llama.h 59 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248
  1. /**
  2. * llama.cpp - commit 3f1ae2e32cde00c39b96be6d01c2997c29bae555 - do not edit this file
  3. *
  4. * MIT License
  5. *
  6. * Copyright (c) 2023-2024 The ggml authors
  7. *
  8. * Permission is hereby granted, free of charge, to any person obtaining a copy
  9. * of this software and associated documentation files (the "Software"), to deal
  10. * in the Software without restriction, including without limitation the rights
  11. * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
  12. * copies of the Software, and to permit persons to whom the Software is
  13. * furnished to do so, subject to the following conditions:
  14. *
  15. * The above copyright notice and this permission notice shall be included in all
  16. * copies or substantial portions of the Software.
  17. *
  18. * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
  19. * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
  20. * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
  21. * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
  22. * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
  23. * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
  24. * SOFTWARE.
  25. */
  26. #ifndef LLAMA_H
  27. #define LLAMA_H
  28. #include "ggml.h"
  29. #include "ggml-backend.h"
  30. #include <stddef.h>
  31. #include <stdint.h>
  32. #include <stdio.h>
  33. #include <stdbool.h>
  34. #ifdef LLAMA_SHARED
  35. # if defined(_WIN32) && !defined(__MINGW32__)
  36. # ifdef LLAMA_BUILD
  37. # define LLAMA_API __declspec(dllexport)
  38. # else
  39. # define LLAMA_API __declspec(dllimport)
  40. # endif
  41. # else
  42. # define LLAMA_API __attribute__ ((visibility ("default")))
  43. # endif
  44. #else
  45. # define LLAMA_API
  46. #endif
  47. #ifdef __GNUC__
  48. # define DEPRECATED(func, hint) func __attribute__((deprecated(hint)))
  49. #elif defined(_MSC_VER)
  50. # define DEPRECATED(func, hint) __declspec(deprecated(hint)) func
  51. #else
  52. # define DEPRECATED(func, hint) func
  53. #endif
  54. #define LLAMA_DEFAULT_SEED 0xFFFFFFFF
  55. // TODO: use everywhere in the implementation
  56. #define LLAMA_TOKEN_NULL -1
  57. #define LLAMA_FILE_MAGIC_GGLA 0x67676c61u // 'ggla'
  58. #define LLAMA_FILE_MAGIC_GGSN 0x6767736eu // 'ggsn'
  59. #define LLAMA_FILE_MAGIC_GGSQ 0x67677371u // 'ggsq'
  60. #define LLAMA_SESSION_MAGIC LLAMA_FILE_MAGIC_GGSN
  61. #define LLAMA_SESSION_VERSION 9
  62. #define LLAMA_STATE_SEQ_MAGIC LLAMA_FILE_MAGIC_GGSQ
  63. #define LLAMA_STATE_SEQ_VERSION 2
  64. #ifdef __cplusplus
  65. extern "C" {
  66. #endif
  67. //
  68. // C interface
  69. //
  70. // TODO: show sample usage
  71. //
  72. // struct llama_vocab; // TODO: add in the future
  73. struct llama_model;
  74. struct llama_context;
  75. struct llama_sampler;
  76. typedef int32_t llama_pos;
  77. typedef int32_t llama_token;
  78. typedef int32_t llama_seq_id;
  79. enum llama_vocab_type {
  80. LLAMA_VOCAB_TYPE_NONE = 0, // For models without vocab
  81. LLAMA_VOCAB_TYPE_SPM = 1, // LLaMA tokenizer based on byte-level BPE with byte fallback
  82. LLAMA_VOCAB_TYPE_BPE = 2, // GPT-2 tokenizer based on byte-level BPE
  83. LLAMA_VOCAB_TYPE_WPM = 3, // BERT tokenizer based on WordPiece
  84. LLAMA_VOCAB_TYPE_UGM = 4, // T5 tokenizer based on Unigram
  85. LLAMA_VOCAB_TYPE_RWKV = 5, // RWKV tokenizer based on greedy tokenization
  86. };
  87. // pre-tokenization types
  88. enum llama_vocab_pre_type {
  89. LLAMA_VOCAB_PRE_TYPE_DEFAULT = 0,
  90. LLAMA_VOCAB_PRE_TYPE_LLAMA3 = 1,
  91. LLAMA_VOCAB_PRE_TYPE_DEEPSEEK_LLM = 2,
  92. LLAMA_VOCAB_PRE_TYPE_DEEPSEEK_CODER = 3,
  93. LLAMA_VOCAB_PRE_TYPE_FALCON = 4,
  94. LLAMA_VOCAB_PRE_TYPE_MPT = 5,
  95. LLAMA_VOCAB_PRE_TYPE_STARCODER = 6,
  96. LLAMA_VOCAB_PRE_TYPE_GPT2 = 7,
  97. LLAMA_VOCAB_PRE_TYPE_REFACT = 8,
  98. LLAMA_VOCAB_PRE_TYPE_COMMAND_R = 9,
  99. LLAMA_VOCAB_PRE_TYPE_STABLELM2 = 10,
  100. LLAMA_VOCAB_PRE_TYPE_QWEN2 = 11,
  101. LLAMA_VOCAB_PRE_TYPE_OLMO = 12,
  102. LLAMA_VOCAB_PRE_TYPE_DBRX = 13,
  103. LLAMA_VOCAB_PRE_TYPE_SMAUG = 14,
  104. LLAMA_VOCAB_PRE_TYPE_PORO = 15,
  105. LLAMA_VOCAB_PRE_TYPE_CHATGLM3 = 16,
  106. LLAMA_VOCAB_PRE_TYPE_CHATGLM4 = 17,
  107. LLAMA_VOCAB_PRE_TYPE_VIKING = 18,
  108. LLAMA_VOCAB_PRE_TYPE_JAIS = 19,
  109. LLAMA_VOCAB_PRE_TYPE_TEKKEN = 20,
  110. LLAMA_VOCAB_PRE_TYPE_SMOLLM = 21,
  111. LLAMA_VOCAB_PRE_TYPE_CODESHELL = 22,
  112. LLAMA_VOCAB_PRE_TYPE_BLOOM = 23,
  113. LLAMA_VOCAB_PRE_TYPE_GPT3_FINNISH = 24,
  114. LLAMA_VOCAB_PRE_TYPE_EXAONE = 25,
  115. LLAMA_VOCAB_PRE_TYPE_CHAMELEON = 26,
  116. };
  117. enum llama_rope_type {
  118. LLAMA_ROPE_TYPE_NONE = -1,
  119. LLAMA_ROPE_TYPE_NORM = 0,
  120. LLAMA_ROPE_TYPE_NEOX = GGML_ROPE_TYPE_NEOX,
  121. };
  122. enum llama_token_type { //TODO: remove, required until per token attributes are available from GGUF file
  123. LLAMA_TOKEN_TYPE_UNDEFINED = 0,
  124. LLAMA_TOKEN_TYPE_NORMAL = 1,
  125. LLAMA_TOKEN_TYPE_UNKNOWN = 2,
  126. LLAMA_TOKEN_TYPE_CONTROL = 3,
  127. LLAMA_TOKEN_TYPE_USER_DEFINED = 4,
  128. LLAMA_TOKEN_TYPE_UNUSED = 5,
  129. LLAMA_TOKEN_TYPE_BYTE = 6,
  130. };
  131. enum llama_token_attr {
  132. LLAMA_TOKEN_ATTR_UNDEFINED = 0,
  133. LLAMA_TOKEN_ATTR_UNKNOWN = 1 << 0,
  134. LLAMA_TOKEN_ATTR_UNUSED = 1 << 1,
  135. LLAMA_TOKEN_ATTR_NORMAL = 1 << 2,
  136. LLAMA_TOKEN_ATTR_CONTROL = 1 << 3, // SPECIAL?
  137. LLAMA_TOKEN_ATTR_USER_DEFINED = 1 << 4,
  138. LLAMA_TOKEN_ATTR_BYTE = 1 << 5,
  139. LLAMA_TOKEN_ATTR_NORMALIZED = 1 << 6,
  140. LLAMA_TOKEN_ATTR_LSTRIP = 1 << 7,
  141. LLAMA_TOKEN_ATTR_RSTRIP = 1 << 8,
  142. LLAMA_TOKEN_ATTR_SINGLE_WORD = 1 << 9,
  143. };
  144. // model file types
  145. enum llama_ftype {
  146. LLAMA_FTYPE_ALL_F32 = 0,
  147. LLAMA_FTYPE_MOSTLY_F16 = 1, // except 1d tensors
  148. LLAMA_FTYPE_MOSTLY_Q4_0 = 2, // except 1d tensors
  149. LLAMA_FTYPE_MOSTLY_Q4_1 = 3, // except 1d tensors
  150. // LLAMA_FTYPE_MOSTLY_Q4_1_SOME_F16 = 4, // tok_embeddings.weight and output.weight are F16
  151. // LLAMA_FTYPE_MOSTLY_Q4_2 = 5, // support has been removed
  152. // LLAMA_FTYPE_MOSTLY_Q4_3 = 6, // support has been removed
  153. LLAMA_FTYPE_MOSTLY_Q8_0 = 7, // except 1d tensors
  154. LLAMA_FTYPE_MOSTLY_Q5_0 = 8, // except 1d tensors
  155. LLAMA_FTYPE_MOSTLY_Q5_1 = 9, // except 1d tensors
  156. LLAMA_FTYPE_MOSTLY_Q2_K = 10, // except 1d tensors
  157. LLAMA_FTYPE_MOSTLY_Q3_K_S = 11, // except 1d tensors
  158. LLAMA_FTYPE_MOSTLY_Q3_K_M = 12, // except 1d tensors
  159. LLAMA_FTYPE_MOSTLY_Q3_K_L = 13, // except 1d tensors
  160. LLAMA_FTYPE_MOSTLY_Q4_K_S = 14, // except 1d tensors
  161. LLAMA_FTYPE_MOSTLY_Q4_K_M = 15, // except 1d tensors
  162. LLAMA_FTYPE_MOSTLY_Q5_K_S = 16, // except 1d tensors
  163. LLAMA_FTYPE_MOSTLY_Q5_K_M = 17, // except 1d tensors
  164. LLAMA_FTYPE_MOSTLY_Q6_K = 18, // except 1d tensors
  165. LLAMA_FTYPE_MOSTLY_IQ2_XXS = 19, // except 1d tensors
  166. LLAMA_FTYPE_MOSTLY_IQ2_XS = 20, // except 1d tensors
  167. LLAMA_FTYPE_MOSTLY_Q2_K_S = 21, // except 1d tensors
  168. LLAMA_FTYPE_MOSTLY_IQ3_XS = 22, // except 1d tensors
  169. LLAMA_FTYPE_MOSTLY_IQ3_XXS = 23, // except 1d tensors
  170. LLAMA_FTYPE_MOSTLY_IQ1_S = 24, // except 1d tensors
  171. LLAMA_FTYPE_MOSTLY_IQ4_NL = 25, // except 1d tensors
  172. LLAMA_FTYPE_MOSTLY_IQ3_S = 26, // except 1d tensors
  173. LLAMA_FTYPE_MOSTLY_IQ3_M = 27, // except 1d tensors
  174. LLAMA_FTYPE_MOSTLY_IQ2_S = 28, // except 1d tensors
  175. LLAMA_FTYPE_MOSTLY_IQ2_M = 29, // except 1d tensors
  176. LLAMA_FTYPE_MOSTLY_IQ4_XS = 30, // except 1d tensors
  177. LLAMA_FTYPE_MOSTLY_IQ1_M = 31, // except 1d tensors
  178. LLAMA_FTYPE_MOSTLY_BF16 = 32, // except 1d tensors
  179. LLAMA_FTYPE_MOSTLY_Q4_0_4_4 = 33, // except 1d tensors
  180. LLAMA_FTYPE_MOSTLY_Q4_0_4_8 = 34, // except 1d tensors
  181. LLAMA_FTYPE_MOSTLY_Q4_0_8_8 = 35, // except 1d tensors
  182. LLAMA_FTYPE_MOSTLY_TQ1_0 = 36, // except 1d tensors
  183. LLAMA_FTYPE_MOSTLY_TQ2_0 = 37, // except 1d tensors
  184. LLAMA_FTYPE_GUESSED = 1024, // not specified in the model file
  185. };
  186. enum llama_rope_scaling_type {
  187. LLAMA_ROPE_SCALING_TYPE_UNSPECIFIED = -1,
  188. LLAMA_ROPE_SCALING_TYPE_NONE = 0,
  189. LLAMA_ROPE_SCALING_TYPE_LINEAR = 1,
  190. LLAMA_ROPE_SCALING_TYPE_YARN = 2,
  191. LLAMA_ROPE_SCALING_TYPE_MAX_VALUE = LLAMA_ROPE_SCALING_TYPE_YARN,
  192. };
  193. enum llama_pooling_type {
  194. LLAMA_POOLING_TYPE_UNSPECIFIED = -1,
  195. LLAMA_POOLING_TYPE_NONE = 0,
  196. LLAMA_POOLING_TYPE_MEAN = 1,
  197. LLAMA_POOLING_TYPE_CLS = 2,
  198. LLAMA_POOLING_TYPE_LAST = 3,
  199. LLAMA_POOLING_TYPE_RANK = 4, // used by reranking models to attach the classification head to the graph
  200. };
  201. enum llama_attention_type {
  202. LLAMA_ATTENTION_TYPE_UNSPECIFIED = -1,
  203. LLAMA_ATTENTION_TYPE_CAUSAL = 0,
  204. LLAMA_ATTENTION_TYPE_NON_CAUSAL = 1,
  205. };
  206. enum llama_split_mode {
  207. LLAMA_SPLIT_MODE_NONE = 0, // single GPU
  208. LLAMA_SPLIT_MODE_LAYER = 1, // split layers and KV across GPUs
  209. LLAMA_SPLIT_MODE_ROW = 2, // split rows across GPUs
  210. };
  211. // TODO: simplify (https://github.com/ggerganov/llama.cpp/pull/9294#pullrequestreview-2286561979)
  212. typedef struct llama_token_data {
  213. llama_token id; // token id
  214. float logit; // log-odds of the token
  215. float p; // probability of the token
  216. } llama_token_data;
  217. typedef struct llama_token_data_array {
  218. // TODO: consider SoA
  219. llama_token_data * data;
  220. size_t size;
  221. int64_t selected; // this is the index in the data array (i.e. not the token id)
  222. bool sorted;
  223. } llama_token_data_array;
  224. typedef bool (*llama_progress_callback)(float progress, void * user_data);
  225. // Input data for llama_decode
  226. // A llama_batch object can contain input about one or many sequences
  227. // The provided arrays (i.e. token, embd, pos, etc.) must have size of n_tokens
  228. //
  229. // - token : the token ids of the input (used when embd is NULL)
  230. // - embd : token embeddings (i.e. float vector of size n_embd) (used when token is NULL)
  231. // - pos : the positions of the respective token in the sequence
  232. // - seq_id : the sequence to which the respective token belongs
  233. // - logits : if zero, the logits (and/or the embeddings) for the respective token will not be output
  234. //
  235. typedef struct llama_batch {
  236. int32_t n_tokens;
  237. llama_token * token;
  238. float * embd;
  239. int32_t n_embd;
  240. llama_pos * pos;
  241. int32_t * n_seq_id;
  242. llama_seq_id ** seq_id;
  243. int8_t * logits; // TODO: rename this to "output"
  244. // NOTE: helpers for smooth API transition - can be deprecated in the future
  245. // for future-proof code, use the above fields instead and ignore everything below
  246. //
  247. // pos[i] = all_pos_0 + i*all_pos_1
  248. //
  249. llama_pos all_pos_0; // used if pos == NULL
  250. llama_pos all_pos_1; // used if pos == NULL
  251. llama_seq_id all_seq_id; // used if seq_id == NULL
  252. } llama_batch;
  253. enum llama_model_kv_override_type {
  254. LLAMA_KV_OVERRIDE_TYPE_INT,
  255. LLAMA_KV_OVERRIDE_TYPE_FLOAT,
  256. LLAMA_KV_OVERRIDE_TYPE_BOOL,
  257. LLAMA_KV_OVERRIDE_TYPE_STR,
  258. };
  259. struct llama_model_kv_override {
  260. enum llama_model_kv_override_type tag;
  261. char key[128];
  262. union {
  263. int64_t val_i64;
  264. double val_f64;
  265. bool val_bool;
  266. char val_str[128];
  267. };
  268. };
  269. struct llama_model_params {
  270. int32_t n_gpu_layers; // number of layers to store in VRAM
  271. enum llama_split_mode split_mode; // how to split the model across multiple GPUs
  272. // main_gpu interpretation depends on split_mode:
  273. // LLAMA_SPLIT_MODE_NONE: the GPU that is used for the entire model
  274. // LLAMA_SPLIT_MODE_ROW: the GPU that is used for small tensors and intermediate results
  275. // LLAMA_SPLIT_MODE_LAYER: ignored
  276. int32_t main_gpu;
  277. // proportion of the model (layers or rows) to offload to each GPU, size: llama_max_devices()
  278. const float * tensor_split;
  279. // comma separated list of RPC servers to use for offloading
  280. const char * rpc_servers;
  281. // Called with a progress value between 0.0 and 1.0. Pass NULL to disable.
  282. // If the provided progress_callback returns true, model loading continues.
  283. // If it returns false, model loading is immediately aborted.
  284. llama_progress_callback progress_callback;
  285. // context pointer passed to the progress callback
  286. void * progress_callback_user_data;
  287. // override key-value pairs of the model meta data
  288. const struct llama_model_kv_override * kv_overrides;
  289. // Keep the booleans together to avoid misalignment during copy-by-value.
  290. bool vocab_only; // only load the vocabulary, no weights
  291. bool use_mmap; // use mmap if possible
  292. bool use_mlock; // force system to keep model in RAM
  293. bool check_tensors; // validate model tensor data
  294. };
  295. // NOTE: changing the default values of parameters marked as [EXPERIMENTAL] may cause crashes or incorrect results in certain configurations
  296. // https://github.com/ggerganov/llama.cpp/pull/7544
  297. struct llama_context_params {
  298. uint32_t n_ctx; // text context, 0 = from model
  299. uint32_t n_batch; // logical maximum batch size that can be submitted to llama_decode
  300. uint32_t n_ubatch; // physical maximum batch size
  301. uint32_t n_seq_max; // max number of sequences (i.e. distinct states for recurrent models)
  302. int32_t n_threads; // number of threads to use for generation
  303. int32_t n_threads_batch; // number of threads to use for batch processing
  304. enum llama_rope_scaling_type rope_scaling_type; // RoPE scaling type, from `enum llama_rope_scaling_type`
  305. enum llama_pooling_type pooling_type; // whether to pool (sum) embedding results by sequence id
  306. enum llama_attention_type attention_type; // attention type to use for embeddings
  307. // ref: https://github.com/ggerganov/llama.cpp/pull/2054
  308. float rope_freq_base; // RoPE base frequency, 0 = from model
  309. float rope_freq_scale; // RoPE frequency scaling factor, 0 = from model
  310. float yarn_ext_factor; // YaRN extrapolation mix factor, negative = from model
  311. float yarn_attn_factor; // YaRN magnitude scaling factor
  312. float yarn_beta_fast; // YaRN low correction dim
  313. float yarn_beta_slow; // YaRN high correction dim
  314. uint32_t yarn_orig_ctx; // YaRN original context size
  315. float defrag_thold; // defragment the KV cache if holes/size > thold, < 0 disabled (default)
  316. ggml_backend_sched_eval_callback cb_eval;
  317. void * cb_eval_user_data;
  318. enum ggml_type type_k; // data type for K cache [EXPERIMENTAL]
  319. enum ggml_type type_v; // data type for V cache [EXPERIMENTAL]
  320. // Keep the booleans together and at the end of the struct to avoid misalignment during copy-by-value.
  321. // TODO: move at the end of the struct
  322. bool logits_all; // the llama_decode() call computes all logits, not just the last one (DEPRECATED - set llama_batch.logits instead)
  323. bool embeddings; // if true, extract embeddings (together with logits)
  324. bool offload_kqv; // whether to offload the KQV ops (including the KV cache) to GPU
  325. bool flash_attn; // whether to use flash attention [EXPERIMENTAL]
  326. bool no_perf; // whether to measure performance timings
  327. // Abort callback
  328. // if it returns true, execution of llama_decode() will be aborted
  329. // currently works only with CPU execution
  330. ggml_abort_callback abort_callback;
  331. void * abort_callback_data;
  332. };
  333. // model quantization parameters
  334. typedef struct llama_model_quantize_params {
  335. int32_t nthread; // number of threads to use for quantizing, if <=0 will use std::thread::hardware_concurrency()
  336. enum llama_ftype ftype; // quantize to this llama_ftype
  337. enum ggml_type output_tensor_type; // output tensor type
  338. enum ggml_type token_embedding_type; // token embeddings tensor type
  339. bool allow_requantize; // allow quantizing non-f32/f16 tensors
  340. bool quantize_output_tensor; // quantize output.weight
  341. bool only_copy; // only copy tensors - ftype, allow_requantize and quantize_output_tensor are ignored
  342. bool pure; // quantize all tensors to the default type
  343. bool keep_split; // quantize to the same number of shards
  344. void * imatrix; // pointer to importance matrix data
  345. void * kv_overrides; // pointer to vector containing overrides
  346. } llama_model_quantize_params;
  347. typedef struct llama_logit_bias {
  348. llama_token token;
  349. float bias;
  350. } llama_logit_bias;
  351. typedef struct llama_sampler_chain_params {
  352. bool no_perf; // whether to measure performance timings
  353. } llama_sampler_chain_params;
  354. // used in chat template
  355. typedef struct llama_chat_message {
  356. const char * role;
  357. const char * content;
  358. } llama_chat_message;
  359. // lora adapter
  360. struct llama_lora_adapter;
  361. // Helpers for getting default parameters
  362. // TODO: update API to start accepting pointers to params structs (https://github.com/ggerganov/llama.cpp/discussions/9172)
  363. LLAMA_API struct llama_model_params llama_model_default_params(void);
  364. LLAMA_API struct llama_context_params llama_context_default_params(void);
  365. LLAMA_API struct llama_sampler_chain_params llama_sampler_chain_default_params(void);
  366. LLAMA_API struct llama_model_quantize_params llama_model_quantize_default_params(void);
  367. // Initialize the llama + ggml backend
  368. // If numa is true, use NUMA optimizations
  369. // Call once at the start of the program
  370. LLAMA_API void llama_backend_init(void);
  371. //optional:
  372. LLAMA_API void llama_numa_init(enum ggml_numa_strategy numa);
  373. // Optional: an auto threadpool gets created in ggml if not passed explicitly
  374. LLAMA_API void llama_attach_threadpool(
  375. struct llama_context * ctx,
  376. ggml_threadpool_t threadpool,
  377. ggml_threadpool_t threadpool_batch);
  378. LLAMA_API void llama_detach_threadpool(struct llama_context * ctx);
  379. // Call once at the end of the program - currently only used for MPI
  380. LLAMA_API void llama_backend_free(void);
  381. LLAMA_API struct llama_model * llama_load_model_from_file(
  382. const char * path_model,
  383. struct llama_model_params params);
  384. LLAMA_API void llama_free_model(struct llama_model * model);
  385. // TODO: rename to llama_init_from_model
  386. LLAMA_API struct llama_context * llama_new_context_with_model(
  387. struct llama_model * model,
  388. struct llama_context_params params);
  389. // TODO (jmorganca): this should most likely be passed in as part of a batch
  390. // and not set on the context for all batches.
  391. LLAMA_API void llama_set_cross_attention(struct llama_context * ctx, bool cross_attn_state);
  392. // Frees all allocated memory
  393. LLAMA_API void llama_free(struct llama_context * ctx);
  394. LLAMA_API int64_t llama_time_us(void);
  395. LLAMA_API size_t llama_max_devices(void);
  396. LLAMA_API bool llama_supports_mmap (void);
  397. LLAMA_API bool llama_supports_mlock (void);
  398. LLAMA_API bool llama_supports_gpu_offload(void);
  399. LLAMA_API uint32_t llama_n_ctx (const struct llama_context * ctx);
  400. LLAMA_API uint32_t llama_n_batch (const struct llama_context * ctx);
  401. LLAMA_API uint32_t llama_n_ubatch (const struct llama_context * ctx);
  402. LLAMA_API uint32_t llama_n_seq_max (const struct llama_context * ctx);
  403. LLAMA_API int32_t llama_n_vocab (const struct llama_model * model);
  404. LLAMA_API int32_t llama_n_ctx_train(const struct llama_model * model);
  405. LLAMA_API int32_t llama_n_embd (const struct llama_model * model);
  406. LLAMA_API int32_t llama_n_layer (const struct llama_model * model);
  407. LLAMA_API int32_t llama_n_head (const struct llama_model * model);
  408. LLAMA_API const struct llama_model * llama_get_model(const struct llama_context * ctx);
  409. LLAMA_API enum llama_pooling_type llama_pooling_type(const struct llama_context * ctx);
  410. LLAMA_API enum llama_vocab_type llama_vocab_type (const struct llama_model * model);
  411. LLAMA_API enum llama_rope_type llama_rope_type (const struct llama_model * model);
  412. // Get the model's RoPE frequency scaling factor
  413. LLAMA_API float llama_rope_freq_scale_train(const struct llama_model * model);
  414. // Functions to access the model's GGUF metadata scalar values
  415. // - The functions return the length of the string on success, or -1 on failure
  416. // - The output string is always null-terminated and cleared on failure
  417. // - GGUF array values are not supported by these functions
  418. // Get metadata value as a string by key name
  419. LLAMA_API int32_t llama_model_meta_val_str(const struct llama_model * model, const char * key, char * buf, size_t buf_size);
  420. // Get the number of metadata key/value pairs
  421. LLAMA_API int32_t llama_model_meta_count(const struct llama_model * model);
  422. // Get metadata key name by index
  423. LLAMA_API int32_t llama_model_meta_key_by_index(const struct llama_model * model, int32_t i, char * buf, size_t buf_size);
  424. // Get metadata value as a string by index
  425. LLAMA_API int32_t llama_model_meta_val_str_by_index(const struct llama_model * model, int32_t i, char * buf, size_t buf_size);
  426. // Get a string describing the model type
  427. LLAMA_API int32_t llama_model_desc(const struct llama_model * model, char * buf, size_t buf_size);
  428. // Returns the total size of all the tensors in the model in bytes
  429. LLAMA_API uint64_t llama_model_size(const struct llama_model * model);
  430. // Returns the total number of parameters in the model
  431. LLAMA_API uint64_t llama_model_n_params(const struct llama_model * model);
  432. // Get a llama model tensor
  433. LLAMA_API struct ggml_tensor * llama_get_model_tensor(struct llama_model * model, const char * name);
  434. // Returns true if the model contains an encoder that requires llama_encode() call
  435. LLAMA_API bool llama_model_has_encoder(const struct llama_model * model);
  436. // Returns true if the model contains a decoder that requires llama_decode() call
  437. LLAMA_API bool llama_model_has_decoder(const struct llama_model * model);
  438. // For encoder-decoder models, this function returns id of the token that must be provided
  439. // to the decoder to start generating output sequence. For other models, it returns -1.
  440. LLAMA_API llama_token llama_model_decoder_start_token(const struct llama_model * model);
  441. // Returns true if the model is recurrent (like Mamba, RWKV, etc.)
  442. LLAMA_API bool llama_model_is_recurrent(const struct llama_model * model);
  443. // Returns 0 on success
  444. LLAMA_API uint32_t llama_model_quantize(
  445. const char * fname_inp,
  446. const char * fname_out,
  447. const llama_model_quantize_params * params);
  448. // Load a LoRA adapter from file
  449. // The loaded adapter will be associated to the given model, and will be free when the model is deleted
  450. LLAMA_API struct llama_lora_adapter * llama_lora_adapter_init(
  451. struct llama_model * model,
  452. const char * path_lora);
  453. // Add a loaded LoRA adapter to given context
  454. // This will not modify model's weight
  455. LLAMA_API int32_t llama_lora_adapter_set(
  456. struct llama_context * ctx,
  457. struct llama_lora_adapter * adapter,
  458. float scale);
  459. // Remove a specific LoRA adapter from given context
  460. // Return -1 if the adapter is not present in the context
  461. LLAMA_API int32_t llama_lora_adapter_remove(
  462. struct llama_context * ctx,
  463. struct llama_lora_adapter * adapter);
  464. // Remove all LoRA adapters from given context
  465. LLAMA_API void llama_lora_adapter_clear(
  466. struct llama_context * ctx);
  467. // Manually free a LoRA adapter
  468. // Note: loaded adapters will be free when the associated model is deleted
  469. LLAMA_API void llama_lora_adapter_free(struct llama_lora_adapter * adapter);
  470. // Apply a loaded control vector to a llama_context, or if data is NULL, clear
  471. // the currently loaded vector.
  472. // n_embd should be the size of a single layer's control, and data should point
  473. // to an n_embd x n_layers buffer starting from layer 1.
  474. // il_start and il_end are the layer range the vector should apply to (both inclusive)
  475. // See llama_control_vector_load in common to load a control vector.
  476. LLAMA_API int32_t llama_control_vector_apply(
  477. struct llama_context * lctx,
  478. const float * data,
  479. size_t len,
  480. int32_t n_embd,
  481. int32_t il_start,
  482. int32_t il_end);
  483. //
  484. // KV cache
  485. //
  486. // Information associated with an individual cell in the KV cache view.
  487. struct llama_kv_cache_view_cell {
  488. // The position for this cell. Takes KV cache shifts into account.
  489. // May be negative if the cell is not populated.
  490. llama_pos pos;
  491. };
  492. // An updateable view of the KV cache.
  493. struct llama_kv_cache_view {
  494. // Number of KV cache cells. This will be the same as the context size.
  495. int32_t n_cells;
  496. // Maximum number of sequences that can exist in a cell. It's not an error
  497. // if there are more sequences in a cell than this value, however they will
  498. // not be visible in the view cells_sequences.
  499. int32_t n_seq_max;
  500. // Number of tokens in the cache. For example, if there are two populated
  501. // cells, the first with 1 sequence id in it and the second with 2 sequence
  502. // ids then you'll have 3 tokens.
  503. int32_t token_count;
  504. // Number of populated cache cells.
  505. int32_t used_cells;
  506. // Maximum contiguous empty slots in the cache.
  507. int32_t max_contiguous;
  508. // Index to the start of the max_contiguous slot range. Can be negative
  509. // when cache is full.
  510. int32_t max_contiguous_idx;
  511. // Information for an individual cell.
  512. struct llama_kv_cache_view_cell * cells;
  513. // The sequences for each cell. There will be n_seq_max items per cell.
  514. llama_seq_id * cells_sequences;
  515. };
  516. // Create an empty KV cache view. (use only for debugging purposes)
  517. LLAMA_API struct llama_kv_cache_view llama_kv_cache_view_init(const struct llama_context * ctx, int32_t n_seq_max);
  518. // Free a KV cache view. (use only for debugging purposes)
  519. LLAMA_API void llama_kv_cache_view_free(struct llama_kv_cache_view * view);
  520. // Update the KV cache view structure with the current state of the KV cache. (use only for debugging purposes)
  521. LLAMA_API void llama_kv_cache_view_update(const struct llama_context * ctx, struct llama_kv_cache_view * view);
  522. // Returns the number of tokens in the KV cache (slow, use only for debug)
  523. // If a KV cell has multiple sequences assigned to it, it will be counted multiple times
  524. LLAMA_API int32_t llama_get_kv_cache_token_count(const struct llama_context * ctx);
  525. // Returns the number of used KV cells (i.e. have at least one sequence assigned to them)
  526. LLAMA_API int32_t llama_get_kv_cache_used_cells(const struct llama_context * ctx);
  527. // Clear the KV cache - both cell info is erased and KV data is zeroed
  528. LLAMA_API void llama_kv_cache_clear(
  529. struct llama_context * ctx);
  530. // Removes all tokens that belong to the specified sequence and have positions in [p0, p1)
  531. // Returns false if a partial sequence cannot be removed. Removing a whole sequence never fails
  532. // seq_id < 0 : match any sequence
  533. // p0 < 0 : [0, p1]
  534. // p1 < 0 : [p0, inf)
  535. LLAMA_API bool llama_kv_cache_seq_rm(
  536. struct llama_context * ctx,
  537. llama_seq_id seq_id,
  538. llama_pos p0,
  539. llama_pos p1);
  540. // Copy all tokens that belong to the specified sequence to another sequence
  541. // Note that this does not allocate extra KV cache memory - it simply assigns the tokens to the new sequence
  542. // p0 < 0 : [0, p1]
  543. // p1 < 0 : [p0, inf)
  544. LLAMA_API void llama_kv_cache_seq_cp(
  545. struct llama_context * ctx,
  546. llama_seq_id seq_id_src,
  547. llama_seq_id seq_id_dst,
  548. llama_pos p0,
  549. llama_pos p1);
  550. // Removes all tokens that do not belong to the specified sequence
  551. LLAMA_API void llama_kv_cache_seq_keep(
  552. struct llama_context * ctx,
  553. llama_seq_id seq_id);
  554. // Adds relative position "delta" to all tokens that belong to the specified sequence and have positions in [p0, p1)
  555. // If the KV cache is RoPEd, the KV data is updated accordingly:
  556. // - lazily on next llama_decode()
  557. // - explicitly with llama_kv_cache_update()
  558. // p0 < 0 : [0, p1]
  559. // p1 < 0 : [p0, inf)
  560. LLAMA_API void llama_kv_cache_seq_add(
  561. struct llama_context * ctx,
  562. llama_seq_id seq_id,
  563. llama_pos p0,
  564. llama_pos p1,
  565. llama_pos delta);
  566. // Integer division of the positions by factor of `d > 1`
  567. // If the KV cache is RoPEd, the KV data is updated accordingly:
  568. // - lazily on next llama_decode()
  569. // - explicitly with llama_kv_cache_update()
  570. // p0 < 0 : [0, p1]
  571. // p1 < 0 : [p0, inf)
  572. LLAMA_API void llama_kv_cache_seq_div(
  573. struct llama_context * ctx,
  574. llama_seq_id seq_id,
  575. llama_pos p0,
  576. llama_pos p1,
  577. int d);
  578. // Returns the largest position present in the KV cache for the specified sequence
  579. LLAMA_API llama_pos llama_kv_cache_seq_pos_max(
  580. struct llama_context * ctx,
  581. llama_seq_id seq_id);
  582. // Defragment the KV cache
  583. // This will be applied:
  584. // - lazily on next llama_decode()
  585. // - explicitly with llama_kv_cache_update()
  586. LLAMA_API void llama_kv_cache_defrag(struct llama_context * ctx);
  587. // Apply the KV cache updates (such as K-shifts, defragmentation, etc.)
  588. LLAMA_API void llama_kv_cache_update(struct llama_context * ctx);
  589. //
  590. // State / sessions
  591. //
  592. // Returns the *actual* size in bytes of the state
  593. // (logits, embedding and kv_cache)
  594. // Only use when saving the state, not when restoring it, otherwise the size may be too small.
  595. LLAMA_API size_t llama_state_get_size(struct llama_context * ctx);
  596. LLAMA_API DEPRECATED(size_t llama_get_state_size(struct llama_context * ctx),
  597. "use llama_state_get_size instead");
  598. // Copies the state to the specified destination address.
  599. // Destination needs to have allocated enough memory.
  600. // Returns the number of bytes copied
  601. LLAMA_API size_t llama_state_get_data(
  602. struct llama_context * ctx,
  603. uint8_t * dst,
  604. size_t size);
  605. LLAMA_API DEPRECATED(size_t llama_copy_state_data(
  606. struct llama_context * ctx,
  607. uint8_t * dst),
  608. "use llama_state_get_data instead");
  609. // Set the state reading from the specified address
  610. // Returns the number of bytes read
  611. LLAMA_API size_t llama_state_set_data(
  612. struct llama_context * ctx,
  613. const uint8_t * src,
  614. size_t size);
  615. LLAMA_API DEPRECATED(size_t llama_set_state_data(
  616. struct llama_context * ctx,
  617. const uint8_t * src),
  618. "use llama_state_set_data instead");
  619. // Save/load session file
  620. LLAMA_API bool llama_state_load_file(
  621. struct llama_context * ctx,
  622. const char * path_session,
  623. llama_token * tokens_out,
  624. size_t n_token_capacity,
  625. size_t * n_token_count_out);
  626. LLAMA_API DEPRECATED(bool llama_load_session_file(
  627. struct llama_context * ctx,
  628. const char * path_session,
  629. llama_token * tokens_out,
  630. size_t n_token_capacity,
  631. size_t * n_token_count_out),
  632. "use llama_state_load_file instead");
  633. LLAMA_API bool llama_state_save_file(
  634. struct llama_context * ctx,
  635. const char * path_session,
  636. const llama_token * tokens,
  637. size_t n_token_count);
  638. LLAMA_API DEPRECATED(bool llama_save_session_file(
  639. struct llama_context * ctx,
  640. const char * path_session,
  641. const llama_token * tokens,
  642. size_t n_token_count),
  643. "use llama_state_save_file instead");
  644. // Get the exact size needed to copy the KV cache of a single sequence
  645. LLAMA_API size_t llama_state_seq_get_size(
  646. struct llama_context * ctx,
  647. llama_seq_id seq_id);
  648. // Copy the KV cache of a single sequence into the specified buffer
  649. LLAMA_API size_t llama_state_seq_get_data(
  650. struct llama_context * ctx,
  651. uint8_t * dst,
  652. size_t size,
  653. llama_seq_id seq_id);
  654. // Copy the sequence data (originally copied with `llama_state_seq_get_data`) into the specified sequence
  655. // Returns:
  656. // - Positive: Ok
  657. // - Zero: Failed to load
  658. LLAMA_API size_t llama_state_seq_set_data(
  659. struct llama_context * ctx,
  660. const uint8_t * src,
  661. size_t size,
  662. llama_seq_id dest_seq_id);
  663. LLAMA_API size_t llama_state_seq_save_file(
  664. struct llama_context * ctx,
  665. const char * filepath,
  666. llama_seq_id seq_id,
  667. const llama_token * tokens,
  668. size_t n_token_count);
  669. LLAMA_API size_t llama_state_seq_load_file(
  670. struct llama_context * ctx,
  671. const char * filepath,
  672. llama_seq_id dest_seq_id,
  673. llama_token * tokens_out,
  674. size_t n_token_capacity,
  675. size_t * n_token_count_out);
  676. //
  677. // Decoding
  678. //
  679. // Return batch for single sequence of tokens starting at pos_0
  680. //
  681. // NOTE: this is a helper function to facilitate transition to the new batch API - avoid using it
  682. //
  683. LLAMA_API struct llama_batch llama_batch_get_one(
  684. llama_token * tokens,
  685. int32_t n_tokens,
  686. llama_pos pos_0,
  687. llama_seq_id seq_id);
  688. // Allocates a batch of tokens on the heap that can hold a maximum of n_tokens
  689. // Each token can be assigned up to n_seq_max sequence ids
  690. // The batch has to be freed with llama_batch_free()
  691. // If embd != 0, llama_batch.embd will be allocated with size of n_tokens * embd * sizeof(float)
  692. // Otherwise, llama_batch.token will be allocated to store n_tokens llama_token
  693. // The rest of the llama_batch members are allocated with size n_tokens
  694. // All members are left uninitialized
  695. LLAMA_API struct llama_batch llama_batch_init(
  696. int32_t n_tokens,
  697. int32_t embd,
  698. int32_t n_seq_max);
  699. // Frees a batch of tokens allocated with llama_batch_init()
  700. LLAMA_API void llama_batch_free(struct llama_batch batch);
  701. // Processes a batch of tokens with the ecoder part of the encoder-decoder model.
  702. // Stores the encoder output internally for later use by the decoder cross-attention layers.
  703. // 0 - success
  704. // < 0 - error
  705. LLAMA_API int32_t llama_encode(
  706. struct llama_context * ctx,
  707. struct llama_batch batch);
  708. // Positive return values does not mean a fatal error, but rather a warning.
  709. // 0 - success
  710. // 1 - could not find a KV slot for the batch (try reducing the size of the batch or increase the context)
  711. // < 0 - error
  712. LLAMA_API int32_t llama_decode(
  713. struct llama_context * ctx,
  714. struct llama_batch batch);
  715. // Set the number of threads used for decoding
  716. // n_threads is the number of threads used for generation (single token)
  717. // n_threads_batch is the number of threads used for prompt and batch processing (multiple tokens)
  718. LLAMA_API void llama_set_n_threads(struct llama_context * ctx, int32_t n_threads, int32_t n_threads_batch);
  719. // Get the number of threads used for generation of a single token.
  720. LLAMA_API int32_t llama_n_threads(struct llama_context * ctx);
  721. // Get the number of threads used for prompt and batch processing (multiple token).
  722. LLAMA_API int32_t llama_n_threads_batch(struct llama_context * ctx);
  723. // Set whether the model is in embeddings mode or not
  724. // If true, embeddings will be returned but logits will not
  725. LLAMA_API void llama_set_embeddings(struct llama_context * ctx, bool embeddings);
  726. // Set whether to use causal attention or not
  727. // If set to true, the model will only attend to the past tokens
  728. LLAMA_API void llama_set_causal_attn(struct llama_context * ctx, bool causal_attn);
  729. // Set abort callback
  730. LLAMA_API void llama_set_abort_callback(struct llama_context * ctx, ggml_abort_callback abort_callback, void * abort_callback_data);
  731. // Wait until all computations are finished
  732. // This is automatically done when using one of the functions below to obtain the computation results
  733. // and is not necessary to call it explicitly in most cases
  734. LLAMA_API void llama_synchronize(struct llama_context * ctx);
  735. // Token logits obtained from the last call to llama_decode()
  736. // The logits for which llama_batch.logits[i] != 0 are stored contiguously
  737. // in the order they have appeared in the batch.
  738. // Rows: number of tokens for which llama_batch.logits[i] != 0
  739. // Cols: n_vocab
  740. LLAMA_API float * llama_get_logits(struct llama_context * ctx);
  741. // Logits for the ith token. For positive indices, Equivalent to:
  742. // llama_get_logits(ctx) + ctx->output_ids[i]*n_vocab
  743. // Negative indicies can be used to access logits in reverse order, -1 is the last logit.
  744. // returns NULL for invalid ids.
  745. LLAMA_API float * llama_get_logits_ith(struct llama_context * ctx, int32_t i);
  746. // Get all output token embeddings.
  747. // when pooling_type == LLAMA_POOLING_TYPE_NONE or when using a generative model,
  748. // the embeddings for which llama_batch.logits[i] != 0 are stored contiguously
  749. // in the order they have appeared in the batch.
  750. // shape: [n_outputs*n_embd]
  751. // Otherwise, returns NULL.
  752. LLAMA_API float * llama_get_embeddings(struct llama_context * ctx);
  753. // Get the embeddings for the ith token. For positive indices, Equivalent to:
  754. // llama_get_embeddings(ctx) + ctx->output_ids[i]*n_embd
  755. // Negative indicies can be used to access embeddings in reverse order, -1 is the last embedding.
  756. // shape: [n_embd] (1-dimensional)
  757. // returns NULL for invalid ids.
  758. LLAMA_API float * llama_get_embeddings_ith(struct llama_context * ctx, int32_t i);
  759. // Get the embeddings for a sequence id
  760. // Returns NULL if pooling_type is LLAMA_POOLING_TYPE_NONE
  761. // when pooling_type == LLAMA_POOLING_TYPE_RANK, returns float[1] with the rank of the sequence
  762. // otherwise: float[n_embd] (1-dimensional)
  763. LLAMA_API float * llama_get_embeddings_seq(struct llama_context * ctx, llama_seq_id seq_id);
  764. //
  765. // Vocab
  766. //
  767. LLAMA_API const char * llama_token_get_text(const struct llama_model * model, llama_token token);
  768. LLAMA_API float llama_token_get_score(const struct llama_model * model, llama_token token);
  769. LLAMA_API enum llama_token_attr llama_token_get_attr(const struct llama_model * model, llama_token token);
  770. // Check if the token is supposed to end generation (end-of-generation, eg. EOS, EOT, etc.)
  771. LLAMA_API bool llama_token_is_eog(const struct llama_model * model, llama_token token);
  772. // Identify if Token Id is a control token or a render-able token
  773. LLAMA_API bool llama_token_is_control(const struct llama_model * model, llama_token token);
  774. // Special tokens
  775. LLAMA_API llama_token llama_token_bos(const struct llama_model * model); // beginning-of-sentence
  776. LLAMA_API llama_token llama_token_eos(const struct llama_model * model); // end-of-sentence
  777. LLAMA_API llama_token llama_token_cls(const struct llama_model * model); // classification
  778. LLAMA_API llama_token llama_token_sep(const struct llama_model * model); // sentence separator
  779. LLAMA_API llama_token llama_token_nl (const struct llama_model * model); // next-line
  780. LLAMA_API llama_token llama_token_pad(const struct llama_model * model); // padding
  781. LLAMA_API bool llama_add_bos_token(const struct llama_model * model);
  782. LLAMA_API bool llama_add_eos_token(const struct llama_model * model);
  783. // Codellama infill tokens
  784. LLAMA_API llama_token llama_token_prefix(const struct llama_model * model); // Beginning of infill prefix
  785. LLAMA_API llama_token llama_token_middle(const struct llama_model * model); // Beginning of infill middle
  786. LLAMA_API llama_token llama_token_suffix(const struct llama_model * model); // Beginning of infill suffix
  787. LLAMA_API llama_token llama_token_eot (const struct llama_model * model); // End of infill middle
  788. //
  789. // Tokenization
  790. //
  791. // The API is thread-safe.
  792. //
  793. /// @details Convert the provided text into tokens.
  794. /// @param tokens The tokens pointer must be large enough to hold the resulting tokens.
  795. /// @return Returns the number of tokens on success, no more than n_tokens_max
  796. /// @return Returns a negative number on failure - the number of tokens that would have been returned
  797. /// @param add_special Allow to add BOS and EOS tokens if model is configured to do so.
  798. /// @param parse_special Allow tokenizing special and/or control tokens which otherwise are not exposed and treated
  799. /// as plaintext. Does not insert a leading space.
  800. LLAMA_API int32_t llama_tokenize(
  801. const struct llama_model * model,
  802. const char * text,
  803. int32_t text_len,
  804. llama_token * tokens,
  805. int32_t n_tokens_max,
  806. bool add_special,
  807. bool parse_special);
  808. // Token Id -> Piece.
  809. // Uses the vocabulary in the provided context.
  810. // Does not write null terminator to the buffer.
  811. // User can skip up to 'lstrip' leading spaces before copying (useful when encoding/decoding multiple tokens with 'add_space_prefix')
  812. // @param special If true, special tokens are rendered in the output.
  813. LLAMA_API int32_t llama_token_to_piece(
  814. const struct llama_model * model,
  815. llama_token token,
  816. char * buf,
  817. int32_t length,
  818. int32_t lstrip,
  819. bool special);
  820. /// @details Convert the provided tokens into text (inverse of llama_tokenize()).
  821. /// @param text The char pointer must be large enough to hold the resulting text.
  822. /// @return Returns the number of chars/bytes on success, no more than text_len_max.
  823. /// @return Returns a negative number on failure - the number of chars/bytes that would have been returned.
  824. /// @param remove_special Allow to remove BOS and EOS tokens if model is configured to do so.
  825. /// @param unparse_special If true, special tokens are rendered in the output.
  826. LLAMA_API int32_t llama_detokenize(
  827. const struct llama_model * model,
  828. const llama_token * tokens,
  829. int32_t n_tokens,
  830. char * text,
  831. int32_t text_len_max,
  832. bool remove_special,
  833. bool unparse_special);
  834. //
  835. // Chat templates
  836. //
  837. /// Apply chat template. Inspired by hf apply_chat_template() on python.
  838. /// Both "model" and "custom_template" are optional, but at least one is required. "custom_template" has higher precedence than "model"
  839. /// NOTE: This function does not use a jinja parser. It only support a pre-defined list of template. See more: https://github.com/ggerganov/llama.cpp/wiki/Templates-supported-by-llama_chat_apply_template
  840. /// @param tmpl A Jinja template to use for this chat. If this is nullptr, the model’s default chat template will be used instead.
  841. /// @param chat Pointer to a list of multiple llama_chat_message
  842. /// @param n_msg Number of llama_chat_message in this chat
  843. /// @param add_ass Whether to end the prompt with the token(s) that indicate the start of an assistant message.
  844. /// @param buf A buffer to hold the output formatted prompt. The recommended alloc size is 2 * (total number of characters of all messages)
  845. /// @param length The size of the allocated buffer
  846. /// @return The total number of bytes of the formatted prompt. If is it larger than the size of buffer, you may need to re-alloc it and then re-apply the template.
  847. LLAMA_API int32_t llama_chat_apply_template(
  848. const struct llama_model * model,
  849. const char * tmpl,
  850. const struct llama_chat_message * chat,
  851. size_t n_msg,
  852. bool add_ass,
  853. char * buf,
  854. int32_t length);
  855. //
  856. // Sampling API
  857. //
  858. // Sample usage:
  859. //
  860. // // prepare the sampling chain at the start
  861. // auto sparams = llama_sampler_chain_default_params();
  862. //
  863. // llama_sampler * smpl = llama_sampler_chain_init(sparams);
  864. //
  865. // llama_sampler_chain_add(smpl, llama_sampler_init_top_k(50));
  866. // llama_sampler_chain_add(smpl, llama_sampler_init_top_p(0.9, 1));
  867. // llama_sampler_chain_add(smpl, llama_sampler_init_temp (0.8));
  868. //
  869. // // typically, the chain should end with a sampler such as "greedy", "dist" or "mirostat"
  870. // // this sampler will be responsible to select the actual token
  871. // llama_sampler_chain_add(smpl, llama_sampler_init_dist(seed));
  872. //
  873. // ...
  874. //
  875. // // decoding loop:
  876. // while (...) {
  877. // ...
  878. //
  879. // llama_decode(ctx, batch);
  880. //
  881. // // sample from the logits of the last token in the batch
  882. // const llama_token id = llama_sampler_sample(smpl, ctx, -1);
  883. //
  884. // // accepting the token updates the internal state of certain samplers (e.g. grammar, repetition, etc.)
  885. // llama_sampler_accept(smpl, id);
  886. // ...
  887. // }
  888. //
  889. // llama_sampler_free(smpl);
  890. //
  891. // TODO: In the future, llama_sampler will be utilized to offload the sampling to the backends (e.g. GPU).
  892. // TODO: in the future, the entire sampling API that uses llama_model should start using llama_vocab
  893. //
  894. typedef void * llama_sampler_context_t;
  895. // user code can implement the interface below in order to create custom llama_sampler
  896. struct llama_sampler_i {
  897. const char * (*name) (const struct llama_sampler * smpl); // can be NULL
  898. void (*accept)( struct llama_sampler * smpl, llama_token token); // can be NULL
  899. void (*apply) ( struct llama_sampler * smpl, llama_token_data_array * cur_p); // required
  900. void (*reset) ( struct llama_sampler * smpl); // can be NULL
  901. struct llama_sampler * (*clone) (const struct llama_sampler * smpl); // can be NULL if ctx is NULL
  902. void (*free) ( struct llama_sampler * smpl); // can be NULL if ctx is NULL
  903. // TODO: API for internal libllama usage for appending the sampling to an existing ggml_cgraph
  904. //void (*apply_ggml) (struct llama_sampler * smpl, ...);
  905. };
  906. struct llama_sampler {
  907. struct llama_sampler_i * iface;
  908. llama_sampler_context_t ctx;
  909. };
  910. // mirror of llama_sampler_i:
  911. LLAMA_API const char * llama_sampler_name (const struct llama_sampler * smpl);
  912. LLAMA_API void llama_sampler_accept( struct llama_sampler * smpl, llama_token token);
  913. LLAMA_API void llama_sampler_apply ( struct llama_sampler * smpl, llama_token_data_array * cur_p);
  914. LLAMA_API void llama_sampler_reset ( struct llama_sampler * smpl);
  915. LLAMA_API struct llama_sampler * llama_sampler_clone (const struct llama_sampler * smpl);
  916. // important: do not free if the sampler has been added to a llama_sampler_chain (via llama_sampler_chain_add)
  917. LLAMA_API void llama_sampler_free ( struct llama_sampler * smpl);
  918. // llama_sampler_chain
  919. // a type of llama_sampler that can chain multiple samplers one after another
  920. LLAMA_API struct llama_sampler * llama_sampler_chain_init(struct llama_sampler_chain_params params);
  921. // important: takes ownership of the sampler object and will free it when llama_sampler_free is called
  922. LLAMA_API void llama_sampler_chain_add( struct llama_sampler * chain, struct llama_sampler * smpl);
  923. LLAMA_API struct llama_sampler * llama_sampler_chain_get(const struct llama_sampler * chain, int32_t i);
  924. LLAMA_API int llama_sampler_chain_n (const struct llama_sampler * chain);
  925. // after removing a sampler, the chain will no longer own it, and it will not be freed when the chain is freed
  926. LLAMA_API struct llama_sampler * llama_sampler_chain_remove( struct llama_sampler * chain, int32_t i);
  927. // available samplers:
  928. LLAMA_API struct llama_sampler * llama_sampler_init_greedy (void);
  929. LLAMA_API struct llama_sampler * llama_sampler_init_dist (uint32_t seed);
  930. /// @details Sorts candidate tokens by their logits in descending order and calculate probabilities based on logits.
  931. /// NOTE: Avoid using on the full vocabulary as the sorting can become slow. For example, apply top-k or top-p sampling first.
  932. LLAMA_API struct llama_sampler * llama_sampler_init_softmax (void);
  933. /// @details Top-K sampling described in academic paper "The Curious Case of Neural Text Degeneration" https://arxiv.org/abs/1904.09751
  934. LLAMA_API struct llama_sampler * llama_sampler_init_top_k (int32_t k);
  935. /// @details Nucleus sampling described in academic paper "The Curious Case of Neural Text Degeneration" https://arxiv.org/abs/1904.09751
  936. LLAMA_API struct llama_sampler * llama_sampler_init_top_p (float p, size_t min_keep);
  937. /// @details Minimum P sampling as described in https://github.com/ggerganov/llama.cpp/pull/3841
  938. LLAMA_API struct llama_sampler * llama_sampler_init_min_p (float p, size_t min_keep);
  939. /// @details Tail Free Sampling described in https://www.trentonbricken.com/Tail-Free-Sampling/.
  940. LLAMA_API struct llama_sampler * llama_sampler_init_tail_free (float z, size_t min_keep);
  941. /// @details Locally Typical Sampling implementation described in the paper https://arxiv.org/abs/2202.00666.
  942. LLAMA_API struct llama_sampler * llama_sampler_init_typical (float p, size_t min_keep);
  943. LLAMA_API struct llama_sampler * llama_sampler_init_temp (float t);
  944. /// @details Dynamic temperature implementation (a.k.a. entropy) described in the paper https://arxiv.org/abs/2309.02772.
  945. LLAMA_API struct llama_sampler * llama_sampler_init_temp_ext (float t, float delta, float exponent);
  946. /// @details Mirostat 1.0 algorithm described in the paper https://arxiv.org/abs/2007.14966. Uses tokens instead of words.
  947. /// @param candidates A vector of `llama_token_data` containing the candidate tokens, their probabilities (p), and log-odds (logit) for the current position in the generated text.
  948. /// @param tau The target cross-entropy (or surprise) value you want to achieve for the generated text. A higher value corresponds to more surprising or less predictable text, while a lower value corresponds to less surprising or more predictable text.
  949. /// @param eta The learning rate used to update `mu` based on the error between the target and observed surprisal of the sampled word. A larger learning rate will cause `mu` to be updated more quickly, while a smaller learning rate will result in slower updates.
  950. /// @param m The number of tokens considered in the estimation of `s_hat`. This is an arbitrary value that is used to calculate `s_hat`, which in turn helps to calculate the value of `k`. In the paper, they use `m = 100`, but you can experiment with different values to see how it affects the performance of the algorithm.
  951. /// @param mu Maximum cross-entropy. This value is initialized to be twice the target cross-entropy (`2 * tau`) and is updated in the algorithm based on the error between the target and observed surprisal.
  952. LLAMA_API struct llama_sampler * llama_sampler_init_mirostat(
  953. int32_t n_vocab,
  954. uint32_t seed,
  955. float tau,
  956. float eta,
  957. int32_t m);
  958. /// @details Mirostat 2.0 algorithm described in the paper https://arxiv.org/abs/2007.14966. Uses tokens instead of words.
  959. /// @param candidates A vector of `llama_token_data` containing the candidate tokens, their probabilities (p), and log-odds (logit) for the current position in the generated text.
  960. /// @param tau The target cross-entropy (or surprise) value you want to achieve for the generated text. A higher value corresponds to more surprising or less predictable text, while a lower value corresponds to less surprising or more predictable text.
  961. /// @param eta The learning rate used to update `mu` based on the error between the target and observed surprisal of the sampled word. A larger learning rate will cause `mu` to be updated more quickly, while a smaller learning rate will result in slower updates.
  962. /// @param mu Maximum cross-entropy. This value is initialized to be twice the target cross-entropy (`2 * tau`) and is updated in the algorithm based on the error between the target and observed surprisal.
  963. LLAMA_API struct llama_sampler * llama_sampler_init_mirostat_v2(
  964. uint32_t seed,
  965. float tau,
  966. float eta);
  967. LLAMA_API struct llama_sampler * llama_sampler_init_grammar(
  968. const struct llama_model * model,
  969. const char * grammar_str,
  970. const char * grammar_root);
  971. LLAMA_API struct llama_sampler * llama_sampler_init_penalties(
  972. int32_t n_vocab, // llama_n_vocab()
  973. llama_token special_eos_id, // llama_token_eos()
  974. llama_token linefeed_id, // llama_token_nl()
  975. int32_t penalty_last_n, // last n tokens to penalize (0 = disable penalty, -1 = context size)
  976. float penalty_repeat, // 1.0 = disabled
  977. float penalty_freq, // 0.0 = disabled
  978. float penalty_present, // 0.0 = disabled
  979. bool penalize_nl, // consider newlines as a repeatable token
  980. bool ignore_eos); // ignore the end-of-sequence token
  981. LLAMA_API struct llama_sampler * llama_sampler_init_logit_bias(
  982. int32_t n_vocab,
  983. int32_t n_logit_bias,
  984. const llama_logit_bias * logit_bias);
  985. // Returns the seed used by the sampler if applicable, LLAMA_DEFAULT_SEED otherwise
  986. LLAMA_API uint32_t llama_sampler_get_seed(const struct llama_sampler * smpl);
  987. /// @details Sample and accept a token from the idx-th output of the last evaluation
  988. //
  989. // Shorthand for:
  990. // const auto * logits = llama_get_logits_ith(ctx, idx);
  991. // llama_token_data_array cur_p = { ... init from logits ... };
  992. // llama_sampler_apply(smpl, &cur_p);
  993. // auto token = cur_p.data[cur_p.selected].id;
  994. // llama_sampler_accept(smpl, token);
  995. // return token;
  996. // Returns the sampled token
  997. LLAMA_API llama_token llama_sampler_sample(struct llama_sampler * smpl, struct llama_context * ctx, int32_t idx);
  998. // TODO: extend in the future
  999. //LLAMA_API void llama_decode_with_sampler(struct llama_context * ctx, struct llama_sampler * smpl, struct llama_batch batch, ...);
  1000. //
  1001. // Model split
  1002. //
  1003. /// @details Build a split GGUF final path for this chunk.
  1004. /// llama_split_path(split_path, sizeof(split_path), "/models/ggml-model-q4_0", 2, 4) => split_path = "/models/ggml-model-q4_0-00002-of-00004.gguf"
  1005. // Returns the split_path length.
  1006. LLAMA_API int llama_split_path(char * split_path, size_t maxlen, const char * path_prefix, int split_no, int split_count);
  1007. /// @details Extract the path prefix from the split_path if and only if the split_no and split_count match.
  1008. /// llama_split_prefix(split_prefix, 64, "/models/ggml-model-q4_0-00002-of-00004.gguf", 2, 4) => split_prefix = "/models/ggml-model-q4_0"
  1009. // Returns the split_prefix length.
  1010. LLAMA_API int llama_split_prefix(char * split_prefix, size_t maxlen, const char * split_path, int split_no, int split_count);
  1011. // Print system information
  1012. LLAMA_API const char * llama_print_system_info(void);
  1013. // Set callback for all future logging events.
  1014. // If this is not called, or NULL is supplied, everything is output on stderr.
  1015. LLAMA_API void llama_log_set(ggml_log_callback log_callback, void * user_data);
  1016. //
  1017. // Performance utils
  1018. //
  1019. // NOTE: Used by llama.cpp examples, avoid using in third-party apps. Instead, do your own performance measurements.
  1020. //
  1021. struct llama_perf_context_data {
  1022. double t_start_ms;
  1023. double t_load_ms;
  1024. double t_p_eval_ms;
  1025. double t_eval_ms;
  1026. int32_t n_p_eval;
  1027. int32_t n_eval;
  1028. };
  1029. struct llama_perf_sampler_data {
  1030. double t_sample_ms;
  1031. int32_t n_sample;
  1032. };
  1033. LLAMA_API struct llama_perf_context_data llama_perf_context (const struct llama_context * ctx);
  1034. LLAMA_API void llama_perf_context_print(const struct llama_context * ctx);
  1035. LLAMA_API void llama_perf_context_reset( struct llama_context * ctx);
  1036. // NOTE: the following work only with samplers constructed via llama_sampler_chain_init
  1037. LLAMA_API struct llama_perf_sampler_data llama_perf_sampler (const struct llama_sampler * chain);
  1038. LLAMA_API void llama_perf_sampler_print(const struct llama_sampler * chain);
  1039. LLAMA_API void llama_perf_sampler_reset( struct llama_sampler * chain);
  1040. LLAMA_API void llama_perf_dump_yaml(FILE * stream, const struct llama_context * ctx);
  1041. #ifdef __cplusplus
  1042. }
  1043. #endif
  1044. #endif // LLAMA_H