sum.cu 2.7 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071
  1. /**
  2. * llama.cpp - commit 46e3556e01b824e52395fb050b29804b6cff2a7c - do not edit this file
  3. *
  4. * MIT License
  5. *
  6. * Copyright (c) 2023-2024 The ggml authors
  7. *
  8. * Permission is hereby granted, free of charge, to any person obtaining a copy
  9. * of this software and associated documentation files (the "Software"), to deal
  10. * in the Software without restriction, including without limitation the rights
  11. * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
  12. * copies of the Software, and to permit persons to whom the Software is
  13. * furnished to do so, subject to the following conditions:
  14. *
  15. * The above copyright notice and this permission notice shall be included in all
  16. * copies or substantial portions of the Software.
  17. *
  18. * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
  19. * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
  20. * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
  21. * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
  22. * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
  23. * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
  24. * SOFTWARE.
  25. */
  26. #if !defined(GGML_USE_HIP) && !defined(GGML_USE_MUSA) && CUDART_VERSION >= 11700
  27. #define USE_CUB
  28. #endif // !defined(GGML_USE_HIP) && !defined(GGML_USE_MUSA) && CUDART_VERSION >= 11700
  29. #ifdef USE_CUB
  30. #include <cub/cub.cuh>
  31. using namespace cub;
  32. #endif // USE_CUB
  33. #include "sumrows.cuh"
  34. #include "sum.cuh"
  35. #include <cstdint>
  36. void sum_f32_cuda(ggml_cuda_pool & pool, const float * x, float * dst, const int64_t ne, cudaStream_t stream) {
  37. #ifdef USE_CUB
  38. size_t tmp_size = 0;
  39. DeviceReduce::Sum(nullptr, tmp_size, x, dst, ne, stream);
  40. ggml_cuda_pool_alloc<uint8_t> tmp_alloc(pool, tmp_size);
  41. DeviceReduce::Sum(tmp_alloc.ptr, tmp_size, x, dst, ne, stream);
  42. #else
  43. // Use (inefficient) sum_rows implementation as a fallback.
  44. // For AMD there is rocPRIM which could be used as a drop-in replacement via hipcub but this would require C++11 -> C++14.
  45. sum_rows_f32_cuda(x, dst, ne, 1, stream);
  46. GGML_UNUSED(pool);
  47. #endif // USE_CUB
  48. }
  49. void ggml_cuda_op_sum(ggml_backend_cuda_context & ctx, ggml_tensor * dst) {
  50. const ggml_tensor * src0 = dst->src[0];
  51. GGML_ASSERT(src0->type == GGML_TYPE_F32);
  52. GGML_ASSERT( dst->type == GGML_TYPE_F32);
  53. GGML_ASSERT(ggml_is_contiguous(src0));
  54. const float * src0_d = (const float *) src0->data;
  55. float * dst_d = (float *) dst->data;
  56. const int64_t ne = ggml_nelements(src0);
  57. ggml_cuda_pool & pool = ctx.pool();
  58. cudaStream_t stream = ctx.stream();
  59. sum_f32_cuda(pool, src0_d, dst_d, ne, stream);
  60. }