short vscales = vec_unpackh(vec_xl_len(qs, 8));
  7570. qs += 8;
  7571. vector signed short vs0 = vec_splat(vscales, 0);
  7572. vector signed short vs1 = vec_splat(vscales, 1);
  7573. vector signed short vs2 = vec_splat(vscales, 2);
  7574. vector signed short vs3 = vec_splat(vscales, 3);
  7575. vector signed short vs4 = vec_splat(vscales, 4);
  7576. vector signed short vs5 = vec_splat(vscales, 5);
  7577. vector signed short vs6 = vec_splat(vscales, 6);
  7578. vector signed short vs7 = vec_splat(vscales, 7);
  7579. vsumi0 = vec_msum(qv00, vs0, vsumi0);
  7580. vsumi1 = vec_msum(qv01, vs4, vsumi1);
  7581. vsumi2 = vec_msum(qv10, vs1, vsumi2);
  7582. vsumi3 = vec_msum(qv11, vs5, vsumi3);
  7583. vsumi4 = vec_msum(qv20, vs2, vsumi4);
  7584. vsumi5 = vec_msum(qv21, vs6, vsumi5);
  7585. vsumi6 = vec_msum(qv30, vs3, vsumi6);
  7586. vsumi7 = vec_msum(qv31, vs7, vsumi7);
  7587. }
  7588. vsumi0 = vec_add(vsumi0, vsumi4);
  7589. vsumi1 = vec_add(vsumi1, vsumi5);
  7590. vsumi2 = vec_add(vsumi2, vsumi6);
  7591. vsumi3 = vec_add(vsumi3, vsumi7);
  7592. vsumf0 = vec_madd(vec_ctf(vsumi0, 0), vd, vsumf0);
  7593. vsumf1 = vec_madd(vec_ctf(vsumi1, 0), vd, vsumf1);
  7594. vsumf2 = vec_madd(vec_ctf(vsumi2, 0), vd, vsumf2);
  7595. vsumf3 = vec_madd(vec_ctf(vsumi3, 0), vd, vsumf3);
  7596. }
  7597. vsumf0 = vec_add(vsumf0, vsumf2);
  7598. vsumf1 = vec_add(vsumf1, vsumf3);
  7599. vsumf0 = vec_add(vsumf0, vsumf1);
  7600. vsumf0 = vec_add(vsumf0, vec_sld(vsumf0, vsumf0, 4));
  7601. vsumf0 = vec_add(vsumf0, vec_sld(vsumf0, vsumf0, 8));
  7602. *s = vec_extract(vsumf0, 0);
  7603. #elif defined __loongarch_asx
  7604. const __m256i m4 = __lasx_xvreplgr2vr_b(0xF);
  7605. const __m256i m2 = __lasx_xvreplgr2vr_b(3);
  7606. const __m256i m32s = __lasx_xvreplgr2vr_b(32);
  7607. __m256 acc = (__m256)__lasx_xvldi(0);
  7608. for (int i = 0; i < nb; ++i) {
  7609. const float d = y[i].d * GGML_FP16_TO_FP32(x[i].d);
  7610. const uint8_t * restrict q4 = x[i].ql;
  7611. const uint8_t * restrict qh = x[i].qh;
  7612. const int8_t * restrict q8 = y[i].qs;
  7613. const __m128i scales = __lsx_vld((const __m128i*)x[i].scales, 0);
  7614. __m256i sumi = __lasx_xvldi(0);
  7615. int is = 0;
  7616. for (int j = 0; j < QK_K/128; ++j) {
  7617. const __m128i scale_0 = lsx_shuffle_b(scales, get_scale_shuffle(is + 0));
  7618. const __m128i scale_1 = lsx_shuffle_b(scales, get_scale_shuffle(is + 1));
  7619. const __m128i scale_2 = lsx_shuffle_b(scales, get_scale_shuffle(is + 2));
  7620. const __m128i scale_3 = lsx_shuffle_b(scales, get_scale_shuffle(is + 3));
  7621. is += 4;
  7622. const __m256i q4bits1 = __lasx_xvld((const __m256i*)q4, 0); q4 += 32;
  7623. const __m256i q4bits2 = __lasx_xvld((const __m256i*)q4, 0); q4 += 32;
  7624. const __m256i q4bitsH = __lasx_xvld((const __m256i*)qh, 0); qh += 32;
  7625. const __m256i q4h_0 = __lasx_xvslli_h(__lasx_xvand_v(q4bitsH, m2), 4);
  7626. const __m256i q4h_1 = __lasx_xvslli_h(__lasx_xvand_v(__lasx_xvsrli_h(q4bitsH, 2), m2), 4);
  7627. const __m256i q4h_2 = __lasx_xvslli_h(__lasx_xvand_v(__lasx_xvsrli_h(q4bitsH, 4), m2), 4);
  7628. const __m256i q4h_3 = __lasx_xvslli_h(__lasx_xvand_v(__lasx_xvsrli_h(q4bitsH, 6), m2), 4);
  7629. const __m256i q4_0 = __lasx_xvor_v(__lasx_xvand_v(q4bits1, m4), q4h_0);
  7630. const __m256i q4_1 = __lasx_xvor_v(__lasx_xvand_v(q4bits2, m4), q4h_1);
  7631. const __m256i q4_2 = __lasx_xvor_v(__lasx_xvand_v(__lasx_xvsrli_h(q4bits1, 4), m4), q4h_2);
  7632. const __m256i q4_3 = __lasx_xvor_v(__lasx_xvand_v(__lasx_xvsrli_h(q4bits2, 4), m4), q4h_3);
  7633. const __m256i q8_0 = __lasx_xvld((const __m256i*)q8, 0); q8 += 32;
  7634. const __m256i q8_1 = __lasx_xvld((const __m256i*)q8, 0); q8 += 32;
  7635. const __m256i q8_2 = __lasx_xvld((const __m256i*)q8, 0); q8 += 32;
  7636. const __m256i q8_3 = __lasx_xvld((const __m256i*)q8, 0); q8 += 32;
  7637. __m256i q8s_0 = lasx_maddubs_h(m32s, q8_0);
  7638. __m256i q8s_1 = lasx_maddubs_h(m32s, q8_1);
  7639. __m256i q8s_2 = lasx_maddubs_h(m32s, q8_2);
  7640. __m256i q8s_3 = lasx_maddubs_h(m32s, q8_3);
  7641. __m256i p16_0 = lasx_maddubs_h(q4_0, q8_0);
  7642. __m256i p16_1 = lasx_maddubs_h(q4_1, q8_1);
  7643. __m256i p16_2 = lasx_maddubs_h(q4_2, q8_2);
  7644. __m256i p16_3 = lasx_maddubs_h(q4_3, q8_3);
  7645. p16_0 = __lasx_xvsub_h(p16_0, q8s_0);
  7646. p16_1 = __lasx_xvsub_h(p16_1, q8s_1);
  7647. p16_2 = __lasx_xvsub_h(p16_2, q8s_2);
  7648. p16_3 = __lasx_xvsub_h(p16_3, q8s_3);
  7649. p16_0 = lasx_madd_h(lasx_ext8_16(scale_0), p16_0);
  7650. p16_1 = lasx_madd_h(lasx_ext8_16(scale_1), p16_1);
  7651. p16_2 = lasx_madd_h(lasx_ext8_16(scale_2), p16_2);
  7652. p16_3 = lasx_madd_h(lasx_ext8_16(scale_3), p16_3);
  7653. sumi = __lasx_xvadd_w(sumi, __lasx_xvadd_w(p16_0, p16_1));
  7654. sumi = __lasx_xvadd_w(sumi, __lasx_xvadd_w(p16_2, p16_3));
  7655. }
  7656. acc = __lasx_xvfmadd_s((__m256)__lasx_xvreplfr2vr_s(d), __lasx_xvffint_s_w(sumi), acc);
  7657. }
  7658. *s = hsum_float_8(acc);
  7659. #else
  7660. int8_t aux8[QK_K];
  7661. int16_t aux16[8];
  7662. float sums [8];
  7663. int32_t aux32[8];
  7664. memset(sums, 0, 8*sizeof(float));
  7665. float sumf = 0;
  7666. for (int i = 0; i < nb; ++i) {
  7667. const uint8_t * restrict q4 = x[i].ql;
  7668. const uint8_t * restrict qh = x[i].qh;
  7669. const int8_t * restrict q8 = y[i].qs;
  7670. memset(aux32, 0, 8*sizeof(int32_t));
  7671. int8_t * restrict a = aux8;
  7672. for (int j = 0; j < QK_K; j += 128) {
  7673. for (int l = 0; l < 32; ++l) {
  7674. a[l + 0] = (int8_t)((q4[l + 0] & 0xF) | (((qh[l] >> 0) & 3) << 4)) - 32;
  7675. a[l + 32] = (int8_t)((q4[l + 32] & 0xF) | (((qh[l] >> 2) & 3) << 4)) - 32;
  7676. a[l + 64] = (int8_t)((q4[l + 0] >> 4) | (((qh[l] >> 4) & 3) << 4)) - 32;
  7677. a[l + 96] = (int8_t)((q4[l + 32] >> 4) | (((qh[l] >> 6) & 3) << 4)) - 32;
  7678. }
  7679. a += 128;
  7680. q4 += 64;
  7681. qh += 32;
  7682. }
  7683. a = aux8;
  7684. int is = 0;
  7685. for (int j = 0; j < QK_K/16; ++j) {
  7686. int scale = x[i].scales[is++];
  7687. for (int l = 0; l < 8; ++l) aux16[l] = q8[l] * a[l];
  7688. for (int l = 0; l < 8; ++l) aux32[l] += scale * aux16[l];
  7689. q8 += 8; a += 8;
  7690. for (int l = 0; l < 8; ++l) aux16[l] = q8[l] * a[l];
  7691. for (int l = 0; l < 8; ++l) aux32[l] += scale * aux16[l];
  7692. q8 += 8; a += 8;
  7693. }
  7694. const float d = GGML_FP16_TO_FP32(x[i].d) * y[i].d;
  7695. for (int l = 0; l < 8; ++l) sums[l] += d * aux32[l];
  7696. }
  7697. for (int l = 0; l < 8; ++l) sumf += sums[l];
  7698. *s = sumf;
  7699. #endif
  7700. }
  7701. #if defined (__AVX__) || defined (__AVX2__) || defined (__ARM_NEON) || defined (__POWER9_VECTOR__) || defined(__loongarch_asx)
  7702. static const int8_t keven_signs_q2xs[1024] = {
  7703. 1, 1, 1, 1, 1, 1, 1, 1, -1, 1, 1, 1, 1, 1, 1, -1, 1, -1, 1, 1, 1, 1, 1, -1, -1, -1, 1, 1, 1, 1, 1, 1,
  7704. 1, 1, -1, 1, 1, 1, 1, -1, -1, 1, -1, 1, 1, 1, 1, 1, 1, -1, -1, 1, 1, 1, 1, 1, -1, -1, -1, 1, 1, 1, 1, -1,
  7705. 1, 1, 1, -1, 1, 1, 1, -1, -1, 1, 1, -1, 1, 1, 1, 1, 1, -1, 1, -1, 1, 1, 1, 1, -1, -1, 1, -1, 1, 1, 1, -1,
  7706. 1, 1, -1, -1, 1, 1, 1, 1, -1, 1, -1, -1, 1, 1, 1, -1, 1, -1, -1, -1, 1, 1, 1, -1, -1, -1, -1, -1, 1, 1, 1, 1,
  7707. 1, 1, 1, 1, -1, 1, 1, -1, -1, 1, 1, 1, -1, 1, 1, 1, 1, -1, 1, 1, -1, 1, 1, 1, -1, -1, 1, 1, -1, 1, 1, -1,
  7708. 1, 1, -1, 1, -1, 1, 1, 1, -1, 1, -1, 1, -1, 1, 1, -1, 1, -1, -1, 1, -1, 1, 1, -1, -1, -1, -1, 1, -1, 1, 1, 1,
  7709. 1, 1, 1, -1, -1, 1, 1, 1, -1, 1, 1, -1, -1, 1, 1, -1, 1, -1, 1, -1, -1, 1, 1, -1, -1, -1, 1, -1, -1, 1, 1, 1,
  7710. 1, 1, -1, -1, -1, 1, 1, -1, -1, 1, -1, -1, -1, 1, 1, 1, 1, -1, -1, -1, -1, 1, 1, 1, -1, -1, -1, -1, -1, 1, 1, -1,
  7711. 1, 1, 1, 1, 1, -1, 1, -1, -1, 1, 1, 1, 1, -1, 1, 1, 1, -1, 1, 1, 1, -1, 1, 1, -1, -1, 1, 1, 1, -1, 1, -1,
  7712. 1, 1, -1, 1, 1, -1, 1, 1, -1, 1, -1, 1, 1, -1, 1, -1, 1, -1, -1, 1, 1, -1, 1, -1, -1, -1, -1, 1, 1, -1, 1, 1,
  7713. 1, 1, 1, -1, 1, -1, 1, 1, -1, 1, 1, -1, 1, -1, 1, -1, 1, -1, 1, -1, 1, -1, 1, -1, -1, -1, 1, -1, 1, -1, 1, 1,
  7714. 1, 1, -1, -1, 1, -1, 1, -1, -1, 1, -1, -1, 1, -1, 1, 1, 1, -1, -1, -1, 1, -1, 1, 1, -1, -1, -1, -1, 1, -1, 1, -1,
  7715. 1, 1, 1, 1, -1, -1, 1, 1, -1, 1, 1, 1, -1, -1, 1, -1, 1, -1, 1, 1, -1, -1, 1, -1, -1, -1, 1, 1, -1, -1, 1, 1,
  7716. 1, 1, -1, 1, -1, -1, 1, -1, -1, 1, -1, 1, -1, -1, 1, 1, 1, -1, -1, 1, -1, -1, 1, 1, -1, -1, -1, 1, -1, -1, 1, -1,
  7717. 1, 1, 1, -1, -1, -1, 1, -1, -1, 1, 1, -1, -1, -1, 1, 1, 1, -1, 1, -1, -1, -1, 1, 1, -1, -1, 1, -1, -1, -1, 1, -1,
  7718. 1, 1, -1, -1, -1, -1, 1, 1, -1, 1, -1, -1, -1, -1, 1, -1, 1, -1, -1, -1, -1, -1, 1, -1, -1, -1, -1, -1, -1, -1, 1, 1,
  7719. 1, 1, 1, 1, 1, 1, -1, -1, -1, 1, 1, 1, 1, 1, -1, 1, 1, -1, 1, 1, 1, 1, -1, 1, -1, -1, 1, 1, 1, 1, -1, -1,
  7720. 1, 1, -1, 1, 1, 1, -1, 1, -1, 1, -1, 1, 1, 1, -1, -1, 1, -1, -1, 1, 1, 1, -1, -1, -1, -1, -1, 1, 1, 1, -1, 1,
  7721. 1, 1, 1, -1, 1, 1, -1, 1, -1, 1, 1, -1, 1, 1, -1, -1, 1, -1, 1, -1, 1, 1, -1, -1, -1, -1, 1, -1, 1, 1, -1, 1,
  7722. 1, 1, -1, -1, 1, 1, -1, -1, -1, 1, -1, -1, 1, 1, -1, 1, 1, -1, -1, -1, 1, 1, -1, 1, -1, -1, -1, -1, 1, 1, -1, -1,
  7723. 1, 1, 1, 1, -1, 1, -1, 1, -1, 1, 1, 1, -1, 1, -1, -1, 1, -1, 1, 1, -1, 1, -1, -1, -1, -1, 1, 1, -1, 1, -1, 1,
  7724. 1, 1, -1, 1, -1, 1, -1, -1, -1, 1, -1, 1, -1, 1, -1, 1, 1, -1, -1, 1, -1, 1, -1, 1, -1, -1, -1, 1, -1, 1, -1, -1,
  7725. 1, 1, 1, -1, -1, 1, -1, -1, -1, 1, 1, -1, -1, 1, -1, 1, 1, -1, 1, -1, -1, 1, -1, 1, -1, -1, 1, -1, -1, 1, -1, -1,
  7726. 1, 1, -1, -1, -1, 1, -1, 1, -1, 1, -1, -1, -1, 1, -1, -1, 1, -1, -1, -1, -1, 1, -1, -1, -1, -1, -1, -1, -1, 1, -1, 1,
  7727. 1, 1, 1, 1, 1, -1, -1, 1, -1, 1, 1, 1, 1, -1, -1, -1, 1, -1, 1, 1, 1, -1, -1, -1, -1, -1, 1, 1, 1, -1, -1, 1,
  7728. 1, 1, -1, 1, 1, -1, -1, -1, -1, 1, -1, 1, 1, -1, -1, 1, 1, -1, -1, 1, 1, -1, -1, 1, -1, -1, -1, 1, 1, -1, -1, -1,
  7729. 1, 1, 1, -1, 1, -1, -1, -1, -1, 1, 1, -1, 1, -1, -1, 1, 1, -1, 1, -1, 1, -1, -1, 1, -1, -1, 1, -1, 1, -1, -1, -1,
  7730. 1, 1, -1, -1, 1, -1, -1, 1, -1, 1, -1, -1, 1, -1, -1, -1, 1, -1, -1, -1, 1, -1, -1, -1, -1, -1, -1, -1, 1, -1, -1, 1,
  7731. 1, 1, 1, 1, -1, -1, -1, -1, -1, 1, 1, 1, -1, -1, -1, 1, 1, -1, 1, 1, -1, -1, -1, 1, -1, -1, 1, 1, -1, -1, -1, -1,
  7732. 1, 1, -1, 1, -1, -1, -1, 1, -1, 1, -1, 1, -1, -1, -1, -1, 1, -1, -1, 1, -1, -1, -1, -1, -1, -1, -1, 1, -1, -1, -1, 1,
  7733. 1, 1, 1, -1, -1, -1, -1, 1, -1, 1, 1, -1, -1, -1, -1, -1, 1, -1, 1, -1, -1, -1, -1, -1, -1, -1, 1, -1, -1, -1, -1, 1,
  7734. 1, 1, -1, -1, -1, -1, -1, -1, -1, 1, -1, -1, -1, -1, -1, 1, 1, -1, -1, -1, -1, -1, -1, 1, -1, -1, -1, -1, -1, -1, -1, -1,
  7735. };
  7736. #endif
  7737. void ggml_vec_dot_iq2_xxs_q8_K(int n, float * restrict s, size_t bs, const void * restrict vx, size_t bx, const void * restrict vy, size_t by, int nrc) {
  7738. assert(n % QK_K == 0);
  7739. assert(nrc == 1);
  7740. UNUSED(nrc);
  7741. UNUSED(bx);
  7742. UNUSED(by);
  7743. UNUSED(bs);
  7744. const block_iq2_xxs * restrict x = vx;
  7745. const block_q8_K * restrict y = vy;
  7746. const int nb = n / QK_K;
  7747. #if defined(__ARM_NEON)
  7748. const uint64_t * signs64 = (const uint64_t *)keven_signs_q2xs;
  7749. uint32_t aux32[4];
  7750. const uint8_t * aux8 = (const uint8_t *)aux32;
  7751. ggml_int8x16x4_t q2u;
  7752. ggml_int8x16x4_t q2s;
  7753. ggml_int8x16x4_t q8b;
  7754. float sumf = 0;
  7755. for (int i = 0; i < nb; ++i) {
  7756. const float d = GGML_FP16_TO_FP32(x[i].d) * y[i].d;
  7757. const uint16_t * restrict q2 = x[i].qs;
  7758. const int8_t * restrict q8 = y[i].qs;
  7759. float sumf1 = 0, sumf2 = 0;
  7760. for (int ib32 = 0; ib32 < QK_K/32; ib32 += 2) {
  7761. q8b = ggml_vld1q_s8_x4(q8); q8 += 64;
  7762. memcpy(aux32, q2, 4*sizeof(uint32_t)); q2 += 8;
  7763. q2u.val[0] = vcombine_s8(vld1_s8((const void *)(iq2xxs_grid + aux8[ 0])), vld1_s8((const void *)(iq2xxs_grid + aux8[ 1])));
  7764. q2u.val[1] = vcombine_s8(vld1_s8((const void *)(iq2xxs_grid + aux8[ 2])), vld1_s8((const void *)(iq2xxs_grid + aux8[ 3])));
  7765. q2u.val[2] = vcombine_s8(vld1_s8((const void *)(iq2xxs_grid + aux8[ 8])), vld1_s8((const void *)(iq2xxs_grid + aux8[ 9])));
  7766. q2u.val[3] = vcombine_s8(vld1_s8((const void *)(iq2xxs_grid + aux8[10])), vld1_s8((const void *)(iq2xxs_grid + aux8[11])));
  7767. q2s.val[0] = vcombine_s8(vld1_s8((const void *)(signs64 + ((aux32[1] >> 0) & 127))), vld1_s8((const void *)(signs64 + ((aux32[1] >> 7) & 127))));
  7768. q2s.val[1] = vcombine_s8(vld1_s8((const void *)(signs64 + ((aux32[1] >> 14) & 127))), vld1_s8((const void *)(signs64 + ((aux32[1] >> 21) & 127))));
  7769. q2s.val[2] = vcombine_s8(vld1_s8((const void *)(signs64 + ((aux32[3] >> 0) & 127))), vld1_s8((const void *)(signs64 + ((aux32[3] >> 7) & 127))));
  7770. q2s.val[3] = vcombine_s8(vld1_s8((const void *)(signs64 + ((aux32[3] >> 14) & 127))), vld1_s8((const void *)(signs64 + ((aux32[3] >> 21) & 127))));
  7771. q2u.val[0] = vmulq_s8(q2u.val[0], q2s.val[0]);
  7772. q2u.val[1] = vmulq_s8(q2u.val[1], q2s.val[1]);
  7773. q2u.val[2] = vmulq_s8(q2u.val[2], q2s.val[2]);
  7774. q2u.val[3] = vmulq_s8(q2u.val[3], q2s.val[3]);
  7775. const int32x4_t p1 = ggml_vdotq_s32(ggml_vdotq_s32(vdupq_n_s32(0), q2u.val[0], q8b.val[0]), q2u.val[1], q8b.val[1]);
  7776. const int32x4_t p2 = ggml_vdotq_s32(ggml_vdotq_s32(vdupq_n_s32(0), q2u.val[2], q8b.val[2]), q2u.val[3], q8b.val[3]);
  7777. sumf1 += vaddvq_s32(p1) * (0.5f + (aux32[1] >> 28));
  7778. sumf2 += vaddvq_s32(p2) * (0.5f + (aux32[3] >> 28));
  7779. }
  7780. sumf += d*(sumf1 + sumf2);
  7781. }
  7782. *s = 0.25f * sumf;
  7783. #elif defined(__AVX2__)
  7784. const uint64_t * signs64 = (const uint64_t *)keven_signs_q2xs;
  7785. uint32_t aux32[4];
  7786. const uint8_t * aux8 = (const uint8_t *)aux32;
  7787. __m256 accumf = _mm256_setzero_ps();
  7788. for (int i = 0; i < nb; ++i) {
  7789. const float d = GGML_FP16_TO_FP32(x[i].d) * y[i].d;
  7790. const uint16_t * restrict q2 = x[i].qs;
  7791. const int8_t * restrict q8 = y[i].qs;
  7792. __m256i sumi1 = _mm256_setzero_si256();
  7793. __m256i sumi2 = _mm256_setzero_si256();
  7794. for (int ib32 = 0; ib32 < QK_K/32; ib32 += 2) {
  7795. const __m256i q8_1 = _mm256_loadu_si256((const __m256i *)q8); q8 += 32;
  7796. const __m256i q8_2 = _mm256_loadu_si256((const __m256i *)q8); q8 += 32;
  7797. memcpy(aux32, q2, 4*sizeof(uint32_t)); q2 += 8;
  7798. const __m256i q2_1 = _mm256_set_epi64x(iq2xxs_grid[aux8[ 3]], iq2xxs_grid[aux8[ 2]], iq2xxs_grid[aux8[1]], iq2xxs_grid[aux8[0]]);
  7799. const __m256i q2_2 = _mm256_set_epi64x(iq2xxs_grid[aux8[11]], iq2xxs_grid[aux8[10]], iq2xxs_grid[aux8[9]], iq2xxs_grid[aux8[8]]);
  7800. const __m256i s2_1 = _mm256_set_epi64x(signs64[(aux32[1] >> 21) & 127], signs64[(aux32[1] >> 14) & 127],
  7801. signs64[(aux32[1] >> 7) & 127], signs64[(aux32[1] >> 0) & 127]);
  7802. const __m256i s2_2 = _mm256_set_epi64x(signs64[(aux32[3] >> 21) & 127], signs64[(aux32[3] >> 14) & 127],
  7803. signs64[(aux32[3] >> 7) & 127], signs64[(aux32[3] >> 0) & 127]);
  7804. const __m256i q8s_1 = _mm256_sign_epi8(q8_1, s2_1);
  7805. const __m256i q8s_2 = _mm256_sign_epi8(q8_2, s2_2);
  7806. const __m256i dot1 = _mm256_maddubs_epi16(q2_1, q8s_1);
  7807. const __m256i dot2 = _mm256_maddubs_epi16(q2_2, q8s_2);
  7808. const uint16_t ls1 = aux32[1] >> 28;
  7809. const uint16_t ls2 = aux32[3] >> 28;
  7810. const __m256i p1 = _mm256_madd_epi16(dot1, _mm256_set1_epi16(2*ls1+1));
  7811. const __m256i p2 = _mm256_madd_epi16(dot2, _mm256_set1_epi16(2*ls2+1));
  7812. sumi1 = _mm256_add_epi32(sumi1, p1);
  7813. sumi2 = _mm256_add_epi32(sumi2, p2);
  7814. }
  7815. accumf = _mm256_fmadd_ps(_mm256_set1_ps(d), _mm256_cvtepi32_ps(_mm256_add_epi32(sumi1, sumi2)), accumf);
  7816. }
  7817. *s = 0.125f * hsum_float_8(accumf);
  7818. #elif defined(__AVX__)
  7819. const uint64_t * signs64 = (const uint64_t *)keven_signs_q2xs;
  7820. uint32_t aux32[4];
  7821. const uint8_t * aux8 = (const uint8_t *)aux32;
  7822. __m256 accumf = _mm256_setzero_ps();
  7823. for (int i = 0; i < nb; ++i) {
  7824. const float d = GGML_FP16_TO_FP32(x[i].d) * y[i].d;
  7825. const uint16_t * restrict q2 = x[i].qs;
  7826. const int8_t * restrict q8 = y[i].qs;
  7827. __m128i sumi1_0 = _mm_setzero_si128();
  7828. __m128i sumi1_1 = _mm_setzero_si128();
  7829. __m128i sumi2_0 = _mm_setzero_si128();
  7830. __m128i sumi2_1 = _mm_setzero_si128();
  7831. for (int ib32 = 0; ib32 < QK_K/32; ib32 += 2) {
  7832. const __m128i q8_1_0 = _mm_loadu_si128((const __m128i *)q8); q8 += 16;
  7833. const __m128i q8_1_1 = _mm_loadu_si128((const __m128i *)q8); q8 += 16;
  7834. const __m128i q8_2_0 = _mm_loadu_si128((const __m128i *)q8); q8 += 16;
  7835. const __m128i q8_2_1 = _mm_loadu_si128((const __m128i *)q8); q8 += 16;
  7836. memcpy(aux32, q2, 4*sizeof(uint32_t)); q2 += 8;
  7837. const __m128i q2_1_0 = _mm_set_epi64x(iq2xxs_grid[aux8[1]], iq2xxs_grid[aux8[0]]);
  7838. const __m128i q2_1_1 = _mm_set_epi64x(iq2xxs_grid[aux8[3]], iq2xxs_grid[aux8[2]]);
  7839. const __m128i q2_2_0 = _mm_set_epi64x(iq2xxs_grid[aux8[9]], iq2xxs_grid[aux8[8]]);
  7840. const __m128i q2_2_1 = _mm_set_epi64x(iq2xxs_grid[aux8[11]], iq2xxs_grid[aux8[10]]);
  7841. const __m128i s2_1_0 = _mm_set_epi64x(signs64[(aux32[1] >> 7) & 127], signs64[(aux32[1] >> 0) & 127]);
  7842. const __m128i s2_1_1 = _mm_set_epi64x(signs64[(aux32[1] >> 21) & 127], signs64[(aux32[1] >> 14) & 127]);
  7843. const __m128i s2_2_0 = _mm_set_epi64x(signs64[(aux32[3] >> 7) & 127], signs64[(aux32[3] >> 0) & 127]);
  7844. const __m128i s2_2_1 = _mm_set_epi64x(signs64[(aux32[3] >> 21) & 127], signs64[(aux32[3] >> 14) & 127]);
  7845. const __m128i q8s_1_0 = _mm_sign_epi8(q8_1_0, s2_1_0);
  7846. const __m128i q8s_1_1 = _mm_sign_epi8(q8_1_1, s2_1_1);
  7847. const __m128i q8s_2_0 = _mm_sign_epi8(q8_2_0, s2_2_0);
  7848. const __m128i q8s_2_1 = _mm_sign_epi8(q8_2_1, s2_2_1);
  7849. const __m128i dot1_0 = _mm_maddubs_epi16(q2_1_0, q8s_1_0);
  7850. const __m128i dot1_1 = _mm_maddubs_epi16(q2_1_1, q8s_1_1);
  7851. const __m128i dot2_0 = _mm_maddubs_epi16(q2_2_0, q8s_2_0);
  7852. const __m128i dot2_1 = _mm_maddubs_epi16(q2_2_1, q8s_2_1);
  7853. const uint16_t ls1 = aux32[1] >> 28;
  7854. const uint16_t ls2 = aux32[3] >> 28;
  7855. const __m128i p1_0 = _mm_madd_epi16(dot1_0, _mm_set1_epi16(2*ls1+1));
  7856. const __m128i p1_1 = _mm_madd_epi16(dot1_1, _mm_set1_epi16(2*ls1+1));
  7857. const __m128i p2_0 = _mm_madd_epi16(dot2_0, _mm_set1_epi16(2*ls2+1));
  7858. const __m128i p2_1 = _mm_madd_epi16(dot2_1, _mm_set1_epi16(2*ls2+1));
  7859. sumi1_0 = _mm_add_epi32(sumi1_0, p1_0);
  7860. sumi1_1 = _mm_add_epi32(sumi1_1, p1_1);
  7861. sumi2_0 = _mm_add_epi32(sumi2_0, p2_0);
  7862. sumi2_1 = _mm_add_epi32(sumi2_1, p2_1);
  7863. }
  7864. accumf = _mm256_add_ps(_mm256_mul_ps(_mm256_set1_ps(d), _mm256_cvtepi32_ps(MM256_SET_M128I(_mm_add_epi32(sumi1_1, sumi2_1), _mm_add_epi32(sumi1_0, sumi2_0)))), accumf);
  7865. }
  7866. *s = 0.125f * hsum_float_8(accumf);
  7867. #elif defined(__POWER9_VECTOR__)
  7868. const vector int v0 = vec_splats((int32_t)0);
  7869. vector float vsumf0 = vec_splats(0.0f);
  7870. vector float vsumf1 = vec_splats(0.0f);
  7871. vector float vsumf2 = vec_splats(0.0f);
  7872. vector float vsumf3 = vec_splats(0.0f);
  7873. const uint64_t * signs64 = (const uint64_t *)keven_signs_q2xs;
  7874. for (int i = 0; i < nb; ++i) {
  7875. vector float vxd = vec_splats(GGML_FP16_TO_FP32(x[i].d));
  7876. vector float vyd = vec_splats(y[i].d);
  7877. vector float vd = vec_mul(vxd, vyd);
  7878. vector signed int vsumi0 = v0;
  7879. vector signed int vsumi1 = v0;
  7880. vector signed int vsumi2 = v0;
  7881. vector signed int vsumi3 = v0;
  7882. const uint16_t * restrict q2 = x[i].qs;
  7883. const int8_t * restrict q8 = y[i].qs;
  7884. for (int j = 0; j < QK_K/32; j += 2) {
  7885. __builtin_prefetch(q2, 0, 1);
  7886. __builtin_prefetch(q8, 0, 1);
  7887. uint32_t aux32[4];
  7888. const uint8_t * aux8 = (const uint8_t *)aux32;
  7889. memcpy(aux32, q2, 4*sizeof(uint32_t));
  7890. q2 += 8;
  7891. vector signed long long aux64x2_0 = {*(const int64_t *)(iq2xxs_grid + aux8[ 0]), *(const int64_t *)(iq2xxs_grid + aux8[ 1])};
  7892. vector signed long long aux64x2_1 = {*(const int64_t *)(iq2xxs_grid + aux8[ 2]), *(const int64_t *)(iq2xxs_grid + aux8[ 3])};
  7893. vector signed long long aux64x2_2 = {*(const int64_t *)(iq2xxs_grid + aux8[ 8]), *(const int64_t *)(iq2xxs_grid + aux8[ 9])};
  7894. vector signed long long aux64x2_3 = {*(const int64_t *)(iq2xxs_grid + aux8[10]), *(const int64_t *)(iq2xxs_grid + aux8[11])};
  7895. vector signed long long vsigns0 = {*(const int64_t *)(signs64 + ((aux32[1] >> 0) & 127)), *(const int64_t *)(signs64 + ((aux32[1] >> 7) & 127))};
  7896. vector signed long long vsigns1 = {*(const int64_t *)(signs64 + ((aux32[1] >> 14) & 127)), *(const int64_t *)(signs64 + ((aux32[1] >> 21) & 127))};
  7897. vector signed long long vsigns2 = {*(const int64_t *)(signs64 + ((aux32[3] >> 0) & 127)), *(const int64_t *)(signs64 + ((aux32[3] >> 7) & 127))};
  7898. vector signed long long vsigns3 = {*(const int64_t *)(signs64 + ((aux32[3] >> 14) & 127)), *(const int64_t *)(signs64 + ((aux32[3] >> 21) & 127))};
  7899. vector signed char q2x0 = (vector signed char)vec_mul((vector signed char)vsigns0, (vector signed char)aux64x2_0);
  7900. vector signed char q2x1 = (vector signed char)vec_mul((vector signed char)vsigns1, (vector signed char)aux64x2_1);
  7901. vector signed char q2x2 = (vector signed char)vec_mul((vector signed char)vsigns2, (vector signed char)aux64x2_2);
  7902. vector signed char q2x3 = (vector signed char)vec_mul((vector signed char)vsigns3, (vector signed char)aux64x2_3);
  7903. vector signed char q8y0 = vec_xl( 0, q8);
  7904. vector signed char q8y1 = vec_xl(16, q8);
  7905. vector signed char q8y2 = vec_xl(32, q8);
  7906. vector signed char q8y3 = vec_xl(48, q8);
  7907. q8 += 64;
  7908. vector signed short qv0 = vec_add(vec_mule(q2x0, q8y0), vec_mulo(q2x0, q8y0));
  7909. vector signed short qv1 = vec_add(vec_mule(q2x1, q8y1), vec_mulo(q2x1, q8y1));
  7910. vector signed short qv2 = vec_add(vec_mule(q2x2, q8y2), vec_mulo(q2x2, q8y2));
  7911. vector signed short qv3 = vec_add(vec_mule(q2x3, q8y3), vec_mulo(q2x3, q8y3));
  7912. const uint16_t ls0 = aux32[1] >> 28;
  7913. const uint16_t ls1 = aux32[3] >> 28;
  7914. vector signed short vscales01 = vec_splats((int16_t)(2*ls0+1));
  7915. vector signed short vscales23 = vec_splats((int16_t)(2*ls1+1));
  7916. vsumi0 = vec_msum(qv0, vscales01, vsumi0);
  7917. vsumi1 = vec_msum(qv1, vscales01, vsumi1);
  7918. vsumi2 = vec_msum(qv2, vscales23, vsumi2);
  7919. vsumi3 = vec_msum(qv3, vscales23, vsumi3);
  7920. }
  7921. vsumf0 = vec_madd(vec_ctf(vsumi0, 0), vd, vsumf0);
  7922. vsumf1 = vec_madd(vec_ctf(vsumi1, 0), vd, vsumf1);
  7923. vsumf2 = vec_madd(vec_ctf(vsumi2, 0), vd, vsumf2);
  7924. vsumf3 = vec_madd(vec_ctf(vsumi3, 0), vd, vsumf3);
  7925. }
  7926. vsumf0 = vec_add(vsumf0, vsumf2);
  7927. vsumf1 = vec_add(vsumf1, vsumf3);
  7928. vsumf0 = vec_add(vsumf0, vsumf1);
  7929. vsumf0 = vec_add(vsumf0, vec_sld(vsumf0, vsumf0, 4));
  7930. vsumf0 = vec_add(vsumf0, vec_sld(vsumf0, vsumf0, 8));
  7931. *s = 0.125f * vec_extract(vsumf0, 0);
  7932. #elif defined(__loongarch_asx)
  7933. const uint64_t * signs64 = (const uint64_t *)keven_signs_q2xs;
  7934. uint32_t aux32[4];
  7935. const uint8_t * aux8 = (const uint8_t *)aux32;
  7936. __m256 accumf = (__m256)__lasx_xvldi(0);
  7937. for (int i = 0; i < nb; ++i) {
  7938. const float d = GGML_FP16_TO_FP32(x[i].d) * y[i].d;
  7939. const uint16_t * restrict q2 = x[i].qs;
  7940. const int8_t * restrict q8 = y[i].qs;
  7941. __m256i sumi1 = __lasx_xvldi(0);
  7942. __m256i sumi2 = __lasx_xvldi(0);
  7943. for (int ib32 = 0; ib32 < QK_K/32; ib32 += 2) {
  7944. const __m256i q8_1 = __lasx_xvld((const __m256i *)q8, 0); q8 += 32;
  7945. const __m256i q8_2 = __lasx_xvld((const __m256i *)q8, 0); q8 += 32;
  7946. memcpy(aux32, q2, 4*sizeof(uint32_t)); q2 += 8;
  7947. const __m256i q2_1 = lasx_set_d(iq2xxs_grid[aux8[ 3]], iq2xxs_grid[aux8[ 2]], iq2xxs_grid[aux8[1]], iq2xxs_grid[aux8[0]]);
  7948. const __m256i q2_2 = lasx_set_d(iq2xxs_grid[aux8[11]], iq2xxs_grid[aux8[10]], iq2xxs_grid[aux8[9]], iq2xxs_grid[aux8[8]]);
  7949. const __m256i s2_1 = lasx_set_d(signs64[(aux32[1] >> 21) & 127], signs64[(aux32[1] >> 14) & 127],
  7950. signs64[(aux32[1] >> 7) & 127], signs64[(aux32[1] >> 0) & 127]);
  7951. const __m256i s2_2 = lasx_set_d(signs64[(aux32[3] >> 21) & 127], signs64[(aux32[3] >> 14) & 127],
  7952. signs64[(aux32[3] >> 7) & 127], signs64[(aux32[3] >> 0) & 127]);
  7953. const __m256i q8s_1 = __lasx_xvsigncov_b(s2_1, q8_1);
  7954. const __m256i q8s_2 = __lasx_xvsigncov_b(s2_2, q8_2);
  7955. const __m256i dot1 = lasx_maddubs_h(q2_1, q8s_1);
  7956. const __m256i dot2 = lasx_maddubs_h(q2_2, q8s_2);
  7957. const uint16_t ls1 = aux32[1] >> 28;
  7958. const uint16_t ls2 = aux32[3] >> 28;
  7959. const __m256i p1 = lasx_madd_h(dot1, __lasx_xvreplgr2vr_h(2*ls1+1));
  7960. const __m256i p2 = lasx_madd_h(dot2, __lasx_xvreplgr2vr_h(2*ls2+1));
  7961. sumi1 = __lasx_xvadd_w(sumi1, p1);
  7962. sumi2 = __lasx_xvadd_w(sumi2, p2);
  7963. }
  7964. accumf = __lasx_xvfmadd_s(__lasx_xvreplfr2vr_s(d), __lasx_xvffint_s_w(__lasx_xvadd_w(sumi1, sumi2)), accumf);
  7965. }
  7966. *s = 0.125f * hsum_float_8(accumf);
  7967. #else
  7968. uint32_t aux32[2];
  7969. const uint8_t * aux8 = (const uint8_t *)aux32;
  7970. float sumf = 0.f;
  7971. for (int i = 0; i < nb; ++i) {
  7972. const float d = GGML_FP16_TO_FP32(x[i].d) * y[i].d;
  7973. const uint16_t * restrict q2 = x[i].qs;
  7974. const int8_t * restrict q8 = y[i].qs;
  7975. int32_t bsum = 0;
  7976. for (int ib32 = 0; ib32 < QK_K/32; ++ib32) {
  7977. memcpy(aux32, q2, 2*sizeof(uint32_t));
  7978. q2 += 4;
  7979. const uint32_t ls = 2*(aux32[1] >> 28) + 1;
  7980. int32_t sumi = 0;
  7981. for (int l = 0; l < 4; ++l) {
  7982. const uint8_t * grid = (const uint8_t *)(iq2xxs_grid + aux8[l]);
  7983. const uint8_t signs = ksigns_iq2xs[(aux32[1] >> 7*l) & 127];
  7984. for (int j = 0; j < 8; ++j) {
  7985. sumi += grid[j] * q8[j] * (signs & kmask_iq2xs[j] ? -1 : 1);
  7986. }
  7987. q8 += 8;
  7988. }
  7989. bsum += sumi * ls;
  7990. }
  7991. sumf += d * bsum;
  7992. }
  7993. *s = 0.125f * sumf;
  7994. #endif
  7995. }
  7996. void ggml_vec_dot_iq2_xs_q8_K(int n, float * restrict s, size_t bs, const void * restrict vx, size_t bx, const void * restrict vy, size_t by, int nrc) {
  7997. assert(n % QK_K == 0);
  7998. assert(nrc == 1);
  7999. UNUSED(nrc);
  8000. UNUSED(bx);
  8001. UNUSED(by);
  8002. UNUSED(bs);
  8003. const block_iq2_xs * restrict x = vx;
  8004. const block_q8_K * restrict y = vy;
  8005. const int nb = n / QK_K;
  8006. #if defined(__ARM_NEON)
  8007. const uint64_t * signs64 = (const uint64_t *)keven_signs_q2xs;
  8008. ggml_int8x16x4_t q2u;
  8009. ggml_int8x16x4_t q2s;
  8010. ggml_int8x16x4_t q8b;
  8011. int32x4x4_t scales32;
  8012. float sumf = 0;
  8013. for (int i = 0; i < nb; ++i) {
  8014. const float d = GGML_FP16_TO_FP32(x[i].d) * y[i].d;
  8015. const uint16_t * restrict q2 = x[i].qs;
  8016. const int8_t * restrict q8 = y[i].qs;
  8017. const uint8x8_t scales8 = vld1_u8(x[i].scales);
  8018. const uint8x8_t scales_l = vand_u8(scales8, vdup_n_u8(0xf));
  8019. const uint8x8_t scales_h = vshr_n_u8(scales8, 4);
  8020. uint8x16_t scales = vcombine_u8(vzip1_u8(scales_l, scales_h), vzip2_u8(scales_l, scales_h));
  8021. scales = vaddq_u8(vshlq_n_u8(scales, 1), vdupq_n_u8(1));
  8022. const uint16x8_t scales1 = vmovl_u8(vget_low_u8(scales));
  8023. const uint16x8_t scales2 = vmovl_u8(vget_high_u8(scales));
  8024. scales32.val[0] = vreinterpretq_s32_u32(vmovl_u16(vget_low_u16(scales1)));
  8025. scales32.val[1] = vreinterpretq_s32_u32(vmovl_u16(vget_high_u16(scales1)));
  8026. scales32.val[2] = vreinterpretq_s32_u32(vmovl_u16(vget_low_u16(scales2)));
  8027. scales32.val[3] = vreinterpretq_s32_u32(vmovl_u16(vget_high_u16(scales2)));
  8028. int32x4_t sumi = vdupq_n_s32(0);
  8029. for (int ib64 = 0; ib64 < QK_K/64; ++ib64) {
  8030. q8b = ggml_vld1q_s8_x4(q8); q8 += 64;
  8031. q2u.val[0] = vcombine_s8(vld1_s8((const void *)(iq2xs_grid + (q2[0] & 511))), vld1_s8((const void *)(iq2xs_grid + (q2[1] & 511))));
  8032. q2u.val[1] = vcombine_s8(vld1_s8((const void *)(iq2xs_grid + (q2[2] & 511))), vld1_s8((const void *)(iq2xs_grid + (q2[3] & 511))));
  8033. q2u.val[2] = vcombine_s8(vld1_s8((const void *)(iq2xs_grid + (q2[4] & 511))), vld1_s8((const void *)(iq2xs_grid + (q2[5] & 511))));
  8034. q2u.val[3] = vcombine_s8(vld1_s8((const void *)(iq2xs_grid + (q2[6] & 511))), vld1_s8((const void *)(iq2xs_grid + (q2[7] & 511))));
  8035. q2s.val[0] = vcombine_s8(vld1_s8((const void *)(signs64 + (q2[0] >> 9))), vld1_s8((const void *)(signs64 + (q2[1] >> 9))));
  8036. q2s.val[1] = vcombine_s8(vld1_s8((const void *)(signs64 + (q2[2] >> 9))), vld1_s8((const void *)(signs64 + (q2[3] >> 9))));
  8037. q2s.val[2] = vcombine_s8(vld1_s8((const void *)(signs64 + (q2[4] >> 9))), vld1_s8((const void *)(signs64 + (q2[5] >> 9))));
  8038. q2s.val[3] = vcombine_s8(vld1_s8((const void *)(signs64 + (q2[6] >> 9))), vld1_s8((const void *)(signs64 + (q2[7] >> 9))));
  8039. q2u.val[0] = vmulq_s8(q2u.val[0], q2s.val[0]);
  8040. q2u.val[1] = vmulq_s8(q2u.val[1], q2s.val[1]);
  8041. q2u.val[2] = vmulq_s8(q2u.val[2], q2s.val[2]);
  8042. q2u.val[3] = vmulq_s8(q2u.val[3], q2s.val[3]);
  8043. const int32x4_t p1 = ggml_vdotq_s32(vdupq_n_s32(0), q2u.val[0], q8b.val[0]);
  8044. const int32x4_t p2 = ggml_vdotq_s32(vdupq_n_s32(0), q2u.val[1], q8b.val[1]);
  8045. const int32x4_t p3 = ggml_vdotq_s32(vdupq_n_s32(0), q2u.val[2], q8b.val[2]);
  8046. const int32x4_t p4 = ggml_vdotq_s32(vdupq_n_s32(0), q2u.val[3], q8b.val[3]);
  8047. const int32x4_t p = vpaddq_s32(vpaddq_s32(p1, p2), vpaddq_s32(p3, p4));
  8048. sumi = vmlaq_s32(sumi, p, scales32.val[ib64]);
  8049. q2 += 8;
  8050. }
  8051. sumf += d*vaddvq_s32(sumi);
  8052. }
  8053. *s = 0.125f * sumf;
  8054. #elif defined(__AVX2__)
  8055. const __m256i mone = _mm256_set1_epi8(1);
  8056. static const char block_sign_shuffle_mask_1[32] = {
  8057. 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x02, 0x02, 0x02, 0x02, 0x02, 0x02, 0x02, 0x02,
  8058. 0x04, 0x04, 0x04, 0x04, 0x04, 0x04, 0x04, 0x04, 0x06, 0x06, 0x06, 0x06, 0x06, 0x06, 0x06, 0x06,
  8059. };
  8060. static const char block_sign_shuffle_mask_2[32] = {
  8061. 0x08, 0x08, 0x08, 0x08, 0x08, 0x08, 0x08, 0x08, 0x0a, 0x0a, 0x0a, 0x0a, 0x0a, 0x0a, 0x0a, 0x0a,
  8062. 0x0c, 0x0c, 0x0c, 0x0c, 0x0c, 0x0c, 0x0c, 0x0c, 0x0e, 0x0e, 0x0e, 0x0e, 0x0e, 0x0e, 0x0e, 0x0e,
  8063. };
  8064. static const uint8_t bit_selector_mask_bytes[32] = {
  8065. 0x01, 0x02, 0x04, 0x08, 0x10, 0x20, 0x40, 0x80, 0x01, 0x02, 0x04, 0x08, 0x10, 0x20, 0x40, 0x80,
  8066. 0x01, 0x02, 0x04, 0x08, 0x10, 0x20, 0x40, 0x80, 0x01, 0x02, 0x04, 0x08, 0x10, 0x20, 0x40, 0x80,
  8067. };
  8068. const __m256i bit_selector_mask = _mm256_loadu_si256((const __m256i*)bit_selector_mask_bytes);
  8069. const __m256i block_sign_shuffle_1 = _mm256_loadu_si256((const __m256i*)block_sign_shuffle_mask_1);
  8070. const __m256i block_sign_shuffle_2 = _mm256_loadu_si256((const __m256i*)block_sign_shuffle_mask_2);
  8071. static const uint8_t k_bit_helper[32] = {
  8072. 0x00, 0x80, 0x80, 0x00, 0x80, 0x00, 0x00, 0x80, 0x80, 0x00, 0x00, 0x80, 0x00, 0x80, 0x80, 0x00,
  8073. 0x00, 0x80, 0x80, 0x00, 0x80, 0x00, 0x00, 0x80, 0x80, 0x00, 0x00, 0x80, 0x00, 0x80, 0x80, 0x00,
  8074. };
  8075. const __m256i bit_helper = _mm256_loadu_si256((const __m256i*)k_bit_helper);
  8076. const __m256i m511 = _mm256_set1_epi16(511);
  8077. const __m128i m4 = _mm_set1_epi8(0xf);
  8078. const __m128i m1 = _mm_set1_epi8(1);
  8079. uint64_t aux64;
  8080. // somewhat hacky, but gives a significant boost in performance
  8081. __m256i aux_gindex;
  8082. const uint16_t * gindex = (const uint16_t *)&aux_gindex;
  8083. __m256 accumf = _mm256_setzero_ps();
  8084. for (int i = 0; i < nb; ++i) {
  8085. const float d = GGML_FP16_TO_FP32(x[i].d) * y[i].d;
  8086. const uint16_t * restrict q2 = x[i].qs;
  8087. const int8_t * restrict q8 = y[i].qs;
  8088. memcpy(&aux64, x[i].scales, 8);
  8089. __m128i stmp = _mm_set1_epi64x(aux64);
  8090. stmp = _mm_unpacklo_epi8(_mm_and_si128(stmp, m4), _mm_and_si128(_mm_srli_epi16(stmp, 4), m4));
  8091. const __m128i scales = _mm_add_epi8(_mm_slli_epi16(stmp, 1), m1);
  8092. __m256i sumi1 = _mm256_setzero_si256();
  8093. __m256i sumi2 = _mm256_setzero_si256();
  8094. for (int ib32 = 0; ib32 < QK_K/32; ib32 += 4) {
  8095. const __m256i q2_data = _mm256_loadu_si256((const __m256i*)q2); q2 += 16;
  8096. aux_gindex = _mm256_and_si256(q2_data, m511);
  8097. const __m256i partial_sign_bits = _mm256_srli_epi16(q2_data, 9);
  8098. const __m256i partial_sign_bits_upper = _mm256_srli_epi16(q2_data, 13);
  8099. const __m256i partial_sign_bits_for_counting = _mm256_xor_si256(partial_sign_bits, partial_sign_bits_upper);
  8100. const __m256i odd_bits = _mm256_shuffle_epi8(bit_helper, partial_sign_bits_for_counting);
  8101. const __m256i full_sign_bits = _mm256_or_si256(partial_sign_bits, odd_bits);
  8102. const __m256i q8_1 = _mm256_loadu_si256((const __m256i *)q8); q8 += 32;
  8103. const __m256i q8_2 = _mm256_loadu_si256((const __m256i *)q8); q8 += 32;
  8104. const __m256i q8_3 = _mm256_loadu_si256((const __m256i *)q8); q8 += 32;
  8105. const __m256i q8_4 = _mm256_loadu_si256((const __m256i *)q8); q8 += 32;
  8106. const __m256i q2_1 = _mm256_set_epi64x(iq2xs_grid[gindex[ 3]], iq2xs_grid[gindex[ 2]],
  8107. iq2xs_grid[gindex[ 1]], iq2xs_grid[gindex[ 0]]);
  8108. const __m256i q2_2 = _mm256_set_epi64x(iq2xs_grid[gindex[ 7]], iq2xs_grid[gindex[ 6]],
  8109. iq2xs_grid[gindex[ 5]], iq2xs_grid[gindex[ 4]]);
  8110. const __m256i q2_3 = _mm256_set_epi64x(iq2xs_grid[gindex[11]], iq2xs_grid[gindex[10]],
  8111. iq2xs_grid[gindex[ 9]], iq2xs_grid[gindex[ 8]]);
  8112. const __m256i q2_4 = _mm256_set_epi64x(iq2xs_grid[gindex[15]], iq2xs_grid[gindex[14]],
  8113. iq2xs_grid[gindex[13]], iq2xs_grid[gindex[12]]);
  8114. const __m128i full_signs_l = _mm256_castsi256_si128(full_sign_bits);
  8115. const __m128i full_signs_h = _mm256_extractf128_si256(full_sign_bits, 1);
  8116. const __m256i full_signs_1 = MM256_SET_M128I(full_signs_l, full_signs_l);
  8117. const __m256i full_signs_2 = MM256_SET_M128I(full_signs_h, full_signs_h);
  8118. __m256i signs;
  8119. signs = _mm256_shuffle_epi8(full_signs_1, block_sign_shuffle_1);
  8120. signs = _mm256_cmpeq_epi8(_mm256_and_si256(signs, bit_selector_mask), bit_selector_mask);
  8121. const __m256i q8s_1 = _mm256_sign_epi8(q8_1, _mm256_or_si256(signs, mone));
  8122. signs = _mm256_shuffle_epi8(full_signs_1, block_sign_shuffle_2);
  8123. signs = _mm256_cmpeq_epi8(_mm256_and_si256(signs, bit_selector_mask), bit_selector_mask);
  8124. const __m256i q8s_2 = _mm256_sign_epi8(q8_2, _mm256_or_si256(signs, mone));
  8125. signs = _mm256_shuffle_epi8(full_signs_2, block_sign_shuffle_1);
  8126. signs = _mm256_cmpeq_epi8(_mm256_and_si256(signs, bit_selector_mask), bit_selector_mask);
  8127. const __m256i q8s_3 = _mm256_sign_epi8(q8_3, _mm256_or_si256(signs, mone));
  8128. signs = _mm256_shuffle_epi8(full_signs_2, block_sign_shuffle_2);
  8129. signs = _mm256_cmpeq_epi8(_mm256_and_si256(signs, bit_selector_mask), bit_selector_mask);
  8130. const __m256i q8s_4 = _mm256_sign_epi8(q8_4, _mm256_or_si256(signs, mone));
  8131. const __m256i dot1 = _mm256_maddubs_epi16(q2_1, q8s_1);
  8132. const __m256i dot2 = _mm256_maddubs_epi16(q2_2, q8s_2);
  8133. const __m256i dot3 = _mm256_maddubs_epi16(q2_3, q8s_3);
  8134. const __m256i dot4 = _mm256_maddubs_epi16(q2_4, q8s_4);
  8135. const __m256i sc1 = _mm256_cvtepi8_epi16(_mm_shuffle_epi8(scales, get_scale_shuffle(ib32+0)));
  8136. const __m256i sc2 = _mm256_cvtepi8_epi16(_mm_shuffle_epi8(scales, get_scale_shuffle(ib32+1)));
  8137. const __m256i sc3 = _mm256_cvtepi8_epi16(_mm_shuffle_epi8(scales, get_scale_shuffle(ib32+2)));
  8138. const __m256i sc4 = _mm256_cvtepi8_epi16(_mm_shuffle_epi8(scales, get_scale_shuffle(ib32+3)));
  8139. sumi1 = _mm256_add_epi32(sumi1, _mm256_madd_epi16(dot1, sc1));
  8140. sumi2 = _mm256_add_epi32(sumi2, _mm256_madd_epi16(dot2, sc2));
  8141. sumi1 = _mm256_add_epi32(sumi1, _mm256_madd_epi16(dot3, sc3));
  8142. sumi2 = _mm256_add_epi32(sumi2, _mm256_madd_epi16(dot4, sc4));
  8143. }
  8144. accumf = _mm256_fmadd_ps(_mm256_set1_ps(d), _mm256_cvtepi32_ps(_mm256_add_epi32(sumi1, sumi2)), accumf);
  8145. }
  8146. *s = 0.125f * hsum_float_8(accumf);
  8147. #elif defined(__AVX__)
  8148. const __m128i mone = _mm_set1_epi8(1);
  8149. static const char block_sign_shuffle_mask_1[32] = {
  8150. 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x02, 0x02, 0x02, 0x02, 0x02, 0x02, 0x02, 0x02,
  8151. 0x04, 0x04, 0x04, 0x04, 0x04, 0x04, 0x04, 0x04, 0x06, 0x06, 0x06, 0x06, 0x06, 0x06, 0x06, 0x06,
  8152. };
  8153. static const char block_sign_shuffle_mask_2[32] = {
  8154. 0x08, 0x08, 0x08, 0x08, 0x08, 0x08, 0x08, 0x08, 0x0a, 0x0a, 0x0a, 0x0a, 0x0a, 0x0a, 0x0a, 0x0a,
  8155. 0x0c, 0x0c, 0x0c, 0x0c, 0x0c, 0x0c, 0x0c, 0x0c, 0x0e, 0x0e, 0x0e, 0x0e, 0x0e, 0x0e, 0x0e, 0x0e,
  8156. };
  8157. static const uint8_t bit_selector_mask_bytes[32] = {
  8158. 0x01, 0x02, 0x04, 0x08, 0x10, 0x20, 0x40, 0x80, 0x01, 0x02, 0x04, 0x08, 0x10, 0x20, 0x40, 0x80,
  8159. 0x01, 0x02, 0x04, 0x08, 0x10, 0x20, 0x40, 0x80, 0x01, 0x02, 0x04, 0x08, 0x10, 0x20, 0x40, 0x80,
  8160. };
  8161. const __m128i bit_selector_mask_0 = _mm_loadu_si128((const __m128i*)bit_selector_mask_bytes);
  8162. const __m128i bit_selector_mask_1 = _mm_loadu_si128((const __m128i*)bit_selector_mask_bytes + 1);
  8163. const __m128i block_sign_shuffle_1_0 = _mm_loadu_si128((const __m128i*)block_sign_shuffle_mask_1);
  8164. const __m128i block_sign_shuffle_1_1 = _mm_loadu_si128((const __m128i*)block_sign_shuffle_mask_1 + 1);
  8165. const __m128i block_sign_shuffle_2_0 = _mm_loadu_si128((const __m128i*)block_sign_shuffle_mask_2);
  8166. const __m128i block_sign_shuffle_2_1 = _mm_loadu_si128((const __m128i*)block_sign_shuffle_mask_2 + 1);
  8167. static const uint8_t k_bit_helper[32] = {
  8168. 0x00, 0x80, 0x80, 0x00, 0x80, 0x00, 0x00, 0x80, 0x80, 0x00, 0x00, 0x80, 0x00, 0x80, 0x80, 0x00,
  8169. 0x00, 0x80, 0x80, 0x00, 0x80, 0x00, 0x00, 0x80, 0x80, 0x00, 0x00, 0x80, 0x00, 0x80, 0x80, 0x00,
  8170. };
  8171. const __m128i bit_helper_0 = _mm_loadu_si128((const __m128i*)k_bit_helper);
  8172. const __m128i bit_helper_1 = _mm_loadu_si128((const __m128i*)k_bit_helper + 1);
  8173. const __m128i m511 = _mm_set1_epi16(511);
  8174. const __m128i m4 = _mm_set1_epi8(0xf);
  8175. const __m128i m1 = _mm_set1_epi8(1);
  8176. uint64_t aux64;
  8177. // somewhat hacky, but gives a significant boost in performance
  8178. __m256i aux_gindex;
  8179. const uint16_t * gindex = (const uint16_t *)&aux_gindex;
  8180. __m256 accumf = _mm256_setzero_ps();
  8181. for (int i = 0; i < nb; ++i) {
  8182. const float d = GGML_FP16_TO_FP32(x[i].d) * y[i].d;
  8183. const uint16_t * restrict q2 = x[i].qs;
  8184. const int8_t * restrict q8 = y[i].qs;
  8185. memcpy(&aux64, x[i].scales, 8);
  8186. __m128i stmp = _mm_set1_epi64x(aux64);
  8187. stmp = _mm_unpacklo_epi8(_mm_and_si128(stmp, m4), _mm_and_si128(_mm_srli_epi16(stmp, 4), m4));
  8188. const __m128i scales = _mm_add_epi8(_mm_slli_epi16(stmp, 1), m1);
  8189. __m128i sumi1_0 = _mm_setzero_si128();
  8190. __m128i sumi1_1 = _mm_setzero_si128();
  8191. __m128i sumi2_0 = _mm_setzero_si128();
  8192. __m128i sumi2_1 = _mm_setzero_si128();
  8193. for (int ib32 = 0; ib32 < QK_K/32; ib32 += 4) {
  8194. const __m128i q2_data_0 = _mm_loadu_si128((const __m128i*)q2);
  8195. const __m128i q2_data_1 = _mm_loadu_si128((const __m128i*)q2 + 1); q2 += 16;
  8196. aux_gindex = MM256_SET_M128I(_mm_and_si128(q2_data_1, m511), _mm_and_si128(q2_data_0, m511));
  8197. const __m128i partial_sign_bits_0 = _mm_srli_epi16(q2_data_0, 9);
  8198. const __m128i partial_sign_bits_1 = _mm_srli_epi16(q2_data_1, 9);
  8199. const __m128i partial_sign_bits_upper_0 = _mm_srli_epi16(q2_data_0, 13);
  8200. const __m128i partial_sign_bits_upper_1 = _mm_srli_epi16(q2_data_1, 13);
  8201. const __m128i partial_sign_bits_for_counting_0 = _mm_xor_si128(partial_sign_bits_0, partial_sign_bits_upper_0);
  8202. const __m128i partial_sign_bits_for_counting_1 = _mm_xor_si128(partial_sign_bits_1, partial_sign_bits_upper_1);
  8203. const __m128i odd_bits_0 = _mm_shuffle_epi8(bit_helper_0, partial_sign_bits_for_counting_0);
  8204. const __m128i odd_bits_1 = _mm_shuffle_epi8(bit_helper_1, partial_sign_bits_for_counting_1);
  8205. const __m128i full_sign_bits_0 = _mm_or_si128(partial_sign_bits_0, odd_bits_0);
  8206. const __m128i full_sign_bits_1 = _mm_or_si128(partial_sign_bits_1, odd_bits_1);
  8207. const __m128i q8_1_0 = _mm_loadu_si128((const __m128i *)q8); q8 += 16;
  8208. const __m128i q8_1_1 = _mm_loadu_si128((const __m128i *)q8); q8 += 16;
  8209. const __m128i q8_2_0 = _mm_loadu_si128((const __m128i *)q8); q8 += 16;
  8210. const __m128i q8_2_1 = _mm_loadu_si128((const __m128i *)q8); q8 += 16;
  8211. const __m128i q8_3_0 = _mm_loadu_si128((const __m128i *)q8); q8 += 16;
  8212. const __m128i q8_3_1 = _mm_loadu_si128((const __m128i *)q8); q8 += 16;
  8213. const __m128i q8_4_0 = _mm_loadu_si128((const __m128i *)q8); q8 += 16;
  8214. const __m128i q8_4_1 = _mm_loadu_si128((const __m128i *)q8); q8 += 16;
  8215. const __m128i q2_1_0 = _mm_set_epi64x(iq2xs_grid[gindex[1]], iq2xs_grid[gindex[0]]);
  8216. const __m128i q2_1_1 = _mm_set_epi64x(iq2xs_grid[gindex[3]], iq2xs_grid[gindex[2]]);
  8217. const __m128i q2_2_0 = _mm_set_epi64x(iq2xs_grid[gindex[5]], iq2xs_grid[gindex[4]]);
  8218. const __m128i q2_2_1 = _mm_set_epi64x(iq2xs_grid[gindex[7]], iq2xs_grid[gindex[6]]);
  8219. const __m128i q2_3_0 = _mm_set_epi64x(iq2xs_grid[gindex[9]], iq2xs_grid[gindex[8]]);
  8220. const __m128i q2_3_1 = _mm_set_epi64x(iq2xs_grid[gindex[11]], iq2xs_grid[gindex[10]]);
  8221. const __m128i q2_4_0 = _mm_set_epi64x(iq2xs_grid[gindex[13]], iq2xs_grid[gindex[12]]);
  8222. const __m128i q2_4_1 = _mm_set_epi64x(iq2xs_grid[gindex[15]], iq2xs_grid[gindex[14]]);
  8223. // AVX2 full_signs_1 is full_sign_bits_0 here
  8224. // AVX2 full_signs_2 is full_sign_bits_1 here
  8225. __m128i signs_0, signs_1;
  8226. signs_0 = _mm_shuffle_epi8(full_sign_bits_0, block_sign_shuffle_1_0);
  8227. signs_1 = _mm_shuffle_epi8(full_sign_bits_0, block_sign_shuffle_1_1);
  8228. signs_0 = _mm_cmpeq_epi8(_mm_and_si128(signs_0, bit_selector_mask_0), bit_selector_mask_0);
  8229. signs_1 = _mm_cmpeq_epi8(_mm_and_si128(signs_1, bit_selector_mask_1), bit_selector_mask_1);
  8230. const __m128i q8s_1_0 = _mm_sign_epi8(q8_1_0, _mm_or_si128(signs_0, mone));
  8231. const __m128i q8s_1_1 = _mm_sign_epi8(q8_1_1, _mm_or_si128(signs_1, mone));
  8232. signs_0 = _mm_shuffle_epi8(full_sign_bits_0, block_sign_shuffle_2_0);
  8233. signs_1 = _mm_shuffle_epi8(full_sign_bits_0, block_sign_shuffle_2_1);
  8234. signs_0 = _mm_cmpeq_epi8(_mm_and_si128(signs_0, bit_selector_mask_0), bit_selector_mask_0);
  8235. signs_1 = _mm_cmpeq_epi8(_mm_and_si128(signs_1, bit_selector_mask_1), bit_selector_mask_1);
  8236. const __m128i q8s_2_0 = _mm_sign_epi8(q8_2_0, _mm_or_si128(signs_0, mone));
  8237. const __m128i q8s_2_1 = _mm_sign_epi8(q8_2_1, _mm_or_si128(signs_1, mone));
  8238. signs_0 = _mm_shuffle_epi8(full_sign_bits_1, block_sign_shuffle_1_0);
  8239. signs_1 = _mm_shuffle_epi8(full_sign_bits_1, block_sign_shuffle_1_1);
  8240. signs_0 = _mm_cmpeq_epi8(_mm_and_si128(signs_0, bit_selector_mask_0), bit_selector_mask_0);
  8241. signs_1 = _mm_cmpeq_epi8(_mm_and_si128(signs_1, bit_selector_mask_1), bit_selector_mask_1);
  8242. const __m128i q8s_3_0 = _mm_sign_epi8(q8_3_0, _mm_or_si128(signs_0, mone));
  8243. const __m128i q8s_3_1 = _mm_sign_epi8(q8_3_1, _mm_or_si128(signs_1, mone));
  8244. signs_0 = _mm_shuffle_epi8(full_sign_bits_1, block_sign_shuffle_2_0);
  8245. signs_1 = _mm_shuffle_epi8(full_sign_bits_1, block_sign_shuffle_2_1);
  8246. signs_0 = _mm_cmpeq_epi8(_mm_and_si128(signs_0, bit_selector_mask_0), bit_selector_mask_0);
  8247. signs_1 = _mm_cmpeq_epi8(_mm_and_si128(signs_1, bit_selector_mask_1), bit_selector_mask_1);
  8248. const __m128i q8s_4_0 = _mm_sign_epi8(q8_4_0, _mm_or_si128(signs_0, mone));
  8249. const __m128i q8s_4_1 = _mm_sign_epi8(q8_4_1, _mm_or_si128(signs_1, mone));
  8250. const __m128i dot1_0 = _mm_maddubs_epi16(q2_1_0, q8s_1_0);
  8251. const __m128i dot1_1 = _mm_maddubs_epi16(q2_1_1, q8s_1_1);
  8252. const __m128i dot2_0 = _mm_maddubs_epi16(q2_2_0, q8s_2_0);
  8253. const __m128i dot2_1 = _mm_maddubs_epi16(q2_2_1, q8s_2_1);
  8254. const __m128i dot3_0 = _mm_maddubs_epi16(q2_3_0, q8s_3_0);
  8255. const __m128i dot3_1 = _mm_maddubs_epi16(q2_3_1, q8s_3_1);
  8256. const __m128i dot4_0 = _mm_maddubs_epi16(q2_4_0, q8s_4_0);
  8257. const __m128i dot4_1 = _mm_maddubs_epi16(q2_4_1, q8s_4_1);
  8258. __m128i sc_tmp = _mm_shuffle_epi8(scales, get_scale_shuffle(ib32+0));
  8259. const __m128i sc1_0 = _mm_cvtepi8_epi16(sc_tmp);
  8260. const __m128i sc1_1 = _mm_cvtepi8_epi16(_mm_srli_si128(sc_tmp, 8));
  8261. sc_tmp = _mm_shuffle_epi8(scales, get_scale_shuffle(ib32+1));
  8262. const __m128i sc2_0 = _mm_cvtepi8_epi16(sc_tmp);
  8263. const __m128i sc2_1 = _mm_cvtepi8_epi16(_mm_srli_si128(sc_tmp, 8));
  8264. sc_tmp = _mm_shuffle_epi8(scales, get_scale_shuffle(ib32+2));
  8265. const __m128i sc3_0 = _mm_cvtepi8_epi16(sc_tmp);
  8266. const __m128i sc3_1 = _mm_cvtepi8_epi16(_mm_srli_si128(sc_tmp, 8));
  8267. sc_tmp = _mm_shuffle_epi8(scales, get_scale_shuffle(ib32+3));
  8268. const __m128i sc4_0 = _mm_cvtepi8_epi16(sc_tmp);
  8269. const __m128i sc4_1 = _mm_cvtepi8_epi16(_mm_srli_si128(sc_tmp, 8));
  8270. sumi1_0 = _mm_add_epi32(sumi1_0, _mm_madd_epi16(dot1_0, sc1_0));
  8271. sumi1_1 = _mm_add_epi32(sumi1_1, _mm_madd_epi16(dot1_1, sc1_1));
  8272. sumi2_0 = _mm_add_epi32(sumi2_0, _mm_madd_epi16(dot2_0, sc2_0));
  8273. sumi2_1 = _mm_add_epi32(sumi2_1, _mm_madd_epi16(dot2_1, sc2_1));
  8274. sumi1_0 = _mm_add_epi32(sumi1_0, _mm_madd_epi16(dot3_0, sc3_0));
  8275. sumi1_1 = _mm_add_epi32(sumi1_1, _mm_madd_epi16(dot3_1, sc3_1));
  8276. sumi2_0 = _mm_add_epi32(sumi2_0, _mm_madd_epi16(dot4_0, sc4_0));
  8277. sumi2_1 = _mm_add_epi32(sumi2_1, _mm_madd_epi16(dot4_1, sc4_1));
  8278. }
  8279. accumf = _mm256_add_ps(_mm256_mul_ps(_mm256_set1_ps(d), _mm256_cvtepi32_ps(MM256_SET_M128I(_mm_add_epi32(sumi1_1, sumi2_1), _mm_add_epi32(sumi1_0, sumi2_0)))), accumf);
  8280. }
  8281. *s = 0.125f * hsum_float_8(accumf);
  8282. #elif defined(__loongarch_asx)
  8283. const __m256i mone = __lasx_xvreplgr2vr_b(1);
  8284. static const char block_sign_shuffle_mask_1[32] = {
  8285. 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x02, 0x02, 0x02, 0x02, 0x02, 0x02, 0x02, 0x02,
  8286. 0x04, 0x04, 0x04, 0x04, 0x04, 0x04, 0x04, 0x04, 0x06, 0x06, 0x06, 0x06, 0x06, 0x06, 0x06, 0x06,
  8287. };
  8288. static const char block_sign_shuffle_mask_2[32] = {
  8289. 0x08, 0x08, 0x08, 0x08, 0x08, 0x08, 0x08, 0x08, 0x0a, 0x0a, 0x0a, 0x0a, 0x0a, 0x0a, 0x0a, 0x0a,
  8290. 0x0c, 0x0c, 0x0c, 0x0c, 0x0c, 0x0c, 0x0c, 0x0c, 0x0e, 0x0e, 0x0e, 0x0e, 0x0e, 0x0e, 0x0e, 0x0e,
  8291. };
  8292. static const uint8_t bit_selector_mask_bytes[32] = {
  8293. 0x01, 0x02, 0x04, 0x08, 0x10, 0x20, 0x40, 0x80, 0x01, 0x02, 0x04, 0x08, 0x10, 0x20, 0x40, 0x80,
  8294. 0x01, 0x02, 0x04, 0x08, 0x10, 0x20, 0x40, 0x80, 0x01, 0x02, 0x04, 0x08, 0x10, 0x20, 0x40, 0x80,
  8295. };
  8296. const __m256i bit_selector_mask = __lasx_xvld((const __m256i*)bit_selector_mask_bytes, 0);
  8297. const __m256i block_sign_shuffle_1 = __lasx_xvld((const __m256i*)block_sign_shuffle_mask_1, 0);
  8298. const __m256i block_sign_shuffle_2 = __lasx_xvld((const __m256i*)block_sign_shuffle_mask_2, 0);
  8299. static const uint8_t k_bit_helper[32] = {
  8300. 0x00, 0x80, 0x80, 0x00, 0x80, 0x00, 0x00, 0x80, 0x80, 0x00, 0x00, 0x80, 0x00, 0x80, 0x80, 0x00,
  8301. 0x00, 0x80, 0x80, 0x00, 0x80, 0x00, 0x00, 0x80, 0x80, 0x00, 0x00, 0x80, 0x00, 0x80, 0x80, 0x00,
  8302. };
  8303. const __m256i bit_helper = __lasx_xvld((const __m256i*)k_bit_helper, 0);
  8304. const __m256i m511 = __lasx_xvreplgr2vr_h(511);
  8305. const __m128i m4 = __lsx_vreplgr2vr_b(0xf);
  8306. const __m128i m1 = __lsx_vreplgr2vr_b(1);
  8307. uint64_t aux64;
  8308. // somewhat hacky, but gives a significant boost in performance
  8309. __m256i aux_gindex;
  8310. const uint16_t * gindex = (const uint16_t *)&aux_gindex;
  8311. __m256 accumf = (__m256)__lasx_xvldi(0);
  8312. for (int i = 0; i < nb; ++i) {
  8313. const float d = GGML_FP16_TO_FP32(x[i].d) * y[i].d;
  8314. const uint16_t * restrict q2 = x[i].qs;
  8315. const int8_t * restrict q8 = y[i].qs;
  8316. memcpy(&aux64, x[i].scales, 8);
  8317. __m128i stmp = __lsx_vreplgr2vr_d(aux64);
  8318. stmp = __lsx_vilvl_b( __lsx_vand_v(__lsx_vsrli_h(stmp, 4), m4), __lsx_vand_v(stmp, m4));
  8319. const __m128i scales = __lsx_vadd_b(__lsx_vslli_h(stmp, 1), m1);
  8320. __m256i sumi1 = __lasx_xvldi(0);
  8321. __m256i sumi2 = __lasx_xvldi(0);
  8322. for (int ib32 = 0; ib32 < QK_K/32; ib32 += 4) {
  8323. const __m256i q2_data = __lasx_xvld((const __m256i*)q2, 0); q2 += 16;
  8324. aux_gindex = __lasx_xvand_v(q2_data, m511);
  8325. const __m256i partial_sign_bits = __lasx_xvsrli_h(q2_data, 9);
  8326. const __m256i partial_sign_bits_upper = __lasx_xvsrli_h(q2_data, 13);
  8327. const __m256i partial_sign_bits_for_counting = __lasx_xvxor_v(partial_sign_bits, partial_sign_bits_upper);
  8328. const __m256i odd_bits = lasx_shuffle_b(bit_helper, partial_sign_bits_for_counting);
  8329. const __m256i full_sign_bits = __lasx_xvor_v(partial_sign_bits, odd_bits);
  8330. const __m256i q8_1 = __lasx_xvld((const __m256i *)q8, 0); q8 += 32;
  8331. const __m256i q8_2 = __lasx_xvld((const __m256i *)q8, 0); q8 += 32;
  8332. const __m256i q8_3 = __lasx_xvld((const __m256i *)q8, 0); q8 += 32;
  8333. const __m256i q8_4 = __lasx_xvld((const __m256i *)q8, 0); q8 += 32;
  8334. const __m256i q2_1 = lasx_set_d(iq2xs_grid[gindex[ 3]], iq2xs_grid[gindex[ 2]],
  8335. iq2xs_grid[gindex[ 1]], iq2xs_grid[gindex[ 0]]);
  8336. const __m256i q2_2 = lasx_set_d(iq2xs_grid[gindex[ 7]], iq2xs_grid[gindex[ 6]],
  8337. iq2xs_grid[gindex[ 5]], iq2xs_grid[gindex[ 4]]);
  8338. const __m256i q2_3 = lasx_set_d(iq2xs_grid[gindex[11]], iq2xs_grid[gindex[10]],
  8339. iq2xs_grid[gindex[ 9]], iq2xs_grid[gindex[ 8]]);
  8340. const __m256i q2_4 = lasx_set_d(iq2xs_grid[gindex[15]], iq2xs_grid[gindex[14]],
  8341. iq2xs_grid[gindex[13]], iq2xs_grid[gindex[12]]);
  8342. const __m128i full_signs_l = lasx_extracti128(full_sign_bits, 0);
  8343. const __m128i full_signs_h = lasx_extracti128(full_sign_bits, 1);
  8344. const __m256i full_signs_1 = lasx_insertf128(full_signs_l, full_signs_l);
  8345. const __m256i full_signs_2 = lasx_insertf128(full_signs_h, full_signs_h);
  8346. __m256i signs;
  8347. signs = lasx_shuffle_b(full_signs_1, block_sign_shuffle_1);
  8348. signs = __lasx_xvseq_b(__lasx_xvand_v(signs, bit_selector_mask), bit_selector_mask);
  8349. const __m256i q8s_1 = __lasx_xvsigncov_b(__lasx_xvor_v(signs, mone), q8_1);
  8350. signs = lasx_shuffle_b(full_signs_1, block_sign_shuffle_2);
  8351. signs = __lasx_xvseq_b(__lasx_xvand_v(signs, bit_selector_mask), bit_selector_mask);
  8352. const __m256i q8s_2 = __lasx_xvsigncov_b(__lasx_xvor_v(signs, mone), q8_2);
  8353. signs = lasx_shuffle_b(full_signs_2, block_sign_shuffle_1);
  8354. signs = __lasx_xvseq_b(__lasx_xvand_v(signs, bit_selector_mask), bit_selector_mask);
  8355. const __m256i q8s_3 = __lasx_xvsigncov_b(__lasx_xvor_v(signs, mone), q8_3);
  8356. signs = lasx_shuffle_b(full_signs_2, block_sign_shuffle_2);
  8357. signs = __lasx_xvseq_b(__lasx_xvand_v(signs, bit_selector_mask), bit_selector_mask);
  8358. const __m256i q8s_4 = __lasx_xvsigncov_b(__lasx_xvor_v(signs, mone), q8_4);
  8359. const __m256i dot1 = lasx_maddubs_h(q2_1, q8s_1);
  8360. const __m256i dot2 = lasx_maddubs_h(q2_2, q8s_2);
  8361. const __m256i dot3 = lasx_maddubs_h(q2_3, q8s_3);
  8362. const __m256i dot4 = lasx_maddubs_h(q2_4, q8s_4);
  8363. const __m256i sc1 = lasx_ext8_16(lsx_shuffle_b(scales, get_scale_shuffle(ib32+0)));
  8364. const __m256i sc2 = lasx_ext8_16(lsx_shuffle_b(scales, get_scale_shuffle(ib32+1)));
  8365. const __m256i sc3 = lasx_ext8_16(lsx_shuffle_b(scales, get_scale_shuffle(ib32+2)));
  8366. const __m256i sc4 = lasx_ext8_16(lsx_shuffle_b(scales, get_scale_shuffle(ib32+3)));
  8367. sumi1 = __lasx_xvadd_w(sumi1, lasx_madd_h(dot1, sc1));
  8368. sumi2 = __lasx_xvadd_w(sumi2, lasx_madd_h(dot2, sc2));
  8369. sumi1 = __lasx_xvadd_w(sumi1, lasx_madd_h(dot3, sc3));
  8370. sumi2 = __lasx_xvadd_w(sumi2, lasx_madd_h(dot4, sc4));
  8371. }
  8372. accumf = __lasx_xvfmadd_s(__lasx_xvreplfr2vr_s(d), __lasx_xvffint_s_w(__lasx_xvadd_w(sumi1, sumi2)), accumf);
  8373. }
  8374. *s = 0.125f * hsum_float_8(accumf);
  8375. #elif defined(__POWER9_VECTOR__)
  8376. const vector int v0 = vec_splats((int32_t)0);
  8377. vector float vsumf0 = vec_splats(0.0f);
  8378. vector float vsumf1 = vec_splats(0.0f);
  8379. vector float vsumf2 = vec_splats(0.0f);
  8380. vector float vsumf3 = vec_splats(0.0f);
  8381. const uint64_t * signs64 = (const uint64_t *)keven_signs_q2xs;
  8382. for (int i = 0; i < nb; ++i) {
  8383. vector float vxd = vec_splats(GGML_FP16_TO_FP32(x[i].d));
  8384. vector float vyd = vec_splats(y[i].d);
  8385. vector float vd = vec_mul(vxd, vyd);
  8386. vector signed int vsumi0 = v0;
  8387. vector signed int vsumi1 = v0;
  8388. vector signed int vsumi2 = v0;
  8389. vector signed int vsumi3 = v0;
  8390. const uint16_t * restrict q2 = x[i].qs;
  8391. const uint8_t * restrict sc = x[i].scales;
  8392. const int8_t * restrict q8 = y[i].qs;
  8393. for (int j = 0; j < QK_K/64; ++j) {
  8394. __builtin_prefetch(q2, 0, 1);
  8395. __builtin_prefetch(q8, 0, 1);
  8396. vector signed long long aux64x2_0 = {*(const int64_t *)(iq2xs_grid + (q2[0] & 511)), *(const int64_t *)(iq2xs_grid + (q2[1] & 511))};
  8397. vector signed long long aux64x2_1 = {*(const int64_t *)(iq2xs_grid + (q2[2] & 511)), *(const int64_t *)(iq2xs_grid + (q2[3] & 511))};
  8398. vector signed long long aux64x2_2 = {*(const int64_t *)(iq2xs_grid + (q2[4] & 511)), *(const int64_t *)(iq2xs_grid + (q2[5] & 511))};
  8399. vector signed long long aux64x2_3 = {*(const int64_t *)(iq2xs_grid + (q2[6] & 511)), *(const int64_t *)(iq2xs_grid + (q2[7] & 511))};
  8400. vector signed long long vsigns0 = {*(const int64_t *)(signs64 + ((q2[0] >> 9))), *(const int64_t *)(signs64 + ((q2[1] >> 9)))};
  8401. vector signed long long vsigns1 = {*(const int64_t *)(signs64 + ((q2[2] >> 9))), *(const int64_t *)(signs64 + ((q2[3] >> 9)))};
  8402. vector signed long long vsigns2 = {*(const int64_t *)(signs64 + ((q2[4] >> 9))), *(const int64_t *)(signs64 + ((q2[5] >> 9)))};
  8403. vector signed long long vsigns3 = {*(const int64_t *)(signs64 + ((q2[6] >> 9))), *(const int64_t *)(signs64 + ((q2[7] >> 9)))};
  8404. q2 += 8;
  8405. vector signed char q2x0 = (vector signed char)vec_mul((vector signed char)vsigns0, (vector signed char)aux64x2_0);
  8406. vector signed char q2x1 = (vector signed char)vec_mul((vector signed char)vsigns1, (vector signed char)aux64x2_1);
  8407. vector signed char q2x2 = (vector signed char)vec_mul((vector signed char)vsigns2, (vector signed char)aux64x2_2);
  8408. vector signed char q2x3 = (vector signed char)vec_mul((vector signed char)vsigns3, (vector signed char)aux64x2_3);
  8409. vector signed char q8y0 = vec_xl( 0, q8);
  8410. vector signed char q8y1 = vec_xl(16, q8);
  8411. vector signed char q8y2 = vec_xl(32, q8);
  8412. vector signed char q8y3 = vec_xl(48, q8);
  8413. q8 += 64;
  8414. vector signed short qv0 = vec_add(vec_mule(q2x0, q8y0), vec_mulo(q2x0, q8y0));
  8415. vector signed short qv1 = vec_add(vec_mule(q2x1, q8y1), vec_mulo(q2x1, q8y1));
  8416. vector signed short qv2 = vec_add(vec_mule(q2x2, q8y2), vec_mulo(q2x2, q8y2));
  8417. vector signed short qv3 = vec_add(vec_mule(q2x3, q8y3), vec_mulo(q2x3, q8y3));
  8418. const uint16_t ls0 = (uint16_t)(sc[0] & 0xf);
  8419. const uint16_t ls1 = (uint16_t)(sc[0] >> 4);
  8420. const uint16_t ls2 = (uint16_t)(sc[1] & 0xf);
  8421. const uint16_t ls3 = (uint16_t)(sc[1] >> 4);
  8422. sc += 2;
  8423. vector signed short vscales0 = vec_splats((int16_t)(2*ls0+1));
  8424. vector signed short vscales1 = vec_splats((int16_t)(2*ls1+1));
  8425. vector signed short vscales2 = vec_splats((int16_t)(2*ls2+1));
  8426. vector signed short vscales3 = vec_splats((int16_t)(2*ls3+1));
  8427. vsumi0 = vec_msum(qv0, vscales0, vsumi0);
  8428. vsumi1 = vec_msum(qv1, vscales1, vsumi1);
  8429. vsumi2 = vec_msum(qv2, vscales2, vsumi2);
  8430. vsumi3 = vec_msum(qv3, vscales3, vsumi3);
  8431. }
  8432. vsumf0 = vec_madd(vec_ctf(vsumi0, 0), vd, vsumf0);
  8433. vsumf1 = vec_madd(vec_ctf(vsumi1, 0), vd, vsumf1);
  8434. vsumf2 = vec_madd(vec_ctf(vsumi2, 0), vd, vsumf2);
  8435. vsumf3 = vec_madd(vec_ctf(vsumi3, 0), vd, vsumf3);
  8436. }
  8437. vsumf0 = vec_add(vsumf0, vsumf2);
  8438. vsumf1 = vec_add(vsumf1, vsumf3);
  8439. vsumf0 = vec_add(vsumf0, vsumf1);
  8440. vsumf0 = vec_add(vsumf0, vec_sld(vsumf0, vsumf0, 4));
  8441. vsumf0 = vec_add(vsumf0, vec_sld(vsumf0, vsumf0, 8));
  8442. *s = 0.125f * vec_extract(vsumf0, 0);
  8443. #else
  8444. float sumf = 0.f;
  8445. for (int i = 0; i < nb; ++i) {
  8446. const float d = GGML_FP16_TO_FP32(x[i].d) * y[i].d;
  8447. const uint16_t * restrict q2 = x[i].qs;
  8448. const uint8_t * restrict sc = x[i].scales;
  8449. const int8_t * restrict q8 = y[i].qs;
  8450. int32_t bsum = 0;
  8451. for (int ib32 = 0; ib32 < QK_K/32; ++ib32) {
  8452. const uint16_t ls1 = 2*(sc[ib32] & 0xf) + 1;
  8453. const uint16_t ls2 = 2*(sc[ib32] >> 4) + 1;
  8454. int32_t sumi = 0;
  8455. for (int l = 0; l < 2; ++l) {
  8456. const uint8_t * grid = (const uint8_t *)(iq2xs_grid + (q2[l] & 511));
  8457. const uint8_t signs = ksigns_iq2xs[q2[l] >> 9];
  8458. for (int j = 0; j < 8; ++j) {
  8459. sumi += grid[j] * q8[j] * (signs & kmask_iq2xs[j] ? -1 : 1);
  8460. }
  8461. q8 += 8;
  8462. }
  8463. bsum += sumi * ls1;
  8464. sumi = 0;
  8465. for (int l = 2; l < 4; ++l) {
  8466. const uint8_t * grid = (const uint8_t *)(iq2xs_grid + (q2[l] & 511));
  8467. const uint8_t signs = ksigns_iq2xs[q2[l] >> 9];
  8468. for (int j = 0; j < 8; ++j) {
  8469. sumi += grid[j] * q8[j] * (signs & kmask_iq2xs[j] ? -1 : 1);
  8470. }
  8471. q8 += 8;
  8472. }
  8473. bsum += sumi * ls2;
  8474. q2 += 4;
  8475. }
  8476. sumf += d * bsum;
  8477. }
  8478. *s = 0.125f * sumf;
  8479. #endif
  8480. }
  8481. void ggml_vec_dot_iq2_s_q8_K(int n, float * restrict s, size_t bs, const void * restrict vx, size_t bx, const void * restrict vy, size_t by, int nrc) {
  8482. assert(n % QK_K == 0);
  8483. assert(nrc == 1);
  8484. UNUSED(nrc);
  8485. UNUSED(bx);
  8486. UNUSED(by);
  8487. UNUSED(bs);
  8488. const block_iq2_s * restrict x = vx;
  8489. const block_q8_K * restrict y = vy;
  8490. const int nb = n / QK_K;
  8491. #if defined(__ARM_NEON)
  8492. static const uint8_t k_mask1[32] = {0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x01, 0x01, 0x01, 0x01, 0x01, 0x01, 0x01, 0x01,
  8493. 0x02, 0x02, 0x02, 0x02, 0x02, 0x02, 0x02, 0x02, 0x03, 0x03, 0x03, 0x03, 0x03, 0x03, 0x03, 0x03
  8494. };
  8495. static const uint8_t k_mask2[16] = {0x01, 0x02, 0x04, 0x08, 0x10, 0x20, 0x40, 0x80, 0x01, 0x02, 0x04, 0x08, 0x10, 0x20, 0x40, 0x80,};
  8496. const ggml_uint8x16x2_t mask1 = ggml_vld1q_u8_x2(k_mask1);
  8497. const uint8x16_t mask2 = vld1q_u8(k_mask2);
  8498. const uint8x16_t m1 = vdupq_n_u8(1);
  8499. const int32x4_t vzero = vdupq_n_s32(0);
  8500. uint8x16x2_t vs;
  8501. ggml_int8x16x4_t q2s;
  8502. ggml_int8x16x4_t q8b;
  8503. float sumf = 0;
  8504. for (int i = 0; i < nb; ++i) {
  8505. const float d = GGML_FP16_TO_FP32(x[i].d) * y[i].d;
  8506. const uint8_t * restrict qs = x[i].qs;
  8507. const uint8_t * restrict qh = x[i].qh;
  8508. const uint16_t * restrict signs = (const uint16_t *)(x[i].qs + QK_K/8);
  8509. const int8_t * restrict q8 = y[i].qs;
  8510. int sumi1 = 0, sumi2 = 0;
  8511. for (int ib32 = 0; ib32 < QK_K/32; ib32 += 2) {
  8512. q8b = ggml_vld1q_s8_x4(q8); q8 += 64;
  8513. q2s.val[0] = vcombine_s8(vld1_s8((const int8_t *)(iq2s_grid + (qs[0] | ((qh[ib32+0] << 8) & 0x300)))),
  8514. vld1_s8((const int8_t *)(iq2s_grid + (qs[1] | ((qh[ib32+0] << 6) & 0x300)))));
  8515. q2s.val[1] = vcombine_s8(vld1_s8((const int8_t *)(iq2s_grid + (qs[2] | ((qh[ib32+0] << 4) & 0x300)))),
  8516. vld1_s8((const int8_t *)(iq2s_grid + (qs[3] | ((qh[ib32+0] << 2) & 0x300)))));
  8517. q2s.val[2] = vcombine_s8(vld1_s8((const int8_t *)(iq2s_grid + (qs[4] | ((qh[ib32+1] << 8) & 0x300)))),
  8518. vld1_s8((const int8_t *)(iq2s_grid + (qs[5] | ((qh[ib32+1] << 6) & 0x300)))));
  8519. q2s.val[3] = vcombine_s8(vld1_s8((const int8_t *)(iq2s_grid + (qs[6] | ((qh[ib32+1] << 4) & 0x300)))),
  8520. vld1_s8((const int8_t *)(iq2s_grid + (qs[7] | ((qh[ib32+1] << 2) & 0x300)))));
  8521. qs += 8;
  8522. vs.val[0] = vreinterpretq_u8_u32(vdupq_n_u32(signs[0] | ((uint32_t) signs[1] << 16)));
  8523. vs.val[1] = vandq_u8(ggml_vqtbl1q_u8(vs.val[0], mask1.val[1]), mask2);
  8524. vs.val[0] = vandq_u8(ggml_vqtbl1q_u8(vs.val[0], mask1.val[0]), mask2);
  8525. vs.val[0] = vceqq_u8(vs.val[0], mask2);
  8526. vs.val[1] = vceqq_u8(vs.val[1], mask2);
  8527. q2s.val[0] = vmulq_s8(vreinterpretq_s8_u8(vorrq_u8(vs.val[0], m1)), q2s.val[0]);
  8528. q2s.val[1] = vmulq_s8(vreinterpretq_s8_u8(vorrq_u8(vs.val[1], m1)), q2s.val[1]);
  8529. vs.val[0] = vreinterpretq_u8_u32(vdupq_n_u32(signs[2] | ((uint32_t) signs[3] << 16)));
  8530. vs.val[1] = vandq_u8(ggml_vqtbl1q_u8(vs.val[0], mask1.val[1]), mask2);
  8531. vs.val[0] = vandq_u8(ggml_vqtbl1q_u8(vs.val[0], mask1.val[0]), mask2);
  8532. vs.val[0] = vceqq_u8(vs.val[0], mask2);
  8533. vs.val[1] = vceqq_u8(vs.val[1], mask2);
  8534. signs += 4;
  8535. q2s.val[2] = vmulq_s8(vreinterpretq_s8_u8(vorrq_u8(vs.val[0], m1)), q2s.val[2]);
  8536. q2s.val[3] = vmulq_s8(vreinterpretq_s8_u8(vorrq_u8(vs.val[1], m1)), q2s.val[3]);
  8537. const int32x4_t p1 = ggml_vdotq_s32(vzero, q2s.val[0], q8b.val[0]);
  8538. const int32x4_t p2 = ggml_vdotq_s32(vzero, q2s.val[1], q8b.val[1]);
  8539. const int32x4_t p3 = ggml_vdotq_s32(vzero, q2s.val[2], q8b.val[2]);
  8540. const int32x4_t p4 = ggml_vdotq_s32(vzero, q2s.val[3], q8b.val[3]);
  8541. sumi1 += vaddvq_s32(p1) * (1 + 2*(x[i].scales[ib32+0] & 0xf));
  8542. sumi2 += vaddvq_s32(p2) * (1 + 2*(x[i].scales[ib32+0] >> 4));
  8543. sumi1 += vaddvq_s32(p3) * (1 + 2*(x[i].scales[ib32+1] & 0xf));
  8544. sumi2 += vaddvq_s32(p4) * (1 + 2*(x[i].scales[ib32+1] >> 4));
  8545. }
  8546. sumf += d*(sumi1 + sumi2);
  8547. }
  8548. *s = 0.125f * sumf;
  8549. #elif defined(__AVX2__)
  8550. static const uint8_t k_mask1[32] = {0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x01, 0x01, 0x01, 0x01, 0x01, 0x01, 0x01, 0x01,
  8551. 0x02, 0x02, 0x02, 0x02, 0x02, 0x02, 0x02, 0x02, 0x03, 0x03, 0x03, 0x03, 0x03, 0x03, 0x03, 0x03
  8552. };
  8553. static const uint8_t k_mask2[32] = {0x01, 0x02, 0x04, 0x08, 0x10, 0x20, 0x40, 0x80, 0x01, 0x02, 0x04, 0x08, 0x10, 0x20, 0x40, 0x80,
  8554. 0x01, 0x02, 0x04, 0x08, 0x10, 0x20, 0x40, 0x80, 0x01, 0x02, 0x04, 0x08, 0x10, 0x20, 0x40, 0x80,
  8555. };
  8556. const __m128i m4 = _mm_set1_epi8(0xf);
  8557. const __m128i m1 = _mm_set1_epi8(1);
  8558. const __m256i mask1 = _mm256_loadu_si256((const __m256i*)k_mask1);
  8559. const __m256i mask2 = _mm256_loadu_si256((const __m256i*)k_mask2);
  8560. uint64_t aux64;
  8561. __m256 accumf = _mm256_setzero_ps();
  8562. for (int i = 0; i < nb; ++i) {
  8563. const float d = GGML_FP16_TO_FP32(x[i].d) * y[i].d;
  8564. const uint8_t * restrict qs = x[i].qs;
  8565. const uint8_t * restrict qh = x[i].qh;
  8566. const uint16_t * restrict signs = (const uint16_t *)(x[i].qs + QK_K/8);
  8567. const int8_t * restrict q8 = y[i].qs;
  8568. memcpy(&aux64, x[i].scales, 8);
  8569. const __m128i scales8 = _mm_add_epi8(_mm_slli_epi16(_mm_and_si128(_mm_set_epi64x(aux64 >> 4, aux64), m4), 1), m1);
  8570. const __m256i scales16 = _mm256_cvtepi8_epi16(scales8); // 0 2 4 6 8 10 12 14 1 3 5 7 9 11 13 15
  8571. __m256i sumi1 = _mm256_setzero_si256();
  8572. __m256i sumi2 = _mm256_setzero_si256();
  8573. for (int ib32 = 0; ib32 < QK_K/32; ib32 += 2) {
  8574. const __m256i q8_1 = _mm256_loadu_si256((const __m256i *)q8); q8 += 32;
  8575. const __m256i q8_2 = _mm256_loadu_si256((const __m256i *)q8); q8 += 32;
  8576. const __m256i q2_1 = _mm256_set_epi64x(iq2s_grid[qs[3] | ((qh[ib32+0] << 2) & 0x300)],
  8577. iq2s_grid[qs[2] | ((qh[ib32+0] << 4) & 0x300)],
  8578. iq2s_grid[qs[1] | ((qh[ib32+0] << 6) & 0x300)],
  8579. iq2s_grid[qs[0] | ((qh[ib32+0] << 8) & 0x300)]);
  8580. const __m256i q2_2 = _mm256_set_epi64x(iq2s_grid[qs[7] | ((qh[ib32+1] << 2) & 0x300)],
  8581. iq2s_grid[qs[6] | ((qh[ib32+1] << 4) & 0x300)],
  8582. iq2s_grid[qs[5] | ((qh[ib32+1] << 6) & 0x300)],
  8583. iq2s_grid[qs[4] | ((qh[ib32+1] << 8) & 0x300)]);
  8584. qs += 8;
  8585. __m256i aux256 = _mm256_set1_epi32(signs[0] | ((uint32_t) signs[1] << 16));
  8586. aux256 = _mm256_and_si256(_mm256_shuffle_epi8(aux256,mask1), mask2);
  8587. const __m256i s2_1 = _mm256_cmpeq_epi8(aux256, mask2);
  8588. const __m256i q8s_1 = _mm256_sub_epi8(_mm256_xor_si256(s2_1, q8_1), s2_1);
  8589. aux256 = _mm256_set1_epi32(signs[2] | ((uint32_t) signs[3] << 16));
  8590. aux256 = _mm256_and_si256(_mm256_shuffle_epi8(aux256,mask1), mask2);
  8591. const __m256i s2_2 = _mm256_cmpeq_epi8(aux256, mask2);
  8592. const __m256i q8s_2 = _mm256_sub_epi8(_mm256_xor_si256(s2_2, q8_2), s2_2);
  8593. signs += 4;
  8594. const __m256i dot1 = _mm256_maddubs_epi16(q2_1, q8s_1); // blocks 2*ib32+0, 2*ib32+1
  8595. const __m256i dot2 = _mm256_maddubs_epi16(q2_2, q8s_2); // blocks 2*ib32+2, 2*ib32+3
  8596. const __m256i p1 = _mm256_madd_epi16(dot1, _mm256_shuffle_epi8(scales16, get_scale_shuffle_k4(ib32+0)));
  8597. const __m256i p2 = _mm256_madd_epi16(dot2, _mm256_shuffle_epi8(scales16, get_scale_shuffle_k4(ib32+1)));
  8598. sumi1 = _mm256_add_epi32(sumi1, p1);
  8599. sumi2 = _mm256_add_epi32(sumi2, p2);
  8600. }
  8601. accumf = _mm256_fmadd_ps(_mm256_set1_ps(d), _mm256_cvtepi32_ps(_mm256_add_epi32(sumi1, sumi2)), accumf);
  8602. }
  8603. *s = 0.125f * hsum_float_8(accumf);
  8604. #elif defined(__AVX__)
  8605. static const uint8_t k_mask1[32] = {0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x01, 0x01, 0x01, 0x01, 0x01, 0x01, 0x01, 0x01,
  8606. 0x02, 0x02, 0x02, 0x02, 0x02, 0x02, 0x02, 0x02, 0x03, 0x03, 0x03, 0x03, 0x03, 0x03, 0x03, 0x03
  8607. };
  8608. static const uint8_t k_mask2[32] = {0x01, 0x02, 0x04, 0x08, 0x10, 0x20, 0x40, 0x80, 0x01, 0x02, 0x04, 0x08, 0x10, 0x20, 0x40, 0x80,
  8609. 0x01, 0x02, 0x04, 0x08, 0x10, 0x20, 0x40, 0x80, 0x01, 0x02, 0x04, 0x08, 0x10, 0x20, 0x40, 0x80,
  8610. };
  8611. const __m128i m4 = _mm_set1_epi8(0xf);
  8612. const __m128i m1 = _mm_set1_epi8(1);
  8613. const __m128i mask1_0 = _mm_loadu_si128((const __m128i*)k_mask1);
  8614. const __m128i mask1_1 = _mm_loadu_si128((const __m128i*)k_mask1 + 1);
  8615. const __m128i mask2_0 = _mm_loadu_si128((const __m128i*)k_mask2);
  8616. const __m128i mask2_1 = _mm_loadu_si128((const __m128i*)k_mask2 + 1);
  8617. uint64_t aux64;
  8618. __m256 accumf = _mm256_setzero_ps();
  8619. for (int i = 0; i < nb; ++i) {
  8620. const float d = GGML_FP16_TO_FP32(x[i].d) * y[i].d;
  8621. const uint8_t * restrict qs = x[i].qs;
  8622. const uint8_t * restrict qh = x[i].qh;
  8623. const uint16_t * restrict signs = (const uint16_t *)(x[i].qs + QK_K/8);
  8624. const int8_t * restrict q8 = y[i].qs;
  8625. memcpy(&aux64, x[i].scales, 8);
  8626. const __m128i scales8 = _mm_add_epi8(_mm_slli_epi16(_mm_and_si128(_mm_set_epi64x(aux64 >> 4, aux64), m4), 1), m1);
  8627. const __m128i scales16_0 = _mm_cvtepi8_epi16(scales8);
  8628. const __m128i scales16_1 = _mm_cvtepi8_epi16(_mm_srli_si128(scales8, 8));
  8629. __m128i sumi1_0 = _mm_setzero_si128();
  8630. __m128i sumi1_1 = _mm_setzero_si128();
  8631. __m128i sumi2_0 = _mm_setzero_si128();
  8632. __m128i sumi2_1 = _mm_setzero_si128();
  8633. for (int ib32 = 0; ib32 < QK_K/32; ib32 += 2) {
  8634. const __m128i q8_1_0 = _mm_loadu_si128((const __m128i *)q8); q8 += 16;
  8635. const __m128i q8_1_1 = _mm_loadu_si128((const __m128i *)q8); q8 += 16;
  8636. const __m128i q8_2_0 = _mm_loadu_si128((const __m128i *)q8); q8 += 16;
  8637. const __m128i q8_2_1 = _mm_loadu_si128((const __m128i *)q8); q8 += 16;
  8638. const __m128i q2_1_0 = _mm_set_epi64x(iq2s_grid[qs[1] | ((qh[ib32+0] << 6) & 0x300)],
  8639. iq2s_grid[qs[0] | ((qh[ib32+0] << 8) & 0x300)]);
  8640. const __m128i q2_1_1 = _mm_set_epi64x(iq2s_grid[qs[3] | ((qh[ib32+0] << 2) & 0x300)],
  8641. iq2s_grid[qs[2] | ((qh[ib32+0] << 4) & 0x300)]);
  8642. const __m128i q2_2_0 = _mm_set_epi64x(iq2s_grid[qs[5] | ((qh[ib32+1] << 6) & 0x300)],
  8643. iq2s_grid[qs[4] | ((qh[ib32+1] << 8) & 0x300)]);
  8644. const __m128i q2_2_1 = _mm_set_epi64x(iq2s_grid[qs[7] | ((qh[ib32+1] << 2) & 0x300)],
  8645. iq2s_grid[qs[6] | ((qh[ib32+1] << 4) & 0x300)]);
  8646. qs += 8;
  8647. __m128i aux128_0 = _mm_set1_epi32(signs[0] | ((uint32_t) signs[1] << 16));
  8648. __m128i aux128_1 = aux128_0;
  8649. aux128_0 = _mm_and_si128(_mm_shuffle_epi8(aux128_0,mask1_0), mask2_0);
  8650. aux128_1 = _mm_and_si128(_mm_shuffle_epi8(aux128_1,mask1_1), mask2_1);
  8651. const __m128i s2_1_0 = _mm_cmpeq_epi8(aux128_0, mask2_0);
  8652. const __m128i s2_1_1 = _mm_cmpeq_epi8(aux128_1, mask2_1);
  8653. const __m128i q8s_1_0 = _mm_sub_epi8(_mm_xor_si128(s2_1_0, q8_1_0), s2_1_0);
  8654. const __m128i q8s_1_1 = _mm_sub_epi8(_mm_xor_si128(s2_1_1, q8_1_1), s2_1_1);
  8655. aux128_0 = _mm_set1_epi32(signs[2] | ((uint32_t) signs[3] << 16));
  8656. aux128_1 = aux128_0;
  8657. aux128_0 = _mm_and_si128(_mm_shuffle_epi8(aux128_0,mask1_0), mask2_0);
  8658. aux128_1 = _mm_and_si128(_mm_shuffle_epi8(aux128_1,mask1_1), mask2_1);
  8659. const __m128i s2_2_0 = _mm_cmpeq_epi8(aux128_0, mask2_0);
  8660. const __m128i s2_2_1 = _mm_cmpeq_epi8(aux128_1, mask2_1);
  8661. const __m128i q8s_2_0 = _mm_sub_epi8(_mm_xor_si128(s2_2_0, q8_2_0), s2_2_0);
  8662. const __m128i q8s_2_1 = _mm_sub_epi8(_mm_xor_si128(s2_2_1, q8_2_1), s2_2_1);
  8663. signs += 4;
  8664. const __m128i dot1_0 = _mm_maddubs_epi16(q2_1_0, q8s_1_0);
  8665. const __m128i dot1_1 = _mm_maddubs_epi16(q2_1_1, q8s_1_1);
  8666. const __m128i dot2_0 = _mm_maddubs_epi16(q2_2_0, q8s_2_0);
  8667. const __m128i dot2_1 = _mm_maddubs_epi16(q2_2_1, q8s_2_1);
  8668. const __m128i p1_0 = _mm_madd_epi16(dot1_0, _mm_shuffle_epi8(scales16_0, _mm256_extractf128_si256(get_scale_shuffle_k4(ib32+0), 0)));
  8669. const __m128i p1_1 = _mm_madd_epi16(dot1_1, _mm_shuffle_epi8(scales16_1, _mm256_extractf128_si256(get_scale_shuffle_k4(ib32+0), 1)));
  8670. const __m128i p2_0 = _mm_madd_epi16(dot2_0, _mm_shuffle_epi8(scales16_0, _mm256_extractf128_si256(get_scale_shuffle_k4(ib32+1), 0)));
  8671. const __m128i p2_1 = _mm_madd_epi16(dot2_1, _mm_shuffle_epi8(scales16_1, _mm256_extractf128_si256(get_scale_shuffle_k4(ib32+1), 1)));
  8672. sumi1_0 = _mm_add_epi32(sumi1_0, p1_0);
  8673. sumi1_1 = _mm_add_epi32(sumi1_1, p1_1);
  8674. sumi2_0 = _mm_add_epi32(sumi2_0, p2_0);
  8675. sumi2_1 = _mm_add_epi32(sumi2_1, p2_1);
  8676. }
  8677. accumf = _mm256_add_ps(_mm256_mul_ps(_mm256_set1_ps(d), _mm256_cvtepi32_ps(MM256_SET_M128I(_mm_add_epi32(sumi1_1, sumi2_1), _mm_add_epi32(sumi1_0, sumi2_0)))), accumf);
  8678. }
  8679. *s = 0.125f * hsum_float_8(accumf);
  8680. #elif defined(__POWER9_VECTOR__)
  8681. static const uint8_t k_mask1[32] = {0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x01, 0x01, 0x01, 0x01, 0x01, 0x01, 0x01, 0x01,
  8682. 0x02, 0x02, 0x02, 0x02, 0x02, 0x02, 0x02, 0x02, 0x03, 0x03, 0x03, 0x03, 0x03, 0x03, 0x03, 0x03
  8683. };
  8684. static const uint8_t k_mask2[16] = {0x01, 0x02, 0x04, 0x08, 0x10, 0x20, 0x40, 0x80, 0x01, 0x02, 0x04, 0x08, 0x10, 0x20, 0x40, 0x80,};
  8685. const vector int v0 = vec_splats((int32_t)0);
  8686. vector float vsumf0 = vec_splats(0.0f);
  8687. vector float vsumf1 = vec_splats(0.0f);
  8688. vector float vsumf2 = vec_splats(0.0f);
  8689. vector float vsumf3 = vec_splats(0.0f);
  8690. const vector unsigned char mask0 = vec_xl( 0, k_mask1);
  8691. const vector unsigned char mask1 = vec_xl(16, k_mask1);
  8692. const vector signed char mask2 = (vector signed char)vec_xl( 0, k_mask2);
  8693. for (int i = 0; i < nb; ++i) {
  8694. vector float vxd = vec_splats(GGML_FP16_TO_FP32(x[i].d));
  8695. vector float vyd = vec_splats(y[i].d);
  8696. vector float vd = vec_mul(vxd, vyd);
  8697. vector signed int vsumi0 = v0;
  8698. vector signed int vsumi1 = v0;
  8699. vector signed int vsumi2 = v0;
  8700. vector signed int vsumi3 = v0;
  8701. const uint8_t * restrict q2 = x[i].qs;
  8702. const uint8_t * restrict qh = x[i].qh;
  8703. const uint16_t * restrict signs = (const uint16_t *)(x[i].qs + QK_K/8);
  8704. const uint8_t * restrict sc = x[i].scales;
  8705. const int8_t * restrict q8 = y[i].qs;
  8706. for (int j = 0; j < QK_K/32; j += 2) {
  8707. __builtin_prefetch(q2, 0, 1);
  8708. __builtin_prefetch(q8, 0, 1);
  8709. vector signed long long aux64x2_0 = {*(const int64_t *)(iq2s_grid + (q2[0] | ((qh[0] << 8) & 0x300))), *(const int64_t *)(iq2s_grid + (q2[1] | ((qh[0] << 6) & 0x300)))};
  8710. vector signed long long aux64x2_1 = {*(const int64_t *)(iq2s_grid + (q2[2] | ((qh[0] << 4) & 0x300))), *(const int64_t *)(iq2s_grid + (q2[3] | ((qh[0] << 2) & 0x300)))};
  8711. vector signed long long aux64x2_2 = {*(const int64_t *)(iq2s_grid + (q2[4] | ((qh[1] << 8) & 0x300))), *(const int64_t *)(iq2s_grid + (q2[5] | ((qh[1] << 6) & 0x300)))};
  8712. vector signed long long aux64x2_3 = {*(const int64_t *)(iq2s_grid + (q2[6] | ((qh[1] << 4) & 0x300))), *(const int64_t *)(iq2s_grid + (q2[7] | ((qh[1] << 2) & 0x300)))};
  8713. q2 += 8;
  8714. qh += 2;
  8715. vector signed char vsigns01 = (vector signed char)vec_splats(*(const uint32_t *)&signs[0]);
  8716. vector signed char vsigns23 = (vector signed char)vec_splats(*(const uint32_t *)&signs[2]);
  8717. signs += 4;
  8718. vector signed char vsigns0 = vec_perm(vsigns01, vsigns01, mask0);
  8719. vector signed char vsigns1 = vec_perm(vsigns01, vsigns01, mask1);
  8720. vector signed char vsigns2 = vec_perm(vsigns23, vsigns23, mask0);
  8721. vector signed char vsigns3 = vec_perm(vsigns23, vsigns23, mask1);
  8722. vsigns0 = (vector signed char)vec_cmpeq(vec_and(vsigns0, mask2), mask2);
  8723. vsigns1 = (vector signed char)vec_cmpeq(vec_and(vsigns1, mask2), mask2);
  8724. vsigns2 = (vector signed char)vec_cmpeq(vec_and(vsigns2, mask2), mask2);
  8725. vsigns3 = (vector signed char)vec_cmpeq(vec_and(vsigns3, mask2), mask2);
  8726. vector signed char q2x0 = vec_sub(vec_xor(vsigns0, (vector signed char)aux64x2_0), vsigns0);
  8727. vector signed char q2x1 = vec_sub(vec_xor(vsigns1, (vector signed char)aux64x2_1), vsigns1);
  8728. vector signed char q2x2 = vec_sub(vec_xor(vsigns2, (vector signed char)aux64x2_2), vsigns2);
  8729. vector signed char q2x3 = vec_sub(vec_xor(vsigns3, (vector signed char)aux64x2_3), vsigns3);
  8730. vector signed char q8y0 = vec_xl( 0, q8);
  8731. vector signed char q8y1 = vec_xl(16, q8);
  8732. vector signed char q8y2 = vec_xl(32, q8);
  8733. vector signed char q8y3 = vec_xl(48, q8);
  8734. q8 += 64;
  8735. vector signed short qv0 = vec_add(vec_mule(q2x0, q8y0), vec_mulo(q2x0, q8y0));
  8736. vector signed short qv1 = vec_add(vec_mule(q2x1, q8y1), vec_mulo(q2x1, q8y1));
  8737. vector signed short qv2 = vec_add(vec_mule(q2x2, q8y2), vec_mulo(q2x2, q8y2));
  8738. vector signed short qv3 = vec_add(vec_mule(q2x3, q8y3), vec_mulo(q2x3, q8y3));
  8739. const uint16_t ls0 = (uint16_t)(sc[0] & 0xf);
  8740. const uint16_t ls1 = (uint16_t)(sc[0] >> 4);
  8741. const uint16_t ls2 = (uint16_t)(sc[1] & 0xf);
  8742. const uint16_t ls3 = (uint16_t)(sc[1] >> 4);
  8743. sc += 2;
  8744. vector signed short vscales0 = vec_splats((int16_t)(2*ls0+1));
  8745. vector signed short vscales1 = vec_splats((int16_t)(2*ls1+1));
  8746. vector signed short vscales2 = vec_splats((int16_t)(2*ls2+1));
  8747. vector signed short vscales3 = vec_splats((int16_t)(2*ls3+1));
  8748. vsumi0 = vec_msum(qv0, vscales0, vsumi0);
  8749. vsumi1 = vec_msum(qv1, vscales1, vsumi1);
  8750. vsumi2 = vec_msum(qv2, vscales2, vsumi2);
  8751. vsumi3 = vec_msum(qv3, vscales3, vsumi3);
  8752. }
  8753. vsumf0 = vec_madd(vec_ctf(vsumi0, 0), vd, vsumf0);
  8754. vsumf1 = vec_madd(vec_ctf(vsumi1, 0), vd, vsumf1);
  8755. vsumf2 = vec_madd(vec_ctf(vsumi2, 0), vd, vsumf2);
  8756. vsumf3 = vec_madd(vec_ctf(vsumi3, 0), vd, vsumf3);
  8757. }
  8758. vsumf0 = vec_add(vsumf0, vsumf2);
  8759. vsumf1 = vec_add(vsumf1, vsumf3);
  8760. vsumf0 = vec_add(vsumf0, vsumf1);
  8761. vsumf0 = vec_add(vsumf0, vec_sld(vsumf0, vsumf0, 4));
  8762. vsumf0 = vec_add(vsumf0, vec_sld(vsumf0, vsumf0, 8));
  8763. *s = 0.125f * vec_extract(vsumf0, 0);
  8764. #elif defined(__loongarch_asx)
  8765. static const uint8_t k_mask1[32] = {0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x01, 0x01, 0x01, 0x01, 0x01, 0x01, 0x01, 0x01,
  8766. 0x02, 0x02, 0x02, 0x02, 0x02, 0x02, 0x02, 0x02, 0x03, 0x03, 0x03, 0x03, 0x03, 0x03, 0x03, 0x03
  8767. };
  8768. static const uint8_t k_mask2[32] = {0x01, 0x02, 0x04, 0x08, 0x10, 0x20, 0x40, 0x80, 0x01, 0x02, 0x04, 0x08, 0x10, 0x20, 0x40, 0x80,
  8769. 0x01, 0x02, 0x04, 0x08, 0x10, 0x20, 0x40, 0x80, 0x01, 0x02, 0x04, 0x08, 0x10, 0x20, 0x40, 0x80,
  8770. };
  8771. const __m128i m4 = __lsx_vreplgr2vr_b(0xf);
  8772. const __m128i m1 = __lsx_vreplgr2vr_b(1);
  8773. const __m256i mask1 = __lasx_xvld((const __m256i*)k_mask1, 0);
  8774. const __m256i mask2 = __lasx_xvld((const __m256i*)k_mask2, 0);
  8775. uint64_t aux64;
  8776. __m256 accumf = (__m256)__lasx_xvldi(0);
  8777. for (int i = 0; i < nb; ++i) {
  8778. const float d = GGML_FP16_TO_FP32(x[i].d) * y[i].d;
  8779. const uint8_t * restrict qs = x[i].qs;
  8780. const uint8_t * restrict qh = x[i].qh;
  8781. const uint16_t * restrict signs = (const uint16_t *)(x[i].qs + QK_K/8);
  8782. const int8_t * restrict q8 = y[i].qs;
  8783. __m128i tmp1;
  8784. memcpy(&aux64, x[i].scales, 8);
  8785. tmp1 = __lsx_vinsgr2vr_d(tmp1, aux64, 0);
  8786. tmp1 = __lsx_vinsgr2vr_d(tmp1, aux64 >> 4, 1);
  8787. const __m128i scales8 = __lsx_vadd_b(__lsx_vslli_h(__lsx_vand_v(tmp1, m4), 1), m1);
  8788. const __m256i scales16 = lasx_ext8_16(scales8); // 0 2 4 6 8 10 12 14 1 3 5 7 9 11 13 15
  8789. __m256i sumi1 = __lasx_xvldi(0);
  8790. __m256i sumi2 = __lasx_xvldi(0);
  8791. for (int ib32 = 0; ib32 < QK_K/32; ib32 += 2) {
  8792. const __m256i q8_1 = __lasx_xvld((const __m256i *)q8, 0); q8 += 32;
  8793. const __m256i q8_2 = __lasx_xvld((const __m256i *)q8, 0); q8 += 32;
  8794. const __m256i q2_1 = lasx_set_d(iq2s_grid[qs[3] | ((qh[ib32+0] << 2) & 0x300)],
  8795. iq2s_grid[qs[2] | ((qh[ib32+0] << 4) & 0x300)],
  8796. iq2s_grid[qs[1] | ((qh[ib32+0] << 6) & 0x300)],
  8797. iq2s_grid[qs[0] | ((qh[ib32+0] << 8) & 0x300)]);
  8798. const __m256i q2_2 = lasx_set_d(iq2s_grid[qs[7] | ((qh[ib32+1] << 2) & 0x300)],
  8799. iq2s_grid[qs[6] | ((qh[ib32+1] << 4) & 0x300)],
  8800. iq2s_grid[qs[5] | ((qh[ib32+1] << 6) & 0x300)],
  8801. iq2s_grid[qs[4] | ((qh[ib32+1] << 8) & 0x300)]);
  8802. qs += 8;
  8803. __m256i aux256 = __lasx_xvreplgr2vr_w(signs[0] | ((uint32_t) signs[1] << 16));
  8804. aux256 = __lasx_xvand_v(lasx_shuffle_b(aux256,mask1), mask2);
  8805. const __m256i s2_1 = __lasx_xvseq_b(aux256, mask2);
  8806. const __m256i q8s_1 = __lasx_xvsub_b(__lasx_xvxor_v(s2_1, q8_1), s2_1);
  8807. aux256 = __lasx_xvreplgr2vr_w(signs[2] | ((uint32_t) signs[3] << 16));
  8808. aux256 = __lasx_xvand_v(lasx_shuffle_b(aux256,mask1), mask2);
  8809. const __m256i s2_2 = __lasx_xvseq_b(aux256, mask2);
  8810. const __m256i q8s_2 = __lasx_xvsub_b(__lasx_xvxor_v(s2_2, q8_2), s2_2);
  8811. signs += 4;
  8812. const __m256i dot1 = lasx_maddubs_h(q2_1, q8s_1); // blocks 2*ib32+0, 2*ib32+1
  8813. const __m256i dot2 = lasx_maddubs_h(q2_2, q8s_2); // blocks 2*ib32+2, 2*ib32+3
  8814. const __m256i p1 = lasx_madd_h(dot1, lasx_shuffle_b(scales16, get_scale_shuffle_k4(ib32+0)));
  8815. const __m256i p2 = lasx_madd_h(dot2, lasx_shuffle_b(scales16, get_scale_shuffle_k4(ib32+1)));
  8816. sumi1 = __lasx_xvadd_w(sumi1, p1);
  8817. sumi2 = __lasx_xvadd_w(sumi2, p2);
  8818. }
  8819. accumf = __lasx_xvfmadd_s(__lasx_xvreplfr2vr_s(d), __lasx_xvffint_s_w(__lasx_xvadd_w(sumi1, sumi2)), accumf);
  8820. }
  8821. *s = 0.125f * hsum_float_8(accumf);
  8822. #else
  8823. float sumf = 0;
  8824. for (int i = 0; i < nb; i++) {
  8825. const float d = GGML_FP16_TO_FP32(x[i].d) * y[i].d;
  8826. const int8_t * q8 = y[i].qs;
  8827. const uint8_t * qs = x[i].qs;
  8828. const uint8_t * qh = x[i].qh;
  8829. const uint8_t * signs = qs + QK_K/8;
  8830. int bsum = 0;
  8831. for (int ib32 = 0; ib32 < QK_K/32; ++ib32) {
  8832. int ls1 = 1 + 2*(x[i].scales[ib32] & 0xf);
  8833. int ls2 = 1 + 2*(x[i].scales[ib32] >> 4);
  8834. int sumi1 = 0, sumi2 = 0;
  8835. for (int l = 0; l < 2; ++l) {
  8836. const uint8_t * grid = (const uint8_t *)(iq2s_grid + (qs[l] | (qh[ib32] << (8-2*l) & 0x300)));
  8837. for (int j = 0; j < 8; ++j) {
  8838. sumi1 += q8[j] * grid[j] * (signs[l] & kmask_iq2xs[j] ? -1 : 1);
  8839. }
  8840. q8 += 8;
  8841. }
  8842. for (int l = 2; l < 4; ++l) {
  8843. const uint8_t * grid = (const uint8_t *)(iq2s_grid + (qs[l] | (qh[ib32] << (8-2*l) & 0x300)));
  8844. for (int j = 0; j < 8; ++j) {
  8845. sumi2 += q8[j] * grid[j] * (signs[l] & kmask_iq2xs[j] ? -1 : 1);
  8846. }
  8847. q8 += 8;
  8848. }
  8849. bsum += ls1 * sumi1 + ls2 * sumi2;
  8850. qs += 4;
  8851. signs += 4;
  8852. }
  8853. sumf += d * bsum;
  8854. }
  8855. *s = 0.125f * sumf;
  8856. #endif
  8857. }
  8858. void ggml_vec_dot_iq3_xxs_q8_K(int n, float * restrict s, size_t bs, const void * restrict vx, size_t bx, const void * restrict vy, size_t by, int nrc) {
  8859. assert(n % QK_K == 0);
  8860. assert(nrc == 1);
  8861. UNUSED(nrc);
  8862. UNUSED(bx);
  8863. UNUSED(by);
  8864. UNUSED(bs);
  8865. const block_iq3_xxs * restrict x = vx;
  8866. const block_q8_K * restrict y = vy;
  8867. const int nb = n / QK_K;
  8868. #if defined(__ARM_NEON)
  8869. const uint64_t * signs64 = (const uint64_t *)keven_signs_q2xs;
  8870. uint32_t aux32[2];
  8871. ggml_int8x16x4_t q3s;
  8872. ggml_int8x16x4_t q8b;
  8873. float sumf = 0;
  8874. for (int i = 0; i < nb; ++i) {
  8875. const float d = GGML_FP16_TO_FP32(x[i].d) * y[i].d;
  8876. const uint8_t * restrict q3 = x[i].qs;
  8877. const uint8_t * restrict gas = x[i].qs + QK_K/4;
  8878. const int8_t * restrict q8 = y[i].qs;
  8879. float sumf1 = 0, sumf2 = 0;
  8880. for (int ib32 = 0; ib32 < QK_K/32; ib32 += 2) {
  8881. q8b = ggml_vld1q_s8_x4(q8); q8 += 64;
  8882. memcpy(aux32, gas, 2*sizeof(uint32_t)); gas += 2*sizeof(uint32_t);
  8883. const uint32x4_t aux32x4_0 = ggml_vld1q_u32(iq3xxs_grid[q3[ 0]], iq3xxs_grid[q3[ 1]], iq3xxs_grid[q3[ 2]], iq3xxs_grid[q3[ 3]]);
  8884. const uint32x4_t aux32x4_1 = ggml_vld1q_u32(iq3xxs_grid[q3[ 4]], iq3xxs_grid[q3[ 5]], iq3xxs_grid[q3[ 6]], iq3xxs_grid[q3[ 7]]);
  8885. const uint32x4_t aux32x4_2 = ggml_vld1q_u32(iq3xxs_grid[q3[ 8]], iq3xxs_grid[q3[ 9]], iq3xxs_grid[q3[10]], iq3xxs_grid[q3[11]]);
  8886. const uint32x4_t aux32x4_3 = ggml_vld1q_u32(iq3xxs_grid[q3[12]], iq3xxs_grid[q3[13]], iq3xxs_grid[q3[14]], iq3xxs_grid[q3[15]]);
  8887. q3 += 16;
  8888. q3s.val[0] = vcombine_s8(vld1_s8((const void *)(signs64 + ((aux32[0] >> 0) & 127))), vld1_s8((const void *)(signs64 + ((aux32[0] >> 7) & 127))));
  8889. q3s.val[1] = vcombine_s8(vld1_s8((const void *)(signs64 + ((aux32[0] >> 14) & 127))), vld1_s8((const void *)(signs64 + ((aux32[0] >> 21) & 127))));
  8890. q3s.val[2] = vcombine_s8(vld1_s8((const void *)(signs64 + ((aux32[1] >> 0) & 127))), vld1_s8((const void *)(signs64 + ((aux32[1] >> 7) & 127))));
  8891. q3s.val[3] = vcombine_s8(vld1_s8((const void *)(signs64 + ((aux32[1] >> 14) & 127))), vld1_s8((const void *)(signs64 + ((aux32[1] >> 21) & 127))));
  8892. q3s.val[0] = vmulq_s8(q3s.val[0], vreinterpretq_s8_u32(aux32x4_0));
  8893. q3s.val[1] = vmulq_s8(q3s.val[1], vreinterpretq_s8_u32(aux32x4_1));
  8894. q3s.val[2] = vmulq_s8(q3s.val[2], vreinterpretq_s8_u32(aux32x4_2));
  8895. q3s.val[3] = vmulq_s8(q3s.val[3], vreinterpretq_s8_u32(aux32x4_3));
  8896. const int32x4_t p1 = ggml_vdotq_s32(ggml_vdotq_s32(vdupq_n_s32(0), q3s.val[0], q8b.val[0]), q3s.val[1], q8b.val[1]);
  8897. const int32x4_t p2 = ggml_vdotq_s32(ggml_vdotq_s32(vdupq_n_s32(0), q3s.val[2], q8b.val[2]), q3s.val[3], q8b.val[3]);
  8898. sumf1 += vaddvq_s32(p1) * (0.5f + (aux32[0] >> 28));
  8899. sumf2 += vaddvq_s32(p2) * (0.5f + (aux32[1] >> 28));
  8900. }
  8901. sumf += d*(sumf1 + sumf2);
  8902. }
  8903. *s = 0.5f * sumf;
  8904. #elif defined(__AVX2__)
  8905. const uint64_t * signs64 = (const uint64_t *)keven_signs_q2xs;
  8906. uint32_t aux32[2];
  8907. __m256 accumf = _mm256_setzero_ps();
  8908. for (int i = 0; i < nb; ++i) {
  8909. const float d = GGML_FP16_TO_FP32(x[i].d) * y[i].d;
  8910. const uint8_t * restrict q3 = x[i].qs;
  8911. const uint8_t * restrict gas = x[i].qs + QK_K/4;
  8912. const int8_t * restrict q8 = y[i].qs;
  8913. __m256i sumi1 = _mm256_setzero_si256();
  8914. __m256i sumi2 = _mm256_setzero_si256();
  8915. for (int ib32 = 0; ib32 < QK_K/32; ib32 += 2) {
  8916. const __m256i q8_1 = _mm256_loadu_si256((const __m256i *)q8); q8 += 32;
  8917. const __m256i q8_2 = _mm256_loadu_si256((const __m256i *)q8); q8 += 32;
  8918. const __m256i q2_1 = _mm256_set_epi32(iq3xxs_grid[q3[7]], iq3xxs_grid[q3[6]], iq3xxs_grid[q3[5]], iq3xxs_grid[q3[4]],
  8919. iq3xxs_grid[q3[3]], iq3xxs_grid[q3[2]], iq3xxs_grid[q3[1]], iq3xxs_grid[q3[0]]);
  8920. q3 += 8;
  8921. const __m256i q2_2 = _mm256_set_epi32(iq3xxs_grid[q3[7]], iq3xxs_grid[q3[6]], iq3xxs_grid[q3[5]], iq3xxs_grid[q3[4]],
  8922. iq3xxs_grid[q3[3]], iq3xxs_grid[q3[2]], iq3xxs_grid[q3[1]], iq3xxs_grid[q3[0]]);
  8923. q3 += 8;
  8924. memcpy(aux32, gas, 8); gas += 8;
  8925. const __m256i s2_1 = _mm256_set_epi64x(signs64[(aux32[0] >> 21) & 127], signs64[(aux32[0] >> 14) & 127],
  8926. signs64[(aux32[0] >> 7) & 127], signs64[(aux32[0] >> 0) & 127]);
  8927. const __m256i s2_2 = _mm256_set_epi64x(signs64[(aux32[1] >> 21) & 127], signs64[(aux32[1] >> 14) & 127],
  8928. signs64[(aux32[1] >> 7) & 127], signs64[(aux32[1] >> 0) & 127]);
  8929. const __m256i q8s_1 = _mm256_sign_epi8(q8_1, s2_1);
  8930. const __m256i q8s_2 = _mm256_sign_epi8(q8_2, s2_2);
  8931. const __m256i dot1 = _mm256_maddubs_epi16(q2_1, q8s_1);
  8932. const __m256i dot2 = _mm256_maddubs_epi16(q2_2, q8s_2);
  8933. const uint16_t ls1 = aux32[0] >> 28;
  8934. const uint16_t ls2 = aux32[1] >> 28;
  8935. const __m256i p1 = _mm256_madd_epi16(dot1, _mm256_set1_epi16(2*ls1+1));
  8936. const __m256i p2 = _mm256_madd_epi16(dot2, _mm256_set1_epi16(2*ls2+1));
  8937. sumi1 = _mm256_add_epi32(sumi1, p1);
  8938. sumi2 = _mm256_add_epi32(sumi2, p2);
  8939. }
  8940. accumf = _mm256_fmadd_ps(_mm256_set1_ps(d), _mm256_cvtepi32_ps(_mm256_add_epi32(sumi1, sumi2)), accumf);
  8941. }
  8942. *s = 0.25f * hsum_float_8(accumf);
  8943. #elif defined(__AVX__)
  8944. const uint64_t * signs64 = (const uint64_t *)keven_signs_q2xs;
  8945. uint32_t aux32[2];
  8946. __m256 accumf = _mm256_setzero_ps();
  8947. for (int i = 0; i < nb; ++i) {
  8948. const float d = GGML_FP16_TO_FP32(x[i].d) * y[i].d;
  8949. const uint8_t * restrict q3 = x[i].qs;
  8950. const uint8_t * restrict gas = x[i].qs + QK_K/4;
  8951. const int8_t * restrict q8 = y[i].qs;
  8952. __m128i sumi1_0 = _mm_setzero_si128();
  8953. __m128i sumi1_1 = _mm_setzero_si128();
  8954. __m128i sumi2_0 = _mm_setzero_si128();
  8955. __m128i sumi2_1 = _mm_setzero_si128();
  8956. for (int ib32 = 0; ib32 < QK_K/32; ib32 += 2) {
  8957. const __m128i q8_1_0 = _mm_loadu_si128((const __m128i *)q8); q8 += 16;
  8958. const __m128i q8_1_1 = _mm_loadu_si128((const __m128i *)q8); q8 += 16;
  8959. const __m128i q8_2_0 = _mm_loadu_si128((const __m128i *)q8); q8 += 16;
  8960. const __m128i q8_2_1 = _mm_loadu_si128((const __m128i *)q8); q8 += 16;
  8961. const __m128i q2_1_0 = _mm_set_epi32(iq3xxs_grid[q3[3]], iq3xxs_grid[q3[2]], iq3xxs_grid[q3[1]], iq3xxs_grid[q3[0]]);
  8962. const __m128i q2_1_1 = _mm_set_epi32(iq3xxs_grid[q3[7]], iq3xxs_grid[q3[6]], iq3xxs_grid[q3[5]], iq3xxs_grid[q3[4]]);
  8963. q3 += 8;
  8964. const __m128i q2_2_0 = _mm_set_epi32(iq3xxs_grid[q3[3]], iq3xxs_grid[q3[2]], iq3xxs_grid[q3[1]], iq3xxs_grid[q3[0]]);
  8965. const __m128i q2_2_1 = _mm_set_epi32(iq3xxs_grid[q3[7]], iq3xxs_grid[q3[6]], iq3xxs_grid[q3[5]], iq3xxs_grid[q3[4]]);
  8966. q3 += 8;
  8967. memcpy(aux32, gas, 8); gas += 8;
  8968. const __m128i s2_1_0 = _mm_set_epi64x(signs64[(aux32[0] >> 7) & 127], signs64[(aux32[0] >> 0) & 127]);
  8969. const __m128i s2_1_1 = _mm_set_epi64x(signs64[(aux32[0] >> 21) & 127], signs64[(aux32[0] >> 14) & 127]);
  8970. const __m128i s2_2_0 = _mm_set_epi64x(signs64[(aux32[1] >> 7) & 127], signs64[(aux32[1] >> 0) & 127]);
  8971. const __m128i s2_2_1 = _mm_set_epi64x(signs64[(aux32[1] >> 21) & 127], signs64[(aux32[1] >> 14) & 127]);
  8972. const __m128i q8s_1_0 = _mm_sign_epi8(q8_1_0, s2_1_0);
  8973. const __m128i q8s_1_1 = _mm_sign_epi8(q8_1_1, s2_1_1);
  8974. const __m128i q8s_2_0 = _mm_sign_epi8(q8_2_0, s2_2_0);
  8975. const __m128i q8s_2_1 = _mm_sign_epi8(q8_2_1, s2_2_1);
  8976. const __m128i dot1_0 = _mm_maddubs_epi16(q2_1_0, q8s_1_0);
  8977. const __m128i dot1_1 = _mm_maddubs_epi16(q2_1_1, q8s_1_1);
  8978. const __m128i dot2_0 = _mm_maddubs_epi16(q2_2_0, q8s_2_0);
  8979. const __m128i dot2_1 = _mm_maddubs_epi16(q2_2_1, q8s_2_1);
  8980. const uint16_t ls1 = aux32[0] >> 28;
  8981. const uint16_t ls2 = aux32[1] >> 28;
  8982. const __m128i p1_0 = _mm_madd_epi16(dot1_0, _mm_set1_epi16(2*ls1+1));
  8983. const __m128i p1_1 = _mm_madd_epi16(dot1_1, _mm_set1_epi16(2*ls1+1));
  8984. const __m128i p2_0 = _mm_madd_epi16(dot2_0, _mm_set1_epi16(2*ls2+1));
  8985. const __m128i p2_1 = _mm_madd_epi16(dot2_1, _mm_set1_epi16(2*ls2+1));
  8986. sumi1_0 = _mm_add_epi32(sumi1_0, p1_0);
  8987. sumi1_1 = _mm_add_epi32(sumi1_1, p1_1);
  8988. sumi2_0 = _mm_add_epi32(sumi2_0, p2_0);
  8989. sumi2_1 = _mm_add_epi32(sumi2_1, p2_1);
  8990. }
  8991. accumf = _mm256_add_ps(_mm256_mul_ps(_mm256_set1_ps(d), _mm256_cvtepi32_ps(MM256_SET_M128I(_mm_add_epi32(sumi1_1, sumi2_1), _mm_add_epi32(sumi1_0, sumi2_0)))), accumf);
  8992. }
  8993. *s = 0.25f * hsum_float_8(accumf);
  8994. #elif defined(__POWER9_VECTOR__)
  8995. const uint64_t * signs64 = (const uint64_t *)keven_signs_q2xs;
  8996. const vector int v0 = vec_splats((int32_t)0);
  8997. vector float vsumf0 = vec_splats(0.0f);
  8998. vector float vsumf1 = vec_splats(0.0f);
  8999. vector float vsumf2 = vec_splats(0.0f);
  9000. vector float vsumf3 = vec_splats(0.0f);
  9001. for (int i = 0; i < nb; ++i) {
  9002. vector float vxd = vec_splats(GGML_FP16_TO_FP32(x[i].d));
  9003. vector float vyd = vec_splats(y[i].d);
  9004. vector float vd = vec_mul(vxd, vyd);
  9005. vector signed int vsumi0 = v0;
  9006. vector signed int vsumi1 = v0;
  9007. vector signed int vsumi2 = v0;
  9008. vector signed int vsumi3 = v0;
  9009. const uint8_t * restrict q3 = x[i].qs;
  9010. const uint32_t * restrict signs = (const uint32_t *)(x[i].qs + QK_K/4);
  9011. const int8_t * restrict q8 = y[i].qs;
  9012. #pragma GCC unroll 1
  9013. for (int j = 0; j < QK_K/32; j += 2) {
  9014. __builtin_prefetch(q3, 0, 1);
  9015. __builtin_prefetch(q8, 0, 1);
  9016. vector unsigned int aux32x4_0 = {iq3xxs_grid[q3[ 0]], iq3xxs_grid[q3[ 1]], iq3xxs_grid[q3[ 2]], iq3xxs_grid[q3[ 3]]};
  9017. vector unsigned int aux32x4_1 = {iq3xxs_grid[q3[ 4]], iq3xxs_grid[q3[ 5]], iq3xxs_grid[q3[ 6]], iq3xxs_grid[q3[ 7]]};
  9018. vector unsigned int aux32x4_2 = {iq3xxs_grid[q3[ 8]], iq3xxs_grid[q3[ 9]], iq3xxs_grid[q3[10]], iq3xxs_grid[q3[11]]};
  9019. vector unsigned int aux32x4_3 = {iq3xxs_grid[q3[12]], iq3xxs_grid[q3[13]], iq3xxs_grid[q3[14]], iq3xxs_grid[q3[15]]};
  9020. q3 += 16;
  9021. vector unsigned long long aux64x2_0 = {(uint64_t)(signs64[(signs[0] >> 0) & 127]), (uint64_t)(signs64[(signs[0] >> 7) & 127])};
  9022. vector unsigned long long aux64x2_1 = {(uint64_t)(signs64[(signs[0] >> 14) & 127]), (uint64_t)(signs64[(signs[0] >> 21) & 127])};
  9023. vector unsigned long long aux64x2_2 = {(uint64_t)(signs64[(signs[1] >> 0) & 127]), (uint64_t)(signs64[(signs[1] >> 7) & 127])};
  9024. vector unsigned long long aux64x2_3 = {(uint64_t)(signs64[(signs[1] >> 14) & 127]), (uint64_t)(signs64[(signs[1] >> 21) & 127])};
  9025. vector signed char q3x0 = vec_mul((vector signed char)aux64x2_0, (vector signed char)aux32x4_0);
  9026. vector signed char q3x1 = vec_mul((vector signed char)aux64x2_1, (vector signed char)aux32x4_1);
  9027. vector signed char q3x2 = vec_mul((vector signed char)aux64x2_2, (vector signed char)aux32x4_2);
  9028. vector signed char q3x3 = vec_mul((vector signed char)aux64x2_3, (vector signed char)aux32x4_3);
  9029. vector signed char q8y0 = vec_xl( 0, q8);
  9030. vector signed char q8y1 = vec_xl(16, q8);
  9031. vector signed char q8y2 = vec_xl(32, q8);
  9032. vector signed char q8y3 = vec_xl(48, q8);
  9033. q8 += 64;
  9034. vector signed short qv0 = vec_add(vec_mule(q3x0, q8y0), vec_mulo(q3x0, q8y0));
  9035. vector signed short qv1 = vec_add(vec_mule(q3x1, q8y1), vec_mulo(q3x1, q8y1));
  9036. vector signed short qv2 = vec_add(vec_mule(q3x2, q8y2), vec_mulo(q3x2, q8y2));
  9037. vector signed short qv3 = vec_add(vec_mule(q3x3, q8y3), vec_mulo(q3x3, q8y3));
  9038. const uint16_t ls0 = (uint16_t)(signs[0] >> 28);
  9039. const uint16_t ls1 = (uint16_t)(signs[1] >> 28);
  9040. signs += 2;
  9041. vector signed short vscales01 = (vector signed short)vec_splats((uint16_t)(2*ls0+1));
  9042. vector signed short vscales23 = (vector signed short)vec_splats((uint16_t)(2*ls1+1));
  9043. vsumi0 = vec_msum(qv0, vscales01, vsumi0);
  9044. vsumi1 = vec_msum(qv1, vscales01, vsumi1);
  9045. vsumi2 = vec_msum(qv2, vscales23, vsumi2);
  9046. vsumi3 = vec_msum(qv3, vscales23, vsumi3);
  9047. }
  9048. vsumf0 = vec_madd(vec_ctf(vsumi0, 0), vd, vsumf0);
  9049. vsumf1 = vec_madd(vec_ctf(vsumi1, 0), vd, vsumf1);
  9050. vsumf2 = vec_madd(vec_ctf(vsumi2, 0), vd, vsumf2);
  9051. vsumf3 = vec_madd(vec_ctf(vsumi3, 0), vd, vsumf3);
  9052. }
  9053. vsumf0 = vec_add(vsumf0, vsumf2);
  9054. vsumf1 = vec_add(vsumf1, vsumf3);
  9055. vsumf0 = vec_add(vsumf0, vsumf1);
  9056. vsumf0 = vec_add(vsumf0, vec_sld(vsumf0, vsumf0, 4));
  9057. vsumf0 = vec_add(vsumf0, vec_sld(vsumf0, vsumf0, 8));
  9058. *s = 0.25f * vec_extract(vsumf0, 0);
  9059. #elif defined(__loongarch_asx)
  9060. const uint64_t * signs64 = (const uint64_t *)keven_signs_q2xs;
  9061. uint32_t aux32[2];
  9062. __m256 accumf = (__m256)__lasx_xvldi(0);
  9063. for (int i = 0; i < nb; ++i) {
  9064. const float d = GGML_FP16_TO_FP32(x[i].d) * y[i].d;
  9065. const uint8_t * restrict q3 = x[i].qs;
  9066. const uint8_t * restrict gas = x[i].qs + QK_K/4;
  9067. const int8_t * restrict q8 = y[i].qs;
  9068. __m256i sumi1 = __lasx_xvldi(0);
  9069. __m256i sumi2 = __lasx_xvldi(0);
  9070. for (int ib32 = 0; ib32 < QK_K/32; ib32 += 2) {
  9071. const __m256i q8_1 = __lasx_xvld((const __m256i *)q8, 0); q8 += 32;
  9072. const __m256i q8_2 = __lasx_xvld((const __m256i *)q8, 0); q8 += 32;
  9073. const __m256i q2_1 = lasx_set_w(iq3xxs_grid[q3[7]], iq3xxs_grid[q3[6]], iq3xxs_grid[q3[5]], iq3xxs_grid[q3[4]],
  9074. iq3xxs_grid[q3[3]], iq3xxs_grid[q3[2]], iq3xxs_grid[q3[1]], iq3xxs_grid[q3[0]]);
  9075. q3 += 8;
  9076. const __m256i q2_2 = lasx_set_w(iq3xxs_grid[q3[7]], iq3xxs_grid[q3[6]], iq3xxs_grid[q3[5]], iq3xxs_grid[q3[4]],
  9077. iq3xxs_grid[q3[3]], iq3xxs_grid[q3[2]], iq3xxs_grid[q3[1]], iq3xxs_grid[q3[0]]);
  9078. q3 += 8;
  9079. memcpy(aux32, gas, 8); gas += 8;
  9080. const __m256i s2_1 = lasx_set_d(signs64[(aux32[0] >> 21) & 127], signs64[(aux32[0] >> 14) & 127],
  9081. signs64[(aux32[0] >> 7) & 127], signs64[(aux32[0] >> 0) & 127]);
  9082. const __m256i s2_2 = lasx_set_d(signs64[(aux32[1] >> 21) & 127], signs64[(aux32[1] >> 14) & 127],
  9083. signs64[(aux32[1] >> 7) & 127], signs64[(aux32[1] >> 0) & 127]);
  9084. const __m256i q8s_1 = __lasx_xvsigncov_b(s2_1, q8_1);
  9085. const __m256i q8s_2 = __lasx_xvsigncov_b(s2_2, q8_2);
  9086. const __m256i dot1 = lasx_maddubs_h(q2_1, q8s_1);
  9087. const __m256i dot2 = lasx_maddubs_h(q2_2, q8s_2);
  9088. const uint16_t ls1 = aux32[0] >> 28;
  9089. const uint16_t ls2 = aux32[1] >> 28;
  9090. const __m256i p1 = lasx_madd_h(dot1, __lasx_xvreplgr2vr_h(2*ls1+1));
  9091. const __m256i p2 = lasx_madd_h(dot2, __lasx_xvreplgr2vr_h(2*ls2+1));
  9092. sumi1 = __lasx_xvadd_w(sumi1, p1);
  9093. sumi2 = __lasx_xvadd_w(sumi2, p2);
  9094. }
  9095. accumf = __lasx_xvfmadd_s(__lasx_xvreplfr2vr_s(d), __lasx_xvffint_s_w(__lasx_xvadd_w(sumi1, sumi2)), accumf);
  9096. }
  9097. *s = 0.25f * hsum_float_8(accumf);
  9098. #else
  9099. uint32_t aux32;
  9100. float sumf = 0.f;
  9101. for (int i = 0; i < nb; ++i) {
  9102. const float d = GGML_FP16_TO_FP32(x[i].d) * y[i].d;
  9103. const uint8_t * restrict q3 = x[i].qs;
  9104. const uint8_t * restrict gas = x[i].qs + QK_K/4;
  9105. const int8_t * restrict q8 = y[i].qs;
  9106. int32_t bsum = 0;
  9107. for (int ib32 = 0; ib32 < QK_K/32; ++ib32) {
  9108. memcpy(&aux32, gas, sizeof(uint32_t)); gas += sizeof(uint32_t);
  9109. const uint32_t ls = 2*(aux32 >> 28) + 1;
  9110. int32_t sumi = 0;
  9111. for (int l = 0; l < 4; ++l) {
  9112. const uint8_t * grid1 = (const uint8_t *)(iq3xxs_grid + q3[2*l+0]);
  9113. const uint8_t * grid2 = (const uint8_t *)(iq3xxs_grid + q3[2*l+1]);
  9114. const uint8_t signs = ksigns_iq2xs[(aux32 >> 7*l) & 127];
  9115. for (int j = 0; j < 4; ++j) {
  9116. sumi += grid1[j] * q8[j+0] * (signs & kmask_iq2xs[j+0] ? -1 : 1);
  9117. sumi += grid2[j] * q8[j+4] * (signs & kmask_iq2xs[j+4] ? -1 : 1);
  9118. }
  9119. q8 += 8;
  9120. }
  9121. q3 += 8;
  9122. bsum += sumi * ls;
  9123. }
  9124. sumf += d * bsum;
  9125. }
  9126. *s = 0.25f * sumf;
  9127. #endif
  9128. }
  9129. void ggml_vec_dot_iq3_s_q8_K (int n, float * restrict s, size_t bs, const void * restrict vx, size_t bx, const void * restrict vy, size_t by, int nrc) {
  9130. assert(n % QK_K == 0);
  9131. assert(nrc == 1);
  9132. UNUSED(nrc);
  9133. UNUSED(bx);
  9134. UNUSED(by);
  9135. UNUSED(bs);
  9136. const block_iq3_s * restrict x = vx;
  9137. const block_q8_K * restrict y = vy;
  9138. const int nb = n / QK_K;
  9139. #if defined(__ARM_NEON)
  9140. typedef union {
  9141. uint16x8_t vec_index;
  9142. uint16_t index[8];
  9143. } vec_index_t;
  9144. static const uint8_t k_mask1[32] = {0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x01, 0x01, 0x01, 0x01, 0x01, 0x01, 0x01, 0x01,
  9145. 0x02, 0x02, 0x02, 0x02, 0x02, 0x02, 0x02, 0x02, 0x03, 0x03, 0x03, 0x03, 0x03, 0x03, 0x03, 0x03
  9146. };
  9147. static const uint8_t k_mask2[16] = {0x01, 0x02, 0x04, 0x08, 0x10, 0x20, 0x40, 0x80, 0x01, 0x02, 0x04, 0x08, 0x10, 0x20, 0x40, 0x80,};
  9148. static const int16_t k_shift[8] = {8, 7, 6, 5, 4, 3, 2, 1};
  9149. const ggml_uint8x16x2_t mask1 = ggml_vld1q_u8_x2(k_mask1);
  9150. const uint8x16_t mask2 = vld1q_u8(k_mask2);
  9151. const int16x8_t hshift = vld1q_s16(k_shift);
  9152. const uint16x8_t m256 = vdupq_n_u16(256);
  9153. const uint8x16_t m1 = vdupq_n_u8(1);
  9154. uint8x16x2_t vs;
  9155. ggml_int8x16x4_t q3s;
  9156. ggml_int8x16x4_t q8b;
  9157. vec_index_t idx;
  9158. uint32_t scales32[2];
  9159. const uint8_t * scales8 = (const uint8_t *)scales32;
  9160. float sumf = 0;
  9161. for (int i = 0; i < nb; ++i) {
  9162. const float d = GGML_FP16_TO_FP32(x[i].d) * y[i].d;
  9163. const uint8_t * restrict qs = x[i].qs;
  9164. const uint8_t * restrict qh = x[i].qh;
  9165. const uint16_t * restrict signs = (const uint16_t *)x[i].signs;
  9166. const int8_t * restrict q8 = y[i].qs;
  9167. memcpy(scales32, x[i].scales, 4);
  9168. scales32[1] = (((scales32[0] >> 4) & 0x0f0f0f0f) << 1) | 0x01010101;
  9169. scales32[0] = ((scales32[0] & 0x0f0f0f0f) << 1) | 0x01010101;
  9170. int sumi1 = 0, sumi2 = 0;
  9171. for (int ib32 = 0; ib32 < QK_K/32; ib32 += 2) {
  9172. q8b = ggml_vld1q_s8_x4(q8); q8 += 64;
  9173. const uint8x16_t idx_l = vld1q_u8(qs); qs += 16;
  9174. idx.vec_index = vorrq_u16(vmovl_u8(vget_low_u8 (idx_l)), vandq_u16(vshlq_u16(vdupq_n_u16(qh[ib32+0]), hshift), m256));
  9175. const uint32x4_t aux32x4_0 = ggml_vld1q_u32(iq3s_grid[idx.index[0]], iq3s_grid[idx.index[1]],
  9176. iq3s_grid[idx.index[2]], iq3s_grid[idx.index[3]]);
  9177. const uint32x4_t aux32x4_1 = ggml_vld1q_u32(iq3s_grid[idx.index[4]], iq3s_grid[idx.index[5]],
  9178. iq3s_grid[idx.index[6]], iq3s_grid[idx.index[7]]);
  9179. idx.vec_index = vorrq_u16(vmovl_u8(vget_high_u8(idx_l)), vandq_u16(vshlq_u16(vdupq_n_u16(qh[ib32+1]), hshift), m256));
  9180. const uint32x4_t aux32x4_2 = ggml_vld1q_u32(iq3s_grid[idx.index[0]], iq3s_grid[idx.index[1]],
  9181. iq3s_grid[idx.index[2]], iq3s_grid[idx.index[3]]);
  9182. const uint32x4_t aux32x4_3 = ggml_vld1q_u32(iq3s_grid[idx.index[4]], iq3s_grid[idx.index[5]],
  9183. iq3s_grid[idx.index[6]], iq3s_grid[idx.index[7]]);
  9184. vs.val[0] = vreinterpretq_u8_u32(vdupq_n_u32(signs[0] | ((uint32_t) signs[1] << 16)));
  9185. vs.val[1] = vandq_u8(ggml_vqtbl1q_u8(vs.val[0], mask1.val[1]), mask2);
  9186. vs.val[0] = vandq_u8(ggml_vqtbl1q_u8(vs.val[0], mask1.val[0]), mask2);
  9187. vs.val[0] = vorrq_u8(vceqq_u8(vs.val[0], mask2), m1);
  9188. vs.val[1] = vorrq_u8(vceqq_u8(vs.val[1], mask2), m1);
  9189. q3s.val[0] = vmulq_s8(vreinterpretq_s8_u8(vs.val[0]), vreinterpretq_s8_u32(aux32x4_0));
  9190. q3s.val[1] = vmulq_s8(vreinterpretq_s8_u8(vs.val[1]), vreinterpretq_s8_u32(aux32x4_1));
  9191. vs.val[0] = vreinterpretq_u8_u32(vdupq_n_u32(signs[2] | ((uint32_t) signs[3] << 16)));
  9192. vs.val[1] = vandq_u8(ggml_vqtbl1q_u8(vs.val[0], mask1.val[1]), mask2);
  9193. vs.val[0] = vandq_u8(ggml_vqtbl1q_u8(vs.val[0], mask1.val[0]), mask2);
  9194. vs.val[0] = vorrq_u8(vceqq_u8(vs.val[0], mask2), m1);
  9195. vs.val[1] = vorrq_u8(vceqq_u8(vs.val[1], mask2), m1);
  9196. signs += 4;
  9197. q3s.val[2] = vmulq_s8(vreinterpretq_s8_u8(vs.val[0]), vreinterpretq_s8_u32(aux32x4_2));
  9198. q3s.val[3] = vmulq_s8(vreinterpretq_s8_u8(vs.val[1]), vreinterpretq_s8_u32(aux32x4_3));
  9199. const int32x4_t p1 = ggml_vdotq_s32(ggml_vdotq_s32(vdupq_n_s32(0), q3s.val[0], q8b.val[0]), q3s.val[1], q8b.val[1]);
  9200. const int32x4_t p2 = ggml_vdotq_s32(ggml_vdotq_s32(vdupq_n_s32(0), q3s.val[2], q8b.val[2]), q3s.val[3], q8b.val[3]);
  9201. sumi1 += vaddvq_s32(p1) * scales8[ib32/2+0];
  9202. sumi2 += vaddvq_s32(p2) * scales8[ib32/2+4];
  9203. }
  9204. sumf += d*(sumi1 + sumi2);
  9205. }
  9206. *s = sumf;
  9207. #elif defined(__AVX2__)
  9208. static const uint8_t k_mask1[32] = {0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x01, 0x01, 0x01, 0x01, 0x01, 0x01, 0x01, 0x01,
  9209. 0x02, 0x02, 0x02, 0x02, 0x02, 0x02, 0x02, 0x02, 0x03, 0x03, 0x03, 0x03, 0x03, 0x03, 0x03, 0x03
  9210. };
  9211. static const uint8_t k_mask2[32] = {0x01, 0x02, 0x04, 0x08, 0x10, 0x20, 0x40, 0x80, 0x01, 0x02, 0x04, 0x08, 0x10, 0x20, 0x40, 0x80,
  9212. 0x01, 0x02, 0x04, 0x08, 0x10, 0x20, 0x40, 0x80, 0x01, 0x02, 0x04, 0x08, 0x10, 0x20, 0x40, 0x80,
  9213. };
  9214. const __m256i mask1 = _mm256_loadu_si256((const __m256i*)k_mask1);
  9215. const __m256i mask2 = _mm256_loadu_si256((const __m256i*)k_mask2);
  9216. const __m256i idx_shift = _mm256_set_epi32(1, 2, 3, 4, 5, 6, 7, 8);
  9217. const __m256i idx_mask = _mm256_set1_epi32(256);
  9218. typedef union {
  9219. __m256i vec[2];
  9220. uint32_t index[16];
  9221. } index_t;
  9222. index_t idx;
  9223. __m256 accumf = _mm256_setzero_ps();
  9224. for (int i = 0; i < nb; ++i) {
  9225. const float d = GGML_FP16_TO_FP32(x[i].d) * y[i].d;
  9226. const uint8_t * restrict qs = x[i].qs;
  9227. const uint8_t * restrict qh = x[i].qh;
  9228. const uint16_t * restrict signs = (const uint16_t *)x[i].signs;
  9229. const int8_t * restrict q8 = y[i].qs;
  9230. __m256i sumi1 = _mm256_setzero_si256();
  9231. __m256i sumi2 = _mm256_setzero_si256();
  9232. for (int ib32 = 0; ib32 < QK_K/32; ib32 += 2) {
  9233. const __m256i q8_1 = _mm256_loadu_si256((const __m256i *)q8); q8 += 32;
  9234. const __m256i q8_2 = _mm256_loadu_si256((const __m256i *)q8); q8 += 32;
  9235. const __m256i idx_l = _mm256_cvtepu8_epi16(_mm_loadu_si128((const __m128i *)qs)); qs += 16;
  9236. idx.vec[0] = _mm256_set1_epi32(qh[ib32+0]);
  9237. idx.vec[1] = _mm256_set1_epi32(qh[ib32+1]);
  9238. idx.vec[0] = _mm256_and_si256(_mm256_sllv_epi32(idx.vec[0], idx_shift), idx_mask);
  9239. idx.vec[1] = _mm256_and_si256(_mm256_sllv_epi32(idx.vec[1], idx_shift), idx_mask);
  9240. idx.vec[0] = _mm256_or_si256(idx.vec[0], _mm256_cvtepi16_epi32(_mm256_castsi256_si128(idx_l)));
  9241. idx.vec[1] = _mm256_or_si256(idx.vec[1], _mm256_cvtepi16_epi32(_mm256_extractf128_si256(idx_l, 1)));
  9242. // At leat on my CPU (Ryzen 7950X), using _mm256_i32gather_epi32 is slower than _mm256_set_epi32. Strange.
  9243. //const __m256i q2_1 = _mm256_i32gather_epi32((const int *)iq3s_grid, idx.vec[0], 4);
  9244. //const __m256i q2_2 = _mm256_i32gather_epi32((const int *)iq3s_grid, idx.vec[1], 4);
  9245. const __m256i q2_1 = _mm256_set_epi32(
  9246. iq3s_grid[idx.index[7]], iq3s_grid[idx.index[6]], iq3s_grid[idx.index[5]], iq3s_grid[idx.index[4]],
  9247. iq3s_grid[idx.index[3]], iq3s_grid[idx.index[2]], iq3s_grid[idx.index[1]], iq3s_grid[idx.index[0]]
  9248. );
  9249. const __m256i q2_2 = _mm256_set_epi32(
  9250. iq3s_grid[idx.index[15]], iq3s_grid[idx.index[14]], iq3s_grid[idx.index[13]], iq3s_grid[idx.index[12]],
  9251. iq3s_grid[idx.index[11]], iq3s_grid[idx.index[10]], iq3s_grid[idx.index[ 9]], iq3s_grid[idx.index[ 8]]
  9252. );
  9253. __m256i aux256 = _mm256_set1_epi32(signs[0] | (signs[1] << 16));
  9254. aux256 = _mm256_and_si256(_mm256_shuffle_epi8(aux256,mask1), mask2);
  9255. const __m256i s2_1 = _mm256_cmpeq_epi8(aux256, mask2);
  9256. const __m256i q8s_1 = _mm256_sub_epi8(_mm256_xor_si256(s2_1, q8_1), s2_1);
  9257. aux256 = _mm256_set1_epi32(signs[2] | (signs[3] << 16));
  9258. aux256 = _mm256_and_si256(_mm256_shuffle_epi8(aux256,mask1), mask2);
  9259. const __m256i s2_2 = _mm256_cmpeq_epi8(aux256, mask2);
  9260. const __m256i q8s_2 = _mm256_sub_epi8(_mm256_xor_si256(s2_2, q8_2), s2_2);
  9261. signs += 4;
  9262. const __m256i dot1 = _mm256_maddubs_epi16(q2_1, q8s_1);
  9263. const __m256i dot2 = _mm256_maddubs_epi16(q2_2, q8s_2);
  9264. const uint16_t ls1 = x[i].scales[ib32/2] & 0xf;
  9265. const uint16_t ls2 = x[i].scales[ib32/2] >> 4;
  9266. const __m256i p1 = _mm256_madd_epi16(dot1, _mm256_set1_epi16(2*ls1+1));
  9267. const __m256i p2 = _mm256_madd_epi16(dot2, _mm256_set1_epi16(2*ls2+1));
  9268. sumi1 = _mm256_add_epi32(sumi1, p1);
  9269. sumi2 = _mm256_add_epi32(sumi2, p2);
  9270. }
  9271. accumf = _mm256_fmadd_ps(_mm256_set1_ps(d), _mm256_cvtepi32_ps(_mm256_add_epi32(sumi1, sumi2)), accumf);
  9272. }
  9273. *s = hsum_float_8(accumf);
  9274. #elif defined(__AVX__)
  9275. static const uint8_t k_mask1[32] = {0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x01, 0x01, 0x01, 0x01, 0x01, 0x01, 0x01, 0x01,
  9276. 0x02, 0x02, 0x02, 0x02, 0x02, 0x02, 0x02, 0x02, 0x03, 0x03, 0x03, 0x03, 0x03, 0x03, 0x03, 0x03
  9277. };
  9278. static const uint8_t k_mask2[32] = {0x01, 0x02, 0x04, 0x08, 0x10, 0x20, 0x40, 0x80, 0x01, 0x02, 0x04, 0x08, 0x10, 0x20, 0x40, 0x80,
  9279. 0x01, 0x02, 0x04, 0x08, 0x10, 0x20, 0x40, 0x80, 0x01, 0x02, 0x04, 0x08, 0x10, 0x20, 0x40, 0x80,
  9280. };
  9281. const __m128i mask1_0 = _mm_loadu_si128((const __m128i*)k_mask1);
  9282. const __m128i mask1_1 = _mm_loadu_si128((const __m128i*)k_mask1 + 1);
  9283. const __m128i mask2_0 = _mm_loadu_si128((const __m128i*)k_mask2);
  9284. const __m128i mask2_1 = _mm_loadu_si128((const __m128i*)k_mask2 + 1);
  9285. const __m128i idx_mul_0 = _mm_set_epi32(32, 64, 128, 256);
  9286. const __m128i idx_mul_1 = _mm_set_epi32(2, 4, 8, 16);
  9287. const __m128i idx_mask = _mm_set1_epi32(256);
  9288. typedef union {
  9289. __m128i vec[4];
  9290. uint32_t index[16];
  9291. } index_t;
  9292. index_t idx;
  9293. __m256 accumf = _mm256_setzero_ps();
  9294. for (int i = 0; i < nb; ++i) {
  9295. const float d = GGML_FP16_TO_FP32(x[i].d) * y[i].d;
  9296. const uint8_t * restrict qs = x[i].qs;
  9297. const uint8_t * restrict qh = x[i].qh;
  9298. const uint16_t * restrict signs = (const uint16_t *)x[i].signs;
  9299. const int8_t * restrict q8 = y[i].qs;
  9300. __m128i sumi1_0 = _mm_setzero_si128();
  9301. __m128i sumi1_1 = _mm_setzero_si128();
  9302. __m128i sumi2_0 = _mm_setzero_si128();
  9303. __m128i sumi2_1 = _mm_setzero_si128();
  9304. for (int ib32 = 0; ib32 < QK_K/32; ib32 += 2) {
  9305. const __m128i q8_1_0 = _mm_loadu_si128((const __m128i *)q8); q8 += 16;
  9306. const __m128i q8_1_1 = _mm_loadu_si128((const __m128i *)q8); q8 += 16;
  9307. const __m128i q8_2_0 = _mm_loadu_si128((const __m128i *)q8); q8 += 16;
  9308. const __m128i q8_2_1 = _mm_loadu_si128((const __m128i *)q8); q8 += 16;
  9309. const __m128i qs_tmp = _mm_loadu_si128((const __m128i *)qs);
  9310. const __m128i idx_l_0 = _mm_cvtepu8_epi16(qs_tmp);
  9311. const __m128i idx_l_1 = _mm_cvtepu8_epi16(_mm_srli_si128(qs_tmp, 8)); qs += 16;
  9312. idx.vec[0] = _mm_set1_epi32(qh[ib32+0]);
  9313. idx.vec[1] = idx.vec[0];
  9314. idx.vec[2] = _mm_set1_epi32(qh[ib32+1]);
  9315. idx.vec[3] = idx.vec[2];
  9316. idx.vec[0] = _mm_and_si128(_mm_mullo_epi32(idx.vec[0], idx_mul_0), idx_mask);
  9317. idx.vec[1] = _mm_and_si128(_mm_mullo_epi32(idx.vec[1], idx_mul_1), idx_mask);
  9318. idx.vec[2] = _mm_and_si128(_mm_mullo_epi32(idx.vec[2], idx_mul_0), idx_mask);
  9319. idx.vec[3] = _mm_and_si128(_mm_mullo_epi32(idx.vec[3], idx_mul_1), idx_mask);
  9320. idx.vec[0] = _mm_or_si128(idx.vec[0], _mm_cvtepi16_epi32(idx_l_0));
  9321. idx.vec[1] = _mm_or_si128(idx.vec[1], _mm_cvtepi16_epi32(_mm_srli_si128(idx_l_0, 8)));
  9322. idx.vec[2] = _mm_or_si128(idx.vec[2], _mm_cvtepi16_epi32(idx_l_1));
  9323. idx.vec[3] = _mm_or_si128(idx.vec[3], _mm_cvtepi16_epi32(_mm_srli_si128(idx_l_1, 8)));
  9324. const __m128i q2_1_0 = _mm_set_epi32(iq3s_grid[idx.index[3]], iq3s_grid[idx.index[2]], iq3s_grid[idx.index[1]], iq3s_grid[idx.index[0]]);
  9325. const __m128i q2_1_1 = _mm_set_epi32(iq3s_grid[idx.index[7]], iq3s_grid[idx.index[6]], iq3s_grid[idx.index[5]], iq3s_grid[idx.index[4]]);
  9326. const __m128i q2_2_0 = _mm_set_epi32(iq3s_grid[idx.index[11]], iq3s_grid[idx.index[10]], iq3s_grid[idx.index[9]], iq3s_grid[idx.index[8]]);
  9327. const __m128i q2_2_1 = _mm_set_epi32(iq3s_grid[idx.index[15]], iq3s_grid[idx.index[14]], iq3s_grid[idx.index[13]], iq3s_grid[idx.index[12]]);
  9328. __m128i aux128_0 = _mm_set1_epi32(signs[0] | (signs[1] << 16));
  9329. __m128i aux128_1 = aux128_0;
  9330. aux128_0 = _mm_and_si128(_mm_shuffle_epi8(aux128_0,mask1_0), mask2_0);
  9331. aux128_1 = _mm_and_si128(_mm_shuffle_epi8(aux128_1,mask1_1), mask2_1);
  9332. const __m128i s2_1_0 = _mm_cmpeq_epi8(aux128_0, mask2_0);
  9333. const __m128i s2_1_1 = _mm_cmpeq_epi8(aux128_1, mask2_1);
  9334. const __m128i q8s_1_0 = _mm_sub_epi8(_mm_xor_si128(s2_1_0, q8_1_0), s2_1_0);
  9335. const __m128i q8s_1_1 = _mm_sub_epi8(_mm_xor_si128(s2_1_1, q8_1_1), s2_1_1);
  9336. aux128_0 = _mm_set1_epi32(signs[2] | (signs[3] << 16));
  9337. aux128_1 = aux128_0;
  9338. aux128_0 = _mm_and_si128(_mm_shuffle_epi8(aux128_0,mask1_0), mask2_0);
  9339. aux128_1 = _mm_and_si128(_mm_shuffle_epi8(aux128_1,mask1_1), mask2_1);
  9340. const __m128i s2_2_0 = _mm_cmpeq_epi8(aux128_0, mask2_0);
  9341. const __m128i s2_2_1 = _mm_cmpeq_epi8(aux128_1, mask2_1);
  9342. const __m128i q8s_2_0 = _mm_sub_epi8(_mm_xor_si128(s2_2_0, q8_2_0), s2_2_0);
  9343. const __m128i q8s_2_1 = _mm_sub_epi8(_mm_xor_si128(s2_2_1, q8_2_1), s2_2_1);
  9344. signs += 4;
  9345. const __m128i dot1_0 = _mm_maddubs_epi16(q2_1_0, q8s_1_0);
  9346. const __m128i dot1_1 = _mm_maddubs_epi16(q2_1_1, q8s_1_1);
  9347. const __m128i dot2_0 = _mm_maddubs_epi16(q2_2_0, q8s_2_0);
  9348. const __m128i dot2_1 = _mm_maddubs_epi16(q2_2_1, q8s_2_1);
  9349. const uint16_t ls1 = x[i].scales[ib32/2] & 0xf;
  9350. const uint16_t ls2 = x[i].scales[ib32/2] >> 4;
  9351. const __m128i p1_0 = _mm_madd_epi16(dot1_0, _mm_set1_epi16(2*ls1+1));
  9352. const __m128i p1_1 = _mm_madd_epi16(dot1_1, _mm_set1_epi16(2*ls1+1));
  9353. const __m128i p2_0 = _mm_madd_epi16(dot2_0, _mm_set1_epi16(2*ls2+1));
  9354. const __m128i p2_1 = _mm_madd_epi16(dot2_1, _mm_set1_epi16(2*ls2+1));
  9355. sumi1_0 = _mm_add_epi32(sumi1_0, p1_0);
  9356. sumi1_1 = _mm_add_epi32(sumi1_1, p1_1);
  9357. sumi2_0 = _mm_add_epi32(sumi2_0, p2_0);
  9358. sumi2_1 = _mm_add_epi32(sumi2_1, p2_1);
  9359. }
  9360. accumf = _mm256_add_ps(_mm256_mul_ps(_mm256_set1_ps(d), _mm256_cvtepi32_ps(MM256_SET_M128I(_mm_add_epi32(sumi1_1, sumi2_1), _mm_add_epi32(sumi1_0, sumi2_0)))), accumf);
  9361. }
  9362. *s = hsum_float_8(accumf);
  9363. #elif defined(__POWER9_VECTOR__)
  9364. static const uint8_t k_mask1[32] = {0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x01, 0x01, 0x01, 0x01, 0x01, 0x01, 0x01, 0x01,
  9365. 0x02, 0x02, 0x02, 0x02, 0x02, 0x02, 0x02, 0x02, 0x03, 0x03, 0x03, 0x03, 0x03, 0x03, 0x03, 0x03
  9366. };
  9367. static const uint8_t k_mask2[16] = {0x01, 0x02, 0x04, 0x08, 0x10, 0x20, 0x40, 0x80, 0x01, 0x02, 0x04, 0x08, 0x10, 0x20, 0x40, 0x80,};
  9368. const vector int v0 = vec_splats((int32_t)0);
  9369. vector float vsumf0 = vec_splats(0.0f);
  9370. vector float vsumf1 = vec_splats(0.0f);
  9371. vector float vsumf2 = vec_splats(0.0f);
  9372. vector float vsumf3 = vec_splats(0.0f);
  9373. const vector unsigned char mask0 = vec_xl( 0, k_mask1);
  9374. const vector unsigned char mask1 = vec_xl(16, k_mask1);
  9375. const vector signed char mask2 = (vector signed char)vec_xl( 0, k_mask2);
  9376. for (int i = 0; i < nb; ++i) {
  9377. vector float vxd = vec_splats(GGML_FP16_TO_FP32(x[i].d));
  9378. vector float vyd = vec_splats(y[i].d);
  9379. vector float vd = vec_mul(vxd, vyd);
  9380. const uint8_t * restrict q3 = x[i].qs;
  9381. const uint8_t * restrict qh = x[i].qh;
  9382. const uint16_t * restrict signs = (const uint16_t *)(x[i].signs);
  9383. const uint8_t * restrict sc = x[i].scales;
  9384. const int8_t * restrict q8 = y[i].qs;
  9385. vector signed int vsumi0 = v0;
  9386. vector signed int vsumi1 = v0;
  9387. vector signed int vsumi2 = v0;
  9388. vector signed int vsumi3 = v0;
  9389. for (int j = 0; j < QK_K/32; j += 2) {
  9390. __builtin_prefetch(q3, 0, 1);
  9391. __builtin_prefetch(q8, 0, 1);
  9392. vector unsigned int aux32x4_0 = {iq3s_grid[q3[ 0] | ((qh[0] << 8) & 256)], iq3s_grid[q3[ 1] | ((qh[0] << 7) & 256)],
  9393. iq3s_grid[q3[ 2] | ((qh[0] << 6) & 256)], iq3s_grid[q3[ 3] | ((qh[0] << 5) & 256)]};
  9394. vector unsigned int aux32x4_1 = {iq3s_grid[q3[ 4] | ((qh[0] << 4) & 256)], iq3s_grid[q3[ 5] | ((qh[0] << 3) & 256)],
  9395. iq3s_grid[q3[ 6] | ((qh[0] << 2) & 256)], iq3s_grid[q3[ 7] | ((qh[0] << 1) & 256)]};
  9396. vector unsigned int aux32x4_2 = {iq3s_grid[q3[ 8] | ((qh[1] << 8) & 256)], iq3s_grid[q3[ 9] | ((qh[1] << 7) & 256)],
  9397. iq3s_grid[q3[10] | ((qh[1] << 6) & 256)], iq3s_grid[q3[11] | ((qh[1] << 5) & 256)]};
  9398. vector unsigned int aux32x4_3 = {iq3s_grid[q3[12] | ((qh[1] << 4) & 256)], iq3s_grid[q3[13] | ((qh[1] << 3) & 256)],
  9399. iq3s_grid[q3[14] | ((qh[1] << 2) & 256)], iq3s_grid[q3[15] | ((qh[1] << 1) & 256)]};
  9400. q3 += 16;
  9401. qh += 2;
  9402. vector signed char vsigns01 = (vector signed char)vec_splats(*(const uint32_t *)&signs[0]);
  9403. vector signed char vsigns02 = (vector signed char)vec_splats(*(const uint32_t *)&signs[2]);
  9404. signs += 4;
  9405. vector signed char vsigns0 = vec_perm(vsigns01, vsigns01, mask0);
  9406. vector signed char vsigns1 = vec_perm(vsigns01, vsigns01, mask1);
  9407. vector signed char vsigns2 = vec_perm(vsigns02, vsigns02, mask0);
  9408. vector signed char vsigns3 = vec_perm(vsigns02, vsigns02, mask1);
  9409. vsigns0 = (vector signed char)vec_cmpeq(vec_and(vsigns0, mask2), mask2);
  9410. vsigns1 = (vector signed char)vec_cmpeq(vec_and(vsigns1, mask2), mask2);
  9411. vsigns2 = (vector signed char)vec_cmpeq(vec_and(vsigns2, mask2), mask2);
  9412. vsigns3 = (vector signed char)vec_cmpeq(vec_and(vsigns3, mask2), mask2);
  9413. vector signed char q3x0 = vec_sub(vec_xor(vsigns0, (vector signed char)aux32x4_0), vsigns0);
  9414. vector signed char q3x1 = vec_sub(vec_xor(vsigns1, (vector signed char)aux32x4_1), vsigns1);
  9415. vector signed char q3x2 = vec_sub(vec_xor(vsigns2, (vector signed char)aux32x4_2), vsigns2);
  9416. vector signed char q3x3 = vec_sub(vec_xor(vsigns3, (vector signed char)aux32x4_3), vsigns3);
  9417. vector signed char q8y0 = vec_xl( 0, q8);
  9418. vector signed char q8y1 = vec_xl(16, q8);
  9419. vector signed char q8y2 = vec_xl(32, q8);
  9420. vector signed char q8y3 = vec_xl(48, q8);
  9421. q8 += 64;
  9422. vector signed short qv0 = vec_add(vec_mule(q3x0, q8y0), vec_mulo(q3x0, q8y0));
  9423. vector signed short qv1 = vec_add(vec_mule(q3x1, q8y1), vec_mulo(q3x1, q8y1));
  9424. vector signed short qv2 = vec_add(vec_mule(q3x2, q8y2), vec_mulo(q3x2, q8y2));
  9425. vector signed short qv3 = vec_add(vec_mule(q3x3, q8y3), vec_mulo(q3x3, q8y3));
  9426. const uint16_t ls0 = (uint16_t)(sc[0] & 0xf);
  9427. const uint16_t ls1 = (uint16_t)(sc[0] >> 4);
  9428. sc ++;
  9429. vector signed short vscales01 = (vector signed short)vec_splats((uint16_t)(2*ls0+1));
  9430. vector signed short vscales23 = (vector signed short)vec_splats((uint16_t)(2*ls1+1));
  9431. vsumi0 = vec_msum(qv0, vscales01, vsumi0);
  9432. vsumi1 = vec_msum(qv1, vscales01, vsumi1);
  9433. vsumi2 = vec_msum(qv2, vscales23, vsumi2);
  9434. vsumi3 = vec_msum(qv3, vscales23, vsumi3);
  9435. }
  9436. vsumf0 = vec_madd(vec_ctf(vsumi0, 0), vd, vsumf0);
  9437. vsumf1 = vec_madd(vec_ctf(vsumi1, 0), vd, vsumf1);
  9438. vsumf2 = vec_madd(vec_ctf(vsumi2, 0), vd, vsumf2);
  9439. vsumf3 = vec_madd(vec_ctf(vsumi3, 0), vd, vsumf3);
  9440. }
  9441. vsumf0 = vec_add(vsumf0, vsumf2);
  9442. vsumf1 = vec_add(vsumf1, vsumf3);
  9443. vsumf0 = vec_add(vsumf0, vsumf1);
  9444. vsumf0 = vec_add(vsumf0, vec_sld(vsumf0, vsumf0, 4));
  9445. vsumf0 = vec_add(vsumf0, vec_sld(vsumf0, vsumf0, 8));
  9446. *s = vec_extract(vsumf0, 0);
  9447. #elif defined(__loongarch_asx)
  9448. static const uint8_t k_mask1[32] = {0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x01, 0x01, 0x01, 0x01, 0x01, 0x01, 0x01, 0x01,
  9449. 0x02, 0x02, 0x02, 0x02, 0x02, 0x02, 0x02, 0x02, 0x03, 0x03, 0x03, 0x03, 0x03, 0x03, 0x03, 0x03
  9450. };
  9451. static const uint8_t k_mask2[32] = {0x01, 0x02, 0x04, 0x08, 0x10, 0x20, 0x40, 0x80, 0x01, 0x02, 0x04, 0x08, 0x10, 0x20, 0x40, 0x80,
  9452. 0x01, 0x02, 0x04, 0x08, 0x10, 0x20, 0x40, 0x80, 0x01, 0x02, 0x04, 0x08, 0x10, 0x20, 0x40, 0x80,
  9453. };
  9454. const __m256i mask1 = __lasx_xvld((const __m256i*)k_mask1, 0);
  9455. const __m256i mask2 = __lasx_xvld((const __m256i*)k_mask2, 0);
  9456. __m256i idx_shift = lasx_set_w(1, 2, 3, 4, 5, 6, 7, 8);
  9457. const __m256i idx_mask = __lasx_xvreplgr2vr_w(256);
  9458. typedef union {
  9459. __m256i vec[2];
  9460. uint32_t index[16];
  9461. } index_t;
  9462. index_t idx;
  9463. __m256 accumf = (__m256)__lasx_xvldi(0);
  9464. for (int i = 0; i < nb; ++i) {
  9465. const float d = GGML_FP16_TO_FP32(x[i].d) * y[i].d;
  9466. const uint8_t * restrict qs = x[i].qs;
  9467. const uint8_t * restrict qh = x[i].qh;
  9468. const uint16_t * restrict signs = (const uint16_t *)x[i].signs;
  9469. const int8_t * restrict q8 = y[i].qs;
  9470. __m256i sumi1 = __lasx_xvldi(0);
  9471. __m256i sumi2 = __lasx_xvldi(0);
  9472. for (int ib32 = 0; ib32 < QK_K/32; ib32 += 2) {
  9473. const __m256i q8_1 = __lasx_xvld((const __m256i *)q8, 0); q8 += 32;
  9474. const __m256i q8_2 = __lasx_xvld((const __m256i *)q8, 0); q8 += 32;
  9475. const __m256i idx_l = lasx_extu8_16(__lsx_vld(qs, 0)); qs += 16;
  9476. idx.vec[0] = __lasx_xvreplgr2vr_w(qh[ib32+0]);
  9477. idx.vec[1] = __lasx_xvreplgr2vr_w(qh[ib32+1]);
  9478. idx.vec[0] = __lasx_xvand_v(__lasx_xvsll_w(idx.vec[0], idx_shift), idx_mask);
  9479. idx.vec[1] = __lasx_xvand_v(__lasx_xvsll_w(idx.vec[1], idx_shift), idx_mask);
  9480. idx.vec[0] = __lasx_xvor_v(idx.vec[0], lasx_ext16_32(lasx_extracti128(idx_l, 0)));
  9481. idx.vec[1] = __lasx_xvor_v(idx.vec[1], lasx_ext16_32(lasx_extracti128(idx_l, 1)));
  9482. // At leat on my CPU (Ryzen 7950X), using _mm256_i32gather_epi32 is slower than _mm256_set_epi32. Strange.
  9483. //const __m256i q2_1 = _mm256_i32gather_epi32((const int *)iq3s_grid, idx.vec[0], 4);
  9484. //const __m256i q2_2 = _mm256_i32gather_epi32((const int *)iq3s_grid, idx.vec[1], 4);
  9485. const __m256i q2_1 = lasx_set_w(
  9486. iq3s_grid[idx.index[7]], iq3s_grid[idx.index[6]], iq3s_grid[idx.index[5]], iq3s_grid[idx.index[4]],
  9487. iq3s_grid[idx.index[3]], iq3s_grid[idx.index[2]], iq3s_grid[idx.index[1]], iq3s_grid[idx.index[0]]
  9488. );
  9489. const __m256i q2_2 = lasx_set_w(
  9490. iq3s_grid[idx.index[15]], iq3s_grid[idx.index[14]], iq3s_grid[idx.index[13]], iq3s_grid[idx.index[12]],
  9491. iq3s_grid[idx.index[11]], iq3s_grid[idx.index[10]], iq3s_grid[idx.index[ 9]], iq3s_grid[idx.index[ 8]]
  9492. );
  9493. __m256i aux256 = __lasx_xvreplgr2vr_w(signs[0] | (signs[1] << 16));
  9494. aux256 = __lasx_xvand_v(lasx_shuffle_b(aux256,mask1), mask2);
  9495. const __m256i s2_1 = __lasx_xvseq_b(aux256, mask2);
  9496. const __m256i q8s_1 = __lasx_xvsub_b(__lasx_xvxor_v(s2_1, q8_1), s2_1);
  9497. aux256 = __lasx_xvreplgr2vr_w(signs[2] | (signs[3] << 16));
  9498. aux256 = __lasx_xvand_v(lasx_shuffle_b(aux256,mask1), mask2);
  9499. const __m256i s2_2 = __lasx_xvseq_b(aux256, mask2);
  9500. const __m256i q8s_2 = __lasx_xvsub_b(__lasx_xvxor_v(s2_2, q8_2), s2_2);
  9501. signs += 4;
  9502. const __m256i dot1 = lasx_maddubs_h(q2_1, q8s_1);
  9503. const __m256i dot2 = lasx_maddubs_h(q2_2, q8s_2);
  9504. const uint16_t ls1 = x[i].scales[ib32/2] & 0xf;
  9505. const uint16_t ls2 = x[i].scales[ib32/2] >> 4;
  9506. const __m256i p1 = lasx_madd_h(dot1, __lasx_xvreplgr2vr_h(2*ls1+1));
  9507. const __m256i p2 = lasx_madd_h(dot2, __lasx_xvreplgr2vr_h(2*ls2+1));
  9508. sumi1 = __lasx_xvadd_w(sumi1, p1);
  9509. sumi2 = __lasx_xvadd_w(sumi2, p2);
  9510. }
  9511. accumf = __lasx_xvfmadd_s(__lasx_xvreplfr2vr_s(d), __lasx_xvffint_s_w(__lasx_xvadd_w(sumi1, sumi2)), accumf);
  9512. }
  9513. *s = hsum_float_8(accumf);
  9514. #else
  9515. float sumf = 0.f;
  9516. for (int i = 0; i < nb; ++i) {
  9517. const float d = GGML_FP16_TO_FP32(x[i].d) * y[i].d;
  9518. const uint8_t * restrict qs = x[i].qs;
  9519. const uint8_t * restrict qh = x[i].qh;
  9520. const uint8_t * restrict signs = x[i].signs;
  9521. const int8_t * restrict q8 = y[i].qs;
  9522. int32_t bsum = 0;
  9523. for (int ib32 = 0; ib32 < QK_K/32; ib32 += 2) {
  9524. const uint32_t ls1 = 2*(x[i].scales[ib32/2] & 0xf) + 1;
  9525. const uint32_t ls2 = 2*(x[i].scales[ib32/2] >> 4) + 1;
  9526. int32_t sumi = 0;
  9527. for (int l = 0; l < 4; ++l) {
  9528. const uint8_t * grid1 = (const uint8_t *)(iq3s_grid + (qs[2*l+0] | ((qh[ib32+0] << (8-2*l)) & 256)));
  9529. const uint8_t * grid2 = (const uint8_t *)(iq3s_grid + (qs[2*l+1] | ((qh[ib32+0] << (7-2*l)) & 256)));
  9530. for (int j = 0; j < 4; ++j) {
  9531. sumi += grid1[j] * q8[j+0] * (signs[l] & kmask_iq2xs[j+0] ? -1 : 1);
  9532. sumi += grid2[j] * q8[j+4] * (signs[l] & kmask_iq2xs[j+4] ? -1 : 1);
  9533. }
  9534. q8 += 8;
  9535. }
  9536. qs += 8;
  9537. signs += 4;
  9538. bsum += sumi * ls1;
  9539. sumi = 0;
  9540. for (int l = 0; l < 4; ++l) {
  9541. const uint8_t * grid1 = (const uint8_t *)(iq3s_grid + (qs[2*l+0] | ((qh[ib32+1] << (8-2*l)) & 256)));
  9542. const uint8_t * grid2 = (const uint8_t *)(iq3s_grid + (qs[2*l+1] | ((qh[ib32+1] << (7-2*l)) & 256)));
  9543. for (int j = 0; j < 4; ++j) {
  9544. sumi += grid1[j] * q8[j+0] * (signs[l] & kmask_iq2xs[j+0] ? -1 : 1);
  9545. sumi += grid2[j] * q8[j+4] * (signs[l] & kmask_iq2xs[j+4] ? -1 : 1);
  9546. }
  9547. q8 += 8;
  9548. }
  9549. qs += 8;
  9550. signs += 4;
  9551. bsum += sumi * ls2;
  9552. }
  9553. sumf += d * bsum;
  9554. }
  9555. *s = sumf;
  9556. #endif
  9557. }
  9558. #if defined(__AVX2__)
  9559. static inline __m256i mul_add_epi8(const __m256i x, const __m256i y) {
  9560. const __m256i ax = _mm256_sign_epi8(x, x);
  9561. const __m256i sy = _mm256_sign_epi8(y, x);
  9562. return _mm256_maddubs_epi16(ax, sy);
  9563. }
  9564. #elif defined(__loongarch_asx)
  9565. static inline __m256i mul_add_epi8(const __m256i x, const __m256i y) {
  9566. const __m256i ax = __lasx_xvsigncov_b(x, x);
  9567. const __m256i sy = __lasx_xvsigncov_b(x, y);
  9568. __m256i tmp1, tmp2, tmp3;
  9569. tmp1 = __lasx_xvmulwev_h_bu_b(ax, sy);
  9570. tmp2 = __lasx_xvmulwod_h_bu_b(ax, sy);
  9571. tmp3 = __lasx_xvadd_h(tmp1, tmp2);
  9572. return __lasx_xvsat_h(tmp3, 15);
  9573. }
  9574. #endif
  9575. void ggml_vec_dot_iq1_s_q8_K (int n, float * restrict s, size_t bs, const void * restrict vx, size_t bx, const void * restrict vy, size_t by, int nrc) {
  9576. assert(n % QK_K == 0);
  9577. assert(nrc == 1);
  9578. UNUSED(nrc);
  9579. UNUSED(bx);
  9580. UNUSED(by);
  9581. UNUSED(bs);
  9582. const block_iq1_s * restrict x = vx;
  9583. const block_q8_K * restrict y = vy;
  9584. const int nb = n / QK_K;
  9585. #if defined __ARM_NEON
  9586. ggml_int8x16x4_t q1b;
  9587. ggml_int8x16x4_t q8b;
  9588. float sumf = 0;
  9589. for (int i = 0; i < nb; ++i) {
  9590. const int8_t * q8 = y[i].qs;
  9591. const uint8_t * qs = x[i].qs;
  9592. const uint16_t * qh = x[i].qh;
  9593. int sumi1 = 0, sumi2 = 0, sumi3 = 0;
  9594. for (int ib = 0; ib < QK_K/32; ib += 2) {
  9595. q1b.val[0] = vcombine_s8(vld1_s8((const int8_t *)(iq1s_grid + (qs[0] | ((qh[ib+0] << 8) & 0x700)))),
  9596. vld1_s8((const int8_t *)(iq1s_grid + (qs[1] | ((qh[ib+0] << 5) & 0x700)))));
  9597. q1b.val[1] = vcombine_s8(vld1_s8((const int8_t *)(iq1s_grid + (qs[2] | ((qh[ib+0] << 2) & 0x700)))),
  9598. vld1_s8((const int8_t *)(iq1s_grid + (qs[3] | ((qh[ib+0] >> 1) & 0x700)))));
  9599. q1b.val[2] = vcombine_s8(vld1_s8((const int8_t *)(iq1s_grid + (qs[4] | ((qh[ib+1] << 8) & 0x700)))),
  9600. vld1_s8((const int8_t *)(iq1s_grid + (qs[5] | ((qh[ib+1] << 5) & 0x700)))));
  9601. q1b.val[3] = vcombine_s8(vld1_s8((const int8_t *)(iq1s_grid + (qs[6] | ((qh[ib+1] << 2) & 0x700)))),
  9602. vld1_s8((const int8_t *)(iq1s_grid + (qs[7] | ((qh[ib+1] >> 1) & 0x700)))));
  9603. qs += 8;
  9604. q8b = ggml_vld1q_s8_x4(q8); q8 += 64;
  9605. const int32x4_t p1 = ggml_vdotq_s32(ggml_vdotq_s32(vdupq_n_s32(0), q1b.val[0], q8b.val[0]), q1b.val[1], q8b.val[1]);
  9606. const int32x4_t p2 = ggml_vdotq_s32(ggml_vdotq_s32(vdupq_n_s32(0), q1b.val[2], q8b.val[2]), q1b.val[3], q8b.val[3]);
  9607. const int ls1 = 2*((qh[ib+0] >> 12) & 7) + 1;
  9608. const int ls2 = 2*((qh[ib+1] >> 12) & 7) + 1;
  9609. sumi1 += vaddvq_s32(p1) * ls1;
  9610. sumi2 += vaddvq_s32(p2) * ls2;
  9611. sumi3 += (y[i].bsums[2*ib+0] + y[i].bsums[2*ib+1]) * ls1 * (qh[ib+0] & 0x8000 ? -1 : 1)
  9612. + (y[i].bsums[2*ib+2] + y[i].bsums[2*ib+3]) * ls2 * (qh[ib+1] & 0x8000 ? -1 : 1);
  9613. }
  9614. sumf += y[i].d * GGML_FP16_TO_FP32(x[i].d) * (sumi1 + sumi2 + IQ1S_DELTA * sumi3);
  9615. }
  9616. *s = sumf;
  9617. #elif defined __AVX2__
  9618. __m256 accum = _mm256_setzero_ps();
  9619. float accum1 = 0;
  9620. for (int i = 0; i < nb; ++i) {
  9621. const int8_t * q8 = y[i].qs;
  9622. const uint8_t * qs = x[i].qs;
  9623. const uint16_t * qh = x[i].qh;
  9624. __m256i sumi = _mm256_setzero_si256();
  9625. int sumi1 = 0;
  9626. for (int ib = 0; ib < QK_K/32; ib += 2) {
  9627. const __m256i q1b_1 = _mm256_set_epi64x(iq1s_grid[qs[3] | ((qh[ib+0] >> 1) & 0x700)], iq1s_grid[qs[2] | ((qh[ib+0] << 2) & 0x700)],
  9628. iq1s_grid[qs[1] | ((qh[ib+0] << 5) & 0x700)], iq1s_grid[qs[0] | ((qh[ib+0] << 8) & 0x700)]);
  9629. const __m256i q1b_2 = _mm256_set_epi64x(iq1s_grid[qs[7] | ((qh[ib+1] >> 1) & 0x700)], iq1s_grid[qs[6] | ((qh[ib+1] << 2) & 0x700)],
  9630. iq1s_grid[qs[5] | ((qh[ib+1] << 5) & 0x700)], iq1s_grid[qs[4] | ((qh[ib+1] << 8) & 0x700)]);
  9631. qs += 8;
  9632. const __m256i q8b_1 = _mm256_loadu_si256((const __m256i*)q8); q8 += 32;
  9633. const __m256i q8b_2 = _mm256_loadu_si256((const __m256i*)q8); q8 += 32;
  9634. const __m256i dot1 = mul_add_epi8(q1b_1, q8b_1);
  9635. const __m256i dot2 = mul_add_epi8(q1b_2, q8b_2);
  9636. const int16_t ls1 = 2*((qh[ib+0] >> 12) & 7) + 1;
  9637. const int16_t ls2 = 2*((qh[ib+1] >> 12) & 7) + 1;
  9638. const __m256i p1 = _mm256_madd_epi16(dot1, _mm256_set1_epi16(ls1));
  9639. const __m256i p2 = _mm256_madd_epi16(dot2, _mm256_set1_epi16(ls2));
  9640. sumi = _mm256_add_epi32(sumi, _mm256_add_epi32(p1, p2));
  9641. sumi1 += (y[i].bsums[2*ib+0] + y[i].bsums[2*ib+1]) * (qh[ib+0] & 0x8000 ? -1 : 1) * ls1
  9642. + (y[i].bsums[2*ib+2] + y[i].bsums[2*ib+3]) * (qh[ib+1] & 0x8000 ? -1 : 1) * ls2;
  9643. }
  9644. const float d = y[i].d * GGML_FP16_TO_FP32(x[i].d);
  9645. accum = _mm256_fmadd_ps(_mm256_set1_ps(d), _mm256_cvtepi32_ps(sumi), accum);
  9646. accum1 += d * sumi1;
  9647. }
  9648. *s = hsum_float_8(accum) + IQ1S_DELTA * accum1;
  9649. #elif defined __AVX__
  9650. __m256 accum = _mm256_setzero_ps();
  9651. float accum1 = 0;
  9652. for (int i = 0; i < nb; ++i) {
  9653. const int8_t * q8 = y[i].qs;
  9654. const uint8_t * qs = x[i].qs;
  9655. const uint16_t * qh = x[i].qh;
  9656. __m128i sumi1_0 = _mm_setzero_si128();
  9657. __m128i sumi1_1 = _mm_setzero_si128();
  9658. int sumi1 = 0;
  9659. for (int ib = 0; ib < QK_K/32; ib += 2) {
  9660. const __m128i q1b_1_0 = _mm_set_epi64x(iq1s_grid[qs[1] | ((qh[ib+0] << 5) & 0x700)], iq1s_grid[qs[0] | ((qh[ib+0] << 8) & 0x700)]);
  9661. const __m128i q1b_1_1 = _mm_set_epi64x(iq1s_grid[qs[3] | ((qh[ib+0] >> 1) & 0x700)], iq1s_grid[qs[2] | ((qh[ib+0] << 2) & 0x700)]);
  9662. const __m128i q1b_2_0 = _mm_set_epi64x(iq1s_grid[qs[5] | ((qh[ib+1] << 5) & 0x700)], iq1s_grid[qs[4] | ((qh[ib+1] << 8) & 0x700)]);
  9663. const __m128i q1b_2_1 = _mm_set_epi64x(iq1s_grid[qs[7] | ((qh[ib+1] >> 1) & 0x700)], iq1s_grid[qs[6] | ((qh[ib+1] << 2) & 0x700)]);
  9664. qs += 8;
  9665. const __m128i q8b_1_0 = _mm_loadu_si128((const __m128i *)q8); q8 += 16;
  9666. const __m128i q8b_1_1 = _mm_loadu_si128((const __m128i *)q8); q8 += 16;
  9667. const __m128i q8b_2_0 = _mm_loadu_si128((const __m128i *)q8); q8 += 16;
  9668. const __m128i q8b_2_1 = _mm_loadu_si128((const __m128i *)q8); q8 += 16;
  9669. const __m128i dot1_0 = mul_add_epi8_sse(q1b_1_0, q8b_1_0);
  9670. const __m128i dot1_1 = mul_add_epi8_sse(q1b_1_1, q8b_1_1);
  9671. const __m128i dot2_0 = mul_add_epi8_sse(q1b_2_0, q8b_2_0);
  9672. const __m128i dot2_1 = mul_add_epi8_sse(q1b_2_1, q8b_2_1);
  9673. const int16_t ls1 = 2*((qh[ib+0] >> 12) & 7) + 1;
  9674. const int16_t ls2 = 2*((qh[ib+1] >> 12) & 7) + 1;
  9675. const __m128i p1_0 = _mm_madd_epi16(dot1_0, _mm_set1_epi16(ls1));
  9676. const __m128i p1_1 = _mm_madd_epi16(dot1_1, _mm_set1_epi16(ls1));
  9677. const __m128i p2_0 = _mm_madd_epi16(dot2_0, _mm_set1_epi16(ls2));
  9678. const __m128i p2_1 = _mm_madd_epi16(dot2_1, _mm_set1_epi16(ls2));
  9679. sumi1_0 = _mm_add_epi32(sumi1_0, _mm_add_epi32(p1_0, p2_0));
  9680. sumi1_1 = _mm_add_epi32(sumi1_1, _mm_add_epi32(p1_1, p2_1));
  9681. sumi1 += (y[i].bsums[2*ib+0] + y[i].bsums[2*ib+1]) * (qh[ib+0] & 0x8000 ? -1 : 1) * ls1
  9682. + (y[i].bsums[2*ib+2] + y[i].bsums[2*ib+3]) * (qh[ib+1] & 0x8000 ? -1 : 1) * ls2;
  9683. }
  9684. const float d = y[i].d * GGML_FP16_TO_FP32(x[i].d);
  9685. accum = _mm256_add_ps(_mm256_mul_ps(_mm256_set1_ps(d), _mm256_cvtepi32_ps(MM256_SET_M128I(sumi1_1, sumi1_0))), accum);
  9686. accum1 += d * sumi1;
  9687. }
  9688. *s = hsum_float_8(accum) + IQ1S_DELTA * accum1;
  9689. #elif defined(__POWER9_VECTOR__)
  9690. const vector unsigned char v0 = vec_splats((unsigned char)0x0);
  9691. const vector unsigned short vsign = vec_splats((unsigned short)0x8000);
  9692. vector float vsumf0 = vec_splats(0.0f);
  9693. vector float vsumf1 = vec_splats(0.0f);
  9694. vector float vsumf2 = vec_splats(0.0f);
  9695. vector float vsumf3 = vec_splats(0.0f);
  9696. for (int i = 0; i < nb; ++i) {
  9697. vector float vxd = vec_splats(GGML_FP16_TO_FP32(x[i].d));
  9698. vector float vyd = vec_splats(y[i].d);
  9699. vector float vd = vec_mul(vxd, vyd);
  9700. vector signed int vsumi0 = vec_splats((int32_t)0);
  9701. vector signed int vsumi1 = vec_splats((int32_t)0);
  9702. vector signed int vsumi2 = vec_splats((int32_t)0);
  9703. vector signed int vsumi3 = vec_splats((int32_t)0);
  9704. vector signed int vsumi8 = vec_splats((int32_t)0);
  9705. const uint8_t * restrict q1 = x[i].qs;
  9706. const uint16_t * restrict qh = x[i].qh;
  9707. const int8_t * restrict q8 = y[i].qs;
  9708. const int16_t * restrict qs = y[i].bsums;
  9709. for (int j = 0; j < QK_K/32; j += 2) {
  9710. __builtin_prefetch(q1, 0, 1);
  9711. __builtin_prefetch(qh, 0, 1);
  9712. __builtin_prefetch(q8, 0, 1);
  9713. vector signed long long aux64x2_0 = {*(const int64_t *)(iq1s_grid + (q1[0] | ((qh[0] << 8) & 0x700))), *(const int64_t *)(iq1s_grid + (q1[1] | ((qh[0] << 5) & 0x700)))};
  9714. vector signed long long aux64x2_1 = {*(const int64_t *)(iq1s_grid + (q1[2] | ((qh[0] << 2) & 0x700))), *(const int64_t *)(iq1s_grid + (q1[3] | ((qh[0] >> 1) & 0x700)))};
  9715. vector signed long long aux64x2_2 = {*(const int64_t *)(iq1s_grid + (q1[4] | ((qh[1] << 8) & 0x700))), *(const int64_t *)(iq1s_grid + (q1[5] | ((qh[1] << 5) & 0x700)))};
  9716. vector signed long long aux64x2_3 = {*(const int64_t *)(iq1s_grid + (q1[6] | ((qh[1] << 2) & 0x700))), *(const int64_t *)(iq1s_grid + (q1[7] | ((qh[1] >> 1) & 0x700)))};
  9717. q1 += 8;
  9718. vector signed char q1x0 = (vector signed char)aux64x2_0;
  9719. vector signed char q1x1 = (vector signed char)aux64x2_1;
  9720. vector signed char q1x2 = (vector signed char)aux64x2_2;
  9721. vector signed char q1x3 = (vector signed char)aux64x2_3;
  9722. vector signed char q8y0 = vec_xl( 0, q8);
  9723. vector signed char q8y1 = vec_xl(16, q8);
  9724. vector signed char q8y2 = vec_xl(32, q8);
  9725. vector signed char q8y3 = vec_xl(48, q8);
  9726. q8 += 64;
  9727. vector signed short qv0 = vec_add(vec_mule(q1x0, q8y0), vec_mulo(q1x0, q8y0));
  9728. vector signed short qv1 = vec_add(vec_mule(q1x1, q8y1), vec_mulo(q1x1, q8y1));
  9729. vector signed short qv2 = vec_add(vec_mule(q1x2, q8y2), vec_mulo(q1x2, q8y2));
  9730. vector signed short qv3 = vec_add(vec_mule(q1x3, q8y3), vec_mulo(q1x3, q8y3));
  9731. const uint16_t ls0 = (uint16_t)((qh[0] >> 12) & 7);
  9732. const uint16_t ls1 = (uint16_t)((qh[1] >> 12) & 7);
  9733. vector signed short vscales01 = (vector signed short)vec_splats((uint16_t)(2*ls0+1));
  9734. vector signed short vscales23 = (vector signed short)vec_splats((uint16_t)(2*ls1+1));
  9735. vector signed short vscales = vec_sld(vscales23, vscales01, 8);
  9736. vsumi0 = vec_msum(qv0, vscales01, vsumi0);
  9737. vsumi1 = vec_msum(qv1, vscales01, vsumi1);
  9738. vsumi2 = vec_msum(qv2, vscales23, vsumi2);
  9739. vsumi3 = vec_msum(qv3, vscales23, vsumi3);
  9740. vector signed short q8ysums = vec_xl_len(qs, 8);
  9741. qs += 4;
  9742. q8ysums = vec_mergeh(q8ysums, (vector signed short)v0);
  9743. vector signed short qxh = (vector signed short)vec_sld(vec_splats(qh[1]), vec_splats(qh[0]), 8);
  9744. qh += 2;
  9745. vector __bool short vsel = vec_cmpge(qxh, (vector signed short)v0);
  9746. vector signed short q8ysum = vec_sel((vector signed short)vec_xor((vector unsigned short)q8ysums, vsign), q8ysums, vsel);
  9747. vsumi8 = vec_add(vec_mule(q8ysum, vscales), vsumi8);
  9748. }
  9749. vsumf0 = vec_madd(vec_ctf(vsumi0, 0), vd, vsumf0);
  9750. vsumf1 = vec_madd(vec_ctf(vsumi1, 0), vd, vsumf1);
  9751. vsumf2 = vec_madd(vec_ctf(vsumi2, 0), vd, vsumf2);
  9752. vsumf3 = vec_madd(vec_ctf(vsumi3, 0), vd, vsumf3);
  9753. vsumf0 = vec_madd(vec_ctf(vsumi8, 0), vec_mul(vd, vec_splats(IQ1S_DELTA)), vsumf0);
  9754. }
  9755. vsumf0 = vec_add(vsumf0, vsumf2);
  9756. vsumf1 = vec_add(vsumf1, vsumf3);
  9757. vsumf0 = vec_add(vsumf0, vsumf1);
  9758. vsumf0 = vec_add(vsumf0, vec_sld(vsumf0, vsumf0, 4));
  9759. vsumf0 = vec_add(vsumf0, vec_sld(vsumf0, vsumf0, 8));
  9760. *s = vec_extract(vsumf0, 0);
  9761. #elif defined(__loongarch_asx)
  9762. __m256 accum = (__m256)__lasx_xvldi(0);
  9763. float accum1 = 0;
  9764. for (int i = 0; i < nb; ++i) {
  9765. const int8_t * q8 = y[i].qs;
  9766. const uint8_t * qs = x[i].qs;
  9767. const uint16_t * qh = x[i].qh;
  9768. __m256i sumi = __lasx_xvldi(0);
  9769. int sumi1 = 0;
  9770. for (int ib = 0; ib < QK_K/32; ib += 2) {
  9771. __m256i q1b_1 = __lasx_xvinsgr2vr_d(q1b_1, iq1s_grid[qs[0] | ((qh[ib+0] << 8) & 0x700)], 0);
  9772. q1b_1 = __lasx_xvinsgr2vr_d(q1b_1, iq1s_grid[qs[1] | ((qh[ib+0] << 5) & 0x700)], 1);
  9773. q1b_1 = __lasx_xvinsgr2vr_d(q1b_1, iq1s_grid[qs[2] | ((qh[ib+0] << 2) & 0x700)], 2);
  9774. q1b_1 = __lasx_xvinsgr2vr_d(q1b_1, iq1s_grid[qs[3] | ((qh[ib+0] >> 1) & 0x700)], 3);
  9775. __m256i q1b_2 = __lasx_xvinsgr2vr_d(q1b_2, iq1s_grid[qs[4] | ((qh[ib+1] << 8) & 0x700)], 0);
  9776. q1b_2 = __lasx_xvinsgr2vr_d(q1b_2, iq1s_grid[qs[5] | ((qh[ib+1] << 5) & 0x700)], 1);
  9777. q1b_2 = __lasx_xvinsgr2vr_d(q1b_2, iq1s_grid[qs[6] | ((qh[ib+1] << 2) & 0x700)], 2);
  9778. q1b_2 = __lasx_xvinsgr2vr_d(q1b_2, iq1s_grid[qs[7] | ((qh[ib+1] >> 1) & 0x700)], 3);
  9779. qs += 8;
  9780. const __m256i q8b_1 = __lasx_xvld((const __m256i*)q8, 0); q8 += 32;
  9781. const __m256i q8b_2 = __lasx_xvld((const __m256i*)q8, 0); q8 += 32;
  9782. const __m256i dot1 = mul_add_epi8(q1b_1, q8b_1);
  9783. const __m256i dot2 = mul_add_epi8(q1b_2, q8b_2);
  9784. const int16_t ls1 = 2*((qh[ib+0] >> 12) & 7) + 1;
  9785. const int16_t ls2 = 2*((qh[ib+1] >> 12) & 7) + 1;
  9786. __m256i tmp1, tmp5, tmp6;
  9787. tmp1 = __lasx_xvreplgr2vr_h(ls1);
  9788. tmp5 = __lasx_xvmulwev_w_h(dot1, tmp1);
  9789. tmp6 = __lasx_xvmulwod_w_h(dot1, tmp1);
  9790. const __m256i p1 = __lasx_xvadd_w(tmp5, tmp6);
  9791. tmp1 = __lasx_xvreplgr2vr_h(ls2);
  9792. tmp5 = __lasx_xvmulwev_w_h(dot2, tmp1);
  9793. tmp6 = __lasx_xvmulwod_w_h(dot2, tmp1);
  9794. const __m256i p2 = __lasx_xvadd_w(tmp5, tmp6);
  9795. sumi = __lasx_xvadd_w(sumi, __lasx_xvadd_w(p1, p2));
  9796. sumi1 += (y[i].bsums[2*ib+0] + y[i].bsums[2*ib+1]) * (qh[ib+0] & 0x8000 ? -1 : 1) * ls1
  9797. + (y[i].bsums[2*ib+2] + y[i].bsums[2*ib+3]) * (qh[ib+1] & 0x8000 ? -1 : 1) * ls2;
  9798. }
  9799. const float d = y[i].d * GGML_FP16_TO_FP32(x[i].d);
  9800. accum = __lasx_xvfmadd_s(__lasx_xvreplfr2vr_s(d), __lasx_xvffint_s_w(sumi), accum);
  9801. accum1 += d * sumi1;
  9802. }
  9803. *s = hsum_float_8(accum) + IQ1S_DELTA * accum1;
  9804. #else
  9805. float sumf = 0;
  9806. for (int i = 0; i < nb; i++) {
  9807. const int8_t * q8 = y[i].qs;
  9808. const uint8_t * qs = x[i].qs;
  9809. const uint16_t * qh = x[i].qh;
  9810. int sumi = 0, sumi1 = 0;
  9811. for (int ib = 0; ib < QK_K/32; ++ib) {
  9812. const int ls = 2*((qh[ib] >> 12) & 7) + 1;
  9813. const int delta = qh[ib] & 0x8000 ? -1 : 1;
  9814. int lsum = 0;
  9815. for (int l = 0; l < 4; ++l) {
  9816. const int8_t * grid = (const int8_t *)(iq1s_grid + (qs[l] | (((qh[ib] >> 3*l) & 7) << 8)));
  9817. for (int j = 0; j < 8; ++j) {
  9818. lsum += q8[j] * grid[j];
  9819. }
  9820. q8 += 8;
  9821. }
  9822. sumi += ls * lsum;
  9823. sumi1 += ls * delta * (y[i].bsums[2*ib+0] + y[i].bsums[2*ib+1]);
  9824. qs += 4;
  9825. }
  9826. sumf += GGML_FP16_TO_FP32(x[i].d) * y[i].d * (sumi + IQ1S_DELTA * sumi1);
  9827. }
  9828. *s = sumf;
  9829. #endif
  9830. }
  9831. void ggml_vec_dot_iq1_m_q8_K (int n, float * restrict s, size_t bs, const void * restrict vx, size_t bx, const void * restrict vy, size_t by, int nrc) {
  9832. assert(n % QK_K == 0);
  9833. assert(nrc == 1);
  9834. UNUSED(nrc);
  9835. UNUSED(bx);
  9836. UNUSED(by);
  9837. UNUSED(bs);
  9838. const block_iq1_m * restrict x = vx;
  9839. const block_q8_K * restrict y = vy;
  9840. const int nb = n / QK_K;
  9841. iq1m_scale_t scale;
  9842. #if defined __ARM_NEON
  9843. const int32x4_t mask = vdupq_n_s32(0x7);
  9844. const int32x4_t mone = vdupq_n_s32(1);
  9845. const int32x4_t mzero = vdupq_n_s32(0);
  9846. ggml_int8x16x4_t deltas;
  9847. deltas.val[0] = vcombine_s8(vdup_n_s8(+1), vdup_n_s8(+1));
  9848. deltas.val[1] = vcombine_s8(vdup_n_s8(-1), vdup_n_s8(+1));
  9849. deltas.val[2] = vcombine_s8(vdup_n_s8(+1), vdup_n_s8(-1));
  9850. deltas.val[3] = vcombine_s8(vdup_n_s8(-1), vdup_n_s8(-1));
  9851. ggml_int8x16x4_t q1b;
  9852. ggml_int8x16x4_t q8b;
  9853. uint32_t aux32;
  9854. const uint8_t * aux8 = (const uint8_t *)&aux32;
  9855. float sumf = 0;
  9856. for (int i = 0; i < nb; ++i) {
  9857. const int8_t * q8 = y[i].qs;
  9858. const uint8_t * qs = x[i].qs;
  9859. const uint8_t * qh = x[i].qh;
  9860. const uint16_t * sc = (const uint16_t *)x[i].scales;
  9861. scale.u16 = (sc[0] >> 12) | ((sc[1] >> 8) & 0x00f0) | ((sc[2] >> 4) & 0x0f00) | (sc[3] & 0xf000);
  9862. int32x4_t sumi1 = mzero;
  9863. int32x4_t sumi2 = mzero;
  9864. for (int ib = 0; ib < QK_K/32; ib += 2) {
  9865. q1b.val[0] = vcombine_s8(vld1_s8((const int8_t *)(iq1s_grid + (qs[0] | ((qh[0] << 8) & 0x700)))),
  9866. vld1_s8((const int8_t *)(iq1s_grid + (qs[1] | ((qh[0] << 4) & 0x700)))));
  9867. q1b.val[1] = vcombine_s8(vld1_s8((const int8_t *)(iq1s_grid + (qs[2] | ((qh[1] << 8) & 0x700)))),
  9868. vld1_s8((const int8_t *)(iq1s_grid + (qs[3] | ((qh[1] << 4) & 0x700)))));
  9869. q1b.val[2] = vcombine_s8(vld1_s8((const int8_t *)(iq1s_grid + (qs[4] | ((qh[2] << 8) & 0x700)))),
  9870. vld1_s8((const int8_t *)(iq1s_grid + (qs[5] | ((qh[2] << 4) & 0x700)))));
  9871. q1b.val[3] = vcombine_s8(vld1_s8((const int8_t *)(iq1s_grid + (qs[6] | ((qh[3] << 8) & 0x700)))),
  9872. vld1_s8((const int8_t *)(iq1s_grid + (qs[7] | ((qh[3] << 4) & 0x700)))));
  9873. q8b = ggml_vld1q_s8_x4(q8); q8 += 64;
  9874. const int32x4_t p1 = vpaddq_s32(ggml_vdotq_s32(mzero, q1b.val[0], q8b.val[0]), ggml_vdotq_s32(mzero, q1b.val[1], q8b.val[1]));
  9875. const int32x4_t p2 = vpaddq_s32(ggml_vdotq_s32(mzero, q1b.val[2], q8b.val[2]), ggml_vdotq_s32(mzero, q1b.val[3], q8b.val[3]));
  9876. const int32x4_t p12 = vpaddq_s32(p1, p2);
  9877. const uint32_t * qh32 = (const uint32_t *)qh; // we are 4-byte aligned, so we can do that
  9878. aux32 = ((qh32[0] >> 3) & 0x01010101) | ((qh32[0] >> 6) & 0x02020202);
  9879. const int32x4_t p3 = vpaddq_s32(ggml_vdotq_s32(mzero, deltas.val[aux8[0]], q8b.val[0]), ggml_vdotq_s32(mzero, deltas.val[aux8[1]], q8b.val[1]));
  9880. const int32x4_t p4 = vpaddq_s32(ggml_vdotq_s32(mzero, deltas.val[aux8[2]], q8b.val[2]), ggml_vdotq_s32(mzero, deltas.val[aux8[3]], q8b.val[3]));
  9881. const int32x4_t p34 = vpaddq_s32(p3, p4);
  9882. int32x4_t scales_4 = ggml_vld1q_u32(sc[ib/2] >> 0, sc[ib/2] >> 3, sc[ib/2] >> 6, sc[ib/2] >> 9);
  9883. scales_4 = vaddq_s32(vshlq_n_s32(vandq_s32(scales_4, mask), 1), mone);
  9884. sumi1 = vmlaq_s32(sumi1, scales_4, p12);
  9885. sumi2 = vmlaq_s32(sumi2, scales_4, p34);
  9886. qs += 8; qh += 4;
  9887. }
  9888. sumf += y[i].d * GGML_FP16_TO_FP32(scale.f16) * (vaddvq_s32(sumi1) + IQ1M_DELTA * vaddvq_s32(sumi2));
  9889. }
  9890. *s = sumf;
  9891. #elif defined __AVX2__
  9892. const __m256i mask = _mm256_set1_epi16(0x7);
  9893. const __m256i mone = _mm256_set1_epi16(1);
  9894. __m256 accum1 = _mm256_setzero_ps();
  9895. __m256 accum2 = _mm256_setzero_ps();
  9896. for (int i = 0; i < nb; ++i) {
  9897. const int8_t * q8 = y[i].qs;
  9898. const uint8_t * qs = x[i].qs;
  9899. const uint8_t * qh = x[i].qh;
  9900. const uint16_t * sc = (const uint16_t *)x[i].scales;
  9901. scale.u16 = (sc[0] >> 12) | ((sc[1] >> 8) & 0x00f0) | ((sc[2] >> 4) & 0x0f00) | (sc[3] & 0xf000);
  9902. __m256i sumi1 = _mm256_setzero_si256();
  9903. __m256i sumi2 = _mm256_setzero_si256();
  9904. for (int ib = 0; ib < QK_K/32; ib += 2) {
  9905. const __m256i q1b_1 = _mm256_set_epi64x(
  9906. iq1s_grid[qs[3] | (((uint16_t)qh[1] << 4) & 0x700)], iq1s_grid[qs[2] | (((uint16_t)qh[1] << 8) & 0x700)],
  9907. iq1s_grid[qs[1] | (((uint16_t)qh[0] << 4) & 0x700)], iq1s_grid[qs[0] | (((uint16_t)qh[0] << 8) & 0x700)]
  9908. );
  9909. const __m256i q1b_2 = _mm256_set_epi64x(
  9910. iq1s_grid[qs[7] | (((uint16_t)qh[3] << 4) & 0x700)], iq1s_grid[qs[6] | (((uint16_t)qh[3] << 8) & 0x700)],
  9911. iq1s_grid[qs[5] | (((uint16_t)qh[2] << 4) & 0x700)], iq1s_grid[qs[4] | (((uint16_t)qh[2] << 8) & 0x700)]
  9912. );
  9913. const __m256i q8b_1 = _mm256_loadu_si256((const __m256i*)q8); q8 += 32;
  9914. const __m256i q8b_2 = _mm256_loadu_si256((const __m256i*)q8); q8 += 32;
  9915. const __m256i dot1 = mul_add_epi8(q1b_1, q8b_1);
  9916. const __m256i dot2 = mul_add_epi8(q1b_2, q8b_2);
  9917. const __m256i delta1 = _mm256_set_epi64x(qh[1] & 0x80 ? 0xffffffffffffffff : 0x0101010101010101,
  9918. qh[1] & 0x08 ? 0xffffffffffffffff : 0x0101010101010101,
  9919. qh[0] & 0x80 ? 0xffffffffffffffff : 0x0101010101010101,
  9920. qh[0] & 0x08 ? 0xffffffffffffffff : 0x0101010101010101);
  9921. const __m256i delta2 = _mm256_set_epi64x(qh[3] & 0x80 ? 0xffffffffffffffff : 0x0101010101010101,
  9922. qh[3] & 0x08 ? 0xffffffffffffffff : 0x0101010101010101,
  9923. qh[2] & 0x80 ? 0xffffffffffffffff : 0x0101010101010101,
  9924. qh[2] & 0x08 ? 0xffffffffffffffff : 0x0101010101010101);
  9925. const __m256i dot3 = mul_add_epi8(delta1, q8b_1);
  9926. const __m256i dot4 = mul_add_epi8(delta2, q8b_2);
  9927. __m256i scale1 = MM256_SET_M128I(_mm_set1_epi16(sc[ib/2] >> 3), _mm_set1_epi16(sc[ib/2] >> 0));
  9928. __m256i scale2 = MM256_SET_M128I(_mm_set1_epi16(sc[ib/2] >> 9), _mm_set1_epi16(sc[ib/2] >> 6));
  9929. scale1 = _mm256_add_epi16(_mm256_slli_epi16(_mm256_and_si256(scale1, mask), 1), mone);
  9930. scale2 = _mm256_add_epi16(_mm256_slli_epi16(_mm256_and_si256(scale2, mask), 1), mone);
  9931. const __m256i p1 = _mm256_madd_epi16(dot1, scale1);
  9932. const __m256i p2 = _mm256_madd_epi16(dot2, scale2);
  9933. const __m256i p3 = _mm256_madd_epi16(dot3, scale1);
  9934. const __m256i p4 = _mm256_madd_epi16(dot4, scale2);
  9935. sumi1 = _mm256_add_epi32(sumi1, _mm256_add_epi32(p1, p2));
  9936. sumi2 = _mm256_add_epi32(sumi2, _mm256_add_epi32(p3, p4));
  9937. qs += 8; qh += 4;
  9938. }
  9939. const __m256 d = _mm256_set1_ps(y[i].d * GGML_FP16_TO_FP32(scale.f16));
  9940. accum1 = _mm256_fmadd_ps(d, _mm256_cvtepi32_ps(sumi1), accum1);
  9941. accum2 = _mm256_fmadd_ps(d, _mm256_cvtepi32_ps(sumi2), accum2);
  9942. }
  9943. *s = hsum_float_8(accum1) + IQ1M_DELTA * hsum_float_8(accum2);
  9944. #elif defined __AVX__
  9945. const __m128i mask = _mm_set1_epi16(0x7);
  9946. const __m128i mone = _mm_set1_epi16(1);
  9947. __m256 accum1 = _mm256_setzero_ps();
  9948. __m256 accum2 = _mm256_setzero_ps();
  9949. for (int i = 0; i < nb; ++i) {
  9950. const int8_t * q8 = y[i].qs;
  9951. const uint8_t * qs = x[i].qs;
  9952. const uint8_t * qh = x[i].qh;
  9953. const uint16_t * sc = (const uint16_t *)x[i].scales;
  9954. scale.u16 = (sc[0] >> 12) | ((sc[1] >> 8) & 0x00f0) | ((sc[2] >> 4) & 0x0f00) | (sc[3] & 0xf000);
  9955. __m128i sumi1_0 = _mm_setzero_si128();
  9956. __m128i sumi1_1 = _mm_setzero_si128();
  9957. __m128i sumi2_0 = _mm_setzero_si128();
  9958. __m128i sumi2_1 = _mm_setzero_si128();
  9959. for (int ib = 0; ib < QK_K/32; ib += 2) {
  9960. const __m128i q1b_1_0 = _mm_set_epi64x(
  9961. iq1s_grid[qs[1] | (((uint16_t)qh[0] << 4) & 0x700)], iq1s_grid[qs[0] | (((uint16_t)qh[0] << 8) & 0x700)]);
  9962. const __m128i q1b_1_1 = _mm_set_epi64x(
  9963. iq1s_grid[qs[3] | (((uint16_t)qh[1] << 4) & 0x700)], iq1s_grid[qs[2] | (((uint16_t)qh[1] << 8) & 0x700)]);
  9964. const __m128i q1b_2_0 = _mm_set_epi64x(
  9965. iq1s_grid[qs[5] | (((uint16_t)qh[2] << 4) & 0x700)], iq1s_grid[qs[4] | (((uint16_t)qh[2] << 8) & 0x700)]);
  9966. const __m128i q1b_2_1 = _mm_set_epi64x(
  9967. iq1s_grid[qs[7] | (((uint16_t)qh[3] << 4) & 0x700)], iq1s_grid[qs[6] | (((uint16_t)qh[3] << 8) & 0x700)]);
  9968. const __m128i q8b_1_0 = _mm_loadu_si128((const __m128i *)q8); q8 += 16;
  9969. const __m128i q8b_1_1 = _mm_loadu_si128((const __m128i *)q8); q8 += 16;
  9970. const __m128i q8b_2_0 = _mm_loadu_si128((const __m128i *)q8); q8 += 16;
  9971. const __m128i q8b_2_1 = _mm_loadu_si128((const __m128i *)q8); q8 += 16;
  9972. const __m128i dot1_0 = mul_add_epi8_sse(q1b_1_0, q8b_1_0);
  9973. const __m128i dot1_1 = mul_add_epi8_sse(q1b_1_1, q8b_1_1);
  9974. const __m128i dot2_0 = mul_add_epi8_sse(q1b_2_0, q8b_2_0);
  9975. const __m128i dot2_1 = mul_add_epi8_sse(q1b_2_1, q8b_2_1);
  9976. const __m128i delta1_0 = _mm_set_epi64x(qh[0] & 0x80 ? 0xffffffffffffffff : 0x0101010101010101,
  9977. qh[0] & 0x08 ? 0xffffffffffffffff : 0x0101010101010101);
  9978. const __m128i delta1_1 = _mm_set_epi64x(qh[1] & 0x80 ? 0xffffffffffffffff : 0x0101010101010101,
  9979. qh[1] & 0x08 ? 0xffffffffffffffff : 0x0101010101010101);
  9980. const __m128i delta2_0 = _mm_set_epi64x(qh[2] & 0x80 ? 0xffffffffffffffff : 0x0101010101010101,
  9981. qh[2] & 0x08 ? 0xffffffffffffffff : 0x0101010101010101);
  9982. const __m128i delta2_1 = _mm_set_epi64x(qh[3] & 0x80 ? 0xffffffffffffffff : 0x0101010101010101,
  9983. qh[3] & 0x08 ? 0xffffffffffffffff : 0x0101010101010101);
  9984. const __m128i dot3_0 = mul_add_epi8_sse(delta1_0, q8b_1_0);
  9985. const __m128i dot3_1 = mul_add_epi8_sse(delta1_1, q8b_1_1);
  9986. const __m128i dot4_0 = mul_add_epi8_sse(delta2_0, q8b_2_0);
  9987. const __m128i dot4_1 = mul_add_epi8_sse(delta2_1, q8b_2_1);
  9988. __m128i scale1_0 = _mm_set1_epi16(sc[ib/2] >> 0);
  9989. __m128i scale1_1 = _mm_set1_epi16(sc[ib/2] >> 3);
  9990. __m128i scale2_0 = _mm_set1_epi16(sc[ib/2] >> 6);
  9991. __m128i scale2_1 = _mm_set1_epi16(sc[ib/2] >> 9);
  9992. scale1_0 = _mm_add_epi16(_mm_slli_epi16(_mm_and_si128(scale1_0, mask), 1), mone);
  9993. scale1_1 = _mm_add_epi16(_mm_slli_epi16(_mm_and_si128(scale1_1, mask), 1), mone);
  9994. scale2_0 = _mm_add_epi16(_mm_slli_epi16(_mm_and_si128(scale2_0, mask), 1), mone);
  9995. scale2_1 = _mm_add_epi16(_mm_slli_epi16(_mm_and_si128(scale2_1, mask), 1), mone);
  9996. const __m128i p1_0 = _mm_madd_epi16(dot1_0, scale1_0);
  9997. const __m128i p1_1 = _mm_madd_epi16(dot1_1, scale1_1);
  9998. const __m128i p2_0 = _mm_madd_epi16(dot2_0, scale2_0);
  9999. const __m128i p2_1 = _mm_madd_epi16(dot2_1, scale2_1);
  10000. const __m128i p3_0 = _mm_madd_epi16(dot3_0, scale1_0);
  10001. const __m128i p3_1 = _mm_madd_epi16(dot3_1, scale1_1);
  10002. const __m128i p4_0 = _mm_madd_epi16(dot4_0, scale2_0);
  10003. const __m128i p4_1 = _mm_madd_epi16(dot4_1, scale2_1);
  10004. sumi1_0 = _mm_add_epi32(sumi1_0, _mm_add_epi32(p1_0, p2_0));
  10005. sumi1_1 = _mm_add_epi32(sumi1_1, _mm_add_epi32(p1_1, p2_1));
  10006. sumi2_0 = _mm_add_epi32(sumi2_0, _mm_add_epi32(p3_0, p4_0));
  10007. sumi2_1 = _mm_add_epi32(sumi2_1, _mm_add_epi32(p3_1, p4_1));
  10008. qs += 8; qh += 4;
  10009. }
  10010. const __m256 d = _mm256_set1_ps(y[i].d * GGML_FP16_TO_FP32(scale.f16));
  10011. accum1 = _mm256_add_ps(_mm256_mul_ps(d, _mm256_cvtepi32_ps(MM256_SET_M128I(sumi1_1, sumi1_0))), accum1);
  10012. accum2 = _mm256_add_ps(_mm256_mul_ps(d, _mm256_cvtepi32_ps(MM256_SET_M128I(sumi2_1, sumi2_0))), accum2);
  10013. }
  10014. *s = hsum_float_8(accum1) + IQ1M_DELTA * hsum_float_8(accum2);
  10015. #else
  10016. int sum1[2], sum2[2], delta[4];
  10017. float sumf = 0;
  10018. for (int i = 0; i < nb; i++) {
  10019. const int8_t * q8 = y[i].qs;
  10020. const uint8_t * qs = x[i].qs;
  10021. const uint8_t * qh = x[i].qh;
  10022. const uint16_t * sc = (const uint16_t *)x[i].scales;
  10023. scale.u16 = (sc[0] >> 12) | ((sc[1] >> 8) & 0x00f0) | ((sc[2] >> 4) & 0x0f00) | (sc[3] & 0xf000);
  10024. int sumi1 = 0, sumi2 = 0;
  10025. for (int ib = 0; ib < QK_K/32; ++ib) {
  10026. delta[0] = qh[0] & 0x08 ? -1 : 1;
  10027. delta[1] = qh[0] & 0x80 ? -1 : 1;
  10028. delta[2] = qh[1] & 0x08 ? -1 : 1;
  10029. delta[3] = qh[1] & 0x80 ? -1 : 1;
  10030. sum1[0] = sum1[1] = sum2[0] = sum2[1] = 0;
  10031. for (int l = 0; l < 4; ++l) {
  10032. const int8_t * grid = (const int8_t *)(iq1s_grid + (qs[l] | (((uint16_t)qh[l/2] << (8 - 4*(l%2))) & 0x700)));
  10033. int lsum1 = 0, lsum2 = 0;
  10034. for (int j = 0; j < 8; ++j) {
  10035. lsum1 += q8[j] * grid[j];
  10036. lsum2 += q8[j];
  10037. }
  10038. q8 += 8;
  10039. sum1[l/2] += lsum1;
  10040. sum2[l/2] += lsum2*delta[l];
  10041. }
  10042. const int ls1 = 2*((sc[ib/2] >> (6*(ib%2)+0)) & 0x7) + 1;
  10043. const int ls2 = 2*((sc[ib/2] >> (6*(ib%2)+3)) & 0x7) + 1;
  10044. sumi1 += sum1[0] * ls1 + sum1[1] * ls2;
  10045. sumi2 += sum2[0] * ls1 + sum2[1] * ls2;
  10046. qs += 4;
  10047. qh += 2;
  10048. }
  10049. sumf += GGML_FP16_TO_FP32(scale.f16) * y[i].d * (sumi1 + IQ1M_DELTA * sumi2);
  10050. }
  10051. *s = sumf;
  10052. #endif
  10053. }
  10054. void ggml_vec_dot_iq4_nl_q8_0(int n, float * restrict s, size_t bs, const void * restrict vx, size_t bx, const void * restrict vy, size_t by, int nrc) {
  10055. assert(nrc == 1);
  10056. UNUSED(nrc);
  10057. UNUSED(bx);
  10058. UNUSED(by);
  10059. UNUSED(bs);
  10060. assert(n % QK4_NL == 0);
  10061. static_assert(QK4_NL == QK8_0, "QK4_NL and QK8_0 must be the same");
  10062. const block_iq4_nl * restrict x = vx;
  10063. const block_q8_0 * restrict y = vy;
  10064. const int nb = n / QK4_NL;
  10065. int ib = 0;
  10066. float sumf = 0;
  10067. #if defined __ARM_NEON
  10068. const int8x16_t values = vld1q_s8(kvalues_iq4nl);
  10069. const uint8x16_t m4b = vdupq_n_u8(0x0f);
  10070. uint8x16x2_t q4bits;
  10071. int8x16x4_t q4b;
  10072. int8x16x4_t q8b;
  10073. int32x4_t prod_1, prod_2;
  10074. for (; ib + 1 < nb; ib += 2) {
  10075. q4bits.val[0] = vld1q_u8(x[ib + 0].qs);
  10076. q4bits.val[1] = vld1q_u8(x[ib + 1].qs);
  10077. q8b.val[0] = vld1q_s8(y[ib + 0].qs);
  10078. q8b.val[1] = vld1q_s8(y[ib + 0].qs + 16);
  10079. q8b.val[2] = vld1q_s8(y[ib + 1].qs);
  10080. q8b.val[3] = vld1q_s8(y[ib + 1].qs + 16);
  10081. q4b.val[0] = ggml_vqtbl1q_s8(values, vandq_u8 (q4bits.val[0], m4b));
  10082. q4b.val[1] = ggml_vqtbl1q_s8(values, vshrq_n_u8(q4bits.val[0], 4));
  10083. q4b.val[2] = ggml_vqtbl1q_s8(values, vandq_u8 (q4bits.val[1], m4b));
  10084. q4b.val[3] = ggml_vqtbl1q_s8(values, vshrq_n_u8(q4bits.val[1], 4));
  10085. prod_1 = ggml_vdotq_s32(ggml_vdotq_s32(vdupq_n_s32(0), q4b.val[0], q8b.val[0]), q4b.val[1], q8b.val[1]);
  10086. prod_2 = ggml_vdotq_s32(ggml_vdotq_s32(vdupq_n_s32(0), q4b.val[2], q8b.val[2]), q4b.val[3], q8b.val[3]);
  10087. sumf +=
  10088. GGML_FP16_TO_FP32(x[ib+0].d) * GGML_FP16_TO_FP32(y[ib + 0].d) * vaddvq_s32(prod_1) +
  10089. GGML_FP16_TO_FP32(x[ib+1].d) * GGML_FP16_TO_FP32(y[ib + 1].d) * vaddvq_s32(prod_2);
  10090. }
  10091. #elif defined __AVX2__
  10092. const __m128i values128 = _mm_loadu_si128((const __m128i*)kvalues_iq4nl);
  10093. const __m128i m4b = _mm_set1_epi8(0x0f);
  10094. const __m256i mone = _mm256_set1_epi16(1);
  10095. __m256 accum1 = _mm256_setzero_ps();
  10096. __m256 accum2 = _mm256_setzero_ps();
  10097. for (; ib + 1 < nb; ib += 2) {
  10098. const __m128i q4bits_1 = _mm_loadu_si128((const __m128i*)x[ib + 0].qs);
  10099. const __m128i q4bits_2 = _mm_loadu_si128((const __m128i*)x[ib + 1].qs);
  10100. const __m256i q8b_1 = _mm256_loadu_si256((const __m256i *)y[ib + 0].qs);
  10101. const __m256i q8b_2 = _mm256_loadu_si256((const __m256i *)y[ib + 1].qs);
  10102. const __m256i q4b_1 = MM256_SET_M128I(_mm_shuffle_epi8(values128, _mm_and_si128(_mm_srli_epi16(q4bits_1, 4), m4b)),
  10103. _mm_shuffle_epi8(values128, _mm_and_si128(q4bits_1, m4b)));
  10104. const __m256i q4b_2 = MM256_SET_M128I(_mm_shuffle_epi8(values128, _mm_and_si128(_mm_srli_epi16(q4bits_2, 4), m4b)),
  10105. _mm_shuffle_epi8(values128, _mm_and_si128(q4bits_2, m4b)));
  10106. const __m256i p16_1 = mul_add_epi8(q4b_1, q8b_1);
  10107. const __m256i p16_2 = mul_add_epi8(q4b_2, q8b_2);
  10108. const __m256i p_1 = _mm256_madd_epi16(p16_1, mone);
  10109. const __m256i p_2 = _mm256_madd_epi16(p16_2, mone);
  10110. accum1 = _mm256_fmadd_ps(_mm256_set1_ps(GGML_FP16_TO_FP32(y[ib + 0].d)*GGML_FP16_TO_FP32(x[ib + 0].d)),
  10111. _mm256_cvtepi32_ps(p_1), accum1);
  10112. accum2 = _mm256_fmadd_ps(_mm256_set1_ps(GGML_FP16_TO_FP32(y[ib + 1].d)*GGML_FP16_TO_FP32(x[ib + 1].d)),
  10113. _mm256_cvtepi32_ps(p_2), accum2);
  10114. }
  10115. sumf = hsum_float_8(_mm256_add_ps(accum1, accum2));
  10116. #elif defined __AVX__
  10117. const __m128i values128 = _mm_loadu_si128((const __m128i*)kvalues_iq4nl);
  10118. const __m128i m4b = _mm_set1_epi8(0x0f);
  10119. const __m128i mone = _mm_set1_epi16(1);
  10120. __m256 accum1 = _mm256_setzero_ps();
  10121. __m256 accum2 = _mm256_setzero_ps();
  10122. for (; ib + 1 < nb; ib += 2) {
  10123. const __m128i q4bits_1 = _mm_loadu_si128((const __m128i *)x[ib + 0].qs);
  10124. const __m128i q4bits_2 = _mm_loadu_si128((const __m128i *)x[ib + 1].qs);
  10125. const __m128i q8b_1_0 = _mm_loadu_si128((const __m128i *)y[ib + 0].qs);
  10126. const __m128i q8b_1_1 = _mm_loadu_si128((const __m128i *)y[ib + 0].qs + 1);
  10127. const __m128i q8b_2_0 = _mm_loadu_si128((const __m128i *)y[ib + 1].qs);
  10128. const __m128i q8b_2_1 = _mm_loadu_si128((const __m128i *)y[ib + 1].qs + 1);
  10129. const __m128i q4b_1_0 = _mm_shuffle_epi8(values128, _mm_and_si128(q4bits_1, m4b));
  10130. const __m128i q4b_1_1 = _mm_shuffle_epi8(values128, _mm_and_si128(_mm_srli_epi16(q4bits_1, 4), m4b));
  10131. const __m128i q4b_2_0 = _mm_shuffle_epi8(values128, _mm_and_si128(q4bits_2, m4b));
  10132. const __m128i q4b_2_1 = _mm_shuffle_epi8(values128, _mm_and_si128(_mm_srli_epi16(q4bits_2, 4), m4b));
  10133. const __m128i p16_1_0 = mul_add_epi8_sse(q4b_1_0, q8b_1_0);
  10134. const __m128i p16_1_1 = mul_add_epi8_sse(q4b_1_1, q8b_1_1);
  10135. const __m128i p16_2_0 = mul_add_epi8_sse(q4b_2_0, q8b_2_0);
  10136. const __m128i p16_2_1 = mul_add_epi8_sse(q4b_2_1, q8b_2_1);
  10137. const __m128i p_1_0 = _mm_madd_epi16(p16_1_0, mone);
  10138. const __m128i p_1_1 = _mm_madd_epi16(p16_1_1, mone);
  10139. const __m128i p_2_0 = _mm_madd_epi16(p16_2_0, mone);
  10140. const __m128i p_2_1 = _mm_madd_epi16(p16_2_1, mone);
  10141. accum1 = _mm256_add_ps(_mm256_mul_ps(_mm256_set1_ps(GGML_FP16_TO_FP32(y[ib + 0].d)*GGML_FP16_TO_FP32(x[ib + 0].d)),
  10142. _mm256_cvtepi32_ps(MM256_SET_M128I(p_1_1, p_1_0))), accum1);
  10143. accum2 = _mm256_add_ps(_mm256_mul_ps(_mm256_set1_ps(GGML_FP16_TO_FP32(y[ib + 1].d)*GGML_FP16_TO_FP32(x[ib + 1].d)),
  10144. _mm256_cvtepi32_ps(MM256_SET_M128I(p_2_1, p_2_0))), accum2);
  10145. }
  10146. sumf = hsum_float_8(_mm256_add_ps(accum1, accum2));
  10147. #elif defined(__POWER9_VECTOR__)
  10148. const vector signed char lowMask = vec_splats((signed char)0xF);
  10149. const vector signed int v0 = vec_splats((int32_t)0);
  10150. const vector unsigned char v4 = vec_splats((unsigned char)0x4);
  10151. vector float vsumf0 = vec_splats(0.0f);
  10152. vector float vsumf1 = vec_splats(0.0f);
  10153. const vector signed char values = vec_xl( 0, kvalues_iq4nl);
  10154. #pragma GCC unroll 4
  10155. for (; ib < nb; ++ib) {
  10156. __builtin_prefetch(x[ib].qs, 0, 1);
  10157. __builtin_prefetch(y[ib].qs, 0, 1);
  10158. vector float vxd = vec_splats(GGML_FP16_TO_FP32(x[ib].d));
  10159. vector float vyd = vec_splats(GGML_FP16_TO_FP32(y[ib].d));
  10160. vector float vd = vec_mul(vxd, vyd);
  10161. vector signed char qxs = (vector signed char)vec_xl( 0, x[ib].qs);
  10162. vector signed char q4x0 = vec_and(qxs, lowMask);
  10163. vector signed char q4x1 = vec_sr(qxs, v4);
  10164. q4x0 = vec_perm(values, values, (vector unsigned char)q4x0);
  10165. q4x1 = vec_perm(values, values, (vector unsigned char)q4x1);
  10166. vector signed char q8y0 = vec_xl( 0, y[ib].qs);
  10167. vector signed char q8y1 = vec_xl(16, y[ib].qs);
  10168. vector signed short qv0 = vec_add(vec_mule(q4x0, q8y0), vec_mulo(q4x0, q8y0));
  10169. vector signed short qv1 = vec_add(vec_mule(q4x1, q8y1), vec_mulo(q4x1, q8y1));
  10170. vector signed int vsumi0 = v0;
  10171. vector signed int vsumi1 = v0;
  10172. vsumi0 = vec_sum4s(qv0, vsumi0);
  10173. vsumi1 = vec_sum4s(qv1, vsumi1);
  10174. vsumf0 = vec_madd(vec_ctf(vsumi0, 0), vd, vsumf0);
  10175. vsumf1 = vec_madd(vec_ctf(vsumi1, 0), vd, vsumf1);
  10176. }
  10177. vsumf0 = vec_add(vsumf0, vsumf1);
  10178. vsumf0 = vec_add(vsumf0, vec_sld(vsumf0, vsumf0, 4));
  10179. vsumf0 = vec_add(vsumf0, vec_sld(vsumf0, vsumf0, 8));
  10180. sumf = vec_extract(vsumf0, 0);
  10181. #elif defined (__loongarch_asx)
  10182. const __m128i values128 = __lsx_vld((const __m128i*)kvalues_iq4nl, 0);
  10183. const __m128i m4b = __lsx_vreplgr2vr_b(0x0f);
  10184. const __m256i mone = __lasx_xvreplgr2vr_h(1);
  10185. __m256 accum1 = (__m256)__lasx_xvldi(0);
  10186. __m256 accum2 = (__m256)__lasx_xvldi(0);
  10187. for (; ib + 1 < nb; ib += 2) {
  10188. const __m128i q4bits_1 = __lsx_vld((const __m128i*)x[ib + 0].qs, 0);
  10189. const __m128i q4bits_2 = __lsx_vld((const __m128i*)x[ib + 1].qs, 0);
  10190. const __m256i q8b_1 = __lasx_xvld((const __m256i *)y[ib + 0].qs, 0);
  10191. const __m256i q8b_2 = __lasx_xvld((const __m256i *)y[ib + 1].qs, 0);
  10192. const __m256i q4b_1 = lasx_insertf128(lsx_shuffle_b(values128, __lsx_vand_v(__lsx_vsrli_h(q4bits_1, 4), m4b)),
  10193. lsx_shuffle_b(values128, __lsx_vand_v(q4bits_1, m4b)));
  10194. const __m256i q4b_2 = lasx_insertf128(lsx_shuffle_b(values128, __lsx_vand_v(__lsx_vsrli_h(q4bits_2, 4), m4b)),
  10195. lsx_shuffle_b(values128, __lsx_vand_v(q4bits_2, m4b)));
  10196. const __m256i p16_1 = mul_add_epi8(q4b_1, q8b_1);
  10197. const __m256i p16_2 = mul_add_epi8(q4b_2, q8b_2);
  10198. const __m256i p_1 = lasx_madd_h(p16_1, mone);
  10199. const __m256i p_2 = lasx_madd_h(p16_2, mone);
  10200. accum1 = __lasx_xvfmadd_s(__lasx_xvreplfr2vr_s(GGML_FP16_TO_FP32(y[ib + 0].d)*GGML_FP16_TO_FP32(x[ib + 0].d)),
  10201. __lasx_xvffint_s_w(p_1), accum1);
  10202. accum2 = __lasx_xvfmadd_s(__lasx_xvreplfr2vr_s(GGML_FP16_TO_FP32(y[ib + 1].d)*GGML_FP16_TO_FP32(x[ib + 1].d)),
  10203. __lasx_xvffint_s_w(p_2), accum2);
  10204. }
  10205. sumf = hsum_float_8(__lasx_xvfadd_s(accum1, accum2));
  10206. #endif
  10207. for (; ib < nb; ++ib) {
  10208. const float d = GGML_FP16_TO_FP32(y[ib].d)*GGML_FP16_TO_FP32(x[ib].d);
  10209. int sumi1 = 0, sumi2 = 0;
  10210. for (int j = 0; j < QK4_NL/2; ++j) {
  10211. sumi1 += y[ib].qs[j+ 0] * kvalues_iq4nl[x[ib].qs[j] & 0xf];
  10212. sumi2 += y[ib].qs[j+QK4_NL/2] * kvalues_iq4nl[x[ib].qs[j] >> 4];
  10213. }
  10214. sumf += d * (sumi1 + sumi2);
  10215. }
  10216. *s = sumf;
  10217. }
  10218. void ggml_vec_dot_iq4_xs_q8_K(int n, float * restrict s, size_t bs, const void * restrict vx, size_t bx, const void * restrict vy, size_t by, int nrc) {
  10219. assert(nrc == 1);
  10220. UNUSED(nrc);
  10221. UNUSED(bx);
  10222. UNUSED(by);
  10223. UNUSED(bs);
  10224. assert(n % QK_K == 0);
  10225. const block_iq4_xs * restrict x = vx;
  10226. const block_q8_K * restrict y = vy;
  10227. const int nb = n / QK_K;
  10228. #if defined __ARM_NEON
  10229. const int8x16_t values = vld1q_s8(kvalues_iq4nl);
  10230. const uint8x16_t m4b = vdupq_n_u8(0x0f);
  10231. ggml_uint8x16x2_t q4bits;
  10232. ggml_int8x16x4_t q4b;
  10233. ggml_int8x16x4_t q8b;
  10234. int32x4_t prod_1, prod_2;
  10235. float sumf = 0;
  10236. for (int ibl = 0; ibl < nb; ++ibl) {
  10237. const int8_t * q8 = y[ibl].qs;
  10238. const uint8_t * q4 = x[ibl].qs;
  10239. uint16_t h = x[ibl].scales_h;
  10240. int sumi1 = 0, sumi2 = 0;
  10241. for (int ib = 0; ib < QK_K/64; ++ib) {
  10242. q4bits = ggml_vld1q_u8_x2(q4); q4 += 32;
  10243. q8b = ggml_vld1q_s8_x4(q8); q8 += 64;
  10244. q4b.val[0] = ggml_vqtbl1q_s8(values, vandq_u8 (q4bits.val[0], m4b));
  10245. q4b.val[1] = ggml_vqtbl1q_s8(values, vshrq_n_u8(q4bits.val[0], 4));
  10246. q4b.val[2] = ggml_vqtbl1q_s8(values, vandq_u8 (q4bits.val[1], m4b));
  10247. q4b.val[3] = ggml_vqtbl1q_s8(values, vshrq_n_u8(q4bits.val[1], 4));
  10248. prod_1 = ggml_vdotq_s32(ggml_vdotq_s32(vdupq_n_s32(0), q4b.val[0], q8b.val[0]), q4b.val[1], q8b.val[1]);
  10249. prod_2 = ggml_vdotq_s32(ggml_vdotq_s32(vdupq_n_s32(0), q4b.val[2], q8b.val[2]), q4b.val[3], q8b.val[3]);
  10250. int ls1 = ((x[ibl].scales_l[ib] & 0xf) | ((h << 4) & 0x30)) - 32;
  10251. int ls2 = ((x[ibl].scales_l[ib] >> 4) | ((h << 2) & 0x30)) - 32;
  10252. h >>= 4;
  10253. sumi1 += vaddvq_s32(prod_1) * ls1;
  10254. sumi2 += vaddvq_s32(prod_2) * ls2;
  10255. }
  10256. sumf += GGML_FP16_TO_FP32(x[ibl].d) * y[ibl].d * (sumi1 + sumi2);
  10257. }
  10258. *s = sumf;
  10259. #elif defined __AVX2__
  10260. const __m128i values128 = _mm_loadu_si128((const __m128i*)kvalues_iq4nl);
  10261. const __m128i m4b = _mm_set1_epi8(0x0f);
  10262. __m256 accum = _mm256_setzero_ps();
  10263. for (int ibl = 0; ibl < nb; ++ibl) {
  10264. const uint8_t * qs = x[ibl].qs;
  10265. const int8_t * q8 = y[ibl].qs;
  10266. uint16_t sh = x[ibl].scales_h;
  10267. __m256i sumi1 = _mm256_setzero_si256();
  10268. __m256i sumi2 = _mm256_setzero_si256();
  10269. for (int ib = 0; ib < QK_K/32; ib += 2) {
  10270. const __m128i q4bits_1 = _mm_loadu_si128((const __m128i*)qs); qs += 16;
  10271. const __m128i q4bits_2 = _mm_loadu_si128((const __m128i*)qs); qs += 16;
  10272. const __m256i q8b_1 = _mm256_loadu_si256((const __m256i *)q8); q8 += 32;
  10273. const __m256i q8b_2 = _mm256_loadu_si256((const __m256i *)q8); q8 += 32;
  10274. const __m256i q4b_1 = MM256_SET_M128I(_mm_shuffle_epi8(values128, _mm_and_si128(_mm_srli_epi16(q4bits_1, 4), m4b)),
  10275. _mm_shuffle_epi8(values128, _mm_and_si128(q4bits_1, m4b)));
  10276. const __m256i q4b_2 = MM256_SET_M128I(_mm_shuffle_epi8(values128, _mm_and_si128(_mm_srli_epi16(q4bits_2, 4), m4b)),
  10277. _mm_shuffle_epi8(values128, _mm_and_si128(q4bits_2, m4b)));
  10278. const __m256i p16_1 = mul_add_epi8(q4b_1, q8b_1);
  10279. const __m256i p16_2 = mul_add_epi8(q4b_2, q8b_2);
  10280. const int16_t ls1 = ((x[ibl].scales_l[ib/2] & 0xf) | ((sh << 4) & 0x30)) - 32;
  10281. const int16_t ls2 = ((x[ibl].scales_l[ib/2] >> 4) | ((sh << 2) & 0x30)) - 32;
  10282. sh >>= 4;
  10283. const __m256i p_1 = _mm256_madd_epi16(p16_1, _mm256_set1_epi16(ls1));
  10284. const __m256i p_2 = _mm256_madd_epi16(p16_2, _mm256_set1_epi16(ls2));
  10285. sumi1 = _mm256_add_epi32(p_1, sumi1);
  10286. sumi2 = _mm256_add_epi32(p_2, sumi2);
  10287. }
  10288. accum = _mm256_fmadd_ps(_mm256_set1_ps(GGML_FP16_TO_FP32(x[ibl].d)*y[ibl].d),
  10289. _mm256_cvtepi32_ps(_mm256_add_epi32(sumi1, sumi2)), accum);
  10290. }
  10291. *s = hsum_float_8(accum);
  10292. #elif defined __AVX__
  10293. const __m128i values128 = _mm_loadu_si128((const __m128i*)kvalues_iq4nl);
  10294. const __m128i m4b = _mm_set1_epi8(0x0f);
  10295. __m256 accum = _mm256_setzero_ps();
  10296. for (int ibl = 0; ibl < nb; ++ibl) {
  10297. const uint8_t * qs = x[ibl].qs;
  10298. const int8_t * q8 = y[ibl].qs;
  10299. uint16_t sh = x[ibl].scales_h;
  10300. __m128i sumi1_0 = _mm_setzero_si128();
  10301. __m128i sumi1_1 = _mm_setzero_si128();
  10302. __m128i sumi2_0 = _mm_setzero_si128();
  10303. __m128i sumi2_1 = _mm_setzero_si128();
  10304. for (int ib = 0; ib < QK_K/32; ib += 2) {
  10305. const __m128i q4bits_1 = _mm_loadu_si128((const __m128i *)qs); qs += 16;
  10306. const __m128i q4bits_2 = _mm_loadu_si128((const __m128i *)qs); qs += 16;
  10307. const __m128i q8b_1_0 = _mm_loadu_si128((const __m128i *)q8); q8 += 16;
  10308. const __m128i q8b_1_1 = _mm_loadu_si128((const __m128i *)q8); q8 += 16;
  10309. const __m128i q8b_2_0 = _mm_loadu_si128((const __m128i *)q8); q8 += 16;
  10310. const __m128i q8b_2_1 = _mm_loadu_si128((const __m128i *)q8); q8 += 16;
  10311. const __m128i q4b_1_0 = _mm_shuffle_epi8(values128, _mm_and_si128(q4bits_1, m4b));
  10312. const __m128i q4b_1_1 = _mm_shuffle_epi8(values128, _mm_and_si128(_mm_srli_epi16(q4bits_1, 4), m4b));
  10313. const __m128i q4b_2_0 = _mm_shuffle_epi8(values128, _mm_and_si128(q4bits_2, m4b));
  10314. const __m128i q4b_2_1 = _mm_shuffle_epi8(values128, _mm_and_si128(_mm_srli_epi16(q4bits_2, 4), m4b));
  10315. const __m128i p16_1_0 = mul_add_epi8_sse(q4b_1_0, q8b_1_0);
  10316. const __m128i p16_1_1 = mul_add_epi8_sse(q4b_1_1, q8b_1_1);
  10317. const __m128i p16_2_0 = mul_add_epi8_sse(q4b_2_0, q8b_2_0);
  10318. const __m128i p16_2_1 = mul_add_epi8_sse(q4b_2_1, q8b_2_1);
  10319. const int16_t ls1 = ((x[ibl].scales_l[ib/2] & 0xf) | ((sh << 4) & 0x30)) - 32;
  10320. const int16_t ls2 = ((x[ibl].scales_l[ib/2] >> 4) | ((sh << 2) & 0x30)) - 32;
  10321. sh >>= 4;
  10322. const __m128i p_1_0 = _mm_madd_epi16(p16_1_0, _mm_set1_epi16(ls1));
  10323. const __m128i p_1_1 = _mm_madd_epi16(p16_1_1, _mm_set1_epi16(ls1));
  10324. const __m128i p_2_0 = _mm_madd_epi16(p16_2_0, _mm_set1_epi16(ls2));
  10325. const __m128i p_2_1 = _mm_madd_epi16(p16_2_1, _mm_set1_epi16(ls2));
  10326. sumi1_0 = _mm_add_epi32(p_1_0, sumi1_0);
  10327. sumi1_1 = _mm_add_epi32(p_1_1, sumi1_1);
  10328. sumi2_0 = _mm_add_epi32(p_2_0, sumi2_0);
  10329. sumi2_1 = _mm_add_epi32(p_2_1, sumi2_1);
  10330. }
  10331. __m128i sumi12_0 = _mm_add_epi32(sumi1_0, sumi2_0);
  10332. __m128i sumi12_1 = _mm_add_epi32(sumi1_1, sumi2_1);
  10333. accum = _mm256_add_ps(_mm256_mul_ps(_mm256_set1_ps(GGML_FP16_TO_FP32(x[ibl].d)*y[ibl].d),
  10334. _mm256_cvtepi32_ps(MM256_SET_M128I(sumi12_1, sumi12_0))), accum);
  10335. }
  10336. *s = hsum_float_8(accum);
  10337. #elif defined(__POWER9_VECTOR__)
  10338. const vector signed char lowMask = vec_splats((signed char)0xF);
  10339. const vector int v0 = vec_splats((int32_t)0);
  10340. const vector unsigned char v4 = vec_splats((unsigned char)0x4);
  10341. vector float vsumf0 = vec_splats(0.0f);
  10342. vector float vsumf1 = vec_splats(0.0f);
  10343. vector float vsumf2 = vec_splats(0.0f);
  10344. vector float vsumf3 = vec_splats(0.0f);
  10345. const vector signed char values = vec_xl( 0, kvalues_iq4nl);
  10346. for (int ibl = 0; ibl < nb; ++ibl) {
  10347. vector float vxd = vec_splats(GGML_FP16_TO_FP32(x[ibl].d));
  10348. vector float vyd = vec_splats(y[ibl].d);
  10349. vector float vd = vec_mul(vxd, vyd);
  10350. vector signed int vsumi0 = v0;
  10351. vector signed int vsumi1 = v0;
  10352. vector signed int vsumi2 = v0;
  10353. vector signed int vsumi3 = v0;
  10354. uint16_t h = x[ibl].scales_h;
  10355. const uint8_t * restrict q4 = x[ibl].qs;
  10356. const uint8_t * restrict sc = x[ibl].scales_l;
  10357. const int8_t * restrict q8 = y[ibl].qs;
  10358. for (int ib = 0; ib < QK_K/64; ib ++ ) {
  10359. __builtin_prefetch(q4, 0, 1);
  10360. __builtin_prefetch(q8, 0, 1);
  10361. vector signed char qxs0 = (vector signed char)vec_xl( 0, q4);
  10362. vector signed char qxs1 = (vector signed char)vec_xl(16, q4);
  10363. q4 += 32;
  10364. vector signed char q4x00 = (vector signed char)vec_and(qxs0, lowMask);
  10365. vector signed char q4x01 = (vector signed char)vec_sr(qxs0, v4);
  10366. vector signed char q4x10 = (vector signed char)vec_and(qxs1, lowMask);
  10367. vector signed char q4x11 = (vector signed char)vec_sr(qxs1, v4);
  10368. q4x00 = vec_perm(values, values, (vector unsigned char)q4x00);
  10369. q4x01 = vec_perm(values, values, (vector unsigned char)q4x01);
  10370. q4x10 = vec_perm(values, values, (vector unsigned char)q4x10);
  10371. q4x11 = vec_perm(values, values, (vector unsigned char)q4x11);
  10372. vector signed char q8y0 = vec_xl( 0, q8);
  10373. vector signed char q8y1 = vec_xl(16, q8);
  10374. vector signed char q8y2 = vec_xl(32, q8);
  10375. vector signed char q8y3 = vec_xl(48, q8);
  10376. q8 += 64;
  10377. vector signed short qv0 = vec_add(vec_mule(q4x00, q8y0), vec_mulo(q4x00, q8y0));
  10378. vector signed short qv1 = vec_add(vec_mule(q4x01, q8y1), vec_mulo(q4x01, q8y1));
  10379. vector signed short qv2 = vec_add(vec_mule(q4x10, q8y2), vec_mulo(q4x10, q8y2));
  10380. vector signed short qv3 = vec_add(vec_mule(q4x11, q8y3), vec_mulo(q4x11, q8y3));
  10381. const uint16_t ls0 = (uint16_t)(((sc[0] & 0xf) | ((h << 4) & 0x30)) - 32);
  10382. const uint16_t ls1 = (uint16_t)(((sc[0] >> 4) | ((h << 2) & 0x30)) - 32);
  10383. h >>= 4;
  10384. sc ++;
  10385. vector signed short vscales01 = vec_splats((int16_t)ls0);
  10386. vector signed short vscales23 = vec_splats((int16_t)ls1);
  10387. vsumi0 = vec_msum(qv0, vscales01, vsumi0);
  10388. vsumi1 = vec_msum(qv1, vscales01, vsumi1);
  10389. vsumi2 = vec_msum(qv2, vscales23, vsumi2);
  10390. vsumi3 = vec_msum(qv3, vscales23, vsumi3);
  10391. }
  10392. vsumf0 = vec_madd(vec_ctf(vsumi0, 0), vd, vsumf0);
  10393. vsumf1 = vec_madd(vec_ctf(vsumi1, 0), vd, vsumf1);
  10394. vsumf2 = vec_madd(vec_ctf(vsumi2, 0), vd, vsumf2);
  10395. vsumf3 = vec_madd(vec_ctf(vsumi3, 0), vd, vsumf3);
  10396. }
  10397. vsumf0 = vec_add(vsumf0, vsumf2);
  10398. vsumf1 = vec_add(vsumf1, vsumf3);
  10399. vsumf0 = vec_add(vsumf0, vsumf1);
  10400. vsumf0 = vec_add(vsumf0, vec_sld(vsumf0, vsumf0, 4));
  10401. vsumf0 = vec_add(vsumf0, vec_sld(vsumf0, vsumf0, 8));
  10402. *s = vec_extract(vsumf0, 0);
  10403. #elif defined(__loongarch_asx)
  10404. const __m128i values128 = __lsx_vld((const __m128i*)kvalues_iq4nl, 0);
  10405. const __m128i m4b = __lsx_vreplgr2vr_b(0x0f);
  10406. __m256 accum = (__m256)__lasx_xvldi(0);
  10407. __m256i tmp1;
  10408. __m128i tmp0, tmp2, tmp3, tmp4, mask_8f, mask;
  10409. mask_8f = __lsx_vreplgr2vr_b(0x8f);
  10410. for (int ibl = 0; ibl < nb; ++ibl) {
  10411. const uint8_t * qs = x[ibl].qs;
  10412. const int8_t * q8 = y[ibl].qs;
  10413. uint16_t sh = x[ibl].scales_h;
  10414. __m256i sumi1 = __lasx_xvldi(0);
  10415. __m256i sumi2 = __lasx_xvldi(0);
  10416. __m128i zero = __lsx_vldi(0);
  10417. for (int ib = 0; ib < QK_K/32; ib += 2) {
  10418. const __m128i q4bits_1 = __lsx_vld((const __m128i*)qs, 0); qs += 16;
  10419. const __m128i q4bits_2 = __lsx_vld((const __m128i*)qs, 0); qs += 16;
  10420. const __m256i q8b_1 = __lasx_xvld((const __m256i *)q8, 0); q8 += 32;
  10421. const __m256i q8b_2 = __lasx_xvld((const __m256i *)q8, 0); q8 += 32;
  10422. tmp2 = __lsx_vand_v(__lsx_vand_v(__lsx_vsrli_h(q4bits_1, 4), m4b), mask_8f);
  10423. tmp0 = __lsx_vori_b(tmp2, 0x10);
  10424. mask = __lsx_vsle_b(zero, tmp2);
  10425. tmp3 = __lsx_vand_v(tmp0, mask);
  10426. tmp3 = __lsx_vshuf_b(values128, zero, tmp3);
  10427. tmp2 = __lsx_vand_v(__lsx_vand_v(q4bits_1, m4b), mask_8f);
  10428. tmp0 = __lsx_vori_b(tmp2, 0x10);
  10429. mask = __lsx_vsle_b(zero, tmp2);
  10430. tmp4 = __lsx_vand_v(tmp0, mask);
  10431. tmp4 = __lsx_vshuf_b(values128, zero, tmp4);
  10432. const __m256i q4b_1 = lasx_insertf128(tmp3, tmp4);
  10433. tmp2 = __lsx_vand_v(__lsx_vand_v(__lsx_vsrli_h(q4bits_2, 4), m4b), mask_8f);
  10434. tmp0 = __lsx_vori_b(tmp2, 0x10);
  10435. mask = __lsx_vsle_b(zero, tmp2);
  10436. tmp3 = __lsx_vand_v(tmp0, mask);
  10437. tmp3 = __lsx_vshuf_b(values128, zero, tmp3);
  10438. tmp2 = __lsx_vand_v(__lsx_vand_v(q4bits_2, m4b), mask_8f);
  10439. tmp0 = __lsx_vori_b(tmp2, 0x10);
  10440. mask = __lsx_vsle_b(zero, tmp2);
  10441. tmp4 = __lsx_vand_v(tmp0, mask);
  10442. tmp4 = __lsx_vshuf_b(values128, zero, tmp4);
  10443. const __m256i q4b_2 = lasx_insertf128(tmp3, tmp4);
  10444. const __m256i p16_1 = mul_add_epi8(q4b_1, q8b_1);
  10445. const __m256i p16_2 = mul_add_epi8(q4b_2, q8b_2);
  10446. const int16_t ls1 = ((x[ibl].scales_l[ib/2] & 0xf) | ((sh << 4) & 0x30)) - 32;
  10447. const int16_t ls2 = ((x[ibl].scales_l[ib/2] >> 4) | ((sh << 2) & 0x30)) - 32;
  10448. sh >>= 4;
  10449. __m256i tmp5, tmp6;
  10450. tmp1 = __lasx_xvreplgr2vr_h(ls1);
  10451. tmp5 = __lasx_xvmulwev_w_h(p16_1, tmp1);
  10452. tmp6 = __lasx_xvmulwod_w_h(p16_1, tmp1);
  10453. const __m256i p_1 = __lasx_xvadd_w(tmp5, tmp6);
  10454. tmp1 = __lasx_xvreplgr2vr_h(ls2);
  10455. tmp5 = __lasx_xvmulwev_w_h(p16_2, tmp1);
  10456. tmp6 = __lasx_xvmulwod_w_h(p16_2, tmp1);
  10457. const __m256i p_2 = __lasx_xvadd_w(tmp5, tmp6);
  10458. sumi1 = __lasx_xvadd_w(p_1, sumi1);
  10459. sumi2 = __lasx_xvadd_w(p_2, sumi2);
  10460. }
  10461. accum = __lasx_xvfmadd_s(__lasx_xvreplfr2vr_s(GGML_FP16_TO_FP32(x[ibl].d)*y[ibl].d),
  10462. __lasx_xvffint_s_w(__lasx_xvadd_w(sumi1, sumi2)), accum);
  10463. }
  10464. *s = hsum_float_8(accum);
  10465. #else
  10466. float sumf = 0;
  10467. for (int ibl = 0; ibl < nb; ++ibl) {
  10468. const float d4d8 = GGML_FP16_TO_FP32(x[ibl].d) * y[ibl].d;
  10469. uint16_t h = x[ibl].scales_h;
  10470. const uint8_t * qs = x[ibl].qs;
  10471. const int8_t * q8 = y[ibl].qs;
  10472. for (int ib = 0; ib < QK_K/32; ib += 2) {
  10473. const uint8_t ls1 = (x[ibl].scales_l[ib/2] & 0xf) | ((h << 4) & 0x30);
  10474. const uint8_t ls2 = (x[ibl].scales_l[ib/2] >> 4) | ((h << 2) & 0x30);
  10475. h >>= 4;
  10476. const float d1 = d4d8*(ls1 - 32);
  10477. const float d2 = d4d8*(ls2 - 32);
  10478. int sumi1 = 0, sumi2 = 0;
  10479. for (int j = 0; j < 16; ++j) {
  10480. sumi1 += q8[j+ 0] * kvalues_iq4nl[qs[j] & 0xf];
  10481. sumi2 += q8[j+16] * kvalues_iq4nl[qs[j] >> 4];
  10482. }
  10483. sumf += d1 * (sumi1 + sumi2);
  10484. qs += 16;
  10485. q8 += 32;
  10486. sumi1 = sumi2 = 0;
  10487. for (int j = 0; j < 16; ++j) {
  10488. sumi1 += q8[j+ 0] * kvalues_iq4nl[qs[j] & 0xf];
  10489. sumi2 += q8[j+16] * kvalues_iq4nl[qs[j] >> 4];
  10490. }
  10491. sumf += d2 * (sumi1 + sumi2);
  10492. qs += 16;
  10493. q8 += 32;
  10494. }
  10495. }
  10496. *s = sumf;
  10497. #endif
  10498. }
  10499. // ================================ IQ2 quantization =============================================
  10500. typedef struct {
  10501. uint64_t * grid;
  10502. int * map;
  10503. uint16_t * neighbours;
  10504. } iq2_entry_t;
  10505. static iq2_entry_t iq2_data[4] = {
  10506. {NULL, NULL, NULL},
  10507. {NULL, NULL, NULL},
  10508. {NULL, NULL, NULL},
  10509. {NULL, NULL, NULL},
  10510. };
  10511. static inline int iq2_data_index(enum ggml_type type) {
  10512. GGML_ASSERT(type == GGML_TYPE_IQ2_XXS || type == GGML_TYPE_IQ2_XS || type == GGML_TYPE_IQ1_S || type == GGML_TYPE_IQ1_M || type == GGML_TYPE_IQ2_S);
  10513. return type == GGML_TYPE_IQ2_XXS ? 0 :
  10514. type == GGML_TYPE_IQ2_XS ? 1 :
  10515. type == GGML_TYPE_IQ1_S || type == GGML_TYPE_IQ1_M ? 2 : 3;
  10516. }
  10517. static inline int iq2_grid_size(enum ggml_type type) {
  10518. GGML_ASSERT(type == GGML_TYPE_IQ2_XXS || type == GGML_TYPE_IQ2_XS || type == GGML_TYPE_IQ1_S || type == GGML_TYPE_IQ1_M || type == GGML_TYPE_IQ2_S);
  10519. return type == GGML_TYPE_IQ2_XXS ? 256 :
  10520. type == GGML_TYPE_IQ2_XS ? 512 :
  10521. type == GGML_TYPE_IQ1_S || type == GGML_TYPE_IQ1_M ? NGRID_IQ1S : 1024;
  10522. }
  10523. static int iq2_compare_func(const void * left, const void * right) {
  10524. const int * l = (const int *)left;
  10525. const int * r = (const int *)right;
  10526. return l[0] < r[0] ? -1 : l[0] > r[0] ? 1 : l[1] < r[1] ? -1 : l[1] > r[1] ? 1 : 0;
  10527. }
  10528. void iq2xs_init_impl(enum ggml_type type) {
  10529. const int gindex = iq2_data_index(type);
  10530. const int grid_size = iq2_grid_size(type);
  10531. if (iq2_data[gindex].grid) {
  10532. return;
  10533. }
  10534. static const uint16_t kgrid_2bit_256[256] = {
  10535. 0, 2, 5, 8, 10, 17, 20, 32, 34, 40, 42, 65, 68, 80, 88, 97,
  10536. 100, 128, 130, 138, 162, 257, 260, 272, 277, 320, 388, 408, 512, 514, 546, 642,
  10537. 1025, 1028, 1040, 1057, 1060, 1088, 1090, 1096, 1120, 1153, 1156, 1168, 1188, 1280, 1282, 1288,
  10538. 1312, 1350, 1385, 1408, 1425, 1545, 1552, 1600, 1668, 1700, 2048, 2053, 2056, 2068, 2088, 2113,
  10539. 2116, 2128, 2130, 2184, 2308, 2368, 2562, 2580, 4097, 4100, 4112, 4129, 4160, 4192, 4228, 4240,
  10540. 4245, 4352, 4360, 4384, 4432, 4442, 4480, 4644, 4677, 5120, 5128, 5152, 5157, 5193, 5248, 5400,
  10541. 5474, 5632, 5654, 6145, 6148, 6160, 6208, 6273, 6400, 6405, 6560, 6737, 8192, 8194, 8202, 8260,
  10542. 8289, 8320, 8322, 8489, 8520, 8704, 8706, 9217, 9220, 9232, 9280, 9302, 9472, 9537, 9572, 9872,
  10543. 10248, 10272, 10388, 10820, 16385, 16388, 16400, 16408, 16417, 16420, 16448, 16456, 16470, 16480, 16513, 16516,
  10544. 16528, 16640, 16672, 16737, 16768, 16773, 16897, 16912, 16968, 16982, 17000, 17408, 17416, 17440, 17536, 17561,
  10545. 17682, 17700, 17920, 18433, 18436, 18448, 18496, 18501, 18688, 18776, 18785, 18818, 19013, 19088, 20480, 20488,
  10546. 20497, 20505, 20512, 20608, 20616, 20740, 20802, 20900, 21137, 21648, 21650, 21770, 22017, 22100, 22528, 22545,
  10547. 22553, 22628, 22848, 23048, 24580, 24592, 24640, 24680, 24832, 24917, 25112, 25184, 25600, 25605, 25872, 25874,
  10548. 25988, 26690, 32768, 32770, 32778, 32833, 32898, 33028, 33048, 33088, 33297, 33793, 33796, 33808, 33813, 33856,
  10549. 33888, 34048, 34118, 34196, 34313, 34368, 34400, 34818, 35076, 35345, 36868, 36880, 36900, 36928, 37025, 37142,
  10550. 37248, 37445, 37888, 37922, 37956, 38225, 39041, 39200, 40962, 41040, 41093, 41225, 41472, 42008, 43088, 43268,
  10551. };
  10552. static const uint16_t kgrid_2bit_512[512] = {
  10553. 0, 2, 5, 8, 10, 17, 20, 22, 25, 32, 34, 37, 40, 65, 68, 70,
  10554. 73, 80, 82, 85, 88, 97, 100, 128, 130, 133, 136, 145, 148, 153, 160, 257,
  10555. 260, 262, 265, 272, 274, 277, 280, 282, 289, 292, 320, 322, 325, 328, 337, 340,
  10556. 352, 360, 385, 388, 400, 512, 514, 517, 520, 529, 532, 544, 577, 580, 592, 597,
  10557. 640, 650, 1025, 1028, 1030, 1033, 1040, 1042, 1045, 1048, 1057, 1060, 1088, 1090, 1093, 1096,
  10558. 1105, 1108, 1110, 1120, 1153, 1156, 1168, 1280, 1282, 1285, 1288, 1297, 1300, 1312, 1345, 1348,
  10559. 1360, 1377, 1408, 1537, 1540, 1552, 1574, 1600, 1602, 1668, 2048, 2050, 2053, 2056, 2058, 2065,
  10560. 2068, 2080, 2085, 2113, 2116, 2128, 2136, 2176, 2208, 2218, 2305, 2308, 2320, 2368, 2433, 2441,
  10561. 2560, 2592, 2600, 2710, 2720, 4097, 4100, 4102, 4105, 4112, 4114, 4117, 4120, 4129, 4132, 4160,
  10562. 4162, 4165, 4168, 4177, 4180, 4192, 4202, 4225, 4228, 4240, 4352, 4354, 4357, 4360, 4369, 4372,
  10563. 4384, 4417, 4420, 4432, 4480, 4500, 4502, 4609, 4612, 4614, 4624, 4672, 4704, 5120, 5122, 5125,
  10564. 5128, 5137, 5140, 5152, 5185, 5188, 5193, 5200, 5220, 5248, 5377, 5380, 5392, 5440, 5632, 5652,
  10565. 5705, 6145, 6148, 6160, 6162, 6208, 6228, 6278, 6400, 6405, 6502, 6737, 6825, 8192, 8194, 8197,
  10566. 8200, 8202, 8209, 8212, 8224, 8257, 8260, 8272, 8320, 8352, 8449, 8452, 8464, 8512, 8520, 8549,
  10567. 8704, 8738, 8832, 8872, 9217, 9220, 9232, 9257, 9280, 9472, 9537, 9554, 9625, 9729, 9754, 9894,
  10568. 10240, 10248, 10250, 10272, 10325, 10376, 10402, 10600, 10640, 10760, 10784, 10882, 10888, 10890, 16385, 16388,
  10569. 16390, 16393, 16400, 16402, 16405, 16408, 16417, 16420, 16448, 16450, 16453, 16456, 16458, 16465, 16468, 16480,
  10570. 16485, 16513, 16516, 16528, 16640, 16642, 16645, 16648, 16657, 16660, 16672, 16705, 16708, 16720, 16768, 16773,
  10571. 16802, 16897, 16900, 16912, 16914, 16937, 16960, 17408, 17410, 17413, 17416, 17425, 17428, 17433, 17440, 17473,
  10572. 17476, 17488, 17536, 17556, 17665, 17668, 17680, 17700, 17728, 17818, 17920, 17930, 17988, 18000, 18433, 18436,
  10573. 18448, 18496, 18501, 18516, 18530, 18688, 18705, 18756, 18768, 18793, 18948, 20480, 20482, 20485, 20488, 20497,
  10574. 20500, 20512, 20520, 20545, 20548, 20560, 20608, 20737, 20740, 20752, 20757, 20800, 20802, 20992, 21060, 21162,
  10575. 21505, 21508, 21520, 21537, 21568, 21600, 21633, 21665, 21760, 21768, 21888, 21896, 22049, 22120, 22177, 22528,
  10576. 22548, 22593, 22608, 22681, 22810, 22848, 22850, 23173, 24577, 24580, 24592, 24640, 24660, 24674, 24710, 24745,
  10577. 24832, 25124, 25162, 25234, 25600, 25622, 25872, 25920, 25925, 26020, 26625, 26730, 26917, 27142, 27220, 27234,
  10578. 32768, 32770, 32773, 32776, 32785, 32788, 32800, 32810, 32833, 32836, 32848, 32896, 32898, 32936, 32938, 33025,
  10579. 33028, 33030, 33040, 33088, 33105, 33113, 33280, 33312, 33408, 33410, 33440, 33448, 33793, 33796, 33808, 33810,
  10580. 33813, 33856, 33888, 33929, 34048, 34116, 34213, 34328, 34410, 34816, 34824, 34853, 34906, 34944, 34946, 34984,
  10581. 35078, 35362, 35456, 35464, 35478, 35496, 36865, 36868, 36880, 36928, 36950, 36996, 37120, 37154, 37220, 37462,
  10582. 37513, 37888, 37893, 37956, 37968, 37976, 38185, 38288, 38290, 38465, 38993, 39078, 39241, 39445, 39520, 40960,
  10583. 40962, 40968, 40970, 40992, 41002, 41120, 41297, 41305, 41382, 41472, 41474, 41480, 41514, 41600, 41632, 42048,
  10584. 42133, 42597, 42648, 43018, 43040, 43042, 43048, 43168, 43176, 43268, 43396, 43398, 43560, 43562, 43665, 43690,
  10585. };
  10586. static const uint16_t kgrid_1bit_2048[NGRID_IQ1S] = {
  10587. 0, 2, 5, 8, 10, 17, 21, 32, 34, 40, 42, 69, 81, 84, 86, 101,
  10588. 128, 130, 136, 138, 149, 160, 162, 168, 170, 260, 261, 273, 276, 278, 281, 282,
  10589. 293, 321, 326, 329, 338, 341, 346, 353, 356, 358, 360, 389, 401, 404, 406, 421,
  10590. 512, 514, 520, 522, 533, 544, 546, 552, 554, 581, 593, 601, 612, 617, 640, 642,
  10591. 648, 650, 657, 661, 665, 672, 674, 680, 682, 1041, 1044, 1046, 1061, 1089, 1097, 1109,
  10592. 1114, 1124, 1125, 1169, 1177, 1189, 1281, 1284, 1285, 1286, 1301, 1304, 1306, 1321, 1344, 1349,
  10593. 1354, 1360, 1361, 1364, 1365, 1366, 1369, 1376, 1378, 1381, 1384, 1386, 1409, 1425, 1429, 1432,
  10594. 1434, 1441, 1444, 1445, 1446, 1449, 1556, 1561, 1601, 1604, 1616, 1618, 1621, 1624, 1632, 1633,
  10595. 1638, 1641, 1669, 1681, 1684, 1689, 2048, 2050, 2056, 2058, 2069, 2080, 2082, 2088, 2090, 2117,
  10596. 2129, 2134, 2149, 2176, 2178, 2184, 2186, 2197, 2208, 2210, 2216, 2218, 2309, 2321, 2324, 2329,
  10597. 2340, 2341, 2369, 2384, 2385, 2389, 2401, 2404, 2409, 2449, 2452, 2454, 2457, 2469, 2560, 2562,
  10598. 2568, 2570, 2581, 2592, 2594, 2600, 2602, 2629, 2641, 2649, 2657, 2661, 2688, 2690, 2693, 2696,
  10599. 2698, 2709, 2720, 2722, 2728, 2730, 4112, 4113, 4116, 4121, 4132, 4133, 4161, 4164, 4176, 4181,
  10600. 4184, 4193, 4196, 4197, 4201, 4241, 4244, 4246, 4257, 4261, 4353, 4356, 4358, 4361, 4368, 4370,
  10601. 4373, 4376, 4385, 4388, 4393, 4421, 4426, 4432, 4433, 4434, 4436, 4437, 4438, 4441, 4448, 4453,
  10602. 4484, 4498, 4501, 4513, 4516, 4625, 4628, 4630, 4645, 4672, 4678, 4681, 4690, 4693, 4696, 4698,
  10603. 4708, 4710, 4741, 4753, 4756, 4758, 4773, 5121, 5126, 5129, 5140, 5141, 5144, 5145, 5153, 5158,
  10604. 5185, 5189, 5190, 5192, 5194, 5201, 5204, 5205, 5206, 5209, 5218, 5221, 5224, 5252, 5257, 5264,
  10605. 5268, 5269, 5272, 5273, 5274, 5281, 5284, 5285, 5289, 5378, 5381, 5386, 5393, 5396, 5397, 5398,
  10606. 5401, 5408, 5410, 5413, 5416, 5418, 5441, 5444, 5445, 5446, 5457, 5458, 5460, 5461, 5462, 5465,
  10607. 5466, 5473, 5476, 5477, 5478, 5481, 5504, 5506, 5508, 5509, 5512, 5514, 5520, 5521, 5524, 5525,
  10608. 5526, 5529, 5530, 5536, 5538, 5541, 5633, 5636, 5637, 5638, 5653, 5654, 5656, 5658, 5665, 5670,
  10609. 5696, 5698, 5700, 5701, 5704, 5706, 5713, 5717, 5718, 5720, 5721, 5729, 5732, 5733, 5736, 5737,
  10610. 5738, 5766, 5770, 5778, 5781, 5796, 5801, 6161, 6166, 6181, 6209, 6212, 6214, 6217, 6224, 6229,
  10611. 6232, 6234, 6240, 6241, 6244, 6246, 6249, 6277, 6289, 6292, 6309, 6416, 6418, 6421, 6426, 6433,
  10612. 6437, 6466, 6468, 6469, 6472, 6481, 6484, 6485, 6486, 6489, 6490, 6496, 6501, 6506, 6537, 6545,
  10613. 6546, 6549, 6552, 6561, 6566, 6569, 6665, 6678, 6692, 6694, 6724, 6726, 6729, 6736, 6738, 6741,
  10614. 6744, 6753, 6758, 6761, 6789, 6801, 6806, 6810, 8192, 8194, 8200, 8202, 8213, 8224, 8226, 8229,
  10615. 8232, 8234, 8261, 8273, 8281, 8289, 8293, 8320, 8322, 8328, 8330, 8341, 8352, 8354, 8357, 8360,
  10616. 8362, 8453, 8465, 8468, 8473, 8485, 8514, 8516, 8521, 8533, 8536, 8538, 8545, 8548, 8549, 8550,
  10617. 8581, 8592, 8598, 8601, 8613, 8705, 8712, 8714, 8721, 8725, 8736, 8738, 8744, 8746, 8773, 8785,
  10618. 8790, 8793, 8805, 8833, 8840, 8842, 8849, 8853, 8864, 8866, 8872, 8874, 9221, 9236, 9238, 9241,
  10619. 9253, 9284, 9285, 9286, 9289, 9298, 9301, 9304, 9306, 9318, 9349, 9361, 9364, 9369, 9377, 9381,
  10620. 9481, 9493, 9505, 9513, 9536, 9541, 9544, 9553, 9556, 9557, 9561, 9570, 9573, 9576, 9609, 9616,
  10621. 9620, 9621, 9624, 9626, 9633, 9636, 9638, 9641, 9733, 9744, 9746, 9753, 9765, 9793, 9801, 9813,
  10622. 9824, 9825, 9833, 9860, 9862, 9872, 9882, 10240, 10242, 10248, 10250, 10261, 10272, 10274, 10280, 10282,
  10623. 10309, 10321, 10324, 10341, 10368, 10370, 10376, 10378, 10400, 10402, 10408, 10410, 10505, 10513, 10516, 10521,
  10624. 10533, 10566, 10569, 10578, 10581, 10593, 10596, 10598, 10601, 10629, 10640, 10646, 10649, 10660, 10661, 10752,
  10625. 10754, 10760, 10762, 10784, 10786, 10792, 10794, 10821, 10833, 10838, 10841, 10853, 10880, 10882, 10888, 10890,
  10626. 10901, 10912, 10914, 10920, 10922, 16389, 16401, 16406, 16421, 16457, 16466, 16469, 16472, 16474, 16481, 16484,
  10627. 16486, 16532, 16537, 16545, 16550, 16640, 16641, 16644, 16646, 16649, 16658, 16661, 16662, 16664, 16666, 16673,
  10628. 16678, 16681, 16709, 16712, 16714, 16721, 16724, 16725, 16726, 16729, 16730, 16741, 16744, 16746, 16769, 16772,
  10629. 16774, 16784, 16786, 16789, 16800, 16801, 16802, 16901, 16913, 16916, 16918, 16933, 16961, 16978, 16981, 16986,
  10630. 16996, 17001, 17033, 17044, 17061, 17409, 17429, 17433, 17449, 17477, 17480, 17482, 17489, 17492, 17493, 17494,
  10631. 17505, 17506, 17509, 17512, 17514, 17537, 17542, 17545, 17552, 17554, 17557, 17568, 17569, 17577, 17665, 17666,
  10632. 17669, 17674, 17681, 17684, 17685, 17686, 17689, 17696, 17701, 17706, 17729, 17732, 17733, 17734, 17737, 17744,
  10633. 17745, 17748, 17749, 17750, 17752, 17753, 17761, 17764, 17765, 17766, 17769, 17794, 17796, 17797, 17800, 17809,
  10634. 17812, 17813, 17814, 17817, 17818, 17829, 17832, 17834, 17921, 17925, 17929, 17940, 17941, 17944, 17946, 17953,
  10635. 17956, 17961, 17984, 17986, 17989, 17992, 18000, 18001, 18002, 18005, 18006, 18009, 18018, 18021, 18024, 18049,
  10636. 18053, 18058, 18068, 18069, 18081, 18084, 18086, 18437, 18449, 18453, 18458, 18469, 18498, 18505, 18512, 18517,
  10637. 18520, 18529, 18532, 18534, 18537, 18565, 18577, 18580, 18582, 18585, 18597, 18689, 18693, 18694, 18698, 18704,
  10638. 18708, 18709, 18712, 18721, 18724, 18726, 18752, 18757, 18762, 18769, 18770, 18772, 18773, 18774, 18777, 18784,
  10639. 18786, 18789, 18790, 18794, 18822, 18825, 18834, 18837, 18838, 18840, 18849, 18852, 18854, 18857, 18966, 19012,
  10640. 19014, 19017, 19029, 19032, 19034, 19044, 19049, 19092, 19109, 20481, 20484, 20485, 20486, 20489, 20498, 20501,
  10641. 20506, 20513, 20516, 20521, 20544, 20549, 20552, 20561, 20564, 20565, 20566, 20569, 20581, 20584, 20614, 20617,
  10642. 20629, 20632, 20640, 20641, 20646, 20649, 20741, 20744, 20745, 20746, 20753, 20756, 20757, 20758, 20760, 20761,
  10643. 20768, 20773, 20774, 20776, 20778, 20801, 20804, 20805, 20806, 20809, 20816, 20817, 20818, 20820, 20821, 20822,
  10644. 20824, 20825, 20826, 20833, 20836, 20837, 20838, 20841, 20866, 20869, 20881, 20884, 20885, 20886, 20889, 20896,
  10645. 20901, 20906, 20993, 20998, 21010, 21013, 21018, 21025, 21028, 21058, 21061, 21066, 21073, 21076, 21077, 21078,
  10646. 21081, 21090, 21093, 21125, 21136, 21138, 21141, 21145, 21146, 21156, 21508, 21509, 21521, 21524, 21525, 21526,
  10647. 21528, 21529, 21537, 21541, 21544, 21546, 21569, 21572, 21573, 21574, 21577, 21578, 21584, 21585, 21588, 21589,
  10648. 21590, 21592, 21593, 21594, 21601, 21602, 21604, 21605, 21606, 21609, 21632, 21640, 21642, 21649, 21652, 21653,
  10649. 21654, 21657, 21665, 21668, 21669, 21674, 21761, 21762, 21764, 21765, 21766, 21769, 21776, 21777, 21778, 21780,
  10650. 21781, 21782, 21785, 21786, 21793, 21796, 21797, 21798, 21801, 21824, 21825, 21826, 21828, 21829, 21830, 21832,
  10651. 21833, 21840, 21841, 21842, 21844, 21845, 21846, 21848, 21849, 21850, 21856, 21857, 21860, 21861, 21862, 21864,
  10652. 21865, 21866, 21889, 21892, 21893, 21897, 21898, 21904, 21905, 21908, 21909, 21910, 21912, 21913, 21921, 21924,
  10653. 21925, 21926, 21929, 22016, 22017, 22018, 22020, 22022, 22024, 22025, 22033, 22036, 22037, 22040, 22041, 22048,
  10654. 22049, 22050, 22052, 22053, 22054, 22056, 22057, 22081, 22085, 22086, 22088, 22089, 22090, 22096, 22097, 22098,
  10655. 22100, 22101, 22102, 22104, 22105, 22106, 22113, 22116, 22117, 22121, 22146, 22149, 22150, 22152, 22153, 22154,
  10656. 22161, 22165, 22170, 22178, 22181, 22182, 22184, 22185, 22532, 22533, 22534, 22537, 22544, 22549, 22552, 22561,
  10657. 22570, 22597, 22600, 22602, 22609, 22612, 22613, 22614, 22616, 22617, 22624, 22626, 22628, 22629, 22658, 22665,
  10658. 22672, 22674, 22677, 22680, 22689, 22697, 22785, 22786, 22789, 22794, 22801, 22804, 22805, 22806, 22809, 22821,
  10659. 22849, 22852, 22853, 22854, 22857, 22864, 22865, 22866, 22868, 22869, 22870, 22872, 22873, 22874, 22881, 22884,
  10660. 22885, 22886, 22889, 22913, 22917, 22921, 22929, 22932, 22933, 22934, 22936, 22937, 22949, 23044, 23048, 23061,
  10661. 23066, 23072, 23077, 23078, 23081, 23109, 23112, 23113, 23121, 23125, 23126, 23128, 23129, 23138, 23141, 23144,
  10662. 23146, 23169, 23178, 23186, 23189, 23190, 23192, 23194, 23201, 24581, 24596, 24598, 24601, 24613, 24644, 24656,
  10663. 24661, 24662, 24664, 24666, 24673, 24676, 24678, 24681, 24705, 24726, 24741, 24833, 24836, 24838, 24841, 24850,
  10664. 24853, 24865, 24866, 24870, 24873, 24901, 24905, 24913, 24917, 24918, 24921, 24933, 24934, 24938, 24964, 24970,
  10665. 24978, 24981, 24993, 24998, 25001, 25105, 25110, 25113, 25152, 25153, 25158, 25173, 25174, 25176, 25184, 25221,
  10666. 25233, 25238, 25253, 25617, 25618, 25621, 25622, 25626, 25633, 25638, 25641, 25664, 25666, 25669, 25672, 25674,
  10667. 25681, 25684, 25685, 25686, 25689, 25690, 25696, 25698, 25701, 25732, 25733, 25737, 25744, 25746, 25748, 25749,
  10668. 25750, 25752, 25754, 25761, 25764, 25769, 25861, 25864, 25866, 25873, 25877, 25878, 25881, 25924, 25925, 25926,
  10669. 25929, 25936, 25937, 25940, 25941, 25942, 25945, 25953, 25956, 25957, 25958, 25961, 25990, 25993, 25994, 26001,
  10670. 26005, 26006, 26009, 26010, 26018, 26021, 26022, 26024, 26114, 26121, 26133, 26144, 26150, 26152, 26153, 26176,
  10671. 26181, 26184, 26186, 26193, 26196, 26197, 26198, 26200, 26202, 26208, 26213, 26216, 26240, 26242, 26245, 26250,
  10672. 26260, 26262, 26264, 26265, 26272, 26276, 26278, 26282, 26646, 26649, 26661, 26689, 26706, 26709, 26714, 26721,
  10673. 26729, 26757, 26769, 26776, 26790, 26881, 26884, 26896, 26901, 26913, 26916, 26918, 26921, 26944, 26945, 26949,
  10674. 26950, 26952, 26961, 26964, 26965, 26966, 26969, 26976, 26981, 26986, 27010, 27012, 27018, 27029, 27041, 27044,
  10675. 27045, 27049, 27153, 27158, 27160, 27201, 27204, 27209, 27216, 27221, 27224, 27226, 27236, 27237, 27241, 27270,
  10676. 27284, 27288, 27290, 27302, 32768, 32770, 32776, 32778, 32800, 32802, 32808, 32810, 32837, 32848, 32849, 32852,
  10677. 32854, 32857, 32869, 32896, 32898, 32904, 32906, 32917, 32928, 32930, 32936, 32938, 33029, 33041, 33044, 33046,
  10678. 33049, 33061, 33089, 33092, 33097, 33104, 33106, 33109, 33110, 33112, 33113, 33124, 33126, 33129, 33157, 33161,
  10679. 33172, 33174, 33177, 33189, 33280, 33282, 33288, 33290, 33301, 33312, 33314, 33320, 33322, 33361, 33364, 33369,
  10680. 33381, 33408, 33410, 33416, 33418, 33429, 33440, 33442, 33448, 33450, 33812, 33817, 33857, 33860, 33873, 33877,
  10681. 33882, 33889, 33892, 33897, 33940, 33945, 34049, 34057, 34066, 34069, 34074, 34086, 34089, 34112, 34113, 34117,
  10682. 34120, 34129, 34132, 34133, 34134, 34137, 34138, 34149, 34150, 34152, 34154, 34177, 34180, 34182, 34185, 34192,
  10683. 34194, 34197, 34200, 34214, 34321, 34326, 34329, 34341, 34369, 34372, 34377, 34378, 34384, 34389, 34393, 34394,
  10684. 34401, 34406, 34410, 34437, 34449, 34458, 34468, 34816, 34818, 34824, 34826, 34837, 34848, 34850, 34856, 34858,
  10685. 34881, 34885, 34897, 34900, 34905, 34917, 34921, 34944, 34946, 34952, 34954, 34965, 34976, 34978, 34984, 34986,
  10686. 35077, 35078, 35089, 35092, 35094, 35109, 35137, 35140, 35142, 35145, 35152, 35154, 35157, 35162, 35169, 35172,
  10687. 35205, 35222, 35225, 35237, 35328, 35330, 35336, 35338, 35349, 35360, 35362, 35368, 35370, 35397, 35409, 35412,
  10688. 35414, 35456, 35458, 35464, 35466, 35477, 35488, 35490, 35496, 35498, 36869, 36881, 36886, 36888, 36889, 36901,
  10689. 36929, 36934, 36937, 36949, 36952, 36954, 36969, 36970, 36997, 37009, 37012, 37014, 37017, 37029, 37121, 37124,
  10690. 37126, 37129, 37136, 37141, 37144, 37146, 37153, 37156, 37158, 37161, 37184, 37189, 37200, 37201, 37204, 37205,
  10691. 37206, 37209, 37218, 37221, 37252, 37254, 37266, 37269, 37272, 37281, 37284, 37286, 37289, 37381, 37393, 37396,
  10692. 37401, 37413, 37444, 37446, 37449, 37456, 37458, 37461, 37464, 37478, 37481, 37509, 37524, 37526, 37545, 37889,
  10693. 37892, 37894, 37904, 37909, 37912, 37926, 37952, 37962, 37969, 37972, 37973, 37974, 37976, 37977, 37984, 37985,
  10694. 37986, 37989, 38020, 38022, 38034, 38036, 38037, 38040, 38049, 38057, 38144, 38149, 38152, 38154, 38160, 38161,
  10695. 38164, 38165, 38166, 38169, 38177, 38181, 38185, 38186, 38209, 38212, 38213, 38214, 38217, 38224, 38225, 38226,
  10696. 38228, 38229, 38230, 38232, 38233, 38234, 38241, 38244, 38245, 38246, 38249, 38273, 38277, 38280, 38289, 38290,
  10697. 38292, 38293, 38294, 38297, 38298, 38304, 38306, 38309, 38312, 38314, 38401, 38404, 38416, 38421, 38425, 38432,
  10698. 38438, 38441, 38469, 38472, 38473, 38481, 38482, 38485, 38486, 38489, 38501, 38504, 38530, 38532, 38537, 38538,
  10699. 38546, 38548, 38549, 38564, 38566, 38569, 38917, 38934, 38937, 38949, 38977, 38982, 38992, 38994, 38997, 38998,
  10700. 39002, 39012, 39013, 39045, 39057, 39062, 39065, 39077, 39172, 39174, 39177, 39184, 39186, 39189, 39192, 39194,
  10701. 39200, 39201, 39204, 39206, 39232, 39234, 39237, 39240, 39242, 39249, 39252, 39253, 39254, 39257, 39266, 39269,
  10702. 39270, 39274, 39297, 39300, 39312, 39314, 39317, 39322, 39329, 39334, 39429, 39445, 39461, 39492, 39494, 39497,
  10703. 39504, 39509, 39512, 39521, 39557, 39569, 39572, 39573, 39574, 40960, 40962, 40968, 40970, 40981, 40992, 40994,
  10704. 41000, 41002, 41029, 41041, 41044, 41046, 41049, 41088, 41090, 41096, 41098, 41109, 41120, 41122, 41128, 41130,
  10705. 41221, 41225, 41233, 41236, 41238, 41241, 41242, 41286, 41289, 41297, 41301, 41304, 41306, 41313, 41316, 41349,
  10706. 41360, 41362, 41366, 41369, 41474, 41480, 41482, 41488, 41497, 41506, 41512, 41514, 41541, 41553, 41558, 41561,
  10707. 41573, 41600, 41602, 41608, 41610, 41621, 41632, 41634, 41640, 41642, 42009, 42021, 42049, 42052, 42064, 42068,
  10708. 42069, 42072, 42074, 42081, 42085, 42086, 42088, 42089, 42117, 42246, 42249, 42256, 42258, 42261, 42264, 42278,
  10709. 42281, 42306, 42309, 42321, 42324, 42325, 42326, 42329, 42341, 42346, 42369, 42372, 42373, 42374, 42377, 42386,
  10710. 42389, 42392, 42501, 42513, 42518, 42522, 42529, 42533, 42564, 42566, 42570, 42578, 42581, 42582, 42584, 42592,
  10711. 42594, 42630, 42640, 42645, 42646, 42649, 42657, 42660, 42662, 43008, 43010, 43016, 43018, 43040, 43042, 43048,
  10712. 43050, 43089, 43092, 43094, 43097, 43136, 43138, 43144, 43146, 43157, 43168, 43170, 43176, 43178, 43269, 43284,
  10713. 43289, 43297, 43301, 43329, 43344, 43349, 43354, 43361, 43366, 43369, 43408, 43414, 43520, 43522, 43528, 43530,
  10714. 43552, 43554, 43560, 43562, 43601, 43604, 43606, 43648, 43650, 43656, 43658, 43669, 43680, 43682, 43688, 43690,
  10715. };
  10716. static const uint16_t kgrid_2bit_1024[1024] = {
  10717. 0, 2, 5, 8, 10, 17, 20, 22, 25, 32, 34, 37, 40, 65, 68, 70,
  10718. 73, 80, 82, 85, 88, 97, 100, 102, 105, 128, 130, 133, 136, 145, 148, 160,
  10719. 165, 170, 257, 260, 262, 265, 272, 274, 277, 280, 289, 292, 320, 322, 325, 328,
  10720. 337, 340, 342, 345, 352, 357, 360, 385, 388, 400, 402, 405, 417, 420, 512, 514,
  10721. 517, 520, 529, 532, 544, 554, 577, 580, 582, 585, 592, 597, 640, 645, 650, 660,
  10722. 674, 1025, 1028, 1030, 1033, 1040, 1042, 1045, 1048, 1057, 1060, 1062, 1065, 1088, 1090, 1093,
  10723. 1096, 1098, 1105, 1108, 1110, 1113, 1120, 1122, 1125, 1153, 1156, 1158, 1161, 1168, 1173, 1176,
  10724. 1185, 1188, 1280, 1282, 1285, 1288, 1290, 1297, 1300, 1302, 1305, 1312, 1317, 1320, 1345, 1348,
  10725. 1350, 1353, 1360, 1362, 1365, 1368, 1377, 1380, 1408, 1410, 1413, 1416, 1425, 1428, 1440, 1537,
  10726. 1540, 1542, 1545, 1552, 1557, 1600, 1605, 1608, 1617, 1620, 1632, 1665, 1668, 1680, 2048, 2050,
  10727. 2053, 2056, 2065, 2068, 2070, 2073, 2080, 2085, 2090, 2113, 2116, 2118, 2121, 2128, 2130, 2133,
  10728. 2136, 2145, 2148, 2176, 2181, 2196, 2218, 2305, 2308, 2320, 2322, 2325, 2328, 2337, 2368, 2373,
  10729. 2376, 2385, 2388, 2400, 2433, 2448, 2560, 2577, 2580, 2594, 2600, 2602, 2640, 2713, 4097, 4100,
  10730. 4102, 4105, 4112, 4114, 4117, 4120, 4129, 4132, 4134, 4160, 4162, 4165, 4168, 4177, 4180, 4182,
  10731. 4185, 4192, 4194, 4197, 4200, 4225, 4228, 4230, 4240, 4245, 4248, 4257, 4260, 4352, 4354, 4357,
  10732. 4360, 4362, 4369, 4372, 4374, 4377, 4384, 4386, 4389, 4392, 4417, 4420, 4422, 4425, 4432, 4434,
  10733. 4437, 4440, 4449, 4452, 4480, 4482, 4485, 4488, 4497, 4500, 4609, 4612, 4617, 4624, 4629, 4641,
  10734. 4644, 4672, 4677, 4689, 4692, 4737, 4740, 4752, 5120, 5122, 5125, 5128, 5137, 5140, 5142, 5145,
  10735. 5152, 5157, 5160, 5185, 5188, 5190, 5193, 5200, 5202, 5205, 5208, 5217, 5220, 5248, 5250, 5253,
  10736. 5256, 5265, 5268, 5280, 5377, 5380, 5382, 5385, 5392, 5394, 5397, 5400, 5409, 5412, 5440, 5442,
  10737. 5445, 5448, 5457, 5460, 5472, 5505, 5508, 5520, 5632, 5637, 5640, 5649, 5652, 5664, 5697, 5700,
  10738. 5712, 5760, 5802, 6145, 6148, 6150, 6153, 6160, 6165, 6168, 6177, 6208, 6210, 6213, 6216, 6225,
  10739. 6228, 6240, 6273, 6276, 6400, 6402, 6405, 6408, 6417, 6420, 6432, 6465, 6468, 6480, 6505, 6562,
  10740. 6660, 6672, 6720, 6742, 8192, 8194, 8197, 8200, 8209, 8212, 8214, 8217, 8224, 8229, 8234, 8257,
  10741. 8260, 8272, 8274, 8277, 8292, 8320, 8330, 8340, 8362, 8449, 8452, 8464, 8466, 8469, 8481, 8512,
  10742. 8514, 8517, 8529, 8532, 8544, 8577, 8580, 8592, 8704, 8714, 8738, 8744, 8746, 8772, 8784, 8840,
  10743. 8842, 8872, 9217, 9220, 9222, 9225, 9232, 9237, 9240, 9249, 9252, 9280, 9282, 9285, 9288, 9297,
  10744. 9300, 9312, 9345, 9348, 9360, 9472, 9477, 9480, 9489, 9492, 9504, 9537, 9540, 9552, 9574, 9600,
  10745. 9729, 9732, 9744, 9792, 9817, 10240, 10245, 10257, 10260, 10305, 10308, 10320, 10378, 10410, 10497, 10500,
  10746. 10512, 10645, 10762, 10786, 10852, 10888, 10890, 16385, 16388, 16390, 16393, 16400, 16402, 16405, 16408, 16410,
  10747. 16417, 16420, 16422, 16448, 16450, 16453, 16456, 16458, 16465, 16468, 16470, 16473, 16480, 16482, 16485, 16513,
  10748. 16516, 16528, 16533, 16536, 16545, 16548, 16640, 16642, 16645, 16648, 16657, 16660, 16662, 16665, 16672, 16674,
  10749. 16677, 16705, 16708, 16710, 16713, 16720, 16722, 16725, 16728, 16737, 16740, 16768, 16770, 16773, 16776, 16785,
  10750. 16788, 16800, 16897, 16900, 16912, 16914, 16917, 16920, 16932, 16960, 16965, 16968, 16977, 16980, 16992, 17025,
  10751. 17028, 17408, 17410, 17413, 17416, 17418, 17425, 17428, 17430, 17433, 17440, 17442, 17445, 17448, 17473, 17476,
  10752. 17478, 17481, 17488, 17490, 17493, 17496, 17505, 17508, 17536, 17538, 17541, 17544, 17553, 17556, 17568, 17665,
  10753. 17668, 17670, 17673, 17680, 17682, 17685, 17688, 17697, 17700, 17728, 17730, 17733, 17736, 17745, 17748, 17760,
  10754. 17770, 17793, 17796, 17808, 17920, 17922, 17925, 17928, 17937, 17940, 17952, 17985, 17988, 18000, 18048, 18085,
  10755. 18433, 18436, 18441, 18448, 18450, 18453, 18456, 18465, 18468, 18496, 18498, 18501, 18504, 18513, 18516, 18528,
  10756. 18564, 18576, 18688, 18690, 18693, 18696, 18705, 18708, 18720, 18753, 18756, 18768, 18816, 18838, 18945, 18948,
  10757. 18960, 19008, 20480, 20482, 20485, 20488, 20497, 20500, 20502, 20505, 20512, 20514, 20517, 20520, 20545, 20548,
  10758. 20550, 20553, 20560, 20562, 20565, 20568, 20577, 20580, 20608, 20610, 20613, 20616, 20625, 20628, 20737, 20740,
  10759. 20742, 20745, 20752, 20754, 20757, 20760, 20769, 20772, 20800, 20802, 20805, 20808, 20817, 20820, 20832, 20865,
  10760. 20868, 20880, 20992, 20997, 21000, 21009, 21012, 21024, 21057, 21060, 21072, 21097, 21120, 21505, 21508, 21510,
  10761. 21513, 21520, 21522, 21525, 21528, 21537, 21540, 21568, 21570, 21573, 21576, 21585, 21588, 21600, 21633, 21636,
  10762. 21648, 21760, 21762, 21765, 21768, 21777, 21780, 21792, 21825, 21828, 21840, 21888, 22017, 22020, 22032, 22054,
  10763. 22080, 22528, 22530, 22533, 22536, 22545, 22548, 22560, 22593, 22596, 22608, 22618, 22656, 22785, 22788, 22800,
  10764. 22848, 23040, 23065, 23173, 23208, 24577, 24580, 24582, 24592, 24594, 24597, 24600, 24609, 24612, 24640, 24645,
  10765. 24648, 24657, 24660, 24672, 24708, 24720, 24832, 24834, 24837, 24840, 24849, 24852, 24864, 24897, 24900, 24912,
  10766. 24960, 24985, 25092, 25104, 25152, 25174, 25249, 25600, 25605, 25608, 25617, 25620, 25632, 25665, 25668, 25680,
  10767. 25728, 25857, 25860, 25872, 25920, 25930, 25960, 26002, 26112, 26260, 26625, 26628, 26640, 26725, 26776, 26880,
  10768. 26922, 27202, 27297, 32768, 32770, 32773, 32776, 32785, 32788, 32793, 32800, 32805, 32833, 32836, 32848, 32850,
  10769. 32853, 32856, 32865, 32896, 32901, 32913, 32916, 33025, 33028, 33033, 33040, 33042, 33045, 33048, 33057, 33060,
  10770. 33088, 33090, 33093, 33096, 33105, 33108, 33153, 33156, 33168, 33193, 33280, 33285, 33290, 33297, 33300, 33345,
  10771. 33348, 33360, 33793, 33796, 33798, 33801, 33808, 33810, 33813, 33816, 33825, 33856, 33858, 33861, 33864, 33873,
  10772. 33876, 33888, 33921, 33924, 33936, 34048, 34050, 34053, 34056, 34065, 34068, 34080, 34113, 34116, 34128, 34176,
  10773. 34186, 34305, 34308, 34320, 34345, 34368, 34816, 34821, 34833, 34836, 34881, 34884, 34896, 34978, 35073, 35076,
  10774. 35136, 35173, 35362, 35416, 35418, 35458, 35490, 36865, 36868, 36873, 36880, 36882, 36885, 36888, 36900, 36928,
  10775. 36930, 36933, 36936, 36945, 36948, 36960, 36993, 36996, 37008, 37120, 37125, 37137, 37140, 37185, 37188, 37200,
  10776. 37210, 37377, 37380, 37392, 37440, 37542, 37888, 37890, 37893, 37896, 37905, 37908, 37920, 37953, 37956, 37968,
  10777. 38016, 38038, 38145, 38148, 38160, 38208, 38296, 38305, 38400, 38470, 38500, 38913, 38916, 38928, 38950, 38976,
  10778. 39081, 39168, 39241, 39250, 39568, 40960, 40965, 40970, 40980, 40994, 41002, 41025, 41028, 41040, 41122, 41130,
  10779. 41280, 41317, 41474, 41482, 41506, 41512, 41514, 41602, 41608, 41610, 41640, 41985, 41988, 42000, 42048, 42121,
  10780. 42148, 42240, 42265, 42577, 43018, 43048, 43170, 43348, 43398, 43528, 43530, 43552, 43554, 43560, 43656, 43690,
  10781. };
  10782. const int kmap_size = 43692;
  10783. //const int nwant = type == GGML_TYPE_IQ1_S ? 3 : 2;
  10784. const int nwant = type == GGML_TYPE_IQ1_S || type == GGML_TYPE_IQ1_M ? 3 : type == GGML_TYPE_IQ2_S ? 1 : 2;
  10785. const uint16_t * kgrid = type == GGML_TYPE_IQ2_XXS ? kgrid_2bit_256 :
  10786. type == GGML_TYPE_IQ2_XS ? kgrid_2bit_512 :
  10787. type == GGML_TYPE_IQ1_S || type == GGML_TYPE_IQ1_M ? kgrid_1bit_2048 : kgrid_2bit_1024;
  10788. uint64_t * kgrid_q2xs;
  10789. int * kmap_q2xs;
  10790. uint16_t * kneighbors_q2xs;
  10791. //printf("================================================================= %s(grid_size = %d)\n", __func__, grid_size);
  10792. uint64_t * the_grid = (uint64_t *)malloc(grid_size*sizeof(uint64_t));
  10793. for (int k = 0; k < grid_size; ++k) {
  10794. int8_t * pos = (int8_t *)(the_grid + k);
  10795. for (int i = 0; i < 8; ++i) {
  10796. int l = (kgrid[k] >> 2*i) & 0x3;
  10797. pos[i] = 2*l + 1;
  10798. }
  10799. }
  10800. kgrid_q2xs = the_grid;
  10801. iq2_data[gindex].grid = the_grid;
  10802. kmap_q2xs = (int *)malloc(kmap_size*sizeof(int));
  10803. iq2_data[gindex].map = kmap_q2xs;
  10804. for (int i = 0; i < kmap_size; ++i) kmap_q2xs[i] = -1;
  10805. uint64_t aux64;
  10806. uint8_t * aux8 = (uint8_t *)&aux64;
  10807. for (int i = 0; i < grid_size; ++i) {
  10808. aux64 = kgrid_q2xs[i];
  10809. uint16_t index = 0;
  10810. for (int k=0; k<8; ++k) {
  10811. uint16_t q = (aux8[k] - 1)/2;
  10812. index |= (q << 2*k);
  10813. }
  10814. kmap_q2xs[index] = i;
  10815. }
  10816. int8_t pos[8];
  10817. int * dist2 = (int *)malloc(2*grid_size*sizeof(int));
  10818. int num_neighbors = 0, num_not_in_map = 0;
  10819. for (int i = 0; i < kmap_size; ++i) {
  10820. if (kmap_q2xs[i] >= 0) continue;
  10821. ++num_not_in_map;
  10822. for (int k = 0; k < 8; ++k) {
  10823. int l = (i >> 2*k) & 0x3;
  10824. pos[k] = 2*l + 1;
  10825. }
  10826. for (int j = 0; j < grid_size; ++j) {
  10827. const int8_t * pg = (const int8_t *)(kgrid_q2xs + j);
  10828. int d2 = 0;
  10829. for (int k = 0; k < 8; ++k) d2 += (pg[k] - pos[k])*(pg[k] - pos[k]);
  10830. dist2[2*j+0] = d2;
  10831. dist2[2*j+1] = j;
  10832. }
  10833. qsort(dist2, grid_size, 2*sizeof(int), iq2_compare_func);
  10834. int n = 0; int d2 = dist2[0];
  10835. int nhave = 1;
  10836. for (int j = 0; j < grid_size; ++j) {
  10837. if (dist2[2*j] > d2) {
  10838. if (nhave == nwant) break;
  10839. d2 = dist2[2*j];
  10840. ++nhave;
  10841. }
  10842. ++n;
  10843. }
  10844. num_neighbors += n;
  10845. }
  10846. //printf("%s: %d neighbours in total\n", __func__, num_neighbors);
  10847. kneighbors_q2xs = (uint16_t *)malloc((num_neighbors + num_not_in_map)*sizeof(uint16_t));
  10848. iq2_data[gindex].neighbours = kneighbors_q2xs;
  10849. int counter = 0;
  10850. for (int i = 0; i < kmap_size; ++i) {
  10851. if (kmap_q2xs[i] >= 0) continue;
  10852. for (int k = 0; k < 8; ++k) {
  10853. int l = (i >> 2*k) & 0x3;
  10854. pos[k] = 2*l + 1;
  10855. }
  10856. for (int j = 0; j < grid_size; ++j) {
  10857. const int8_t * pg = (const int8_t *)(kgrid_q2xs + j);
  10858. int d2 = 0;
  10859. for (int k = 0; k < 8; ++k) d2 += (pg[k] - pos[k])*(pg[k] - pos[k]);
  10860. dist2[2*j+0] = d2;
  10861. dist2[2*j+1] = j;
  10862. }
  10863. qsort(dist2, grid_size, 2*sizeof(int), iq2_compare_func);
  10864. kmap_q2xs[i] = -(counter + 1);
  10865. int d2 = dist2[0];
  10866. uint16_t * start = &kneighbors_q2xs[counter++];
  10867. int n = 0, nhave = 1;
  10868. for (int j = 0; j < grid_size; ++j) {
  10869. if (dist2[2*j] > d2) {
  10870. if (nhave == nwant) break;
  10871. d2 = dist2[2*j];
  10872. ++nhave;
  10873. }
  10874. kneighbors_q2xs[counter++] = dist2[2*j+1];
  10875. ++n;
  10876. }
  10877. *start = n;
  10878. }
  10879. free(dist2);
  10880. }
  10881. void iq2xs_free_impl(enum ggml_type type) {
  10882. GGML_ASSERT(type == GGML_TYPE_IQ2_XXS || type == GGML_TYPE_IQ2_XS || type == GGML_TYPE_IQ1_S || type == GGML_TYPE_IQ1_M || type == GGML_TYPE_IQ2_S);
  10883. const int gindex = iq2_data_index(type);
  10884. if (iq2_data[gindex].grid) {
  10885. free(iq2_data[gindex].grid); iq2_data[gindex].grid = NULL;
  10886. free(iq2_data[gindex].map); iq2_data[gindex].map = NULL;
  10887. free(iq2_data[gindex].neighbours); iq2_data[gindex].neighbours = NULL;
  10888. }
  10889. }
  10890. static int iq2_find_best_neighbour(const uint16_t * restrict neighbours, const uint64_t * restrict grid,
  10891. const float * restrict xval, const float * restrict weight, float scale, int8_t * restrict L) {
  10892. int num_neighbors = neighbours[0];
  10893. GGML_ASSERT(num_neighbors > 0);
  10894. float best_d2 = FLT_MAX;
  10895. int grid_index = -1;
  10896. for (int j = 1; j <= num_neighbors; ++j) {
  10897. const int8_t * pg = (const int8_t *)(grid + neighbours[j]);
  10898. float d2 = 0;
  10899. for (int i = 0; i < 8; ++i) {
  10900. float q = pg[i];
  10901. float diff = scale*q - xval[i];
  10902. d2 += weight[i]*diff*diff;
  10903. }
  10904. if (d2 < best_d2) {
  10905. best_d2 = d2; grid_index = neighbours[j];
  10906. }
  10907. }
  10908. GGML_ASSERT(grid_index >= 0);
  10909. const int8_t * pg = (const int8_t *)(grid + grid_index);
  10910. for (int i = 0; i < 8; ++i) L[i] = (pg[i] - 1)/2;
  10911. return grid_index;
  10912. }
  10913. static void quantize_row_iq2_xxs_impl(const float * restrict x, void * restrict vy, int64_t n, const float * restrict quant_weights) {
  10914. const int gindex = iq2_data_index(GGML_TYPE_IQ2_XXS);
  10915. const uint64_t * kgrid_q2xs = iq2_data[gindex].grid;
  10916. const int * kmap_q2xs = iq2_data[gindex].map;
  10917. const uint16_t * kneighbors_q2xs = iq2_data[gindex].neighbours;
  10918. GGML_ASSERT(quant_weights && "missing quantization weights");
  10919. GGML_ASSERT(kgrid_q2xs && "forgot to call ggml_quantize_init()?");
  10920. GGML_ASSERT(kmap_q2xs && "forgot to call ggml_quantize_init()?");
  10921. GGML_ASSERT(kneighbors_q2xs && "forgot to call ggml_quantize_init()?");
  10922. GGML_ASSERT(n%QK_K == 0);
  10923. const int kMaxQ = 3;
  10924. const int64_t nbl = n/QK_K;
  10925. block_iq2_xxs * y = vy;
  10926. float scales[QK_K/32];
  10927. float weight[32];
  10928. float xval[32];
  10929. int8_t L[32];
  10930. int8_t Laux[32];
  10931. float waux[32];
  10932. uint8_t block_signs[4];
  10933. uint32_t q2[2*(QK_K/32)];
  10934. for (int ibl = 0; ibl < nbl; ++ibl) {
  10935. y[ibl].d = GGML_FP32_TO_FP16(0.f);
  10936. memset(q2, 0, QK_K/4);
  10937. float max_scale = 0;
  10938. const float * xbl = x + QK_K*ibl;
  10939. float sumx2 = 0;
  10940. for (int i = 0; i < QK_K; ++i) sumx2 += xbl[i]*xbl[i];
  10941. float sigma2 = sumx2/QK_K;
  10942. for (int ib = 0; ib < QK_K/32; ++ib) {
  10943. const float * xb = xbl + 32*ib;
  10944. const float * qw = quant_weights + QK_K*ibl + 32*ib;
  10945. for (int i = 0; i < 32; ++i) weight[i] = qw[i] * sqrtf(sigma2 + xb[i]*xb[i]);
  10946. for (int i = 0; i < 32; ++i) waux[i] = sqrtf(weight[i]);
  10947. for (int k = 0; k < 4; ++k) {
  10948. int nflip = 0;
  10949. uint8_t s = 0;
  10950. for (int i = 0; i < 8; ++i) {
  10951. if (xb[8*k + i] >= 0) xval[8*k + i] = xb[8*k + i];
  10952. else {
  10953. xval[8*k + i] = -xb[8*k + i]; ++nflip; s |= (1 << i);
  10954. }
  10955. }
  10956. if (nflip%2) {
  10957. int imin = 0; float min = weight[8*k+imin]*xb[8*k+imin]*xb[8*k+imin];
  10958. for (int i = 1; i < 8; ++i) {
  10959. float ax = weight[8*k+i]*xb[8*k+i]*xb[8*k+i];
  10960. if (ax < min) {
  10961. min = ax; imin = i;
  10962. }
  10963. }
  10964. xval[8*k+imin] = -xval[8*k+imin];
  10965. s ^= (1 << imin);
  10966. }
  10967. block_signs[k] = s & 127;
  10968. }
  10969. float max = xval[0];
  10970. for (int i = 1; i < 32; ++i) max = MAX(max, xval[i]);
  10971. if (max < GROUP_MAX_EPS) {
  10972. scales[ib] = 0;
  10973. memset(L, 0, 32);
  10974. continue;
  10975. }
  10976. float scale = make_qp_quants(32, kMaxQ+1, xval, (uint8_t*)L, weight);
  10977. float eff_max = scale*kMaxQ;
  10978. float best = 0;
  10979. for (int is = -6; is <= 6; ++is) {
  10980. float id = (2*kMaxQ-1+is*0.1f)/eff_max;
  10981. float this_scale = 1/id;
  10982. for (int k = 0; k < 4; ++k) {
  10983. for (int i = 0; i < 8; ++i) {
  10984. int l = nearest_int(0.5f*(id*xval[8*k+i]-1));
  10985. Laux[8*k+i] = MAX(0, MIN(kMaxQ-1, l));
  10986. }
  10987. uint16_t u = 0;
  10988. for (int i = 0; i < 8; ++i) u |= (Laux[8*k+i] << 2*i);
  10989. int grid_index = kmap_q2xs[u];
  10990. if (grid_index < 0) {
  10991. const uint16_t * neighbours = kneighbors_q2xs - kmap_q2xs[u] - 1;
  10992. grid_index = iq2_find_best_neighbour(neighbours, kgrid_q2xs, xval + 8*k, waux + 8*k, this_scale, Laux + 8*k);
  10993. }
  10994. }
  10995. float sumqx = 0, sumq2 = 0;
  10996. for (int i = 0; i < 32; ++i) {
  10997. float w = weight[i];
  10998. float q = 2*Laux[i] + 1;
  10999. sumqx += w*xval[i]*q;
  11000. sumq2 += w*q*q;
  11001. }
  11002. if (sumq2 > 0 && sumqx*sumqx > best*sumq2) {
  11003. scale = sumqx/sumq2; best = scale*sumqx;
  11004. memcpy(L, Laux, 32);
  11005. }
  11006. }
  11007. if (scale > 0) {
  11008. float id = 1/scale;
  11009. for (int k = 0; k < 4; ++k) {
  11010. uint16_t u = 0;
  11011. for (int i = 0; i < 8; ++i) {
  11012. int l = nearest_int(0.5f*(id*xval[8*k+i]-1));
  11013. l = MAX(0, MIN(kMaxQ-1, l));
  11014. u |= (l << 2*i);
  11015. }
  11016. int grid_index = kmap_q2xs[u];
  11017. if (grid_index < 0) {
  11018. const uint16_t * neighbours = kneighbors_q2xs - kmap_q2xs[u] - 1;
  11019. grid_index = iq2_find_best_neighbour(neighbours, kgrid_q2xs, xval + 8*k, waux + 8*k, scale, L + 8*k);
  11020. }
  11021. const int8_t * pg = (const int8_t *)(kgrid_q2xs + grid_index);
  11022. for (int i = 0; i < 8; ++i) L[8*k+i] = (pg[i] - 1)/2;
  11023. }
  11024. float sumqx = 0, sumq2 = 0;
  11025. for (int i = 0; i < 32; ++i) {
  11026. float w = weight[i];
  11027. float q = 2*L[i] + 1;
  11028. sumqx += w*xval[i]*q;
  11029. sumq2 += w*q*q;
  11030. }
  11031. if (sumq2 > 0) scale = sumqx/sumq2;
  11032. }
  11033. if (scale < 0) {
  11034. // This should never happen, but just in case, flip scale so that it is positive (we use uint's to encode the scale)
  11035. // and correspondingly flip quant signs.
  11036. scale = -scale;
  11037. for (int k = 0; k < 4; ++k) block_signs[k] = (~block_signs[k]) & 127;
  11038. }
  11039. for (int k = 0; k < 4; ++k) {
  11040. uint16_t u = 0;
  11041. for (int i = 0; i < 8; ++i) u |= (L[8*k+i] << 2*i);
  11042. int grid_index = kmap_q2xs[u];
  11043. if (grid_index < 0) {
  11044. printf("Oops: found point %u not on grid:", u);
  11045. for (int i = 0; i < 8; ++i) printf(" %d", L[8*k+i]);
  11046. printf("\n");
  11047. GGML_ABORT("fatal error");
  11048. }
  11049. q2[2*ib+0] |= ((uint32_t) grid_index << 8*k);
  11050. q2[2*ib+1] |= (block_signs[k] << 7*k);
  11051. }
  11052. GGML_ASSERT(scale >= 0);
  11053. scales[ib] = scale;
  11054. max_scale = MAX(max_scale, scale);
  11055. }
  11056. if (!max_scale) {
  11057. memset(y[ibl].qs, 0, QK_K/4);
  11058. continue;
  11059. }
  11060. float d = max_scale/31;
  11061. y[ibl].d = GGML_FP32_TO_FP16(d);
  11062. float id = 1/d;
  11063. for (int ib = 0; ib < QK_K/32; ++ib) {
  11064. int l = nearest_int(0.5f*(id*scales[ib]-1));
  11065. l = MAX(0, MIN(15, l));
  11066. q2[2*ib+1] |= ((uint32_t)l << 28);
  11067. }
  11068. memcpy(y[ibl].qs, q2, QK_K/4);
  11069. }
  11070. }
  11071. static void quantize_row_iq2_xs_impl(const float * restrict x, void * restrict vy, int64_t n, const float * restrict quant_weights) {
  11072. const int gindex = iq2_data_index(GGML_TYPE_IQ2_XS);
  11073. const uint64_t * kgrid_q2xs = iq2_data[gindex].grid;
  11074. const int * kmap_q2xs = iq2_data[gindex].map;
  11075. const uint16_t * kneighbors_q2xs = iq2_data[gindex].neighbours;
  11076. GGML_ASSERT(quant_weights && "missing quantization weights");
  11077. GGML_ASSERT(kmap_q2xs && "forgot to call ggml_quantize_init()?");
  11078. GGML_ASSERT(kgrid_q2xs && "forgot to call ggml_quantize_init()?");
  11079. GGML_ASSERT(kneighbors_q2xs && "forgot to call ggml_quantize_init()?");
  11080. GGML_ASSERT(n%QK_K == 0);
  11081. const int kMaxQ = 3;
  11082. const int64_t nbl = n/QK_K;
  11083. block_iq2_xs * y = vy;
  11084. float scales[QK_K/16];
  11085. float weight[16];
  11086. float xval[16];
  11087. int8_t L[16];
  11088. int8_t Laux[16];
  11089. float waux[16];
  11090. bool is_on_grid[2];
  11091. bool is_on_grid_aux[2];
  11092. uint8_t block_signs[2];
  11093. uint16_t q2[2*(QK_K/16)];
  11094. for (int ibl = 0; ibl < nbl; ++ibl) {
  11095. y[ibl].d = GGML_FP32_TO_FP16(0.f);
  11096. memset(q2, 0, QK_K/4);
  11097. memset(y[ibl].scales, 0, QK_K/32);
  11098. float max_scale = 0;
  11099. const float * xbl = x + QK_K*ibl;
  11100. float sumx2 = 0;
  11101. for (int i = 0; i < QK_K; ++i) sumx2 += xbl[i]*xbl[i];
  11102. float sigma2 = sumx2/QK_K;
  11103. for (int ib = 0; ib < QK_K/16; ++ib) {
  11104. const float * xb = xbl + 16*ib;
  11105. const float * qw = quant_weights + QK_K*ibl + 16*ib;
  11106. for (int i = 0; i < 16; ++i) weight[i] = qw[i] * sqrtf(sigma2 + xb[i]*xb[i]);
  11107. for (int i = 0; i < 16; ++i) waux[i] = sqrtf(weight[i]);
  11108. for (int k = 0; k < 2; ++k) {
  11109. int nflip = 0;
  11110. uint8_t s = 0;
  11111. for (int i = 0; i < 8; ++i) {
  11112. if (xb[8*k + i] >= 0) xval[8*k + i] = xb[8*k + i];
  11113. else {
  11114. xval[8*k + i] = -xb[8*k + i]; ++nflip; s |= (1 << i);
  11115. }
  11116. }
  11117. if (nflip%2) {
  11118. int imin = 0; float min = weight[8*k+imin]*xb[8*k+imin]*xb[8*k+imin];
  11119. for (int i = 1; i < 8; ++i) {
  11120. float ax = weight[8*k+i]*xb[8*k+i]*xb[8*k+i];
  11121. if (ax < min) {
  11122. min = ax; imin = i;
  11123. }
  11124. }
  11125. xval[8*k+imin] = -xval[8*k+imin];
  11126. s ^= (1 << imin);
  11127. }
  11128. block_signs[k] = s & 127;
  11129. }
  11130. float max = xval[0];
  11131. for (int i = 1; i < 16; ++i) max = MAX(max, xval[i]);
  11132. if (max < GROUP_MAX_EPS) {
  11133. scales[ib] = 0;
  11134. memset(L, 0, 16);
  11135. continue;
  11136. }
  11137. float best = 0;
  11138. float scale = max/(2*kMaxQ-1);
  11139. is_on_grid[0] = is_on_grid[1] = true;
  11140. for (int is = -9; is <= 9; ++is) {
  11141. float id = (2*kMaxQ-1+is*0.1f)/max;
  11142. float this_scale = 1/id;
  11143. for (int k = 0; k < 2; ++k) {
  11144. for (int i = 0; i < 8; ++i) {
  11145. int l = nearest_int(0.5f*(id*xval[8*k+i]-1));
  11146. Laux[8*k+i] = MAX(0, MIN(kMaxQ-1, l));
  11147. }
  11148. uint16_t u = 0;
  11149. for (int i = 0; i < 8; ++i) u |= (Laux[8*k+i] << 2*i);
  11150. int grid_index = kmap_q2xs[u];
  11151. is_on_grid_aux[k] = true;
  11152. if (grid_index < 0) {
  11153. is_on_grid_aux[k] = false;
  11154. const uint16_t * neighbours = kneighbors_q2xs - kmap_q2xs[u] - 1;
  11155. grid_index = iq2_find_best_neighbour(neighbours, kgrid_q2xs, xval + 8*k, waux + 8*k, this_scale, Laux + 8*k);
  11156. }
  11157. }
  11158. float sumqx = 0, sumq2 = 0;
  11159. for (int i = 0; i < 16; ++i) {
  11160. float w = weight[i];
  11161. float q = 2*Laux[i] + 1;
  11162. sumqx += w*xval[i]*q;
  11163. sumq2 += w*q*q;
  11164. }
  11165. if (sumq2 > 0 && sumqx*sumqx > best*sumq2) {
  11166. scale = sumqx/sumq2; best = scale*sumqx;
  11167. for (int i = 0; i < 16; ++i) L[i] = Laux[i];
  11168. for (int k = 0; k < 2; ++k) is_on_grid[k] = is_on_grid_aux[k];
  11169. }
  11170. }
  11171. int n_not_ongrid = 0;
  11172. for (int k = 0; k < 2; ++k) if (!is_on_grid[k]) ++n_not_ongrid;
  11173. if (n_not_ongrid > 0 && scale > 0) {
  11174. float id = 1/scale;
  11175. for (int k = 0; k < 2; ++k) {
  11176. if (is_on_grid[k]) continue;
  11177. uint16_t u = 0;
  11178. for (int i = 0; i < 8; ++i) {
  11179. int l = nearest_int(0.5f*(id*xval[8*k+i]-1));
  11180. l = MAX(0, MIN(kMaxQ-1, l));
  11181. u |= (l << 2*i);
  11182. L[8*k + i] = l;
  11183. }
  11184. int grid_index = kmap_q2xs[u];
  11185. if (grid_index < 0) {
  11186. const uint16_t * neighbours = kneighbors_q2xs - kmap_q2xs[u] - 1;
  11187. grid_index = iq2_find_best_neighbour(neighbours, kgrid_q2xs, xval + 8*k, waux + 8*k, scale, L + 8*k);
  11188. }
  11189. }
  11190. float sumqx = 0, sumq2 = 0;
  11191. for (int i = 0; i < 16; ++i) {
  11192. float w = weight[i];
  11193. float q = 2*L[i] + 1;
  11194. sumqx += w*xval[i]*q;
  11195. sumq2 += w*q*q;
  11196. }
  11197. if (sumq2 > 0) scale = sumqx/sumq2;
  11198. }
  11199. if (scale < 0) {
  11200. scale = -scale;
  11201. for (int k = 0; k < 2; ++k) block_signs[k] = (~block_signs[k]) & 127;
  11202. }
  11203. for (int k = 0; k < 2; ++k) {
  11204. uint16_t u = 0;
  11205. for (int i = 0; i < 8; ++i) u |= (L[8*k+i] << 2*i);
  11206. int grid_index = kmap_q2xs[u];
  11207. if (grid_index < 0) {
  11208. printf("Oops: found point %u not on grid:", u);
  11209. for (int i = 0; i < 8; ++i) printf(" %d", L[8*k+i]);
  11210. printf("\n");
  11211. GGML_ABORT("fatal error");
  11212. }
  11213. q2[2*ib+k] = grid_index | (block_signs[k] << 9);
  11214. }
  11215. GGML_ASSERT(scale >= 0);
  11216. scales[ib] = scale;
  11217. max_scale = MAX(max_scale, scale);
  11218. }
  11219. if (!max_scale) {
  11220. memset(y[ibl].qs, 0, QK_K/4);
  11221. continue;
  11222. }
  11223. float d = max_scale/31;
  11224. y[ibl].d = GGML_FP32_TO_FP16(d);
  11225. float id = 1/d;
  11226. for (int ib = 0; ib < QK_K/16; ++ib) {
  11227. int l = nearest_int(0.5f*(id*scales[ib]-1));
  11228. l = MAX(0, MIN(15, l));
  11229. if (ib%2 == 0) y[ibl].scales[ib/2] = l;
  11230. else y[ibl].scales[ib/2] |= (l << 4);
  11231. }
  11232. memcpy(y[ibl].qs, q2, QK_K/4);
  11233. }
  11234. }
  11235. size_t quantize_iq2_xxs(const float * restrict src, void * restrict dst, int64_t nrow, int64_t n_per_row, const float * quant_weights) {
  11236. GGML_ASSERT(n_per_row%QK_K == 0);
  11237. int64_t nblock = n_per_row/QK_K;
  11238. char * qrow = (char *)dst;
  11239. for (int64_t row = 0; row < nrow; ++row) {
  11240. quantize_row_iq2_xxs_impl(src, qrow, n_per_row, quant_weights);
  11241. src += n_per_row;
  11242. qrow += nblock*sizeof(block_iq2_xxs);
  11243. }
  11244. return nrow * nblock * sizeof(block_iq2_xxs);
  11245. }
  11246. size_t quantize_iq2_xs(const float * restrict src, void * restrict dst, int64_t nrow, int64_t n_per_row, const float * quant_weights) {
  11247. GGML_ASSERT(n_per_row%QK_K == 0);
  11248. int64_t nblock = n_per_row/QK_K;
  11249. char * qrow = (char *)dst;
  11250. for (int64_t row = 0; row < nrow; ++row) {
  11251. quantize_row_iq2_xs_impl(src, qrow, n_per_row, quant_weights);
  11252. src += n_per_row;
  11253. qrow += nblock*sizeof(block_iq2_xs);
  11254. }
  11255. return nrow * nblock * sizeof(block_iq2_xs);
  11256. }
  11257. //
  11258. // ============================================= 3-bit using D4 lattice
  11259. //
  11260. typedef struct {
  11261. uint32_t * grid;
  11262. int * map;
  11263. uint16_t * neighbours;
  11264. } iq3_entry_t;
  11265. static iq3_entry_t iq3_data[2] = {
  11266. {NULL, NULL, NULL},
  11267. {NULL, NULL, NULL},
  11268. };
  11269. static inline int iq3_data_index(int grid_size) {
  11270. (void)grid_size;
  11271. GGML_ASSERT(grid_size == 256 || grid_size == 512);
  11272. return grid_size == 256 ? 0 : 1;
  11273. }
  11274. static int iq3_compare_func(const void * left, const void * right) {
  11275. const int * l = (const int *)left;
  11276. const int * r = (const int *)right;
  11277. return l[0] < r[0] ? -1 : l[0] > r[0] ? 1 : l[1] < r[1] ? -1 : l[1] > r[1] ? 1 : 0;
  11278. }
  11279. void iq3xs_init_impl(int grid_size) {
  11280. const int gindex = iq3_data_index(grid_size);
  11281. if (iq3_data[gindex].grid) {
  11282. return;
  11283. }
  11284. static const uint16_t kgrid_256[256] = {
  11285. 0, 2, 4, 9, 11, 15, 16, 18, 25, 34, 59, 61, 65, 67, 72, 74,
  11286. 81, 85, 88, 90, 97, 108, 120, 128, 130, 132, 137, 144, 146, 153, 155, 159,
  11287. 169, 175, 189, 193, 199, 200, 202, 213, 248, 267, 287, 292, 303, 315, 317, 321,
  11288. 327, 346, 362, 413, 436, 456, 460, 462, 483, 497, 513, 515, 520, 522, 529, 531,
  11289. 536, 538, 540, 551, 552, 576, 578, 585, 592, 594, 641, 643, 648, 650, 657, 664,
  11290. 698, 704, 706, 720, 729, 742, 758, 769, 773, 808, 848, 852, 870, 889, 901, 978,
  11291. 992, 1024, 1026, 1033, 1035, 1040, 1042, 1046, 1049, 1058, 1089, 1091, 1093, 1096, 1098, 1105,
  11292. 1112, 1139, 1143, 1144, 1152, 1154, 1161, 1167, 1168, 1170, 1183, 1184, 1197, 1217, 1224, 1228,
  11293. 1272, 1276, 1309, 1323, 1347, 1367, 1377, 1404, 1473, 1475, 1486, 1509, 1537, 1544, 1546, 1553,
  11294. 1555, 1576, 1589, 1594, 1600, 1602, 1616, 1625, 1636, 1638, 1665, 1667, 1672, 1685, 1706, 1722,
  11295. 1737, 1755, 1816, 1831, 1850, 1856, 1862, 1874, 1901, 1932, 1950, 1971, 2011, 2032, 2052, 2063,
  11296. 2077, 2079, 2091, 2095, 2172, 2192, 2207, 2208, 2224, 2230, 2247, 2277, 2308, 2345, 2356, 2389,
  11297. 2403, 2424, 2501, 2504, 2506, 2520, 2570, 2593, 2616, 2624, 2630, 2646, 2669, 2700, 2714, 2746,
  11298. 2754, 2795, 2824, 2835, 2839, 2874, 2882, 2905, 2984, 3028, 3042, 3092, 3108, 3110, 3124, 3153,
  11299. 3185, 3215, 3252, 3288, 3294, 3364, 3397, 3434, 3483, 3523, 3537, 3587, 3589, 3591, 3592, 3610,
  11300. 3626, 3670, 3680, 3722, 3749, 3754, 3776, 3789, 3803, 3824, 3857, 3873, 3904, 3906, 3924, 3992,
  11301. };
  11302. static const uint16_t kgrid_512[512] = {
  11303. 0, 1, 2, 5, 7, 8, 9, 10, 12, 14, 16, 17, 21, 27, 32, 34,
  11304. 37, 39, 41, 43, 48, 50, 57, 60, 63, 64, 65, 66, 68, 72, 73, 77,
  11305. 80, 83, 87, 89, 93, 100, 113, 117, 122, 128, 129, 133, 135, 136, 139, 142,
  11306. 145, 149, 152, 156, 162, 165, 167, 169, 171, 184, 187, 195, 201, 205, 208, 210,
  11307. 217, 219, 222, 228, 232, 234, 247, 249, 253, 256, 267, 271, 273, 276, 282, 288,
  11308. 291, 297, 312, 322, 324, 336, 338, 342, 347, 353, 357, 359, 374, 379, 390, 393,
  11309. 395, 409, 426, 441, 448, 450, 452, 464, 466, 470, 475, 488, 492, 512, 513, 514,
  11310. 516, 520, 521, 523, 525, 527, 528, 530, 537, 540, 542, 556, 558, 561, 570, 576,
  11311. 577, 579, 582, 584, 588, 593, 600, 603, 609, 616, 618, 632, 638, 640, 650, 653,
  11312. 655, 656, 660, 666, 672, 675, 685, 688, 698, 705, 708, 711, 712, 715, 721, 727,
  11313. 728, 732, 737, 754, 760, 771, 773, 778, 780, 793, 795, 802, 806, 808, 812, 833,
  11314. 840, 843, 849, 856, 858, 873, 912, 916, 919, 932, 934, 961, 963, 968, 970, 977,
  11315. 989, 993, 1010, 1016, 1024, 1025, 1027, 1029, 1031, 1032, 1034, 1036, 1038, 1041, 1043, 1047,
  11316. 1048, 1050, 1057, 1059, 1061, 1064, 1066, 1079, 1080, 1083, 1085, 1088, 1090, 1096, 1099, 1103,
  11317. 1106, 1109, 1113, 1116, 1122, 1129, 1153, 1156, 1159, 1169, 1171, 1176, 1183, 1185, 1195, 1199,
  11318. 1209, 1212, 1216, 1218, 1221, 1225, 1234, 1236, 1241, 1243, 1250, 1256, 1270, 1281, 1287, 1296,
  11319. 1299, 1306, 1309, 1313, 1338, 1341, 1348, 1353, 1362, 1375, 1376, 1387, 1400, 1408, 1410, 1415,
  11320. 1425, 1453, 1457, 1477, 1481, 1494, 1496, 1507, 1512, 1538, 1545, 1547, 1549, 1551, 1554, 1561,
  11321. 1563, 1565, 1570, 1572, 1575, 1577, 1587, 1593, 1601, 1603, 1605, 1612, 1617, 1619, 1632, 1648,
  11322. 1658, 1662, 1664, 1674, 1680, 1690, 1692, 1704, 1729, 1736, 1740, 1745, 1747, 1751, 1752, 1761,
  11323. 1763, 1767, 1773, 1787, 1795, 1801, 1806, 1810, 1817, 1834, 1840, 1844, 1857, 1864, 1866, 1877,
  11324. 1882, 1892, 1902, 1915, 1934, 1953, 1985, 1987, 2000, 2002, 2013, 2048, 2052, 2058, 2064, 2068,
  11325. 2071, 2074, 2081, 2088, 2104, 2114, 2119, 2121, 2123, 2130, 2136, 2141, 2147, 2153, 2157, 2177,
  11326. 2179, 2184, 2189, 2193, 2203, 2208, 2223, 2226, 2232, 2244, 2249, 2251, 2256, 2258, 2265, 2269,
  11327. 2304, 2306, 2324, 2335, 2336, 2361, 2373, 2375, 2385, 2418, 2443, 2460, 2480, 2504, 2509, 2520,
  11328. 2531, 2537, 2562, 2568, 2572, 2578, 2592, 2596, 2599, 2602, 2614, 2620, 2625, 2627, 2629, 2634,
  11329. 2641, 2650, 2682, 2688, 2697, 2707, 2712, 2718, 2731, 2754, 2759, 2760, 2775, 2788, 2793, 2805,
  11330. 2811, 2817, 2820, 2832, 2842, 2854, 2890, 2902, 2921, 2923, 2978, 3010, 3012, 3026, 3081, 3083,
  11331. 3085, 3097, 3099, 3120, 3136, 3152, 3159, 3188, 3210, 3228, 3234, 3245, 3250, 3256, 3264, 3276,
  11332. 3281, 3296, 3349, 3363, 3378, 3392, 3395, 3420, 3440, 3461, 3488, 3529, 3531, 3584, 3588, 3591,
  11333. 3600, 3602, 3614, 3616, 3628, 3634, 3650, 3657, 3668, 3683, 3685, 3713, 3716, 3720, 3726, 3729,
  11334. 3736, 3753, 3778, 3802, 3805, 3819, 3841, 3845, 3851, 3856, 3880, 3922, 3938, 3970, 3993, 4032,
  11335. };
  11336. const int kmap_size = 4096;
  11337. const int nwant = grid_size == 256 ? 2 : 3;
  11338. const uint16_t * kgrid = grid_size == 256 ? kgrid_256 : kgrid_512;
  11339. uint32_t * kgrid_q3xs;
  11340. int * kmap_q3xs;
  11341. uint16_t * kneighbors_q3xs;
  11342. //printf("================================================================= %s(grid_size = %d)\n", __func__, grid_size);
  11343. uint32_t * the_grid = (uint32_t *)malloc(grid_size*sizeof(uint32_t));
  11344. for (int k = 0; k < grid_size; ++k) {
  11345. int8_t * pos = (int8_t *)(the_grid + k);
  11346. for (int i = 0; i < 4; ++i) {
  11347. int l = (kgrid[k] >> 3*i) & 0x7;
  11348. pos[i] = 2*l + 1;
  11349. }
  11350. }
  11351. kgrid_q3xs = the_grid;
  11352. iq3_data[gindex].grid = the_grid;
  11353. kmap_q3xs = (int *)malloc(kmap_size*sizeof(int));
  11354. iq3_data[gindex].map = kmap_q3xs;
  11355. for (int i = 0; i < kmap_size; ++i) kmap_q3xs[i] = -1;
  11356. uint32_t aux32;
  11357. uint8_t * aux8 = (uint8_t *)&aux32;
  11358. for (int i = 0; i < grid_size; ++i) {
  11359. aux32 = kgrid_q3xs[i];
  11360. uint16_t index = 0;
  11361. for (int k=0; k<4; ++k) {
  11362. uint16_t q = (aux8[k] - 1)/2;
  11363. index |= (q << 3*k);
  11364. }
  11365. kmap_q3xs[index] = i;
  11366. }
  11367. int8_t pos[4];
  11368. int * dist2 = (int *)malloc(2*grid_size*sizeof(int));
  11369. int num_neighbors = 0, num_not_in_map = 0;
  11370. for (int i = 0; i < kmap_size; ++i) {
  11371. if (kmap_q3xs[i] >= 0) continue;
  11372. ++num_not_in_map;
  11373. for (int k = 0; k < 4; ++k) {
  11374. int l = (i >> 3*k) & 0x7;
  11375. pos[k] = 2*l + 1;
  11376. }
  11377. for (int j = 0; j < grid_size; ++j) {
  11378. const int8_t * pg = (const int8_t *)(kgrid_q3xs + j);
  11379. int d2 = 0;
  11380. for (int k = 0; k < 4; ++k) d2 += (pg[k] - pos[k])*(pg[k] - pos[k]);
  11381. dist2[2*j+0] = d2;
  11382. dist2[2*j+1] = j;
  11383. }
  11384. qsort(dist2, grid_size, 2*sizeof(int), iq3_compare_func);
  11385. int n = 0; int d2 = dist2[0];
  11386. int nhave = 1;
  11387. for (int j = 0; j < grid_size; ++j) {
  11388. if (dist2[2*j] > d2) {
  11389. if (nhave == nwant) break;
  11390. d2 = dist2[2*j];
  11391. ++nhave;
  11392. }
  11393. ++n;
  11394. }
  11395. num_neighbors += n;
  11396. }
  11397. //printf("%s: %d neighbours in total\n", __func__, num_neighbors);
  11398. kneighbors_q3xs = (uint16_t *)malloc((num_neighbors + num_not_in_map)*sizeof(uint16_t));
  11399. iq3_data[gindex].neighbours = kneighbors_q3xs;
  11400. int counter = 0;
  11401. for (int i = 0; i < kmap_size; ++i) {
  11402. if (kmap_q3xs[i] >= 0) continue;
  11403. for (int k = 0; k < 4; ++k) {
  11404. int l = (i >> 3*k) & 0x7;
  11405. pos[k] = 2*l + 1;
  11406. }
  11407. for (int j = 0; j < grid_size; ++j) {
  11408. const int8_t * pg = (const int8_t *)(kgrid_q3xs + j);
  11409. int d2 = 0;
  11410. for (int k = 0; k < 4; ++k) d2 += (pg[k] - pos[k])*(pg[k] - pos[k]);
  11411. dist2[2*j+0] = d2;
  11412. dist2[2*j+1] = j;
  11413. }
  11414. qsort(dist2, grid_size, 2*sizeof(int), iq3_compare_func);
  11415. kmap_q3xs[i] = -(counter + 1);
  11416. int d2 = dist2[0];
  11417. uint16_t * start = &kneighbors_q3xs[counter++];
  11418. int n = 0, nhave = 1;
  11419. for (int j = 0; j < grid_size; ++j) {
  11420. if (dist2[2*j] > d2) {
  11421. if (nhave == nwant) break;
  11422. d2 = dist2[2*j];
  11423. ++nhave;
  11424. }
  11425. kneighbors_q3xs[counter++] = dist2[2*j+1];
  11426. ++n;
  11427. }
  11428. *start = n;
  11429. }
  11430. free(dist2);
  11431. }
  11432. void iq3xs_free_impl(int grid_size) {
  11433. GGML_ASSERT(grid_size == 256 || grid_size == 512);
  11434. const int gindex = iq3_data_index(grid_size);
  11435. if (iq3_data[gindex].grid) {
  11436. free(iq3_data[gindex].grid); iq3_data[gindex].grid = NULL;
  11437. free(iq3_data[gindex].map); iq3_data[gindex].map = NULL;
  11438. free(iq3_data[gindex].neighbours); iq3_data[gindex].neighbours = NULL;
  11439. }
  11440. }
  11441. static int iq3_find_best_neighbour(const uint16_t * restrict neighbours, const uint32_t * restrict grid,
  11442. const float * restrict xval, const float * restrict weight, float scale, int8_t * restrict L) {
  11443. int num_neighbors = neighbours[0];
  11444. GGML_ASSERT(num_neighbors > 0);
  11445. float best_d2 = FLT_MAX;
  11446. int grid_index = -1;
  11447. for (int j = 1; j <= num_neighbors; ++j) {
  11448. const int8_t * pg = (const int8_t *)(grid + neighbours[j]);
  11449. float d2 = 0;
  11450. for (int i = 0; i < 4; ++i) {
  11451. float q = pg[i];
  11452. float diff = scale*q - xval[i];
  11453. d2 += weight[i]*diff*diff;
  11454. }
  11455. if (d2 < best_d2) {
  11456. best_d2 = d2; grid_index = neighbours[j];
  11457. }
  11458. }
  11459. GGML_ASSERT(grid_index >= 0);
  11460. const int8_t * pg = (const int8_t *)(grid + grid_index);
  11461. for (int i = 0; i < 4; ++i) L[i] = (pg[i] - 1)/2;
  11462. return grid_index;
  11463. }
  11464. static void quantize_row_iq3_xxs_impl(int grid_size, const float * restrict x, void * restrict vy, int64_t n,
  11465. const float * restrict quant_weights) {
  11466. const int gindex = iq3_data_index(grid_size);
  11467. const uint32_t * kgrid_q3xs = iq3_data[gindex].grid;
  11468. const int * kmap_q3xs = iq3_data[gindex].map;
  11469. const uint16_t * kneighbors_q3xs = iq3_data[gindex].neighbours;
  11470. //GGML_ASSERT(quant_weights && "missing quantization weights");
  11471. GGML_ASSERT(kgrid_q3xs && "forgot to call ggml_quantize_init()?");
  11472. GGML_ASSERT(kmap_q3xs && "forgot to call ggml_quantize_init()?");
  11473. GGML_ASSERT(kneighbors_q3xs && "forgot to call ggml_quantize_init()?");
  11474. GGML_ASSERT(n%QK_K == 0);
  11475. const int kMaxQ = 8;
  11476. const int64_t nbl = n/QK_K;
  11477. ggml_fp16_t * dh;
  11478. uint8_t * qs;
  11479. int block_size;
  11480. if (grid_size == 256) {
  11481. block_iq3_xxs * y = vy;
  11482. dh = &y->d;
  11483. qs = y->qs;
  11484. block_size = sizeof(block_iq3_xxs);
  11485. } else {
  11486. block_iq3_s * y = vy;
  11487. dh = &y->d;
  11488. qs = y->qs;
  11489. block_size = sizeof(block_iq3_s);
  11490. }
  11491. int quant_size = block_size - sizeof(ggml_fp16_t);
  11492. float scales[QK_K/32];
  11493. float weight[32];
  11494. float xval[32];
  11495. int8_t L[32];
  11496. int8_t Laux[32];
  11497. float waux[32];
  11498. bool is_on_grid[8];
  11499. bool is_on_grid_aux[8];
  11500. uint8_t block_signs[8];
  11501. uint8_t q3[3*(QK_K/8)+QK_K/32];
  11502. uint32_t * scales_and_signs = (uint32_t *)(q3 + QK_K/4);
  11503. uint8_t * qh = q3 + 3*(QK_K/8);
  11504. for (int ibl = 0; ibl < nbl; ++ibl) {
  11505. dh[0] = GGML_FP32_TO_FP16(0.f);
  11506. memset(q3, 0, 3*QK_K/8+QK_K/32);
  11507. float max_scale = 0;
  11508. const float * xbl = x + QK_K*ibl;
  11509. float sumx2 = 0;
  11510. for (int i = 0; i < QK_K; ++i) sumx2 += xbl[i]*xbl[i];
  11511. float sigma2 = 2*sumx2/QK_K;
  11512. for (int ib = 0; ib < QK_K/32; ++ib) {
  11513. const float * xb = xbl + 32*ib;
  11514. if (quant_weights) {
  11515. const float * qw = quant_weights + QK_K*ibl + 32*ib;
  11516. for (int i = 0; i < 32; ++i) weight[i] = qw[i] * sqrtf(sigma2 + xb[i]*xb[i]);
  11517. } else {
  11518. for (int i = 0; i < 32; ++i) weight[i] = xb[i]*xb[i];
  11519. }
  11520. for (int i = 0; i < 32; ++i) waux[i] = sqrtf(weight[i]);
  11521. for (int k = 0; k < 4; ++k) {
  11522. int nflip = 0;
  11523. uint8_t s = 0;
  11524. for (int i = 0; i < 8; ++i) {
  11525. if (xb[8*k + i] >= 0) xval[8*k + i] = xb[8*k + i];
  11526. else {
  11527. xval[8*k + i] = -xb[8*k + i]; ++nflip; s |= (1 << i);
  11528. }
  11529. }
  11530. if (nflip%2) {
  11531. int imin = 0; float min = weight[8*k+imin]*xb[8*k+imin]*xb[8*k+imin];
  11532. for (int i = 1; i < 8; ++i) {
  11533. float ax = weight[8*k+i]*xb[8*k+i]*xb[8*k+i];
  11534. if (ax < min) {
  11535. min = ax; imin = i;
  11536. }
  11537. }
  11538. xval[8*k+imin] = -xval[8*k+imin];
  11539. s ^= (1 << imin);
  11540. }
  11541. block_signs[k] = s & 127;
  11542. }
  11543. float max = xval[0];
  11544. for (int i = 1; i < 32; ++i) max = MAX(max, xval[i]);
  11545. if (max < GROUP_MAX_EPS_IQ3_XXS) {
  11546. scales[ib] = 0;
  11547. memset(L, 0, 32);
  11548. continue;
  11549. }
  11550. float best = 0;
  11551. float scale = max/(2*kMaxQ-1);
  11552. for (int is = -15; is <= 15; ++is) {
  11553. float id = (2*kMaxQ-1+is*0.2f)/max;
  11554. float this_scale = 1/id;
  11555. for (int k = 0; k < 8; ++k) {
  11556. for (int i = 0; i < 4; ++i) {
  11557. int l = nearest_int(0.5f*(id*xval[4*k+i]-1));
  11558. Laux[4*k+i] = MAX(0, MIN(kMaxQ-1, l));
  11559. }
  11560. uint16_t u = 0;
  11561. for (int i = 0; i < 4; ++i) u |= (Laux[4*k+i] << 3*i);
  11562. int grid_index = kmap_q3xs[u];
  11563. is_on_grid_aux[k] = true;
  11564. if (grid_index < 0) {
  11565. is_on_grid_aux[k] = false;
  11566. const uint16_t * neighbours = kneighbors_q3xs - kmap_q3xs[u] - 1;
  11567. grid_index = iq3_find_best_neighbour(neighbours, kgrid_q3xs, xval + 4*k, waux + 4*k, this_scale, Laux + 4*k);
  11568. }
  11569. }
  11570. float sumqx = 0, sumq2 = 0;
  11571. for (int i = 0; i < 32; ++i) {
  11572. float w = weight[i];
  11573. float q = 2*Laux[i] + 1;
  11574. sumqx += w*xval[i]*q;
  11575. sumq2 += w*q*q;
  11576. }
  11577. if (sumq2 > 0 && sumqx*sumqx > best*sumq2) {
  11578. scale = sumqx/sumq2; best = scale*sumqx;
  11579. for (int i = 0; i < 32; ++i) L[i] = Laux[i];
  11580. for (int k = 0; k < 8; ++k) is_on_grid[k] = is_on_grid_aux[k];
  11581. }
  11582. }
  11583. int n_not_ongrid = 0;
  11584. for (int k = 0; k < 8; ++k) if (!is_on_grid[k]) ++n_not_ongrid;
  11585. if (n_not_ongrid > 0 && scale > 0) {
  11586. float id = 1/scale;
  11587. for (int k = 0; k < 8; ++k) {
  11588. if (is_on_grid[k]) continue;
  11589. uint16_t u = 0;
  11590. for (int i = 0; i < 4; ++i) {
  11591. int l = nearest_int(0.5f*(id*xval[4*k+i]-1));
  11592. l = MAX(0, MIN(kMaxQ-1, l));
  11593. u |= (l << 3*i);
  11594. }
  11595. int grid_index = kmap_q3xs[u];
  11596. if (grid_index < 0) {
  11597. const uint16_t * neighbours = kneighbors_q3xs - kmap_q3xs[u] - 1;
  11598. grid_index = iq3_find_best_neighbour(neighbours, kgrid_q3xs, xval + 4*k, waux + 4*k, scale, L + 4*k);
  11599. }
  11600. const int8_t * pg = (const int8_t *)(kgrid_q3xs + grid_index);
  11601. for (int i = 0; i < 4; ++i) L[4*k+i] = (pg[i] - 1)/2;
  11602. }
  11603. float sumqx = 0, sumq2 = 0;
  11604. for (int i = 0; i < 32; ++i) {
  11605. float w = weight[i];
  11606. float q = 2*L[i] + 1;
  11607. sumqx += w*xval[i]*q;
  11608. sumq2 += w*q*q;
  11609. }
  11610. if (sumq2 > 0) scale = sumqx/sumq2;
  11611. }
  11612. if (scale < 0) {
  11613. // This should never happen, but just in case, flip scale so that it is positive (we use uint's to encode the scale)
  11614. // and correspondingly flip quant signs.
  11615. scale = -scale;
  11616. for (int k = 0; k < 4; ++k) block_signs[k] = (~block_signs[k]) & 127;
  11617. }
  11618. for (int k = 0; k < 8; ++k) {
  11619. uint16_t u = 0;
  11620. for (int i = 0; i < 4; ++i) u |= (L[4*k+i] << 3*i);
  11621. int grid_index = kmap_q3xs[u];
  11622. if (grid_index < 0) {
  11623. printf("Oops: found point %u not on grid:", u);
  11624. for (int i = 0; i < 4; ++i) printf(" %d", L[4*k+i]);
  11625. printf("\n");
  11626. GGML_ABORT("fatal error");
  11627. }
  11628. if (grid_size == 256) {
  11629. q3[8*ib+k] = grid_index;
  11630. } else {
  11631. q3[8*ib+k] = grid_index & 255;
  11632. qh[ib] |= ((grid_index >> 8) << k);
  11633. }
  11634. }
  11635. scales_and_signs[ib] = block_signs[0] | (block_signs[1] << 7) | (block_signs[2] << 14) | (block_signs[3] << 21);
  11636. GGML_ASSERT(scale >= 0);
  11637. scales[ib] = scale;
  11638. max_scale = MAX(max_scale, scale);
  11639. }
  11640. if (!max_scale) {
  11641. memset(qs, 0, quant_size);
  11642. dh += block_size/sizeof(ggml_fp16_t);
  11643. qs += block_size;
  11644. continue;
  11645. }
  11646. float d = max_scale/31;
  11647. dh[0] = GGML_FP32_TO_FP16(d * 1.0125f); // small improvement via this fudge factor
  11648. float id = 1/d;
  11649. for (int ib = 0; ib < QK_K/32; ++ib) {
  11650. int l = nearest_int(0.5f*(id*scales[ib]-1));
  11651. l = MAX(0, MIN(15, l));
  11652. scales_and_signs[ib] |= ((uint32_t)l << 28);
  11653. }
  11654. memcpy(qs, q3, quant_size);
  11655. dh += block_size/sizeof(ggml_fp16_t);
  11656. qs += block_size;
  11657. }
  11658. }
  11659. size_t quantize_iq3_xxs(const float * restrict src, void * restrict dst, int64_t nrow, int64_t n_per_row, const float * quant_weights) {
  11660. GGML_ASSERT(n_per_row%QK_K == 0);
  11661. int64_t nblock = n_per_row/QK_K;
  11662. char * qrow = (char *)dst;
  11663. for (int64_t row = 0; row < nrow; ++row) {
  11664. quantize_row_iq3_xxs_impl(256, src, qrow, n_per_row, quant_weights);
  11665. src += n_per_row;
  11666. qrow += nblock*sizeof(block_iq3_xxs);
  11667. }
  11668. return nrow * nblock * sizeof(block_iq3_xxs);
  11669. }
  11670. void quantize_row_iq3_xxs(const float * restrict x, void * restrict vy, int64_t k) {
  11671. assert(k % QK_K == 0);
  11672. block_iq3_xxs * restrict y = vy;
  11673. quantize_row_iq3_xxs_ref(x, y, k);
  11674. }
  11675. void quantize_row_iq3_xxs_ref(const float * restrict x, block_iq3_xxs * restrict y, int64_t k) {
  11676. assert(k % QK_K == 0);
  11677. quantize_row_iq3_xxs_impl(256, x, y, k, NULL);
  11678. }
  11679. static void quantize_row_iq3_s_impl(int block_size, const float * restrict x, void * restrict vy, int n,
  11680. const float * restrict quant_weights,
  11681. float * scales,
  11682. float * weight,
  11683. float * xval,
  11684. int8_t * L,
  11685. int8_t * Laux,
  11686. float * waux,
  11687. bool * is_on_grid,
  11688. bool * is_on_grid_aux,
  11689. uint8_t * block_signs) {
  11690. const int gindex = iq3_data_index(512);
  11691. const uint32_t * kgrid_q3xs = iq3_data[gindex].grid;
  11692. const int * kmap_q3xs = iq3_data[gindex].map;
  11693. const uint16_t * kneighbors_q3xs = iq3_data[gindex].neighbours;
  11694. //GGML_ASSERT(quant_weights && "missing quantization weights");
  11695. GGML_ASSERT(kgrid_q3xs && "forgot to call ggml_quantize_init()?");
  11696. GGML_ASSERT(kmap_q3xs && "forgot to call ggml_quantize_init()?");
  11697. GGML_ASSERT(kneighbors_q3xs && "forgot to call ggml_quantize_init()?");
  11698. GGML_ASSERT(n%QK_K == 0);
  11699. const int kMaxQ = 8;
  11700. const int64_t nbl = n/QK_K;
  11701. block_iq3_s * y = vy;
  11702. const int bs4 = block_size/4;
  11703. const int bs8 = block_size/8;
  11704. for (int ibl = 0; ibl < nbl; ++ibl) {
  11705. memset(&y[ibl], 0, sizeof(block_iq3_s));
  11706. y[ibl].d = GGML_FP32_TO_FP16(0.f);
  11707. uint8_t * qs = y[ibl].qs;
  11708. uint8_t * qh = y[ibl].qh;
  11709. uint8_t * signs = y[ibl].signs;
  11710. float max_scale = 0;
  11711. const float * xbl = x + QK_K*ibl;
  11712. float sumx2 = 0;
  11713. for (int i = 0; i < QK_K; ++i) sumx2 += xbl[i]*xbl[i];
  11714. float sigma2 = 2*sumx2/QK_K;
  11715. for (int ib = 0; ib < QK_K/block_size; ++ib) {
  11716. const float * xb = xbl + block_size*ib;
  11717. if (quant_weights) {
  11718. const float * qw = quant_weights + QK_K*ibl + block_size*ib;
  11719. for (int i = 0; i < block_size; ++i) weight[i] = qw[i] * sqrtf(sigma2 + xb[i]*xb[i]);
  11720. } else {
  11721. for (int i = 0; i < block_size; ++i) weight[i] = xb[i]*xb[i];
  11722. }
  11723. for (int i = 0; i < block_size; ++i) waux[i] = sqrtf(weight[i]);
  11724. for (int k = 0; k < bs8; ++k) {
  11725. uint8_t s = 0;
  11726. for (int i = 0; i < 8; ++i) {
  11727. if (xb[8*k + i] >= 0) xval[8*k + i] = xb[8*k + i];
  11728. else {
  11729. xval[8*k + i] = -xb[8*k + i]; s |= (1 << i);
  11730. }
  11731. }
  11732. block_signs[k] = s;
  11733. }
  11734. float max = xval[0];
  11735. for (int i = 1; i < block_size; ++i) max = MAX(max, xval[i]);
  11736. if (!max) {
  11737. scales[ib] = 0;
  11738. continue;
  11739. }
  11740. float best = 0;
  11741. float scale = max/(2*kMaxQ-1);
  11742. for (int k = 0; k < bs4; ++k) is_on_grid[k] = false;
  11743. for (int is = -9; is <= 9; ++is) {
  11744. float id = (2*kMaxQ-1+is*0.2f)/max;
  11745. float this_scale = 1/id;
  11746. for (int k = 0; k < bs4; ++k) {
  11747. for (int i = 0; i < 4; ++i) {
  11748. int l = nearest_int(0.5f*(id*xval[4*k+i]-1));
  11749. Laux[4*k+i] = MAX(0, MIN(kMaxQ-1, l));
  11750. }
  11751. uint16_t u = 0;
  11752. for (int i = 0; i < 4; ++i) u |= (Laux[4*k+i] << 3*i);
  11753. int grid_index = kmap_q3xs[u];
  11754. is_on_grid_aux[k] = true;
  11755. if (grid_index < 0) {
  11756. is_on_grid_aux[k] = false;
  11757. const uint16_t * neighbours = kneighbors_q3xs - kmap_q3xs[u] - 1;
  11758. grid_index = iq3_find_best_neighbour(neighbours, kgrid_q3xs, xval + 4*k, waux + 4*k, this_scale, Laux + 4*k);
  11759. }
  11760. }
  11761. float sumqx = 0, sumq2 = 0;
  11762. for (int i = 0; i < block_size; ++i) {
  11763. float w = weight[i];
  11764. float q = 2*Laux[i] + 1;
  11765. sumqx += w*xval[i]*q;
  11766. sumq2 += w*q*q;
  11767. }
  11768. if (sumq2 > 0 && sumqx*sumqx > best*sumq2) {
  11769. scale = sumqx/sumq2; best = scale*sumqx;
  11770. for (int i = 0; i < block_size; ++i) L[i] = Laux[i];
  11771. for (int k = 0; k < bs4; ++k) is_on_grid[k] = is_on_grid_aux[k];
  11772. }
  11773. }
  11774. int n_not_ongrid = 0;
  11775. for (int k = 0; k < bs4; ++k) if (!is_on_grid[k]) ++n_not_ongrid;
  11776. if (n_not_ongrid > 0 && scale > 0) {
  11777. float id = 1/scale;
  11778. for (int k = 0; k < bs4; ++k) {
  11779. //if (is_on_grid[k]) continue;
  11780. uint16_t u = 0;
  11781. for (int i = 0; i < 4; ++i) {
  11782. int l = nearest_int(0.5f*(id*xval[4*k+i]-1));
  11783. l = MAX(0, MIN(kMaxQ-1, l));
  11784. u |= (l << 3*i);
  11785. }
  11786. int grid_index = kmap_q3xs[u];
  11787. if (grid_index < 0) {
  11788. const uint16_t * neighbours = kneighbors_q3xs - kmap_q3xs[u] - 1;
  11789. grid_index = iq3_find_best_neighbour(neighbours, kgrid_q3xs, xval + 4*k, waux + 4*k, scale, L + 4*k);
  11790. }
  11791. const int8_t * pg = (const int8_t *)(kgrid_q3xs + grid_index);
  11792. for (int i = 0; i < 4; ++i) L[4*k+i] = (pg[i] - 1)/2;
  11793. }
  11794. float sumqx = 0, sumq2 = 0;
  11795. for (int i = 0; i < block_size; ++i) {
  11796. float w = weight[i];
  11797. float q = 2*L[i] + 1;
  11798. sumqx += w*xval[i]*q;
  11799. sumq2 += w*q*q;
  11800. }
  11801. if (sumq2 > 0) scale = sumqx/sumq2;
  11802. }
  11803. if (scale < 0) {
  11804. // This should never happen, but just in case, flip scale so that it is positive (we use uint's to encode the scale)
  11805. // and correspondingly flip quant signs.
  11806. scale = -scale;
  11807. for (int k = 0; k < bs8; ++k) block_signs[k] = ~block_signs[k];
  11808. }
  11809. for (int k = 0; k < bs4; ++k) {
  11810. uint16_t u = 0;
  11811. for (int i = 0; i < 4; ++i) u |= (L[4*k+i] << 3*i);
  11812. int grid_index = kmap_q3xs[u];
  11813. if (grid_index < 0) {
  11814. printf("Oops: found point %u not on grid:", u);
  11815. for (int i = 0; i < 4; ++i) printf(" %d", L[4*k+i]);
  11816. printf("\n");
  11817. GGML_ABORT("fatal error");
  11818. }
  11819. qs[k] = grid_index & 255;
  11820. qh[(ib*bs4+k)/8] |= ((grid_index >> 8) << ((ib*bs4+k)%8));
  11821. }
  11822. qs += bs4;
  11823. for (int k = 0; k < bs8; ++k) signs[k] = block_signs[k];
  11824. signs += bs8;
  11825. GGML_ASSERT(scale >= 0);
  11826. scales[ib] = scale;
  11827. max_scale = MAX(max_scale, scale);
  11828. }
  11829. if (!max_scale) {
  11830. continue;
  11831. }
  11832. float d = max_scale/31;
  11833. y[ibl].d = GGML_FP32_TO_FP16(d * 1.033f);
  11834. float id = 1/d;
  11835. for (int ib = 0; ib < QK_K/block_size; ib += 2) {
  11836. int l1 = nearest_int(0.5f*(id*scales[ib+0]-1));
  11837. l1 = MAX(0, MIN(15, l1));
  11838. int l2 = nearest_int(0.5f*(id*scales[ib+1]-1));
  11839. l2 = MAX(0, MIN(15, l2));
  11840. y[ibl].scales[ib/2] = l1 | (l2 << 4);
  11841. }
  11842. }
  11843. }
  11844. #define IQ3S_BLOCK_SIZE 32
  11845. size_t quantize_iq3_s(const float * restrict src, void * restrict dst, int64_t nrow, int64_t n_per_row, const float * quant_weights) {
  11846. GGML_ASSERT(n_per_row%QK_K == 0);
  11847. int64_t nblock = n_per_row/QK_K;
  11848. float scales[QK_K/IQ3S_BLOCK_SIZE];
  11849. float weight[IQ3S_BLOCK_SIZE];
  11850. float xval[IQ3S_BLOCK_SIZE];
  11851. int8_t L[IQ3S_BLOCK_SIZE];
  11852. int8_t Laux[IQ3S_BLOCK_SIZE];
  11853. float waux[IQ3S_BLOCK_SIZE];
  11854. bool is_on_grid[IQ3S_BLOCK_SIZE/4];
  11855. bool is_on_grid_aux[IQ3S_BLOCK_SIZE/4];
  11856. uint8_t block_signs[IQ3S_BLOCK_SIZE/8];
  11857. char * qrow = (char *)dst;
  11858. for (int64_t row = 0; row < nrow; ++row) {
  11859. quantize_row_iq3_s_impl(IQ3S_BLOCK_SIZE, src, qrow, n_per_row, quant_weights,
  11860. scales, weight, xval, L, Laux, waux, is_on_grid, is_on_grid_aux, block_signs);
  11861. src += n_per_row;
  11862. qrow += nblock*sizeof(block_iq3_s);
  11863. }
  11864. return nrow * nblock * sizeof(block_iq3_s);
  11865. }
  11866. void quantize_row_iq3_s(const float * restrict x, void * restrict vy, int64_t k) {
  11867. assert(k % QK_K == 0);
  11868. block_iq3_s * restrict y = vy;
  11869. quantize_row_iq3_s_ref(x, y, k);
  11870. }
  11871. void quantize_row_iq3_s_ref(const float * restrict x, block_iq3_s * restrict y, int64_t k) {
  11872. assert(k % QK_K == 0);
  11873. quantize_iq3_s(x, y, 1, k, NULL);
  11874. }
  11875. // =================================== 1.5 bpw ===================================================
  11876. static int iq1_find_best_neighbour(const uint16_t * restrict neighbours, const uint64_t * restrict grid,
  11877. const float * restrict xval, const float * restrict weight, float * scale, int8_t * restrict L, int ngrid) {
  11878. int num_neighbors = neighbours[0];
  11879. GGML_ASSERT(num_neighbors > 0);
  11880. float best_score = -FLT_MAX;
  11881. int grid_index = -1;
  11882. for (int j = 1; j <= num_neighbors; ++j) {
  11883. const int8_t * pg = (const int8_t *)(grid + neighbours[j]);
  11884. float sumqx = 0, sumq2 = 0;
  11885. for (int i = 0; i < 8; ++i) {
  11886. float q = (pg[i] - 3)/2;
  11887. float w = weight[i];
  11888. sumqx += w*q*xval[i];
  11889. sumq2 += w*q*q;
  11890. }
  11891. if (sumqx > 0 && sumq2 > 0 && sumqx*sumqx > best_score*sumq2) {
  11892. *scale = sumqx/sumq2; best_score = *scale * sumqx;
  11893. grid_index = neighbours[j];
  11894. }
  11895. }
  11896. if (grid_index < 0) {
  11897. for (int i = 0; i < ngrid; ++i) {
  11898. const int8_t * grid_i = (const int8_t *)(grid + i);
  11899. float sumqx = 0, sumq2 = 0;
  11900. for (int j = 0; j < 8; ++j) {
  11901. float w = weight[j];
  11902. float q = (grid_i[j] - 3)/2;
  11903. sumqx += w*q*xval[j];
  11904. sumq2 += w*q*q;
  11905. }
  11906. if (sumqx > 0 && sumq2 > 0 && sumqx*sumqx > best_score*sumq2) {
  11907. *scale = sumqx/sumq2; best_score = *scale*sumqx;
  11908. grid_index = i;
  11909. }
  11910. }
  11911. }
  11912. if (grid_index < 0) {
  11913. printf("Oops, did not find grid point\n");
  11914. printf("Have %d neighbours\n", num_neighbors);
  11915. for (int j = 1; j <= num_neighbors; ++j) {
  11916. const int8_t * pg = (const int8_t *)(grid + neighbours[j]);
  11917. float sumqx = 0, sumq2 = 0;
  11918. for (int i = 0; i < 8; ++i) {
  11919. float q = (pg[i] - 3)/2;
  11920. float w = weight[i];
  11921. sumqx += w*q*xval[i];
  11922. sumq2 += w*q*q;
  11923. }
  11924. printf(" neighbour %d: sumqx = %g sumq2 = %g\n", j, (double)sumqx, (double)sumq2);
  11925. }
  11926. }
  11927. GGML_ASSERT(grid_index >= 0);
  11928. //!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
  11929. *scale *= 1.05f; // This is a fudge factor. Don't ask me why it improves the result.
  11930. //!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
  11931. const int8_t * pg = (const int8_t *)(grid + grid_index);
  11932. for (int i = 0; i < 8; ++i) L[i] = (pg[i] - 1)/2;
  11933. return grid_index;
  11934. }
  11935. static int iq1_find_best_neighbour2(const uint16_t * restrict neighbours, const uint64_t * restrict grid,
  11936. const float * restrict xval, const float * restrict weight, float scale, const float * restrict xg, int8_t * restrict L, int ngrid) {
  11937. int num_neighbors = neighbours[0];
  11938. GGML_ASSERT(num_neighbors > 0);
  11939. float best_score = FLT_MAX;
  11940. int grid_index = -1;
  11941. for (int j = 1; j <= num_neighbors; ++j) {
  11942. const int8_t * pg = (const int8_t *)(grid + neighbours[j]);
  11943. float d2 = 0;
  11944. for (int i = 0; i < 8; ++i) {
  11945. float q = xg[(pg[i] - 1)/2];
  11946. float w = weight[i];
  11947. float diff = scale*q - xval[i];
  11948. d2 += w*diff*diff;
  11949. }
  11950. if (d2 < best_score) {
  11951. best_score = d2;
  11952. grid_index = neighbours[j];
  11953. }
  11954. }
  11955. if (grid_index < 0) {
  11956. for (int i = 0; i < ngrid; ++i) {
  11957. const int8_t * grid_i = (const int8_t *)(grid + i);
  11958. float d2 = 0;
  11959. for (int j = 0; j < 8; ++j) {
  11960. float w = weight[j];
  11961. float q = xg[(grid_i[j] - 1)/2];
  11962. float diff = scale*q - xval[i];
  11963. d2 += w*diff*diff;
  11964. }
  11965. if (d2 < best_score) {
  11966. best_score = d2;
  11967. grid_index = i;
  11968. }
  11969. }
  11970. }
  11971. if (grid_index < 0) {
  11972. printf("Oops, did not find grid point\n");
  11973. printf("Have %d neighbours\n", num_neighbors);
  11974. for (int j = 1; j <= num_neighbors; ++j) {
  11975. const int8_t * pg = (const int8_t *)(grid + neighbours[j]);
  11976. float sumqx = 0, sumq2 = 0;
  11977. for (int i = 0; i < 8; ++i) {
  11978. float q = xg[(pg[i] - 1)/2];
  11979. float w = weight[i];
  11980. sumqx += w*q*xval[i];
  11981. sumq2 += w*q*q;
  11982. }
  11983. printf(" neighbour %d: sumqx = %g sumq2 = %g\n", j, (double)sumqx, (double)sumq2);
  11984. }
  11985. }
  11986. GGML_ASSERT(grid_index >= 0);
  11987. const int8_t * pg = (const int8_t *)(grid + grid_index);
  11988. for (int i = 0; i < 8; ++i) L[i] = (pg[i] - 1)/2;
  11989. return grid_index;
  11990. }
  11991. static int iq1_sort_helper(const void * left, const void * right) {
  11992. const float * l = left;
  11993. const float * r = right;
  11994. return *l < *r ? -1 : *l > *r ? 1 : 0;
  11995. }
  11996. #define IQ1S_BLOCK_SIZE 32
  11997. #define IQ1M_BLOCK_SIZE 16
  11998. static void quantize_row_iq1_s_impl(const float * restrict x, void * restrict vy, int64_t n, const float * restrict quant_weights,
  11999. float * scales,
  12000. float * weight,
  12001. float * sumx,
  12002. float * sumw,
  12003. float * pairs,
  12004. int8_t * L,
  12005. uint16_t * index,
  12006. int8_t * shifts) {
  12007. const int gindex = iq2_data_index(GGML_TYPE_IQ1_S);
  12008. const uint64_t * kgrid_q2xs = iq2_data[gindex].grid;
  12009. const int * kmap_q2xs = iq2_data[gindex].map;
  12010. const uint16_t * kneighbors_q2xs = iq2_data[gindex].neighbours;
  12011. GGML_ASSERT(quant_weights && "missing quantization weights");
  12012. GGML_ASSERT(kgrid_q2xs && "forgot to call ggml_quantize_init()?");
  12013. GGML_ASSERT(kmap_q2xs && "forgot to call ggml_quantize_init()?");
  12014. GGML_ASSERT(kneighbors_q2xs && "forgot to call ggml_quantize_init()?");
  12015. GGML_ASSERT(n%QK_K == 0);
  12016. block_iq1_s * y = vy;
  12017. const int64_t nbl = n/QK_K;
  12018. const int block_size = IQ1S_BLOCK_SIZE;
  12019. const float x_p[3] = {-1 + IQ1S_DELTA, IQ1S_DELTA, 1 + IQ1S_DELTA};
  12020. const float x_m[3] = {-1 - IQ1S_DELTA, -IQ1S_DELTA, 1 - IQ1S_DELTA};
  12021. int * idx = (int *)(pairs + 1);
  12022. for (int ibl = 0; ibl < nbl; ++ibl) {
  12023. y[ibl].d = GGML_FP32_TO_FP16(0.f);
  12024. memset(y[ibl].qs, 0, QK_K/8);
  12025. memset(y[ibl].qh, 0, QK_K/16);
  12026. float max_scale = 0;
  12027. const float * xbl = x + QK_K*ibl;
  12028. float sumx2 = 0;
  12029. for (int i = 0; i < QK_K; ++i) sumx2 += xbl[i]*xbl[i];
  12030. float sigma2 = 2*sumx2/QK_K;
  12031. for (int ib = 0; ib < QK_K/block_size; ++ib) {
  12032. const float * xb = xbl + block_size*ib;
  12033. const float * qw = quant_weights + QK_K*ibl + block_size*ib;
  12034. for (int i = 0; i < block_size; ++i) weight[i] = qw[i] * sqrtf(sigma2 + xb[i]*xb[i]);
  12035. float max = fabsf(xb[0]);
  12036. for (int i = 1; i < block_size; ++i) max = MAX(max, fabsf(xb[i]));
  12037. if (max < GROUP_MAX_EPS_IQ1_S) {
  12038. scales[ib] = 0;
  12039. memset(L, 1, block_size);
  12040. continue;
  12041. }
  12042. // Here we solve exactly the sum of squared difference (SSD) weighted minimization problem.
  12043. // With just 3 allowed quant values (-1, 0, 1), we can search exhaustively for the two
  12044. // boundaries that split the weights xb[i] into 3 groups. To do so, we sort the weights
  12045. // in ascending order, compute Si = sum[weight[j] xb[j], j = 0...i] and
  12046. // Wi = sum[weight[j], j = 0...i], and use these to quckly get get the optimum scale
  12047. // for each possible and score for each split.
  12048. for (int j = 0; j < block_size; ++j) {
  12049. pairs[2*j] = xb[j];
  12050. idx[2*j] = j;
  12051. }
  12052. qsort(pairs, block_size, 2*sizeof(float), iq1_sort_helper);
  12053. {
  12054. sumx[0] = sumw[0] = 0;
  12055. for (int j = 0; j < block_size; ++j) {
  12056. int i = idx[2*j];
  12057. sumx[j+1] = sumx[j] + weight[i]*xb[i];
  12058. sumw[j+1] = sumw[j] + weight[i];
  12059. }
  12060. }
  12061. float best_score = -FLT_MIN, scale = max;
  12062. int besti1 = -1, besti2 = -1, best_shift = 0;
  12063. for (int i1 = 0; i1 <= block_size; ++i1) {
  12064. for (int i2 = i1; i2 <= block_size; ++i2) {
  12065. float sumqx = (sumx[i1] - sumx[0])*x_p[0] + (sumx[i2] - sumx[i1])*x_p[1] + (sumx[block_size] - sumx[i2])*x_p[2];
  12066. float sumq2 = (sumw[i1] - sumw[0])*x_p[0]*x_p[0] + (sumw[i2] - sumw[i1])*x_p[1]*x_p[1] + (sumw[block_size] - sumw[i2])*x_p[2]*x_p[2];
  12067. if (sumq2 > 0 && sumqx*sumqx > best_score*sumq2) {
  12068. scale = sumqx/sumq2; best_score = scale*sumqx;
  12069. besti1 = i1; besti2 = i2; best_shift = 1;
  12070. }
  12071. sumqx = (sumx[i1] - sumx[0])*x_m[0] + (sumx[i2] - sumx[i1])*x_m[1] + (sumx[block_size] - sumx[i2])*x_m[2];
  12072. sumq2 = (sumw[i1] - sumw[0])*x_m[0]*x_m[0] + (sumw[i2] - sumw[i1])*x_m[1]*x_m[1] + (sumw[block_size] - sumw[i2])*x_m[2]*x_m[2];
  12073. if (sumq2 > 0 && sumqx*sumqx > best_score*sumq2) {
  12074. scale = sumqx/sumq2; best_score = scale*sumqx;
  12075. besti1 = i1; besti2 = i2; best_shift = -1;
  12076. }
  12077. }
  12078. }
  12079. GGML_ASSERT(besti1 >= 0 && besti2 >= 0 && best_shift != 0);
  12080. for (int j = 0; j < besti1; ++j) L[idx[2*j]] = 0;
  12081. for (int j = besti1; j < besti2; ++j) L[idx[2*j]] = 1;
  12082. for (int j = besti2; j < block_size; ++j) L[idx[2*j]] = 2;
  12083. if (scale < 0) {
  12084. for (int j = 0; j < block_size; ++j) L[j] = 2 - L[j];
  12085. scale = -scale; best_shift = -best_shift;
  12086. }
  12087. bool all_on_grid = true;
  12088. const float * xx = best_shift == 1 ? x_p : x_m;
  12089. for (int k = 0; k < block_size/8; ++k) {
  12090. uint16_t u = 0;
  12091. for (int j = 0; j < 8; ++j) u |= (L[8*k+j] << 2*j);
  12092. int grid_index = kmap_q2xs[u];
  12093. if (grid_index < 0) {
  12094. all_on_grid = false;
  12095. const uint16_t * neighbours = kneighbors_q2xs - kmap_q2xs[u] - 1;
  12096. grid_index = iq1_find_best_neighbour2(neighbours, kgrid_q2xs, xb + 8*k, weight + 8*k, scale, xx, L + 8*k, NGRID_IQ1S);
  12097. GGML_ASSERT(grid_index >= 0);
  12098. }
  12099. index[k] = grid_index;
  12100. }
  12101. if (!all_on_grid) {
  12102. float sumqx = 0, sumq2 = 0;
  12103. for (int k = 0; k < block_size/8; ++k) {
  12104. const int8_t * pg = (const int8_t *)(kgrid_q2xs + index[k]);
  12105. for (int j = 0; j < 8; ++j) {
  12106. float w = weight[8*k + j];
  12107. float q = xx[(pg[j] - 1)/2];
  12108. sumqx += w*q*xb[8*k+j];
  12109. sumq2 += w*q*q;
  12110. }
  12111. }
  12112. if (sumqx > 0 && sumq2 > 0) scale = sumqx/sumq2;
  12113. }
  12114. uint16_t h = 0;
  12115. for (int k = 0; k < block_size/8; ++k) {
  12116. y[ibl].qs[(block_size/8)*ib + k] = index[k] & 255;
  12117. h |= (index[k] >> 8) << 3*k;
  12118. }
  12119. y[ibl].qh[ib] = h;
  12120. GGML_ASSERT(scale >= 0);
  12121. scales[ib] = scale;
  12122. shifts[ib] = best_shift;
  12123. max_scale = MAX(max_scale, scale);
  12124. }
  12125. if (!max_scale) {
  12126. continue;
  12127. }
  12128. float d = max_scale/15;
  12129. y[ibl].d = GGML_FP32_TO_FP16(d*1.125f); // 1.125f is another fudge factor. Don't ask me why it is needed.
  12130. float id = 1/d;
  12131. for (int ib = 0; ib < QK_K/block_size; ++ib) {
  12132. int l = nearest_int(0.5f*(id*scales[ib]-1));
  12133. l = MAX(0, MIN(7, l));
  12134. if (shifts[ib] == -1) l |= 8;
  12135. y[ibl].qh[ib] |= (l << 12);
  12136. }
  12137. }
  12138. }
  12139. size_t quantize_iq1_s(const float * restrict src, void * restrict dst, int64_t nrow, int64_t n_per_row, const float * quant_weights) {
  12140. GGML_ASSERT(n_per_row%QK_K == 0);
  12141. float scales[QK_K/IQ1S_BLOCK_SIZE];
  12142. float weight[IQ1S_BLOCK_SIZE];
  12143. int8_t L[IQ1S_BLOCK_SIZE];
  12144. float sumx[IQ1S_BLOCK_SIZE+1];
  12145. float sumw[IQ1S_BLOCK_SIZE+1];
  12146. float pairs[2*IQ1S_BLOCK_SIZE];
  12147. uint16_t index[IQ1S_BLOCK_SIZE/8];
  12148. int8_t shifts[QK_K/IQ1S_BLOCK_SIZE];
  12149. int64_t nblock = n_per_row/QK_K;
  12150. char * qrow = (char *)dst;
  12151. for (int64_t row = 0; row < nrow; ++row) {
  12152. quantize_row_iq1_s_impl(src, qrow, n_per_row, quant_weights, scales, weight, sumx, sumw, pairs, L, index, shifts);
  12153. src += n_per_row;
  12154. qrow += nblock*sizeof(block_iq1_s);
  12155. }
  12156. return nrow * nblock * sizeof(block_iq1_s);
  12157. }
  12158. static void quantize_row_iq1_m_impl(const float * restrict x, void * restrict vy, int64_t n, const float * restrict quant_weights,
  12159. float * scales,
  12160. float * weight,
  12161. float * pairs,
  12162. int8_t * L,
  12163. uint16_t * index,
  12164. int8_t * shifts) {
  12165. const int gindex = iq2_data_index(GGML_TYPE_IQ1_M);
  12166. const uint64_t * kgrid_q2xs = iq2_data[gindex].grid;
  12167. const int * kmap_q2xs = iq2_data[gindex].map;
  12168. const uint16_t * kneighbors_q2xs = iq2_data[gindex].neighbours;
  12169. //GGML_ASSERT(quant_weights && "missing quantization weights");
  12170. GGML_ASSERT(kgrid_q2xs && "forgot to call ggml_quantize_init()?");
  12171. GGML_ASSERT(kmap_q2xs && "forgot to call ggml_quantize_init()?");
  12172. GGML_ASSERT(kneighbors_q2xs && "forgot to call ggml_quantize_init()?");
  12173. GGML_ASSERT(n%QK_K == 0);
  12174. block_iq1_m * y = vy;
  12175. const int64_t nbl = n/QK_K;
  12176. const int block_size = IQ1M_BLOCK_SIZE;
  12177. const float x_p[3] = {-1 + IQ1M_DELTA, IQ1M_DELTA, 1 + IQ1M_DELTA};
  12178. const float x_m[3] = {-1 - IQ1M_DELTA, -IQ1M_DELTA, 1 - IQ1M_DELTA};
  12179. const uint8_t masks[4] = {0x00, 0x80, 0x08, 0x88};
  12180. int * idx = (int *)(pairs + 1);
  12181. float sumqx[4], sumq2[4];
  12182. iq1m_scale_t s;
  12183. const float * xx;
  12184. for (int ibl = 0; ibl < nbl; ++ibl) {
  12185. memset(y[ibl].qs, 0, QK_K/8);
  12186. memset(y[ibl].qh, 0, QK_K/16);
  12187. memset(y[ibl].scales, 0, QK_K/32);
  12188. float max_scale = 0;
  12189. const float * xbl = x + QK_K*ibl;
  12190. float sumx2 = 0;
  12191. for (int i = 0; i < QK_K; ++i) sumx2 += xbl[i]*xbl[i];
  12192. float sigma2 = 2*sumx2/QK_K;
  12193. for (int ib = 0; ib < QK_K/block_size; ++ib) {
  12194. const float * xb = xbl + block_size*ib;
  12195. if (quant_weights) {
  12196. const float * qw = quant_weights + QK_K*ibl + block_size*ib;
  12197. for (int i = 0; i < block_size; ++i) weight[i] = qw[i] * sqrtf(sigma2 + xb[i]*xb[i]);
  12198. } else {
  12199. for (int i = 0; i < block_size; ++i) weight[i] = xb[i]*xb[i];
  12200. }
  12201. float max = fabsf(xb[0]);
  12202. for (int i = 1; i < block_size; ++i) max = MAX(max, fabsf(xb[i]));
  12203. if (max < GROUP_MAX_EPS_IQ1_M) {
  12204. scales[ib] = 0;
  12205. memset(L, 1, block_size);
  12206. continue;
  12207. }
  12208. // Here we solve exactly the sum of squared difference (SSD) weighted minimization problem.
  12209. // With just 3 allowed quant values (-1, 0, 1), we can search exhaustively for the two
  12210. // boundaries that split the weights xb[i] into 3 groups. To do so, we sort the weights
  12211. // in ascending order, compute Si = sum[weight[j] xb[j], j = 0...i] and
  12212. // Wi = sum[weight[j], j = 0...i], and use these to quckly get get the optimum scale
  12213. // for each possible and score for each split.
  12214. for (int j = 0; j < block_size; ++j) {
  12215. pairs[2*j] = xb[j];
  12216. idx[2*j] = j;
  12217. }
  12218. qsort(pairs, block_size, 2*sizeof(float), iq1_sort_helper);
  12219. float best_score = -FLT_MIN, scale = max;
  12220. int besti1 = -1, besti2 = -1, best_k = -1;
  12221. // 0: +, +
  12222. // 1: +, -
  12223. // 2: -, +
  12224. // 3: -, -
  12225. for (int i1 = 0; i1 <= block_size; ++i1) {
  12226. for (int i2 = i1; i2 <= block_size; ++i2) {
  12227. memset(sumqx, 0, 4*sizeof(float));
  12228. memset(sumq2, 0, 4*sizeof(float));
  12229. for (int j = 0; j < i1; ++j) {
  12230. int i = idx[2*j];
  12231. if (i < block_size/2) {
  12232. sumqx[0] += weight[i]*x_p[0]*xb[i];
  12233. sumqx[1] += weight[i]*x_p[0]*xb[i];
  12234. sumqx[2] += weight[i]*x_m[0]*xb[i];
  12235. sumqx[3] += weight[i]*x_m[0]*xb[i];
  12236. sumq2[0] += weight[i]*x_p[0]*x_p[0];
  12237. sumq2[1] += weight[i]*x_p[0]*x_p[0];
  12238. sumq2[2] += weight[i]*x_m[0]*x_m[0];
  12239. sumq2[3] += weight[i]*x_m[0]*x_m[0];
  12240. } else {
  12241. sumqx[0] += weight[i]*x_p[0]*xb[i];
  12242. sumqx[2] += weight[i]*x_p[0]*xb[i];
  12243. sumqx[1] += weight[i]*x_m[0]*xb[i];
  12244. sumqx[3] += weight[i]*x_m[0]*xb[i];
  12245. sumq2[0] += weight[i]*x_p[0]*x_p[0];
  12246. sumq2[2] += weight[i]*x_p[0]*x_p[0];
  12247. sumq2[1] += weight[i]*x_m[0]*x_m[0];
  12248. sumq2[3] += weight[i]*x_m[0]*x_m[0];
  12249. }
  12250. }
  12251. for (int j = i1; j < i2; ++j) {
  12252. int i = idx[2*j];
  12253. if (i < block_size/2) {
  12254. sumqx[0] += weight[i]*x_p[1]*xb[i];
  12255. sumqx[1] += weight[i]*x_p[1]*xb[i];
  12256. sumqx[2] += weight[i]*x_m[1]*xb[i];
  12257. sumqx[3] += weight[i]*x_m[1]*xb[i];
  12258. sumq2[0] += weight[i]*x_p[1]*x_p[1];
  12259. sumq2[1] += weight[i]*x_p[1]*x_p[1];
  12260. sumq2[2] += weight[i]*x_m[1]*x_m[1];
  12261. sumq2[3] += weight[i]*x_m[1]*x_m[1];
  12262. } else {
  12263. sumqx[0] += weight[i]*x_p[1]*xb[i];
  12264. sumqx[2] += weight[i]*x_p[1]*xb[i];
  12265. sumqx[1] += weight[i]*x_m[1]*xb[i];
  12266. sumqx[3] += weight[i]*x_m[1]*xb[i];
  12267. sumq2[0] += weight[i]*x_p[1]*x_p[1];
  12268. sumq2[2] += weight[i]*x_p[1]*x_p[1];
  12269. sumq2[1] += weight[i]*x_m[1]*x_m[1];
  12270. sumq2[3] += weight[i]*x_m[1]*x_m[1];
  12271. }
  12272. }
  12273. for (int j = i2; j < block_size; ++j) {
  12274. int i = idx[2*j];
  12275. if (i < block_size/2) {
  12276. sumqx[0] += weight[i]*x_p[2]*xb[i];
  12277. sumqx[1] += weight[i]*x_p[2]*xb[i];
  12278. sumqx[2] += weight[i]*x_m[2]*xb[i];
  12279. sumqx[3] += weight[i]*x_m[2]*xb[i];
  12280. sumq2[0] += weight[i]*x_p[2]*x_p[2];
  12281. sumq2[1] += weight[i]*x_p[2]*x_p[2];
  12282. sumq2[2] += weight[i]*x_m[2]*x_m[2];
  12283. sumq2[3] += weight[i]*x_m[2]*x_m[2];
  12284. } else {
  12285. sumqx[0] += weight[i]*x_p[2]*xb[i];
  12286. sumqx[2] += weight[i]*x_p[2]*xb[i];
  12287. sumqx[1] += weight[i]*x_m[2]*xb[i];
  12288. sumqx[3] += weight[i]*x_m[2]*xb[i];
  12289. sumq2[0] += weight[i]*x_p[2]*x_p[2];
  12290. sumq2[2] += weight[i]*x_p[2]*x_p[2];
  12291. sumq2[1] += weight[i]*x_m[2]*x_m[2];
  12292. sumq2[3] += weight[i]*x_m[2]*x_m[2];
  12293. }
  12294. }
  12295. for (int k = 0; k < 4; ++k) {
  12296. if (sumq2[k] > 0 && sumqx[k]*sumqx[k] > best_score*sumq2[k]) {
  12297. scale = sumqx[k]/sumq2[k]; best_score = scale*sumqx[k];
  12298. besti1 = i1; besti2 = i2; best_k = k;
  12299. }
  12300. }
  12301. }
  12302. }
  12303. GGML_ASSERT(besti1 >= 0 && besti2 >= 0 && best_k >= 0);
  12304. for (int j = 0; j < besti1; ++j) L[idx[2*j]] = 0;
  12305. for (int j = besti1; j < besti2; ++j) L[idx[2*j]] = 1;
  12306. for (int j = besti2; j < block_size; ++j) L[idx[2*j]] = 2;
  12307. if (scale < 0) {
  12308. for (int j = 0; j < block_size; ++j) L[j] = 2 - L[j];
  12309. scale = -scale;
  12310. best_k = best_k == 0 ? 3 : best_k == 1 ? 2 : best_k == 2 ? 1 : 0;
  12311. }
  12312. bool all_on_grid = true;
  12313. for (int k = 0; k < block_size/8; ++k) {
  12314. if (k == 0) xx = best_k < 2 ? x_p : x_m;
  12315. else xx = best_k%2 == 0 ? x_p : x_m;
  12316. uint16_t u = 0;
  12317. for (int j = 0; j < 8; ++j) u |= (L[8*k+j] << 2*j);
  12318. int grid_index = kmap_q2xs[u];
  12319. if (grid_index < 0) {
  12320. all_on_grid = false;
  12321. const uint16_t * neighbours = kneighbors_q2xs - kmap_q2xs[u] - 1;
  12322. grid_index = iq1_find_best_neighbour2(neighbours, kgrid_q2xs, xb + 8*k, weight + 8*k, scale, xx, L + 8*k, NGRID_IQ1S);
  12323. GGML_ASSERT(grid_index >= 0);
  12324. }
  12325. index[k] = grid_index;
  12326. }
  12327. if (!all_on_grid) {
  12328. float sumqx_f = 0, sumq2_f = 0;
  12329. for (int k = 0; k < block_size/8; ++k) {
  12330. if (k == 0) xx = best_k < 2 ? x_p : x_m;
  12331. else xx = best_k%2 == 0 ? x_p : x_m;
  12332. const int8_t * pg = (const int8_t *)(kgrid_q2xs + index[k]);
  12333. for (int j = 0; j < 8; ++j) {
  12334. float w = weight[8*k + j];
  12335. float q = xx[(pg[j] - 1)/2];
  12336. sumqx_f += w*q*xb[8*k+j];
  12337. sumq2_f += w*q*q;
  12338. }
  12339. }
  12340. if (sumqx_f > 0 && sumq2_f > 0) scale = sumqx_f/sumq2_f;
  12341. }
  12342. y[ibl].qs[2*ib + 0] = index[0] & 255;
  12343. y[ibl].qs[2*ib + 1] = index[1] & 255;
  12344. y[ibl].qh[ib] = (index[0] >> 8) | ((index[1] >> 8) << 4);
  12345. GGML_ASSERT(scale >= 0);
  12346. scales[ib] = scale;
  12347. shifts[ib] = best_k;
  12348. max_scale = MAX(max_scale, scale);
  12349. }
  12350. if (!max_scale) {
  12351. continue;
  12352. }
  12353. uint16_t * sc = (uint16_t *)y[ibl].scales;
  12354. float d = max_scale/15;
  12355. float id = 1/d;
  12356. float sumqx_f = 0, sumq2_f = 0;
  12357. for (int ib = 0; ib < QK_K/block_size; ++ib) {
  12358. int l = nearest_int(0.5f*(id*scales[ib+0]-1));
  12359. l = MAX(0, MIN(7, l));
  12360. sc[ib/4] |= (l << 3*(ib%4));
  12361. y[ibl].qh[ib] |= masks[shifts[ib]];
  12362. const float * xb = xbl + block_size*ib;
  12363. if (quant_weights) {
  12364. const float * qw = quant_weights + QK_K*ibl + block_size*ib;
  12365. for (int i = 0; i < block_size; ++i) weight[i] = qw[i] * sqrtf(sigma2 + xb[i]*xb[i]);
  12366. } else {
  12367. for (int i = 0; i < block_size; ++i) weight[i] = xb[i]*xb[i];
  12368. }
  12369. for (int k = 0; k < block_size/8; ++k) {
  12370. if (k == 0) xx = shifts[ib] < 2 ? x_p : x_m;
  12371. else xx = shifts[ib]%2 == 0 ? x_p : x_m;
  12372. const int8_t * pg = (const int8_t *)(kgrid_q2xs + y[ibl].qs[2*ib+k] + ((y[ibl].qh[ib] << (8 - 4*k)) & 0x700));
  12373. for (int j = 0; j < 8; ++j) {
  12374. float w = weight[8*k + j];
  12375. float q = xx[(pg[j] - 1)/2]*(2*l+1);
  12376. sumqx_f += w*q*xb[8*k+j];
  12377. sumq2_f += w*q*q;
  12378. }
  12379. }
  12380. }
  12381. if (sumq2_f > 0) d = sumqx_f/sumq2_f;
  12382. s.f16 = GGML_FP32_TO_FP16(d*1.1125f); // 1.1125f is another fudge factor. Don't ask me why it is needed.
  12383. sc[0] |= ((s.u16 & 0x000f) << 12);
  12384. sc[1] |= ((s.u16 & 0x00f0) << 8);
  12385. sc[2] |= ((s.u16 & 0x0f00) << 4);
  12386. sc[3] |= ((s.u16 & 0xf000) << 0);
  12387. }
  12388. }
  12389. size_t quantize_iq1_m(const float * restrict src, void * restrict dst, int64_t nrow, int64_t n_per_row, const float * quant_weights) {
  12390. GGML_ASSERT(n_per_row%QK_K == 0);
  12391. float scales[QK_K/IQ1M_BLOCK_SIZE];
  12392. float weight[IQ1M_BLOCK_SIZE];
  12393. int8_t L[IQ1M_BLOCK_SIZE];
  12394. float pairs[2*IQ1M_BLOCK_SIZE];
  12395. uint16_t index[IQ1M_BLOCK_SIZE/8];
  12396. int8_t shifts[QK_K/IQ1M_BLOCK_SIZE];
  12397. int64_t nblock = n_per_row/QK_K;
  12398. char * qrow = (char *)dst;
  12399. for (int64_t row = 0; row < nrow; ++row) {
  12400. quantize_row_iq1_m_impl(src, qrow, n_per_row, quant_weights, scales, weight, pairs, L, index, shifts);
  12401. src += n_per_row;
  12402. qrow += nblock*sizeof(block_iq1_m);
  12403. }
  12404. return nrow * nblock * sizeof(block_iq1_m);
  12405. }
  12406. // ============================ 4-bit non-linear quants
  12407. static inline int best_index_int8(int n, const int8_t * val, float x) {
  12408. if (x <= val[0]) return 0;
  12409. if (x >= val[n-1]) return n-1;
  12410. int ml = 0, mu = n-1;
  12411. while (mu-ml > 1) {
  12412. int mav = (ml+mu)/2;
  12413. if (x < val[mav]) mu = mav; else ml = mav;
  12414. }
  12415. return x - val[mu-1] < val[mu] - x ? mu-1 : mu;
  12416. }
  12417. static void quantize_row_iq4_nl_impl(const int super_block_size, const int block_size, const float * restrict x,
  12418. ggml_fp16_t * dh, uint8_t * q4, uint16_t * scales_h, uint8_t * scales_l,
  12419. float * scales, float * weight, uint8_t * L,
  12420. const int8_t * values,
  12421. const float * quant_weights,
  12422. const int ntry) {
  12423. float sigma2 = 0;
  12424. for (int j = 0; j < super_block_size; ++j) sigma2 += x[j]*x[j];
  12425. sigma2 *= 2.f/super_block_size;
  12426. memset(q4, 0, super_block_size/2);
  12427. dh[0] = GGML_FP32_TO_FP16(0.f);
  12428. float max_scale = 0, amax_scale = 0;
  12429. for (int ib = 0; ib < super_block_size/block_size; ++ib) {
  12430. const float * xb = x + ib*block_size;
  12431. uint8_t * Lb = L + ib*block_size;
  12432. if (quant_weights) {
  12433. const float * qw = quant_weights + ib*block_size;
  12434. for (int j = 0; j < block_size; ++j) weight[j] = qw[j] * sqrtf(sigma2 + xb[j]*xb[j]);
  12435. } else {
  12436. for (int j = 0; j < block_size; ++j) weight[j] = xb[j]*xb[j];
  12437. }
  12438. float amax = 0, max = 0;
  12439. for (int j = 0; j < block_size; ++j) {
  12440. float ax = fabsf(xb[j]);
  12441. if (ax > amax) {
  12442. amax = ax; max = xb[j];
  12443. }
  12444. }
  12445. if (amax < GROUP_MAX_EPS) {
  12446. scales[ib] = 0;
  12447. continue;
  12448. }
  12449. float d = ntry > 0 ? -max/values[0] : max/values[0];
  12450. float id = 1/d;
  12451. float sumqx = 0, sumq2 = 0;
  12452. for (int j = 0; j < block_size; ++j) {
  12453. float al = id*xb[j];
  12454. int l = best_index_int8(16, values, al);
  12455. Lb[j] = l;
  12456. float q = values[l];
  12457. float w = weight[j];
  12458. sumqx += w*q*xb[j];
  12459. sumq2 += w*q*q;
  12460. }
  12461. d = sumqx/sumq2;
  12462. float best = d*sumqx;
  12463. for (int itry = -ntry; itry <= ntry; ++itry) {
  12464. id = (itry + values[0])/max;
  12465. sumqx = sumq2 = 0;
  12466. for (int j = 0; j < block_size; ++j) {
  12467. float al = id*xb[j];
  12468. int l = best_index_int8(16, values, al);
  12469. float q = values[l];
  12470. float w = weight[j];
  12471. sumqx += w*q*xb[j];
  12472. sumq2 += w*q*q;
  12473. }
  12474. if (sumq2 > 0 && sumqx*sumqx > best*sumq2) {
  12475. d = sumqx/sumq2; best = d * sumqx;
  12476. }
  12477. }
  12478. scales[ib] = d;
  12479. float abs_d = fabsf(d);
  12480. if (abs_d > amax_scale) {
  12481. amax_scale = abs_d; max_scale = d;
  12482. }
  12483. }
  12484. if (super_block_size/block_size > 1) {
  12485. int nb = super_block_size/block_size;
  12486. memset(scales_h, 0, ((nb+7)/8)*sizeof(uint16_t));
  12487. float d = -max_scale/32;
  12488. dh[0] = GGML_FP32_TO_FP16(d);
  12489. float id = d ? 1/d : 0.f;
  12490. for (int ib = 0; ib < super_block_size/block_size; ++ib) {
  12491. int l = nearest_int(id*scales[ib]);
  12492. l = MAX(-32, MIN(31, l));
  12493. float dl = d * l;
  12494. float idl = dl ? 1/dl : 0.f;
  12495. uint8_t * Lb = L + ib*block_size;
  12496. const float * xb = x + ib*block_size;
  12497. for (int j = 0; j < block_size; ++j) {
  12498. Lb[j] = best_index_int8(16, values, idl*xb[j]);
  12499. }
  12500. l += 32;
  12501. uint8_t l_l = l & 0xf;
  12502. uint8_t l_h = l >> 4;
  12503. if (ib%2 == 0) scales_l[ib/2] = l_l;
  12504. else scales_l[ib/2] |= (l_l << 4);
  12505. scales_h[ib/8] |= (l_h << 2*(ib%8));
  12506. }
  12507. } else {
  12508. dh[0] = GGML_FP32_TO_FP16(scales[0]);
  12509. if (ntry > 0) {
  12510. float id = scales[0] ? 1/scales[0] : 0;
  12511. for (int j = 0; j < super_block_size; ++j) {
  12512. L[j] = best_index_int8(16, values, id*x[j]);
  12513. }
  12514. }
  12515. }
  12516. for (int i = 0; i < super_block_size/32; ++i) {
  12517. for (int j = 0; j < 16; ++j) {
  12518. q4[16*i + j] = L[32*i + j] | (L[32*i + 16 + j] << 4);
  12519. }
  12520. }
  12521. }
  12522. size_t quantize_iq4_nl(const float * restrict src, void * restrict dst, int64_t nrow, int64_t n_per_row, const float * quant_weights) {
  12523. GGML_ASSERT(n_per_row%QK4_NL == 0);
  12524. int64_t nblock = n_per_row/QK4_NL;
  12525. char * qrow = (char *)dst;
  12526. uint8_t L[QK4_NL];
  12527. float weight[QK4_NL];
  12528. uint16_t unused_h;
  12529. uint8_t * unused_l = NULL;
  12530. float scale;
  12531. for (int64_t row = 0; row < nrow; ++row) {
  12532. block_iq4_nl * iq4 = (block_iq4_nl *)qrow;
  12533. for (int ibl = 0; ibl < nblock; ++ibl) {
  12534. const float * qw = quant_weights ? quant_weights + QK4_NL*ibl : NULL;
  12535. quantize_row_iq4_nl_impl(QK4_NL, 32, src + QK4_NL*ibl, &iq4[ibl].d, iq4[ibl].qs, &unused_h, unused_l,
  12536. &scale, weight, L, kvalues_iq4nl, qw, 7);
  12537. }
  12538. src += n_per_row;
  12539. qrow += nblock*sizeof(block_iq4_nl);
  12540. }
  12541. return nrow * nblock * sizeof(block_iq4_nl);
  12542. }
  12543. void quantize_row_iq4_nl(const float * restrict x, void * restrict vy, int64_t k) {
  12544. GGML_ASSERT(k%QK4_NL == 0);
  12545. int64_t nblock = k/QK4_NL;
  12546. uint8_t L[QK4_NL];
  12547. float weight[QK4_NL];
  12548. uint16_t unused_h;
  12549. uint8_t * unused_l = NULL;
  12550. float scale;
  12551. block_iq4_nl * iq4 = (block_iq4_nl *)vy;
  12552. for (int ibl = 0; ibl < nblock; ++ibl) {
  12553. quantize_row_iq4_nl_impl(QK4_NL, 32, x + QK4_NL*ibl, &iq4[ibl].d, iq4[ibl].qs, &unused_h, unused_l,
  12554. &scale, weight, L, kvalues_iq4nl, NULL, -1);
  12555. }
  12556. }
  12557. void quantize_row_iq4_nl_ref(const float * restrict x, block_iq4_nl * restrict y, int64_t k) {
  12558. assert(k % QK4_NL == 0);
  12559. quantize_row_iq4_nl(x, y, k);
  12560. }
  12561. size_t quantize_iq4_xs(const float * restrict src, void * restrict dst, int64_t nrow, int64_t n_per_row, const float * quant_weights) {
  12562. GGML_ASSERT(n_per_row%QK_K == 0);
  12563. int64_t nblock = n_per_row/QK_K;
  12564. char * qrow = (char *)dst;
  12565. uint8_t L[QK_K];
  12566. float weight[32];
  12567. float scales[QK_K/32];
  12568. for (int64_t row = 0; row < nrow; ++row) {
  12569. block_iq4_xs * iq4 = (block_iq4_xs *)qrow;
  12570. for (int ibl = 0; ibl < nblock; ++ibl) {
  12571. const float * qw = quant_weights ? quant_weights + QK_K*ibl : NULL;
  12572. quantize_row_iq4_nl_impl(QK_K, 32, src + QK_K*ibl, &iq4[ibl].d, iq4[ibl].qs, &iq4[ibl].scales_h, iq4[ibl].scales_l,
  12573. scales, weight, L, kvalues_iq4nl, qw, 7);
  12574. }
  12575. src += n_per_row;
  12576. qrow += nblock*sizeof(block_iq4_xs);
  12577. }
  12578. return nrow * nblock * sizeof(block_iq4_xs);
  12579. }
  12580. void quantize_row_iq4_xs(const float * restrict x, void * restrict vy, int64_t k) {
  12581. assert(k % QK_K == 0);
  12582. block_iq4_xs * restrict y = vy;
  12583. quantize_row_iq4_xs_ref(x, y, k);
  12584. }
  12585. void quantize_row_iq4_xs_ref(const float * restrict x, block_iq4_xs * restrict y, int64_t k) {
  12586. assert(k % QK_K == 0);
  12587. quantize_iq4_xs(x, y, 1, k, NULL);
  12588. }
  12589. // =============================== 2.5625 bpw
  12590. static void quantize_row_iq2_s_impl(const float * restrict x, void * restrict vy, int64_t n, const float * restrict quant_weights) {
  12591. const int gindex = iq2_data_index(GGML_TYPE_IQ2_S);
  12592. const uint64_t * kgrid_q2xs = iq2_data[gindex].grid;
  12593. const int * kmap_q2xs = iq2_data[gindex].map;
  12594. const uint16_t * kneighbors_q2xs = iq2_data[gindex].neighbours;
  12595. GGML_ASSERT(kmap_q2xs && "forgot to call ggml_quantize_init()?");
  12596. GGML_ASSERT(kgrid_q2xs && "forgot to call ggml_quantize_init()?");
  12597. GGML_ASSERT(kneighbors_q2xs && "forgot to call ggml_quantize_init()?");
  12598. GGML_ASSERT(n%QK_K == 0);
  12599. const int kMaxQ = 3;
  12600. const int64_t nbl = n/QK_K;
  12601. block_iq2_s * y = vy;
  12602. float scales[QK_K/16];
  12603. float weight[16];
  12604. float xval[16];
  12605. int8_t L[16];
  12606. int8_t Laux[16];
  12607. float waux[16];
  12608. bool is_on_grid[2];
  12609. bool is_on_grid_aux[2];
  12610. uint8_t block_signs[2];
  12611. for (int ibl = 0; ibl < nbl; ++ibl) {
  12612. memset(&y[ibl], 0, sizeof(block_iq2_s));
  12613. y[ibl].d = GGML_FP32_TO_FP16(0.f);
  12614. float max_scale = 0;
  12615. const float * xbl = x + QK_K*ibl;
  12616. float sumx2 = 0;
  12617. for (int i = 0; i < QK_K; ++i) sumx2 += xbl[i]*xbl[i];
  12618. float sigma2 = 2*sumx2/QK_K;
  12619. for (int ib = 0; ib < QK_K/16; ++ib) {
  12620. const float * xb = xbl + 16*ib;
  12621. if (quant_weights) {
  12622. const float * qw = quant_weights + QK_K*ibl + 16*ib;
  12623. for (int i = 0; i < 16; ++i) weight[i] = qw[i] * sqrtf(sigma2 + xb[i]*xb[i]);
  12624. } else {
  12625. for (int i = 0; i < 16; ++i) weight[i] = 0.25f*sigma2 + xb[i]*xb[i];
  12626. }
  12627. for (int i = 0; i < 16; ++i) waux[i] = sqrtf(weight[i]);
  12628. for (int k = 0; k < 2; ++k) {
  12629. uint8_t s = 0;
  12630. for (int i = 0; i < 8; ++i) {
  12631. if (xb[8*k + i] >= 0) xval[8*k + i] = xb[8*k + i];
  12632. else {
  12633. xval[8*k + i] = -xb[8*k + i]; s |= (1 << i);
  12634. }
  12635. }
  12636. block_signs[k] = s;
  12637. }
  12638. float max = xval[0];
  12639. for (int i = 1; i < 16; ++i) max = MAX(max, xval[i]);
  12640. if (max < GROUP_MAX_EPS_IQ2_S) {
  12641. scales[ib] = 0;
  12642. continue;
  12643. }
  12644. float best = 0;
  12645. float scale = max/(2*kMaxQ-1);
  12646. is_on_grid[0] = is_on_grid[1] = true;
  12647. for (int is = -9; is <= 9; ++is) {
  12648. float id = (2*kMaxQ-1+is*0.1f)/max;
  12649. float this_scale = 1/id;
  12650. for (int k = 0; k < 2; ++k) {
  12651. for (int i = 0; i < 8; ++i) {
  12652. int l = nearest_int(0.5f*(id*xval[8*k+i]-1));
  12653. Laux[8*k+i] = MAX(0, MIN(kMaxQ-1, l));
  12654. }
  12655. uint16_t u = 0;
  12656. for (int i = 0; i < 8; ++i) u |= (Laux[8*k+i] << 2*i);
  12657. int grid_index = kmap_q2xs[u];
  12658. is_on_grid_aux[k] = true;
  12659. if (grid_index < 0) {
  12660. is_on_grid_aux[k] = false;
  12661. const uint16_t * neighbours = kneighbors_q2xs - kmap_q2xs[u] - 1;
  12662. grid_index = iq2_find_best_neighbour(neighbours, kgrid_q2xs, xval + 8*k, waux + 8*k, this_scale, Laux + 8*k);
  12663. }
  12664. }
  12665. float sumqx = 0, sumq2 = 0;
  12666. for (int i = 0; i < 16; ++i) {
  12667. float w = weight[i];
  12668. float q = 2*Laux[i] + 1;
  12669. sumqx += w*xval[i]*q;
  12670. sumq2 += w*q*q;
  12671. }
  12672. if (sumq2 > 0 && sumqx*sumqx > best*sumq2) {
  12673. scale = sumqx/sumq2; best = scale*sumqx;
  12674. for (int i = 0; i < 16; ++i) L[i] = Laux[i];
  12675. for (int k = 0; k < 2; ++k) is_on_grid[k] = is_on_grid_aux[k];
  12676. }
  12677. }
  12678. int n_not_ongrid = 0;
  12679. for (int k = 0; k < 2; ++k) if (!is_on_grid[k]) ++n_not_ongrid;
  12680. if (n_not_ongrid > 0 && scale > 0) {
  12681. float id = 1/scale;
  12682. for (int k = 0; k < 2; ++k) {
  12683. if (is_on_grid[k]) continue;
  12684. uint16_t u = 0;
  12685. for (int i = 0; i < 8; ++i) {
  12686. int l = nearest_int(0.5f*(id*xval[8*k+i]-1));
  12687. l = MAX(0, MIN(kMaxQ-1, l));
  12688. u |= (l << 2*i);
  12689. L[8*k + i] = l;
  12690. }
  12691. int grid_index = kmap_q2xs[u];
  12692. if (grid_index < 0) {
  12693. const uint16_t * neighbours = kneighbors_q2xs - kmap_q2xs[u] - 1;
  12694. grid_index = iq2_find_best_neighbour(neighbours, kgrid_q2xs, xval + 8*k, waux + 8*k, scale, L + 8*k);
  12695. }
  12696. }
  12697. float sumqx = 0, sumq2 = 0;
  12698. for (int i = 0; i < 16; ++i) {
  12699. float w = weight[i];
  12700. float q = 2*L[i] + 1;
  12701. sumqx += w*xval[i]*q;
  12702. sumq2 += w*q*q;
  12703. }
  12704. if (sumq2 > 0) scale = sumqx/sumq2;
  12705. }
  12706. if (scale < 0) {
  12707. scale = -scale;
  12708. for (int k = 0; k < 2; ++k) block_signs[k] = ~block_signs[k];
  12709. }
  12710. for (int k = 0; k < 2; ++k) {
  12711. uint16_t u = 0;
  12712. for (int i = 0; i < 8; ++i) u |= (L[8*k+i] << 2*i);
  12713. int grid_index = kmap_q2xs[u];
  12714. if (grid_index < 0) {
  12715. printf("Oops: found point %u not on grid:", u);
  12716. for (int i = 0; i < 8; ++i) printf(" %d", L[8*k+i]);
  12717. printf("\n");
  12718. GGML_ABORT("fatal error");
  12719. }
  12720. const int i8 = 2*ib + k;
  12721. y[ibl].qs[i8] = grid_index & 255;
  12722. y[ibl].qh[i8/4] |= ((grid_index >> 8) << 2*(i8%4));
  12723. y[ibl].qs[QK_K/8 + i8] = block_signs[k];
  12724. }
  12725. GGML_ASSERT(scale >= 0);
  12726. scales[ib] = scale;
  12727. max_scale = MAX(max_scale, scale);
  12728. }
  12729. if (!max_scale) {
  12730. continue;
  12731. }
  12732. float d = max_scale/31;
  12733. y[ibl].d = GGML_FP32_TO_FP16(d * 0.9875f);
  12734. float id = 1/d;
  12735. for (int ib = 0; ib < QK_K/16; ++ib) {
  12736. int l = nearest_int(0.5f*(id*scales[ib]-1));
  12737. l = MAX(0, MIN(15, l));
  12738. if (ib%2 == 0) y[ibl].scales[ib/2] = l;
  12739. else y[ibl].scales[ib/2] |= (l << 4);
  12740. }
  12741. }
  12742. }
  12743. size_t quantize_iq2_s(const float * restrict src, void * restrict dst, int64_t nrow, int64_t n_per_row, const float * quant_weights) {
  12744. GGML_ASSERT(n_per_row%QK_K == 0);
  12745. int64_t nblock = n_per_row/QK_K;
  12746. char * qrow = (char *)dst;
  12747. for (int64_t row = 0; row < nrow; ++row) {
  12748. quantize_row_iq2_s_impl(src, qrow, n_per_row, quant_weights);
  12749. src += n_per_row;
  12750. qrow += nblock*sizeof(block_iq2_s);
  12751. }
  12752. return nrow * nblock * sizeof(block_iq2_s);
  12753. }
  12754. void quantize_row_iq2_s_ref(const float * restrict x, block_iq2_s * restrict y, int64_t k) {
  12755. assert(k % QK_K == 0);
  12756. quantize_iq2_s(x, y, 1, k, NULL);
  12757. }
  12758. void quantize_row_iq2_s(const float * restrict x, void * restrict vy, int64_t k) {
  12759. assert(k % QK_K == 0);
  12760. block_iq2_s * restrict y = vy;
  12761. quantize_row_iq2_s_ref(x, y, k);
  12762. }
  12763. static bool validate_float(float f, size_t i) {
  12764. if (isinf(f)) {
  12765. fprintf(stderr, "ggml_validate_row_data: found inf value at block %zu\n", i);
  12766. return false;
  12767. }
  12768. if (isnan(f)) {
  12769. fprintf(stderr, "ggml_validate_row_data: found nan value at block %zu\n", i);
  12770. return false;
  12771. }
  12772. return true;
  12773. }
  12774. static bool isinf_fp16(ggml_fp16_t f) {
  12775. return (f & 0x7c00) == 0x7c00 && (f & 0x03ff) == 0;
  12776. }
  12777. static bool isnan_fp16(ggml_fp16_t f) {
  12778. return (f & 0x7c00) == 0x7c00 && (f & 0x03ff) != 0;
  12779. }
  12780. static bool validate_fp16(ggml_fp16_t f, size_t i) {
  12781. if (isinf_fp16(f)) {
  12782. fprintf(stderr, "ggml_validate_row_data: found inf value at block %zu\n", i);
  12783. return false;
  12784. }
  12785. if (isnan_fp16(f)) {
  12786. fprintf(stderr, "ggml_validate_row_data: found nan value at block %zu\n", i);
  12787. return false;
  12788. }
  12789. return true;
  12790. }
  12791. #define VALIDATE_ROW_DATA_D_F16_IMPL(type, data, nb) \
  12792. const type * q = (const type *) (data); \
  12793. for (size_t i = 0; i < (nb); ++i) { \
  12794. if (!validate_fp16(q[i].d, i)) { \
  12795. return false; \
  12796. } \
  12797. }
  12798. #define VALIDATE_ROW_DATA_DM_F16_IMPL(type, data, nb, d, m) \
  12799. const type * q = (const type *) (data); \
  12800. for (size_t i = 0; i < (nb); ++i) { \
  12801. if (!validate_fp16(q[i].d, i) || !validate_fp16(q[i].m, i)) { \
  12802. return false; \
  12803. } \
  12804. }
  12805. #define VALIDATE_ROW_DATA_DVEC_F16_IMPL(type, data, nb, nr) \
  12806. const type * q = (const type *) (data); \
  12807. for (size_t i = 0; i < (nb); ++i) { \
  12808. for (size_t j = 0; j < (nr); ++j) { \
  12809. if (!validate_fp16(q[i].d[j], i)) { \
  12810. return false; \
  12811. } \
  12812. } \
  12813. }
  12814. bool ggml_validate_row_data(enum ggml_type type, const void * data, size_t nbytes) {
  12815. if (type < 0 || type >= GGML_TYPE_COUNT) {
  12816. fprintf(stderr, "%s: invalid type %d\n", __func__, type);
  12817. return false;
  12818. }
  12819. if (nbytes % ggml_type_size(type) != 0) {
  12820. fprintf(stderr, "%s: invalid size %zu for type %s (type size = %zu)\n", __func__, nbytes, ggml_type_name(type), ggml_type_size(type));
  12821. return false;
  12822. }
  12823. const size_t nb = nbytes/ggml_type_size(type);
  12824. switch (type) {
  12825. case GGML_TYPE_BF16:
  12826. {
  12827. int nans = 0;
  12828. int infs = 0;
  12829. const unsigned short * f = (const unsigned short *) data;
  12830. for (size_t i = 0; i < nb; ++i) {
  12831. nans += (f[i] & 0x7fff) > 0x7f80;
  12832. infs += (f[i] & 0x7fff) == 0x7f80;
  12833. }
  12834. if (nans) {
  12835. fprintf(stderr, "%s: found %d NaNs in row of %zu BF16 values\n", __func__, nans, nb);
  12836. return false;
  12837. }
  12838. if (infs) {
  12839. fprintf(stderr, "%s: found %d infinities in row of %zu BF16 values\n", __func__, infs, nb);
  12840. return false;
  12841. }
  12842. } break;
  12843. case GGML_TYPE_F16:
  12844. {
  12845. const ggml_fp16_t * f = (const ggml_fp16_t *) data;
  12846. size_t i = 0;
  12847. #if defined(__AVX2__)
  12848. for (; i + 15 < nb; i += 16) {
  12849. __m256i v = _mm256_loadu_si256((const __m256i *)(f + i));
  12850. __m256i vexp = _mm256_and_si256(v, _mm256_set1_epi16(0x7c00));
  12851. __m256i cmp = _mm256_cmpeq_epi16(vexp, _mm256_set1_epi16(0x7c00));
  12852. int mask = _mm256_movemask_epi8(cmp);
  12853. if (mask) {
  12854. for (size_t j = 0; j < 16; ++j) {
  12855. if (!validate_fp16(f[i + j], i + j)) {
  12856. return false;
  12857. }
  12858. }
  12859. GGML_UNREACHABLE();
  12860. }
  12861. }
  12862. #elif defined(__ARM_NEON)
  12863. for (; i + 7 < nb; i += 8) {
  12864. uint16x8_t v = vld1q_u16(f + i);
  12865. uint16x8_t vexp = vandq_u16(v, vdupq_n_u16(0x7c00));
  12866. uint16x8_t cmp = vceqq_u16(vexp, vdupq_n_u16(0x7c00));
  12867. uint64_t mask = vget_lane_u64(vreinterpret_u64_u8(vshrn_n_u16(cmp, 4)), 0);
  12868. if (mask) {
  12869. for (size_t j = 0; j < 8; ++j) {
  12870. if (!validate_fp16(f[i + j], i + j)) {
  12871. return false;
  12872. }
  12873. }
  12874. GGML_UNREACHABLE();
  12875. }
  12876. }
  12877. #endif
  12878. for (; i < nb; ++i) {
  12879. if (!validate_fp16(f[i], i)) {
  12880. return false;
  12881. }
  12882. }
  12883. } break;
  12884. case GGML_TYPE_F32:
  12885. {
  12886. const float * f = (const float *) data;
  12887. size_t i = 0;
  12888. #if defined(__AVX2__)
  12889. for (; i + 7 < nb; i += 8) {
  12890. __m256i v = _mm256_loadu_si256((const __m256i *)(f + i));
  12891. __m256i vexp = _mm256_and_si256(v, _mm256_set1_epi32(0x7f800000));
  12892. __m256i cmp = _mm256_cmpeq_epi32(vexp, _mm256_set1_epi32(0x7f800000));
  12893. int mask = _mm256_movemask_epi8(cmp);
  12894. if (mask) {
  12895. for (size_t j = 0; j < 8; ++j) {
  12896. if (!validate_float(f[i + j], i + j)) {
  12897. return false;
  12898. }
  12899. }
  12900. GGML_UNREACHABLE();
  12901. }
  12902. }
  12903. #elif defined(__ARM_NEON)
  12904. for (; i + 3 < nb; i += 4) {
  12905. uint32x4_t v = vld1q_u32((const uint32_t *)f + i);
  12906. uint32x4_t vexp = vandq_u32(v, vdupq_n_u32(0x7f800000));
  12907. uint32x4_t cmp = vceqq_u32(vexp, vdupq_n_u32(0x7f800000));
  12908. uint64_t mask = vget_lane_u64(vreinterpret_u64_u16(vshrn_n_u32(cmp, 8)), 0);
  12909. if (mask) {
  12910. for (size_t j = 0; j < 4; ++j) {
  12911. if (!validate_float(f[i + j], i + j)) {
  12912. return false;
  12913. }
  12914. }
  12915. GGML_UNREACHABLE();
  12916. }
  12917. }
  12918. #endif
  12919. for (; i < nb; ++i) {
  12920. if (!validate_float(f[i], i)) {
  12921. return false;
  12922. }
  12923. }
  12924. } break;
  12925. case GGML_TYPE_F64:
  12926. {
  12927. const double * f = (const double *) data;
  12928. for (size_t i = 0; i < nb; ++i) {
  12929. if (!validate_float(f[i], i)) {
  12930. return false;
  12931. }
  12932. }
  12933. } break;
  12934. case GGML_TYPE_Q4_0:
  12935. {
  12936. VALIDATE_ROW_DATA_D_F16_IMPL(block_q4_0, data, nb);
  12937. } break;
  12938. case GGML_TYPE_Q4_1:
  12939. {
  12940. VALIDATE_ROW_DATA_DM_F16_IMPL(block_q4_1, data, nb, d, m);
  12941. } break;
  12942. case GGML_TYPE_Q5_0:
  12943. {
  12944. VALIDATE_ROW_DATA_D_F16_IMPL(block_q5_0, data, nb);
  12945. } break;
  12946. case GGML_TYPE_Q5_1:
  12947. {
  12948. VALIDATE_ROW_DATA_DM_F16_IMPL(block_q5_1, data, nb, d, m);
  12949. } break;
  12950. case GGML_TYPE_Q8_0:
  12951. {
  12952. VALIDATE_ROW_DATA_D_F16_IMPL(block_q8_0, data, nb);
  12953. } break;
  12954. case GGML_TYPE_Q2_K:
  12955. {
  12956. VALIDATE_ROW_DATA_DM_F16_IMPL(block_q2_K, data, nb, d, dmin);
  12957. } break;
  12958. case GGML_TYPE_Q3_K:
  12959. {
  12960. VALIDATE_ROW_DATA_D_F16_IMPL(block_q3_K, data, nb);
  12961. } break;
  12962. case GGML_TYPE_Q4_K:
  12963. {
  12964. VALIDATE_ROW_DATA_DM_F16_IMPL(block_q4_K, data, nb, d, dmin);
  12965. } break;
  12966. case GGML_TYPE_Q5_K:
  12967. {
  12968. VALIDATE_ROW_DATA_DM_F16_IMPL(block_q5_K, data, nb, d, dmin);
  12969. } break;
  12970. case GGML_TYPE_Q6_K:
  12971. {
  12972. VALIDATE_ROW_DATA_D_F16_IMPL(block_q6_K, data, nb);
  12973. } break;
  12974. case GGML_TYPE_Q8_K:
  12975. {
  12976. const block_q8_K * q = (const block_q8_K *) data;
  12977. for (size_t i = 0; i < nb; ++i) {
  12978. if (!validate_float(q[i].d, i)) {
  12979. return false;
  12980. }
  12981. }
  12982. } break;
  12983. case GGML_TYPE_TQ1_0:
  12984. {
  12985. VALIDATE_ROW_DATA_D_F16_IMPL(block_tq1_0, data, nb);
  12986. } break;
  12987. case GGML_TYPE_TQ2_0:
  12988. {
  12989. VALIDATE_ROW_DATA_D_F16_IMPL(block_tq2_0, data, nb);
  12990. } break;
  12991. case GGML_TYPE_IQ1_S:
  12992. {
  12993. VALIDATE_ROW_DATA_D_F16_IMPL(block_iq1_s, data, nb);
  12994. } break;
  12995. case GGML_TYPE_IQ1_M:
  12996. {
  12997. const block_iq1_m * q = (const block_iq1_m *) data;
  12998. for (size_t i = 0; i < nb; ++i) {
  12999. iq1m_scale_t scale;
  13000. const uint16_t * sc = (const uint16_t *)q[i].scales;
  13001. scale.u16 = (sc[0] >> 12) | ((sc[1] >> 8) & 0x00f0) | ((sc[2] >> 4) & 0x0f00) | (sc[3] & 0xf000);
  13002. if (!validate_fp16(scale.f16, i)) {
  13003. return false;
  13004. }
  13005. }
  13006. } break;
  13007. case GGML_TYPE_IQ2_XXS:
  13008. {
  13009. VALIDATE_ROW_DATA_D_F16_IMPL(block_iq2_xxs, data, nb);
  13010. } break;
  13011. case GGML_TYPE_IQ2_XS:
  13012. {
  13013. VALIDATE_ROW_DATA_D_F16_IMPL(block_iq2_xs, data, nb);
  13014. } break;
  13015. case GGML_TYPE_IQ2_S:
  13016. {
  13017. VALIDATE_ROW_DATA_D_F16_IMPL(block_iq2_s, data, nb);
  13018. } break;
  13019. case GGML_TYPE_IQ3_XXS:
  13020. {
  13021. VALIDATE_ROW_DATA_D_F16_IMPL(block_iq3_xxs, data, nb);
  13022. } break;
  13023. case GGML_TYPE_IQ3_S:
  13024. {
  13025. VALIDATE_ROW_DATA_D_F16_IMPL(block_iq3_s, data, nb);
  13026. } break;
  13027. case GGML_TYPE_IQ4_XS:
  13028. {
  13029. VALIDATE_ROW_DATA_D_F16_IMPL(block_iq4_xs, data, nb);
  13030. } break;
  13031. case GGML_TYPE_IQ4_NL:
  13032. {
  13033. VALIDATE_ROW_DATA_D_F16_IMPL(block_iq4_nl, data, nb);
  13034. } break;
  13035. case GGML_TYPE_Q4_0_4_4:
  13036. case GGML_TYPE_Q4_0_4_8:
  13037. {
  13038. VALIDATE_ROW_DATA_DVEC_F16_IMPL(block_q4_0x4, data, nbytes / sizeof(block_q4_0x4), 4);
  13039. } break;
  13040. case GGML_TYPE_Q4_0_8_8:
  13041. {
  13042. VALIDATE_ROW_DATA_DVEC_F16_IMPL(block_q4_0x8, data, nbytes / sizeof(block_q4_0x8), 8);
  13043. } break;
  13044. case GGML_TYPE_I8:
  13045. case GGML_TYPE_I16:
  13046. case GGML_TYPE_I32:
  13047. case GGML_TYPE_I64:
  13048. // nothing to validate
  13049. break;
  13050. default:
  13051. {
  13052. fprintf(stderr, "%s: invalid type %d\n", __func__, type);
  13053. return false;
  13054. }
  13055. }
  13056. return true;
  13057. }