llama-vocab.cpp 77 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011
  1. /**
  2. * llama.cpp - commit ba1cb19cdd0d92e012e0f6e009e0620f854b6afd - do not edit this file
  3. *
  4. * MIT License
  5. *
  6. * Copyright (c) 2023-2024 The ggml authors
  7. *
  8. * Permission is hereby granted, free of charge, to any person obtaining a copy
  9. * of this software and associated documentation files (the "Software"), to deal
  10. * in the Software without restriction, including without limitation the rights
  11. * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
  12. * copies of the Software, and to permit persons to whom the Software is
  13. * furnished to do so, subject to the following conditions:
  14. *
  15. * The above copyright notice and this permission notice shall be included in all
  16. * copies or substantial portions of the Software.
  17. *
  18. * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
  19. * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
  20. * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
  21. * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
  22. * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
  23. * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
  24. * SOFTWARE.
  25. */
  26. #include "llama-vocab.h"
  27. #include "unicode.h"
  28. #include <algorithm>
  29. #include <cassert>
  30. #include <cfloat>
  31. #include <climits>
  32. #include <cstdarg>
  33. #include <cstring>
  34. #include <forward_list>
  35. #include <queue>
  36. #include <sstream>
  37. //
  38. // helpers
  39. //
  40. LLAMA_ATTRIBUTE_FORMAT(1, 2)
  41. static std::string format(const char * fmt, ...) {
  42. va_list ap;
  43. va_list ap2;
  44. va_start(ap, fmt);
  45. va_copy(ap2, ap);
  46. int size = vsnprintf(NULL, 0, fmt, ap);
  47. GGML_ASSERT(size >= 0 && size < INT_MAX); // NOLINT
  48. std::vector<char> buf(size + 1);
  49. int size2 = vsnprintf(buf.data(), size + 1, fmt, ap2);
  50. GGML_ASSERT(size2 == size);
  51. va_end(ap2);
  52. va_end(ap);
  53. return std::string(buf.data(), size);
  54. }
  55. struct naive_trie {
  56. naive_trie() : has_value(false), value(0) {
  57. }
  58. void insert(const char * key, size_t len, int32_t value = 0) {
  59. if (len == 0) {
  60. this->has_value = true;
  61. this->value = value;
  62. return;
  63. }
  64. char c = key[0];
  65. auto res = children.find(c);
  66. if (res != children.end()) {
  67. res->second.insert(key + 1, len - 1, value);
  68. } else {
  69. auto res = children.insert(std::make_pair(c, naive_trie()));
  70. res.first->second.insert(key + 1, len - 1, value);
  71. }
  72. }
  73. std::pair<const char *, size_t> get_longest_prefix(const char * key, size_t len, size_t offset = 0) const {
  74. if (len == 0 || offset == len) {
  75. return std::make_pair(key, offset);
  76. }
  77. char c = key[offset];
  78. auto res = children.find(c);
  79. if (res != children.end()) {
  80. return res->second.get_longest_prefix(key, len, offset + 1);
  81. }
  82. return std::make_pair(key, offset);
  83. }
  84. const struct naive_trie * traverse(const char c) const {
  85. auto res = children.find(c);
  86. if (res != children.end()) {
  87. return &res->second;
  88. }
  89. return NULL;
  90. }
  91. std::map<char, struct naive_trie> children;
  92. bool has_value;
  93. llama_token value;
  94. };
  95. //
  96. // impl
  97. //
  98. struct llm_tokenizer {
  99. llm_tokenizer() {}
  100. virtual ~llm_tokenizer() = default;
  101. };
  102. llama_vocab::~llama_vocab() {
  103. delete tokenizer;
  104. }
  105. int llama_vocab::find_bpe_rank(const std::string & token_left, const std::string & token_right) const {
  106. GGML_ASSERT(token_left.find(' ') == std::string::npos);
  107. GGML_ASSERT(token_left.find('\n') == std::string::npos);
  108. GGML_ASSERT(token_right.find(' ') == std::string::npos);
  109. GGML_ASSERT(token_right.find('\n') == std::string::npos);
  110. auto it = bpe_ranks.find(std::make_pair(token_left, token_right));
  111. if (it == bpe_ranks.end()) {
  112. return -1;
  113. }
  114. return it->second;
  115. }
  116. static enum llama_vocab_type llama_vocab_get_type(const llama_vocab & vocab) {
  117. return vocab.type;
  118. }
  119. static bool llama_is_normal_token(const llama_vocab & vocab, llama_token id) {
  120. GGML_ASSERT(vocab.type != LLAMA_VOCAB_TYPE_NONE);
  121. return vocab.id_to_token[id].attr & LLAMA_TOKEN_ATTR_NORMAL;
  122. }
  123. static bool llama_is_unknown_token(const llama_vocab & vocab, llama_token id) {
  124. GGML_ASSERT(vocab.type != LLAMA_VOCAB_TYPE_NONE);
  125. return vocab.id_to_token[id].attr & LLAMA_TOKEN_ATTR_UNKNOWN;
  126. }
  127. static bool llama_is_control_token(const llama_vocab & vocab, llama_token id) {
  128. GGML_ASSERT(vocab.type != LLAMA_VOCAB_TYPE_NONE);
  129. return vocab.id_to_token[id].attr & LLAMA_TOKEN_ATTR_CONTROL;
  130. }
  131. static bool llama_is_byte_token(const llama_vocab & vocab, llama_token id) {
  132. GGML_ASSERT(vocab.type != LLAMA_VOCAB_TYPE_NONE);
  133. return vocab.id_to_token[id].attr & LLAMA_TOKEN_ATTR_BYTE;
  134. }
  135. static bool llama_is_user_defined_token(const llama_vocab & vocab, llama_token id) {
  136. GGML_ASSERT(vocab.type != LLAMA_VOCAB_TYPE_NONE);
  137. return vocab.id_to_token[id].attr & LLAMA_TOKEN_ATTR_USER_DEFINED;
  138. }
  139. static bool llama_is_unused_token(const llama_vocab & vocab, llama_token id) {
  140. GGML_ASSERT(vocab.type != LLAMA_VOCAB_TYPE_NONE);
  141. return vocab.id_to_token[id].attr & LLAMA_TOKEN_ATTR_UNUSED;
  142. }
  143. static uint8_t llama_token_to_byte(const llama_vocab & vocab, llama_token id) {
  144. GGML_ASSERT(llama_vocab_get_type(vocab) != LLAMA_VOCAB_TYPE_NONE);
  145. GGML_ASSERT(llama_is_byte_token(vocab, id));
  146. const auto & token_data = vocab.id_to_token.at(id);
  147. switch (llama_vocab_get_type(vocab)) {
  148. case LLAMA_VOCAB_TYPE_SPM:
  149. case LLAMA_VOCAB_TYPE_UGM: {
  150. auto buf = token_data.text.substr(3, 2);
  151. return strtol(buf.c_str(), NULL, 16);
  152. }
  153. case LLAMA_VOCAB_TYPE_BPE: {
  154. GGML_ABORT("fatal error");
  155. //return unicode_utf8_to_byte(token_data.text); // TODO: why is this here after GGML_ASSERT?
  156. }
  157. case LLAMA_VOCAB_TYPE_WPM: {
  158. GGML_ABORT("fatal error");
  159. }
  160. default:
  161. GGML_ABORT("fatal error");
  162. }
  163. }
  164. static void llama_escape_whitespace(std::string & text) {
  165. replace_all(text, " ", "\xe2\x96\x81");
  166. }
  167. static void llama_unescape_whitespace(std::string & word) {
  168. replace_all(word, "\xe2\x96\x81", " ");
  169. }
  170. struct llm_symbol {
  171. using index = int;
  172. index prev;
  173. index next;
  174. const char * text;
  175. size_t n;
  176. };
  177. static_assert(std::is_trivially_copyable<llm_symbol>::value, "llm_symbol is not trivially copyable");
  178. //
  179. // SPM tokenizer
  180. // original implementation:
  181. // https://github.com/ggerganov/llama.cpp/commit/074bea2eb1f1349a0118239c4152914aecaa1be4
  182. //
  183. struct llm_bigram_spm {
  184. struct comparator {
  185. bool operator()(llm_bigram_spm & l, llm_bigram_spm & r) {
  186. return (l.score < r.score) || (l.score == r.score && l.left > r.left);
  187. }
  188. };
  189. using queue_storage = std::vector<llm_bigram_spm>;
  190. using queue = std::priority_queue<llm_bigram_spm, queue_storage, comparator>;
  191. llm_symbol::index left;
  192. llm_symbol::index right;
  193. float score;
  194. size_t size;
  195. };
  196. struct llm_tokenizer_spm : llm_tokenizer {
  197. llm_tokenizer_spm(const llama_vocab & /*vocab*/) : llm_tokenizer() {}
  198. };
  199. struct llm_tokenizer_spm_session {
  200. llm_tokenizer_spm_session(const llama_vocab & vocab) : vocab(vocab) {}
  201. void tokenize(const std::string & text, std::vector<llama_vocab::id> & output) {
  202. // split string into utf8 chars
  203. int index = 0;
  204. size_t offs = 0;
  205. while (offs < text.size()) {
  206. llm_symbol sym;
  207. size_t len = unicode_len_utf8(text[offs]);
  208. sym.text = text.c_str() + offs;
  209. sym.n = std::min(len, text.size() - offs);
  210. offs += sym.n;
  211. sym.prev = index - 1;
  212. sym.next = offs == text.size() ? -1 : index + 1;
  213. index++;
  214. symbols.emplace_back(sym);
  215. }
  216. // seed the work queue with all possible 2-character tokens.
  217. for (int i = 1; i < (int) symbols.size(); ++i) {
  218. try_add_bigram(i - 1, i);
  219. }
  220. // keep substituting the highest frequency pairs for as long as we can.
  221. while (!work_queue.empty()) {
  222. auto bigram = work_queue.top();
  223. work_queue.pop();
  224. auto & left_sym = symbols[bigram.left];
  225. auto & right_sym = symbols[bigram.right];
  226. // if one of the symbols already got merged, skip it.
  227. if (left_sym.n == 0 || right_sym.n == 0 ||
  228. left_sym.n + right_sym.n != bigram.size) {
  229. continue;
  230. }
  231. // merge the right sym into the left one
  232. left_sym.n += right_sym.n;
  233. right_sym.n = 0;
  234. //LLAMA_LOG_INFO("left = '%*s' size = %zu\n", (int) left_sym.n, left_sym.text, bigram.size);
  235. // remove the right sym from the chain
  236. left_sym.next = right_sym.next;
  237. if (right_sym.next >= 0) {
  238. symbols[right_sym.next].prev = bigram.left;
  239. }
  240. // find more substitutions
  241. try_add_bigram(left_sym.prev, bigram.left);
  242. try_add_bigram(bigram.left, left_sym.next);
  243. }
  244. for (int i = 0; i != -1; i = symbols[i].next) {
  245. auto & symbol = symbols[i];
  246. resegment(symbol, output);
  247. }
  248. }
  249. private:
  250. void resegment(llm_symbol & symbol, std::vector<llama_vocab::id> & output) {
  251. auto text = std::string(symbol.text, symbol.n);
  252. auto token = vocab.token_to_id.find(text);
  253. // Do we need to support is_unused?
  254. if (token != vocab.token_to_id.end()) {
  255. output.push_back((*token).second);
  256. return;
  257. }
  258. const auto p = rev_merge.find(text);
  259. if (p == rev_merge.end()) {
  260. // output any symbols that did not form tokens as bytes.
  261. output.reserve(output.size() + symbol.n);
  262. for (int j = 0; j < (int)symbol.n; ++j) {
  263. llama_vocab::id token_id = llama_byte_to_token_impl(vocab, symbol.text[j]);
  264. output.push_back(token_id);
  265. }
  266. return;
  267. }
  268. resegment(symbols[p->second.first], output);
  269. resegment(symbols[p->second.second], output);
  270. }
  271. void try_add_bigram(int left, int right) {
  272. if (left == -1 || right == -1) {
  273. return;
  274. }
  275. const std::string text = std::string(symbols[left].text, symbols[left].n + symbols[right].n);
  276. auto token = vocab.token_to_id.find(text);
  277. if (token == vocab.token_to_id.end()) {
  278. return;
  279. }
  280. if (static_cast<size_t>((*token).second) >= vocab.id_to_token.size()) {
  281. return;
  282. }
  283. const auto & tok_data = vocab.id_to_token[(*token).second];
  284. llm_bigram_spm bigram;
  285. bigram.left = left;
  286. bigram.right = right;
  287. bigram.score = tok_data.score;
  288. bigram.size = text.size();
  289. work_queue.push(bigram);
  290. // Do we need to support is_unused?
  291. rev_merge[text] = std::make_pair(left, right);
  292. }
  293. const llama_vocab & vocab;
  294. // currently unused
  295. // const llm_tokenizer_spm * spm_tokenizer;
  296. std::vector<llm_symbol> symbols;
  297. llm_bigram_spm::queue work_queue;
  298. std::map<std::string, std::pair<int, int>> rev_merge;
  299. };
  300. //
  301. // BPE tokenizer
  302. // adapted from https://github.com/cmp-nct/ggllm.cpp [MIT License]
  303. // tried to simplify unicode stuff, so most likely does not work 100% correctly!
  304. //
  305. // TODO: there are a lot of common parts between spm and bpe tokenizers, should be refactored and reused
  306. template<typename T, typename Container = std::vector<T>, typename Compare = std::less<typename Container::value_type>>
  307. class llama_priority_queue : public std::priority_queue<T, Container, Compare> {
  308. public:
  309. using std::priority_queue<T, Container, Compare>::priority_queue;
  310. T pop_move() {
  311. T item = std::move(this->c.front());
  312. std::pop_heap(this->c.begin(), this->c.end(), this->comp);
  313. this->c.pop_back();
  314. return item;
  315. }
  316. void pop() = delete;
  317. };
  318. struct llm_bigram_bpe {
  319. struct comparator {
  320. bool operator()(const llm_bigram_bpe & l, const llm_bigram_bpe & r) const {
  321. return l.rank > r.rank || (l.rank == r.rank && l.left > r.left);
  322. }
  323. };
  324. using queue_storage = std::vector<llm_bigram_bpe>;
  325. using queue = llama_priority_queue<llm_bigram_bpe, queue_storage, comparator>;
  326. llm_symbol::index left;
  327. llm_symbol::index right;
  328. std::string text;
  329. int rank;
  330. size_t size;
  331. };
  332. struct llm_tokenizer_bpe : llm_tokenizer {
  333. llm_tokenizer_bpe(const llama_vocab & vocab) : llm_tokenizer() {
  334. GGML_ASSERT(vocab.type == LLAMA_VOCAB_TYPE_BPE);
  335. switch (vocab.type_pre) {
  336. case LLAMA_VOCAB_PRE_TYPE_LLAMA3:
  337. regex_exprs = {
  338. // original regex from tokenizer.json
  339. //"(?i:'s|'t|'re|'ve|'m|'ll|'d)|[^\\r\\n\\p{L}\\p{N}]?\\p{L}+|\\p{N}{1,3}| ?[^\\s\\p{L}\\p{N}]+[\\r\\n]*|\\s*[\\r\\n]+|\\s+(?!\\S)|\\s+",
  340. // adapted: https://github.com/ggerganov/llama.cpp/pull/6920#issuecomment-2080233989
  341. "(?:'[sS]|'[tT]|'[rR][eE]|'[vV][eE]|'[mM]|'[lL][lL]|'[dD])|[^\\r\\n\\p{L}\\p{N}]?\\p{L}+|\\p{N}{1,3}| ?[^\\s\\p{L}\\p{N}]+[\\r\\n]*|\\s*[\\r\\n]+|\\s+(?!\\S)|\\s+",
  342. };
  343. break;
  344. case LLAMA_VOCAB_PRE_TYPE_DBRX:
  345. case LLAMA_VOCAB_PRE_TYPE_SMAUG:
  346. regex_exprs = {
  347. // same as llama3
  348. "(?:'[sS]|'[tT]|'[rR][eE]|'[vV][eE]|'[mM]|'[lL][lL]|'[dD])|[^\\r\\n\\p{L}\\p{N}]?\\p{L}+|\\p{N}{1,3}| ?[^\\s\\p{L}\\p{N}]+[\\r\\n]*|\\s*[\\r\\n]+|\\s+(?!\\S)|\\s+",
  349. };
  350. break;
  351. case LLAMA_VOCAB_PRE_TYPE_DEEPSEEK_LLM:
  352. regex_exprs = {
  353. "[\r\n]",
  354. "\\s?[A-Za-zµÀ-ÖØ-öø-ƺƼ-ƿDŽ-ʓʕ-ʯͰ-ͳͶͷͻ-ͽͿΆΈ-ΊΌΎ-ΡΣ-ϵϷ-ҁҊ-ԯԱ-ՖႠ-ჅᎠ-Ᏽᏸ-ᏽᲐ-ᲺᲽ-Ჿᴀ-ᴫᵫ-ᵷᵹ-ᶚḀ-ἕἘ-Ἕἠ-ὅὈ-Ὅὐ-ὗὙὛὝὟ-ώᾀ-ᾴᾶ-ᾼιῂ-ῄῆ-ῌῐ-ΐῖ-Ίῠ-Ῥῲ-ῴῶ-ῼℂℇℊ-ℓℕℙ-ℝℤΩℨK-ℭℯ-ℴℹℼ-ℿⅅ-ⅉⅎↃↄⰀ-ⱻⱾ-ⳤⳫ-ⳮⳲⳳꙀ-ꙭꚀ-ꚛꜢ-ꝯꝱ-ꞇꞋ-ꞎꭰ-ꮿff-stﬓ-ﬗA-Za-z\U00010400-\U0001044f𐒰-𐓓𐓘-𐓻𐲀-𐲲𐳀-𐳲𑢠-𑣟𞤀-𞥃]+",
  355. "\\s?[!-/:-~!-/:-~‘-‟ -。]+",
  356. "\\s+$",
  357. "[一-龥ࠀ-一가-퟿]+",
  358. "\\p{N}+",
  359. };
  360. break;
  361. case LLAMA_VOCAB_PRE_TYPE_DEEPSEEK_CODER:
  362. regex_exprs = {
  363. "[\r\n]",
  364. "\\s?\\p{L}+",
  365. "\\s?\\p{P}+",
  366. "[一-龥ࠀ-一가-퟿]+",
  367. "\\p{N}",
  368. };
  369. break;
  370. case LLAMA_VOCAB_PRE_TYPE_FALCON:
  371. regex_exprs = {
  372. "[\\p{P}\\$\\+<=>\\^~\\|`]+",
  373. "'s|'t|'re|'ve|'m|'ll|'d| ?\\p{L}+| ?\\p{N}+| ?[^\\s\\p{L}\\p{N}]+|\\s+(?!\\S)",
  374. "[0-9][0-9][0-9]",
  375. };
  376. break;
  377. case LLAMA_VOCAB_PRE_TYPE_STARCODER:
  378. case LLAMA_VOCAB_PRE_TYPE_REFACT:
  379. case LLAMA_VOCAB_PRE_TYPE_COMMAND_R:
  380. case LLAMA_VOCAB_PRE_TYPE_SMOLLM:
  381. case LLAMA_VOCAB_PRE_TYPE_CODESHELL:
  382. case LLAMA_VOCAB_PRE_TYPE_EXAONE:
  383. case LLAMA_VOCAB_PRE_TYPE_MINERVA:
  384. regex_exprs = {
  385. "\\p{N}",
  386. "'s|'t|'re|'ve|'m|'ll|'d| ?\\p{L}+| ?\\p{N}+| ?[^\\s\\p{L}\\p{N}]+|\\s+(?!\\S)",
  387. };
  388. break;
  389. case LLAMA_VOCAB_PRE_TYPE_GPT2:
  390. case LLAMA_VOCAB_PRE_TYPE_MPT:
  391. case LLAMA_VOCAB_PRE_TYPE_OLMO:
  392. case LLAMA_VOCAB_PRE_TYPE_JAIS:
  393. regex_exprs = {
  394. "'s|'t|'re|'ve|'m|'ll|'d| ?\\p{L}+| ?\\p{N}+| ?[^\\s\\p{L}\\p{N}]+|\\s+(?!\\S)",
  395. };
  396. break;
  397. case LLAMA_VOCAB_PRE_TYPE_STABLELM2:
  398. case LLAMA_VOCAB_PRE_TYPE_QWEN2:
  399. regex_exprs = {
  400. // original regex from tokenizer.json
  401. // "(?i:'s|'t|'re|'ve|'m|'ll|'d)|[^\\r\\n\\p{L}\\p{N}]?\\p{L}+|\\p{N}| ?[^\\s\\p{L}\\p{N}]+[\\r\\n]*|\\s*[\\r\\n]+|\\s+(?!\\S)|\\s+"
  402. "(?:'[sS]|'[tT]|'[rR][eE]|'[vV][eE]|'[mM]|'[lL][lL]|'[dD])|[^\\r\\n\\p{L}\\p{N}]?\\p{L}+|\\p{N}| ?[^\\s\\p{L}\\p{N}]+[\\r\\n]*|\\s*[\\r\\n]+|\\s+(?!\\S)|\\s+",
  403. };
  404. break;
  405. case LLAMA_VOCAB_PRE_TYPE_PORO:
  406. case LLAMA_VOCAB_PRE_TYPE_BLOOM:
  407. case LLAMA_VOCAB_PRE_TYPE_GPT3_FINNISH:
  408. regex_exprs = {
  409. " ?[^(\\s|.,!?…。,、।۔،)]+",
  410. };
  411. break;
  412. case LLAMA_VOCAB_PRE_TYPE_CHATGLM4:
  413. regex_exprs = {
  414. "(?:'[sS]|'[tT]|'[rR][eE]|'[vV][eE]|'[mM]|'[lL][lL]|'[dD])|[^\\r\\n\\p{L}\\p{N}]?\\p{L}+|\\p{N}{1,3}| ?[^\\s\\p{L}\\p{N}]+[\\r\\n]*|\\s*[\\r\\n]+|\\s+(?!\\S)|\\s+",
  415. };
  416. break;
  417. case LLAMA_VOCAB_PRE_TYPE_VIKING:
  418. regex_exprs = {
  419. " ?[^(\\s|.,!?…。,、।۔،)]+",
  420. "\\p{N}",
  421. };
  422. break;
  423. case LLAMA_VOCAB_PRE_TYPE_TEKKEN:
  424. // original regex from tokenizer.json
  425. // "[^\\r\\n\\p{L}\\p{N}]?[\\p{Lu}\\p{Lt}\\p{Lm}\\p{Lo}\\p{M}]*[\\p{Ll}\\p{Lm}\\p{Lo}\\p{M}]+|[^\\r\\n\\p{L}\\p{N}]?[\\p{Lu}\\p{Lt}\\p{Lm}\\p{Lo}\\p{M}]+[\\p{Ll}\\p{Lm}\\p{Lo}\\p{M}]*|\\p{N}| ?[^\\s\\p{L}\\p{N}]+[\\r\\n/]*|\\s*[\\r\\n]+|\\s+(?!\\S)|\\s+"
  426. regex_exprs = {
  427. "[^\\r\\n\\p{L}\\p{N}]?((?=[\\p{L}])([^a-z]))*((?=[\\p{L}])([^A-Z]))+|[^\\r\\n\\p{L}\\p{N}]?((?=[\\p{L}])([^a-z]))+((?=[\\p{L}])([^A-Z]))*|\\p{N}| ?[^\\s\\p{L}\\p{N}]+[\\r\\n/]*|\\s*[\\r\\n]+|\\s+(?!\\S)|\\s+",
  428. };
  429. break;
  430. case LLAMA_VOCAB_PRE_TYPE_CHAMELEON:
  431. // Note: in theory, the special token (sentinel and image token) regex_exprs below
  432. // are unnecessary, as they are split in `tokenizer_st_partition` anyway.
  433. // However, since the upstream pre-tokenizer uses them, they are also
  434. // included here (see https://huggingface.co/facebook/chameleon-7b).
  435. regex_exprs = {
  436. "<sentinel:[0-9]+>", // Sentinel tokens
  437. "(IMGIMG)((A|B|C|D|E|F|G|H|I){1,4})Z", // Image tokens
  438. "([\\t\\n]| | )", // directly from tokenizer.json
  439. "\\p{N}", // Individual digits
  440. "[\\p{P}!-/:-@\\[-`{-~]", // Punctuation, Isolated
  441. "'s|'t|'re|'ve|'m|'ll|'d| ?\\p{L}+| ?\\p{N}+| ?[^\\s\\p{L}\\p{N}]+|\\s+(?!\\S)",
  442. };
  443. break;
  444. default:
  445. // default regex for BPE tokenization pre-processing
  446. regex_exprs = {
  447. "[\\p{P}\\$\\+<=>\\^~\\|]+",
  448. "'s|'t|'re|'ve|'m|'ll|'d| ?\\p{L}+| ?\\p{N}+| ?[^\\s\\p{L}\\p{N}]+|\\s+(?!\\S)",
  449. "\\p{N}+",
  450. "[0-9][0-9][0-9]",
  451. };
  452. break;
  453. }
  454. }
  455. std::vector<std::string> regex_exprs;
  456. };
  457. struct llm_tokenizer_bpe_session {
  458. llm_tokenizer_bpe_session(const llama_vocab & vocab) : vocab(vocab),
  459. bpe_tokenizer(static_cast<const llm_tokenizer_bpe *>(vocab.tokenizer)) {}
  460. static void append(const llama_vocab::id token_id, std::vector<llama_vocab::id> & output) {
  461. output.push_back(token_id);
  462. }
  463. bool append_bos(std::vector<llama_vocab::id> & output) const {
  464. if (vocab.tokenizer_add_bos) {
  465. GGML_ASSERT(vocab.special_bos_id != -1);
  466. output.push_back(vocab.special_bos_id);
  467. return true;
  468. }
  469. return false;
  470. }
  471. bool append_eos(std::vector<llama_vocab::id> & output) const {
  472. if (vocab.tokenizer_add_eos) {
  473. GGML_ASSERT(vocab.special_eos_id != -1);
  474. output.push_back(vocab.special_eos_id);
  475. return true;
  476. }
  477. return false;
  478. }
  479. void check_double_bos_eos(const std::vector<llama_vocab::id> & output) const {
  480. if (vocab.tokenizer_add_bos && output.size() >= 2 && output[1] == vocab.special_bos_id) {
  481. LLAMA_LOG_WARN(
  482. "%s: Added a BOS token to the prompt as specified by the model but the prompt "
  483. "also starts with a BOS token. So now the final prompt starts with 2 BOS tokens. "
  484. "Are you sure this is what you want?\n", __FUNCTION__);
  485. }
  486. if (vocab.tokenizer_add_eos && output.size() >= 2 && *(output.end()-2) == vocab.special_eos_id) {
  487. LLAMA_LOG_WARN(
  488. "%s: Added a EOS token to the prompt as specified by the model but the prompt "
  489. "also ends with a EOS token. So now the final prompt ends with 2 EOS tokens. "
  490. "Are you sure this is what you want?\n", __FUNCTION__);
  491. }
  492. }
  493. void tokenize(const std::string & text, std::vector<llama_vocab::id> & output) {
  494. int final_prev_index = -1;
  495. const auto word_collection = unicode_regex_split(text, bpe_tokenizer->regex_exprs);
  496. symbols_final.clear();
  497. for (const auto & word : word_collection) {
  498. work_queue = llm_bigram_bpe::queue();
  499. symbols.clear();
  500. int index = 0;
  501. size_t offset = 0;
  502. if (vocab.tokenizer_ignore_merges && vocab.token_to_id.find(word) != vocab.token_to_id.end()) {
  503. symbols.emplace_back(llm_symbol{-1, -1, word.c_str(), word.size()});
  504. offset = word.size();
  505. }
  506. while (offset < word.size()) {
  507. llm_symbol sym;
  508. size_t char_len = std::min(word.size() - offset, (size_t) unicode_len_utf8(word[offset]));
  509. sym.text = word.c_str() + offset;
  510. sym.n = char_len;
  511. offset += sym.n;
  512. sym.prev = index - 1;
  513. sym.next = offset == word.size() ? -1 : index + 1;
  514. index++;
  515. symbols.emplace_back(sym);
  516. }
  517. for (int i = 1; i < (int) symbols.size(); ++i) {
  518. add_new_bigram(i - 1, i);
  519. }
  520. // build token(s)
  521. while (!work_queue.empty()) {
  522. auto bigram = work_queue.pop_move();
  523. auto & left_symbol = symbols[bigram.left];
  524. auto & right_symbol = symbols[bigram.right];
  525. if (left_symbol.n == 0 || right_symbol.n == 0) {
  526. continue;
  527. }
  528. std::string left_token = std::string(left_symbol.text, left_symbol.n);
  529. std::string right_token = std::string(right_symbol.text, right_symbol.n);
  530. if (left_token + right_token != bigram.text) {
  531. continue; // Skip this bigram if it's outdated
  532. }
  533. // merge the right sym into the left one
  534. left_symbol.n += right_symbol.n;
  535. right_symbol.n = 0;
  536. // remove the right sym from the chain
  537. left_symbol.next = right_symbol.next;
  538. if (right_symbol.next >= 0) {
  539. symbols[right_symbol.next].prev = bigram.left;
  540. }
  541. add_new_bigram(left_symbol.prev, bigram.left); // left side of current symbol
  542. add_new_bigram(bigram.left, left_symbol.next); // right side of current symbol
  543. }
  544. // add the finished tokens to the final list keeping correct order for next and prev
  545. for (auto & sym : symbols) {
  546. if (sym.n > 0) {
  547. sym.prev = final_prev_index;
  548. sym.next = -1;
  549. if (final_prev_index != -1) {
  550. symbols_final[final_prev_index].next = symbols_final.size();
  551. }
  552. symbols_final.emplace_back(sym);
  553. final_prev_index = symbols_final.size() - 1;
  554. }
  555. }
  556. }
  557. symbols = symbols_final;
  558. if (!symbols.empty()) {
  559. for (int i = 0; i != -1; i = symbols[i].next) {
  560. auto & symbol = symbols[i];
  561. if (symbol.n == 0) {
  562. continue;
  563. }
  564. const std::string str = std::string(symbol.text, symbol.n);
  565. const auto token = vocab.token_to_id.find(str);
  566. if (token == vocab.token_to_id.end()) {
  567. for (auto j = str.begin(); j != str.end(); ++j) {
  568. std::string byte_str(1, *j);
  569. auto token_multibyte = vocab.token_to_id.find(byte_str);
  570. if (token_multibyte != vocab.token_to_id.end()) {
  571. output.push_back(token_multibyte->second);
  572. }
  573. }
  574. } else {
  575. output.push_back((*token).second);
  576. }
  577. }
  578. }
  579. }
  580. private:
  581. void add_new_bigram(int left, int right) {
  582. if (left == -1 || right == -1) {
  583. return;
  584. }
  585. std::string left_token = std::string(symbols[left].text, symbols[left].n);
  586. std::string right_token = std::string(symbols[right].text, symbols[right].n);
  587. int rank_found = -1;
  588. rank_found = vocab.find_bpe_rank(left_token, right_token);
  589. if (rank_found < 0) {
  590. return;
  591. }
  592. llm_bigram_bpe bigram;
  593. bigram.left = left;
  594. bigram.right = right;
  595. bigram.text = left_token + right_token;
  596. bigram.size = left_token.size() + right_token.size();
  597. bigram.rank = rank_found;
  598. work_queue.push(bigram);
  599. }
  600. const llama_vocab & vocab;
  601. const llm_tokenizer_bpe * bpe_tokenizer;
  602. std::vector<llm_symbol> symbols;
  603. std::vector<llm_symbol> symbols_final;
  604. llm_bigram_bpe::queue work_queue;
  605. };
  606. //
  607. // WPM tokenizer
  608. //
  609. struct llm_tokenizer_wpm : llm_tokenizer {
  610. llm_tokenizer_wpm(const llama_vocab & /*vocab*/) : llm_tokenizer() {}
  611. };
  612. struct llm_tokenizer_wpm_session {
  613. llm_tokenizer_wpm_session(const llama_vocab & vocab) : vocab(vocab) {}
  614. void tokenize(const std::string & text, std::vector<llama_vocab::id> & output) {
  615. const auto & token_map = vocab.token_to_id;
  616. // normalize and split by whitespace
  617. std::vector<std::string> words = preprocess(text);
  618. // bos token prepended already
  619. // find the longest tokens that form the words
  620. for (const std::string & word : words) {
  621. // skip empty words
  622. if (word.size() == 0) {
  623. continue;
  624. }
  625. // prepend phantom space
  626. const std::string word1 = "\xe2\x96\x81" + word;
  627. const int n = word1.size();
  628. const size_t current_tokens = output.size();
  629. // we're at the start of a new word
  630. // move through character position in word
  631. for (int i = 0; i < n; ++i) {
  632. // loop through possible match length
  633. bool match = false;
  634. for (int j = std::min(n, i + vocab.max_token_len + 1); j > i; j--) {
  635. auto it = token_map.find(word1.substr(i, j - i));
  636. if (it != token_map.end()) {
  637. output.push_back(it->second);
  638. match = true;
  639. i = j - 1;
  640. break;
  641. }
  642. }
  643. if (!match) { // discard all
  644. output.resize(current_tokens);
  645. break; // and discard next tokens
  646. }
  647. }
  648. // we didn't find any matches for this word
  649. if (current_tokens == output.size()) {
  650. output.push_back(vocab.special_unk_id);
  651. }
  652. }
  653. }
  654. // TODO: reduce string copies by using cpts_offs array
  655. static std::vector<std::string> preprocess(const std::string & text) {
  656. const std::vector<uint32_t> cpts_nfd = unicode_cpts_normalize_nfd(unicode_cpts_from_utf8(text));
  657. std::vector<std::string> words(1, "");
  658. for (const uint32_t cpt : cpts_nfd) {
  659. const auto flags = unicode_cpt_flags(cpt);
  660. if (flags.is_whitespace) {
  661. if (words.back().size()) { // finish previous word if any
  662. words.emplace_back();
  663. }
  664. continue;
  665. }
  666. assert (!flags.is_separator);
  667. if (cpt == 0 || cpt == 0xFFFD || flags.is_control) {
  668. continue;
  669. }
  670. const std::string s = unicode_cpt_to_utf8(unicode_tolower(cpt));
  671. if (flags.is_punctuation || ( cpt < 0x7F && flags.is_symbol ) || is_chinese_char(cpt)) {
  672. if (words.back().size()) { // finish previous word if any
  673. words.emplace_back();
  674. }
  675. words.back() = s; // single char word
  676. words.emplace_back(); // start a new word
  677. } else {
  678. words.back() += s; // append char to word
  679. }
  680. }
  681. if (!words.back().size()) {
  682. words.pop_back();
  683. }
  684. return words;
  685. }
  686. static bool is_chinese_char(uint32_t cpt) {
  687. return
  688. (cpt >= 0x04E00 && cpt <= 0x09FFF) ||
  689. (cpt >= 0x03400 && cpt <= 0x04DBF) ||
  690. (cpt >= 0x20000 && cpt <= 0x2A6DF) ||
  691. (cpt >= 0x2A700 && cpt <= 0x2B73F) ||
  692. (cpt >= 0x2B740 && cpt <= 0x2B81F) ||
  693. (cpt >= 0x2B920 && cpt <= 0x2CEAF) || // this should be 0x2B820 but in hf rust code it is 0x2B920
  694. (cpt >= 0x0F900 && cpt <= 0x0FAFF) ||
  695. (cpt >= 0x2F800 && cpt <= 0x2FA1F);
  696. //(cpt >= 0x3000 && cpt <= 0x303F) ||
  697. //(cpt >= 0xFF00 && cpt <= 0xFFEF);
  698. }
  699. private:
  700. const llama_vocab & vocab;
  701. // currently unused
  702. // const llm_tokenizer_wpm * wpm_tokenizer;
  703. };
  704. //
  705. // UGM tokenizer
  706. //
  707. struct llm_tokenizer_ugm : llm_tokenizer {
  708. llm_tokenizer_ugm(const llama_vocab & vocab) : llm_tokenizer() {
  709. if (vocab.precompiled_charsmap.size() > 0) {
  710. size_t charsmap_offset = 0;
  711. // First four bytes of precompiled_charsmap contains length of binary
  712. // blob containing XOR-compressed compact double array (XCDA) entries
  713. uint32_t xcda_blob_size = *(const uint32_t *) &vocab.precompiled_charsmap[0];
  714. charsmap_offset += sizeof(xcda_blob_size);
  715. if (xcda_blob_size + charsmap_offset >= vocab.precompiled_charsmap.size()) {
  716. throw std::runtime_error("Index out of array bounds in precompiled charsmap!");
  717. }
  718. // Next xcda_blob_size bytes contain entries of XOR-compressed compact
  719. // double array (XCDA). Each entry is bit-packed into a 32-bit integer.
  720. xcda_array = (const uint32_t *) &vocab.precompiled_charsmap[charsmap_offset];
  721. xcda_array_size = xcda_blob_size / sizeof(uint32_t);
  722. charsmap_offset += xcda_blob_size;
  723. // Remaining bytes of precompiled charsmap contain null-terminated
  724. // replacement strings for prefixes matched by the XCDA.
  725. prefix_replacements = &vocab.precompiled_charsmap[charsmap_offset];
  726. prefix_replacements_size = vocab.precompiled_charsmap.size() - charsmap_offset;
  727. }
  728. for (unsigned int id = 0; id < vocab.id_to_token.size(); ++id) {
  729. const auto &token_data = vocab.id_to_token[id];
  730. if (llama_is_normal_token(vocab, id)) {
  731. min_score = std::min<float>(min_score, token_data.score);
  732. max_score = std::max<float>(max_score, token_data.score);
  733. }
  734. if (llama_is_normal_token(vocab, id) ||
  735. llama_is_user_defined_token(vocab, id) ||
  736. llama_is_unused_token(vocab, id)) {
  737. token_matcher.insert(token_data.text.data(), token_data.text.size(), id);
  738. }
  739. if (llama_is_user_defined_token(vocab, id)) {
  740. user_defined_token_matcher.insert(token_data.text.data(), token_data.text.size());
  741. }
  742. }
  743. unknown_token_score = min_score - unknown_token_score_penalty;
  744. }
  745. // escaped space symbol - U+2581 (Lower One Eighth Block)
  746. const std::string escaped_space = "\xE2\x96\x81";
  747. const char * prefix_replacements = NULL;
  748. size_t prefix_replacements_size = 0;
  749. const uint32_t * xcda_array = NULL;
  750. size_t xcda_array_size = 0;
  751. struct naive_trie user_defined_token_matcher;
  752. float min_score = FLT_MAX;
  753. float max_score = -FLT_MAX;
  754. float unknown_token_score_penalty = 10.0;
  755. float unknown_token_score;
  756. struct naive_trie token_matcher;
  757. };
  758. struct llm_tokenizer_ugm_session {
  759. llm_tokenizer_ugm_session(const llama_vocab & vocab) : vocab(vocab),
  760. ugm_tokenizer(static_cast<const llm_tokenizer_ugm *>(vocab.tokenizer)) {}
  761. /* This implementation is based on SentencePiece optimized Viterbi algorithm for
  762. * unigram language models. The general idea is to:
  763. * - move along the input sequence in steps of one UTF code point,
  764. * - at each step find all possible tokenizations of the prefix by
  765. * traversing the tokens trie,
  766. * - for each tokenization store the best one so far (by higher score)
  767. * - use the position in sequence after given token as an index to store
  768. * results
  769. * - if there was no valid tokenization of the current UTF code point
  770. * then use unknown token with additional score penalty
  771. * After processing the whole sequence we backtrack from the end to get
  772. * the best tokenization.
  773. */
  774. void tokenize(const std::string & text, std::vector<llama_vocab::id> & output) {
  775. // get current size of output (for reversal later)
  776. size_t output_size = output.size();
  777. // normalize the input first
  778. std::string normalized;
  779. normalize(text, &normalized);
  780. size_t input_len = normalized.size();
  781. if (input_len == 0) {
  782. return;
  783. }
  784. // initialize score_sum to -FLT_MAX so it will be always lower than sums of token scores
  785. std::vector<struct best_tokenization> tokenization_results(input_len + 1, {vocab.special_unk_id, 0, -FLT_MAX});
  786. // at the beginning tokenization score is zero
  787. tokenization_results[0] = { vocab.special_unk_id, 0, 0 };
  788. for (size_t input_offset = 0; input_offset < input_len;) {
  789. size_t prefix_offset = input_offset;
  790. // calculate how many code units are in the currently processed UTF code point
  791. size_t n_utf8_code_units = std::min<size_t>(unicode_len_utf8(normalized[input_offset]), input_len - input_offset);
  792. // traverse the token matcher trie to find a matching token
  793. bool single_codepoint_token_found = false;
  794. const struct best_tokenization & current_best = tokenization_results[input_offset];
  795. const struct naive_trie * node = ugm_tokenizer->token_matcher.traverse(normalized[prefix_offset++]);
  796. while (prefix_offset <= input_len && node != NULL) {
  797. // check if we found valid token in prefix
  798. if (node->has_value) {
  799. // check if it corresponds to the whole UTF code point
  800. if (prefix_offset - input_offset == n_utf8_code_units) {
  801. single_codepoint_token_found = true;
  802. }
  803. llama_token token_id = node->value;
  804. const auto & token_data = vocab.id_to_token[token_id];
  805. // we set the user-defined token scores to 0 to make them more likely to be selected
  806. // (normal token scores are log probabilities, so they are negative)
  807. // score type is double here to make tokenization results exactly
  808. // the same as in the HF tokenizer using SentencePiece
  809. const double token_score = llama_is_user_defined_token(vocab, token_id) ? 0.0 : token_data.score;
  810. const double challenger_score = current_best.score_sum + token_score;
  811. struct best_tokenization & current_champ = tokenization_results[prefix_offset];
  812. if (challenger_score > current_champ.score_sum) {
  813. struct best_tokenization challenger = { token_id, input_offset, (float) challenger_score };
  814. current_champ = challenger;
  815. }
  816. }
  817. node = node->traverse(normalized[prefix_offset++]);
  818. }
  819. // if we didn't find a valid token corresponding to the whole UTF code point
  820. // then use unknown token as the tokenization of this UTF code point
  821. if (!single_codepoint_token_found) {
  822. const double challenger_score = current_best.score_sum + ugm_tokenizer->unknown_token_score;
  823. prefix_offset = input_offset + n_utf8_code_units;
  824. struct best_tokenization & current_champ = tokenization_results[prefix_offset];
  825. if (challenger_score > current_champ.score_sum) {
  826. struct best_tokenization challenger = { vocab.special_unk_id, input_offset, (float) challenger_score };
  827. current_champ = challenger;
  828. }
  829. }
  830. // move to the next UTF code point
  831. input_offset += n_utf8_code_units;
  832. }
  833. // now backtrack from the end to gather token ids of the best tokenization
  834. // merge sequences of consecutive unknown tokens into single unknown tokens
  835. bool is_prev_unknown = false;
  836. for (struct best_tokenization & tokenization = tokenization_results[input_len]; ; tokenization = tokenization_results[tokenization.input_offset]) {
  837. bool is_unknown = tokenization.token_id == vocab.special_unk_id;
  838. if (!(is_prev_unknown && is_unknown)) {
  839. output.push_back(tokenization.token_id);
  840. }
  841. if (tokenization.input_offset == 0) {
  842. break;
  843. }
  844. is_prev_unknown = is_unknown;
  845. }
  846. // reverse the output since we added tokens starting from the end of the input
  847. std::reverse(output.begin() + output_size, output.end());
  848. }
  849. private:
  850. // helper structure for returning normalization results
  851. struct normalization_result {
  852. const char * normalized;
  853. size_t normalized_len;
  854. size_t consumed_input;
  855. };
  856. void normalize(const std::string& input, std::string * normalized) {
  857. normalized->clear();
  858. normalized->reserve(input.size() * 3);
  859. const std::string space = vocab.tokenizer_escape_whitespaces ? ugm_tokenizer->escaped_space : " ";
  860. bool shall_prepend_space = !vocab.tokenizer_treat_whitespace_as_suffix && vocab.tokenizer_add_space_prefix;
  861. bool shall_append_space = vocab.tokenizer_treat_whitespace_as_suffix && vocab.tokenizer_add_space_prefix;
  862. bool shall_merge_spaces = vocab.tokenizer_remove_extra_whitespaces;
  863. bool is_space_prepended = false;
  864. bool processing_non_ws = false;
  865. size_t input_len = input.size();
  866. for (size_t input_offset = 0; input_offset < input_len; ) {
  867. auto norm_res = normalize_prefix(input, input_offset);
  868. for (size_t i = 0; i < norm_res.normalized_len; i++) {
  869. char c = norm_res.normalized[i];
  870. if (c != ' ') {
  871. if (!processing_non_ws) {
  872. processing_non_ws = true;
  873. if ((shall_prepend_space && !is_space_prepended) || shall_merge_spaces) {
  874. normalized->append(space);
  875. is_space_prepended = true;
  876. }
  877. }
  878. normalized->push_back(c);
  879. } else {
  880. if (processing_non_ws) {
  881. processing_non_ws = false;
  882. }
  883. if (!shall_merge_spaces) {
  884. normalized->append(space);
  885. }
  886. }
  887. }
  888. input_offset += norm_res.consumed_input;
  889. }
  890. if (shall_append_space) {
  891. normalized->append(space);
  892. }
  893. }
  894. /*
  895. * This structure is a view wrapper for XOR-compressed double array (XCDA)
  896. * See Shunsuke Kanda (2018). Space- and Time-Efficient String Dictionaries.
  897. * Each bit-packed entry contains:
  898. * - BASE array value in bits 10-30
  899. * - LCHECK array value in bits 0-7
  900. * - LEAF array value in bit 9
  901. * Entries containing indexes of replacement sequences have set bit 31
  902. */
  903. struct xcda_array_view {
  904. public:
  905. xcda_array_view(const uint32_t * xcda_array, size_t xcda_array_size) : xcda_array(xcda_array), xcda_array_size(xcda_array_size) {
  906. }
  907. uint32_t get_base(size_t index) {
  908. uint32_t packed_node = get_node(index);
  909. return (packed_node >> 10) << ((packed_node & (1U << 9)) >> 6);
  910. }
  911. uint32_t get_lcheck(size_t index) {
  912. uint32_t packed_node = get_node(index);
  913. return packed_node & ((1U << 31) | 0xff);
  914. }
  915. bool get_leaf(size_t index) {
  916. uint32_t packed_node = get_node(index);
  917. return (packed_node >> 8) & 1;
  918. }
  919. uint32_t get_value(size_t index) {
  920. uint32_t packed_node = get_node(index);
  921. return packed_node & ((1U << 31) - 1);
  922. }
  923. private:
  924. uint32_t get_node(size_t index) {
  925. if (index > xcda_array_size) {
  926. throw std::runtime_error("Index out of array bounds in XCDA array!");
  927. }
  928. return xcda_array[index];
  929. }
  930. const uint32_t * xcda_array;
  931. size_t xcda_array_size;
  932. };
  933. // this structure stores the best tokenization so far at input_offset
  934. struct best_tokenization {
  935. llama_token token_id;
  936. size_t input_offset;
  937. float score_sum;
  938. };
  939. struct normalization_result normalize_prefix(const std::string & input, size_t input_offset) {
  940. if (input_offset == input.size()) {
  941. return { &input[input_offset], 0, 0 };
  942. }
  943. // if input prefix matches some user-defined token return this token as normalization result
  944. auto user_defined_token_match =
  945. ugm_tokenizer->user_defined_token_matcher.get_longest_prefix(&input[input_offset], input.size() - input_offset);
  946. if (user_defined_token_match.second > 0) {
  947. return { &input[input_offset], user_defined_token_match.second, user_defined_token_match.second };
  948. }
  949. size_t longest_prefix_length = 0;
  950. size_t longest_prefix_offset = 0;
  951. if (ugm_tokenizer->xcda_array_size > 0) {
  952. struct xcda_array_view xcda_view(ugm_tokenizer->xcda_array, ugm_tokenizer->xcda_array_size);
  953. // Find the longest normalized sequence matching the input prefix by walking
  954. // the XOR-compressed compact double array (XCDA) starting from the root node
  955. // We find the index of the next node by calculating BASE[s] ^ c where s is
  956. // the index of the previous node and c is a numerical character value
  957. uint32_t node_index = 0;
  958. // get BASE of the root node
  959. node_index = xcda_view.get_base(node_index);
  960. for (size_t prefix_offset = input_offset; prefix_offset < input.size(); prefix_offset++) {
  961. unsigned char c = input[prefix_offset];
  962. if (c == 0) {
  963. break;
  964. }
  965. node_index ^= c;
  966. // if value of LCHECK is not c it means that this is not a child of
  967. // the previous node, so we stop matching
  968. if (xcda_view.get_lcheck(node_index) != c) {
  969. break;
  970. }
  971. bool is_leaf = xcda_view.get_leaf(node_index);
  972. // get BASE of the current node
  973. node_index ^= xcda_view.get_base(node_index);
  974. // if LEAF of the current node is true, it means that its BASE points to the node
  975. // containing index of replacement sequence for currently matched input prefix
  976. if (is_leaf)
  977. {
  978. longest_prefix_length = prefix_offset - input_offset + 1;
  979. // get index of replacement sequence for currently matched input prefix
  980. longest_prefix_offset = xcda_view.get_value(node_index);
  981. }
  982. }
  983. }
  984. if (longest_prefix_length > 0) {
  985. // we have a match, so return the replacement sequence
  986. if (longest_prefix_offset >= ugm_tokenizer->prefix_replacements_size) {
  987. throw std::runtime_error("Index out of array bounds in precompiled charsmap!");
  988. }
  989. const char * prefix_replacement = &(ugm_tokenizer->prefix_replacements)[longest_prefix_offset];
  990. return { prefix_replacement, strlen(prefix_replacement), longest_prefix_length };
  991. }
  992. // check if the input prefix contains a valid sequence of UTF-8 code units
  993. try {
  994. // if yes, return this sequence unmodified
  995. size_t prefix_offset = input_offset;
  996. unicode_cpt_from_utf8(input, prefix_offset);
  997. return { &input[input_offset], prefix_offset - input_offset, prefix_offset - input_offset };
  998. } catch (std::invalid_argument & /*ex*/) {
  999. // if no, consume 1 byte and return U+FFFD - REPLACEMENT CHARACTER
  1000. return { "\xEF\xBF\xBD", 3, 1 };
  1001. }
  1002. }
  1003. const llama_vocab & vocab;
  1004. const llm_tokenizer_ugm * ugm_tokenizer;
  1005. };
  1006. //
  1007. // RWKV tokenizer
  1008. //
  1009. static std::vector<uint8_t> llama_unescape_rwkv_token(const std::string & escaped) {
  1010. std::vector<uint8_t> output;
  1011. output.reserve(escaped.size());
  1012. // Parser state
  1013. bool escaping = false;
  1014. uint8_t hex_remaining = 0;
  1015. uint8_t hex_acc = 0;
  1016. // Step through characters, performing parsing
  1017. for (const char & c : escaped) {
  1018. // If we're parsing a hex code, interpret the next character
  1019. if (hex_remaining != 0) {
  1020. uint8_t value = (c >= 'a') ? (c - 'a' + 10) : (c - '0');
  1021. hex_acc = (hex_acc << 4) + value;
  1022. hex_remaining -= 1;
  1023. if (hex_remaining == 0) {
  1024. output.push_back(hex_acc);
  1025. hex_acc = 0;
  1026. }
  1027. continue;
  1028. }
  1029. // If we got an escape character, interpret it
  1030. if (escaping) {
  1031. if (c == 't') {
  1032. output.push_back('\t');
  1033. } else if (c == 'n') {
  1034. output.push_back('\n');
  1035. } else if (c == 'r') {
  1036. output.push_back('\r');
  1037. } else if (c == 'x') {
  1038. hex_remaining = 2;
  1039. } else {
  1040. output.push_back(c);
  1041. }
  1042. escaping = false;
  1043. continue;
  1044. }
  1045. if (c == '\\') {
  1046. escaping = true;
  1047. continue;
  1048. }
  1049. output.push_back(c);
  1050. }
  1051. return output;
  1052. }
  1053. struct llm_tokenizer_rwkv : llm_tokenizer {
  1054. llm_tokenizer_rwkv(const llama_vocab & vocab) : llm_tokenizer() {
  1055. // RWKV supports arbitrary byte tokens, but the vocab struct only supports string tokens.
  1056. // For now, we decode the vocab here into the lookup we'll use for tokenization.
  1057. // build trie
  1058. for (unsigned int id = 0; id < vocab.id_to_token.size(); ++id) {
  1059. const auto & token = vocab.id_to_token[id];
  1060. const auto data = llama_unescape_rwkv_token(token.text);
  1061. token_matcher.insert((const char *) data.data(), data.size(), id);
  1062. }
  1063. }
  1064. struct naive_trie token_matcher;
  1065. };
  1066. struct llm_tokenizer_rwkv_session {
  1067. llm_tokenizer_rwkv_session(const llama_vocab & vocab) : vocab(vocab),
  1068. rwkv_tokenizer(static_cast<const llm_tokenizer_rwkv &>(*vocab.tokenizer)) {}
  1069. void tokenize(const std::string & text, std::vector<llama_vocab::id> & output) {
  1070. uint32_t position = 0;
  1071. while (position < text.size()) {
  1072. const struct naive_trie * node = rwkv_tokenizer.token_matcher.traverse(text[position]);
  1073. if (node == NULL) {
  1074. // no matching token found, add unknown token
  1075. output.push_back(vocab.special_unk_id);
  1076. position += 1;
  1077. continue;
  1078. }
  1079. // traverse the trie to find the longest matching token
  1080. uint32_t token_id = 0;
  1081. uint32_t token_length = 0;
  1082. while (node != NULL) {
  1083. if (node->has_value) {
  1084. token_id = node->value;
  1085. token_length = position + 1;
  1086. }
  1087. node = node->traverse(text[++position]);
  1088. }
  1089. // add the longest matching token
  1090. output.push_back(token_id);
  1091. position = token_length;
  1092. }
  1093. }
  1094. private:
  1095. const llama_vocab & vocab;
  1096. const llm_tokenizer_rwkv & rwkv_tokenizer;
  1097. };
  1098. void llama_vocab::init_tokenizer() {
  1099. switch (type) {
  1100. case LLAMA_VOCAB_TYPE_SPM:
  1101. tokenizer = new llm_tokenizer_spm(*this);
  1102. break;
  1103. case LLAMA_VOCAB_TYPE_BPE:
  1104. tokenizer = new llm_tokenizer_bpe(*this);
  1105. break;
  1106. case LLAMA_VOCAB_TYPE_WPM:
  1107. tokenizer = new llm_tokenizer_wpm(*this);
  1108. break;
  1109. case LLAMA_VOCAB_TYPE_UGM:
  1110. tokenizer = new llm_tokenizer_ugm(*this);
  1111. break;
  1112. case LLAMA_VOCAB_TYPE_RWKV:
  1113. tokenizer = new llm_tokenizer_rwkv(*this);
  1114. break;
  1115. default:
  1116. GGML_ABORT("unsupported vocab type");
  1117. }
  1118. }
  1119. //
  1120. // (de-) tokenize
  1121. //
  1122. typedef enum FRAGMENT_BUFFER_VARIANT_TYPE {
  1123. FRAGMENT_BUFFER_VARIANT_TYPE_TOKEN,
  1124. FRAGMENT_BUFFER_VARIANT_TYPE_RAW_TEXT
  1125. } FRAGMENT_BUFFER_VARIANT_TYPE;
  1126. struct fragment_buffer_variant {
  1127. fragment_buffer_variant(llama_vocab::id _token)
  1128. :
  1129. type(FRAGMENT_BUFFER_VARIANT_TYPE_TOKEN),
  1130. token(_token),
  1131. raw_text(_dummy),
  1132. offset(0),
  1133. length(0) {}
  1134. fragment_buffer_variant(const std::string & _raw_text, int64_t _offset, int64_t _length)
  1135. :
  1136. type(FRAGMENT_BUFFER_VARIANT_TYPE_RAW_TEXT),
  1137. token((llama_vocab::id) - 1),
  1138. raw_text(_raw_text),
  1139. offset(_offset),
  1140. length(_length){
  1141. GGML_ASSERT(_offset >= 0);
  1142. GGML_ASSERT(_length >= 1);
  1143. GGML_ASSERT(offset + length <= raw_text.length());
  1144. }
  1145. const FRAGMENT_BUFFER_VARIANT_TYPE type;
  1146. const llama_vocab::id token;
  1147. const std::string _dummy;
  1148. const std::string & raw_text;
  1149. const uint64_t offset;
  1150. const uint64_t length;
  1151. };
  1152. // #define PRETOKENIZERDEBUG
  1153. static void tokenizer_st_partition(const llama_vocab & vocab, std::forward_list<fragment_buffer_variant> & buffer, bool parse_special) {
  1154. // for each special token
  1155. for (const llama_vocab::id special_id : vocab.cache_special_tokens) {
  1156. const auto & data = vocab.id_to_token[special_id];
  1157. const auto & special_token = data.text;
  1158. if (!parse_special && (data.attr & (LLAMA_TOKEN_ATTR_CONTROL | LLAMA_TOKEN_ATTR_UNKNOWN))) {
  1159. // Ignore control and unknown tokens when parse_special == false
  1160. continue;
  1161. // User-defined tokens are still pre-tokenized before everything else
  1162. // ref: https://github.com/huggingface/tokenizers/blob/fdd26ba9a3f0c133427aab0423888cbde91362d7/tokenizers/src/tokenizer/mod.rs#L726
  1163. // This is mostly relevant for neox-style tokenizers (mpt, olmo, stablelm, etc.)
  1164. }
  1165. // for each text fragment
  1166. std::forward_list<fragment_buffer_variant>::iterator it = buffer.begin();
  1167. while (it != buffer.end()) {
  1168. auto & fragment = (*it);
  1169. // if a fragment is text ( not yet processed )
  1170. if (fragment.type == FRAGMENT_BUFFER_VARIANT_TYPE_RAW_TEXT) {
  1171. const auto & raw_text = fragment.raw_text;
  1172. auto raw_text_base_offset = fragment.offset;
  1173. auto raw_text_base_length = fragment.length;
  1174. // loop over the text
  1175. while (true) {
  1176. // find the first occurrence of a given special token in this fragment
  1177. // passing offset argument only limit the "search area" but match coordinates
  1178. // are still relative to the source full raw_text
  1179. auto match = raw_text.find(special_token, raw_text_base_offset);
  1180. // no occurrences found, stop processing this fragment for a given special token
  1181. if (match == std::string::npos) break;
  1182. // check if match is within bounds of offset <-> length
  1183. if (match + special_token.length() > raw_text_base_offset + raw_text_base_length) break;
  1184. #ifdef PRETOKENIZERDEBUG
  1185. LLAMA_LOG_WARN("FF: (%ld %ld %ld) '%s'\n", raw_text->length(), raw_text_base_offset, raw_text_base_length, raw_text->substr(raw_text_base_offset, raw_text_base_length).c_str());
  1186. #endif
  1187. auto source = std::distance(buffer.begin(), it);
  1188. // if match is further than base offset
  1189. // then we have some text to the left of it
  1190. if (match > raw_text_base_offset) {
  1191. // left
  1192. const int64_t left_reminder_offset = raw_text_base_offset + 0;
  1193. int64_t left_reminder_length = match - raw_text_base_offset;
  1194. if (data.attr & LLAMA_TOKEN_ATTR_LSTRIP) {
  1195. while (left_reminder_length > 0 && isspace(raw_text[left_reminder_offset + left_reminder_length - 1])) {
  1196. left_reminder_length--;
  1197. }
  1198. }
  1199. if (left_reminder_length > 0) {
  1200. buffer.emplace_after(it, raw_text, left_reminder_offset, left_reminder_length);
  1201. it++;
  1202. }
  1203. #ifdef PRETOKENIZERDEBUG
  1204. LLAMA_LOG_WARN("FL: (%ld %ld) '%s'\n", left_reminder_offset, left_reminder_length, raw_text->substr(left_reminder_offset, left_reminder_length).c_str());
  1205. #endif
  1206. }
  1207. // special token
  1208. buffer.emplace_after(it, special_id);
  1209. it++;
  1210. // right
  1211. if (match + special_token.length() < raw_text_base_offset + raw_text_base_length) {
  1212. int64_t right_reminder_offset = match + special_token.length();
  1213. int64_t right_reminder_length = raw_text_base_length - ((match - raw_text_base_offset) + special_token.length());
  1214. if (data.attr & LLAMA_TOKEN_ATTR_RSTRIP) {
  1215. while (right_reminder_length > 0 && isspace(raw_text[right_reminder_offset])) {
  1216. right_reminder_offset++;
  1217. right_reminder_length--;
  1218. }
  1219. }
  1220. if (right_reminder_length > 0) {
  1221. buffer.emplace_after(it, raw_text, right_reminder_offset, right_reminder_length);
  1222. it++;
  1223. }
  1224. #ifdef PRETOKENIZERDEBUG
  1225. LLAMA_LOG_WARN("FR: (%ld %ld) '%s'\n", right_reminder_offset, right_reminder_length, raw_text->substr(right_reminder_offset, right_reminder_length).c_str());
  1226. #endif
  1227. if (source == 0) {
  1228. buffer.erase_after(buffer.before_begin());
  1229. } else {
  1230. buffer.erase_after(std::next(buffer.begin(), (source-1)));
  1231. }
  1232. // repeat for the right side
  1233. raw_text_base_offset = right_reminder_offset;
  1234. raw_text_base_length = right_reminder_length;
  1235. #ifdef PRETOKENIZERDEBUG
  1236. LLAMA_LOG_WARN("RR: (%ld %ld) '%s'\n", raw_text_base_offset, raw_text_base_length, raw_text->substr(raw_text_base_offset, raw_text_base_length).c_str());
  1237. #endif
  1238. } else {
  1239. if (source == 0) {
  1240. buffer.erase_after(buffer.before_begin());
  1241. } else {
  1242. buffer.erase_after(std::next(buffer.begin(), (source-1)));
  1243. }
  1244. break;
  1245. }
  1246. }
  1247. }
  1248. it++;
  1249. }
  1250. }
  1251. }
  1252. std::vector<llama_vocab::id> llama_tokenize_internal(
  1253. const llama_vocab & vocab,
  1254. std::string raw_text,
  1255. bool add_special,
  1256. bool parse_special) {
  1257. GGML_ASSERT(vocab.tokenizer && "Tokenizer not initialized. Call llama_vocab::init_tokenizer() first.");
  1258. std::vector<llama_vocab::id> output;
  1259. std::forward_list<fragment_buffer_variant> fragment_buffer;
  1260. if (!raw_text.empty()) {
  1261. fragment_buffer.emplace_front(raw_text, 0, raw_text.length());
  1262. tokenizer_st_partition(vocab, fragment_buffer, parse_special);
  1263. }
  1264. switch (vocab.type) {
  1265. case LLAMA_VOCAB_TYPE_SPM:
  1266. {
  1267. // OG tokenizer behavior:
  1268. //
  1269. // tokenizer.encode('', add_special_tokens=True) returns [1]
  1270. // tokenizer.encode('', add_special_tokens=False) returns []
  1271. bool is_prev_special = true; // prefix with space if first token
  1272. if (add_special && vocab.tokenizer_add_bos) {
  1273. GGML_ASSERT(vocab.special_bos_id != -1);
  1274. output.push_back(vocab.special_bos_id);
  1275. is_prev_special = true;
  1276. }
  1277. for (const auto & fragment : fragment_buffer) {
  1278. if (fragment.type == FRAGMENT_BUFFER_VARIANT_TYPE_RAW_TEXT) {
  1279. auto raw_text = fragment.raw_text.substr(fragment.offset, fragment.length);
  1280. // prefix with space if previous is special
  1281. if (vocab.tokenizer_add_space_prefix && is_prev_special) {
  1282. raw_text = " " + raw_text;
  1283. }
  1284. #ifdef PRETOKENIZERDEBUG
  1285. LLAMA_LOG_WARN("TT: (%ld %ld %ld) '%s'\n", raw_text.length(), fragment.offset, fragment.length, raw_text.c_str());
  1286. #endif
  1287. llama_escape_whitespace(raw_text);
  1288. llm_tokenizer_spm_session session(vocab);
  1289. session.tokenize(raw_text, output);
  1290. is_prev_special = false;
  1291. } else { // if (fragment.type == FRAGMENT_BUFFER_VARIANT_TYPE_TOKEN)
  1292. output.push_back(fragment.token);
  1293. is_prev_special = true;
  1294. }
  1295. }
  1296. if (add_special && vocab.tokenizer_add_bos && output.size() >= 2 && output[1] == vocab.special_bos_id) {
  1297. LLAMA_LOG_WARN(
  1298. "%s: Added a BOS token to the prompt as specified by the model but the prompt "
  1299. "also starts with a BOS token. So now the final prompt starts with 2 BOS tokens. "
  1300. "Are you sure this is what you want?\n", __FUNCTION__);
  1301. }
  1302. if (add_special && vocab.tokenizer_add_eos) {
  1303. GGML_ASSERT(vocab.special_eos_id != -1);
  1304. output.push_back(vocab.special_eos_id);
  1305. }
  1306. } break;
  1307. case LLAMA_VOCAB_TYPE_BPE:
  1308. {
  1309. llm_tokenizer_bpe_session session(vocab);
  1310. // it calls some other methods that are not exist in llm_tokenizer,
  1311. // here just cast it to bpe tokenizer object
  1312. if (add_special) {
  1313. session.append_bos(output);
  1314. }
  1315. for (const auto & fragment : fragment_buffer) {
  1316. if (fragment.type == FRAGMENT_BUFFER_VARIANT_TYPE_RAW_TEXT) {
  1317. auto raw_text = fragment.raw_text.substr(fragment.offset, fragment.length);
  1318. #ifdef PRETOKENIZERDEBUG
  1319. LLAMA_LOG_WARN("TT: (%ld %ld %ld) '%s'\n", raw_text.length(), fragment.offset, fragment.length, raw_text.c_str());
  1320. #endif
  1321. session.tokenize(raw_text, output);
  1322. } else { // if (fragment.type == FRAGMENT_BUFFER_VARIANT_TYPE_TOKEN)
  1323. session.append(fragment.token, output);
  1324. }
  1325. }
  1326. if (add_special) {
  1327. session.append_eos(output);
  1328. session.check_double_bos_eos(output);
  1329. }
  1330. } break;
  1331. case LLAMA_VOCAB_TYPE_WPM:
  1332. {
  1333. if (add_special) {
  1334. GGML_ASSERT(vocab.special_cls_id != -1);
  1335. output.push_back(vocab.special_cls_id);
  1336. }
  1337. llm_tokenizer_wpm_session session(vocab);
  1338. for (const auto & fragment : fragment_buffer) {
  1339. if (fragment.type == FRAGMENT_BUFFER_VARIANT_TYPE_RAW_TEXT) {
  1340. auto raw_text = fragment.raw_text.substr(fragment.offset, fragment.length);
  1341. #ifdef PRETOKENIZERDEBUG
  1342. LLAMA_LOG_WARN("TT: (%ld %ld %ld) '%s'\n", raw_text.length(), fragment.offset, fragment.length, raw_text.c_str());
  1343. #endif
  1344. session.tokenize(raw_text, output);
  1345. } else { // if (fragment.type == FRAGMENT_BUFFER_VARIANT_TYPE_TOKEN)
  1346. output.push_back(fragment.token);
  1347. }
  1348. }
  1349. if (add_special) {
  1350. GGML_ASSERT(vocab.special_sep_id != -1);
  1351. output.push_back(vocab.special_sep_id);
  1352. }
  1353. } break;
  1354. case LLAMA_VOCAB_TYPE_UGM:
  1355. {
  1356. if (add_special && vocab.tokenizer_add_bos) {
  1357. GGML_ASSERT(vocab.special_bos_id != -1);
  1358. output.push_back(vocab.special_bos_id);
  1359. }
  1360. llm_tokenizer_ugm_session session(vocab);
  1361. for (const auto & fragment : fragment_buffer) {
  1362. if (fragment.type == FRAGMENT_BUFFER_VARIANT_TYPE_RAW_TEXT) {
  1363. auto raw_text = fragment.raw_text.substr(fragment.offset, fragment.length);
  1364. #ifdef PRETOKENIZERDEBUG
  1365. LLAMA_LOG_WARN("TT: (%ld %ld %ld) '%s'\n", raw_text.length(), fragment.offset, fragment.length, raw_text.c_str());
  1366. #endif
  1367. session.tokenize(raw_text, output);
  1368. } else { // if (fragment.type == FRAGMENT_BUFFER_VARIANT_TYPE_TOKEN)
  1369. output.push_back(fragment.token);
  1370. }
  1371. }
  1372. if (add_special && vocab.tokenizer_add_bos && output.size() >= 2 && output[1] == vocab.special_bos_id) {
  1373. LLAMA_LOG_WARN(
  1374. "%s: Added a BOS token to the prompt as specified by the model but the prompt "
  1375. "also starts with a BOS token. So now the final prompt starts with 2 BOS tokens. "
  1376. "Are you sure this is what you want?\n", __FUNCTION__);
  1377. }
  1378. if (add_special && vocab.tokenizer_add_eos) {
  1379. GGML_ASSERT(vocab.special_eos_id != -1);
  1380. output.push_back(vocab.special_eos_id);
  1381. }
  1382. } break;
  1383. case LLAMA_VOCAB_TYPE_RWKV:
  1384. {
  1385. llm_tokenizer_rwkv_session session(vocab);
  1386. for (const auto & fragment : fragment_buffer) {
  1387. if (fragment.type == FRAGMENT_BUFFER_VARIANT_TYPE_RAW_TEXT) {
  1388. auto raw_text = fragment.raw_text.substr(fragment.offset, fragment.length);
  1389. #ifdef PRETOKENIZERDEBUG
  1390. LLAMA_LOG_WARN("TT: (%ld %ld %ld) '%s'\n", raw_text.length(), fragment.offset, fragment.length, raw_text.c_str());
  1391. #endif
  1392. session.tokenize(raw_text, output);
  1393. } else { // if (fragment.type == FRAGMENT_BUFFER_VARIANT_TYPE_TOKEN)
  1394. output.push_back(fragment.token);
  1395. }
  1396. }
  1397. } break;
  1398. case LLAMA_VOCAB_TYPE_NONE:
  1399. GGML_ABORT("fatal error");
  1400. }
  1401. return output;
  1402. }
  1403. llama_token llama_byte_to_token_impl(const llama_vocab & vocab, uint8_t ch) {
  1404. GGML_ASSERT(llama_vocab_get_type(vocab) != LLAMA_VOCAB_TYPE_NONE);
  1405. static const char * hex = "0123456789ABCDEF";
  1406. switch (llama_vocab_get_type(vocab)) {
  1407. case LLAMA_VOCAB_TYPE_SPM:
  1408. case LLAMA_VOCAB_TYPE_UGM: {
  1409. const char buf[7] = { '<', '0', 'x', hex[ch >> 4], hex[ch & 15], '>', 0 };
  1410. auto token = vocab.token_to_id.find(buf);
  1411. if (token != vocab.token_to_id.end()) {
  1412. return (*token).second;
  1413. }
  1414. // Try to fall back to just the byte as a string
  1415. const char buf2[2] = { (char)ch, 0 };
  1416. return vocab.token_to_id.at(buf2);
  1417. }
  1418. case LLAMA_VOCAB_TYPE_WPM:
  1419. case LLAMA_VOCAB_TYPE_BPE: {
  1420. return vocab.token_to_id.at(unicode_byte_to_utf8(ch));
  1421. }
  1422. default:
  1423. GGML_ABORT("fatal error");
  1424. }
  1425. }
  1426. const char * llama_token_get_text_impl(const struct llama_vocab & vocab, llama_token token) {
  1427. GGML_ASSERT(vocab.type != LLAMA_VOCAB_TYPE_NONE);
  1428. return vocab.id_to_token[token].text.c_str();
  1429. }
  1430. float llama_token_get_score_impl(const struct llama_vocab & vocab, llama_token token) {
  1431. GGML_ASSERT(vocab.type != LLAMA_VOCAB_TYPE_NONE);
  1432. return vocab.id_to_token[token].score;
  1433. }
  1434. llama_token_attr llama_token_get_attr_impl(const struct llama_vocab & vocab, llama_token token) {
  1435. GGML_ASSERT(vocab.type != LLAMA_VOCAB_TYPE_NONE);
  1436. return vocab.id_to_token[token].attr;
  1437. }
  1438. bool llama_token_is_eog_impl(const struct llama_vocab & vocab, llama_token token) {
  1439. return token != -1 && vocab.special_eog_ids.count(token) > 0;
  1440. }
  1441. bool llama_token_is_control_impl(const struct llama_vocab & vocab, llama_token token) {
  1442. return llama_is_control_token(vocab, token);
  1443. }
  1444. llama_token llama_token_bos_impl(const struct llama_vocab & vocab) {
  1445. return vocab.special_bos_id;
  1446. }
  1447. llama_token llama_token_eos_impl(const struct llama_vocab & vocab) {
  1448. return vocab.special_eos_id;
  1449. }
  1450. llama_token llama_token_eot_impl(const struct llama_vocab & vocab) {
  1451. return vocab.special_eot_id;
  1452. }
  1453. llama_token llama_token_eom_impl(const struct llama_vocab & vocab) {
  1454. return vocab.special_eom_id;
  1455. }
  1456. llama_token llama_token_cls_impl(const struct llama_vocab & vocab) {
  1457. return vocab.special_cls_id;
  1458. }
  1459. llama_token llama_token_sep_impl(const struct llama_vocab & vocab) {
  1460. return vocab.special_sep_id;
  1461. }
  1462. llama_token llama_token_nl_impl(const struct llama_vocab & vocab) {
  1463. return vocab.linefeed_id;
  1464. }
  1465. llama_token llama_token_pad_impl(const struct llama_vocab & vocab) {
  1466. return vocab.special_pad_id;
  1467. }
  1468. bool llama_add_bos_token_impl(const struct llama_vocab & vocab) {
  1469. return vocab.tokenizer_add_bos;
  1470. }
  1471. bool llama_add_eos_token_impl(const struct llama_vocab & vocab) {
  1472. return vocab.tokenizer_add_eos;
  1473. }
  1474. llama_token llama_token_prefix_impl(const struct llama_vocab & vocab) {
  1475. return vocab.special_fim_pre_id;
  1476. }
  1477. llama_token llama_token_middle_impl(const struct llama_vocab & vocab) {
  1478. return vocab.special_fim_mid_id;
  1479. }
  1480. llama_token llama_token_suffix_impl(const struct llama_vocab & vocab) {
  1481. return vocab.special_fim_suf_id;
  1482. }
  1483. llama_token llama_token_fim_pre_impl(const struct llama_vocab & vocab) {
  1484. return vocab.special_fim_pre_id;
  1485. }
  1486. llama_token llama_token_fim_suf_impl(const struct llama_vocab & vocab) {
  1487. return vocab.special_fim_suf_id;
  1488. }
  1489. llama_token llama_token_fim_mid_impl(const struct llama_vocab & vocab) {
  1490. return vocab.special_fim_mid_id;
  1491. }
  1492. llama_token llama_token_fim_pad_impl(const struct llama_vocab & vocab) {
  1493. return vocab.special_fim_pad_id;
  1494. }
  1495. llama_token llama_token_fim_rep_impl(const struct llama_vocab & vocab) {
  1496. return vocab.special_fim_rep_id;
  1497. }
  1498. llama_token llama_token_fim_sep_impl(const struct llama_vocab & vocab) {
  1499. return vocab.special_fim_sep_id;
  1500. }
  1501. int32_t llama_tokenize_impl(
  1502. const struct llama_vocab & vocab,
  1503. const char * text,
  1504. int32_t text_len,
  1505. llama_token * tokens,
  1506. int32_t n_tokens_max,
  1507. bool add_special,
  1508. bool parse_special) {
  1509. auto res = llama_tokenize_internal(vocab, std::string(text, text_len), add_special, parse_special);
  1510. if (n_tokens_max < (int) res.size()) {
  1511. // LLAMA_LOG_ERROR("%s: too many tokens\n", __func__);
  1512. return -((int) res.size());
  1513. }
  1514. for (size_t i = 0; i < res.size(); i++) {
  1515. tokens[i] = res[i];
  1516. }
  1517. return res.size();
  1518. }
  1519. static std::string llama_decode_text(const std::string & text) {
  1520. std::string decoded_text;
  1521. const auto cpts = unicode_cpts_from_utf8(text);
  1522. for (const auto cpt : cpts) {
  1523. const auto utf8 = unicode_cpt_to_utf8(cpt);
  1524. try {
  1525. decoded_text += unicode_utf8_to_byte(utf8);
  1526. } catch (const std::out_of_range & /*e*/) {
  1527. decoded_text += "[UNK_BYTE_0x";
  1528. for (const auto c : utf8) {
  1529. decoded_text += format("%02x", (uint8_t) c);
  1530. }
  1531. decoded_text += text + "]";
  1532. }
  1533. }
  1534. return decoded_text;
  1535. }
  1536. // does not write null-terminator to buf
  1537. int32_t llama_token_to_piece_impl(const struct llama_vocab & vocab, llama_token token, char * buf, int32_t length, int32_t lstrip, bool special) {
  1538. // ref: https://github.com/ggerganov/llama.cpp/pull/7587#discussion_r1620983843
  1539. static const int attr_special = LLAMA_TOKEN_ATTR_UNKNOWN | LLAMA_TOKEN_ATTR_CONTROL;
  1540. const llama_token_attr attr = llama_token_get_attr_impl(vocab, token);
  1541. if (!special && (attr & attr_special)) {
  1542. return 0;
  1543. }
  1544. // copy piece chars to output text buffer
  1545. // skip up to 'lstrip' leading spaces before copying
  1546. auto _try_copy = [=] (const char * token, size_t size) -> int32_t {
  1547. for (int32_t i = 0; i < lstrip && size && *token == ' '; ++i) {
  1548. token++;
  1549. size--;
  1550. }
  1551. if (length < (int32_t)size) {
  1552. return -(int32_t) size;
  1553. }
  1554. memcpy(buf, token, size);
  1555. return (int32_t) size;
  1556. };
  1557. // if we have a cache - use it
  1558. {
  1559. const auto & cache = vocab.cache_token_to_piece;
  1560. if (!cache.empty()) {
  1561. const auto & result = cache.at(token);
  1562. return _try_copy(result.data(), result.size());
  1563. }
  1564. }
  1565. if (0 <= token && token < (int32_t) vocab.id_to_token.size()) {
  1566. const std::string & token_text = vocab.id_to_token[token].text;
  1567. switch (llama_vocab_get_type(vocab)) {
  1568. case LLAMA_VOCAB_TYPE_WPM:
  1569. case LLAMA_VOCAB_TYPE_SPM:
  1570. case LLAMA_VOCAB_TYPE_UGM: {
  1571. // NOTE: we accept all unsupported token types,
  1572. // suppressing them like CONTROL tokens.
  1573. if (attr & (attr_special | LLAMA_TOKEN_ATTR_USER_DEFINED)) {
  1574. return _try_copy(token_text.data(), token_text.size());
  1575. }
  1576. if (attr & LLAMA_TOKEN_ATTR_NORMAL) {
  1577. std::string result = token_text;
  1578. llama_unescape_whitespace(result);
  1579. return _try_copy(result.data(), result.size());
  1580. }
  1581. if (attr & LLAMA_TOKEN_ATTR_BYTE) {
  1582. char byte = (char) llama_token_to_byte(vocab, token);
  1583. return _try_copy((char*) &byte, 1);
  1584. }
  1585. break;
  1586. }
  1587. case LLAMA_VOCAB_TYPE_BPE: {
  1588. // NOTE: we accept all unsupported token types,
  1589. // suppressing them like CONTROL tokens.
  1590. if (attr & (attr_special | LLAMA_TOKEN_ATTR_USER_DEFINED)) {
  1591. return _try_copy(token_text.data(), token_text.size());
  1592. }
  1593. if (attr & LLAMA_TOKEN_ATTR_NORMAL) {
  1594. std::string result = llama_decode_text(token_text);
  1595. return _try_copy(result.data(), result.size());
  1596. }
  1597. break;
  1598. }
  1599. case LLAMA_VOCAB_TYPE_RWKV: {
  1600. std::vector<uint8_t> result = llama_unescape_rwkv_token(token_text);
  1601. // If we don't have enough space, return an error
  1602. if (result.size() > (size_t)length) {
  1603. return -(int)result.size();
  1604. }
  1605. memcpy(buf, result.data(), result.size());
  1606. return (int)result.size();
  1607. }
  1608. default:
  1609. GGML_ABORT("fatal error");
  1610. }
  1611. }
  1612. return 0;
  1613. }
  1614. int32_t llama_detokenize_impl(
  1615. const struct llama_vocab & vocab,
  1616. const llama_token * tokens,
  1617. int32_t n_tokens,
  1618. char * text,
  1619. int32_t text_len_max,
  1620. bool remove_special,
  1621. bool unparse_special) {
  1622. GGML_ASSERT(vocab.tokenizer && "Tokenizer not initialized. Call llama_vocab::init_tokenizer() first.");
  1623. int32_t avail = text_len_max;
  1624. int32_t total = 0;
  1625. // remove the leading space
  1626. bool remove_space = vocab.tokenizer_add_space_prefix;
  1627. if (remove_special && vocab.tokenizer_add_bos) {
  1628. if (n_tokens > 0 && tokens[0] == vocab.special_bos_id) {
  1629. remove_space = false;
  1630. n_tokens--;
  1631. tokens++;
  1632. }
  1633. }
  1634. if (remove_special && vocab.tokenizer_add_eos) {
  1635. if (n_tokens > 0 && tokens[n_tokens-1] == vocab.special_eos_id) {
  1636. n_tokens--;
  1637. }
  1638. }
  1639. for (int32_t i = 0; i < n_tokens; ++i) {
  1640. GGML_ASSERT(avail >= 0);
  1641. int32_t n_chars = llama_token_to_piece_impl(vocab, tokens[i], text, avail, remove_space, unparse_special);
  1642. remove_space = false;
  1643. if (n_chars < 0) {
  1644. avail = 0;
  1645. total -= n_chars;
  1646. } else if (n_chars > 0) {
  1647. avail -= n_chars;
  1648. text += n_chars;
  1649. total += n_chars;
  1650. }
  1651. }
  1652. if (total > text_len_max) {
  1653. return -total;
  1654. }
  1655. if (vocab.tokenizer_clean_spaces) {
  1656. text -= total; // restart text
  1657. // first pass: characters ?!., //TODO: where do these characters come from?
  1658. const int32_t total1 = total;
  1659. total = total ? 1 : 0;
  1660. for (int32_t i = 1; i < total1; ++i) {
  1661. const char x = text[i];
  1662. if (text[i - 1] == ' ') {
  1663. if (x == '?' || x == '!' || x == '.' || x == ',') { // " ?", " !", " .", " ,"
  1664. total--; // remove space
  1665. }
  1666. }
  1667. text[total++] = x;
  1668. }
  1669. // second pass: strip single apostrophe between spaces
  1670. const int32_t total2 = total;
  1671. total = total ? 1 : 0;
  1672. for (int32_t i = 1; i < total2; ++i) {
  1673. const char x = text[i];
  1674. if (x == '\'' && i + 1 < total2 && text[i - 1] == ' ' && text[i + 1] == ' ') { // " ' "
  1675. total--; // remove prev space
  1676. text[++i] = '\0'; // remove next space
  1677. }
  1678. text[total++] = x;
  1679. }
  1680. // third pass: apostrophe contractions //NOTE: this makes sense?
  1681. const int32_t total3 = total;
  1682. total = total ? 1 : 0;
  1683. for (int32_t i = 1; i < total3; ++i) {
  1684. const char x = text[i];
  1685. if (text[i - 1] == ' ') {
  1686. if (x == '\'' && i + 1 < total3) {
  1687. const char x1 = text[i + 1];
  1688. if (x1 == 't' || x1 == 'd') { // " 't", " 'd"
  1689. //total--; // remove space
  1690. } else if (x1 == 's' || x1 == 'm') { // " 's", " 'm"
  1691. total--; // remove space
  1692. } else if (i + 2 < total3) {
  1693. const char x2 = text[i + 2];
  1694. if ((x1 == 'l' && x2 == 'l')) { // " 'll"
  1695. //total--; // remove space
  1696. } else if ((x1 == 'r' && x2 == 'e') || (x1 == 'v' && x2 == 'e')) { // " 're", " 've"
  1697. total--; // remove space
  1698. } else {
  1699. //total--; // remove space
  1700. }
  1701. } else {
  1702. //total--; // remove space
  1703. }
  1704. }
  1705. }
  1706. text[total++] = x;
  1707. }
  1708. }
  1709. return total <= text_len_max ? total : -total;
  1710. }
  1711. std::string llama_detokenize(const struct llama_vocab & vocab, const std::vector<llama_token> & tokens, bool special) {
  1712. std::string text;
  1713. text.resize(std::max(text.capacity(), tokens.size()));
  1714. int32_t n_chars = llama_detokenize_impl(vocab, tokens.data(), (int32_t)tokens.size(), &text[0], (int32_t)text.size(), false, special);
  1715. if (n_chars < 0) {
  1716. text.resize(-n_chars);
  1717. n_chars = llama_detokenize_impl(vocab, tokens.data(), (int32_t)tokens.size(), &text[0], (int32_t)text.size(), false, special);
  1718. GGML_ASSERT(n_chars <= (int32_t)text.size()); // whitespace trimming is performed after per-token detokenization
  1719. }
  1720. text.resize(n_chars);
  1721. // NOTE: the original tokenizer decodes bytes after collecting the pieces.
  1722. return text;
  1723. }