123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104 |
- /**
- * llama.cpp - commit 46e3556e01b824e52395fb050b29804b6cff2a7c - do not edit this file
- *
- * MIT License
- *
- * Copyright (c) 2023-2024 The ggml authors
- *
- * Permission is hereby granted, free of charge, to any person obtaining a copy
- * of this software and associated documentation files (the "Software"), to deal
- * in the Software without restriction, including without limitation the rights
- * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
- * copies of the Software, and to permit persons to whom the Software is
- * furnished to do so, subject to the following conditions:
- *
- * The above copyright notice and this permission notice shall be included in all
- * copies or substantial portions of the Software.
- *
- * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
- * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
- * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
- * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
- * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
- * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
- * SOFTWARE.
- */
- #include "ggml-impl.h"
- #include "opt-step-adamw.cuh"
- #include <cstdint>
- static __global__ void opt_step_adamw_f32(
- float * __restrict__ x, const float * __restrict__ g, float * __restrict__ g_m, float * __restrict__ g_v,
- const float * __restrict__ pars, const int64_t k) {
- const int64_t i = (int64_t) blockIdx.x*blockDim.x + threadIdx.x;
- if (i >= k) {
- return;
- }
- const float alpha = pars[0];
- const float beta1 = pars[1];
- const float beta2 = pars[2];
- const float eps = pars[3];
- const float wd = pars[4];
- const float beta1h = pars[5];
- const float beta2h = pars[6];
- const float gi = g[i];
- const float gmi = g_m[i]*beta1 + gi*(1.0f - beta1);
- const float gvi = g_v[i]*beta2 + gi*gi*(1.0f - beta2);
- g_m[i] = gmi;
- g_v[i] = gvi;
- const float mh = gmi*beta1h;
- const float vh = sqrtf(gvi*beta2h) + eps;
- x[i] = x[i]*(1.0f - alpha*wd) - alpha*mh/vh;
- }
- static void opt_step_adamw_f32_cuda(
- float * x, const float * g, float * g_m, float * g_v, const float * pars, const int64_t k, cudaStream_t stream) {
- const dim3 block_dims(CUDA_OPT_STEP_ADAMW_BLOCK_SIZE, 1, 1);
- const dim3 block_nums((k + CUDA_OPT_STEP_ADAMW_BLOCK_SIZE - 1) / CUDA_OPT_STEP_ADAMW_BLOCK_SIZE, 1, 1);
- opt_step_adamw_f32<<<block_nums, block_dims, 0, stream>>>(x, g, g_m, g_v, pars, k);
- }
- void ggml_cuda_opt_step_adamw(ggml_backend_cuda_context & ctx, ggml_tensor * dst) {
- const ggml_tensor * src0 = dst->src[0];
- const ggml_tensor * src0_grad = dst->src[1];
- const ggml_tensor * src0_grad_m = dst->src[2];
- const ggml_tensor * src0_grad_v = dst->src[3];
- const ggml_tensor * adamw_params = dst->src[4];
- GGML_ASSERT(src0->type == GGML_TYPE_F32);
- GGML_ASSERT(src0_grad->type == GGML_TYPE_F32);
- GGML_ASSERT(src0_grad_m->type == GGML_TYPE_F32);
- GGML_ASSERT(src0_grad_v->type == GGML_TYPE_F32);
- GGML_ASSERT(adamw_params->type == GGML_TYPE_F32);
- GGML_ASSERT(ggml_is_contiguous(src0));
- GGML_ASSERT(ggml_is_contiguous(src0_grad));
- GGML_ASSERT(ggml_is_contiguous(src0_grad_m));
- GGML_ASSERT(ggml_is_contiguous(src0_grad_v));
- GGML_ASSERT(ggml_is_contiguous(adamw_params));
- GGML_ASSERT(ggml_are_same_shape(src0, src0_grad));
- GGML_ASSERT(ggml_are_same_shape(src0, src0_grad_m));
- GGML_ASSERT(ggml_are_same_shape(src0, src0_grad_v));
- GGML_ASSERT(ggml_nelements(adamw_params) == 7);
- float * src0_d = (float *) src0->data;
- const float * src0_grad_d = (const float *) src0_grad->data;
- float * src0_grad_m_d = (float *) src0_grad_m->data;
- float * src0_grad_v_d = (float *) src0_grad_v->data;
- const float * adamw_params_d = (const float *) adamw_params->data;
- cudaStream_t stream = ctx.stream();
- const int64_t ne = ggml_nelements(src0);
- opt_step_adamw_f32_cuda(src0_d, src0_grad_d, src0_grad_m_d, src0_grad_v_d, adamw_params_d, ne, stream);
- }
|