common.h 29 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675
  1. /**
  2. * llama.cpp - commit 46e3556e01b824e52395fb050b29804b6cff2a7c - do not edit this file
  3. *
  4. * MIT License
  5. *
  6. * Copyright (c) 2023-2024 The ggml authors
  7. *
  8. * Permission is hereby granted, free of charge, to any person obtaining a copy
  9. * of this software and associated documentation files (the "Software"), to deal
  10. * in the Software without restriction, including without limitation the rights
  11. * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
  12. * copies of the Software, and to permit persons to whom the Software is
  13. * furnished to do so, subject to the following conditions:
  14. *
  15. * The above copyright notice and this permission notice shall be included in all
  16. * copies or substantial portions of the Software.
  17. *
  18. * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
  19. * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
  20. * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
  21. * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
  22. * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
  23. * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
  24. * SOFTWARE.
  25. */
  26. // Various helper functions and utilities
  27. #pragma once
  28. #include "llama-cpp.h"
  29. #include <string>
  30. #include <vector>
  31. #include <sstream>
  32. #ifdef _WIN32
  33. #define DIRECTORY_SEPARATOR '\\'
  34. #else
  35. #define DIRECTORY_SEPARATOR '/'
  36. #endif // _WIN32
  37. #define die(msg) do { fputs("error: " msg "\n", stderr); exit(1); } while (0)
  38. #define die_fmt(fmt, ...) do { fprintf(stderr, "error: " fmt "\n", __VA_ARGS__); exit(1); } while (0)
  39. #define print_build_info() do { \
  40. fprintf(stderr, "%s: build = %d (%s)\n", __func__, LLAMA_BUILD_NUMBER, LLAMA_COMMIT); \
  41. fprintf(stderr, "%s: built with %s for %s\n", __func__, LLAMA_COMPILER, LLAMA_BUILD_TARGET); \
  42. } while(0)
  43. #define DEFAULT_MODEL_PATH "models/7B/ggml-model-f16.gguf"
  44. struct common_lora_adapter_info {
  45. std::string path;
  46. float scale;
  47. struct llama_lora_adapter * ptr;
  48. };
  49. using llama_tokens = std::vector<llama_token>;
  50. // build info
  51. extern int LLAMA_BUILD_NUMBER;
  52. extern const char * LLAMA_COMMIT;
  53. extern const char * LLAMA_COMPILER;
  54. extern const char * LLAMA_BUILD_TARGET;
  55. struct common_control_vector_load_info;
  56. //
  57. // CPU utils
  58. //
  59. struct cpu_params {
  60. int n_threads = -1;
  61. bool cpumask[GGML_MAX_N_THREADS] = {false}; // CPU affinity mask.
  62. bool mask_valid = false; // Default: any CPU
  63. enum ggml_sched_priority priority = GGML_SCHED_PRIO_NORMAL; // Scheduling prio : (0 - normal, 1 - medium, 2 - high, 3 - realtime)
  64. bool strict_cpu = false; // Use strict CPU placement
  65. uint32_t poll = 50; // Polling (busywait) level (0 - no polling, 100 - mostly polling)
  66. };
  67. int32_t cpu_get_num_physical_cores();
  68. int32_t cpu_get_num_math();
  69. //
  70. // Common params
  71. //
  72. enum llama_example {
  73. LLAMA_EXAMPLE_COMMON,
  74. LLAMA_EXAMPLE_SPECULATIVE,
  75. LLAMA_EXAMPLE_MAIN,
  76. LLAMA_EXAMPLE_INFILL,
  77. LLAMA_EXAMPLE_EMBEDDING,
  78. LLAMA_EXAMPLE_PERPLEXITY,
  79. LLAMA_EXAMPLE_RETRIEVAL,
  80. LLAMA_EXAMPLE_PASSKEY,
  81. LLAMA_EXAMPLE_IMATRIX,
  82. LLAMA_EXAMPLE_BENCH,
  83. LLAMA_EXAMPLE_SERVER,
  84. LLAMA_EXAMPLE_CVECTOR_GENERATOR,
  85. LLAMA_EXAMPLE_EXPORT_LORA,
  86. LLAMA_EXAMPLE_LLAVA,
  87. LLAMA_EXAMPLE_LOOKUP,
  88. LLAMA_EXAMPLE_PARALLEL,
  89. LLAMA_EXAMPLE_TTS,
  90. LLAMA_EXAMPLE_COUNT,
  91. };
  92. enum common_sampler_type {
  93. COMMON_SAMPLER_TYPE_NONE = 0,
  94. COMMON_SAMPLER_TYPE_DRY = 1,
  95. COMMON_SAMPLER_TYPE_TOP_K = 2,
  96. COMMON_SAMPLER_TYPE_TOP_P = 3,
  97. COMMON_SAMPLER_TYPE_MIN_P = 4,
  98. //COMMON_SAMPLER_TYPE_TFS_Z = 5,
  99. COMMON_SAMPLER_TYPE_TYPICAL_P = 6,
  100. COMMON_SAMPLER_TYPE_TEMPERATURE = 7,
  101. COMMON_SAMPLER_TYPE_XTC = 8,
  102. COMMON_SAMPLER_TYPE_INFILL = 9,
  103. COMMON_SAMPLER_TYPE_PENALTIES = 10,
  104. };
  105. // dimensionality reduction methods, used by cvector-generator
  106. enum dimre_method {
  107. DIMRE_METHOD_PCA,
  108. DIMRE_METHOD_MEAN,
  109. };
  110. // sampling parameters
  111. struct common_params_sampling {
  112. uint32_t seed = LLAMA_DEFAULT_SEED; // the seed used to initialize llama_sampler
  113. int32_t n_prev = 64; // number of previous tokens to remember
  114. int32_t n_probs = 0; // if greater than 0, output the probabilities of top n_probs tokens.
  115. int32_t min_keep = 0; // 0 = disabled, otherwise samplers should return at least min_keep tokens
  116. int32_t top_k = 40; // <= 0 to use vocab size
  117. float top_p = 0.95f; // 1.0 = disabled
  118. float min_p = 0.05f; // 0.0 = disabled
  119. float xtc_probability = 0.00f; // 0.0 = disabled
  120. float xtc_threshold = 0.10f; // > 0.5 disables XTC
  121. float typ_p = 1.00f; // typical_p, 1.0 = disabled
  122. float temp = 0.80f; // <= 0.0 to sample greedily, 0.0 to not output probabilities
  123. float dynatemp_range = 0.00f; // 0.0 = disabled
  124. float dynatemp_exponent = 1.00f; // controls how entropy maps to temperature in dynamic temperature sampler
  125. int32_t penalty_last_n = 64; // last n tokens to penalize (0 = disable penalty, -1 = context size)
  126. float penalty_repeat = 1.00f; // 1.0 = disabled
  127. float penalty_freq = 0.00f; // 0.0 = disabled
  128. float penalty_present = 0.00f; // 0.0 = disabled
  129. float dry_multiplier = 0.0f; // 0.0 = disabled; DRY repetition penalty for tokens extending repetition:
  130. float dry_base = 1.75f; // 0.0 = disabled; multiplier * base ^ (length of sequence before token - allowed length)
  131. int32_t dry_allowed_length = 2; // tokens extending repetitions beyond this receive penalty
  132. int32_t dry_penalty_last_n = -1; // how many tokens to scan for repetitions (0 = disable penalty, -1 = context size)
  133. int32_t mirostat = 0; // 0 = disabled, 1 = mirostat, 2 = mirostat 2.0
  134. float mirostat_tau = 5.00f; // target entropy
  135. float mirostat_eta = 0.10f; // learning rate
  136. bool ignore_eos = false;
  137. bool no_perf = false; // disable performance metrics
  138. bool timing_per_token = false;
  139. std::vector<std::string> dry_sequence_breakers = {"\n", ":", "\"", "*"}; // default sequence breakers for DRY
  140. std::vector<enum common_sampler_type> samplers = {
  141. COMMON_SAMPLER_TYPE_PENALTIES,
  142. COMMON_SAMPLER_TYPE_DRY,
  143. COMMON_SAMPLER_TYPE_TOP_K,
  144. COMMON_SAMPLER_TYPE_TYPICAL_P,
  145. COMMON_SAMPLER_TYPE_TOP_P,
  146. COMMON_SAMPLER_TYPE_MIN_P,
  147. COMMON_SAMPLER_TYPE_XTC,
  148. COMMON_SAMPLER_TYPE_TEMPERATURE,
  149. };
  150. std::string grammar; // optional BNF-like grammar to constrain sampling
  151. std::vector<llama_logit_bias> logit_bias; // logit biases to apply
  152. // print the parameters into a string
  153. std::string print() const;
  154. };
  155. struct common_params_speculative {
  156. std::vector<ggml_backend_dev_t> devices; // devices to use for offloading
  157. int32_t n_ctx = 0; // draft context size
  158. int32_t n_max = 16; // maximum number of tokens to draft during speculative decoding
  159. int32_t n_min = 5; // minimum number of draft tokens to use for speculative decoding
  160. int32_t n_gpu_layers = -1; // number of layers to store in VRAM for the draft model (-1 - use default)
  161. float p_split = 0.1f; // speculative decoding split probability
  162. float p_min = 0.9f; // minimum speculative decoding probability (greedy)
  163. struct cpu_params cpuparams;
  164. struct cpu_params cpuparams_batch;
  165. std::string model = ""; // draft model for speculative decoding // NOLINT
  166. };
  167. struct common_params_vocoder {
  168. std::string hf_repo = ""; // HF repo // NOLINT
  169. std::string hf_file = ""; // HF file // NOLINT
  170. std::string model = ""; // model path // NOLINT
  171. std::string model_url = ""; // model url to download // NOLINT
  172. };
  173. struct common_params {
  174. int32_t n_predict = -1; // new tokens to predict
  175. int32_t n_ctx = 4096; // context size
  176. int32_t n_batch = 2048; // logical batch size for prompt processing (must be >=32 to use BLAS)
  177. int32_t n_ubatch = 512; // physical batch size for prompt processing (must be >=32 to use BLAS)
  178. int32_t n_keep = 0; // number of tokens to keep from initial prompt
  179. int32_t n_chunks = -1; // max number of chunks to process (-1 = unlimited)
  180. int32_t n_parallel = 1; // number of parallel sequences to decode
  181. int32_t n_sequences = 1; // number of sequences to decode
  182. int32_t grp_attn_n = 1; // group-attention factor
  183. int32_t grp_attn_w = 512; // group-attention width
  184. int32_t n_print = -1; // print token count every n tokens (-1 = disabled)
  185. float rope_freq_base = 0.0f; // RoPE base frequency
  186. float rope_freq_scale = 0.0f; // RoPE frequency scaling factor
  187. float yarn_ext_factor = -1.0f; // YaRN extrapolation mix factor
  188. float yarn_attn_factor = 1.0f; // YaRN magnitude scaling factor
  189. float yarn_beta_fast = 32.0f; // YaRN low correction dim
  190. float yarn_beta_slow = 1.0f; // YaRN high correction dim
  191. int32_t yarn_orig_ctx = 0; // YaRN original context length
  192. float defrag_thold = 0.1f; // KV cache defragmentation threshold
  193. // offload params
  194. std::vector<ggml_backend_dev_t> devices; // devices to use for offloading
  195. int32_t n_gpu_layers = -1; // number of layers to store in VRAM (-1 - use default)
  196. int32_t main_gpu = 0; // the GPU that is used for scratch and small tensors
  197. float tensor_split[128] = {0}; // how split tensors should be distributed across GPUs
  198. enum llama_split_mode split_mode = LLAMA_SPLIT_MODE_LAYER; // how to split the model across GPUs
  199. struct cpu_params cpuparams;
  200. struct cpu_params cpuparams_batch;
  201. ggml_backend_sched_eval_callback cb_eval = nullptr;
  202. void * cb_eval_user_data = nullptr;
  203. ggml_numa_strategy numa = GGML_NUMA_STRATEGY_DISABLED;
  204. enum llama_rope_scaling_type rope_scaling_type = LLAMA_ROPE_SCALING_TYPE_UNSPECIFIED;
  205. enum llama_pooling_type pooling_type = LLAMA_POOLING_TYPE_UNSPECIFIED; // pooling type for embeddings
  206. enum llama_attention_type attention_type = LLAMA_ATTENTION_TYPE_UNSPECIFIED; // attention type for embeddings
  207. struct common_params_sampling sampling;
  208. struct common_params_speculative speculative;
  209. struct common_params_vocoder vocoder;
  210. std::string model = ""; // model path // NOLINT
  211. std::string model_alias = ""; // model alias // NOLINT
  212. std::string model_url = ""; // model url to download // NOLINT
  213. std::string hf_token = ""; // HF token // NOLINT
  214. std::string hf_repo = ""; // HF repo // NOLINT
  215. std::string hf_file = ""; // HF file // NOLINT
  216. std::string prompt = ""; // NOLINT
  217. std::string prompt_file = ""; // store the external prompt file name // NOLINT
  218. std::string path_prompt_cache = ""; // path to file for saving/loading prompt eval state // NOLINT
  219. std::string input_prefix = ""; // string to prefix user inputs with // NOLINT
  220. std::string input_suffix = ""; // string to suffix user inputs with // NOLINT
  221. std::string lookup_cache_static = ""; // path of static ngram cache file for lookup decoding // NOLINT
  222. std::string lookup_cache_dynamic = ""; // path of dynamic ngram cache file for lookup decoding // NOLINT
  223. std::string logits_file = ""; // file for saving *all* logits // NOLINT
  224. std::string rpc_servers = ""; // comma separated list of RPC servers // NOLINT
  225. std::vector<std::string> in_files; // all input files
  226. std::vector<std::string> antiprompt; // strings upon which more user input is prompted (a.k.a. reverse prompts)
  227. std::vector<llama_model_kv_override> kv_overrides;
  228. bool lora_init_without_apply = false; // only load lora to memory, but do not apply it to ctx (user can manually apply lora later using llama_lora_adapter_apply)
  229. std::vector<common_lora_adapter_info> lora_adapters; // lora adapter path with user defined scale
  230. std::vector<common_control_vector_load_info> control_vectors; // control vector with user defined scale
  231. int32_t verbosity = 0;
  232. int32_t control_vector_layer_start = -1; // layer range for control vector
  233. int32_t control_vector_layer_end = -1; // layer range for control vector
  234. int32_t ppl_stride = 0; // stride for perplexity calculations. If left at 0, the pre-existing approach will be used.
  235. int32_t ppl_output_type = 0; // = 0 -> ppl output is as usual, = 1 -> ppl output is num_tokens, ppl, one per line
  236. // (which is more convenient to use for plotting)
  237. //
  238. bool hellaswag = false; // compute HellaSwag score over random tasks from datafile supplied in prompt
  239. size_t hellaswag_tasks = 400; // number of tasks to use when computing the HellaSwag score
  240. bool winogrande = false; // compute Winogrande score over random tasks from datafile supplied in prompt
  241. size_t winogrande_tasks = 0; // number of tasks to use when computing the Winogrande score. If 0, all tasks will be computed
  242. bool multiple_choice = false; // compute TruthfulQA score over random tasks from datafile supplied in prompt
  243. size_t multiple_choice_tasks = 0; // number of tasks to use when computing the TruthfulQA score. If 0, all tasks will be computed
  244. bool kl_divergence = false; // compute KL divergence
  245. bool usage = false; // print usage
  246. bool use_color = false; // use color to distinguish generations and inputs
  247. bool special = false; // enable special token output
  248. bool interactive = false; // interactive mode
  249. bool interactive_first = false; // wait for user input immediately
  250. bool conversation = false; // conversation mode (does not print special tokens and suffix/prefix)
  251. bool prompt_cache_all = false; // save user input and generations to prompt cache
  252. bool prompt_cache_ro = false; // open the prompt cache read-only and do not update it
  253. bool escape = true; // escape "\n", "\r", "\t", "\'", "\"", and "\\"
  254. bool multiline_input = false; // reverse the usage of `\`
  255. bool simple_io = false; // improves compatibility with subprocesses and limited consoles
  256. bool cont_batching = true; // insert new sequences for decoding on-the-fly
  257. bool flash_attn = false; // flash attention
  258. bool no_perf = false; // disable performance metrics
  259. bool ctx_shift = true; // context shift on inifinite text generation
  260. bool input_prefix_bos = false; // prefix BOS to user inputs, preceding input_prefix
  261. bool logits_all = false; // return logits for all tokens in the batch
  262. bool use_mmap = true; // use mmap for faster loads
  263. bool use_mlock = false; // use mlock to keep model in memory
  264. bool verbose_prompt = false; // print prompt tokens before generation
  265. bool display_prompt = true; // print prompt before generation
  266. bool dump_kv_cache = false; // dump the KV cache contents for debugging purposes
  267. bool no_kv_offload = false; // disable KV offloading
  268. bool warmup = true; // warmup run
  269. bool check_tensors = false; // validate tensor data
  270. ggml_type cache_type_k = GGML_TYPE_F16; // KV cache data type for the K
  271. ggml_type cache_type_v = GGML_TYPE_F16; // KV cache data type for the V
  272. // multimodal models (see examples/llava)
  273. std::string mmproj = ""; // path to multimodal projector // NOLINT
  274. std::vector<std::string> image; // path to image file(s)
  275. // embedding
  276. bool embedding = false; // get only sentence embedding
  277. int32_t embd_normalize = 2; // normalisation for embeddings (-1=none, 0=max absolute int16, 1=taxicab, 2=euclidean, >2=p-norm)
  278. std::string embd_out = ""; // empty = default, "array" = [[],[]...], "json" = openai style, "json+" = same "json" + cosine similarity matrix
  279. std::string embd_sep = "\n"; // separator of embeddings
  280. bool reranking = false; // enable reranking support on server
  281. // server params
  282. int32_t port = 8080; // server listens on this network port
  283. int32_t timeout_read = 600; // http read timeout in seconds
  284. int32_t timeout_write = timeout_read; // http write timeout in seconds
  285. int32_t n_threads_http = -1; // number of threads to process HTTP requests (TODO: support threadpool)
  286. int32_t n_cache_reuse = 0; // min chunk size to reuse from the cache via KV shifting
  287. std::string hostname = "127.0.0.1";
  288. std::string public_path = ""; // NOLINT
  289. std::string chat_template = ""; // NOLINT
  290. bool enable_chat_template = true;
  291. std::vector<std::string> api_keys;
  292. std::string ssl_file_key = ""; // NOLINT
  293. std::string ssl_file_cert = ""; // NOLINT
  294. // "advanced" endpoints are disabled by default for better security
  295. bool webui = true;
  296. bool endpoint_slots = false;
  297. bool endpoint_props = false; // only control POST requests, not GET
  298. bool endpoint_metrics = false;
  299. bool log_json = false;
  300. std::string slot_save_path;
  301. float slot_prompt_similarity = 0.5f;
  302. // batched-bench params
  303. bool is_pp_shared = false;
  304. std::vector<int32_t> n_pp;
  305. std::vector<int32_t> n_tg;
  306. std::vector<int32_t> n_pl;
  307. // retrieval params
  308. std::vector<std::string> context_files; // context files to embed
  309. int32_t chunk_size = 64; // chunk size for context embedding
  310. std::string chunk_separator = "\n"; // chunk separator for context embedding
  311. // passkey params
  312. int32_t n_junk = 250; // number of times to repeat the junk text
  313. int32_t i_pos = -1; // position of the passkey in the junk text
  314. // imatrix params
  315. std::string out_file = "imatrix.dat"; // save the resulting imatrix to this file
  316. int32_t n_out_freq = 10; // output the imatrix every n_out_freq iterations
  317. int32_t n_save_freq = 0; // save the imatrix every n_save_freq iterations
  318. int32_t i_chunk = 0; // start processing from this chunk
  319. bool process_output = false; // collect data for the output tensor
  320. bool compute_ppl = true; // whether to compute perplexity
  321. // cvector-generator params
  322. int n_pca_batch = 100;
  323. int n_pca_iterations = 1000;
  324. dimre_method cvector_dimre_method = DIMRE_METHOD_PCA;
  325. std::string cvector_outfile = "control_vector.gguf";
  326. std::string cvector_positive_file = "examples/cvector-generator/positive.txt";
  327. std::string cvector_negative_file = "examples/cvector-generator/negative.txt";
  328. bool spm_infill = false; // suffix/prefix/middle pattern for infill
  329. std::string lora_outfile = "ggml-lora-merged-f16.gguf";
  330. // batched-bench params
  331. bool batched_bench_output_jsonl = false;
  332. };
  333. // call once at the start of a program if it uses libcommon
  334. // initializes the logging system and prints info about the build
  335. void common_init();
  336. std::string common_params_get_system_info(const common_params & params);
  337. bool parse_cpu_range(const std::string & range, bool(&boolmask)[GGML_MAX_N_THREADS]);
  338. bool parse_cpu_mask(const std::string & mask, bool(&boolmask)[GGML_MAX_N_THREADS]);
  339. void postprocess_cpu_params(cpu_params & cpuparams, const cpu_params * role_model = nullptr);
  340. bool set_process_priority(enum ggml_sched_priority prio);
  341. //
  342. // String utils
  343. //
  344. #ifdef __GNUC__
  345. #ifdef __MINGW32__
  346. #define LLAMA_COMMON_ATTRIBUTE_FORMAT(...) __attribute__((format(gnu_printf, __VA_ARGS__)))
  347. #else
  348. #define LLAMA_COMMON_ATTRIBUTE_FORMAT(...) __attribute__((format(printf, __VA_ARGS__)))
  349. #endif
  350. #else
  351. #define LLAMA_COMMON_ATTRIBUTE_FORMAT(...)
  352. #endif
  353. LLAMA_COMMON_ATTRIBUTE_FORMAT(1, 2)
  354. std::string string_format(const char * fmt, ...);
  355. std::string string_strip(const std::string & str);
  356. std::string string_get_sortable_timestamp();
  357. void string_replace_all(std::string & s, const std::string & search, const std::string & replace);
  358. template<class T>
  359. static std::vector<T> string_split(const std::string & str, char delim) {
  360. static_assert(!std::is_same<T, std::string>::value, "Please use the specialized version for std::string");
  361. std::vector<T> values;
  362. std::istringstream str_stream(str);
  363. std::string token;
  364. while (std::getline(str_stream, token, delim)) {
  365. T value;
  366. std::istringstream token_stream(token);
  367. token_stream >> value;
  368. values.push_back(value);
  369. }
  370. return values;
  371. }
  372. template<>
  373. std::vector<std::string> string_split<std::string>(const std::string & input, char separator)
  374. {
  375. std::vector<std::string> parts;
  376. size_t begin_pos = 0;
  377. size_t separator_pos = input.find(separator);
  378. while (separator_pos != std::string::npos) {
  379. std::string part = input.substr(begin_pos, separator_pos - begin_pos);
  380. parts.emplace_back(part);
  381. begin_pos = separator_pos + 1;
  382. separator_pos = input.find(separator, begin_pos);
  383. }
  384. parts.emplace_back(input.substr(begin_pos, separator_pos - begin_pos));
  385. return parts;
  386. }
  387. static bool string_starts_with(const std::string & str,
  388. const std::string & prefix) { // While we wait for C++20's std::string::starts_with...
  389. return str.rfind(prefix, 0) == 0;
  390. }
  391. bool string_parse_kv_override(const char * data, std::vector<llama_model_kv_override> & overrides);
  392. void string_process_escapes(std::string & input);
  393. std::string string_from(bool value);
  394. std::string string_from(const std::vector<int> & values);
  395. std::string string_from(const struct llama_context * ctx, const std::vector<llama_token> & tokens);
  396. std::string string_from(const struct llama_context * ctx, const struct llama_batch & batch);
  397. //
  398. // Filesystem utils
  399. //
  400. bool fs_validate_filename(const std::string & filename);
  401. bool fs_create_directory_with_parents(const std::string & path);
  402. std::string fs_get_cache_directory();
  403. std::string fs_get_cache_file(const std::string & filename);
  404. //
  405. // Model utils
  406. //
  407. // note: defines object's lifetime
  408. struct common_init_result {
  409. llama_model_ptr model;
  410. llama_context_ptr context;
  411. std::vector<llama_lora_adapter_ptr> lora;
  412. };
  413. struct common_init_result common_init_from_params(common_params & params);
  414. struct llama_model_params common_model_params_to_llama ( common_params & params);
  415. struct llama_context_params common_context_params_to_llama(const common_params & params);
  416. struct ggml_threadpool_params ggml_threadpool_params_from_cpu_params(const cpu_params & params);
  417. struct llama_model * common_load_model_from_url(
  418. const std::string & model_url,
  419. const std::string & local_path,
  420. const std::string & hf_token,
  421. const struct llama_model_params & params);
  422. struct llama_model * common_load_model_from_hf(
  423. const std::string & repo,
  424. const std::string & remote_path,
  425. const std::string & local_path,
  426. const std::string & hf_token,
  427. const struct llama_model_params & params);
  428. // clear LoRA adapters from context, then apply new list of adapters
  429. void common_lora_adapters_apply(struct llama_context * ctx, std::vector<common_lora_adapter_info> & lora);
  430. //
  431. // Batch utils
  432. //
  433. void common_batch_clear(struct llama_batch & batch);
  434. void common_batch_add(
  435. struct llama_batch & batch,
  436. llama_token id,
  437. llama_pos pos,
  438. const std::vector<llama_seq_id> & seq_ids,
  439. bool logits);
  440. //
  441. // Token utils
  442. //
  443. // longest common prefix
  444. size_t common_lcp(const llama_tokens & a, const llama_tokens & b);
  445. // longet common subsequence
  446. size_t common_lcs(const llama_tokens & a, const llama_tokens & b);
  447. //
  448. // Vocab utils
  449. //
  450. // tokenizes a string into a vector of tokens
  451. // should work similar to Python's `tokenizer.encode`
  452. std::vector<llama_token> common_tokenize(
  453. const struct llama_context * ctx,
  454. const std::string & text,
  455. bool add_special,
  456. bool parse_special = false);
  457. std::vector<llama_token> common_tokenize(
  458. const struct llama_model * model,
  459. const std::string & text,
  460. bool add_special,
  461. bool parse_special = false);
  462. // tokenizes a token into a piece, optionally renders special/control tokens
  463. // should work similar to Python's `tokenizer.id_to_piece`
  464. std::string common_token_to_piece(
  465. const struct llama_context * ctx,
  466. llama_token token,
  467. bool special = true);
  468. // detokenizes a vector of tokens into a string
  469. // should work similar to Python's `tokenizer.decode`
  470. // optionally renders special/control tokens
  471. std::string common_detokenize(
  472. llama_context * ctx,
  473. const std::vector<llama_token> & tokens,
  474. bool special = true);
  475. //
  476. // Chat template utils
  477. //
  478. // same with llama_chat_message, but uses std::string
  479. struct common_chat_msg {
  480. std::string role;
  481. std::string content;
  482. };
  483. // Get the built-in chat template for the model. Return empty string if not present.
  484. std::string common_get_builtin_chat_template(const struct llama_model * model);
  485. // Check if the template supplied via "--chat-template" is supported or not. Returns true if it's valid
  486. bool common_chat_verify_template(const std::string & tmpl);
  487. // CPP wrapper for llama_chat_apply_template
  488. // If the built-in template is not supported, we default to chatml
  489. // If the custom "tmpl" is not supported, we throw an error
  490. std::string common_chat_apply_template(const struct llama_model * model,
  491. const std::string & tmpl,
  492. const std::vector<common_chat_msg> & chat,
  493. bool add_ass);
  494. // Format single message, while taking into account the position of that message in chat history
  495. std::string common_chat_format_single(const struct llama_model * model,
  496. const std::string & tmpl,
  497. const std::vector<common_chat_msg> & past_msg,
  498. const common_chat_msg & new_msg,
  499. bool add_ass);
  500. // Returns an example of formatted chat
  501. std::string common_chat_format_example(const struct llama_model * model,
  502. const std::string & tmpl);
  503. //
  504. // KV cache utils
  505. //
  506. // Dump the KV cache view with the number of sequences per cell.
  507. void common_kv_cache_dump_view(const llama_kv_cache_view & view, int row_size = 80);
  508. // Dump the KV cache view showing individual sequences in each cell (long output).
  509. void common_kv_cache_dump_view_seqs(const llama_kv_cache_view & view, int row_size = 40);
  510. //
  511. // Embedding utils
  512. //
  513. // TODO: repace embd_norm with an enum
  514. void common_embd_normalize(const float * inp, float * out, int n, int embd_norm);
  515. float common_embd_similarity_cos(const float * embd1, const float * embd2, int n);
  516. //
  517. // Control vector utils
  518. //
  519. struct common_control_vector_data {
  520. int n_embd;
  521. // stores data for layers [1, n_layer] where n_layer = data.size() / n_embd
  522. std::vector<float> data;
  523. };
  524. struct common_control_vector_load_info {
  525. float strength;
  526. std::string fname;
  527. };
  528. // Load control vectors, scale each by strength, and add them together.
  529. // On error, returns {-1, empty}
  530. common_control_vector_data common_control_vector_load(const std::vector<common_control_vector_load_info> & load_infos);
  531. //
  532. // Split utils
  533. //
  534. namespace {
  535. const char * const LLM_KV_SPLIT_NO = "split.no";
  536. const char * const LLM_KV_SPLIT_COUNT = "split.count";
  537. const char * const LLM_KV_SPLIT_TENSORS_COUNT = "split.tensors.count";
  538. }