ggml-cpu.c 465 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365236623672368236923702371237223732374237523762377237823792380238123822383238423852386238723882389239023912392239323942395239623972398239924002401240224032404240524062407240824092410241124122413241424152416241724182419242024212422242324242425242624272428242924302431243224332434243524362437243824392440244124422443244424452446244724482449245024512452245324542455245624572458245924602461246224632464246524662467246824692470247124722473247424752476247724782479248024812482248324842485248624872488248924902491249224932494249524962497249824992500250125022503250425052506250725082509251025112512251325142515251625172518251925202521252225232524252525262527252825292530253125322533253425352536253725382539254025412542254325442545254625472548254925502551255225532554255525562557255825592560256125622563256425652566256725682569257025712572257325742575257625772578257925802581258225832584258525862587258825892590259125922593259425952596259725982599260026012602260326042605260626072608260926102611261226132614261526162617261826192620262126222623262426252626262726282629263026312632263326342635263626372638263926402641264226432644264526462647264826492650265126522653265426552656265726582659266026612662266326642665266626672668266926702671267226732674267526762677267826792680268126822683268426852686268726882689269026912692269326942695269626972698269927002701270227032704270527062707270827092710271127122713271427152716271727182719272027212722272327242725272627272728272927302731273227332734273527362737273827392740274127422743274427452746274727482749275027512752275327542755275627572758275927602761276227632764276527662767276827692770277127722773277427752776277727782779278027812782278327842785278627872788278927902791279227932794279527962797279827992800280128022803280428052806280728082809281028112812281328142815281628172818281928202821282228232824282528262827282828292830283128322833283428352836283728382839284028412842284328442845284628472848284928502851285228532854285528562857285828592860286128622863286428652866286728682869287028712872287328742875287628772878287928802881288228832884288528862887288828892890289128922893289428952896289728982899290029012902290329042905290629072908290929102911291229132914291529162917291829192920292129222923292429252926292729282929293029312932293329342935293629372938293929402941294229432944294529462947294829492950295129522953295429552956295729582959296029612962296329642965296629672968296929702971297229732974297529762977297829792980298129822983298429852986298729882989299029912992299329942995299629972998299930003001300230033004300530063007300830093010301130123013301430153016301730183019302030213022302330243025302630273028302930303031303230333034303530363037303830393040304130423043304430453046304730483049305030513052305330543055305630573058305930603061306230633064306530663067306830693070307130723073307430753076307730783079308030813082308330843085308630873088308930903091309230933094309530963097309830993100310131023103310431053106310731083109311031113112311331143115311631173118311931203121312231233124312531263127312831293130313131323133313431353136313731383139314031413142314331443145314631473148314931503151315231533154315531563157315831593160316131623163316431653166316731683169317031713172317331743175317631773178317931803181318231833184318531863187318831893190319131923193319431953196319731983199320032013202320332043205320632073208320932103211321232133214321532163217321832193220322132223223322432253226322732283229323032313232323332343235323632373238323932403241324232433244324532463247324832493250325132523253325432553256325732583259326032613262326332643265326632673268326932703271327232733274327532763277327832793280328132823283328432853286328732883289329032913292329332943295329632973298329933003301330233033304330533063307330833093310331133123313331433153316331733183319332033213322332333243325332633273328332933303331333233333334333533363337333833393340334133423343334433453346334733483349335033513352335333543355335633573358335933603361336233633364336533663367336833693370337133723373337433753376337733783379338033813382338333843385338633873388338933903391339233933394339533963397339833993400340134023403340434053406340734083409341034113412341334143415341634173418341934203421342234233424342534263427342834293430343134323433343434353436343734383439344034413442344334443445344634473448344934503451345234533454345534563457345834593460346134623463346434653466346734683469347034713472347334743475347634773478347934803481348234833484348534863487348834893490349134923493349434953496349734983499350035013502350335043505350635073508350935103511351235133514351535163517351835193520352135223523352435253526352735283529353035313532353335343535353635373538353935403541354235433544354535463547354835493550355135523553355435553556355735583559356035613562356335643565356635673568356935703571357235733574357535763577357835793580358135823583358435853586358735883589359035913592359335943595359635973598359936003601360236033604360536063607360836093610361136123613361436153616361736183619362036213622362336243625362636273628362936303631363236333634363536363637363836393640364136423643364436453646364736483649365036513652365336543655365636573658365936603661366236633664366536663667366836693670367136723673367436753676367736783679368036813682368336843685368636873688368936903691369236933694369536963697369836993700370137023703370437053706370737083709371037113712371337143715371637173718371937203721372237233724372537263727372837293730373137323733373437353736373737383739374037413742374337443745374637473748374937503751375237533754375537563757375837593760376137623763376437653766376737683769377037713772377337743775377637773778377937803781378237833784378537863787378837893790379137923793379437953796379737983799380038013802380338043805380638073808380938103811381238133814381538163817381838193820382138223823382438253826382738283829383038313832383338343835383638373838383938403841384238433844384538463847384838493850385138523853385438553856385738583859386038613862386338643865386638673868386938703871387238733874387538763877387838793880388138823883388438853886388738883889389038913892389338943895389638973898389939003901390239033904390539063907390839093910391139123913391439153916391739183919392039213922392339243925392639273928392939303931393239333934393539363937393839393940394139423943394439453946394739483949395039513952395339543955395639573958395939603961396239633964396539663967396839693970397139723973397439753976397739783979398039813982398339843985398639873988398939903991399239933994399539963997399839994000400140024003400440054006400740084009401040114012401340144015401640174018401940204021402240234024402540264027402840294030403140324033403440354036403740384039404040414042404340444045404640474048404940504051405240534054405540564057405840594060406140624063406440654066406740684069407040714072407340744075407640774078407940804081408240834084408540864087408840894090409140924093409440954096409740984099410041014102410341044105410641074108410941104111411241134114411541164117411841194120412141224123412441254126412741284129413041314132413341344135413641374138413941404141414241434144414541464147414841494150415141524153415441554156415741584159416041614162416341644165416641674168416941704171417241734174417541764177417841794180418141824183418441854186418741884189419041914192419341944195419641974198419942004201420242034204420542064207420842094210421142124213421442154216421742184219422042214222422342244225422642274228422942304231423242334234423542364237423842394240424142424243424442454246424742484249425042514252425342544255425642574258425942604261426242634264426542664267426842694270427142724273427442754276427742784279428042814282428342844285428642874288428942904291429242934294429542964297429842994300430143024303430443054306430743084309431043114312431343144315431643174318431943204321432243234324432543264327432843294330433143324333433443354336433743384339434043414342434343444345434643474348434943504351435243534354435543564357435843594360436143624363436443654366436743684369437043714372437343744375437643774378437943804381438243834384438543864387438843894390439143924393439443954396439743984399440044014402440344044405440644074408440944104411441244134414441544164417441844194420442144224423442444254426442744284429443044314432443344344435443644374438443944404441444244434444444544464447444844494450445144524453445444554456445744584459446044614462446344644465446644674468446944704471447244734474447544764477447844794480448144824483448444854486448744884489449044914492449344944495449644974498449945004501450245034504450545064507450845094510451145124513451445154516451745184519452045214522452345244525452645274528452945304531453245334534453545364537453845394540454145424543454445454546454745484549455045514552455345544555455645574558455945604561456245634564456545664567456845694570457145724573457445754576457745784579458045814582458345844585458645874588458945904591459245934594459545964597459845994600460146024603460446054606460746084609461046114612461346144615461646174618461946204621462246234624462546264627462846294630463146324633463446354636463746384639464046414642464346444645464646474648464946504651465246534654465546564657465846594660466146624663466446654666466746684669467046714672467346744675467646774678467946804681468246834684468546864687468846894690469146924693469446954696469746984699470047014702470347044705470647074708470947104711471247134714471547164717471847194720472147224723472447254726472747284729473047314732473347344735473647374738473947404741474247434744474547464747474847494750475147524753475447554756475747584759476047614762476347644765476647674768476947704771477247734774477547764777477847794780478147824783478447854786478747884789479047914792479347944795479647974798479948004801480248034804480548064807480848094810481148124813481448154816481748184819482048214822482348244825482648274828482948304831483248334834483548364837483848394840484148424843484448454846484748484849485048514852485348544855485648574858485948604861486248634864486548664867486848694870487148724873487448754876487748784879488048814882488348844885488648874888488948904891489248934894489548964897489848994900490149024903490449054906490749084909491049114912491349144915491649174918491949204921492249234924492549264927492849294930493149324933493449354936493749384939494049414942494349444945494649474948494949504951495249534954495549564957495849594960496149624963496449654966496749684969497049714972497349744975497649774978497949804981498249834984498549864987498849894990499149924993499449954996499749984999500050015002500350045005500650075008500950105011501250135014501550165017501850195020502150225023502450255026502750285029503050315032503350345035503650375038503950405041504250435044504550465047504850495050505150525053505450555056505750585059506050615062506350645065506650675068506950705071507250735074507550765077507850795080508150825083508450855086508750885089509050915092509350945095509650975098509951005101510251035104510551065107510851095110511151125113511451155116511751185119512051215122512351245125512651275128512951305131513251335134513551365137513851395140514151425143514451455146514751485149515051515152515351545155515651575158515951605161516251635164516551665167516851695170517151725173517451755176517751785179518051815182518351845185518651875188518951905191519251935194519551965197519851995200520152025203520452055206520752085209521052115212521352145215521652175218521952205221522252235224522552265227522852295230523152325233523452355236523752385239524052415242524352445245524652475248524952505251525252535254525552565257525852595260526152625263526452655266526752685269527052715272527352745275527652775278527952805281528252835284528552865287528852895290529152925293529452955296529752985299530053015302530353045305530653075308530953105311531253135314531553165317531853195320532153225323532453255326532753285329533053315332533353345335533653375338533953405341534253435344534553465347534853495350535153525353535453555356535753585359536053615362536353645365536653675368536953705371537253735374537553765377537853795380538153825383538453855386538753885389539053915392539353945395539653975398539954005401540254035404540554065407540854095410541154125413541454155416541754185419542054215422542354245425542654275428542954305431543254335434543554365437543854395440544154425443544454455446544754485449545054515452545354545455545654575458545954605461546254635464546554665467546854695470547154725473547454755476547754785479548054815482548354845485548654875488548954905491549254935494549554965497549854995500550155025503550455055506550755085509551055115512551355145515551655175518551955205521552255235524552555265527552855295530553155325533553455355536553755385539554055415542554355445545554655475548554955505551555255535554555555565557555855595560556155625563556455655566556755685569557055715572557355745575557655775578557955805581558255835584558555865587558855895590559155925593559455955596559755985599560056015602560356045605560656075608560956105611561256135614561556165617561856195620562156225623562456255626562756285629563056315632563356345635563656375638563956405641564256435644564556465647564856495650565156525653565456555656565756585659566056615662566356645665566656675668566956705671567256735674567556765677567856795680568156825683568456855686568756885689569056915692569356945695569656975698569957005701570257035704570557065707570857095710571157125713571457155716571757185719572057215722572357245725572657275728572957305731573257335734573557365737573857395740574157425743574457455746574757485749575057515752575357545755575657575758575957605761576257635764576557665767576857695770577157725773577457755776577757785779578057815782578357845785578657875788578957905791579257935794579557965797579857995800580158025803580458055806580758085809581058115812581358145815581658175818581958205821582258235824582558265827582858295830583158325833583458355836583758385839584058415842584358445845584658475848584958505851585258535854585558565857585858595860586158625863586458655866586758685869587058715872587358745875587658775878587958805881588258835884588558865887588858895890589158925893589458955896589758985899590059015902590359045905590659075908590959105911591259135914591559165917591859195920592159225923592459255926592759285929593059315932593359345935593659375938593959405941594259435944594559465947594859495950595159525953595459555956595759585959596059615962596359645965596659675968596959705971597259735974597559765977597859795980598159825983598459855986598759885989599059915992599359945995599659975998599960006001600260036004600560066007600860096010601160126013601460156016601760186019602060216022602360246025602660276028602960306031603260336034603560366037603860396040604160426043604460456046604760486049605060516052605360546055605660576058605960606061606260636064606560666067606860696070607160726073607460756076607760786079608060816082608360846085608660876088608960906091609260936094609560966097609860996100610161026103610461056106610761086109611061116112611361146115611661176118611961206121612261236124612561266127612861296130613161326133613461356136613761386139614061416142614361446145614661476148614961506151615261536154615561566157615861596160616161626163616461656166616761686169617061716172617361746175617661776178617961806181618261836184618561866187618861896190619161926193619461956196619761986199620062016202620362046205620662076208620962106211621262136214621562166217621862196220622162226223622462256226622762286229623062316232623362346235623662376238623962406241624262436244624562466247624862496250625162526253625462556256625762586259626062616262626362646265626662676268626962706271627262736274627562766277627862796280628162826283628462856286628762886289629062916292629362946295629662976298629963006301630263036304630563066307630863096310631163126313631463156316631763186319632063216322632363246325632663276328632963306331633263336334633563366337633863396340634163426343634463456346634763486349635063516352635363546355635663576358635963606361636263636364636563666367636863696370637163726373637463756376637763786379638063816382638363846385638663876388638963906391639263936394639563966397639863996400640164026403640464056406640764086409641064116412641364146415641664176418641964206421642264236424642564266427642864296430643164326433643464356436643764386439644064416442644364446445644664476448644964506451645264536454645564566457645864596460646164626463646464656466646764686469647064716472647364746475647664776478647964806481648264836484648564866487648864896490649164926493649464956496649764986499650065016502650365046505650665076508650965106511651265136514651565166517651865196520652165226523652465256526652765286529653065316532653365346535653665376538653965406541654265436544654565466547654865496550655165526553655465556556655765586559656065616562656365646565656665676568656965706571657265736574657565766577657865796580658165826583658465856586658765886589659065916592659365946595659665976598659966006601660266036604660566066607660866096610661166126613661466156616661766186619662066216622662366246625662666276628662966306631663266336634663566366637663866396640664166426643664466456646664766486649665066516652665366546655665666576658665966606661666266636664666566666667666866696670667166726673667466756676667766786679668066816682668366846685668666876688668966906691669266936694669566966697669866996700670167026703670467056706670767086709671067116712671367146715671667176718671967206721672267236724672567266727672867296730673167326733673467356736673767386739674067416742674367446745674667476748674967506751675267536754675567566757675867596760676167626763676467656766676767686769677067716772677367746775677667776778677967806781678267836784678567866787678867896790679167926793679467956796679767986799680068016802680368046805680668076808680968106811681268136814681568166817681868196820682168226823682468256826682768286829683068316832683368346835683668376838683968406841684268436844684568466847684868496850685168526853685468556856685768586859686068616862686368646865686668676868686968706871687268736874687568766877687868796880688168826883688468856886688768886889689068916892689368946895689668976898689969006901690269036904690569066907690869096910691169126913691469156916691769186919692069216922692369246925692669276928692969306931693269336934693569366937693869396940694169426943694469456946694769486949695069516952695369546955695669576958695969606961696269636964696569666967696869696970697169726973697469756976697769786979698069816982698369846985698669876988698969906991699269936994699569966997699869997000700170027003700470057006700770087009701070117012701370147015701670177018701970207021702270237024702570267027702870297030703170327033703470357036703770387039704070417042704370447045704670477048704970507051705270537054705570567057705870597060706170627063706470657066706770687069707070717072707370747075707670777078707970807081708270837084708570867087708870897090709170927093709470957096709770987099710071017102710371047105710671077108710971107111711271137114711571167117711871197120712171227123712471257126712771287129713071317132713371347135713671377138713971407141714271437144714571467147714871497150715171527153715471557156715771587159716071617162716371647165716671677168716971707171717271737174717571767177717871797180718171827183718471857186718771887189719071917192719371947195719671977198719972007201720272037204720572067207720872097210721172127213721472157216721772187219722072217222722372247225722672277228722972307231723272337234723572367237723872397240724172427243724472457246724772487249725072517252725372547255725672577258725972607261726272637264726572667267726872697270727172727273727472757276727772787279728072817282728372847285728672877288728972907291729272937294729572967297729872997300730173027303730473057306730773087309731073117312731373147315731673177318731973207321732273237324732573267327732873297330733173327333733473357336733773387339734073417342734373447345734673477348734973507351735273537354735573567357735873597360736173627363736473657366736773687369737073717372737373747375737673777378737973807381738273837384738573867387738873897390739173927393739473957396739773987399740074017402740374047405740674077408740974107411741274137414741574167417741874197420742174227423742474257426742774287429743074317432743374347435743674377438743974407441744274437444744574467447744874497450745174527453745474557456745774587459746074617462746374647465746674677468746974707471747274737474747574767477747874797480748174827483748474857486748774887489749074917492749374947495749674977498749975007501750275037504750575067507750875097510751175127513751475157516751775187519752075217522752375247525752675277528752975307531753275337534753575367537753875397540754175427543754475457546754775487549755075517552755375547555755675577558755975607561756275637564756575667567756875697570757175727573757475757576757775787579758075817582758375847585758675877588758975907591759275937594759575967597759875997600760176027603760476057606760776087609761076117612761376147615761676177618761976207621762276237624762576267627762876297630763176327633763476357636763776387639764076417642764376447645764676477648764976507651765276537654765576567657765876597660766176627663766476657666766776687669767076717672767376747675767676777678767976807681768276837684768576867687768876897690769176927693769476957696769776987699770077017702770377047705770677077708770977107711771277137714771577167717771877197720772177227723772477257726772777287729773077317732773377347735773677377738773977407741774277437744774577467747774877497750775177527753775477557756775777587759776077617762776377647765776677677768776977707771777277737774777577767777777877797780778177827783778477857786778777887789779077917792779377947795779677977798779978007801780278037804780578067807780878097810781178127813781478157816781778187819782078217822782378247825782678277828782978307831783278337834783578367837783878397840784178427843784478457846784778487849785078517852785378547855785678577858785978607861786278637864786578667867786878697870787178727873787478757876787778787879788078817882788378847885788678877888788978907891789278937894789578967897789878997900790179027903790479057906790779087909791079117912791379147915791679177918791979207921792279237924792579267927792879297930793179327933793479357936793779387939794079417942794379447945794679477948794979507951795279537954795579567957795879597960796179627963796479657966796779687969797079717972797379747975797679777978797979807981798279837984798579867987798879897990799179927993799479957996799779987999800080018002800380048005800680078008800980108011801280138014801580168017801880198020802180228023802480258026802780288029803080318032803380348035803680378038803980408041804280438044804580468047804880498050805180528053805480558056805780588059806080618062806380648065806680678068806980708071807280738074807580768077807880798080808180828083808480858086808780888089809080918092809380948095809680978098809981008101810281038104810581068107810881098110811181128113811481158116811781188119812081218122812381248125812681278128812981308131813281338134813581368137813881398140814181428143814481458146814781488149815081518152815381548155815681578158815981608161816281638164816581668167816881698170817181728173817481758176817781788179818081818182818381848185818681878188818981908191819281938194819581968197819881998200820182028203820482058206820782088209821082118212821382148215821682178218821982208221822282238224822582268227822882298230823182328233823482358236823782388239824082418242824382448245824682478248824982508251825282538254825582568257825882598260826182628263826482658266826782688269827082718272827382748275827682778278827982808281828282838284828582868287828882898290829182928293829482958296829782988299830083018302830383048305830683078308830983108311831283138314831583168317831883198320832183228323832483258326832783288329833083318332833383348335833683378338833983408341834283438344834583468347834883498350835183528353835483558356835783588359836083618362836383648365836683678368836983708371837283738374837583768377837883798380838183828383838483858386838783888389839083918392839383948395839683978398839984008401840284038404840584068407840884098410841184128413841484158416841784188419842084218422842384248425842684278428842984308431843284338434843584368437843884398440844184428443844484458446844784488449845084518452845384548455845684578458845984608461846284638464846584668467846884698470847184728473847484758476847784788479848084818482848384848485848684878488848984908491849284938494849584968497849884998500850185028503850485058506850785088509851085118512851385148515851685178518851985208521852285238524852585268527852885298530853185328533853485358536853785388539854085418542854385448545854685478548854985508551855285538554855585568557855885598560856185628563856485658566856785688569857085718572857385748575857685778578857985808581858285838584858585868587858885898590859185928593859485958596859785988599860086018602860386048605860686078608860986108611861286138614861586168617861886198620862186228623862486258626862786288629863086318632863386348635863686378638863986408641864286438644864586468647864886498650865186528653865486558656865786588659866086618662866386648665866686678668866986708671867286738674867586768677867886798680868186828683868486858686868786888689869086918692869386948695869686978698869987008701870287038704870587068707870887098710871187128713871487158716871787188719872087218722872387248725872687278728872987308731873287338734873587368737873887398740874187428743874487458746874787488749875087518752875387548755875687578758875987608761876287638764876587668767876887698770877187728773877487758776877787788779878087818782878387848785878687878788878987908791879287938794879587968797879887998800880188028803880488058806880788088809881088118812881388148815881688178818881988208821882288238824882588268827882888298830883188328833883488358836883788388839884088418842884388448845884688478848884988508851885288538854885588568857885888598860886188628863886488658866886788688869887088718872887388748875887688778878887988808881888288838884888588868887888888898890889188928893889488958896889788988899890089018902890389048905890689078908890989108911891289138914891589168917891889198920892189228923892489258926892789288929893089318932893389348935893689378938893989408941894289438944894589468947894889498950895189528953895489558956895789588959896089618962896389648965896689678968896989708971897289738974897589768977897889798980898189828983898489858986898789888989899089918992899389948995899689978998899990009001900290039004900590069007900890099010901190129013901490159016901790189019902090219022902390249025902690279028902990309031903290339034903590369037903890399040904190429043904490459046904790489049905090519052905390549055905690579058905990609061906290639064906590669067906890699070907190729073907490759076907790789079908090819082908390849085908690879088908990909091909290939094909590969097909890999100910191029103910491059106910791089109911091119112911391149115911691179118911991209121912291239124912591269127912891299130913191329133913491359136913791389139914091419142914391449145914691479148914991509151915291539154915591569157915891599160916191629163916491659166916791689169917091719172917391749175917691779178917991809181918291839184918591869187918891899190919191929193919491959196919791989199920092019202920392049205920692079208920992109211921292139214921592169217921892199220922192229223922492259226922792289229923092319232923392349235923692379238923992409241924292439244924592469247924892499250925192529253925492559256925792589259926092619262926392649265926692679268926992709271927292739274927592769277927892799280928192829283928492859286928792889289929092919292929392949295929692979298929993009301930293039304930593069307930893099310931193129313931493159316931793189319932093219322932393249325932693279328932993309331933293339334933593369337933893399340934193429343934493459346934793489349935093519352935393549355935693579358935993609361936293639364936593669367936893699370937193729373937493759376937793789379938093819382938393849385938693879388938993909391939293939394939593969397939893999400940194029403940494059406940794089409941094119412941394149415941694179418941994209421942294239424942594269427942894299430943194329433943494359436943794389439944094419442944394449445944694479448944994509451945294539454945594569457945894599460946194629463946494659466946794689469947094719472947394749475947694779478947994809481948294839484948594869487948894899490949194929493949494959496949794989499950095019502950395049505950695079508950995109511951295139514951595169517951895199520952195229523952495259526952795289529953095319532953395349535953695379538953995409541954295439544954595469547954895499550955195529553955495559556955795589559956095619562956395649565956695679568956995709571957295739574957595769577957895799580958195829583958495859586958795889589959095919592959395949595959695979598959996009601960296039604960596069607960896099610961196129613961496159616961796189619962096219622962396249625962696279628962996309631963296339634963596369637963896399640964196429643964496459646964796489649965096519652965396549655965696579658965996609661966296639664966596669667966896699670967196729673967496759676967796789679968096819682968396849685968696879688968996909691969296939694969596969697969896999700970197029703970497059706970797089709971097119712971397149715971697179718971997209721972297239724972597269727972897299730973197329733973497359736973797389739974097419742974397449745974697479748974997509751975297539754975597569757975897599760976197629763976497659766976797689769977097719772977397749775977697779778977997809781978297839784978597869787978897899790979197929793979497959796979797989799980098019802980398049805980698079808980998109811981298139814981598169817981898199820982198229823982498259826982798289829983098319832983398349835983698379838983998409841984298439844984598469847984898499850985198529853985498559856985798589859986098619862986398649865986698679868986998709871987298739874987598769877987898799880988198829883988498859886988798889889989098919892989398949895989698979898989999009901990299039904990599069907990899099910991199129913991499159916991799189919992099219922992399249925992699279928992999309931993299339934993599369937993899399940994199429943994499459946994799489949995099519952995399549955995699579958995999609961996299639964996599669967996899699970997199729973997499759976997799789979998099819982998399849985998699879988998999909991999299939994999599969997999899991000010001100021000310004100051000610007100081000910010100111001210013100141001510016100171001810019100201002110022100231002410025100261002710028100291003010031100321003310034100351003610037100381003910040100411004210043100441004510046100471004810049100501005110052100531005410055100561005710058100591006010061100621006310064100651006610067100681006910070100711007210073100741007510076100771007810079100801008110082100831008410085100861008710088100891009010091100921009310094100951009610097100981009910100101011010210103101041010510106101071010810109101101011110112101131011410115101161011710118101191012010121101221012310124101251012610127101281012910130101311013210133101341013510136101371013810139101401014110142101431014410145101461014710148101491015010151101521015310154101551015610157101581015910160101611016210163101641016510166101671016810169101701017110172101731017410175101761017710178101791018010181101821018310184101851018610187101881018910190101911019210193101941019510196101971019810199102001020110202102031020410205102061020710208102091021010211102121021310214102151021610217102181021910220102211022210223102241022510226102271022810229102301023110232102331023410235102361023710238102391024010241102421024310244102451024610247102481024910250102511025210253102541025510256102571025810259102601026110262102631026410265102661026710268102691027010271102721027310274102751027610277102781027910280102811028210283102841028510286102871028810289102901029110292102931029410295102961029710298102991030010301103021030310304103051030610307103081030910310103111031210313103141031510316103171031810319103201032110322103231032410325103261032710328103291033010331103321033310334103351033610337103381033910340103411034210343103441034510346103471034810349103501035110352103531035410355103561035710358103591036010361103621036310364103651036610367103681036910370103711037210373103741037510376103771037810379103801038110382103831038410385103861038710388103891039010391103921039310394103951039610397103981039910400104011040210403104041040510406104071040810409104101041110412104131041410415104161041710418104191042010421104221042310424104251042610427104281042910430104311043210433104341043510436104371043810439104401044110442104431044410445104461044710448104491045010451104521045310454104551045610457104581045910460104611046210463104641046510466104671046810469104701047110472104731047410475104761047710478104791048010481104821048310484104851048610487104881048910490104911049210493104941049510496104971049810499105001050110502105031050410505105061050710508105091051010511105121051310514105151051610517105181051910520105211052210523105241052510526105271052810529105301053110532105331053410535105361053710538105391054010541105421054310544105451054610547105481054910550105511055210553105541055510556105571055810559105601056110562105631056410565105661056710568105691057010571105721057310574105751057610577105781057910580105811058210583105841058510586105871058810589105901059110592105931059410595105961059710598105991060010601106021060310604106051060610607106081060910610106111061210613106141061510616106171061810619106201062110622106231062410625106261062710628106291063010631106321063310634106351063610637106381063910640106411064210643106441064510646106471064810649106501065110652106531065410655106561065710658106591066010661106621066310664106651066610667106681066910670106711067210673106741067510676106771067810679106801068110682106831068410685106861068710688106891069010691106921069310694106951069610697106981069910700107011070210703107041070510706107071070810709107101071110712107131071410715107161071710718107191072010721107221072310724107251072610727107281072910730107311073210733107341073510736107371073810739107401074110742107431074410745107461074710748107491075010751107521075310754107551075610757107581075910760107611076210763107641076510766107671076810769107701077110772107731077410775107761077710778107791078010781107821078310784107851078610787107881078910790107911079210793107941079510796107971079810799108001080110802108031080410805108061080710808108091081010811108121081310814108151081610817108181081910820108211082210823108241082510826108271082810829108301083110832108331083410835108361083710838108391084010841108421084310844108451084610847108481084910850108511085210853108541085510856108571085810859108601086110862108631086410865108661086710868108691087010871108721087310874108751087610877108781087910880108811088210883108841088510886108871088810889108901089110892108931089410895108961089710898108991090010901109021090310904109051090610907109081090910910109111091210913109141091510916109171091810919109201092110922109231092410925109261092710928109291093010931109321093310934109351093610937109381093910940109411094210943109441094510946109471094810949109501095110952109531095410955109561095710958109591096010961109621096310964109651096610967109681096910970109711097210973109741097510976109771097810979109801098110982109831098410985109861098710988109891099010991109921099310994109951099610997109981099911000110011100211003110041100511006110071100811009110101101111012110131101411015110161101711018110191102011021110221102311024110251102611027110281102911030110311103211033110341103511036110371103811039110401104111042110431104411045110461104711048110491105011051110521105311054110551105611057110581105911060110611106211063110641106511066110671106811069110701107111072110731107411075110761107711078110791108011081110821108311084110851108611087110881108911090110911109211093110941109511096110971109811099111001110111102111031110411105111061110711108111091111011111111121111311114111151111611117111181111911120111211112211123111241112511126111271112811129111301113111132111331113411135111361113711138111391114011141111421114311144111451114611147111481114911150111511115211153111541115511156111571115811159111601116111162111631116411165111661116711168111691117011171111721117311174111751117611177111781117911180111811118211183111841118511186111871118811189111901119111192111931119411195111961119711198111991120011201112021120311204112051120611207112081120911210112111121211213112141121511216112171121811219112201122111222112231122411225112261122711228112291123011231112321123311234112351123611237112381123911240112411124211243112441124511246112471124811249112501125111252112531125411255112561125711258112591126011261112621126311264112651126611267112681126911270112711127211273112741127511276112771127811279112801128111282112831128411285112861128711288112891129011291112921129311294112951129611297112981129911300113011130211303113041130511306113071130811309113101131111312113131131411315113161131711318113191132011321113221132311324113251132611327113281132911330113311133211333113341133511336113371133811339113401134111342113431134411345113461134711348113491135011351113521135311354113551135611357113581135911360113611136211363113641136511366113671136811369113701137111372113731137411375113761137711378113791138011381113821138311384113851138611387113881138911390113911139211393113941139511396113971139811399114001140111402114031140411405114061140711408114091141011411114121141311414114151141611417114181141911420114211142211423114241142511426114271142811429114301143111432114331143411435114361143711438114391144011441114421144311444114451144611447114481144911450114511145211453114541145511456114571145811459114601146111462114631146411465114661146711468114691147011471114721147311474114751147611477114781147911480114811148211483114841148511486114871148811489114901149111492114931149411495114961149711498114991150011501115021150311504115051150611507115081150911510115111151211513115141151511516115171151811519115201152111522115231152411525115261152711528115291153011531115321153311534115351153611537115381153911540115411154211543115441154511546115471154811549115501155111552115531155411555115561155711558115591156011561115621156311564115651156611567115681156911570115711157211573115741157511576115771157811579115801158111582115831158411585115861158711588115891159011591115921159311594115951159611597115981159911600116011160211603116041160511606116071160811609116101161111612116131161411615116161161711618116191162011621116221162311624116251162611627116281162911630116311163211633116341163511636116371163811639116401164111642116431164411645116461164711648116491165011651116521165311654116551165611657116581165911660116611166211663116641166511666116671166811669116701167111672116731167411675116761167711678116791168011681116821168311684116851168611687116881168911690116911169211693116941169511696116971169811699117001170111702117031170411705117061170711708117091171011711117121171311714117151171611717117181171911720117211172211723117241172511726117271172811729117301173111732117331173411735117361173711738117391174011741117421174311744117451174611747117481174911750117511175211753117541175511756117571175811759117601176111762117631176411765117661176711768117691177011771117721177311774117751177611777117781177911780117811178211783117841178511786117871178811789117901179111792117931179411795117961179711798117991180011801118021180311804118051180611807118081180911810118111181211813118141181511816118171181811819118201182111822118231182411825118261182711828118291183011831118321183311834118351183611837118381183911840118411184211843118441184511846118471184811849118501185111852118531185411855118561185711858118591186011861118621186311864118651186611867118681186911870118711187211873118741187511876118771187811879118801188111882118831188411885118861188711888118891189011891118921189311894118951189611897118981189911900119011190211903119041190511906119071190811909119101191111912119131191411915119161191711918119191192011921119221192311924119251192611927119281192911930119311193211933119341193511936119371193811939119401194111942119431194411945119461194711948119491195011951119521195311954119551195611957119581195911960119611196211963119641196511966119671196811969119701197111972119731197411975119761197711978119791198011981119821198311984119851198611987119881198911990119911199211993119941199511996119971199811999120001200112002120031200412005120061200712008120091201012011120121201312014120151201612017120181201912020120211202212023120241202512026120271202812029120301203112032120331203412035120361203712038120391204012041120421204312044120451204612047120481204912050120511205212053120541205512056120571205812059120601206112062120631206412065120661206712068120691207012071120721207312074120751207612077120781207912080120811208212083120841208512086120871208812089120901209112092120931209412095120961209712098120991210012101121021210312104121051210612107121081210912110121111211212113121141211512116121171211812119121201212112122121231212412125121261212712128121291213012131121321213312134121351213612137121381213912140121411214212143121441214512146121471214812149121501215112152121531215412155121561215712158121591216012161121621216312164121651216612167121681216912170121711217212173121741217512176121771217812179121801218112182121831218412185121861218712188121891219012191121921219312194121951219612197121981219912200122011220212203122041220512206122071220812209122101221112212122131221412215122161221712218122191222012221122221222312224122251222612227122281222912230122311223212233122341223512236122371223812239122401224112242122431224412245122461224712248122491225012251122521225312254122551225612257122581225912260122611226212263122641226512266122671226812269122701227112272122731227412275122761227712278122791228012281122821228312284122851228612287122881228912290122911229212293122941229512296122971229812299123001230112302123031230412305123061230712308123091231012311123121231312314123151231612317123181231912320123211232212323123241232512326123271232812329123301233112332123331233412335123361233712338123391234012341123421234312344123451234612347123481234912350123511235212353123541235512356123571235812359123601236112362123631236412365123661236712368123691237012371123721237312374123751237612377123781237912380123811238212383123841238512386123871238812389123901239112392123931239412395123961239712398123991240012401124021240312404124051240612407124081240912410124111241212413124141241512416124171241812419124201242112422124231242412425124261242712428124291243012431124321243312434124351243612437124381243912440124411244212443124441244512446124471244812449124501245112452124531245412455124561245712458124591246012461124621246312464124651246612467124681246912470124711247212473124741247512476124771247812479124801248112482124831248412485124861248712488124891249012491124921249312494124951249612497124981249912500125011250212503125041250512506125071250812509125101251112512125131251412515125161251712518125191252012521125221252312524125251252612527125281252912530125311253212533125341253512536125371253812539125401254112542125431254412545125461254712548125491255012551125521255312554125551255612557125581255912560125611256212563125641256512566125671256812569125701257112572125731257412575125761257712578125791258012581125821258312584125851258612587125881258912590125911259212593125941259512596125971259812599126001260112602126031260412605126061260712608126091261012611126121261312614126151261612617126181261912620126211262212623126241262512626126271262812629126301263112632126331263412635126361263712638126391264012641126421264312644126451264612647126481264912650126511265212653126541265512656126571265812659126601266112662126631266412665126661266712668126691267012671126721267312674126751267612677126781267912680126811268212683126841268512686126871268812689126901269112692126931269412695126961269712698126991270012701127021270312704127051270612707127081270912710127111271212713127141271512716127171271812719127201272112722127231272412725127261272712728127291273012731127321273312734127351273612737127381273912740127411274212743127441274512746127471274812749127501275112752127531275412755127561275712758127591276012761127621276312764127651276612767127681276912770127711277212773127741277512776127771277812779127801278112782127831278412785127861278712788127891279012791127921279312794127951279612797127981279912800128011280212803128041280512806128071280812809128101281112812128131281412815128161281712818128191282012821128221282312824128251282612827128281282912830128311283212833128341283512836128371283812839128401284112842128431284412845128461284712848128491285012851128521285312854128551285612857128581285912860128611286212863128641286512866128671286812869128701287112872128731287412875128761287712878128791288012881128821288312884128851288612887128881288912890128911289212893128941289512896128971289812899129001290112902129031290412905129061290712908129091291012911129121291312914129151291612917129181291912920129211292212923129241292512926129271292812929129301293112932129331293412935129361293712938129391294012941129421294312944129451294612947129481294912950129511295212953129541295512956129571295812959129601296112962129631296412965129661296712968129691297012971129721297312974129751297612977129781297912980129811298212983129841298512986129871298812989129901299112992129931299412995129961299712998129991300013001130021300313004130051300613007130081300913010130111301213013130141301513016130171301813019130201302113022130231302413025130261302713028130291303013031130321303313034130351303613037130381303913040130411304213043130441304513046130471304813049130501305113052130531305413055130561305713058130591306013061130621306313064130651306613067130681306913070130711307213073130741307513076130771307813079130801308113082130831308413085130861308713088130891309013091130921309313094130951309613097130981309913100131011310213103131041310513106131071310813109131101311113112131131311413115131161311713118131191312013121131221312313124131251312613127131281312913130131311313213133131341313513136131371313813139131401314113142131431314413145131461314713148131491315013151131521315313154131551315613157131581315913160131611316213163131641316513166131671316813169131701317113172131731317413175131761317713178131791318013181131821318313184131851318613187131881318913190131911319213193131941319513196131971319813199132001320113202132031320413205132061320713208132091321013211132121321313214132151321613217132181321913220132211322213223132241322513226132271322813229132301323113232132331323413235132361323713238132391324013241132421324313244132451324613247132481324913250132511325213253132541325513256132571325813259132601326113262132631326413265132661326713268132691327013271132721327313274132751327613277132781327913280132811328213283132841328513286132871328813289132901329113292132931329413295132961329713298132991330013301133021330313304133051330613307133081330913310133111331213313133141331513316133171331813319133201332113322133231332413325133261332713328133291333013331133321333313334133351333613337133381333913340133411334213343133441334513346133471334813349133501335113352133531335413355133561335713358133591336013361133621336313364133651336613367133681336913370133711337213373133741337513376133771337813379133801338113382133831338413385133861338713388133891339013391133921339313394133951339613397133981339913400134011340213403134041340513406134071340813409134101341113412134131341413415134161341713418134191342013421134221342313424134251342613427134281342913430134311343213433134341343513436134371343813439134401344113442134431344413445134461344713448134491345013451134521345313454134551345613457134581345913460134611346213463134641346513466134671346813469134701347113472134731347413475134761347713478134791348013481134821348313484134851348613487134881348913490134911349213493134941349513496134971349813499135001350113502135031350413505135061350713508135091351013511135121351313514135151351613517135181351913520135211352213523135241352513526135271352813529135301353113532135331353413535135361353713538135391354013541135421354313544135451354613547135481354913550135511355213553135541355513556135571355813559135601356113562135631356413565135661356713568135691357013571135721357313574135751357613577135781357913580135811358213583135841358513586135871358813589135901359113592135931359413595135961359713598135991360013601136021360313604136051360613607136081360913610136111361213613136141361513616136171361813619136201362113622136231362413625136261362713628136291363013631136321363313634136351363613637136381363913640136411364213643136441364513646136471364813649136501365113652136531365413655136561365713658136591366013661136621366313664136651366613667136681366913670136711367213673136741367513676136771367813679136801368113682136831368413685136861368713688136891369013691136921369313694136951369613697136981369913700137011370213703137041370513706137071370813709137101371113712137131371413715137161371713718137191372013721137221372313724137251372613727137281372913730137311373213733137341373513736137371373813739137401374113742137431374413745137461374713748137491375013751137521375313754137551375613757137581375913760137611376213763137641376513766137671376813769137701377113772137731377413775137761377713778137791378013781137821378313784137851378613787137881378913790137911379213793137941379513796137971379813799138001380113802138031380413805138061380713808138091381013811138121381313814138151381613817138181381913820138211382213823138241382513826138271382813829138301383113832138331383413835138361383713838138391384013841138421384313844138451384613847138481384913850138511385213853138541385513856138571385813859138601386113862138631386413865138661386713868138691387013871138721387313874138751387613877138781387913880138811388213883138841388513886138871388813889138901389113892138931389413895138961389713898138991390013901139021390313904139051390613907139081390913910139111391213913139141391513916139171391813919139201392113922139231392413925139261392713928139291393013931139321393313934139351393613937139381393913940139411394213943139441394513946139471394813949139501395113952139531395413955139561395713958139591396013961139621396313964139651396613967139681396913970139711397213973139741397513976139771397813979139801398113982139831398413985139861398713988139891399013991139921399313994139951399613997139981399914000140011400214003140041400514006140071400814009140101401114012140131401414015140161401714018140191402014021140221402314024140251402614027140281402914030140311403214033140341403514036140371403814039140401404114042140431404414045140461404714048140491405014051140521405314054
  1. /**
  2. * llama.cpp - commit 40c6d79fb52f995f47507fedfeaae2ac05d9b35c - do not edit this file
  3. *
  4. * MIT License
  5. *
  6. * Copyright (c) 2023-2024 The ggml authors
  7. *
  8. * Permission is hereby granted, free of charge, to any person obtaining a copy
  9. * of this software and associated documentation files (the "Software"), to deal
  10. * in the Software without restriction, including without limitation the rights
  11. * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
  12. * copies of the Software, and to permit persons to whom the Software is
  13. * furnished to do so, subject to the following conditions:
  14. *
  15. * The above copyright notice and this permission notice shall be included in all
  16. * copies or substantial portions of the Software.
  17. *
  18. * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
  19. * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
  20. * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
  21. * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
  22. * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
  23. * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
  24. * SOFTWARE.
  25. */
  26. #define _CRT_SECURE_NO_DEPRECATE // Disables "unsafe" warnings on Windows
  27. #define _USE_MATH_DEFINES // For M_PI on MSVC
  28. #include "ggml-backend-impl.h"
  29. #include "ggml-backend.h"
  30. #include "ggml-cpu-aarch64.h"
  31. #include "ggml-cpu-impl.h"
  32. #include "ggml-cpu.h"
  33. #include "ggml-impl.h"
  34. #include "ggml-quants.h"
  35. #include "ggml-cpu-quants.h"
  36. #include "ggml-threading.h"
  37. #include "amx.h"
  38. #include "ggml.h"
  39. #if defined(_MSC_VER) || defined(__MINGW32__)
  40. #include <malloc.h> // using malloc.h with MSC/MINGW
  41. #elif !defined(__FreeBSD__) && !defined(__NetBSD__) && !defined(__OpenBSD__)
  42. #include <alloca.h>
  43. #endif
  44. #include <assert.h>
  45. #include <errno.h>
  46. #include <time.h>
  47. #include <math.h>
  48. #include <stdlib.h>
  49. #include <string.h>
  50. #include <stdint.h>
  51. #include <inttypes.h>
  52. #include <stdio.h>
  53. #include <float.h>
  54. #include <limits.h>
  55. #include <stdarg.h>
  56. #include <signal.h>
  57. #if defined(__gnu_linux__)
  58. #include <syscall.h>
  59. #endif
  60. #ifdef GGML_USE_OPENMP
  61. #include <omp.h>
  62. #endif
  63. #if defined(__ARM_FEATURE_SVE) || defined(__ARM_FEATURE_MATMUL_INT8)
  64. #undef GGML_USE_LLAMAFILE
  65. #endif
  66. #ifdef GGML_USE_LLAMAFILE
  67. #include "llamafile/sgemm.h"
  68. #endif
  69. #if defined(_MSC_VER)
  70. // disable "possible loss of data" to avoid hundreds of casts
  71. // we should just be careful :)
  72. #pragma warning(disable: 4244 4267)
  73. // disable POSIX deprecation warnings
  74. // these functions are never going away, anyway
  75. #pragma warning(disable: 4996)
  76. // unreachable code because of multiple instances of code after GGML_ABORT
  77. #pragma warning(disable: 4702)
  78. #endif
  79. // Note: once we move threading into a separate C++ file
  80. // will use std::hardware_destructive_interference_size instead of hardcoding it here
  81. // and we'll use C++ attribute syntax.
  82. #define GGML_CACHE_LINE 64
  83. #if defined(__clang__) || defined(__GNUC__)
  84. #define GGML_CACHE_ALIGN __attribute__((aligned(GGML_CACHE_LINE)))
  85. #endif
  86. #if defined(__has_feature)
  87. #if __has_feature(thread_sanitizer)
  88. #define GGML_TSAN_ENABLED 1
  89. #endif
  90. #else // __has_feature
  91. #if defined(__SANITIZE_THREAD__)
  92. #define GGML_TSAN_ENABLED 1
  93. #endif
  94. #endif // __has_feature
  95. #define UNUSED GGML_UNUSED
  96. #define SWAP(x, y, T) do { T SWAP = x; (x) = y; (y) = SWAP; } while (0)
  97. #if defined(GGML_USE_ACCELERATE)
  98. #include <Accelerate/Accelerate.h>
  99. #endif
  100. // floating point type used to accumulate sums
  101. typedef double ggml_float;
  102. #define GGML_GELU_FP16
  103. #define GGML_GELU_QUICK_FP16
  104. #define GGML_SOFT_MAX_UNROLL 4
  105. #define GGML_VEC_DOT_UNROLL 2
  106. #define GGML_VEC_MAD_UNROLL 32
  107. //
  108. // global data
  109. //
  110. // precomputed gelu table for f16 (128 KB)
  111. static ggml_fp16_t ggml_table_gelu_f16[1 << 16];
  112. // precomputed quick gelu table for f16 (128 KB)
  113. static ggml_fp16_t ggml_table_gelu_quick_f16[1 << 16];
  114. #if defined(__ARM_ARCH)
  115. struct ggml_arm_arch_features_type {
  116. int has_neon;
  117. int has_dotprod;
  118. int has_i8mm;
  119. int has_sve;
  120. int sve_cnt;
  121. } ggml_arm_arch_features = {-1, -1, -1, -1, 0};
  122. #endif
  123. #if defined(_WIN32)
  124. #define WIN32_LEAN_AND_MEAN
  125. #ifndef NOMINMAX
  126. #define NOMINMAX
  127. #endif
  128. #include <windows.h>
  129. #if !defined(__clang__)
  130. #define GGML_CACHE_ALIGN __declspec(align(GGML_CACHE_LINE))
  131. typedef volatile LONG atomic_int;
  132. typedef atomic_int atomic_bool;
  133. typedef atomic_int atomic_flag;
  134. #define ATOMIC_FLAG_INIT 0
  135. typedef enum {
  136. memory_order_relaxed,
  137. memory_order_consume,
  138. memory_order_acquire,
  139. memory_order_release,
  140. memory_order_acq_rel,
  141. memory_order_seq_cst
  142. } memory_order;
  143. static void atomic_store(atomic_int * ptr, LONG val) {
  144. InterlockedExchange(ptr, val);
  145. }
  146. static void atomic_store_explicit(atomic_int * ptr, LONG val, memory_order mo) {
  147. // TODO: add support for explicit memory order
  148. InterlockedExchange(ptr, val);
  149. }
  150. static LONG atomic_load(atomic_int * ptr) {
  151. return InterlockedCompareExchange(ptr, 0, 0);
  152. }
  153. static LONG atomic_load_explicit(atomic_int * ptr, memory_order mo) {
  154. // TODO: add support for explicit memory order
  155. return InterlockedCompareExchange(ptr, 0, 0);
  156. }
  157. static LONG atomic_fetch_add(atomic_int * ptr, LONG inc) {
  158. return InterlockedExchangeAdd(ptr, inc);
  159. }
  160. static LONG atomic_fetch_add_explicit(atomic_int * ptr, LONG inc, memory_order mo) {
  161. // TODO: add support for explicit memory order
  162. return InterlockedExchangeAdd(ptr, inc);
  163. }
  164. static atomic_bool atomic_flag_test_and_set(atomic_flag * ptr) {
  165. return InterlockedExchange(ptr, 1);
  166. }
  167. static void atomic_flag_clear(atomic_flag * ptr) {
  168. InterlockedExchange(ptr, 0);
  169. }
  170. static void atomic_thread_fence(memory_order mo) {
  171. MemoryBarrier();
  172. }
  173. #else // clang
  174. #include <stdatomic.h>
  175. #endif
  176. typedef HANDLE pthread_t;
  177. typedef DWORD thread_ret_t;
  178. static int pthread_create(pthread_t * out, void * unused, thread_ret_t(*func)(void *), void * arg) {
  179. (void) unused;
  180. HANDLE handle = CreateThread(NULL, 0, (LPTHREAD_START_ROUTINE) func, arg, 0, NULL);
  181. if (handle == NULL)
  182. {
  183. return EAGAIN;
  184. }
  185. *out = handle;
  186. return 0;
  187. }
  188. static int pthread_join(pthread_t thread, void * unused) {
  189. (void) unused;
  190. int ret = (int) WaitForSingleObject(thread, INFINITE);
  191. CloseHandle(thread);
  192. return ret;
  193. }
  194. static int sched_yield (void) {
  195. Sleep (0);
  196. return 0;
  197. }
  198. #else
  199. #include <pthread.h>
  200. #include <stdatomic.h>
  201. #include <sched.h>
  202. #if defined(__FreeBSD__)
  203. #include <pthread_np.h>
  204. #endif
  205. typedef void * thread_ret_t;
  206. #include <sys/types.h>
  207. #include <sys/stat.h>
  208. #include <unistd.h>
  209. #endif
  210. typedef pthread_t ggml_thread_t;
  211. #ifdef GGML_USE_CPU_HBM
  212. #include <hbwmalloc.h>
  213. #endif
  214. #if defined(__APPLE__)
  215. #include <unistd.h>
  216. #include <mach/mach.h>
  217. #include <TargetConditionals.h>
  218. #endif
  219. //
  220. // cache line
  221. //
  222. #if defined(__cpp_lib_hardware_interference_size)
  223. #define CACHE_LINE_SIZE hardware_destructive_interference_size
  224. #else
  225. #if defined(__POWER9_VECTOR__)
  226. #define CACHE_LINE_SIZE 128
  227. #else
  228. #define CACHE_LINE_SIZE 64
  229. #endif
  230. #endif
  231. static const size_t CACHE_LINE_SIZE_F32 = CACHE_LINE_SIZE/sizeof(float);
  232. static void ggml_vec_dot_f32(int n, float * restrict s, size_t bs, const float * restrict x, size_t bx, const float * restrict y, size_t by, int nrc);
  233. static void ggml_vec_dot_f16(int n, float * restrict s, size_t bs, ggml_fp16_t * restrict x, size_t bx, ggml_fp16_t * restrict y, size_t by, int nrc);
  234. static void ggml_vec_dot_bf16(int n, float * restrict s, size_t bs, ggml_bf16_t * restrict x, size_t bx, ggml_bf16_t * restrict y, size_t by, int nrc);
  235. static const struct ggml_type_traits_cpu type_traits_cpu[GGML_TYPE_COUNT] = {
  236. [GGML_TYPE_F32] = {
  237. .vec_dot = (ggml_vec_dot_t) ggml_vec_dot_f32,
  238. .vec_dot_type = GGML_TYPE_F32,
  239. .nrows = 1,
  240. },
  241. [GGML_TYPE_F16] = {
  242. .from_float = (ggml_from_float_t) ggml_fp32_to_fp16_row,
  243. .vec_dot = (ggml_vec_dot_t) ggml_vec_dot_f16,
  244. .vec_dot_type = GGML_TYPE_F16,
  245. .nrows = 1,
  246. },
  247. [GGML_TYPE_Q4_0] = {
  248. .from_float = quantize_row_q4_0,
  249. .vec_dot = ggml_vec_dot_q4_0_q8_0,
  250. .vec_dot_type = GGML_TYPE_Q8_0,
  251. #if defined (__ARM_FEATURE_MATMUL_INT8)
  252. .nrows = 2,
  253. #else
  254. .nrows = 1,
  255. #endif
  256. },
  257. [GGML_TYPE_Q4_1] = {
  258. .from_float = quantize_row_q4_1,
  259. .vec_dot = ggml_vec_dot_q4_1_q8_1,
  260. .vec_dot_type = GGML_TYPE_Q8_1,
  261. #if defined (__ARM_FEATURE_MATMUL_INT8)
  262. .nrows = 2,
  263. #else
  264. .nrows = 1,
  265. #endif
  266. },
  267. [GGML_TYPE_Q5_0] = {
  268. .from_float = quantize_row_q5_0,
  269. .vec_dot = ggml_vec_dot_q5_0_q8_0,
  270. .vec_dot_type = GGML_TYPE_Q8_0,
  271. .nrows = 1,
  272. },
  273. [GGML_TYPE_Q5_1] = {
  274. .from_float = quantize_row_q5_1,
  275. .vec_dot = ggml_vec_dot_q5_1_q8_1,
  276. .vec_dot_type = GGML_TYPE_Q8_1,
  277. .nrows = 1,
  278. },
  279. [GGML_TYPE_Q8_0] = {
  280. .from_float = quantize_row_q8_0,
  281. .from_float_to_mat = quantize_mat_q8_0,
  282. .vec_dot = ggml_vec_dot_q8_0_q8_0,
  283. .vec_dot_type = GGML_TYPE_Q8_0,
  284. #if defined (__ARM_FEATURE_MATMUL_INT8)
  285. .nrows = 2,
  286. #else
  287. .nrows = 1,
  288. #endif
  289. },
  290. [GGML_TYPE_Q8_1] = {
  291. .from_float = quantize_row_q8_1,
  292. .vec_dot_type = GGML_TYPE_Q8_1,
  293. .nrows = 1,
  294. },
  295. [GGML_TYPE_Q2_K] = {
  296. .from_float = quantize_row_q2_K,
  297. .vec_dot = ggml_vec_dot_q2_K_q8_K,
  298. .vec_dot_type = GGML_TYPE_Q8_K,
  299. .nrows = 1,
  300. },
  301. [GGML_TYPE_Q3_K] = {
  302. .from_float = quantize_row_q3_K,
  303. .vec_dot = ggml_vec_dot_q3_K_q8_K,
  304. .vec_dot_type = GGML_TYPE_Q8_K,
  305. .nrows = 1,
  306. },
  307. [GGML_TYPE_Q4_K] = {
  308. .from_float = quantize_row_q4_K,
  309. .vec_dot = ggml_vec_dot_q4_K_q8_K,
  310. .vec_dot_type = GGML_TYPE_Q8_K,
  311. .nrows = 1,
  312. },
  313. [GGML_TYPE_Q5_K] = {
  314. .from_float = quantize_row_q5_K,
  315. .vec_dot = ggml_vec_dot_q5_K_q8_K,
  316. .vec_dot_type = GGML_TYPE_Q8_K,
  317. .nrows = 1,
  318. },
  319. [GGML_TYPE_Q6_K] = {
  320. .from_float = quantize_row_q6_K,
  321. .vec_dot = ggml_vec_dot_q6_K_q8_K,
  322. .vec_dot_type = GGML_TYPE_Q8_K,
  323. .nrows = 1,
  324. },
  325. [GGML_TYPE_IQ2_XXS] = {
  326. .from_float = NULL,
  327. .vec_dot = ggml_vec_dot_iq2_xxs_q8_K,
  328. .vec_dot_type = GGML_TYPE_Q8_K,
  329. .nrows = 1,
  330. },
  331. [GGML_TYPE_IQ2_XS] = {
  332. .from_float = NULL,
  333. .vec_dot = ggml_vec_dot_iq2_xs_q8_K,
  334. .vec_dot_type = GGML_TYPE_Q8_K,
  335. .nrows = 1,
  336. },
  337. [GGML_TYPE_IQ3_XXS] = {
  338. // NOTE: from_float for iq3 and iq2_s was removed because these quants require initialization in ggml_quantize_init
  339. //.from_float = quantize_row_iq3_xxs,
  340. .vec_dot = ggml_vec_dot_iq3_xxs_q8_K,
  341. .vec_dot_type = GGML_TYPE_Q8_K,
  342. .nrows = 1,
  343. },
  344. [GGML_TYPE_IQ3_S] = {
  345. //.from_float = quantize_row_iq3_s,
  346. .vec_dot = ggml_vec_dot_iq3_s_q8_K,
  347. .vec_dot_type = GGML_TYPE_Q8_K,
  348. .nrows = 1,
  349. },
  350. [GGML_TYPE_IQ2_S] = {
  351. //.from_float = quantize_row_iq2_s,
  352. .vec_dot = ggml_vec_dot_iq2_s_q8_K,
  353. .vec_dot_type = GGML_TYPE_Q8_K,
  354. .nrows = 1,
  355. },
  356. [GGML_TYPE_IQ1_S] = {
  357. .from_float = NULL,
  358. .vec_dot = ggml_vec_dot_iq1_s_q8_K,
  359. .vec_dot_type = GGML_TYPE_Q8_K,
  360. .nrows = 1,
  361. },
  362. [GGML_TYPE_IQ1_M] = {
  363. .from_float = NULL,
  364. .vec_dot = ggml_vec_dot_iq1_m_q8_K,
  365. .vec_dot_type = GGML_TYPE_Q8_K,
  366. .nrows = 1,
  367. },
  368. [GGML_TYPE_IQ4_NL] = {
  369. .from_float = quantize_row_iq4_nl,
  370. .vec_dot = ggml_vec_dot_iq4_nl_q8_0,
  371. .vec_dot_type = GGML_TYPE_Q8_0,
  372. .nrows = 1,
  373. },
  374. [GGML_TYPE_IQ4_XS] = {
  375. .from_float = quantize_row_iq4_xs,
  376. .vec_dot = ggml_vec_dot_iq4_xs_q8_K,
  377. .vec_dot_type = GGML_TYPE_Q8_K,
  378. .nrows = 1,
  379. },
  380. [GGML_TYPE_Q8_K] = {
  381. .from_float = quantize_row_q8_K,
  382. },
  383. [GGML_TYPE_BF16] = {
  384. .from_float = (ggml_from_float_t) ggml_fp32_to_bf16_row,
  385. .vec_dot = (ggml_vec_dot_t) ggml_vec_dot_bf16,
  386. .vec_dot_type = GGML_TYPE_BF16,
  387. .nrows = 1,
  388. },
  389. [GGML_TYPE_Q4_0_4_4] = {
  390. .from_float = NULL,
  391. .vec_dot = NULL,
  392. .vec_dot_type = GGML_TYPE_Q8_0,
  393. .nrows = 1,
  394. .ncols = 4,
  395. .gemv = ggml_gemv_q4_0_4x4_q8_0,
  396. .gemm = ggml_gemm_q4_0_4x4_q8_0,
  397. },
  398. [GGML_TYPE_Q4_0_4_8] = {
  399. .from_float = NULL,
  400. .vec_dot = NULL,
  401. .vec_dot_type = GGML_TYPE_Q8_0,
  402. .nrows = 1,
  403. .ncols = 4,
  404. .gemv = ggml_gemv_q4_0_4x8_q8_0,
  405. .gemm = ggml_gemm_q4_0_4x8_q8_0,
  406. },
  407. [GGML_TYPE_Q4_0_8_8] = {
  408. .from_float = NULL,
  409. .vec_dot = NULL,
  410. .vec_dot_type = GGML_TYPE_Q8_0,
  411. .nrows = 1,
  412. .ncols = 8,
  413. .gemv = ggml_gemv_q4_0_8x8_q8_0,
  414. .gemm = ggml_gemm_q4_0_8x8_q8_0,
  415. },
  416. [GGML_TYPE_TQ1_0] = {
  417. .from_float = quantize_row_tq1_0,
  418. .vec_dot = ggml_vec_dot_tq1_0_q8_K,
  419. .vec_dot_type = GGML_TYPE_Q8_K,
  420. .nrows = 1,
  421. },
  422. [GGML_TYPE_TQ2_0] = {
  423. .from_float = quantize_row_tq2_0,
  424. .vec_dot = ggml_vec_dot_tq2_0_q8_K,
  425. .vec_dot_type = GGML_TYPE_Q8_K,
  426. .nrows = 1,
  427. },
  428. [GGML_TYPE_IQ4_NL_4_4] = {
  429. .from_float = NULL,
  430. .vec_dot = NULL,
  431. .vec_dot_type = GGML_TYPE_Q8_0,
  432. .nrows = 1,
  433. .ncols = 4,
  434. .gemv = ggml_gemv_iq4_nl_4x4_q8_0,
  435. .gemm = ggml_gemm_iq4_nl_4x4_q8_0,
  436. },
  437. };
  438. const struct ggml_type_traits_cpu * ggml_get_type_traits_cpu(enum ggml_type type) {
  439. return &type_traits_cpu[type];
  440. }
  441. //
  442. // simd mappings
  443. //
  444. // we define a common set of C macros which map to specific intrinsics based on the current architecture
  445. // we then implement the fundamental computation operations below using only these macros
  446. // adding support for new architectures requires to define the corresponding SIMD macros
  447. //
  448. // GGML_F32_STEP / GGML_F16_STEP
  449. // number of elements to process in a single step
  450. //
  451. // GGML_F32_EPR / GGML_F16_EPR
  452. // number of elements to fit in a single register
  453. //
  454. #if defined(__ARM_NEON) && defined(__ARM_FEATURE_FMA)
  455. #define GGML_SIMD
  456. // F32 NEON
  457. #define GGML_F32_STEP 16
  458. #define GGML_F32_EPR 4
  459. #define GGML_F32x4 float32x4_t
  460. #define GGML_F32x4_ZERO vdupq_n_f32(0.0f)
  461. #define GGML_F32x4_SET1(x) vdupq_n_f32(x)
  462. #define GGML_F32x4_LOAD vld1q_f32
  463. #define GGML_F32x4_STORE vst1q_f32
  464. #define GGML_F32x4_FMA(a, b, c) vfmaq_f32(a, b, c)
  465. #define GGML_F32x4_ADD vaddq_f32
  466. #define GGML_F32x4_MUL vmulq_f32
  467. #define GGML_F32x4_REDUCE_ONE(x) vaddvq_f32(x)
  468. #define GGML_F32x4_REDUCE(res, x) \
  469. { \
  470. int offset = GGML_F32_ARR >> 1; \
  471. for (int i = 0; i < offset; ++i) { \
  472. (x)[i] = vaddq_f32((x)[i], (x)[offset+i]); \
  473. } \
  474. offset >>= 1; \
  475. for (int i = 0; i < offset; ++i) { \
  476. (x)[i] = vaddq_f32((x)[i], (x)[offset+i]); \
  477. } \
  478. offset >>= 1; \
  479. for (int i = 0; i < offset; ++i) { \
  480. (x)[i] = vaddq_f32((x)[i], (x)[offset+i]); \
  481. } \
  482. (res) = GGML_F32x4_REDUCE_ONE((x)[0]); \
  483. }
  484. #define GGML_F32_VEC GGML_F32x4
  485. #define GGML_F32_VEC_ZERO GGML_F32x4_ZERO
  486. #define GGML_F32_VEC_SET1 GGML_F32x4_SET1
  487. #define GGML_F32_VEC_LOAD GGML_F32x4_LOAD
  488. #define GGML_F32_VEC_STORE GGML_F32x4_STORE
  489. #define GGML_F32_VEC_FMA GGML_F32x4_FMA
  490. #define GGML_F32_VEC_ADD GGML_F32x4_ADD
  491. #define GGML_F32_VEC_MUL GGML_F32x4_MUL
  492. #define GGML_F32_VEC_REDUCE GGML_F32x4_REDUCE
  493. // F16 NEON
  494. #if defined(__ARM_FEATURE_FP16_VECTOR_ARITHMETIC)
  495. #define GGML_F16_STEP 32
  496. #define GGML_F16_EPR 8
  497. #define GGML_F16x8 float16x8_t
  498. #define GGML_F16x8_ZERO vdupq_n_f16(0.0f)
  499. #define GGML_F16x8_SET1(x) vdupq_n_f16(x)
  500. #define GGML_F16x8_LOAD(x) vld1q_f16((const ggml_fp16_internal_t *)(x))
  501. #define GGML_F16x8_STORE vst1q_f16
  502. #define GGML_F16x8_FMA(a, b, c) vfmaq_f16(a, b, c)
  503. #define GGML_F16x8_ADD vaddq_f16
  504. #define GGML_F16x8_MUL vmulq_f16
  505. #define GGML_F16x8_REDUCE(res, x) \
  506. do { \
  507. int offset = GGML_F16_ARR >> 1; \
  508. for (int i = 0; i < offset; ++i) { \
  509. (x)[i] = vaddq_f16((x)[i], (x)[offset+i]); \
  510. } \
  511. offset >>= 1; \
  512. for (int i = 0; i < offset; ++i) { \
  513. (x)[i] = vaddq_f16((x)[i], (x)[offset+i]); \
  514. } \
  515. offset >>= 1; \
  516. for (int i = 0; i < offset; ++i) { \
  517. (x)[i] = vaddq_f16((x)[i], (x)[offset+i]); \
  518. } \
  519. const float32x4_t t0 = vcvt_f32_f16(vget_low_f16 ((x)[0])); \
  520. const float32x4_t t1 = vcvt_f32_f16(vget_high_f16((x)[0])); \
  521. (res) = (ggml_float) vaddvq_f32(vaddq_f32(t0, t1)); \
  522. } while (0)
  523. #define GGML_F16_VEC GGML_F16x8
  524. #define GGML_F16_VEC_ZERO GGML_F16x8_ZERO
  525. #define GGML_F16_VEC_SET1 GGML_F16x8_SET1
  526. #define GGML_F16_VEC_LOAD(p, i) GGML_F16x8_LOAD(p)
  527. #define GGML_F16_VEC_STORE(p, r, i) GGML_F16x8_STORE((ggml_fp16_internal_t *)(p), (r)[i])
  528. #define GGML_F16_VEC_FMA GGML_F16x8_FMA
  529. #define GGML_F16_VEC_ADD GGML_F16x8_ADD
  530. #define GGML_F16_VEC_MUL GGML_F16x8_MUL
  531. #define GGML_F16_VEC_REDUCE GGML_F16x8_REDUCE
  532. #else
  533. // if FP16 vector arithmetic is not supported, we use FP32 instead
  534. // and take advantage of the vcvt_ functions to convert to/from FP16
  535. #define GGML_F16_STEP 16
  536. #define GGML_F16_EPR 4
  537. #define GGML_F32Cx4 float32x4_t
  538. #define GGML_F32Cx4_ZERO vdupq_n_f32(0.0f)
  539. #define GGML_F32Cx4_SET1(x) vdupq_n_f32(x)
  540. #define GGML_F32Cx4_LOAD(x) vcvt_f32_f16(vld1_f16((const ggml_fp16_internal_t *)(x)))
  541. #define GGML_F32Cx4_STORE(x, y) vst1_f16(x, vcvt_f16_f32(y))
  542. #define GGML_F32Cx4_FMA(a, b, c) vfmaq_f32(a, b, c)
  543. #define GGML_F32Cx4_ADD vaddq_f32
  544. #define GGML_F32Cx4_MUL vmulq_f32
  545. #define GGML_F32Cx4_REDUCE GGML_F32x4_REDUCE
  546. #define GGML_F16_VEC GGML_F32Cx4
  547. #define GGML_F16_VEC_ZERO GGML_F32Cx4_ZERO
  548. #define GGML_F16_VEC_SET1 GGML_F32Cx4_SET1
  549. #define GGML_F16_VEC_LOAD(p, i) GGML_F32Cx4_LOAD(p)
  550. #define GGML_F16_VEC_STORE(p, r, i) GGML_F32Cx4_STORE((ggml_fp16_internal_t *)(p), r[i])
  551. #define GGML_F16_VEC_FMA GGML_F32Cx4_FMA
  552. #define GGML_F16_VEC_ADD GGML_F32Cx4_ADD
  553. #define GGML_F16_VEC_MUL GGML_F32Cx4_MUL
  554. #define GGML_F16_VEC_REDUCE GGML_F32Cx4_REDUCE
  555. #endif
  556. #elif defined(__AVX512F__)
  557. #define GGML_SIMD
  558. // F32 AVX512
  559. #define GGML_F32_STEP 64
  560. #define GGML_F32_EPR 16
  561. #define GGML_F32x16 __m512
  562. #define GGML_F32x16_ZERO _mm512_setzero_ps()
  563. #define GGML_F32x16_SET1(x) _mm512_set1_ps(x)
  564. #define GGML_F32x16_LOAD _mm512_loadu_ps
  565. #define GGML_F32x16_STORE _mm512_storeu_ps
  566. // _mm512_fmadd_ps is defined in AVX512F so no guard is required
  567. #define GGML_F32x16_FMA(a, b, c) _mm512_fmadd_ps(b, c, a)
  568. #define GGML_F32x16_ADD _mm512_add_ps
  569. #define GGML_F32x16_MUL _mm512_mul_ps
  570. #define GGML_F32x16_REDUCE(res, x) \
  571. do { \
  572. int offset = GGML_F32_ARR >> 1; \
  573. for (int i = 0; i < offset; ++i) { \
  574. x[i] = _mm512_add_ps(x[i], x[offset+i]); \
  575. } \
  576. offset >>= 1; \
  577. for (int i = 0; i < offset; ++i) { \
  578. x[i] = _mm512_add_ps(x[i], x[offset+i]); \
  579. } \
  580. offset >>= 1; \
  581. for (int i = 0; i < offset; ++i) { \
  582. x[i] = _mm512_add_ps(x[i], x[offset+i]); \
  583. } \
  584. res = (ggml_float) _mm512_reduce_add_ps(x[0]); \
  585. } while (0)
  586. // TODO: is this optimal ?
  587. #define GGML_F32_VEC GGML_F32x16
  588. #define GGML_F32_VEC_ZERO GGML_F32x16_ZERO
  589. #define GGML_F32_VEC_SET1 GGML_F32x16_SET1
  590. #define GGML_F32_VEC_LOAD GGML_F32x16_LOAD
  591. #define GGML_F32_VEC_STORE GGML_F32x16_STORE
  592. #define GGML_F32_VEC_FMA GGML_F32x16_FMA
  593. #define GGML_F32_VEC_ADD GGML_F32x16_ADD
  594. #define GGML_F32_VEC_MUL GGML_F32x16_MUL
  595. #define GGML_F32_VEC_REDUCE GGML_F32x16_REDUCE
  596. // F16 AVX512
  597. // F16 AVX
  598. #define GGML_F16_STEP 64
  599. #define GGML_F16_EPR 16
  600. // AVX512 has FP16 extension (AVX512_FP16) but I don't have it on my machine so I use FP32 instead
  601. #define GGML_F32Cx16 __m512
  602. #define GGML_F32Cx16_ZERO _mm512_setzero_ps()
  603. #define GGML_F32Cx16_SET1(x) _mm512_set1_ps(x)
  604. // unlike _mm256_cvt intrinsics that require F16C, _mm512_cvt is defined in AVX512F
  605. // so F16C guard isn't required
  606. #define GGML_F32Cx16_LOAD(x) _mm512_cvtph_ps(_mm256_loadu_si256((const __m256i *)(x)))
  607. #define GGML_F32Cx16_STORE(x, y) _mm256_storeu_si256((__m256i *)(x), _mm512_cvtps_ph(y, 0))
  608. #define GGML_F32Cx16_FMA(a, b, c) _mm512_fmadd_ps(b, c, a)
  609. #define GGML_F32Cx16_ADD _mm512_add_ps
  610. #define GGML_F32Cx16_MUL _mm512_mul_ps
  611. #define GGML_F32Cx16_REDUCE(res, x) \
  612. do { \
  613. int offset = GGML_F32_ARR >> 1; \
  614. for (int i = 0; i < offset; ++i) { \
  615. x[i] = _mm512_add_ps(x[i], x[offset+i]); \
  616. } \
  617. offset >>= 1; \
  618. for (int i = 0; i < offset; ++i) { \
  619. x[i] = _mm512_add_ps(x[i], x[offset+i]); \
  620. } \
  621. offset >>= 1; \
  622. for (int i = 0; i < offset; ++i) { \
  623. x[i] = _mm512_add_ps(x[i], x[offset+i]); \
  624. } \
  625. res = (ggml_float) _mm512_reduce_add_ps(x[0]); \
  626. } while (0)
  627. #define GGML_F16_VEC GGML_F32Cx16
  628. #define GGML_F16_VEC_ZERO GGML_F32Cx16_ZERO
  629. #define GGML_F16_VEC_SET1 GGML_F32Cx16_SET1
  630. #define GGML_F16_VEC_LOAD(p, i) GGML_F32Cx16_LOAD(p)
  631. #define GGML_F16_VEC_STORE(p, r, i) GGML_F32Cx16_STORE(p, r[i])
  632. #define GGML_F16_VEC_FMA GGML_F32Cx16_FMA
  633. #define GGML_F16_VEC_ADD GGML_F32Cx16_ADD
  634. #define GGML_F16_VEC_MUL GGML_F32Cx16_MUL
  635. #define GGML_F16_VEC_REDUCE GGML_F32Cx16_REDUCE
  636. #elif defined(__AVX__)
  637. #define GGML_SIMD
  638. // F32 AVX
  639. #define GGML_F32_STEP 32
  640. #define GGML_F32_EPR 8
  641. #define GGML_F32x8 __m256
  642. #define GGML_F32x8_ZERO _mm256_setzero_ps()
  643. #define GGML_F32x8_SET1(x) _mm256_set1_ps(x)
  644. #define GGML_F32x8_LOAD _mm256_loadu_ps
  645. #define GGML_F32x8_STORE _mm256_storeu_ps
  646. #if defined(__FMA__)
  647. #define GGML_F32x8_FMA(a, b, c) _mm256_fmadd_ps(b, c, a)
  648. #else
  649. #define GGML_F32x8_FMA(a, b, c) _mm256_add_ps(_mm256_mul_ps(b, c), a)
  650. #endif
  651. #define GGML_F32x8_ADD _mm256_add_ps
  652. #define GGML_F32x8_MUL _mm256_mul_ps
  653. #define GGML_F32x8_REDUCE(res, x) \
  654. do { \
  655. int offset = GGML_F32_ARR >> 1; \
  656. for (int i = 0; i < offset; ++i) { \
  657. x[i] = _mm256_add_ps(x[i], x[offset+i]); \
  658. } \
  659. offset >>= 1; \
  660. for (int i = 0; i < offset; ++i) { \
  661. x[i] = _mm256_add_ps(x[i], x[offset+i]); \
  662. } \
  663. offset >>= 1; \
  664. for (int i = 0; i < offset; ++i) { \
  665. x[i] = _mm256_add_ps(x[i], x[offset+i]); \
  666. } \
  667. const __m128 t0 = _mm_add_ps(_mm256_castps256_ps128(x[0]), \
  668. _mm256_extractf128_ps(x[0], 1)); \
  669. const __m128 t1 = _mm_hadd_ps(t0, t0); \
  670. res = (ggml_float) _mm_cvtss_f32(_mm_hadd_ps(t1, t1)); \
  671. } while (0)
  672. // TODO: is this optimal ?
  673. #define GGML_F32_VEC GGML_F32x8
  674. #define GGML_F32_VEC_ZERO GGML_F32x8_ZERO
  675. #define GGML_F32_VEC_SET1 GGML_F32x8_SET1
  676. #define GGML_F32_VEC_LOAD GGML_F32x8_LOAD
  677. #define GGML_F32_VEC_STORE GGML_F32x8_STORE
  678. #define GGML_F32_VEC_FMA GGML_F32x8_FMA
  679. #define GGML_F32_VEC_ADD GGML_F32x8_ADD
  680. #define GGML_F32_VEC_MUL GGML_F32x8_MUL
  681. #define GGML_F32_VEC_REDUCE GGML_F32x8_REDUCE
  682. // F16 AVX
  683. #define GGML_F16_STEP 32
  684. #define GGML_F16_EPR 8
  685. // F16 arithmetic is not supported by AVX, so we use F32 instead
  686. #define GGML_F32Cx8 __m256
  687. #define GGML_F32Cx8_ZERO _mm256_setzero_ps()
  688. #define GGML_F32Cx8_SET1(x) _mm256_set1_ps(x)
  689. #if defined(__F16C__)
  690. // the _mm256_cvt intrinsics require F16C
  691. #define GGML_F32Cx8_LOAD(x) _mm256_cvtph_ps(_mm_loadu_si128((const __m128i *)(x)))
  692. #define GGML_F32Cx8_STORE(x, y) _mm_storeu_si128((__m128i *)(x), _mm256_cvtps_ph(y, 0))
  693. #else
  694. static inline __m256 __avx_f32cx8_load(ggml_fp16_t *x) {
  695. float tmp[8];
  696. for (int i = 0; i < 8; i++) {
  697. tmp[i] = GGML_FP16_TO_FP32(x[i]);
  698. }
  699. return _mm256_loadu_ps(tmp);
  700. }
  701. static inline void __avx_f32cx8_store(ggml_fp16_t *x, __m256 y) {
  702. float arr[8];
  703. _mm256_storeu_ps(arr, y);
  704. for (int i = 0; i < 8; i++)
  705. x[i] = GGML_FP32_TO_FP16(arr[i]);
  706. }
  707. #define GGML_F32Cx8_LOAD(x) __avx_f32cx8_load(x)
  708. #define GGML_F32Cx8_STORE(x, y) __avx_f32cx8_store(x, y)
  709. #endif
  710. #define GGML_F32Cx8_FMA GGML_F32x8_FMA
  711. #define GGML_F32Cx8_ADD _mm256_add_ps
  712. #define GGML_F32Cx8_MUL _mm256_mul_ps
  713. #define GGML_F32Cx8_REDUCE GGML_F32x8_REDUCE
  714. #define GGML_F16_VEC GGML_F32Cx8
  715. #define GGML_F16_VEC_ZERO GGML_F32Cx8_ZERO
  716. #define GGML_F16_VEC_SET1 GGML_F32Cx8_SET1
  717. #define GGML_F16_VEC_LOAD(p, i) GGML_F32Cx8_LOAD(p)
  718. #define GGML_F16_VEC_STORE(p, r, i) GGML_F32Cx8_STORE(p, r[i])
  719. #define GGML_F16_VEC_FMA GGML_F32Cx8_FMA
  720. #define GGML_F16_VEC_ADD GGML_F32Cx8_ADD
  721. #define GGML_F16_VEC_MUL GGML_F32Cx8_MUL
  722. #define GGML_F16_VEC_REDUCE GGML_F32Cx8_REDUCE
  723. #elif defined(__POWER9_VECTOR__)
  724. #define GGML_SIMD
  725. // F32 POWER9
  726. #define GGML_F32_STEP 32
  727. #define GGML_F32_EPR 4
  728. #define GGML_F32x4 vector float
  729. #define GGML_F32x4_ZERO 0.0f
  730. #define GGML_F32x4_SET1 vec_splats
  731. #define GGML_F32x4_LOAD(p) vec_xl(0, p)
  732. #define GGML_F32x4_STORE(p, r) vec_xst(r, 0, p)
  733. #define GGML_F32x4_FMA(a, b, c) vec_madd(b, c, a)
  734. #define GGML_F32x4_ADD vec_add
  735. #define GGML_F32x4_MUL vec_mul
  736. #define GGML_F32x4_REDUCE(res, x) \
  737. { \
  738. int offset = GGML_F32_ARR >> 1; \
  739. for (int i = 0; i < offset; ++i) { \
  740. x[i] = vec_add(x[i], x[offset+i]); \
  741. } \
  742. offset >>= 1; \
  743. for (int i = 0; i < offset; ++i) { \
  744. x[i] = vec_add(x[i], x[offset+i]); \
  745. } \
  746. offset >>= 1; \
  747. for (int i = 0; i < offset; ++i) { \
  748. x[i] = vec_add(x[i], x[offset+i]); \
  749. } \
  750. res = vec_extract(x[0], 0) + \
  751. vec_extract(x[0], 1) + \
  752. vec_extract(x[0], 2) + \
  753. vec_extract(x[0], 3); \
  754. }
  755. #define GGML_F32_VEC GGML_F32x4
  756. #define GGML_F32_VEC_ZERO GGML_F32x4_ZERO
  757. #define GGML_F32_VEC_SET1 GGML_F32x4_SET1
  758. #define GGML_F32_VEC_LOAD GGML_F32x4_LOAD
  759. #define GGML_F32_VEC_STORE GGML_F32x4_STORE
  760. #define GGML_F32_VEC_FMA GGML_F32x4_FMA
  761. #define GGML_F32_VEC_ADD GGML_F32x4_ADD
  762. #define GGML_F32_VEC_MUL GGML_F32x4_MUL
  763. #define GGML_F32_VEC_REDUCE GGML_F32x4_REDUCE
  764. // F16 POWER9
  765. #define GGML_F16_STEP GGML_F32_STEP
  766. #define GGML_F16_EPR GGML_F32_EPR
  767. #define GGML_F16_VEC GGML_F32x4
  768. #define GGML_F16_VEC_ZERO GGML_F32x4_ZERO
  769. #define GGML_F16_VEC_SET1 GGML_F32x4_SET1
  770. #define GGML_F16_VEC_FMA GGML_F32x4_FMA
  771. #define GGML_F16_VEC_ADD GGML_F32x4_ADD
  772. #define GGML_F16_VEC_MUL GGML_F32x4_MUL
  773. #define GGML_F16_VEC_REDUCE GGML_F32x4_REDUCE
  774. // Use vec_xl, not vec_ld, in case the load address is not aligned.
  775. #define GGML_F16_VEC_LOAD(p, i) (i & 0x1) ? \
  776. vec_extract_fp32_from_shorth(vec_xl(0, p - GGML_F16_EPR)) : \
  777. vec_extract_fp32_from_shortl(vec_xl(0, p))
  778. #define GGML_ENDIAN_BYTE(i) ((unsigned char *)&(uint16_t){1})[i]
  779. #define GGML_F16_VEC_STORE(p, r, i) \
  780. if (i & 0x1) \
  781. vec_xst(vec_pack_to_short_fp32(r[i - GGML_ENDIAN_BYTE(1)], \
  782. r[i - GGML_ENDIAN_BYTE(0)]), \
  783. 0, p - GGML_F16_EPR)
  784. #elif defined(__wasm_simd128__)
  785. #define GGML_SIMD
  786. // F32 WASM
  787. #define GGML_F32_STEP 16
  788. #define GGML_F32_EPR 4
  789. #define GGML_F32x4 v128_t
  790. #define GGML_F32x4_ZERO wasm_f32x4_splat(0.0f)
  791. #define GGML_F32x4_SET1(x) wasm_f32x4_splat(x)
  792. #define GGML_F32x4_LOAD wasm_v128_load
  793. #define GGML_F32x4_STORE wasm_v128_store
  794. #define GGML_F32x4_FMA(a, b, c) wasm_f32x4_add(wasm_f32x4_mul(b, c), a)
  795. #define GGML_F32x4_ADD wasm_f32x4_add
  796. #define GGML_F32x4_MUL wasm_f32x4_mul
  797. #define GGML_F32x4_REDUCE(res, x) \
  798. { \
  799. int offset = GGML_F32_ARR >> 1; \
  800. for (int i = 0; i < offset; ++i) { \
  801. x[i] = wasm_f32x4_add(x[i], x[offset+i]); \
  802. } \
  803. offset >>= 1; \
  804. for (int i = 0; i < offset; ++i) { \
  805. x[i] = wasm_f32x4_add(x[i], x[offset+i]); \
  806. } \
  807. offset >>= 1; \
  808. for (int i = 0; i < offset; ++i) { \
  809. x[i] = wasm_f32x4_add(x[i], x[offset+i]); \
  810. } \
  811. res = wasm_f32x4_extract_lane(x[0], 0) + \
  812. wasm_f32x4_extract_lane(x[0], 1) + \
  813. wasm_f32x4_extract_lane(x[0], 2) + \
  814. wasm_f32x4_extract_lane(x[0], 3); \
  815. }
  816. #define GGML_F32_VEC GGML_F32x4
  817. #define GGML_F32_VEC_ZERO GGML_F32x4_ZERO
  818. #define GGML_F32_VEC_SET1 GGML_F32x4_SET1
  819. #define GGML_F32_VEC_LOAD GGML_F32x4_LOAD
  820. #define GGML_F32_VEC_STORE GGML_F32x4_STORE
  821. #define GGML_F32_VEC_FMA GGML_F32x4_FMA
  822. #define GGML_F32_VEC_ADD GGML_F32x4_ADD
  823. #define GGML_F32_VEC_MUL GGML_F32x4_MUL
  824. #define GGML_F32_VEC_REDUCE GGML_F32x4_REDUCE
  825. // F16 WASM
  826. #define GGML_F16_STEP 16
  827. #define GGML_F16_EPR 4
  828. inline static v128_t __wasm_f16x4_load(const ggml_fp16_t * p) {
  829. float tmp[4];
  830. tmp[0] = GGML_FP16_TO_FP32(p[0]);
  831. tmp[1] = GGML_FP16_TO_FP32(p[1]);
  832. tmp[2] = GGML_FP16_TO_FP32(p[2]);
  833. tmp[3] = GGML_FP16_TO_FP32(p[3]);
  834. return wasm_v128_load(tmp);
  835. }
  836. inline static void __wasm_f16x4_store(ggml_fp16_t * p, v128_t x) {
  837. float tmp[4];
  838. wasm_v128_store(tmp, x);
  839. p[0] = GGML_FP32_TO_FP16(tmp[0]);
  840. p[1] = GGML_FP32_TO_FP16(tmp[1]);
  841. p[2] = GGML_FP32_TO_FP16(tmp[2]);
  842. p[3] = GGML_FP32_TO_FP16(tmp[3]);
  843. }
  844. #define GGML_F16x4 v128_t
  845. #define GGML_F16x4_ZERO wasm_f32x4_splat(0.0f)
  846. #define GGML_F16x4_SET1(x) wasm_f32x4_splat(x)
  847. #define GGML_F16x4_LOAD(x) __wasm_f16x4_load(x)
  848. #define GGML_F16x4_STORE(x, y) __wasm_f16x4_store(x, y)
  849. #define GGML_F16x4_FMA GGML_F32x4_FMA
  850. #define GGML_F16x4_ADD wasm_f32x4_add
  851. #define GGML_F16x4_MUL wasm_f32x4_mul
  852. #define GGML_F16x4_REDUCE(res, x) \
  853. { \
  854. int offset = GGML_F16_ARR >> 1; \
  855. for (int i = 0; i < offset; ++i) { \
  856. x[i] = wasm_f32x4_add(x[i], x[offset+i]); \
  857. } \
  858. offset >>= 1; \
  859. for (int i = 0; i < offset; ++i) { \
  860. x[i] = wasm_f32x4_add(x[i], x[offset+i]); \
  861. } \
  862. offset >>= 1; \
  863. for (int i = 0; i < offset; ++i) { \
  864. x[i] = wasm_f32x4_add(x[i], x[offset+i]); \
  865. } \
  866. res = wasm_f32x4_extract_lane(x[0], 0) + \
  867. wasm_f32x4_extract_lane(x[0], 1) + \
  868. wasm_f32x4_extract_lane(x[0], 2) + \
  869. wasm_f32x4_extract_lane(x[0], 3); \
  870. }
  871. #define GGML_F16_VEC GGML_F16x4
  872. #define GGML_F16_VEC_ZERO GGML_F16x4_ZERO
  873. #define GGML_F16_VEC_SET1 GGML_F16x4_SET1
  874. #define GGML_F16_VEC_LOAD(p, i) GGML_F16x4_LOAD(p)
  875. #define GGML_F16_VEC_STORE(p, r, i) GGML_F16x4_STORE(p, r[i])
  876. #define GGML_F16_VEC_FMA GGML_F16x4_FMA
  877. #define GGML_F16_VEC_ADD GGML_F16x4_ADD
  878. #define GGML_F16_VEC_MUL GGML_F16x4_MUL
  879. #define GGML_F16_VEC_REDUCE GGML_F16x4_REDUCE
  880. #elif defined(__SSE3__)
  881. #define GGML_SIMD
  882. // F32 SSE
  883. #define GGML_F32_STEP 32
  884. #define GGML_F32_EPR 4
  885. #define GGML_F32x4 __m128
  886. #define GGML_F32x4_ZERO _mm_setzero_ps()
  887. #define GGML_F32x4_SET1(x) _mm_set1_ps(x)
  888. #define GGML_F32x4_LOAD _mm_loadu_ps
  889. #define GGML_F32x4_STORE _mm_storeu_ps
  890. #if defined(__FMA__)
  891. // TODO: Does this work?
  892. #define GGML_F32x4_FMA(a, b, c) _mm_fmadd_ps(b, c, a)
  893. #else
  894. #define GGML_F32x4_FMA(a, b, c) _mm_add_ps(_mm_mul_ps(b, c), a)
  895. #endif
  896. #define GGML_F32x4_ADD _mm_add_ps
  897. #define GGML_F32x4_MUL _mm_mul_ps
  898. #define GGML_F32x4_REDUCE(res, x) \
  899. { \
  900. int offset = GGML_F32_ARR >> 1; \
  901. for (int i = 0; i < offset; ++i) { \
  902. x[i] = _mm_add_ps(x[i], x[offset+i]); \
  903. } \
  904. offset >>= 1; \
  905. for (int i = 0; i < offset; ++i) { \
  906. x[i] = _mm_add_ps(x[i], x[offset+i]); \
  907. } \
  908. offset >>= 1; \
  909. for (int i = 0; i < offset; ++i) { \
  910. x[i] = _mm_add_ps(x[i], x[offset+i]); \
  911. } \
  912. const __m128 t0 = _mm_hadd_ps(x[0], x[0]); \
  913. res = (ggml_float) _mm_cvtss_f32(_mm_hadd_ps(t0, t0)); \
  914. }
  915. // TODO: is this optimal ?
  916. #define GGML_F32_VEC GGML_F32x4
  917. #define GGML_F32_VEC_ZERO GGML_F32x4_ZERO
  918. #define GGML_F32_VEC_SET1 GGML_F32x4_SET1
  919. #define GGML_F32_VEC_LOAD GGML_F32x4_LOAD
  920. #define GGML_F32_VEC_STORE GGML_F32x4_STORE
  921. #define GGML_F32_VEC_FMA GGML_F32x4_FMA
  922. #define GGML_F32_VEC_ADD GGML_F32x4_ADD
  923. #define GGML_F32_VEC_MUL GGML_F32x4_MUL
  924. #define GGML_F32_VEC_REDUCE GGML_F32x4_REDUCE
  925. // F16 SSE
  926. #define GGML_F16_STEP 32
  927. #define GGML_F16_EPR 4
  928. static inline __m128 __sse_f16x4_load(ggml_fp16_t *x) {
  929. float tmp[4];
  930. tmp[0] = GGML_FP16_TO_FP32(x[0]);
  931. tmp[1] = GGML_FP16_TO_FP32(x[1]);
  932. tmp[2] = GGML_FP16_TO_FP32(x[2]);
  933. tmp[3] = GGML_FP16_TO_FP32(x[3]);
  934. return _mm_loadu_ps(tmp);
  935. }
  936. static inline void __sse_f16x4_store(ggml_fp16_t *x, __m128 y) {
  937. float arr[4];
  938. _mm_storeu_ps(arr, y);
  939. x[0] = GGML_FP32_TO_FP16(arr[0]);
  940. x[1] = GGML_FP32_TO_FP16(arr[1]);
  941. x[2] = GGML_FP32_TO_FP16(arr[2]);
  942. x[3] = GGML_FP32_TO_FP16(arr[3]);
  943. }
  944. #define GGML_F32Cx4 __m128
  945. #define GGML_F32Cx4_ZERO _mm_setzero_ps()
  946. #define GGML_F32Cx4_SET1(x) _mm_set1_ps(x)
  947. #define GGML_F32Cx4_LOAD(x) __sse_f16x4_load(x)
  948. #define GGML_F32Cx4_STORE(x, y) __sse_f16x4_store(x, y)
  949. #define GGML_F32Cx4_FMA GGML_F32x4_FMA
  950. #define GGML_F32Cx4_ADD _mm_add_ps
  951. #define GGML_F32Cx4_MUL _mm_mul_ps
  952. #define GGML_F32Cx4_REDUCE GGML_F32x4_REDUCE
  953. #define GGML_F16_VEC GGML_F32Cx4
  954. #define GGML_F16_VEC_ZERO GGML_F32Cx4_ZERO
  955. #define GGML_F16_VEC_SET1 GGML_F32Cx4_SET1
  956. #define GGML_F16_VEC_LOAD(p, i) GGML_F32Cx4_LOAD(p)
  957. #define GGML_F16_VEC_STORE(p, r, i) GGML_F32Cx4_STORE(p, r[i])
  958. #define GGML_F16_VEC_FMA GGML_F32Cx4_FMA
  959. #define GGML_F16_VEC_ADD GGML_F32Cx4_ADD
  960. #define GGML_F16_VEC_MUL GGML_F32Cx4_MUL
  961. #define GGML_F16_VEC_REDUCE GGML_F32Cx4_REDUCE
  962. #elif defined(__loongarch_asx)
  963. #define GGML_SIMD
  964. // F32 LASX
  965. #define GGML_F32_STEP 32
  966. #define GGML_F32_EPR 8
  967. #define GGML_F32x8 __m256
  968. #define GGML_F32x8_ZERO (__m256)__lasx_xvldi(0)
  969. #define GGML_F32x8_SET1(x) (__m256)__lasx_xvreplfr2vr_s((x))
  970. #define GGML_F32x8_LOAD(x) (__m256)__lasx_xvld((x), 0)
  971. #define GGML_F32x8_STORE(x,y) __lasx_xvst((y), (x), 0)
  972. #define GGML_F32x8_FMA(a, b, c) __lasx_xvfmadd_s(b, c, a)
  973. #define GGML_F32x8_ADD __lasx_xvfadd_s
  974. #define GGML_F32x8_MUL __lasx_xvfmul_s
  975. #define GGML_F32x8_REDUCE(res, x) \
  976. do { \
  977. int offset = GGML_F32_ARR >> 1; \
  978. for (int i = 0; i < offset; ++i) { \
  979. x[i] = __lasx_xvfadd_s(x[i], x[offset+i]); \
  980. } \
  981. offset >>= 1; \
  982. for (int i = 0; i < offset; ++i) { \
  983. x[i] = __lasx_xvfadd_s(x[i], x[offset+i]); \
  984. } \
  985. offset >>= 1; \
  986. for (int i = 0; i < offset; ++i) { \
  987. x[i] = __lasx_xvfadd_s(x[i], x[offset+i]); \
  988. } \
  989. float *tmp_p = (float *)&x[0]; \
  990. res = tmp_p[0] + tmp_p[1] + tmp_p[2] + tmp_p[3] + tmp_p[4] + tmp_p[5] + tmp_p[6] + tmp_p[7]; \
  991. } while (0)
  992. // TODO: is this optimal ?
  993. #define GGML_F32_VEC GGML_F32x8
  994. #define GGML_F32_VEC_ZERO GGML_F32x8_ZERO
  995. #define GGML_F32_VEC_SET1 GGML_F32x8_SET1
  996. #define GGML_F32_VEC_LOAD GGML_F32x8_LOAD
  997. #define GGML_F32_VEC_STORE GGML_F32x8_STORE
  998. #define GGML_F32_VEC_FMA GGML_F32x8_FMA
  999. #define GGML_F32_VEC_ADD GGML_F32x8_ADD
  1000. #define GGML_F32_VEC_MUL GGML_F32x8_MUL
  1001. #define GGML_F32_VEC_REDUCE GGML_F32x8_REDUCE
  1002. // F16 LASX
  1003. #define GGML_F16_STEP 32
  1004. #define GGML_F16_EPR 8
  1005. // F16 arithmetic is not supported by AVX, so we use F32 instead
  1006. #define GGML_F32Cx8 __m256
  1007. #define GGML_F32Cx8_ZERO (__m256)__lasx_xvldi(0)
  1008. #define GGML_F32Cx8_SET1(x) (__m256)__lasx_xvreplgr2vr_w((x))
  1009. static inline __m256 __lasx_f32cx8_load(const ggml_fp16_t * x) {
  1010. float tmp[8];
  1011. for (int i = 0; i < 8; i++) {
  1012. tmp[i] = GGML_FP16_TO_FP32(x[i]);
  1013. }
  1014. return (__m256)__lasx_xvld(tmp, 0);
  1015. }
  1016. static inline void __lasx_f32cx8_store(ggml_fp16_t * x, __m256 y) {
  1017. float arr[8];
  1018. __lasx_xvst(y, arr, 0);
  1019. for (int i = 0; i < 8; i++) {
  1020. x[i] = GGML_FP32_TO_FP16(arr[i]);
  1021. }
  1022. }
  1023. #define GGML_F32Cx8_LOAD(x) __lasx_f32cx8_load(x)
  1024. #define GGML_F32Cx8_STORE(x, y) __lasx_f32cx8_store(x, y)
  1025. #define GGML_F32Cx8_FMA GGML_F32x8_FMA
  1026. #define GGML_F32Cx8_ADD __lasx_xvfadd_s
  1027. #define GGML_F32Cx8_MUL __lasx_xvfmul_s
  1028. #define GGML_F32Cx8_REDUCE GGML_F32x8_REDUCE
  1029. #define GGML_F16_VEC GGML_F32Cx8
  1030. #define GGML_F16_VEC_ZERO GGML_F32Cx8_ZERO
  1031. #define GGML_F16_VEC_SET1 GGML_F32Cx8_SET1
  1032. #define GGML_F16_VEC_LOAD(p, i) GGML_F32Cx8_LOAD(p)
  1033. #define GGML_F16_VEC_STORE(p, r, i) GGML_F32Cx8_STORE(p, r[i])
  1034. #define GGML_F16_VEC_FMA GGML_F32Cx8_FMA
  1035. #define GGML_F16_VEC_ADD GGML_F32Cx8_ADD
  1036. #define GGML_F16_VEC_MUL GGML_F32Cx8_MUL
  1037. #define GGML_F16_VEC_REDUCE GGML_F32Cx8_REDUCE
  1038. #elif defined(__loongarch_sx)
  1039. #define GGML_SIMD
  1040. // F32 LSX
  1041. #define GGML_F32_STEP 32
  1042. #define GGML_F32_EPR 4
  1043. #define GGML_F32x4 __m128
  1044. #define GGML_F32x4_ZERO __lsx_vldi(0)
  1045. #define GGML_F32x4_SET1(x) __lsx_vinsgr2vr_w(__lsx_vldi(0),(x), 0)
  1046. #define GGML_F32x4_LOAD(x) __lsx_vld((x), 0)
  1047. #define GGML_F32x4_STORE((x),(y)) __lsx_vst((y), (x), 0)
  1048. #define GGML_F32x4_FMA(a, b, c) __lsx_vfmadd_s(b, c, a)
  1049. #define GGML_F32x4_ADD __lsx_vfadd_s
  1050. #define GGML_F32x4_MUL __lsx_vfmul_s
  1051. #define GGML_F32x4_REDUCE(res, x) \
  1052. { \
  1053. int offset = GGML_F32_ARR >> 1; \
  1054. for (int i = 0; i < offset; ++i) { \
  1055. x[i] = __lsx_vfadd_s(x[i], x[offset + i]); \
  1056. } \
  1057. offset >>= 1; \
  1058. for (int i = 0; i < offset; ++i) { \
  1059. x[i] = __lsx_vfadd_s(x[i], x[offset + i]); \
  1060. } \
  1061. offset >>= 1; \
  1062. for (int i = 0; i < offset; ++i) { \
  1063. x[i] = __lsx_vfadd_s(x[i], x[offset + i]); \
  1064. } \
  1065. __m128i tmp = __lsx_vsrli_d((__m128i) x[0], 32); \
  1066. tmp = (__m128i) __lsx_vfadd_s((__m128) tmp, x[0]); \
  1067. tmp = __lsx_vpickev_w(__lsx_vldi(0), tmp); \
  1068. const __m128 t0 = __lsx_vshuf4i_w(tmp, 0x88); \
  1069. tmp = __lsx_vsrli_d((__m128i) t0, 32); \
  1070. tmp = (__m128i) __lsx_vfadd_s((__m128) tmp, t0); \
  1071. tmp = __lsx_vpickev_w(__lsx_vldi(0), tmp); \
  1072. res = (ggml_float) __lsx_vpickve2gr_w(__lsx_vshuf4i_w(tmp, 0x88), 0); \
  1073. }
  1074. #define GGML_F32_VEC GGML_F32x4
  1075. #define GGML_F32_VEC_ZERO GGML_F32x4_ZERO
  1076. #define GGML_F32_VEC_SET1 GGML_F32x4_SET1
  1077. #define GGML_F32_VEC_LOAD GGML_F32x4_LOAD
  1078. #define GGML_F32_VEC_STORE GGML_F32x4_STORE
  1079. #define GGML_F32_VEC_FMA GGML_F32x4_FMA
  1080. #define GGML_F32_VEC_ADD GGML_F32x4_ADD
  1081. #define GGML_F32_VEC_MUL GGML_F32x4_MUL
  1082. #define GGML_F32_VEC_REDUCE GGML_F32x4_REDUCE
  1083. // F16 LSX
  1084. #define GGML_F16_STEP 32
  1085. #define GGML_F16_EPR 4
  1086. static inline __m128 __lsx_f16x4_load(const ggml_fp16_t * x) {
  1087. float tmp[4];
  1088. tmp[0] = GGML_FP16_TO_FP32(x[0]);
  1089. tmp[1] = GGML_FP16_TO_FP32(x[1]);
  1090. tmp[2] = GGML_FP16_TO_FP32(x[2]);
  1091. tmp[3] = GGML_FP16_TO_FP32(x[3]);
  1092. return __lsx_vld(tmp, 0);
  1093. }
  1094. static inline void __lsx_f16x4_store(ggml_fp16_t * x, __m128 y) {
  1095. float arr[4];
  1096. __lsx_vst(y, arr, 0);
  1097. x[0] = GGML_FP32_TO_FP16(arr[0]);
  1098. x[1] = GGML_FP32_TO_FP16(arr[1]);
  1099. x[2] = GGML_FP32_TO_FP16(arr[2]);
  1100. x[3] = GGML_FP32_TO_FP16(arr[3]);
  1101. }
  1102. #define GGML_F32Cx4 __m128
  1103. #define GGML_F32Cx4_ZERO __lsx_vldi(0)
  1104. #define GGML_F32Cx4_SET1(x) __lsx_vinsgr2vr_w(__lsx_vldi(0),(x), 0)
  1105. #define GGML_F32Cx4_LOAD(x) __lsx_f16x4_load(x)
  1106. #define GGML_F32Cx4_STORE(x, y) __lsx_f16x4_store(x, y)
  1107. #define GGML_F32Cx4_FMA GGML_F32x4_FMA
  1108. #define GGML_F32Cx4_ADD __lsx_vfadd_s
  1109. #define GGML_F32Cx4_MUL __lsx_vfmul_s
  1110. #define GGML_F32Cx4_REDUCE GGML_F32x4_REDUCE
  1111. #define GGML_F16_VEC GGML_F32Cx4
  1112. #define GGML_F16_VEC_ZERO GGML_F32Cx4_ZERO
  1113. #define GGML_F16_VEC_SET1 GGML_F32Cx4_SET1
  1114. #define GGML_F16_VEC_LOAD(p, i) GGML_F32Cx4_LOAD(p)
  1115. #define GGML_F16_VEC_STORE(p, r, i) GGML_F32Cx4_STORE(p, r[i])
  1116. #define GGML_F16_VEC_FMA GGML_F32Cx4_FMA
  1117. #define GGML_F16_VEC_ADD GGML_F32Cx4_ADD
  1118. #define GGML_F16_VEC_MUL GGML_F32Cx4_MUL
  1119. #define GGML_F16_VEC_REDUCE GGML_F32Cx4_REDUCE
  1120. #endif
  1121. // GGML_F32_ARR / GGML_F16_ARR
  1122. // number of registers to use per step
  1123. #ifdef GGML_SIMD
  1124. #define GGML_F32_ARR (GGML_F32_STEP/GGML_F32_EPR)
  1125. #define GGML_F16_ARR (GGML_F16_STEP/GGML_F16_EPR)
  1126. #endif
  1127. //
  1128. // Threading defs
  1129. //
  1130. typedef pthread_t ggml_thread_t;
  1131. #if defined(_WIN32)
  1132. typedef CONDITION_VARIABLE ggml_cond_t;
  1133. typedef SRWLOCK ggml_mutex_t;
  1134. #define ggml_mutex_init(m) InitializeSRWLock(m)
  1135. #define ggml_mutex_destroy(m)
  1136. #define ggml_mutex_lock(m) AcquireSRWLockExclusive(m)
  1137. #define ggml_mutex_unlock(m) ReleaseSRWLockExclusive(m)
  1138. #define ggml_mutex_lock_shared(m) AcquireSRWLockShared(m)
  1139. #define ggml_mutex_unlock_shared(m) ReleaseSRWLockShared(m)
  1140. #define ggml_cond_init(c) InitializeConditionVariable(c)
  1141. #define ggml_cond_destroy(c)
  1142. #define ggml_cond_wait(c, m) SleepConditionVariableSRW(c, m, INFINITE, CONDITION_VARIABLE_LOCKMODE_SHARED)
  1143. #define ggml_cond_broadcast(c) WakeAllConditionVariable(c)
  1144. #define ggml_thread_create pthread_create
  1145. #define ggml_thread_join pthread_join
  1146. #else
  1147. typedef pthread_cond_t ggml_cond_t;
  1148. typedef pthread_mutex_t ggml_mutex_t;
  1149. #define ggml_mutex_init(m) pthread_mutex_init(m, NULL)
  1150. #define ggml_mutex_destroy(m) pthread_mutex_destroy(m)
  1151. #define ggml_mutex_lock(m) pthread_mutex_lock(m)
  1152. #define ggml_mutex_unlock(m) pthread_mutex_unlock(m)
  1153. #define ggml_mutex_lock_shared(m) pthread_mutex_lock(m)
  1154. #define ggml_mutex_unlock_shared(m) pthread_mutex_unlock(m)
  1155. #define ggml_lock_init(x) UNUSED(x)
  1156. #define ggml_lock_destroy(x) UNUSED(x)
  1157. #if defined(__x86_64__) || (defined(_MSC_VER) && defined(_M_AMD64))
  1158. #define ggml_lock_lock(x) _mm_pause()
  1159. #else
  1160. #define ggml_lock_lock(x) UNUSED(x)
  1161. #endif
  1162. #define ggml_lock_unlock(x) UNUSED(x)
  1163. #define GGML_LOCK_INITIALIZER 0
  1164. #define ggml_cond_init(c) pthread_cond_init(c, NULL)
  1165. #define ggml_cond_destroy(c) pthread_cond_destroy(c)
  1166. #define ggml_cond_wait(c, m) pthread_cond_wait(c, m)
  1167. #define ggml_cond_broadcast(c) pthread_cond_broadcast(c)
  1168. #define ggml_thread_create pthread_create
  1169. #define ggml_thread_join pthread_join
  1170. #endif
  1171. // Threadpool def
  1172. struct ggml_threadpool {
  1173. ggml_mutex_t mutex; // mutex for cond.var
  1174. ggml_cond_t cond; // cond.var for waiting for new work
  1175. struct ggml_cgraph * cgraph;
  1176. struct ggml_cplan * cplan;
  1177. // synchronization primitives
  1178. atomic_int n_graph; // incremented when there is work to be done (i.e each graph)
  1179. atomic_int GGML_CACHE_ALIGN n_barrier;
  1180. atomic_int GGML_CACHE_ALIGN n_barrier_passed;
  1181. atomic_int current_chunk; // currently processing chunk during Mat_Mul, shared between all the threads.
  1182. // these are atomic as an annotation for thread-sanitizer
  1183. atomic_bool stop; // Used for stopping the threadpool altogether
  1184. atomic_bool pause; // Used for pausing the threadpool or individual threads
  1185. atomic_bool abort; // Used for aborting processing of a graph
  1186. struct ggml_compute_state * workers; // per thread state
  1187. int n_threads_max; // number of threads in the pool
  1188. atomic_int n_threads_cur; // number of threads used in the current graph
  1189. int32_t prio; // Scheduling priority
  1190. uint32_t poll; // Polling level (0 - no polling)
  1191. enum ggml_status ec;
  1192. };
  1193. // Per-thread state
  1194. struct ggml_compute_state {
  1195. #ifndef GGML_USE_OPENMP
  1196. ggml_thread_t thrd;
  1197. bool cpumask[GGML_MAX_N_THREADS];
  1198. int last_graph;
  1199. bool pending;
  1200. #endif
  1201. struct ggml_threadpool * threadpool;
  1202. int ith;
  1203. };
  1204. //
  1205. // fundamental operations
  1206. //
  1207. inline static void ggml_vec_set_i8(const int n, int8_t * x, const int8_t v) { for (int i = 0; i < n; ++i) x[i] = v; }
  1208. inline static void ggml_vec_set_i16(const int n, int16_t * x, const int16_t v) { for (int i = 0; i < n; ++i) x[i] = v; }
  1209. inline static void ggml_vec_set_i32(const int n, int32_t * x, const int32_t v) { for (int i = 0; i < n; ++i) x[i] = v; }
  1210. inline static void ggml_vec_set_f16(const int n, ggml_fp16_t * x, const int32_t v) { for (int i = 0; i < n; ++i) x[i] = v; }
  1211. inline static void ggml_vec_set_bf16(const int n, ggml_bf16_t * x, const ggml_bf16_t v) { for (int i = 0; i < n; ++i) x[i] = v; }
  1212. inline static void ggml_vec_add_f32 (const int n, float * z, const float * x, const float * y) { for (int i = 0; i < n; ++i) z[i] = x[i] + y[i]; }
  1213. inline static void ggml_vec_add1_f32(const int n, float * z, const float * x, const float v) { for (int i = 0; i < n; ++i) z[i] = x[i] + v; }
  1214. inline static void ggml_vec_acc_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] += x[i]; }
  1215. inline static void ggml_vec_acc1_f32(const int n, float * y, const float v) { for (int i = 0; i < n; ++i) y[i] += v; }
  1216. inline static void ggml_vec_sub_f32 (const int n, float * z, const float * x, const float * y) { for (int i = 0; i < n; ++i) z[i] = x[i] - y[i]; }
  1217. inline static void ggml_vec_set_f32 (const int n, float * x, const float v) { for (int i = 0; i < n; ++i) x[i] = v; }
  1218. inline static void ggml_vec_cpy_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = x[i]; }
  1219. inline static void ggml_vec_neg_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = -x[i]; }
  1220. inline static void ggml_vec_mul_f32 (const int n, float * z, const float * x, const float * y) { for (int i = 0; i < n; ++i) z[i] = x[i]*y[i]; }
  1221. inline static void ggml_vec_div_f32 (const int n, float * z, const float * x, const float * y) { for (int i = 0; i < n; ++i) z[i] = x[i]/y[i]; }
  1222. static void ggml_vec_dot_f32(int n, float * restrict s, size_t bs, const float * restrict x, size_t bx, const float * restrict y, size_t by, int nrc) {
  1223. assert(nrc == 1);
  1224. UNUSED(nrc);
  1225. UNUSED(bx);
  1226. UNUSED(by);
  1227. UNUSED(bs);
  1228. #if defined(GGML_SIMD)
  1229. float sumf = 0.0f;
  1230. const int np = (n & ~(GGML_F32_STEP - 1));
  1231. GGML_F32_VEC sum[GGML_F32_ARR] = { GGML_F32_VEC_ZERO };
  1232. GGML_F32_VEC ax[GGML_F32_ARR];
  1233. GGML_F32_VEC ay[GGML_F32_ARR];
  1234. for (int i = 0; i < np; i += GGML_F32_STEP) {
  1235. for (int j = 0; j < GGML_F32_ARR; j++) {
  1236. ax[j] = GGML_F32_VEC_LOAD(x + i + j*GGML_F32_EPR);
  1237. ay[j] = GGML_F32_VEC_LOAD(y + i + j*GGML_F32_EPR);
  1238. sum[j] = GGML_F32_VEC_FMA(sum[j], ax[j], ay[j]);
  1239. }
  1240. }
  1241. // reduce sum0..sum3 to sum0
  1242. GGML_F32_VEC_REDUCE(sumf, sum);
  1243. // leftovers
  1244. for (int i = np; i < n; ++i) {
  1245. sumf += x[i]*y[i];
  1246. }
  1247. #else
  1248. // scalar
  1249. ggml_float sumf = 0.0;
  1250. for (int i = 0; i < n; ++i) {
  1251. sumf += (ggml_float)(x[i]*y[i]);
  1252. }
  1253. #endif
  1254. *s = sumf;
  1255. }
  1256. static void ggml_vec_dot_bf16(int n, float * restrict s, size_t bs, ggml_bf16_t * restrict x, size_t bx, ggml_bf16_t * restrict y, size_t by, int nrc) {
  1257. assert(nrc == 1);
  1258. UNUSED(nrc);
  1259. UNUSED(bx);
  1260. UNUSED(by);
  1261. UNUSED(bs);
  1262. int i = 0;
  1263. ggml_float sumf = 0;
  1264. #if defined(__AVX512BF16__)
  1265. __m512 c1 = _mm512_setzero_ps();
  1266. __m512 c2 = _mm512_setzero_ps();
  1267. for (; i + 64 <= n; i += 64) {
  1268. c1 = _mm512_dpbf16_ps(c1, m512bh(_mm512_loadu_si512((x + i))),
  1269. m512bh(_mm512_loadu_si512((y + i))));
  1270. c2 = _mm512_dpbf16_ps(c2, m512bh(_mm512_loadu_si512((x + i + 32))),
  1271. m512bh(_mm512_loadu_si512((y + i + 32))));
  1272. }
  1273. sumf += (ggml_float)_mm512_reduce_add_ps(c1);
  1274. sumf += (ggml_float)_mm512_reduce_add_ps(c2);
  1275. #elif defined(__AVX512F__)
  1276. #define LOAD(p) _mm512_castsi512_ps(_mm512_slli_epi32(_mm512_cvtepu16_epi32(_mm256_loadu_si256((const __m256i *)(p))), 16))
  1277. __m512 c1 = _mm512_setzero_ps();
  1278. __m512 c2 = _mm512_setzero_ps();
  1279. for (; i + 32 <= n; i += 32) {
  1280. c1 = _mm512_add_ps(_mm512_mul_ps(LOAD(x + i), LOAD(y + i)), c1);
  1281. c2 = _mm512_add_ps(_mm512_mul_ps(LOAD(x + i + 16), LOAD(y + i + 16)), c2);
  1282. }
  1283. sumf += (ggml_float)_mm512_reduce_add_ps(c1);
  1284. sumf += (ggml_float)_mm512_reduce_add_ps(c2);
  1285. #undef LOAD
  1286. #elif defined(__AVX2__) || defined(__AVX__)
  1287. #if defined(__AVX2__)
  1288. #define LOAD(p) _mm256_castsi256_ps(_mm256_slli_epi32(_mm256_cvtepu16_epi32(_mm_loadu_si128((const __m128i *)(p))), 16))
  1289. #else
  1290. #define LOAD(p) _mm256_castsi256_ps(_mm256_insertf128_si256(_mm256_castsi128_si256(_mm_slli_epi32(_mm_cvtepu16_epi32(_mm_loadu_si128((const __m128i *)(p))), 16)), (_mm_slli_epi32(_mm_cvtepu16_epi32(_mm_bsrli_si128(_mm_loadu_si128((const __m128i *)(p)), 8)), 16)), 1))
  1291. #endif
  1292. __m256 c1 = _mm256_setzero_ps();
  1293. __m256 c2 = _mm256_setzero_ps();
  1294. __m256 c3 = _mm256_setzero_ps();
  1295. __m256 c4 = _mm256_setzero_ps();
  1296. for (; i + 32 <= n; i += 32) {
  1297. c1 = _mm256_add_ps(_mm256_mul_ps(LOAD(x + i), LOAD(y + i)), c1);
  1298. c2 = _mm256_add_ps(_mm256_mul_ps(LOAD(x + i + 8), LOAD(y + i + 8)), c2);
  1299. c3 = _mm256_add_ps(_mm256_mul_ps(LOAD(x + i + 16), LOAD(y + i + 16)), c3);
  1300. c4 = _mm256_add_ps(_mm256_mul_ps(LOAD(x + i + 24), LOAD(y + i + 24)), c4);
  1301. }
  1302. __m128 g;
  1303. c1 = _mm256_add_ps(_mm256_add_ps(c1, c3),
  1304. _mm256_add_ps(c2, c4));
  1305. g = _mm_add_ps(_mm256_extractf128_ps(c1, 1),
  1306. _mm256_castps256_ps128(c1));
  1307. g = _mm_add_ps(g, _mm_movehl_ps(g, g));
  1308. g = _mm_add_ss(g, _mm_movehdup_ps(g));
  1309. sumf += (ggml_float)_mm_cvtss_f32(g);
  1310. #undef LOAD
  1311. #endif
  1312. for (; i < n; ++i) {
  1313. sumf += (ggml_float)(GGML_BF16_TO_FP32(x[i]) *
  1314. GGML_BF16_TO_FP32(y[i]));
  1315. }
  1316. *s = sumf;
  1317. }
  1318. static void ggml_vec_dot_f16(int n, float * restrict s, size_t bs, ggml_fp16_t * restrict x, size_t bx, ggml_fp16_t * restrict y, size_t by, int nrc) {
  1319. assert(nrc == 1);
  1320. UNUSED(nrc);
  1321. UNUSED(bx);
  1322. UNUSED(by);
  1323. UNUSED(bs);
  1324. ggml_float sumf = 0.0;
  1325. #if defined(GGML_SIMD)
  1326. const int np = (n & ~(GGML_F16_STEP - 1));
  1327. GGML_F16_VEC sum[GGML_F16_ARR] = { GGML_F16_VEC_ZERO };
  1328. GGML_F16_VEC ax[GGML_F16_ARR];
  1329. GGML_F16_VEC ay[GGML_F16_ARR];
  1330. for (int i = 0; i < np; i += GGML_F16_STEP) {
  1331. for (int j = 0; j < GGML_F16_ARR; j++) {
  1332. ax[j] = GGML_F16_VEC_LOAD(x + i + j*GGML_F16_EPR, j);
  1333. ay[j] = GGML_F16_VEC_LOAD(y + i + j*GGML_F16_EPR, j);
  1334. sum[j] = GGML_F16_VEC_FMA(sum[j], ax[j], ay[j]);
  1335. }
  1336. }
  1337. // reduce sum0..sum3 to sum0
  1338. GGML_F16_VEC_REDUCE(sumf, sum);
  1339. // leftovers
  1340. for (int i = np; i < n; ++i) {
  1341. sumf += (ggml_float)(GGML_FP16_TO_FP32(x[i])*GGML_FP16_TO_FP32(y[i]));
  1342. }
  1343. #else
  1344. for (int i = 0; i < n; ++i) {
  1345. sumf += (ggml_float)(GGML_FP16_TO_FP32(x[i])*GGML_FP16_TO_FP32(y[i]));
  1346. }
  1347. #endif
  1348. *s = sumf;
  1349. }
  1350. // compute GGML_VEC_DOT_UNROLL dot products at once
  1351. // xs - x row stride in bytes
  1352. inline static void ggml_vec_dot_f16_unroll(const int n, const int xs, float * restrict s, void * restrict xv, ggml_fp16_t * restrict y) {
  1353. ggml_float sumf[GGML_VEC_DOT_UNROLL] = { 0.0 };
  1354. ggml_fp16_t * restrict x[GGML_VEC_DOT_UNROLL];
  1355. for (int i = 0; i < GGML_VEC_DOT_UNROLL; ++i) {
  1356. x[i] = (ggml_fp16_t *) ((char *) xv + i*xs);
  1357. }
  1358. #if defined(GGML_SIMD)
  1359. const int np = (n & ~(GGML_F16_STEP - 1));
  1360. GGML_F16_VEC sum[GGML_VEC_DOT_UNROLL][GGML_F16_ARR] = { { GGML_F16_VEC_ZERO } };
  1361. GGML_F16_VEC ax[GGML_F16_ARR];
  1362. GGML_F16_VEC ay[GGML_F16_ARR];
  1363. for (int i = 0; i < np; i += GGML_F16_STEP) {
  1364. for (int j = 0; j < GGML_F16_ARR; j++) {
  1365. ay[j] = GGML_F16_VEC_LOAD(y + i + j*GGML_F16_EPR, j);
  1366. for (int k = 0; k < GGML_VEC_DOT_UNROLL; ++k) {
  1367. ax[j] = GGML_F16_VEC_LOAD(x[k] + i + j*GGML_F16_EPR, j);
  1368. sum[k][j] = GGML_F16_VEC_FMA(sum[k][j], ax[j], ay[j]);
  1369. }
  1370. }
  1371. }
  1372. // reduce sum0..sum3 to sum0
  1373. for (int k = 0; k < GGML_VEC_DOT_UNROLL; ++k) {
  1374. GGML_F16_VEC_REDUCE(sumf[k], sum[k]);
  1375. }
  1376. // leftovers
  1377. for (int i = np; i < n; ++i) {
  1378. for (int j = 0; j < GGML_VEC_DOT_UNROLL; ++j) {
  1379. sumf[j] += (ggml_float)(GGML_FP16_TO_FP32(x[j][i])*GGML_FP16_TO_FP32(y[i]));
  1380. }
  1381. }
  1382. #else
  1383. for (int i = 0; i < n; ++i) {
  1384. for (int j = 0; j < GGML_VEC_DOT_UNROLL; ++j) {
  1385. sumf[j] += (ggml_float)(GGML_FP16_TO_FP32(x[j][i])*GGML_FP16_TO_FP32(y[i]));
  1386. }
  1387. }
  1388. #endif
  1389. for (int i = 0; i < GGML_VEC_DOT_UNROLL; ++i) {
  1390. s[i] = sumf[i];
  1391. }
  1392. }
  1393. inline static void ggml_vec_mad_f32(const int n, float * restrict y, const float * restrict x, const float v) {
  1394. #if defined(GGML_SIMD)
  1395. const int np = (n & ~(GGML_F32_STEP - 1));
  1396. GGML_F32_VEC vx = GGML_F32_VEC_SET1(v);
  1397. GGML_F32_VEC ax[GGML_F32_ARR];
  1398. GGML_F32_VEC ay[GGML_F32_ARR];
  1399. for (int i = 0; i < np; i += GGML_F32_STEP) {
  1400. for (int j = 0; j < GGML_F32_ARR; j++) {
  1401. ax[j] = GGML_F32_VEC_LOAD(x + i + j*GGML_F32_EPR);
  1402. ay[j] = GGML_F32_VEC_LOAD(y + i + j*GGML_F32_EPR);
  1403. ay[j] = GGML_F32_VEC_FMA(ay[j], ax[j], vx);
  1404. GGML_F32_VEC_STORE(y + i + j*GGML_F32_EPR, ay[j]);
  1405. }
  1406. }
  1407. // leftovers
  1408. for (int i = np; i < n; ++i) {
  1409. y[i] += x[i]*v;
  1410. }
  1411. #else
  1412. // scalar
  1413. for (int i = 0; i < n; ++i) {
  1414. y[i] += x[i]*v;
  1415. }
  1416. #endif
  1417. }
  1418. inline static void ggml_vec_mad_f16(const int n, ggml_fp16_t * restrict y, const ggml_fp16_t * restrict x, const float v) {
  1419. #if defined(GGML_SIMD)
  1420. const int np = (n & ~(GGML_F16_STEP - 1));
  1421. GGML_F16_VEC vx = GGML_F16_VEC_SET1(v);
  1422. GGML_F16_VEC ax[GGML_F16_ARR];
  1423. GGML_F16_VEC ay[GGML_F16_ARR];
  1424. for (int i = 0; i < np; i += GGML_F16_STEP) {
  1425. for (int j = 0; j < GGML_F16_ARR; j++) {
  1426. ax[j] = GGML_F16_VEC_LOAD(x + i + j*GGML_F16_EPR, j);
  1427. ay[j] = GGML_F16_VEC_LOAD(y + i + j*GGML_F16_EPR, j);
  1428. ay[j] = GGML_F16_VEC_FMA(ay[j], ax[j], vx);
  1429. GGML_F16_VEC_STORE(y + i + j*GGML_F16_EPR, ay, j);
  1430. }
  1431. }
  1432. // leftovers
  1433. for (int i = np; i < n; ++i) {
  1434. y[i] = GGML_FP32_TO_FP16(GGML_FP16_TO_FP32(y[i]) + GGML_FP16_TO_FP32(x[i])*v);
  1435. }
  1436. #else
  1437. // scalar
  1438. for (int i = 0; i < n; ++i) {
  1439. y[i] = GGML_FP32_TO_FP16(GGML_FP16_TO_FP32(y[i]) + GGML_FP16_TO_FP32(x[i])*v);
  1440. }
  1441. #endif
  1442. }
  1443. // xs and vs are byte strides of x and v
  1444. inline static void ggml_vec_mad_f32_unroll(const int n, const int xs, const int vs, float * restrict y, const float * restrict xv, const float * restrict vv) {
  1445. const float * restrict x[GGML_VEC_MAD_UNROLL];
  1446. const float * restrict v[GGML_VEC_MAD_UNROLL];
  1447. for (int i = 0; i < GGML_VEC_MAD_UNROLL; ++i) {
  1448. x[i] = (const float *) ((const char *) xv + i*xs);
  1449. v[i] = (const float *) ((const char *) vv + i*vs);
  1450. }
  1451. #if defined(GGML_SIMD)
  1452. const int np = (n & ~(GGML_F32_STEP - 1));
  1453. GGML_F32_VEC vx[GGML_VEC_MAD_UNROLL];
  1454. for (int k = 0; k < GGML_VEC_MAD_UNROLL; ++k) {
  1455. vx[k] = GGML_F32_VEC_SET1(v[k][0]);
  1456. }
  1457. GGML_F32_VEC ax[GGML_VEC_MAD_UNROLL][GGML_F32_ARR];
  1458. GGML_F32_VEC ay[GGML_F32_ARR];
  1459. for (int i = 0; i < np; i += GGML_F32_STEP) {
  1460. for (int j = 0; j < GGML_F32_ARR; j++) {
  1461. ay[j] = GGML_F32_VEC_LOAD(y + i + j*GGML_F32_EPR);
  1462. for (int k = 0; k < GGML_VEC_MAD_UNROLL; ++k) {
  1463. ax[k][j] = GGML_F32_VEC_LOAD(x[k] + i + j*GGML_F32_EPR);
  1464. ay[j] = GGML_F32_VEC_FMA(ay[j], ax[k][j], vx[k]);
  1465. }
  1466. GGML_F32_VEC_STORE(y + i + j*GGML_F32_EPR, ay[j]);
  1467. }
  1468. }
  1469. // leftovers
  1470. for (int k = 0; k < GGML_VEC_MAD_UNROLL; ++k) {
  1471. for (int i = np; i < n; ++i) {
  1472. y[i] += x[k][i]*v[k][0];
  1473. }
  1474. }
  1475. #else
  1476. // scalar
  1477. for (int k = 0; k < GGML_VEC_MAD_UNROLL; ++k) {
  1478. for (int i = 0; i < n; ++i) {
  1479. y[i] += x[k][i]*v[k][0];
  1480. }
  1481. }
  1482. #endif
  1483. }
  1484. //inline static void ggml_vec_scale_f32(const int n, float * y, const float v) { for (int i = 0; i < n; ++i) y[i] *= v; }
  1485. inline static void ggml_vec_scale_f32(const int n, float * y, const float v) {
  1486. #if defined(GGML_USE_ACCELERATE)
  1487. vDSP_vsmul(y, 1, &v, y, 1, n);
  1488. #elif defined(GGML_SIMD)
  1489. const int np = (n & ~(GGML_F32_STEP - 1));
  1490. GGML_F32_VEC vx = GGML_F32_VEC_SET1(v);
  1491. GGML_F32_VEC ay[GGML_F32_ARR];
  1492. for (int i = 0; i < np; i += GGML_F32_STEP) {
  1493. for (int j = 0; j < GGML_F32_ARR; j++) {
  1494. ay[j] = GGML_F32_VEC_LOAD(y + i + j*GGML_F32_EPR);
  1495. ay[j] = GGML_F32_VEC_MUL(ay[j], vx);
  1496. GGML_F32_VEC_STORE(y + i + j*GGML_F32_EPR, ay[j]);
  1497. }
  1498. }
  1499. // leftovers
  1500. for (int i = np; i < n; ++i) {
  1501. y[i] *= v;
  1502. }
  1503. #else
  1504. // scalar
  1505. for (int i = 0; i < n; ++i) {
  1506. y[i] *= v;
  1507. }
  1508. #endif
  1509. }
  1510. inline static void ggml_vec_scale_f16(const int n, ggml_fp16_t * y, const float v) {
  1511. #if defined(GGML_SIMD)
  1512. const int np = (n & ~(GGML_F16_STEP - 1));
  1513. GGML_F16_VEC vx = GGML_F16_VEC_SET1(v);
  1514. GGML_F16_VEC ay[GGML_F16_ARR];
  1515. for (int i = 0; i < np; i += GGML_F16_STEP) {
  1516. for (int j = 0; j < GGML_F16_ARR; j++) {
  1517. ay[j] = GGML_F16_VEC_LOAD(y + i + j*GGML_F16_EPR, j);
  1518. ay[j] = GGML_F16_VEC_MUL(ay[j], vx);
  1519. GGML_F16_VEC_STORE(y + i + j*GGML_F16_EPR, ay, j);
  1520. }
  1521. }
  1522. // leftovers
  1523. for (int i = np; i < n; ++i) {
  1524. y[i] = GGML_FP32_TO_FP16(GGML_FP16_TO_FP32(y[i])*v);
  1525. }
  1526. #else
  1527. // scalar
  1528. for (int i = 0; i < n; ++i) {
  1529. y[i] = GGML_FP32_TO_FP16(GGML_FP16_TO_FP32(y[i])*v);
  1530. }
  1531. #endif
  1532. }
  1533. inline static void ggml_vec_norm_f32 (const int n, float * s, const float * x) { ggml_vec_dot_f32(n, s, 0, x, 0, x, 0, 1); *s = sqrtf(*s); }
  1534. inline static void ggml_vec_sqr_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = x[i]*x[i]; }
  1535. inline static void ggml_vec_sqrt_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = sqrtf(x[i]); }
  1536. inline static void ggml_vec_log_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = logf(x[i]); }
  1537. inline static void ggml_vec_sin_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = sinf(x[i]); }
  1538. inline static void ggml_vec_cos_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = cosf(x[i]); }
  1539. inline static void ggml_vec_abs_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = fabsf(x[i]); }
  1540. inline static void ggml_vec_sgn_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = (x[i] > 0.f) ? 1.f : ((x[i] < 0.f) ? -1.f : 0.f); }
  1541. inline static void ggml_vec_step_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = (x[i] > 0.f) ? 1.f : 0.f; }
  1542. inline static void ggml_vec_tanh_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = tanhf(x[i]); }
  1543. inline static void ggml_vec_elu_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = (x[i] > 0.f) ? x[i] : expm1f(x[i]); }
  1544. inline static void ggml_vec_relu_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = (x[i] > 0.f) ? x[i] : 0.f; }
  1545. inline static void ggml_vec_leaky_relu_f32 (const int n, float * y, const float * x, const float ns) { for (int i = 0; i < n; ++i) y[i] = ((x[i] > 0.f) ? x[i] : 0.f) + ns * ((x[i] < 0.0f) ? x[i] : 0.f); }
  1546. inline static void ggml_vec_sigmoid_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = 1.f / (1.f + expf(-x[i])); }
  1547. // TODO: optimize performance
  1548. inline static void ggml_vec_hardswish_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = x[i] * fminf(1.0f, fmaxf(0.0f, (x[i] + 3.0f) / 6.0f)); }
  1549. inline static void ggml_vec_hardsigmoid_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = fminf(1.0f, fmaxf(0.0f, (x[i] + 3.0f) / 6.0f)); }
  1550. inline static void ggml_vec_exp_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = expf(x[i]); }
  1551. static const float GELU_COEF_A = 0.044715f;
  1552. static const float GELU_QUICK_COEF = -1.702f;
  1553. static const float SQRT_2_OVER_PI = 0.79788456080286535587989211986876f;
  1554. inline static float ggml_gelu_f32(float x) {
  1555. return 0.5f*x*(1.0f + tanhf(SQRT_2_OVER_PI*x*(1.0f + GELU_COEF_A*x*x)));
  1556. }
  1557. inline static void ggml_vec_gelu_f16(const int n, ggml_fp16_t * y, const ggml_fp16_t * x) {
  1558. const uint16_t * i16 = (const uint16_t *) x;
  1559. for (int i = 0; i < n; ++i) {
  1560. y[i] = ggml_table_gelu_f16[i16[i]];
  1561. }
  1562. }
  1563. #ifdef GGML_GELU_FP16
  1564. inline static void ggml_vec_gelu_f32(const int n, float * y, const float * x) {
  1565. uint16_t t;
  1566. for (int i = 0; i < n; ++i) {
  1567. if (x[i] <= -10.0f) {
  1568. y[i] = 0.0f;
  1569. } else if (x[i] >= 10.0f) {
  1570. y[i] = x[i];
  1571. } else {
  1572. ggml_fp16_t fp16 = GGML_FP32_TO_FP16(x[i]);
  1573. memcpy(&t, &fp16, sizeof(uint16_t));
  1574. y[i] = GGML_FP16_TO_FP32(ggml_table_gelu_f16[t]);
  1575. }
  1576. }
  1577. }
  1578. #else
  1579. inline static void ggml_vec_gelu_f32(const int n, float * y, const float * x) {
  1580. for (int i = 0; i < n; ++i) {
  1581. y[i] = ggml_gelu_f32(x[i]);
  1582. }
  1583. }
  1584. #endif
  1585. inline static float ggml_gelu_quick_f32(float x) {
  1586. return x*(1.0f/(1.0f+expf(GELU_QUICK_COEF*x)));
  1587. }
  1588. //inline static void ggml_vec_gelu_quick_f16(const int n, ggml_fp16_t * y, const ggml_fp16_t * x) {
  1589. // const uint16_t * i16 = (const uint16_t *) x;
  1590. // for (int i = 0; i < n; ++i) {
  1591. // y[i] = ggml_table_gelu_quick_f16[i16[i]];
  1592. // }
  1593. //}
  1594. #ifdef GGML_GELU_QUICK_FP16
  1595. inline static void ggml_vec_gelu_quick_f32(const int n, float * y, const float * x) {
  1596. uint16_t t;
  1597. for (int i = 0; i < n; ++i) {
  1598. ggml_fp16_t fp16 = GGML_FP32_TO_FP16(x[i]);
  1599. memcpy(&t, &fp16, sizeof(uint16_t));
  1600. y[i] = GGML_FP16_TO_FP32(ggml_table_gelu_quick_f16[t]);
  1601. }
  1602. }
  1603. #else
  1604. inline static void ggml_vec_gelu_quick_f32(const int n, float * y, const float * x) {
  1605. for (int i = 0; i < n; ++i) {
  1606. y[i] = ggml_gelu_quick_f32(x[i]);
  1607. }
  1608. }
  1609. #endif
  1610. // Sigmoid Linear Unit (SiLU) function
  1611. inline static float ggml_silu_f32(float x) {
  1612. return x/(1.0f + expf(-x));
  1613. }
  1614. #if __FINITE_MATH_ONLY__
  1615. #error "some routines in ggml.c require non-finite math arithmetics -- pass -fno-finite-math-only to the compiler to fix"
  1616. #error "ref: https://github.com/ggerganov/llama.cpp/pull/7154#issuecomment-2143844461"
  1617. #endif
  1618. #if defined(__ARM_NEON) && defined(__aarch64__)
  1619. // adapted from arm limited optimized routine
  1620. // the maximum error is 1.45358 plus 0.5 ulps
  1621. // numbers above 88.38 will flush to infinity
  1622. // numbers beneath -103.97 will flush to zero
  1623. inline static float32x4_t ggml_v_expf(float32x4_t x) {
  1624. const float32x4_t r = vdupq_n_f32(0x1.8p23f);
  1625. const float32x4_t z = vfmaq_f32(r, x, vdupq_n_f32(0x1.715476p+0f));
  1626. const float32x4_t n = vsubq_f32(z, r);
  1627. const float32x4_t b = vfmsq_f32(vfmsq_f32(x, n, vdupq_n_f32(0x1.62e4p-1f)), n,
  1628. vdupq_n_f32(0x1.7f7d1cp-20f));
  1629. const uint32x4_t e = vshlq_n_u32(vreinterpretq_u32_f32(z), 23);
  1630. const float32x4_t k = vreinterpretq_f32_u32(vaddq_u32(e, vreinterpretq_u32_f32(vdupq_n_f32(1))));
  1631. const uint32x4_t c = vcagtq_f32(n, vdupq_n_f32(126));
  1632. const float32x4_t u = vmulq_f32(b, b);
  1633. const float32x4_t j = vfmaq_f32(
  1634. vmulq_f32(vdupq_n_f32(0x1.ffffecp-1f), b),
  1635. vfmaq_f32(vfmaq_f32(vdupq_n_f32(0x1.fffdb6p-2f), vdupq_n_f32(0x1.555e66p-3f), b),
  1636. vfmaq_f32(vdupq_n_f32(0x1.573e2ep-5f), vdupq_n_f32(0x1.0e4020p-7f), b), u), u);
  1637. if (!vpaddd_u64(vreinterpretq_u64_u32(c)))
  1638. return vfmaq_f32(k, j, k);
  1639. const uint32x4_t d = vandq_u32(vclezq_f32(n), vdupq_n_u32(0x82000000));
  1640. const float32x4_t s1 = vreinterpretq_f32_u32(vaddq_u32(d, vdupq_n_u32(0x7f000000)));
  1641. const float32x4_t s2 = vreinterpretq_f32_u32(vsubq_u32(e, d));
  1642. return vbslq_f32(vcagtq_f32(n, vdupq_n_f32(192)), vmulq_f32(s1, s1),
  1643. vbslq_f32(c, vmulq_f32(vfmaq_f32(s2, s2, j), s1), vfmaq_f32(k, k, j)));
  1644. }
  1645. // computes silu x/(1+exp(-x)) in single precision vector
  1646. inline static float32x4_t ggml_v_silu(float32x4_t x) {
  1647. const float32x4_t one = vdupq_n_f32(1.0f);
  1648. const float32x4_t zero = vdupq_n_f32(0.0f);
  1649. const float32x4_t neg_x = vsubq_f32(zero, x);
  1650. const float32x4_t exp_neg_x = ggml_v_expf(neg_x);
  1651. const float32x4_t one_plus_exp_neg_x = vaddq_f32(one, exp_neg_x);
  1652. return vdivq_f32(x, one_plus_exp_neg_x);
  1653. }
  1654. #elif defined(__AVX512F__) && defined(__AVX512DQ__)
  1655. // adapted from arm limited optimized routine
  1656. // the maximum error is 1.45358 plus 0.5 ulps
  1657. // numbers above 88.38 will flush to infinity
  1658. // numbers beneath -103.97 will flush to zero
  1659. inline static __m512 ggml_v_expf(__m512 x) {
  1660. const __m512 r = _mm512_set1_ps(0x1.8p23f);
  1661. const __m512 z = _mm512_fmadd_ps(x, _mm512_set1_ps(0x1.715476p+0f), r);
  1662. const __m512 n = _mm512_sub_ps(z, r);
  1663. const __m512 b =
  1664. _mm512_fnmadd_ps(n, _mm512_set1_ps(0x1.7f7d1cp-20f),
  1665. _mm512_fnmadd_ps(n, _mm512_set1_ps(0x1.62e4p-1f), x));
  1666. const __mmask16 d =
  1667. _mm512_cmp_ps_mask(_mm512_abs_ps(n), _mm512_set1_ps(192), _CMP_GT_OQ);
  1668. const __m512 u = _mm512_mul_ps(b, b);
  1669. const __m512 j = _mm512_fmadd_ps(
  1670. _mm512_fmadd_ps(_mm512_fmadd_ps(_mm512_set1_ps(0x1.0e4020p-7f), b,
  1671. _mm512_set1_ps(0x1.573e2ep-5f)),
  1672. u,
  1673. _mm512_fmadd_ps(_mm512_set1_ps(0x1.555e66p-3f), b,
  1674. _mm512_set1_ps(0x1.fffdb6p-2f))),
  1675. u,
  1676. _mm512_fmadd_ps(_mm512_set1_ps(0x1.ffffecp-1f), b, _mm512_set1_ps(1.0F)));
  1677. const __m512 res = _mm512_scalef_ps(j, n);
  1678. if (_mm512_kortestz(d, d))
  1679. return res;
  1680. const __m512 zero = _mm512_setzero_ps();
  1681. const __m512 alt = _mm512_mask_blend_ps(
  1682. _mm512_cmp_ps_mask(n, zero, _CMP_LE_OQ), _mm512_set1_ps(INFINITY), zero);
  1683. return _mm512_mask_blend_ps(d, res, alt);
  1684. }
  1685. // computes silu x/(1+exp(-x)) in single precision vector
  1686. inline static __m512 ggml_v_silu(__m512 x) {
  1687. const __m512 one = _mm512_set1_ps(1);
  1688. const __m512 zero = _mm512_setzero_ps();
  1689. const __m512 neg_x = _mm512_sub_ps(zero, x);
  1690. const __m512 exp_neg_x = ggml_v_expf(neg_x);
  1691. const __m512 one_plus_exp_neg_x = _mm512_add_ps(one, exp_neg_x);
  1692. return _mm512_div_ps(x, one_plus_exp_neg_x);
  1693. }
  1694. #elif defined(__AVX2__) && defined(__FMA__)
  1695. // adapted from arm limited optimized routine
  1696. // the maximum error is 1.45358 plus 0.5 ulps
  1697. // numbers above 88.38 will flush to infinity
  1698. // numbers beneath -103.97 will flush to zero
  1699. inline static __m256 ggml_v_expf(__m256 x) {
  1700. const __m256 r = _mm256_set1_ps(0x1.8p23f);
  1701. const __m256 z = _mm256_fmadd_ps(x, _mm256_set1_ps(0x1.715476p+0f), r);
  1702. const __m256 n = _mm256_sub_ps(z, r);
  1703. const __m256 b = _mm256_fnmadd_ps(n, _mm256_set1_ps(0x1.7f7d1cp-20f),
  1704. _mm256_fnmadd_ps(n, _mm256_set1_ps(0x1.62e4p-1f), x));
  1705. const __m256i e = _mm256_slli_epi32(_mm256_castps_si256(z), 23);
  1706. const __m256 k = _mm256_castsi256_ps(
  1707. _mm256_add_epi32(e, _mm256_castps_si256(_mm256_set1_ps(1))));
  1708. const __m256i c = _mm256_castps_si256(
  1709. _mm256_cmp_ps(_mm256_andnot_ps(_mm256_set1_ps(-0.f), n),
  1710. _mm256_set1_ps(126), _CMP_GT_OQ));
  1711. const __m256 u = _mm256_mul_ps(b, b);
  1712. const __m256 j = _mm256_fmadd_ps(_mm256_fmadd_ps(_mm256_fmadd_ps(_mm256_set1_ps(0x1.0e4020p-7f), b,
  1713. _mm256_set1_ps(0x1.573e2ep-5f)), u,
  1714. _mm256_fmadd_ps(_mm256_set1_ps(0x1.555e66p-3f), b,
  1715. _mm256_set1_ps(0x1.fffdb6p-2f))),
  1716. u, _mm256_mul_ps(_mm256_set1_ps(0x1.ffffecp-1f), b));
  1717. if (!_mm256_movemask_ps(_mm256_castsi256_ps(c)))
  1718. return _mm256_fmadd_ps(j, k, k);
  1719. const __m256i g = _mm256_and_si256(
  1720. _mm256_castps_si256(_mm256_cmp_ps(n, _mm256_setzero_ps(), _CMP_LE_OQ)),
  1721. _mm256_set1_epi32(0x82000000u));
  1722. const __m256 s1 =
  1723. _mm256_castsi256_ps(_mm256_add_epi32(g, _mm256_set1_epi32(0x7f000000u)));
  1724. const __m256 s2 = _mm256_castsi256_ps(_mm256_sub_epi32(e, g));
  1725. const __m256i d = _mm256_castps_si256(
  1726. _mm256_cmp_ps(_mm256_andnot_ps(_mm256_set1_ps(-0.f), n),
  1727. _mm256_set1_ps(192), _CMP_GT_OQ));
  1728. return _mm256_or_ps(
  1729. _mm256_and_ps(_mm256_castsi256_ps(d), _mm256_mul_ps(s1, s1)),
  1730. _mm256_andnot_ps(
  1731. _mm256_castsi256_ps(d),
  1732. _mm256_or_ps(
  1733. _mm256_and_ps(_mm256_castsi256_ps(c),
  1734. _mm256_mul_ps(_mm256_fmadd_ps(s2, j, s2), s1)),
  1735. _mm256_andnot_ps(_mm256_castsi256_ps(c), _mm256_fmadd_ps(k, j, k)))));
  1736. }
  1737. // computes silu x/(1+exp(-x)) in single precision vector
  1738. inline static __m256 ggml_v_silu(__m256 x) {
  1739. const __m256 one = _mm256_set1_ps(1);
  1740. const __m256 zero = _mm256_setzero_ps();
  1741. const __m256 neg_x = _mm256_sub_ps(zero, x);
  1742. const __m256 exp_neg_x = ggml_v_expf(neg_x);
  1743. const __m256 one_plus_exp_neg_x = _mm256_add_ps(one, exp_neg_x);
  1744. return _mm256_div_ps(x, one_plus_exp_neg_x);
  1745. }
  1746. #elif defined(__SSE2__) // __AVX2__ / __ARM_NEON
  1747. #if defined(__FMA__)
  1748. #define MADD128(x, y, z) _mm_fmadd_ps(x, y, z)
  1749. #define NMADD128(x, y, z) _mm_fnmadd_ps(x, y, z)
  1750. #else
  1751. #define MADD128(x, y, z) _mm_add_ps(_mm_mul_ps(x, y), z)
  1752. #define NMADD128(x, y, z) _mm_sub_ps(z, _mm_mul_ps(x, y))
  1753. #endif
  1754. // adapted from arm limited optimized routine
  1755. // the maximum error is 1.45358 plus 0.5 ulps
  1756. // numbers above 88.38 will flush to infinity
  1757. // numbers beneath -103.97 will flush to zero
  1758. inline static __m128 ggml_v_expf(__m128 x) {
  1759. const __m128 r = _mm_set1_ps(0x1.8p23f);
  1760. const __m128 z = MADD128(x, _mm_set1_ps(0x1.715476p+0f), r);
  1761. const __m128 n = _mm_sub_ps(z, r);
  1762. const __m128 b =
  1763. NMADD128(n, _mm_set1_ps(0x1.7f7d1cp-20f), NMADD128(n, _mm_set1_ps(0x1.62e4p-1f), x));
  1764. const __m128i e = _mm_slli_epi32(_mm_castps_si128(z), 23);
  1765. const __m128 k = _mm_castsi128_ps(_mm_add_epi32(e, _mm_castps_si128(_mm_set1_ps(1))));
  1766. const __m128i c =
  1767. _mm_castps_si128(_mm_cmpgt_ps(_mm_andnot_ps(_mm_set1_ps(-0.f), n), _mm_set1_ps(126)));
  1768. const __m128 u = _mm_mul_ps(b, b);
  1769. const __m128 j =
  1770. MADD128(MADD128(MADD128(_mm_set1_ps(0x1.0e4020p-7f), b, _mm_set1_ps(0x1.573e2ep-5f)), u,
  1771. MADD128(_mm_set1_ps(0x1.555e66p-3f), b, _mm_set1_ps(0x1.fffdb6p-2f))),
  1772. u, _mm_mul_ps(_mm_set1_ps(0x1.ffffecp-1f), b));
  1773. if (!_mm_movemask_epi8(c))
  1774. return MADD128(j, k, k);
  1775. const __m128i g = _mm_and_si128(_mm_castps_si128(_mm_cmple_ps(n, _mm_setzero_ps())),
  1776. _mm_set1_epi32(0x82000000u));
  1777. const __m128 s1 = _mm_castsi128_ps(_mm_add_epi32(g, _mm_set1_epi32(0x7f000000u)));
  1778. const __m128 s2 = _mm_castsi128_ps(_mm_sub_epi32(e, g));
  1779. const __m128i d =
  1780. _mm_castps_si128(_mm_cmpgt_ps(_mm_andnot_ps(_mm_set1_ps(-0.f), n), _mm_set1_ps(192)));
  1781. return _mm_or_ps(
  1782. _mm_and_ps(_mm_castsi128_ps(d), _mm_mul_ps(s1, s1)),
  1783. _mm_andnot_ps(_mm_castsi128_ps(d),
  1784. _mm_or_ps(_mm_and_ps(_mm_castsi128_ps(c), _mm_mul_ps(MADD128(s2, j, s2), s1)),
  1785. _mm_andnot_ps(_mm_castsi128_ps(c), MADD128(k, j, k)))));
  1786. }
  1787. // computes silu x/(1+exp(-x)) in single precision vector
  1788. inline static __m128 ggml_v_silu(__m128 x) {
  1789. const __m128 one = _mm_set1_ps(1);
  1790. const __m128 zero = _mm_setzero_ps();
  1791. const __m128 neg_x = _mm_sub_ps(zero, x);
  1792. const __m128 exp_neg_x = ggml_v_expf(neg_x);
  1793. const __m128 one_plus_exp_neg_x = _mm_add_ps(one, exp_neg_x);
  1794. return _mm_div_ps(x, one_plus_exp_neg_x);
  1795. }
  1796. #endif // __ARM_NEON / __AVX2__ / __SSE2__
  1797. static void ggml_vec_silu_f32(const int n, float * y, const float * x) {
  1798. int i = 0;
  1799. #if defined(__AVX512F__) && defined(__AVX512DQ__)
  1800. for (; i + 15 < n; i += 16) {
  1801. _mm512_storeu_ps(y + i, ggml_v_silu(_mm512_loadu_ps(x + i)));
  1802. }
  1803. #elif defined(__AVX2__) && defined(__FMA__)
  1804. for (; i + 7 < n; i += 8) {
  1805. _mm256_storeu_ps(y + i, ggml_v_silu(_mm256_loadu_ps(x + i)));
  1806. }
  1807. #elif defined(__SSE2__)
  1808. for (; i + 3 < n; i += 4) {
  1809. _mm_storeu_ps(y + i, ggml_v_silu(_mm_loadu_ps(x + i)));
  1810. }
  1811. #elif defined(__ARM_NEON) && defined(__aarch64__)
  1812. for (; i + 3 < n; i += 4) {
  1813. vst1q_f32(y + i, ggml_v_silu(vld1q_f32(x + i)));
  1814. }
  1815. #endif
  1816. for (; i < n; ++i) {
  1817. y[i] = ggml_silu_f32(x[i]);
  1818. }
  1819. }
  1820. static ggml_float ggml_vec_soft_max_f32(const int n, float * y, const float * x, float max) {
  1821. int i = 0;
  1822. ggml_float sum = 0;
  1823. #if defined(__AVX512F__) && defined(__AVX512DQ__)
  1824. for (; i + 15 < n; i += 16) {
  1825. __m512 val = ggml_v_expf(_mm512_sub_ps(_mm512_loadu_ps(x + i),
  1826. _mm512_set1_ps(max)));
  1827. _mm512_storeu_ps(y + i, val);
  1828. sum += (ggml_float)_mm512_reduce_add_ps(val);
  1829. }
  1830. #elif defined(__AVX2__) && defined(__FMA__)
  1831. for (; i + 7 < n; i += 8) {
  1832. __m256 val = ggml_v_expf(_mm256_sub_ps(_mm256_loadu_ps(x + i),
  1833. _mm256_set1_ps(max)));
  1834. _mm256_storeu_ps(y + i, val);
  1835. __m128 val2 = _mm_add_ps(_mm256_extractf128_ps(val, 1),
  1836. _mm256_castps256_ps128(val));
  1837. val2 = _mm_add_ps(val2, _mm_movehl_ps(val2, val2));
  1838. val2 = _mm_add_ss(val2, _mm_movehdup_ps(val2));
  1839. sum += (ggml_float)_mm_cvtss_f32(val2);
  1840. }
  1841. #elif defined(__SSE2__)
  1842. for (; i + 3 < n; i += 4) {
  1843. __m128 val = ggml_v_expf(_mm_sub_ps(_mm_loadu_ps(x + i),
  1844. _mm_set1_ps(max)));
  1845. _mm_storeu_ps(y + i, val);
  1846. #if defined(__AVX__) || defined(__AVX2__) || defined(__AVX512F__)
  1847. val = _mm_add_ps(val, _mm_movehl_ps(val, val));
  1848. val = _mm_add_ss(val, _mm_movehdup_ps(val));
  1849. #else
  1850. __m128 tmp = _mm_shuffle_ps(val, val, _MM_SHUFFLE(2, 3, 0, 1));
  1851. val = _mm_add_ps(val, tmp);
  1852. tmp = _mm_movehl_ps(tmp, val);
  1853. val = _mm_add_ss(val, tmp);
  1854. #endif
  1855. sum += (ggml_float)_mm_cvtss_f32(val);
  1856. }
  1857. #elif defined(__ARM_NEON) && defined(__aarch64__)
  1858. for (; i + 3 < n; i += 4) {
  1859. float32x4_t val = ggml_v_expf(vsubq_f32(vld1q_f32(x + i),
  1860. vdupq_n_f32(max)));
  1861. vst1q_f32(y + i, val);
  1862. sum += (ggml_float)vaddvq_f32(val);
  1863. }
  1864. #endif
  1865. for (; i < n; ++i) {
  1866. float val = expf(x[i] - max);
  1867. sum += (ggml_float)val;
  1868. y[i] = val;
  1869. }
  1870. return sum;
  1871. }
  1872. static ggml_float ggml_vec_log_soft_max_f32(const int n, float * y, const float * x, float max) {
  1873. // log(soft_max) = log(soft_max_i / soft_max_sum) = log(soft_max_i) - log(soft_max_sum) = (logit_i - max) - log(soft_max_i)
  1874. int i = 0;
  1875. ggml_float sum = 0;
  1876. for (; i < n; ++i) {
  1877. float val = x[i] - max;
  1878. y[i] = val;
  1879. sum += (ggml_float)expf(val);
  1880. }
  1881. return sum = (ggml_float)logf(sum);
  1882. }
  1883. inline static float ggml_silu_backward_f32(float x, float dy) {
  1884. const float s = 1.0f/(1.0f + expf(-x));
  1885. return dy*s*(1.0f + x*(1.0f - s));
  1886. }
  1887. inline static void ggml_vec_silu_backward_f32(const int n, float * dx, const float * x, const float * dy) {
  1888. for (int i = 0; i < n; ++i) {
  1889. dx[i] = ggml_silu_backward_f32(x[i], dy[i]);
  1890. }
  1891. }
  1892. inline static void ggml_vec_sum_f32(const int n, float * s, const float * x) {
  1893. #ifndef GGML_USE_ACCELERATE
  1894. ggml_float sum = 0.0;
  1895. for (int i = 0; i < n; ++i) {
  1896. sum += (ggml_float)x[i];
  1897. }
  1898. *s = sum;
  1899. #else
  1900. vDSP_sve(x, 1, s, n);
  1901. #endif
  1902. }
  1903. inline static void ggml_vec_sum_f32_ggf(const int n, ggml_float * s, const float * x) {
  1904. ggml_float sum = 0.0;
  1905. for (int i = 0; i < n; ++i) {
  1906. sum += (ggml_float)x[i];
  1907. }
  1908. *s = sum;
  1909. }
  1910. inline static void ggml_vec_sum_f16_ggf(const int n, float * s, const ggml_fp16_t * x) {
  1911. float sum = 0.0f;
  1912. for (int i = 0; i < n; ++i) {
  1913. sum += GGML_FP16_TO_FP32(x[i]);
  1914. }
  1915. *s = sum;
  1916. }
  1917. inline static void ggml_vec_sum_bf16_ggf(const int n, float * s, const ggml_bf16_t * x) {
  1918. float sum = 0.0f;
  1919. for (int i = 0; i < n; ++i) {
  1920. sum += GGML_BF16_TO_FP32(x[i]);
  1921. }
  1922. *s = sum;
  1923. }
  1924. inline static void ggml_vec_max_f32(const int n, float * s, const float * x) {
  1925. #ifndef GGML_USE_ACCELERATE
  1926. float max = -INFINITY;
  1927. for (int i = 0; i < n; ++i) {
  1928. max = MAX(max, x[i]);
  1929. }
  1930. *s = max;
  1931. #else
  1932. vDSP_maxv(x, 1, s, n);
  1933. #endif
  1934. }
  1935. inline static void ggml_vec_norm_inv_f32(const int n, float * s, const float * x) {
  1936. ggml_vec_norm_f32(n, s, x);
  1937. *s = 1.f/(*s);
  1938. }
  1939. inline static void ggml_vec_argmax_f32(const int n, int * s, const float * x) {
  1940. float max = -INFINITY;
  1941. int idx = 0;
  1942. for (int i = 0; i < n; ++i) {
  1943. max = MAX(max, x[i]);
  1944. if (max == x[i]) { idx = i; }
  1945. }
  1946. *s = idx;
  1947. }
  1948. // Helpers for polling loops
  1949. #if defined(__aarch64__) && ( defined(__clang__) || defined(__GNUC__) )
  1950. static inline void ggml_thread_cpu_relax(void) {
  1951. __asm__ volatile("yield" ::: "memory");
  1952. }
  1953. #elif defined(__x86_64__)
  1954. static inline void ggml_thread_cpu_relax(void) {
  1955. _mm_pause();
  1956. }
  1957. #else
  1958. static inline void ggml_thread_cpu_relax(void) {;}
  1959. #endif
  1960. //
  1961. // NUMA support
  1962. //
  1963. #define GGML_NUMA_MAX_NODES 8
  1964. #define GGML_NUMA_MAX_CPUS 512
  1965. struct ggml_numa_node {
  1966. uint32_t cpus[GGML_NUMA_MAX_CPUS]; // hardware threads on this node
  1967. uint32_t n_cpus;
  1968. };
  1969. struct ggml_numa_nodes {
  1970. enum ggml_numa_strategy numa_strategy;
  1971. struct ggml_numa_node nodes[GGML_NUMA_MAX_NODES];
  1972. uint32_t n_nodes;
  1973. uint32_t total_cpus; // hardware threads on system
  1974. uint32_t current_node; // node on which main process is execting
  1975. #if defined(__gnu_linux__)
  1976. cpu_set_t cpuset; // cpuset from numactl
  1977. #else
  1978. uint32_t cpuset; // no NUMA support outside of Linux at this time. Use a portable datatype
  1979. #endif
  1980. };
  1981. //
  1982. // ggml state
  1983. //
  1984. struct ggml_state {
  1985. struct ggml_numa_nodes numa;
  1986. };
  1987. static struct ggml_state g_state = {0};
  1988. void ggml_barrier(struct ggml_threadpool * tp) {
  1989. int n_threads = atomic_load_explicit(&tp->n_threads_cur, memory_order_relaxed);
  1990. if (n_threads == 1) {
  1991. return;
  1992. }
  1993. #ifdef GGML_USE_OPENMP
  1994. #pragma omp barrier
  1995. #else
  1996. int n_passed = atomic_load_explicit(&tp->n_barrier_passed, memory_order_relaxed);
  1997. // enter barrier (full seq-cst fence)
  1998. int n_barrier = atomic_fetch_add_explicit(&tp->n_barrier, 1, memory_order_seq_cst);
  1999. if (n_barrier == (n_threads - 1)) {
  2000. // last thread
  2001. atomic_store_explicit(&tp->n_barrier, 0, memory_order_relaxed);
  2002. // exit barrier (fill seq-cst fence)
  2003. atomic_fetch_add_explicit(&tp->n_barrier_passed, 1, memory_order_seq_cst);
  2004. return;
  2005. }
  2006. // wait for other threads
  2007. while (atomic_load_explicit(&tp->n_barrier_passed, memory_order_relaxed) == n_passed) {
  2008. ggml_thread_cpu_relax();
  2009. }
  2010. // exit barrier (full seq-cst fence)
  2011. // TSAN doesn't support standalone fence yet, we use a dummy read-modify-write instead
  2012. #ifdef GGML_TSAN_ENABLED
  2013. atomic_fetch_add_explicit(&tp->n_barrier_passed, 0, memory_order_seq_cst);
  2014. #else
  2015. atomic_thread_fence(memory_order_seq_cst);
  2016. #endif
  2017. #endif
  2018. }
  2019. #if defined(__gnu_linux__)
  2020. static cpu_set_t ggml_get_numa_affinity(void) {
  2021. cpu_set_t cpuset;
  2022. pthread_t thread;
  2023. thread = pthread_self();
  2024. CPU_ZERO(&cpuset);
  2025. pthread_getaffinity_np(thread, sizeof(cpu_set_t), &cpuset);
  2026. return cpuset;
  2027. }
  2028. #else
  2029. static uint32_t ggml_get_numa_affinity(void) {
  2030. return 0; // no NUMA support
  2031. }
  2032. #endif
  2033. void ggml_numa_init(enum ggml_numa_strategy numa_flag) {
  2034. if (g_state.numa.n_nodes > 0) {
  2035. fprintf(stderr, "ggml_numa_init: NUMA already initialized\n");
  2036. return;
  2037. }
  2038. #if defined(__gnu_linux__)
  2039. struct stat st;
  2040. char path[256];
  2041. int rv;
  2042. // set numa scheme
  2043. g_state.numa.numa_strategy = numa_flag;
  2044. GGML_PRINT_DEBUG("numa strategy %u\n",g_state.numa.numa_strategy);
  2045. g_state.numa.cpuset = ggml_get_numa_affinity();
  2046. // enumerate nodes
  2047. while (g_state.numa.n_nodes < GGML_NUMA_MAX_NODES) {
  2048. rv = snprintf(path, sizeof(path), "/sys/devices/system/node/node%u", g_state.numa.n_nodes);
  2049. GGML_ASSERT(rv > 0 && (unsigned)rv < sizeof(path));
  2050. if (stat(path, &st) != 0) { break; }
  2051. ++g_state.numa.n_nodes;
  2052. }
  2053. // enumerate CPUs
  2054. while (g_state.numa.total_cpus < GGML_NUMA_MAX_CPUS) {
  2055. rv = snprintf(path, sizeof(path), "/sys/devices/system/cpu/cpu%u", g_state.numa.total_cpus);
  2056. GGML_ASSERT(rv > 0 && (unsigned)rv < sizeof(path));
  2057. if (stat(path, &st) != 0) { break; }
  2058. ++g_state.numa.total_cpus;
  2059. }
  2060. GGML_PRINT_DEBUG("found %u numa nodes, %u CPUs\n", g_state.numa.n_nodes, g_state.numa.total_cpus);
  2061. // figure out which node we're on
  2062. uint current_cpu;
  2063. int getcpu_ret = 0;
  2064. #if __GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ > 33) || defined(__COSMOPOLITAN__)
  2065. getcpu_ret = getcpu(&current_cpu, &g_state.numa.current_node);
  2066. #else
  2067. // old glibc doesn't have a wrapper for this call. Fall back on direct syscall
  2068. # if !defined(SYS_getcpu) && defined(SYS_get_cpu)
  2069. # define SYS_getcpu SYS_get_cpu // some older glibc versions use this name
  2070. # endif
  2071. getcpu_ret = syscall(SYS_getcpu, &current_cpu, &g_state.numa.current_node);
  2072. #endif
  2073. if (g_state.numa.n_nodes < 1 || g_state.numa.total_cpus < 1 || getcpu_ret != 0) {
  2074. g_state.numa.n_nodes = 0;
  2075. return;
  2076. }
  2077. GGML_PRINT_DEBUG("found our process on numa node %u, CPU %u\n", g_state.numa.current_node, current_cpu);
  2078. for (uint32_t n = 0; n < g_state.numa.n_nodes; ++n) {
  2079. struct ggml_numa_node * node = &g_state.numa.nodes[n];
  2080. GGML_PRINT_DEBUG("CPUs on node %u:", n);
  2081. node->n_cpus = 0;
  2082. for (uint32_t c = 0; c < g_state.numa.total_cpus; ++c) {
  2083. rv = snprintf(path, sizeof(path), "/sys/devices/system/node/node%u/cpu%u", n, c);
  2084. GGML_ASSERT(rv > 0 && (unsigned)rv < sizeof(path));
  2085. if (stat(path, &st) == 0) {
  2086. node->cpus[node->n_cpus++] = c;
  2087. GGML_PRINT_DEBUG(" %u", c);
  2088. }
  2089. }
  2090. GGML_PRINT_DEBUG("\n");
  2091. }
  2092. if (ggml_is_numa()) {
  2093. FILE *fptr = fopen("/proc/sys/kernel/numa_balancing", "r");
  2094. if (fptr != NULL) {
  2095. char buf[42];
  2096. if (fgets(buf, sizeof(buf), fptr) && strncmp(buf, "0\n", sizeof(buf)) != 0) {
  2097. GGML_LOG_WARN("/proc/sys/kernel/numa_balancing is enabled, this has been observed to impair performance\n");
  2098. }
  2099. fclose(fptr);
  2100. }
  2101. }
  2102. #else
  2103. UNUSED(numa_flag);
  2104. // TODO
  2105. #endif
  2106. }
  2107. bool ggml_is_numa(void) {
  2108. return g_state.numa.n_nodes > 1;
  2109. }
  2110. #if defined(__ARM_ARCH)
  2111. #if defined(__linux__) && defined(__aarch64__)
  2112. #include <sys/auxv.h>
  2113. #elif defined(__APPLE__)
  2114. #include <sys/sysctl.h>
  2115. #endif
  2116. #if !defined(HWCAP2_I8MM)
  2117. #define HWCAP2_I8MM 0
  2118. #endif
  2119. static void ggml_init_arm_arch_features(void) {
  2120. #if defined(__linux__) && defined(__aarch64__)
  2121. uint32_t hwcap = getauxval(AT_HWCAP);
  2122. uint32_t hwcap2 = getauxval(AT_HWCAP2);
  2123. ggml_arm_arch_features.has_neon = !!(hwcap & HWCAP_ASIMD);
  2124. ggml_arm_arch_features.has_dotprod = !!(hwcap && HWCAP_ASIMDDP);
  2125. ggml_arm_arch_features.has_i8mm = !!(hwcap2 & HWCAP2_I8MM);
  2126. ggml_arm_arch_features.has_sve = !!(hwcap & HWCAP_SVE);
  2127. #if defined(__ARM_FEATURE_SVE)
  2128. ggml_arm_arch_features.sve_cnt = PR_SVE_VL_LEN_MASK & prctl(PR_SVE_GET_VL);
  2129. #endif
  2130. #elif defined(__APPLE__)
  2131. int oldp = 0;
  2132. size_t size = sizeof(oldp);
  2133. if (sysctlbyname("hw.optional.AdvSIMD", &oldp, &size, NULL, 0) != 0) {
  2134. oldp = 0;
  2135. }
  2136. ggml_arm_arch_features.has_neon = oldp;
  2137. if (sysctlbyname("hw.optional.arm.FEAT_DotProd", &oldp, &size, NULL, 0) != 0) {
  2138. oldp = 0;
  2139. }
  2140. ggml_arm_arch_features.has_dotprod = oldp;
  2141. if (sysctlbyname("hw.optional.arm.FEAT_I8MM", &oldp, &size, NULL, 0) != 0) {
  2142. oldp = 0;
  2143. }
  2144. ggml_arm_arch_features.has_i8mm = oldp;
  2145. ggml_arm_arch_features.has_sve = 0;
  2146. ggml_arm_arch_features.sve_cnt = 0;
  2147. #else
  2148. // Run-time CPU feature detection not implemented for this platform, fallback to compile time
  2149. #if defined(__ARM_NEON)
  2150. ggml_arm_arch_features.has_neon = 1;
  2151. #else
  2152. ggml_arm_arch_features.has_neon = 0;
  2153. #endif
  2154. #if defined(__ARM_FEATURE_MATMUL_INT8)
  2155. ggml_arm_arch_features.has_i8mm = 1;
  2156. #else
  2157. ggml_arm_arch_features.has_i8mm = 0;
  2158. #endif
  2159. #if defined(__ARM_FEATURE_SVE)
  2160. ggml_arm_arch_features.has_sve = 1;
  2161. ggml_arm_arch_features.sve_cnt = 16;
  2162. #else
  2163. ggml_arm_arch_features.has_sve = 0;
  2164. ggml_arm_arch_features.sve_cnt = 0;
  2165. #endif
  2166. #endif
  2167. }
  2168. #endif
  2169. struct ggml_tensor * ggml_new_i32(struct ggml_context * ctx, int32_t value) {
  2170. GGML_ASSERT(!ggml_get_no_alloc(ctx));
  2171. struct ggml_tensor * result = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, 1);
  2172. ggml_set_i32(result, value);
  2173. return result;
  2174. }
  2175. struct ggml_tensor * ggml_new_f32(struct ggml_context * ctx, float value) {
  2176. GGML_ASSERT(!ggml_get_no_alloc(ctx));
  2177. struct ggml_tensor * result = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, 1);
  2178. ggml_set_f32(result, value);
  2179. return result;
  2180. }
  2181. struct ggml_tensor * ggml_set_i32 (struct ggml_tensor * tensor, int32_t value) {
  2182. const int n = ggml_nrows(tensor);
  2183. const int nc = tensor->ne[0];
  2184. const size_t n1 = tensor->nb[1];
  2185. char * const data = tensor->data;
  2186. switch (tensor->type) {
  2187. case GGML_TYPE_I8:
  2188. {
  2189. assert(tensor->nb[0] == sizeof(int8_t));
  2190. for (int i = 0; i < n; i++) {
  2191. ggml_vec_set_i8(nc, (int8_t *)(data + i*n1), value);
  2192. }
  2193. } break;
  2194. case GGML_TYPE_I16:
  2195. {
  2196. assert(tensor->nb[0] == sizeof(int16_t));
  2197. for (int i = 0; i < n; i++) {
  2198. ggml_vec_set_i16(nc, (int16_t *)(data + i*n1), value);
  2199. }
  2200. } break;
  2201. case GGML_TYPE_I32:
  2202. {
  2203. assert(tensor->nb[0] == sizeof(int32_t));
  2204. for (int i = 0; i < n; i++) {
  2205. ggml_vec_set_i32(nc, (int32_t *)(data + i*n1), value);
  2206. }
  2207. } break;
  2208. case GGML_TYPE_F16:
  2209. {
  2210. assert(tensor->nb[0] == sizeof(ggml_fp16_t));
  2211. for (int i = 0; i < n; i++) {
  2212. ggml_vec_set_f16(nc, (ggml_fp16_t *)(data + i*n1), GGML_FP32_TO_FP16(value));
  2213. }
  2214. } break;
  2215. case GGML_TYPE_BF16:
  2216. {
  2217. assert(tensor->nb[0] == sizeof(ggml_fp16_t));
  2218. for (int i = 0; i < n; i++) {
  2219. ggml_vec_set_bf16(nc, (ggml_bf16_t *)(data + i*n1), GGML_FP32_TO_BF16(value));
  2220. }
  2221. } break;
  2222. case GGML_TYPE_F32:
  2223. {
  2224. assert(tensor->nb[0] == sizeof(float));
  2225. for (int i = 0; i < n; i++) {
  2226. ggml_vec_set_f32(nc, (float *)(data + i*n1), value);
  2227. }
  2228. } break;
  2229. default:
  2230. {
  2231. GGML_ABORT("fatal error");
  2232. }
  2233. }
  2234. return tensor;
  2235. }
  2236. struct ggml_tensor * ggml_set_f32(struct ggml_tensor * tensor, float value) {
  2237. const int n = ggml_nrows(tensor);
  2238. const int nc = tensor->ne[0];
  2239. const size_t n1 = tensor->nb[1];
  2240. char * const data = tensor->data;
  2241. switch (tensor->type) {
  2242. case GGML_TYPE_I8:
  2243. {
  2244. assert(tensor->nb[0] == sizeof(int8_t));
  2245. for (int i = 0; i < n; i++) {
  2246. ggml_vec_set_i8(nc, (int8_t *)(data + i*n1), value);
  2247. }
  2248. } break;
  2249. case GGML_TYPE_I16:
  2250. {
  2251. assert(tensor->nb[0] == sizeof(int16_t));
  2252. for (int i = 0; i < n; i++) {
  2253. ggml_vec_set_i16(nc, (int16_t *)(data + i*n1), value);
  2254. }
  2255. } break;
  2256. case GGML_TYPE_I32:
  2257. {
  2258. assert(tensor->nb[0] == sizeof(int32_t));
  2259. for (int i = 0; i < n; i++) {
  2260. ggml_vec_set_i32(nc, (int32_t *)(data + i*n1), value);
  2261. }
  2262. } break;
  2263. case GGML_TYPE_F16:
  2264. {
  2265. assert(tensor->nb[0] == sizeof(ggml_fp16_t));
  2266. for (int i = 0; i < n; i++) {
  2267. ggml_vec_set_f16(nc, (ggml_fp16_t *)(data + i*n1), GGML_FP32_TO_FP16(value));
  2268. }
  2269. } break;
  2270. case GGML_TYPE_BF16:
  2271. {
  2272. assert(tensor->nb[0] == sizeof(ggml_bf16_t));
  2273. for (int i = 0; i < n; i++) {
  2274. ggml_vec_set_bf16(nc, (ggml_bf16_t *)(data + i*n1), GGML_FP32_TO_BF16(value));
  2275. }
  2276. } break;
  2277. case GGML_TYPE_F32:
  2278. {
  2279. assert(tensor->nb[0] == sizeof(float));
  2280. for (int i = 0; i < n; i++) {
  2281. ggml_vec_set_f32(nc, (float *)(data + i*n1), value);
  2282. }
  2283. } break;
  2284. default:
  2285. {
  2286. GGML_ABORT("fatal error");
  2287. }
  2288. }
  2289. return tensor;
  2290. }
  2291. int32_t ggml_get_i32_1d(const struct ggml_tensor * tensor, int i) {
  2292. if (!ggml_is_contiguous(tensor)) {
  2293. int64_t id[4] = { 0, 0, 0, 0 };
  2294. ggml_unravel_index(tensor, i, &id[0], &id[1], &id[2], &id[3]);
  2295. return ggml_get_i32_nd(tensor, id[0], id[1], id[2], id[3]);
  2296. }
  2297. switch (tensor->type) {
  2298. case GGML_TYPE_I8:
  2299. {
  2300. GGML_ASSERT(tensor->nb[0] == sizeof(int8_t));
  2301. return ((int8_t *)(tensor->data))[i];
  2302. }
  2303. case GGML_TYPE_I16:
  2304. {
  2305. GGML_ASSERT(tensor->nb[0] == sizeof(int16_t));
  2306. return ((int16_t *)(tensor->data))[i];
  2307. }
  2308. case GGML_TYPE_I32:
  2309. {
  2310. GGML_ASSERT(tensor->nb[0] == sizeof(int32_t));
  2311. return ((int32_t *)(tensor->data))[i];
  2312. }
  2313. case GGML_TYPE_F16:
  2314. {
  2315. GGML_ASSERT(tensor->nb[0] == sizeof(ggml_fp16_t));
  2316. return GGML_FP16_TO_FP32(((ggml_fp16_t *)(tensor->data))[i]);
  2317. }
  2318. case GGML_TYPE_BF16:
  2319. {
  2320. GGML_ASSERT(tensor->nb[0] == sizeof(ggml_bf16_t));
  2321. return GGML_BF16_TO_FP32(((ggml_bf16_t *)(tensor->data))[i]);
  2322. }
  2323. case GGML_TYPE_F32:
  2324. {
  2325. GGML_ASSERT(tensor->nb[0] == sizeof(float));
  2326. return ((float *)(tensor->data))[i];
  2327. }
  2328. default:
  2329. {
  2330. GGML_ABORT("fatal error");
  2331. }
  2332. }
  2333. }
  2334. void ggml_set_i32_1d(const struct ggml_tensor * tensor, int i, int32_t value) {
  2335. if (!ggml_is_contiguous(tensor)) {
  2336. int64_t id[4] = { 0, 0, 0, 0 };
  2337. ggml_unravel_index(tensor, i, &id[0], &id[1], &id[2], &id[3]);
  2338. ggml_set_i32_nd(tensor, id[0], id[1], id[2], id[3], value);
  2339. return;
  2340. }
  2341. switch (tensor->type) {
  2342. case GGML_TYPE_I8:
  2343. {
  2344. GGML_ASSERT(tensor->nb[0] == sizeof(int8_t));
  2345. ((int8_t *)(tensor->data))[i] = value;
  2346. } break;
  2347. case GGML_TYPE_I16:
  2348. {
  2349. GGML_ASSERT(tensor->nb[0] == sizeof(int16_t));
  2350. ((int16_t *)(tensor->data))[i] = value;
  2351. } break;
  2352. case GGML_TYPE_I32:
  2353. {
  2354. GGML_ASSERT(tensor->nb[0] == sizeof(int32_t));
  2355. ((int32_t *)(tensor->data))[i] = value;
  2356. } break;
  2357. case GGML_TYPE_F16:
  2358. {
  2359. GGML_ASSERT(tensor->nb[0] == sizeof(ggml_fp16_t));
  2360. ((ggml_fp16_t *)(tensor->data))[i] = GGML_FP32_TO_FP16(value);
  2361. } break;
  2362. case GGML_TYPE_BF16:
  2363. {
  2364. GGML_ASSERT(tensor->nb[0] == sizeof(ggml_bf16_t));
  2365. ((ggml_bf16_t *)(tensor->data))[i] = GGML_FP32_TO_BF16(value);
  2366. } break;
  2367. case GGML_TYPE_F32:
  2368. {
  2369. GGML_ASSERT(tensor->nb[0] == sizeof(float));
  2370. ((float *)(tensor->data))[i] = value;
  2371. } break;
  2372. default:
  2373. {
  2374. GGML_ABORT("fatal error");
  2375. }
  2376. }
  2377. }
  2378. int32_t ggml_get_i32_nd(const struct ggml_tensor * tensor, int i0, int i1, int i2, int i3) {
  2379. void * data = (char *) tensor->data + i0*tensor->nb[0] + i1*tensor->nb[1] + i2*tensor->nb[2] + i3*tensor->nb[3];
  2380. switch (tensor->type) {
  2381. case GGML_TYPE_I8:
  2382. return ((int8_t *) data)[0];
  2383. case GGML_TYPE_I16:
  2384. return ((int16_t *) data)[0];
  2385. case GGML_TYPE_I32:
  2386. return ((int32_t *) data)[0];
  2387. case GGML_TYPE_F16:
  2388. return GGML_FP16_TO_FP32(((ggml_fp16_t *) data)[0]);
  2389. case GGML_TYPE_BF16:
  2390. return GGML_BF16_TO_FP32(((ggml_bf16_t *) data)[0]);
  2391. case GGML_TYPE_F32:
  2392. return ((float *) data)[0];
  2393. default:
  2394. GGML_ABORT("fatal error");
  2395. }
  2396. }
  2397. void ggml_set_i32_nd(const struct ggml_tensor * tensor, int i0, int i1, int i2, int i3, int32_t value) {
  2398. void * data = (char *) tensor->data + i0*tensor->nb[0] + i1*tensor->nb[1] + i2*tensor->nb[2] + i3*tensor->nb[3];
  2399. switch (tensor->type) {
  2400. case GGML_TYPE_I8:
  2401. {
  2402. ((int8_t *)(data))[0] = value;
  2403. } break;
  2404. case GGML_TYPE_I16:
  2405. {
  2406. ((int16_t *)(data))[0] = value;
  2407. } break;
  2408. case GGML_TYPE_I32:
  2409. {
  2410. ((int32_t *)(data))[0] = value;
  2411. } break;
  2412. case GGML_TYPE_F16:
  2413. {
  2414. ((ggml_fp16_t *)(data))[0] = GGML_FP32_TO_FP16(value);
  2415. } break;
  2416. case GGML_TYPE_BF16:
  2417. {
  2418. ((ggml_bf16_t *)(data))[0] = GGML_FP32_TO_BF16(value);
  2419. } break;
  2420. case GGML_TYPE_F32:
  2421. {
  2422. ((float *)(data))[0] = value;
  2423. } break;
  2424. default:
  2425. {
  2426. GGML_ABORT("fatal error");
  2427. }
  2428. }
  2429. }
  2430. float ggml_get_f32_1d(const struct ggml_tensor * tensor, int i) {
  2431. if (!ggml_is_contiguous(tensor)) {
  2432. int64_t id[4] = { 0, 0, 0, 0 };
  2433. ggml_unravel_index(tensor, i, &id[0], &id[1], &id[2], &id[3]);
  2434. return ggml_get_f32_nd(tensor, id[0], id[1], id[2], id[3]);
  2435. }
  2436. switch (tensor->type) {
  2437. case GGML_TYPE_I8:
  2438. {
  2439. return ((int8_t *)(tensor->data))[i];
  2440. }
  2441. case GGML_TYPE_I16:
  2442. {
  2443. return ((int16_t *)(tensor->data))[i];
  2444. }
  2445. case GGML_TYPE_I32:
  2446. {
  2447. return ((int32_t *)(tensor->data))[i];
  2448. }
  2449. case GGML_TYPE_F16:
  2450. {
  2451. return GGML_FP16_TO_FP32(((ggml_fp16_t *)(tensor->data))[i]);
  2452. }
  2453. case GGML_TYPE_BF16:
  2454. {
  2455. return GGML_BF16_TO_FP32(((ggml_bf16_t *)(tensor->data))[i]);
  2456. }
  2457. case GGML_TYPE_F32:
  2458. {
  2459. return ((float *)(tensor->data))[i];
  2460. }
  2461. default:
  2462. {
  2463. GGML_ABORT("fatal error");
  2464. }
  2465. }
  2466. }
  2467. void ggml_set_f32_1d(const struct ggml_tensor * tensor, int i, float value) {
  2468. if (!ggml_is_contiguous(tensor)) {
  2469. int64_t id[4] = { 0, 0, 0, 0 };
  2470. ggml_unravel_index(tensor, i, &id[0], &id[1], &id[2], &id[3]);
  2471. ggml_set_f32_nd(tensor, id[0], id[1], id[2], id[3], value);
  2472. return;
  2473. }
  2474. switch (tensor->type) {
  2475. case GGML_TYPE_I8:
  2476. {
  2477. ((int8_t *)(tensor->data))[i] = value;
  2478. } break;
  2479. case GGML_TYPE_I16:
  2480. {
  2481. ((int16_t *)(tensor->data))[i] = value;
  2482. } break;
  2483. case GGML_TYPE_I32:
  2484. {
  2485. ((int32_t *)(tensor->data))[i] = value;
  2486. } break;
  2487. case GGML_TYPE_F16:
  2488. {
  2489. ((ggml_fp16_t *)(tensor->data))[i] = GGML_FP32_TO_FP16(value);
  2490. } break;
  2491. case GGML_TYPE_BF16:
  2492. {
  2493. ((ggml_bf16_t *)(tensor->data))[i] = GGML_FP32_TO_BF16(value);
  2494. } break;
  2495. case GGML_TYPE_F32:
  2496. {
  2497. ((float *)(tensor->data))[i] = value;
  2498. } break;
  2499. default:
  2500. {
  2501. GGML_ABORT("fatal error");
  2502. }
  2503. }
  2504. }
  2505. float ggml_get_f32_nd(const struct ggml_tensor * tensor, int i0, int i1, int i2, int i3) {
  2506. void * data = (char *) tensor->data + i0*tensor->nb[0] + i1*tensor->nb[1] + i2*tensor->nb[2] + i3*tensor->nb[3];
  2507. switch (tensor->type) {
  2508. case GGML_TYPE_I8:
  2509. return ((int8_t *) data)[0];
  2510. case GGML_TYPE_I16:
  2511. return ((int16_t *) data)[0];
  2512. case GGML_TYPE_I32:
  2513. return ((int32_t *) data)[0];
  2514. case GGML_TYPE_F16:
  2515. return GGML_FP16_TO_FP32(((ggml_fp16_t *) data)[0]);
  2516. case GGML_TYPE_BF16:
  2517. return GGML_BF16_TO_FP32(((ggml_bf16_t *) data)[0]);
  2518. case GGML_TYPE_F32:
  2519. return ((float *) data)[0];
  2520. default:
  2521. GGML_ABORT("fatal error");
  2522. }
  2523. }
  2524. void ggml_set_f32_nd(const struct ggml_tensor * tensor, int i0, int i1, int i2, int i3, float value) {
  2525. void * data = (char *) tensor->data + i0*tensor->nb[0] + i1*tensor->nb[1] + i2*tensor->nb[2] + i3*tensor->nb[3];
  2526. switch (tensor->type) {
  2527. case GGML_TYPE_I8:
  2528. {
  2529. ((int8_t *)(data))[0] = value;
  2530. } break;
  2531. case GGML_TYPE_I16:
  2532. {
  2533. ((int16_t *)(data))[0] = value;
  2534. } break;
  2535. case GGML_TYPE_I32:
  2536. {
  2537. ((int32_t *)(data))[0] = value;
  2538. } break;
  2539. case GGML_TYPE_F16:
  2540. {
  2541. ((ggml_fp16_t *)(data))[0] = GGML_FP32_TO_FP16(value);
  2542. } break;
  2543. case GGML_TYPE_BF16:
  2544. {
  2545. ((ggml_bf16_t *)(data))[0] = GGML_FP32_TO_BF16(value);
  2546. } break;
  2547. case GGML_TYPE_F32:
  2548. {
  2549. ((float *)(data))[0] = value;
  2550. } break;
  2551. default:
  2552. {
  2553. GGML_ABORT("fatal error");
  2554. }
  2555. }
  2556. }
  2557. ////////////////////////////////////////////////////////////////////////////////
  2558. // ggml_compute_forward_dup
  2559. static void ggml_compute_forward_dup_same_cont(
  2560. const struct ggml_compute_params * params,
  2561. struct ggml_tensor * dst) {
  2562. const struct ggml_tensor * src0 = dst->src[0];
  2563. GGML_ASSERT(ggml_nelements(dst) == ggml_nelements(src0));
  2564. GGML_ASSERT(ggml_is_contiguous(dst) && ggml_is_contiguous(src0));
  2565. GGML_ASSERT(src0->type == dst->type);
  2566. const size_t nb0 = ggml_type_size(src0->type);
  2567. const int ith = params->ith; // thread index
  2568. const int nth = params->nth; // number of threads
  2569. // parallelize by elements
  2570. const int ne = ggml_nelements(dst);
  2571. const int dr = (ne + nth - 1) / nth;
  2572. const int ie0 = dr * ith;
  2573. const int ie1 = MIN(ie0 + dr, ne);
  2574. if (ie0 < ie1) {
  2575. memcpy(
  2576. ((char *) dst->data + ie0*nb0),
  2577. ((char *) src0->data + ie0*nb0),
  2578. (ie1 - ie0) * nb0);
  2579. }
  2580. }
  2581. static void ggml_compute_forward_dup_f16(
  2582. const struct ggml_compute_params * params,
  2583. struct ggml_tensor * dst) {
  2584. const struct ggml_tensor * src0 = dst->src[0];
  2585. GGML_ASSERT(ggml_nelements(dst) == ggml_nelements(src0));
  2586. GGML_TENSOR_UNARY_OP_LOCALS
  2587. const int ith = params->ith; // thread index
  2588. const int nth = params->nth; // number of threads
  2589. // parallelize by rows
  2590. const int nr = ne01;
  2591. // number of rows per thread
  2592. const int dr = (nr + nth - 1) / nth;
  2593. // row range for this thread
  2594. const int ir0 = dr * ith;
  2595. const int ir1 = MIN(ir0 + dr, nr);
  2596. if (src0->type == dst->type &&
  2597. ne00 == ne0 &&
  2598. nb00 == ggml_type_size(src0->type) && nb0 == ggml_type_size(dst->type)) {
  2599. // copy by rows
  2600. const size_t rs = ne00*nb00;
  2601. for (int64_t i03 = 0; i03 < ne03; i03++) {
  2602. for (int64_t i02 = 0; i02 < ne02; i02++) {
  2603. for (int64_t i01 = ir0; i01 < ir1; i01++) {
  2604. memcpy(
  2605. ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3),
  2606. ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03),
  2607. rs);
  2608. }
  2609. }
  2610. }
  2611. return;
  2612. }
  2613. // TODO: add more special-case implementations for tensor shapes/strides that can benefit from memcpy
  2614. if (ggml_is_contiguous(dst)) {
  2615. if (nb00 == sizeof(ggml_fp16_t)) {
  2616. if (dst->type == GGML_TYPE_F16) {
  2617. size_t id = 0;
  2618. const size_t rs = ne00 * nb00;
  2619. char * dst_ptr = (char *) dst->data;
  2620. for (int i03 = 0; i03 < ne03; i03++) {
  2621. for (int i02 = 0; i02 < ne02; i02++) {
  2622. id += rs * ir0;
  2623. for (int i01 = ir0; i01 < ir1; i01++) {
  2624. const char * src0_ptr = (char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03;
  2625. memcpy(dst_ptr + id, src0_ptr, rs);
  2626. id += rs;
  2627. }
  2628. id += rs * (ne01 - ir1);
  2629. }
  2630. }
  2631. } else if (dst->type == GGML_TYPE_F32) {
  2632. size_t id = 0;
  2633. float * dst_ptr = (float *) dst->data;
  2634. for (int i03 = 0; i03 < ne03; i03++) {
  2635. for (int i02 = 0; i02 < ne02; i02++) {
  2636. id += ne00 * ir0;
  2637. for (int i01 = ir0; i01 < ir1; i01++) {
  2638. const ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03);
  2639. for (int i00 = 0; i00 < ne00; i00++) {
  2640. dst_ptr[id] = GGML_FP16_TO_FP32(src0_ptr[i00]);
  2641. id++;
  2642. }
  2643. }
  2644. id += ne00 * (ne01 - ir1);
  2645. }
  2646. }
  2647. } else if (ggml_get_type_traits_cpu(dst->type)->from_float) {
  2648. ggml_from_float_t const quantize_row_q = ggml_get_type_traits_cpu(dst->type)->from_float;
  2649. float * src0_f32 = (float *) params->wdata + (ne00 + CACHE_LINE_SIZE_F32) * ith;
  2650. size_t id = 0;
  2651. size_t rs = nb0 * (ne00 / ggml_blck_size(dst->type));
  2652. char * dst_ptr = (char *) dst->data;
  2653. for (int i03 = 0; i03 < ne03; i03++) {
  2654. for (int i02 = 0; i02 < ne02; i02++) {
  2655. id += rs * ir0;
  2656. for (int i01 = ir0; i01 < ir1; i01++) {
  2657. const ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03);
  2658. for (int i00 = 0; i00 < ne00; i00++) {
  2659. src0_f32[i00] = GGML_FP16_TO_FP32(src0_ptr[i00]);
  2660. }
  2661. quantize_row_q(src0_f32, dst_ptr + id, ne00);
  2662. id += rs;
  2663. }
  2664. id += rs * (ne01 - ir1);
  2665. }
  2666. }
  2667. } else {
  2668. GGML_ABORT("fatal error"); // TODO: implement
  2669. }
  2670. } else {
  2671. //printf("%s: this is not optimal - fix me\n", __func__);
  2672. if (dst->type == GGML_TYPE_F32) {
  2673. size_t id = 0;
  2674. float * dst_ptr = (float *) dst->data;
  2675. for (int i03 = 0; i03 < ne03; i03++) {
  2676. for (int i02 = 0; i02 < ne02; i02++) {
  2677. id += ne00 * ir0;
  2678. for (int i01 = ir0; i01 < ir1; i01++) {
  2679. for (int i00 = 0; i00 < ne00; i00++) {
  2680. const ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  2681. dst_ptr[id] = GGML_FP16_TO_FP32(*src0_ptr);
  2682. id++;
  2683. }
  2684. }
  2685. id += ne00 * (ne01 - ir1);
  2686. }
  2687. }
  2688. } else if (dst->type == GGML_TYPE_F16) {
  2689. size_t id = 0;
  2690. ggml_fp16_t * dst_ptr = (ggml_fp16_t *) dst->data;
  2691. for (int i03 = 0; i03 < ne03; i03++) {
  2692. for (int i02 = 0; i02 < ne02; i02++) {
  2693. id += ne00 * ir0;
  2694. for (int i01 = ir0; i01 < ir1; i01++) {
  2695. for (int i00 = 0; i00 < ne00; i00++) {
  2696. const ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  2697. dst_ptr[id] = *src0_ptr;
  2698. id++;
  2699. }
  2700. }
  2701. id += ne00 * (ne01 - ir1);
  2702. }
  2703. }
  2704. } else {
  2705. GGML_ABORT("fatal error"); // TODO: implement
  2706. }
  2707. }
  2708. return;
  2709. }
  2710. // dst counters
  2711. int64_t i10 = 0;
  2712. int64_t i11 = 0;
  2713. int64_t i12 = 0;
  2714. int64_t i13 = 0;
  2715. if (dst->type == GGML_TYPE_F16) {
  2716. for (int64_t i03 = 0; i03 < ne03; i03++) {
  2717. for (int64_t i02 = 0; i02 < ne02; i02++) {
  2718. i10 += ne00 * ir0;
  2719. while (i10 >= ne0) {
  2720. i10 -= ne0;
  2721. if (++i11 == ne1) {
  2722. i11 = 0;
  2723. if (++i12 == ne2) {
  2724. i12 = 0;
  2725. if (++i13 == ne3) {
  2726. i13 = 0;
  2727. }
  2728. }
  2729. }
  2730. }
  2731. for (int64_t i01 = ir0; i01 < ir1; i01++) {
  2732. for (int64_t i00 = 0; i00 < ne00; i00++) {
  2733. const char * src0_ptr = ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  2734. char * dst_ptr = ((char *) dst->data + i10*nb0 + i11*nb1 + i12*nb2 + i13*nb3);
  2735. memcpy(dst_ptr, src0_ptr, sizeof(ggml_fp16_t));
  2736. if (++i10 == ne00) {
  2737. i10 = 0;
  2738. if (++i11 == ne01) {
  2739. i11 = 0;
  2740. if (++i12 == ne02) {
  2741. i12 = 0;
  2742. if (++i13 == ne03) {
  2743. i13 = 0;
  2744. }
  2745. }
  2746. }
  2747. }
  2748. }
  2749. }
  2750. i10 += ne00 * (ne01 - ir1);
  2751. while (i10 >= ne0) {
  2752. i10 -= ne0;
  2753. if (++i11 == ne1) {
  2754. i11 = 0;
  2755. if (++i12 == ne2) {
  2756. i12 = 0;
  2757. if (++i13 == ne3) {
  2758. i13 = 0;
  2759. }
  2760. }
  2761. }
  2762. }
  2763. }
  2764. }
  2765. } else if (dst->type == GGML_TYPE_F32) {
  2766. for (int64_t i03 = 0; i03 < ne03; i03++) {
  2767. for (int64_t i02 = 0; i02 < ne02; i02++) {
  2768. i10 += ne00 * ir0;
  2769. while (i10 >= ne0) {
  2770. i10 -= ne0;
  2771. if (++i11 == ne1) {
  2772. i11 = 0;
  2773. if (++i12 == ne2) {
  2774. i12 = 0;
  2775. if (++i13 == ne3) {
  2776. i13 = 0;
  2777. }
  2778. }
  2779. }
  2780. }
  2781. for (int64_t i01 = ir0; i01 < ir1; i01++) {
  2782. for (int64_t i00 = 0; i00 < ne00; i00++) {
  2783. const char * src0_ptr = ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  2784. char * dst_ptr = ((char *) dst->data + i10*nb0 + i11*nb1 + i12*nb2 + i13*nb3);
  2785. *(float *) dst_ptr = GGML_FP16_TO_FP32(*(const ggml_fp16_t *) src0_ptr);
  2786. if (++i10 == ne0) {
  2787. i10 = 0;
  2788. if (++i11 == ne1) {
  2789. i11 = 0;
  2790. if (++i12 == ne2) {
  2791. i12 = 0;
  2792. if (++i13 == ne3) {
  2793. i13 = 0;
  2794. }
  2795. }
  2796. }
  2797. }
  2798. }
  2799. }
  2800. i10 += ne00 * (ne01 - ir1);
  2801. while (i10 >= ne0) {
  2802. i10 -= ne0;
  2803. if (++i11 == ne1) {
  2804. i11 = 0;
  2805. if (++i12 == ne2) {
  2806. i12 = 0;
  2807. if (++i13 == ne3) {
  2808. i13 = 0;
  2809. }
  2810. }
  2811. }
  2812. }
  2813. }
  2814. }
  2815. } else {
  2816. GGML_ABORT("fatal error"); // TODO: implement
  2817. }
  2818. }
  2819. static void ggml_compute_forward_dup_bf16(
  2820. const struct ggml_compute_params * params,
  2821. struct ggml_tensor * dst) {
  2822. const struct ggml_tensor * src0 = dst->src[0];
  2823. GGML_ASSERT(ggml_nelements(dst) == ggml_nelements(src0));
  2824. GGML_TENSOR_UNARY_OP_LOCALS
  2825. const int ith = params->ith; // thread index
  2826. const int nth = params->nth; // number of threads
  2827. // parallelize by rows
  2828. const int nr = ne01;
  2829. // number of rows per thread
  2830. const int dr = (nr + nth - 1) / nth;
  2831. // row range for this thread
  2832. const int ir0 = dr * ith;
  2833. const int ir1 = MIN(ir0 + dr, nr);
  2834. if (src0->type == dst->type &&
  2835. ne00 == ne0 &&
  2836. nb00 == ggml_type_size(src0->type) && nb0 == ggml_type_size(dst->type)) {
  2837. // copy by rows
  2838. const size_t rs = ne00*nb00;
  2839. for (int64_t i03 = 0; i03 < ne03; i03++) {
  2840. for (int64_t i02 = 0; i02 < ne02; i02++) {
  2841. for (int64_t i01 = ir0; i01 < ir1; i01++) {
  2842. memcpy(
  2843. ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3),
  2844. ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03),
  2845. rs);
  2846. }
  2847. }
  2848. }
  2849. return;
  2850. }
  2851. // TODO: add more special-case implementations for tensor shapes/strides that can benefit from memcpy
  2852. if (ggml_is_contiguous(dst)) {
  2853. if (nb00 == sizeof(ggml_bf16_t)) {
  2854. if (dst->type == GGML_TYPE_BF16) {
  2855. size_t id = 0;
  2856. const size_t rs = ne00 * nb00;
  2857. char * dst_ptr = (char *) dst->data;
  2858. for (int i03 = 0; i03 < ne03; i03++) {
  2859. for (int i02 = 0; i02 < ne02; i02++) {
  2860. id += rs * ir0;
  2861. for (int i01 = ir0; i01 < ir1; i01++) {
  2862. const char * src0_ptr = (char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03;
  2863. memcpy(dst_ptr + id, src0_ptr, rs);
  2864. id += rs;
  2865. }
  2866. id += rs * (ne01 - ir1);
  2867. }
  2868. }
  2869. } else if (dst->type == GGML_TYPE_F16) {
  2870. size_t id = 0;
  2871. ggml_fp16_t * dst_ptr = (ggml_fp16_t *) dst->data;
  2872. for (int i03 = 0; i03 < ne03; i03++) {
  2873. for (int i02 = 0; i02 < ne02; i02++) {
  2874. id += ne00 * ir0;
  2875. for (int i01 = ir0; i01 < ir1; i01++) {
  2876. const ggml_bf16_t * src0_ptr = (ggml_bf16_t *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03);
  2877. for (int i00 = 0; i00 < ne00; i00++) {
  2878. dst_ptr[id] = GGML_FP32_TO_FP16(GGML_BF16_TO_FP32(src0_ptr[i00]));
  2879. id++;
  2880. }
  2881. }
  2882. id += ne00 * (ne01 - ir1);
  2883. }
  2884. }
  2885. } else if (dst->type == GGML_TYPE_F32) {
  2886. size_t id = 0;
  2887. float * dst_ptr = (float *) dst->data;
  2888. for (int i03 = 0; i03 < ne03; i03++) {
  2889. for (int i02 = 0; i02 < ne02; i02++) {
  2890. id += ne00 * ir0;
  2891. for (int i01 = ir0; i01 < ir1; i01++) {
  2892. const ggml_bf16_t * src0_ptr = (ggml_bf16_t *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03);
  2893. for (int i00 = 0; i00 < ne00; i00++) {
  2894. dst_ptr[id] = GGML_BF16_TO_FP32(src0_ptr[i00]);
  2895. id++;
  2896. }
  2897. }
  2898. id += ne00 * (ne01 - ir1);
  2899. }
  2900. }
  2901. } else if (ggml_get_type_traits_cpu(dst->type)->from_float) {
  2902. ggml_from_float_t const quantize_row_q = ggml_get_type_traits_cpu(dst->type)->from_float;
  2903. float * src0_f32 = (float *) params->wdata + (ne00 + CACHE_LINE_SIZE_F32) * ith;
  2904. size_t id = 0;
  2905. size_t rs = nb0 * (ne00 / ggml_blck_size(dst->type));
  2906. char * dst_ptr = (char *) dst->data;
  2907. for (int i03 = 0; i03 < ne03; i03++) {
  2908. for (int i02 = 0; i02 < ne02; i02++) {
  2909. id += rs * ir0;
  2910. for (int i01 = ir0; i01 < ir1; i01++) {
  2911. const ggml_bf16_t * src0_ptr = (ggml_bf16_t *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03);
  2912. for (int i00 = 0; i00 < ne00; i00++) {
  2913. src0_f32[i00] = GGML_BF16_TO_FP32(src0_ptr[i00]);
  2914. }
  2915. quantize_row_q(src0_f32, dst_ptr + id, ne00);
  2916. id += rs;
  2917. }
  2918. id += rs * (ne01 - ir1);
  2919. }
  2920. }
  2921. } else {
  2922. GGML_ABORT("fatal error"); // TODO: implement
  2923. }
  2924. } else {
  2925. //printf("%s: this is not optimal - fix me\n", __func__);
  2926. if (dst->type == GGML_TYPE_F32) {
  2927. size_t id = 0;
  2928. float * dst_ptr = (float *) dst->data;
  2929. for (int i03 = 0; i03 < ne03; i03++) {
  2930. for (int i02 = 0; i02 < ne02; i02++) {
  2931. id += ne00 * ir0;
  2932. for (int i01 = ir0; i01 < ir1; i01++) {
  2933. for (int i00 = 0; i00 < ne00; i00++) {
  2934. const ggml_bf16_t * src0_ptr = (ggml_bf16_t *) ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  2935. dst_ptr[id] = GGML_BF16_TO_FP32(*src0_ptr);
  2936. id++;
  2937. }
  2938. }
  2939. id += ne00 * (ne01 - ir1);
  2940. }
  2941. }
  2942. } else if (dst->type == GGML_TYPE_BF16) {
  2943. size_t id = 0;
  2944. ggml_bf16_t * dst_ptr = (ggml_bf16_t *) dst->data;
  2945. for (int i03 = 0; i03 < ne03; i03++) {
  2946. for (int i02 = 0; i02 < ne02; i02++) {
  2947. id += ne00 * ir0;
  2948. for (int i01 = ir0; i01 < ir1; i01++) {
  2949. for (int i00 = 0; i00 < ne00; i00++) {
  2950. const ggml_bf16_t * src0_ptr = (ggml_bf16_t *) ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  2951. dst_ptr[id] = *src0_ptr;
  2952. id++;
  2953. }
  2954. }
  2955. id += ne00 * (ne01 - ir1);
  2956. }
  2957. }
  2958. } else if (dst->type == GGML_TYPE_F16) {
  2959. size_t id = 0;
  2960. ggml_fp16_t * dst_ptr = (ggml_fp16_t *) dst->data;
  2961. for (int i03 = 0; i03 < ne03; i03++) {
  2962. for (int i02 = 0; i02 < ne02; i02++) {
  2963. id += ne00 * ir0;
  2964. for (int i01 = ir0; i01 < ir1; i01++) {
  2965. for (int i00 = 0; i00 < ne00; i00++) {
  2966. const ggml_bf16_t * src0_ptr = (ggml_bf16_t *) ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  2967. dst_ptr[id] = GGML_FP32_TO_FP16(GGML_BF16_TO_FP32(*src0_ptr));
  2968. id++;
  2969. }
  2970. }
  2971. id += ne00 * (ne01 - ir1);
  2972. }
  2973. }
  2974. } else {
  2975. GGML_ABORT("fatal error"); // TODO: implement
  2976. }
  2977. }
  2978. return;
  2979. }
  2980. // dst counters
  2981. int64_t i10 = 0;
  2982. int64_t i11 = 0;
  2983. int64_t i12 = 0;
  2984. int64_t i13 = 0;
  2985. if (dst->type == GGML_TYPE_BF16) {
  2986. for (int64_t i03 = 0; i03 < ne03; i03++) {
  2987. for (int64_t i02 = 0; i02 < ne02; i02++) {
  2988. i10 += ne00 * ir0;
  2989. while (i10 >= ne0) {
  2990. i10 -= ne0;
  2991. if (++i11 == ne1) {
  2992. i11 = 0;
  2993. if (++i12 == ne2) {
  2994. i12 = 0;
  2995. if (++i13 == ne3) {
  2996. i13 = 0;
  2997. }
  2998. }
  2999. }
  3000. }
  3001. for (int64_t i01 = ir0; i01 < ir1; i01++) {
  3002. for (int64_t i00 = 0; i00 < ne00; i00++) {
  3003. const char * src0_ptr = ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  3004. char * dst_ptr = ((char *) dst->data + i10*nb0 + i11*nb1 + i12*nb2 + i13*nb3);
  3005. memcpy(dst_ptr, src0_ptr, sizeof(ggml_bf16_t));
  3006. if (++i10 == ne00) {
  3007. i10 = 0;
  3008. if (++i11 == ne01) {
  3009. i11 = 0;
  3010. if (++i12 == ne02) {
  3011. i12 = 0;
  3012. if (++i13 == ne03) {
  3013. i13 = 0;
  3014. }
  3015. }
  3016. }
  3017. }
  3018. }
  3019. }
  3020. i10 += ne00 * (ne01 - ir1);
  3021. while (i10 >= ne0) {
  3022. i10 -= ne0;
  3023. if (++i11 == ne1) {
  3024. i11 = 0;
  3025. if (++i12 == ne2) {
  3026. i12 = 0;
  3027. if (++i13 == ne3) {
  3028. i13 = 0;
  3029. }
  3030. }
  3031. }
  3032. }
  3033. }
  3034. }
  3035. } else if (dst->type == GGML_TYPE_F16) {
  3036. for (int64_t i03 = 0; i03 < ne03; i03++) {
  3037. for (int64_t i02 = 0; i02 < ne02; i02++) {
  3038. i10 += ne00 * ir0;
  3039. while (i10 >= ne0) {
  3040. i10 -= ne0;
  3041. if (++i11 == ne1) {
  3042. i11 = 0;
  3043. if (++i12 == ne2) {
  3044. i12 = 0;
  3045. if (++i13 == ne3) {
  3046. i13 = 0;
  3047. }
  3048. }
  3049. }
  3050. }
  3051. for (int64_t i01 = ir0; i01 < ir1; i01++) {
  3052. for (int64_t i00 = 0; i00 < ne00; i00++) {
  3053. const char * src0_ptr = ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  3054. char * dst_ptr = ((char *) dst->data + i10*nb0 + i11*nb1 + i12*nb2 + i13*nb3);
  3055. *(ggml_fp16_t *) dst_ptr = GGML_FP32_TO_FP16(GGML_BF16_TO_FP32(*(const ggml_bf16_t *) src0_ptr));
  3056. if (++i10 == ne0) {
  3057. i10 = 0;
  3058. if (++i11 == ne1) {
  3059. i11 = 0;
  3060. if (++i12 == ne2) {
  3061. i12 = 0;
  3062. if (++i13 == ne3) {
  3063. i13 = 0;
  3064. }
  3065. }
  3066. }
  3067. }
  3068. }
  3069. }
  3070. i10 += ne00 * (ne01 - ir1);
  3071. while (i10 >= ne0) {
  3072. i10 -= ne0;
  3073. if (++i11 == ne1) {
  3074. i11 = 0;
  3075. if (++i12 == ne2) {
  3076. i12 = 0;
  3077. if (++i13 == ne3) {
  3078. i13 = 0;
  3079. }
  3080. }
  3081. }
  3082. }
  3083. }
  3084. }
  3085. } else if (dst->type == GGML_TYPE_F32) {
  3086. for (int64_t i03 = 0; i03 < ne03; i03++) {
  3087. for (int64_t i02 = 0; i02 < ne02; i02++) {
  3088. i10 += ne00 * ir0;
  3089. while (i10 >= ne0) {
  3090. i10 -= ne0;
  3091. if (++i11 == ne1) {
  3092. i11 = 0;
  3093. if (++i12 == ne2) {
  3094. i12 = 0;
  3095. if (++i13 == ne3) {
  3096. i13 = 0;
  3097. }
  3098. }
  3099. }
  3100. }
  3101. for (int64_t i01 = ir0; i01 < ir1; i01++) {
  3102. for (int64_t i00 = 0; i00 < ne00; i00++) {
  3103. const char * src0_ptr = ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  3104. char * dst_ptr = ((char *) dst->data + i10*nb0 + i11*nb1 + i12*nb2 + i13*nb3);
  3105. *(float *) dst_ptr = GGML_BF16_TO_FP32(*(const ggml_bf16_t *) src0_ptr);
  3106. if (++i10 == ne0) {
  3107. i10 = 0;
  3108. if (++i11 == ne1) {
  3109. i11 = 0;
  3110. if (++i12 == ne2) {
  3111. i12 = 0;
  3112. if (++i13 == ne3) {
  3113. i13 = 0;
  3114. }
  3115. }
  3116. }
  3117. }
  3118. }
  3119. }
  3120. i10 += ne00 * (ne01 - ir1);
  3121. while (i10 >= ne0) {
  3122. i10 -= ne0;
  3123. if (++i11 == ne1) {
  3124. i11 = 0;
  3125. if (++i12 == ne2) {
  3126. i12 = 0;
  3127. if (++i13 == ne3) {
  3128. i13 = 0;
  3129. }
  3130. }
  3131. }
  3132. }
  3133. }
  3134. }
  3135. } else {
  3136. GGML_ABORT("fatal error"); // TODO: implement
  3137. }
  3138. }
  3139. static void ggml_compute_forward_dup_f32(
  3140. const struct ggml_compute_params * params,
  3141. struct ggml_tensor * dst) {
  3142. const struct ggml_tensor * src0 = dst->src[0];
  3143. GGML_ASSERT(ggml_nelements(dst) == ggml_nelements(src0));
  3144. GGML_TENSOR_UNARY_OP_LOCALS
  3145. const int ith = params->ith; // thread index
  3146. const int nth = params->nth; // number of threads
  3147. // parallelize by rows
  3148. const int nr = ne01;
  3149. // number of rows per thread
  3150. const int dr = (nr + nth - 1) / nth;
  3151. // row range for this thread
  3152. const int ir0 = dr * ith;
  3153. const int ir1 = MIN(ir0 + dr, nr);
  3154. if (src0->type == dst->type &&
  3155. ne00 == ne0 &&
  3156. nb00 == ggml_type_size(src0->type) && nb0 == ggml_type_size(dst->type)) {
  3157. // copy by rows
  3158. const size_t rs = ne00*nb00;
  3159. for (int64_t i03 = 0; i03 < ne03; i03++) {
  3160. for (int64_t i02 = 0; i02 < ne02; i02++) {
  3161. for (int64_t i01 = ir0; i01 < ir1; i01++) {
  3162. memcpy(
  3163. ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3),
  3164. ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03),
  3165. rs);
  3166. }
  3167. }
  3168. }
  3169. return;
  3170. }
  3171. if (ggml_is_contiguous(dst)) {
  3172. // TODO: simplify
  3173. if (nb00 == sizeof(float)) {
  3174. if (dst->type == GGML_TYPE_F32) {
  3175. size_t id = 0;
  3176. const size_t rs = ne00 * nb00;
  3177. char * dst_ptr = (char *) dst->data;
  3178. for (int i03 = 0; i03 < ne03; i03++) {
  3179. for (int i02 = 0; i02 < ne02; i02++) {
  3180. id += rs * ir0;
  3181. for (int i01 = ir0; i01 < ir1; i01++) {
  3182. const char * src0_ptr = (char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03;
  3183. memcpy(dst_ptr + id, src0_ptr, rs);
  3184. id += rs;
  3185. }
  3186. id += rs * (ne01 - ir1);
  3187. }
  3188. }
  3189. } else if (ggml_get_type_traits_cpu(dst->type)->from_float) {
  3190. ggml_from_float_t const quantize_row_q = ggml_get_type_traits_cpu(dst->type)->from_float;
  3191. size_t id = 0;
  3192. size_t rs = nb0 * (ne00 / ggml_blck_size(dst->type));
  3193. char * dst_ptr = (char *) dst->data;
  3194. for (int i03 = 0; i03 < ne03; i03++) {
  3195. for (int i02 = 0; i02 < ne02; i02++) {
  3196. id += rs * ir0;
  3197. for (int i01 = ir0; i01 < ir1; i01++) {
  3198. const float * src0_ptr = (float *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03);
  3199. quantize_row_q(src0_ptr, dst_ptr + id, ne00);
  3200. id += rs;
  3201. }
  3202. id += rs * (ne01 - ir1);
  3203. }
  3204. }
  3205. } else {
  3206. GGML_ABORT("fatal error"); // TODO: implement
  3207. }
  3208. } else {
  3209. //printf("%s: this is not optimal - fix me\n", __func__);
  3210. if (dst->type == GGML_TYPE_F32) {
  3211. size_t id = 0;
  3212. float * dst_ptr = (float *) dst->data;
  3213. for (int i03 = 0; i03 < ne03; i03++) {
  3214. for (int i02 = 0; i02 < ne02; i02++) {
  3215. id += ne00 * ir0;
  3216. for (int i01 = ir0; i01 < ir1; i01++) {
  3217. for (int i00 = 0; i00 < ne00; i00++) {
  3218. const float * src0_ptr = (float *) ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  3219. dst_ptr[id] = *src0_ptr;
  3220. id++;
  3221. }
  3222. }
  3223. id += ne00 * (ne01 - ir1);
  3224. }
  3225. }
  3226. } else if (dst->type == GGML_TYPE_F16) {
  3227. size_t id = 0;
  3228. ggml_fp16_t * dst_ptr = (ggml_fp16_t *) dst->data;
  3229. for (int i03 = 0; i03 < ne03; i03++) {
  3230. for (int i02 = 0; i02 < ne02; i02++) {
  3231. id += ne00 * ir0;
  3232. for (int i01 = ir0; i01 < ir1; i01++) {
  3233. for (int i00 = 0; i00 < ne00; i00++) {
  3234. const float * src0_ptr = (float *) ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  3235. dst_ptr[id] = GGML_FP32_TO_FP16(*src0_ptr);
  3236. id++;
  3237. }
  3238. }
  3239. id += ne00 * (ne01 - ir1);
  3240. }
  3241. }
  3242. } else if (dst->type == GGML_TYPE_BF16) {
  3243. size_t id = 0;
  3244. ggml_bf16_t * dst_ptr = (ggml_bf16_t *) dst->data;
  3245. for (int i03 = 0; i03 < ne03; i03++) {
  3246. for (int i02 = 0; i02 < ne02; i02++) {
  3247. id += ne00 * ir0;
  3248. for (int i01 = ir0; i01 < ir1; i01++) {
  3249. for (int i00 = 0; i00 < ne00; i00++) {
  3250. const float * src0_ptr = (float *) ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  3251. dst_ptr[id] = GGML_FP32_TO_BF16(*src0_ptr);
  3252. id++;
  3253. }
  3254. }
  3255. id += ne00 * (ne01 - ir1);
  3256. }
  3257. }
  3258. } else {
  3259. GGML_ABORT("fatal error"); // TODO: implement
  3260. }
  3261. }
  3262. return;
  3263. }
  3264. // dst counters
  3265. int64_t i10 = 0;
  3266. int64_t i11 = 0;
  3267. int64_t i12 = 0;
  3268. int64_t i13 = 0;
  3269. if (dst->type == GGML_TYPE_F32) {
  3270. for (int64_t i03 = 0; i03 < ne03; i03++) {
  3271. for (int64_t i02 = 0; i02 < ne02; i02++) {
  3272. i10 += ne00 * ir0;
  3273. while (i10 >= ne0) {
  3274. i10 -= ne0;
  3275. if (++i11 == ne1) {
  3276. i11 = 0;
  3277. if (++i12 == ne2) {
  3278. i12 = 0;
  3279. if (++i13 == ne3) {
  3280. i13 = 0;
  3281. }
  3282. }
  3283. }
  3284. }
  3285. for (int64_t i01 = ir0; i01 < ir1; i01++) {
  3286. for (int64_t i00 = 0; i00 < ne00; i00++) {
  3287. const char * src0_ptr = ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  3288. char * dst_ptr = ((char *) dst->data + i10*nb0 + i11*nb1 + i12*nb2 + i13*nb3);
  3289. memcpy(dst_ptr, src0_ptr, sizeof(float));
  3290. if (++i10 == ne0) {
  3291. i10 = 0;
  3292. if (++i11 == ne1) {
  3293. i11 = 0;
  3294. if (++i12 == ne2) {
  3295. i12 = 0;
  3296. if (++i13 == ne3) {
  3297. i13 = 0;
  3298. }
  3299. }
  3300. }
  3301. }
  3302. }
  3303. }
  3304. i10 += ne00 * (ne01 - ir1);
  3305. while (i10 >= ne0) {
  3306. i10 -= ne0;
  3307. if (++i11 == ne1) {
  3308. i11 = 0;
  3309. if (++i12 == ne2) {
  3310. i12 = 0;
  3311. if (++i13 == ne3) {
  3312. i13 = 0;
  3313. }
  3314. }
  3315. }
  3316. }
  3317. }
  3318. }
  3319. } else if (dst->type == GGML_TYPE_F16) {
  3320. for (int64_t i03 = 0; i03 < ne03; i03++) {
  3321. for (int64_t i02 = 0; i02 < ne02; i02++) {
  3322. i10 += ne00 * ir0;
  3323. while (i10 >= ne0) {
  3324. i10 -= ne0;
  3325. if (++i11 == ne1) {
  3326. i11 = 0;
  3327. if (++i12 == ne2) {
  3328. i12 = 0;
  3329. if (++i13 == ne3) {
  3330. i13 = 0;
  3331. }
  3332. }
  3333. }
  3334. }
  3335. for (int64_t i01 = ir0; i01 < ir1; i01++) {
  3336. for (int64_t i00 = 0; i00 < ne00; i00++) {
  3337. const char * src0_ptr = ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  3338. char * dst_ptr = ((char *) dst->data + i10*nb0 + i11*nb1 + i12*nb2 + i13*nb3);
  3339. *(ggml_fp16_t *) dst_ptr = GGML_FP32_TO_FP16(*(const float *) src0_ptr);
  3340. if (++i10 == ne0) {
  3341. i10 = 0;
  3342. if (++i11 == ne1) {
  3343. i11 = 0;
  3344. if (++i12 == ne2) {
  3345. i12 = 0;
  3346. if (++i13 == ne3) {
  3347. i13 = 0;
  3348. }
  3349. }
  3350. }
  3351. }
  3352. }
  3353. }
  3354. i10 += ne00 * (ne01 - ir1);
  3355. while (i10 >= ne0) {
  3356. i10 -= ne0;
  3357. if (++i11 == ne1) {
  3358. i11 = 0;
  3359. if (++i12 == ne2) {
  3360. i12 = 0;
  3361. if (++i13 == ne3) {
  3362. i13 = 0;
  3363. }
  3364. }
  3365. }
  3366. }
  3367. }
  3368. }
  3369. } else if (dst->type == GGML_TYPE_BF16) {
  3370. for (int64_t i03 = 0; i03 < ne03; i03++) {
  3371. for (int64_t i02 = 0; i02 < ne02; i02++) {
  3372. i10 += ne00 * ir0;
  3373. while (i10 >= ne0) {
  3374. i10 -= ne0;
  3375. if (++i11 == ne1) {
  3376. i11 = 0;
  3377. if (++i12 == ne2) {
  3378. i12 = 0;
  3379. if (++i13 == ne3) {
  3380. i13 = 0;
  3381. }
  3382. }
  3383. }
  3384. }
  3385. for (int64_t i01 = ir0; i01 < ir1; i01++) {
  3386. for (int64_t i00 = 0; i00 < ne00; i00++) {
  3387. const char * src0_ptr = ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  3388. char * dst_ptr = ((char *) dst->data + i10*nb0 + i11*nb1 + i12*nb2 + i13*nb3);
  3389. *(ggml_bf16_t *) dst_ptr = GGML_FP32_TO_BF16(*(const float *) src0_ptr);
  3390. if (++i10 == ne0) {
  3391. i10 = 0;
  3392. if (++i11 == ne1) {
  3393. i11 = 0;
  3394. if (++i12 == ne2) {
  3395. i12 = 0;
  3396. if (++i13 == ne3) {
  3397. i13 = 0;
  3398. }
  3399. }
  3400. }
  3401. }
  3402. }
  3403. }
  3404. i10 += ne00 * (ne01 - ir1);
  3405. while (i10 >= ne0) {
  3406. i10 -= ne0;
  3407. if (++i11 == ne1) {
  3408. i11 = 0;
  3409. if (++i12 == ne2) {
  3410. i12 = 0;
  3411. if (++i13 == ne3) {
  3412. i13 = 0;
  3413. }
  3414. }
  3415. }
  3416. }
  3417. }
  3418. }
  3419. } else {
  3420. GGML_ABORT("fatal error"); // TODO: implement
  3421. }
  3422. }
  3423. // A simplified version of ggml_compute_forward_dup that doesn't do float upcasting, and just plain old memcpy.
  3424. static void ggml_compute_forward_dup_bytes(
  3425. const struct ggml_compute_params * params,
  3426. struct ggml_tensor * dst) {
  3427. const struct ggml_tensor * src0 = dst->src[0];
  3428. GGML_ASSERT(ggml_nelements(dst) == ggml_nelements(src0));
  3429. GGML_ASSERT(src0->type == dst->type);
  3430. GGML_TENSOR_UNARY_OP_LOCALS;
  3431. if (ggml_is_contiguous(src0) && ggml_is_contiguous(dst)) {
  3432. ggml_compute_forward_dup_same_cont(params, dst);
  3433. return;
  3434. }
  3435. const size_t type_size = ggml_type_size(src0->type);
  3436. const int ith = params->ith; // thread index
  3437. const int nth = params->nth; // number of threads
  3438. // parallelize by rows
  3439. const int nr = ne01;
  3440. // number of rows per thread
  3441. const int dr = (nr + nth - 1) / nth;
  3442. // row range for this thread
  3443. const int ir0 = dr * ith;
  3444. const int ir1 = MIN(ir0 + dr, nr);
  3445. if (src0->type == dst->type &&
  3446. ne00 == ne0 &&
  3447. nb00 == type_size && nb0 == type_size) {
  3448. // copy by rows
  3449. const size_t rs = ne00 * type_size;
  3450. for (int64_t i03 = 0; i03 < ne03; i03++) {
  3451. for (int64_t i02 = 0; i02 < ne02; i02++) {
  3452. for (int64_t i01 = ir0; i01 < ir1; i01++) {
  3453. memcpy(
  3454. ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3),
  3455. ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03),
  3456. rs);
  3457. }
  3458. }
  3459. }
  3460. return;
  3461. }
  3462. if (ggml_is_contiguous(dst)) {
  3463. size_t id = 0;
  3464. char * dst_ptr = (char *) dst->data;
  3465. const size_t rs = ne00 * type_size;
  3466. if (nb00 == type_size) {
  3467. // src0 is contigous on first dimension, copy by rows
  3468. for (int64_t i03 = 0; i03 < ne03; i03++) {
  3469. for (int64_t i02 = 0; i02 < ne02; i02++) {
  3470. id += rs * ir0;
  3471. for (int64_t i01 = ir0; i01 < ir1; i01++) {
  3472. const char * src0_ptr = (char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03;
  3473. memcpy(dst_ptr + id, src0_ptr, rs);
  3474. id += rs;
  3475. }
  3476. id += rs * (ne01 - ir1);
  3477. }
  3478. }
  3479. } else {
  3480. //printf("%s: this is not optimal - fix me\n", __func__);
  3481. for (int64_t i03 = 0; i03 < ne03; i03++) {
  3482. for (int64_t i02 = 0; i02 < ne02; i02++) {
  3483. id += rs * ir0;
  3484. for (int64_t i01 = ir0; i01 < ir1; i01++) {
  3485. for (int64_t i00 = 0; i00 < ne00; i00++) {
  3486. const char * src0_ptr = (char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03;
  3487. memcpy(dst_ptr + id, src0_ptr, type_size);
  3488. id += type_size;
  3489. }
  3490. }
  3491. id += rs * (ne01 - ir1);
  3492. }
  3493. }
  3494. }
  3495. return;
  3496. }
  3497. // dst counters
  3498. int64_t i10 = 0;
  3499. int64_t i11 = 0;
  3500. int64_t i12 = 0;
  3501. int64_t i13 = 0;
  3502. for (int64_t i03 = 0; i03 < ne03; i03++) {
  3503. for (int64_t i02 = 0; i02 < ne02; i02++) {
  3504. i10 += ne00 * ir0;
  3505. while (i10 >= ne0) {
  3506. i10 -= ne0;
  3507. if (++i11 == ne1) {
  3508. i11 = 0;
  3509. if (++i12 == ne2) {
  3510. i12 = 0;
  3511. if (++i13 == ne3) {
  3512. i13 = 0;
  3513. }
  3514. }
  3515. }
  3516. }
  3517. for (int64_t i01 = ir0; i01 < ir1; i01++) {
  3518. for (int64_t i00 = 0; i00 < ne00; i00++) {
  3519. const char * src0_ptr = ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  3520. char * dst_ptr = ((char *) dst->data + i10*nb0 + i11*nb1 + i12*nb2 + i13*nb3);
  3521. memcpy(dst_ptr, src0_ptr, type_size);
  3522. if (++i10 == ne0) {
  3523. i10 = 0;
  3524. if (++i11 == ne1) {
  3525. i11 = 0;
  3526. if (++i12 == ne2) {
  3527. i12 = 0;
  3528. if (++i13 == ne3) {
  3529. i13 = 0;
  3530. }
  3531. }
  3532. }
  3533. }
  3534. }
  3535. }
  3536. i10 += ne00 * (ne01 - ir1);
  3537. while (i10 >= ne0) {
  3538. i10 -= ne0;
  3539. if (++i11 == ne1) {
  3540. i11 = 0;
  3541. if (++i12 == ne2) {
  3542. i12 = 0;
  3543. if (++i13 == ne3) {
  3544. i13 = 0;
  3545. }
  3546. }
  3547. }
  3548. }
  3549. }
  3550. }
  3551. }
  3552. static void ggml_compute_forward_dup(
  3553. const struct ggml_compute_params * params,
  3554. struct ggml_tensor * dst) {
  3555. const struct ggml_tensor * src0 = dst->src[0];
  3556. if (src0->type == dst->type) {
  3557. ggml_compute_forward_dup_bytes(params, dst);
  3558. return;
  3559. }
  3560. switch (src0->type) {
  3561. case GGML_TYPE_F16:
  3562. {
  3563. ggml_compute_forward_dup_f16(params, dst);
  3564. } break;
  3565. case GGML_TYPE_BF16:
  3566. {
  3567. ggml_compute_forward_dup_bf16(params, dst);
  3568. } break;
  3569. case GGML_TYPE_F32:
  3570. {
  3571. ggml_compute_forward_dup_f32(params, dst);
  3572. } break;
  3573. default:
  3574. {
  3575. GGML_ABORT("fatal error");
  3576. }
  3577. }
  3578. }
  3579. // ggml_compute_forward_add
  3580. static void ggml_compute_forward_add_f32(
  3581. const struct ggml_compute_params * params,
  3582. struct ggml_tensor * dst) {
  3583. const struct ggml_tensor * src0 = dst->src[0];
  3584. const struct ggml_tensor * src1 = dst->src[1];
  3585. GGML_ASSERT(ggml_can_repeat(src1, src0) && ggml_are_same_shape(src0, dst));
  3586. const int ith = params->ith;
  3587. const int nth = params->nth;
  3588. const int nr = ggml_nrows(src0);
  3589. GGML_TENSOR_BINARY_OP_LOCALS
  3590. GGML_ASSERT( nb0 == sizeof(float));
  3591. GGML_ASSERT(nb00 == sizeof(float));
  3592. // rows per thread
  3593. const int dr = (nr + nth - 1)/nth;
  3594. // row range for this thread
  3595. const int ir0 = dr*ith;
  3596. const int ir1 = MIN(ir0 + dr, nr);
  3597. if (nb10 == sizeof(float)) {
  3598. for (int ir = ir0; ir < ir1; ++ir) {
  3599. // src1 is broadcastable across src0 and dst in i1, i2, i3
  3600. const int64_t i03 = ir/(ne02*ne01);
  3601. const int64_t i02 = (ir - i03*ne02*ne01)/ne01;
  3602. const int64_t i01 = (ir - i03*ne02*ne01 - i02*ne01);
  3603. const int64_t i13 = i03 % ne13;
  3604. const int64_t i12 = i02 % ne12;
  3605. const int64_t i11 = i01 % ne11;
  3606. const int64_t nr0 = ne00 / ne10;
  3607. float * dst_ptr = (float *) ((char *) dst->data + i03*nb3 + i02*nb2 + i01*nb1 );
  3608. float * src0_ptr = (float *) ((char *) src0->data + i03*nb03 + i02*nb02 + i01*nb01);
  3609. float * src1_ptr = (float *) ((char *) src1->data + i13*nb13 + i12*nb12 + i11*nb11);
  3610. for (int64_t r = 0; r < nr0; ++r) {
  3611. #ifdef GGML_USE_ACCELERATE
  3612. vDSP_vadd(src0_ptr + r*ne10, 1, src1_ptr, 1, dst_ptr + r*ne10, 1, ne10);
  3613. #else
  3614. ggml_vec_add_f32(ne10, dst_ptr + r*ne10, src0_ptr + r*ne10, src1_ptr);
  3615. #endif
  3616. }
  3617. }
  3618. } else {
  3619. // src1 is not contiguous
  3620. for (int ir = ir0; ir < ir1; ++ir) {
  3621. // src1 is broadcastable across src0 and dst in i1, i2, i3
  3622. const int64_t i03 = ir/(ne02*ne01);
  3623. const int64_t i02 = (ir - i03*ne02*ne01)/ne01;
  3624. const int64_t i01 = (ir - i03*ne02*ne01 - i02*ne01);
  3625. const int64_t i13 = i03 % ne13;
  3626. const int64_t i12 = i02 % ne12;
  3627. const int64_t i11 = i01 % ne11;
  3628. float * dst_ptr = (float *) ((char *) dst->data + i03*nb3 + i02*nb2 + i01*nb1 );
  3629. float * src0_ptr = (float *) ((char *) src0->data + i03*nb03 + i02*nb02 + i01*nb01);
  3630. for (int64_t i0 = 0; i0 < ne0; ++i0) {
  3631. const int64_t i10 = i0 % ne10;
  3632. float * src1_ptr = (float *) ((char *) src1->data + i13*nb13 + i12*nb12 + i11*nb11 + i10*nb10);
  3633. dst_ptr[i0] = src0_ptr[i0] + *src1_ptr;
  3634. }
  3635. }
  3636. }
  3637. }
  3638. static void ggml_compute_forward_add_f16_f32(
  3639. const struct ggml_compute_params * params,
  3640. struct ggml_tensor * dst) {
  3641. const struct ggml_tensor * src0 = dst->src[0];
  3642. const struct ggml_tensor * src1 = dst->src[1];
  3643. GGML_ASSERT(ggml_are_same_shape(src0, src1) && ggml_are_same_shape(src0, dst));
  3644. const int ith = params->ith;
  3645. const int nth = params->nth;
  3646. const int nr = ggml_nrows(src0);
  3647. GGML_TENSOR_BINARY_OP_LOCALS
  3648. GGML_ASSERT(src0->type == GGML_TYPE_F16);
  3649. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  3650. if (dst->type == GGML_TYPE_F32) {
  3651. GGML_ASSERT( nb0 == sizeof(float));
  3652. }
  3653. else {
  3654. GGML_ASSERT(dst->type == GGML_TYPE_F16);
  3655. GGML_ASSERT( nb0 == sizeof(ggml_fp16_t));
  3656. }
  3657. GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
  3658. // rows per thread
  3659. const int dr = (nr + nth - 1)/nth;
  3660. // row range for this thread
  3661. const int ir0 = dr*ith;
  3662. const int ir1 = MIN(ir0 + dr, nr);
  3663. if (nb10 == sizeof(float)) {
  3664. if (dst->type == GGML_TYPE_F16) {
  3665. for (int ir = ir0; ir < ir1; ++ir) {
  3666. // src0, src1 and dst are same shape => same indices
  3667. const int i3 = ir/(ne2*ne1);
  3668. const int i2 = (ir - i3*ne2*ne1)/ne1;
  3669. const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
  3670. ggml_fp16_t * dst_ptr = (ggml_fp16_t *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1);
  3671. ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01);
  3672. float * src1_ptr = (float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11);
  3673. for (int i = 0; i < ne0; i++) {
  3674. dst_ptr[i] = GGML_FP32_TO_FP16(GGML_FP16_TO_FP32(src0_ptr[i]) + src1_ptr[i]);
  3675. }
  3676. }
  3677. } else {
  3678. for (int ir = ir0; ir < ir1; ++ir) {
  3679. // src0, src1 and dst are same shape => same indices
  3680. const int i3 = ir/(ne2*ne1);
  3681. const int i2 = (ir - i3*ne2*ne1)/ne1;
  3682. const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
  3683. float * dst_ptr = (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1);
  3684. ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01);
  3685. float * src1_ptr = (float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11);
  3686. for (int i = 0; i < ne0; i++) {
  3687. dst_ptr[i] = GGML_FP16_TO_FP32(src0_ptr[i]) + src1_ptr[i];
  3688. }
  3689. }
  3690. }
  3691. }
  3692. else {
  3693. // src1 is not contiguous
  3694. GGML_ABORT("fatal error");
  3695. }
  3696. }
  3697. static void ggml_compute_forward_add_bf16_f32(
  3698. const struct ggml_compute_params * params,
  3699. struct ggml_tensor * dst) {
  3700. const struct ggml_tensor * src0 = dst->src[0];
  3701. const struct ggml_tensor * src1 = dst->src[1];
  3702. GGML_ASSERT(ggml_are_same_shape(src0, src1) && ggml_are_same_shape(src0, dst));
  3703. const int ith = params->ith;
  3704. const int nth = params->nth;
  3705. const int nr = ggml_nrows(src0);
  3706. GGML_TENSOR_BINARY_OP_LOCALS
  3707. GGML_ASSERT(src0->type == GGML_TYPE_BF16);
  3708. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  3709. if (dst->type == GGML_TYPE_F32) {
  3710. GGML_ASSERT( nb0 == sizeof(float));
  3711. }
  3712. else {
  3713. GGML_ASSERT(dst->type == GGML_TYPE_BF16);
  3714. GGML_ASSERT( nb0 == sizeof(ggml_bf16_t));
  3715. }
  3716. GGML_ASSERT(nb00 == sizeof(ggml_bf16_t));
  3717. // rows per thread
  3718. const int dr = (nr + nth - 1)/nth;
  3719. // row range for this thread
  3720. const int ir0 = dr*ith;
  3721. const int ir1 = MIN(ir0 + dr, nr);
  3722. if (nb10 == sizeof(float)) {
  3723. if (dst->type == GGML_TYPE_BF16) {
  3724. for (int ir = ir0; ir < ir1; ++ir) {
  3725. // src0, src1 and dst are same shape => same indices
  3726. const int i3 = ir/(ne2*ne1);
  3727. const int i2 = (ir - i3*ne2*ne1)/ne1;
  3728. const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
  3729. ggml_bf16_t * dst_ptr = (ggml_bf16_t *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1);
  3730. ggml_bf16_t * src0_ptr = (ggml_bf16_t *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01);
  3731. float * src1_ptr = (float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11);
  3732. for (int i = 0; i < ne0; i++) {
  3733. dst_ptr[i] = GGML_FP32_TO_BF16(GGML_BF16_TO_FP32(src0_ptr[i]) + src1_ptr[i]);
  3734. }
  3735. }
  3736. } else {
  3737. for (int ir = ir0; ir < ir1; ++ir) {
  3738. // src0, src1 and dst are same shape => same indices
  3739. const int i3 = ir/(ne2*ne1);
  3740. const int i2 = (ir - i3*ne2*ne1)/ne1;
  3741. const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
  3742. float * dst_ptr = (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1);
  3743. ggml_bf16_t * src0_ptr = (ggml_bf16_t *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01);
  3744. float * src1_ptr = (float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11);
  3745. for (int i = 0; i < ne0; i++) {
  3746. dst_ptr[i] = GGML_BF16_TO_FP32(src0_ptr[i]) + src1_ptr[i];
  3747. }
  3748. }
  3749. }
  3750. }
  3751. else {
  3752. // src1 is not contiguous
  3753. GGML_ABORT("fatal error");
  3754. }
  3755. }
  3756. static void ggml_compute_forward_add_f16_f16(
  3757. const struct ggml_compute_params * params,
  3758. struct ggml_tensor * dst) {
  3759. const struct ggml_tensor * src0 = dst->src[0];
  3760. const struct ggml_tensor * src1 = dst->src[1];
  3761. GGML_ASSERT(ggml_are_same_shape(src0, src1) && ggml_are_same_shape(src0, dst));
  3762. const int ith = params->ith;
  3763. const int nth = params->nth;
  3764. const int nr = ggml_nrows(src0);
  3765. GGML_TENSOR_BINARY_OP_LOCALS
  3766. GGML_ASSERT(src0->type == GGML_TYPE_F16);
  3767. GGML_ASSERT(src1->type == GGML_TYPE_F16);
  3768. GGML_ASSERT(dst->type == GGML_TYPE_F16);
  3769. GGML_ASSERT( nb0 == sizeof(ggml_fp16_t));
  3770. GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
  3771. // rows per thread
  3772. const int dr = (nr + nth - 1)/nth;
  3773. // row range for this thread
  3774. const int ir0 = dr*ith;
  3775. const int ir1 = MIN(ir0 + dr, nr);
  3776. if (nb10 == sizeof(ggml_fp16_t)) {
  3777. for (int ir = ir0; ir < ir1; ++ir) {
  3778. // src0, src1 and dst are same shape => same indices
  3779. const int i3 = ir/(ne2*ne1);
  3780. const int i2 = (ir - i3*ne2*ne1)/ne1;
  3781. const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
  3782. ggml_fp16_t * dst_ptr = (ggml_fp16_t *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1);
  3783. ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01);
  3784. ggml_fp16_t * src1_ptr = (ggml_fp16_t *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11);
  3785. for (int i = 0; i < ne0; i++) {
  3786. dst_ptr[i] = GGML_FP32_TO_FP16(GGML_FP16_TO_FP32(src0_ptr[i]) + GGML_FP16_TO_FP32(src1_ptr[i]));
  3787. }
  3788. }
  3789. }
  3790. else {
  3791. // src1 is not contiguous
  3792. GGML_ABORT("fatal error");
  3793. }
  3794. }
  3795. static void ggml_compute_forward_add_bf16_bf16(
  3796. const struct ggml_compute_params * params,
  3797. struct ggml_tensor * dst) {
  3798. const struct ggml_tensor * src0 = dst->src[0];
  3799. const struct ggml_tensor * src1 = dst->src[1];
  3800. GGML_ASSERT(ggml_are_same_shape(src0, src1) && ggml_are_same_shape(src0, dst));
  3801. const int ith = params->ith;
  3802. const int nth = params->nth;
  3803. const int nr = ggml_nrows(src0);
  3804. GGML_TENSOR_BINARY_OP_LOCALS
  3805. GGML_ASSERT(src0->type == GGML_TYPE_BF16);
  3806. GGML_ASSERT(src1->type == GGML_TYPE_BF16);
  3807. GGML_ASSERT(dst->type == GGML_TYPE_BF16);
  3808. GGML_ASSERT( nb0 == sizeof(ggml_bf16_t));
  3809. GGML_ASSERT(nb00 == sizeof(ggml_bf16_t));
  3810. // rows per thread
  3811. const int dr = (nr + nth - 1)/nth;
  3812. // row range for this thread
  3813. const int ir0 = dr*ith;
  3814. const int ir1 = MIN(ir0 + dr, nr);
  3815. if (nb10 == sizeof(ggml_bf16_t)) {
  3816. for (int ir = ir0; ir < ir1; ++ir) {
  3817. // src0, src1 and dst are same shape => same indices
  3818. const int i3 = ir/(ne2*ne1);
  3819. const int i2 = (ir - i3*ne2*ne1)/ne1;
  3820. const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
  3821. ggml_bf16_t * dst_ptr = (ggml_bf16_t *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1);
  3822. ggml_bf16_t * src0_ptr = (ggml_bf16_t *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01);
  3823. ggml_bf16_t * src1_ptr = (ggml_bf16_t *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11);
  3824. for (int i = 0; i < ne0; i++) {
  3825. dst_ptr[i] = GGML_FP32_TO_BF16(GGML_BF16_TO_FP32(src0_ptr[i]) + GGML_BF16_TO_FP32(src1_ptr[i]));
  3826. }
  3827. }
  3828. }
  3829. else {
  3830. // src1 is not contiguous
  3831. GGML_ABORT("fatal error");
  3832. }
  3833. }
  3834. static void ggml_compute_forward_add_q_f32(
  3835. const struct ggml_compute_params * params,
  3836. struct ggml_tensor * dst) {
  3837. const struct ggml_tensor * src0 = dst->src[0];
  3838. const struct ggml_tensor * src1 = dst->src[1];
  3839. GGML_ASSERT(ggml_are_same_shape(src0, src1) && ggml_are_same_shape(src0, dst));
  3840. const int nr = ggml_nrows(src0);
  3841. GGML_TENSOR_BINARY_OP_LOCALS
  3842. const int ith = params->ith;
  3843. const int nth = params->nth;
  3844. const enum ggml_type type = src0->type;
  3845. const enum ggml_type dtype = dst->type;
  3846. ggml_to_float_t const dequantize_row_q = ggml_get_type_traits(type)->to_float;
  3847. ggml_from_float_t const quantize_row_q = ggml_get_type_traits_cpu(dtype)->from_float;
  3848. // we don't support permuted src0 or src1
  3849. GGML_ASSERT(nb00 == ggml_type_size(type));
  3850. GGML_ASSERT(nb10 == sizeof(float));
  3851. // dst cannot be transposed or permuted
  3852. GGML_ASSERT(nb0 <= nb1);
  3853. GGML_ASSERT(nb1 <= nb2);
  3854. GGML_ASSERT(nb2 <= nb3);
  3855. GGML_ASSERT(ggml_is_quantized(src0->type));
  3856. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  3857. // rows per thread
  3858. const int dr = (nr + nth - 1)/nth;
  3859. // row range for this thread
  3860. const int ir0 = dr*ith;
  3861. const int ir1 = MIN(ir0 + dr, nr);
  3862. float * wdata = (float *) params->wdata + (ne00 + CACHE_LINE_SIZE_F32) * ith;
  3863. for (int ir = ir0; ir < ir1; ++ir) {
  3864. // src0 indices
  3865. const int i03 = ir/(ne02*ne01);
  3866. const int i02 = (ir - i03*ne02*ne01)/ne01;
  3867. const int i01 = (ir - i03*ne02*ne01 - i02*ne01);
  3868. // src1 and dst are same shape as src0 => same indices
  3869. const int i13 = i03;
  3870. const int i12 = i02;
  3871. const int i11 = i01;
  3872. const int i3 = i03;
  3873. const int i2 = i02;
  3874. const int i1 = i01;
  3875. void * src0_row = (void *) ((char *) src0->data + (i01*nb01 + i02*nb02 + i03*nb03));
  3876. float * src1_row = (float *)((char *) src1->data + (i11*nb11 + i12*nb12 + i13*nb13));
  3877. void * dst_row = (void *) ((char *) dst->data + ( i1*nb1 + i2*nb2 + i3*nb3));
  3878. assert(ne00 % 32 == 0);
  3879. // unquantize row from src0 to temp buffer
  3880. dequantize_row_q(src0_row, wdata, ne00);
  3881. // add src1
  3882. ggml_vec_acc_f32(ne00, wdata, src1_row);
  3883. // quantize row to dst
  3884. if (quantize_row_q != NULL) {
  3885. quantize_row_q(wdata, dst_row, ne00);
  3886. } else {
  3887. memcpy(dst_row, wdata, ne0*nb0);
  3888. }
  3889. }
  3890. }
  3891. static void ggml_compute_forward_add(
  3892. const struct ggml_compute_params * params,
  3893. struct ggml_tensor * dst) {
  3894. const struct ggml_tensor * src0 = dst->src[0];
  3895. const struct ggml_tensor * src1 = dst->src[1];
  3896. switch (src0->type) {
  3897. case GGML_TYPE_F32:
  3898. {
  3899. if (src1->type == GGML_TYPE_F32) {
  3900. ggml_compute_forward_add_f32(params, dst);
  3901. }
  3902. else {
  3903. GGML_ABORT("fatal error");
  3904. }
  3905. } break;
  3906. case GGML_TYPE_F16:
  3907. {
  3908. if (src1->type == GGML_TYPE_F16) {
  3909. ggml_compute_forward_add_f16_f16(params, dst);
  3910. }
  3911. else if (src1->type == GGML_TYPE_F32) {
  3912. ggml_compute_forward_add_f16_f32(params, dst);
  3913. }
  3914. else {
  3915. GGML_ABORT("fatal error");
  3916. }
  3917. } break;
  3918. case GGML_TYPE_BF16:
  3919. {
  3920. if (src1->type == GGML_TYPE_BF16) {
  3921. ggml_compute_forward_add_bf16_bf16(params, dst);
  3922. }
  3923. else if (src1->type == GGML_TYPE_F32) {
  3924. ggml_compute_forward_add_bf16_f32(params, dst);
  3925. }
  3926. else {
  3927. GGML_ABORT("fatal error");
  3928. }
  3929. } break;
  3930. case GGML_TYPE_Q4_0:
  3931. case GGML_TYPE_Q4_1:
  3932. case GGML_TYPE_Q5_0:
  3933. case GGML_TYPE_Q5_1:
  3934. case GGML_TYPE_Q8_0:
  3935. case GGML_TYPE_Q2_K:
  3936. case GGML_TYPE_Q3_K:
  3937. case GGML_TYPE_Q4_K:
  3938. case GGML_TYPE_Q5_K:
  3939. case GGML_TYPE_Q6_K:
  3940. case GGML_TYPE_TQ1_0:
  3941. case GGML_TYPE_TQ2_0:
  3942. case GGML_TYPE_IQ2_XXS:
  3943. case GGML_TYPE_IQ2_XS:
  3944. case GGML_TYPE_IQ3_XXS:
  3945. case GGML_TYPE_IQ1_S:
  3946. case GGML_TYPE_IQ1_M:
  3947. case GGML_TYPE_IQ4_NL:
  3948. case GGML_TYPE_IQ4_XS:
  3949. case GGML_TYPE_IQ3_S:
  3950. case GGML_TYPE_IQ2_S:
  3951. case GGML_TYPE_Q4_0_4_4:
  3952. case GGML_TYPE_Q4_0_4_8:
  3953. case GGML_TYPE_Q4_0_8_8:
  3954. {
  3955. ggml_compute_forward_add_q_f32(params, dst);
  3956. } break;
  3957. default:
  3958. {
  3959. GGML_ABORT("fatal error");
  3960. }
  3961. }
  3962. }
  3963. // ggml_compute_forward_add1
  3964. static void ggml_compute_forward_add1_f32(
  3965. const struct ggml_compute_params * params,
  3966. struct ggml_tensor * dst) {
  3967. const struct ggml_tensor * src0 = dst->src[0];
  3968. const struct ggml_tensor * src1 = dst->src[1];
  3969. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  3970. GGML_ASSERT(ggml_is_scalar(src1));
  3971. const int ith = params->ith;
  3972. const int nth = params->nth;
  3973. const int nr = ggml_nrows(src0);
  3974. GGML_TENSOR_UNARY_OP_LOCALS
  3975. GGML_ASSERT( nb0 == sizeof(float));
  3976. GGML_ASSERT(nb00 == sizeof(float));
  3977. // rows per thread
  3978. const int dr = (nr + nth - 1)/nth;
  3979. // row range for this thread
  3980. const int ir0 = dr*ith;
  3981. const int ir1 = MIN(ir0 + dr, nr);
  3982. for (int ir = ir0; ir < ir1; ++ir) {
  3983. // src0 and dst are same shape => same indices
  3984. const int i3 = ir/(ne2*ne1);
  3985. const int i2 = (ir - i3*ne2*ne1)/ne1;
  3986. const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
  3987. #ifdef GGML_USE_ACCELERATE
  3988. UNUSED(ggml_vec_add1_f32);
  3989. vDSP_vadd(
  3990. (float *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01), 1,
  3991. (float *) ((char *) src1->data), 0,
  3992. (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 ), 1,
  3993. ne0);
  3994. #else
  3995. ggml_vec_add1_f32(ne0,
  3996. (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 ),
  3997. (float *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01),
  3998. *(float *) src1->data);
  3999. #endif
  4000. }
  4001. }
  4002. static void ggml_compute_forward_add1_f16_f32(
  4003. const struct ggml_compute_params * params,
  4004. struct ggml_tensor * dst) {
  4005. const struct ggml_tensor * src0 = dst->src[0];
  4006. const struct ggml_tensor * src1 = dst->src[1];
  4007. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  4008. GGML_ASSERT(ggml_is_scalar(src1));
  4009. // scalar to add
  4010. const float v = *(float *) src1->data;
  4011. const int ith = params->ith;
  4012. const int nth = params->nth;
  4013. const int nr = ggml_nrows(src0);
  4014. GGML_TENSOR_UNARY_OP_LOCALS
  4015. GGML_ASSERT(src0->type == GGML_TYPE_F16);
  4016. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  4017. GGML_ASSERT(dst->type == GGML_TYPE_F16);
  4018. GGML_ASSERT( nb0 == sizeof(ggml_fp16_t));
  4019. GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
  4020. // rows per thread
  4021. const int dr = (nr + nth - 1)/nth;
  4022. // row range for this thread
  4023. const int ir0 = dr*ith;
  4024. const int ir1 = MIN(ir0 + dr, nr);
  4025. for (int ir = ir0; ir < ir1; ++ir) {
  4026. // src0 and dst are same shape => same indices
  4027. const int i3 = ir/(ne2*ne1);
  4028. const int i2 = (ir - i3*ne2*ne1)/ne1;
  4029. const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
  4030. ggml_fp16_t * dst_ptr = (ggml_fp16_t *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 );
  4031. ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01);
  4032. for (int i = 0; i < ne0; i++) {
  4033. dst_ptr[i] = GGML_FP32_TO_FP16(GGML_FP16_TO_FP32(src0_ptr[i]) + v);
  4034. }
  4035. }
  4036. }
  4037. static void ggml_compute_forward_add1_f16_f16(
  4038. const struct ggml_compute_params * params,
  4039. struct ggml_tensor * dst) {
  4040. const struct ggml_tensor * src0 = dst->src[0];
  4041. const struct ggml_tensor * src1 = dst->src[1];
  4042. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  4043. GGML_ASSERT(ggml_is_scalar(src1));
  4044. // scalar to add
  4045. const float v = GGML_FP16_TO_FP32(*(ggml_fp16_t *) src1->data);
  4046. const int ith = params->ith;
  4047. const int nth = params->nth;
  4048. const int nr = ggml_nrows(src0);
  4049. GGML_TENSOR_UNARY_OP_LOCALS
  4050. GGML_ASSERT(src0->type == GGML_TYPE_F16);
  4051. GGML_ASSERT(src1->type == GGML_TYPE_F16);
  4052. GGML_ASSERT(dst->type == GGML_TYPE_F16);
  4053. GGML_ASSERT( nb0 == sizeof(ggml_fp16_t));
  4054. GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
  4055. // rows per thread
  4056. const int dr = (nr + nth - 1)/nth;
  4057. // row range for this thread
  4058. const int ir0 = dr*ith;
  4059. const int ir1 = MIN(ir0 + dr, nr);
  4060. for (int ir = ir0; ir < ir1; ++ir) {
  4061. // src0 and dst are same shape => same indices
  4062. const int i3 = ir/(ne2*ne1);
  4063. const int i2 = (ir - i3*ne2*ne1)/ne1;
  4064. const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
  4065. ggml_fp16_t * dst_ptr = (ggml_fp16_t *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 );
  4066. ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01);
  4067. for (int i = 0; i < ne0; i++) {
  4068. dst_ptr[i] = GGML_FP32_TO_FP16(GGML_FP16_TO_FP32(src0_ptr[i]) + v);
  4069. }
  4070. }
  4071. }
  4072. static void ggml_compute_forward_add1_q_f32(
  4073. const struct ggml_compute_params * params,
  4074. struct ggml_tensor * dst) {
  4075. const struct ggml_tensor * src0 = dst->src[0];
  4076. const struct ggml_tensor * src1 = dst->src[1];
  4077. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  4078. GGML_ASSERT(ggml_is_scalar(src1));
  4079. // scalar to add
  4080. const float v = *(float *) src1->data;
  4081. const int ith = params->ith;
  4082. const int nth = params->nth;
  4083. const int nr = ggml_nrows(src0);
  4084. GGML_TENSOR_UNARY_OP_LOCALS
  4085. const enum ggml_type type = src0->type;
  4086. ggml_to_float_t const dequantize_row_q = ggml_get_type_traits(type)->to_float;
  4087. ggml_from_float_t const quantize_row_q = ggml_get_type_traits_cpu(type)->from_float;
  4088. // we don't support permuted src0
  4089. GGML_ASSERT(nb00 == ggml_type_size(type));
  4090. // dst cannot be transposed or permuted
  4091. GGML_ASSERT(nb0 <= nb1);
  4092. GGML_ASSERT(nb1 <= nb2);
  4093. GGML_ASSERT(nb2 <= nb3);
  4094. GGML_ASSERT(ggml_is_quantized(src0->type));
  4095. GGML_ASSERT(dst->type == src0->type);
  4096. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  4097. // rows per thread
  4098. const int dr = (nr + nth - 1)/nth;
  4099. // row range for this thread
  4100. const int ir0 = dr*ith;
  4101. const int ir1 = MIN(ir0 + dr, nr);
  4102. float * wdata = (float *) params->wdata + (ne0 + CACHE_LINE_SIZE_F32) * ith;
  4103. for (int ir = ir0; ir < ir1; ++ir) {
  4104. // src0 and dst are same shape => same indices
  4105. const int i3 = ir/(ne2*ne1);
  4106. const int i2 = (ir - i3*ne2*ne1)/ne1;
  4107. const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
  4108. void * src0_row = (void *) ((char *) src0->data + (i1*nb01 + i2*nb02 + i3*nb03));
  4109. void * dst_row = (void *) ((char *) dst->data + (i1*nb1 + i2*nb2 + i3*nb0 ));
  4110. assert(ne0 % 32 == 0);
  4111. // unquantize row from src0 to temp buffer
  4112. dequantize_row_q(src0_row, wdata, ne0);
  4113. // add src1
  4114. ggml_vec_acc1_f32(ne0, wdata, v);
  4115. // quantize row to dst
  4116. quantize_row_q(wdata, dst_row, ne0);
  4117. }
  4118. }
  4119. static void ggml_compute_forward_add1_bf16_f32(
  4120. const struct ggml_compute_params * params,
  4121. struct ggml_tensor * dst) {
  4122. const struct ggml_tensor * src0 = dst->src[0];
  4123. const struct ggml_tensor * src1 = dst->src[1];
  4124. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  4125. GGML_ASSERT(ggml_is_scalar(src1));
  4126. // scalar to add
  4127. const float v = *(float *) src1->data;
  4128. const int ith = params->ith;
  4129. const int nth = params->nth;
  4130. const int nr = ggml_nrows(src0);
  4131. GGML_TENSOR_UNARY_OP_LOCALS
  4132. GGML_ASSERT(src0->type == GGML_TYPE_BF16);
  4133. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  4134. GGML_ASSERT(dst->type == GGML_TYPE_BF16);
  4135. GGML_ASSERT( nb0 == sizeof(ggml_bf16_t));
  4136. GGML_ASSERT(nb00 == sizeof(ggml_bf16_t));
  4137. // rows per thread
  4138. const int dr = (nr + nth - 1)/nth;
  4139. // row range for this thread
  4140. const int ir0 = dr*ith;
  4141. const int ir1 = MIN(ir0 + dr, nr);
  4142. for (int ir = ir0; ir < ir1; ++ir) {
  4143. // src0 and dst are same shape => same indices
  4144. const int i3 = ir/(ne2*ne1);
  4145. const int i2 = (ir - i3*ne2*ne1)/ne1;
  4146. const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
  4147. ggml_bf16_t * dst_ptr = (ggml_bf16_t *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 );
  4148. ggml_bf16_t * src0_ptr = (ggml_bf16_t *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01);
  4149. for (int i = 0; i < ne0; i++) {
  4150. dst_ptr[i] = GGML_FP32_TO_BF16(GGML_BF16_TO_FP32(src0_ptr[i]) + v);
  4151. }
  4152. }
  4153. }
  4154. static void ggml_compute_forward_add1_bf16_bf16(
  4155. const struct ggml_compute_params * params,
  4156. struct ggml_tensor * dst) {
  4157. const struct ggml_tensor * src0 = dst->src[0];
  4158. const struct ggml_tensor * src1 = dst->src[1];
  4159. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  4160. GGML_ASSERT(ggml_is_scalar(src1));
  4161. // scalar to add
  4162. const float v = GGML_BF16_TO_FP32(*(ggml_bf16_t *) src1->data);
  4163. const int ith = params->ith;
  4164. const int nth = params->nth;
  4165. const int nr = ggml_nrows(src0);
  4166. GGML_TENSOR_UNARY_OP_LOCALS
  4167. GGML_ASSERT(src0->type == GGML_TYPE_BF16);
  4168. GGML_ASSERT(src1->type == GGML_TYPE_BF16);
  4169. GGML_ASSERT(dst->type == GGML_TYPE_BF16);
  4170. GGML_ASSERT( nb0 == sizeof(ggml_bf16_t));
  4171. GGML_ASSERT(nb00 == sizeof(ggml_bf16_t));
  4172. // rows per thread
  4173. const int dr = (nr + nth - 1)/nth;
  4174. // row range for this thread
  4175. const int ir0 = dr*ith;
  4176. const int ir1 = MIN(ir0 + dr, nr);
  4177. for (int ir = ir0; ir < ir1; ++ir) {
  4178. // src0 and dst are same shape => same indices
  4179. const int i3 = ir/(ne2*ne1);
  4180. const int i2 = (ir - i3*ne2*ne1)/ne1;
  4181. const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
  4182. ggml_bf16_t * dst_ptr = (ggml_bf16_t *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 );
  4183. ggml_bf16_t * src0_ptr = (ggml_bf16_t *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01);
  4184. for (int i = 0; i < ne0; i++) {
  4185. dst_ptr[i] = GGML_FP32_TO_BF16(GGML_BF16_TO_FP32(src0_ptr[i]) + v);
  4186. }
  4187. }
  4188. }
  4189. static void ggml_compute_forward_add1(
  4190. const struct ggml_compute_params * params,
  4191. struct ggml_tensor * dst) {
  4192. const struct ggml_tensor * src0 = dst->src[0];
  4193. const struct ggml_tensor * src1 = dst->src[1];
  4194. switch (src0->type) {
  4195. case GGML_TYPE_F32:
  4196. {
  4197. ggml_compute_forward_add1_f32(params, dst);
  4198. } break;
  4199. case GGML_TYPE_F16:
  4200. {
  4201. if (src1->type == GGML_TYPE_F16) {
  4202. ggml_compute_forward_add1_f16_f16(params, dst);
  4203. }
  4204. else if (src1->type == GGML_TYPE_F32) {
  4205. ggml_compute_forward_add1_f16_f32(params, dst);
  4206. }
  4207. else {
  4208. GGML_ABORT("fatal error");
  4209. }
  4210. } break;
  4211. case GGML_TYPE_BF16:
  4212. {
  4213. if (src1->type == GGML_TYPE_BF16) {
  4214. ggml_compute_forward_add1_bf16_bf16(params, dst);
  4215. }
  4216. else if (src1->type == GGML_TYPE_F32) {
  4217. ggml_compute_forward_add1_bf16_f32(params, dst);
  4218. }
  4219. else {
  4220. GGML_ABORT("fatal error");
  4221. }
  4222. } break;
  4223. case GGML_TYPE_Q4_0:
  4224. case GGML_TYPE_Q4_1:
  4225. case GGML_TYPE_Q5_0:
  4226. case GGML_TYPE_Q5_1:
  4227. case GGML_TYPE_Q8_0:
  4228. case GGML_TYPE_Q8_1:
  4229. case GGML_TYPE_Q2_K:
  4230. case GGML_TYPE_Q3_K:
  4231. case GGML_TYPE_Q4_K:
  4232. case GGML_TYPE_Q5_K:
  4233. case GGML_TYPE_Q6_K:
  4234. case GGML_TYPE_TQ1_0:
  4235. case GGML_TYPE_TQ2_0:
  4236. case GGML_TYPE_IQ2_XXS:
  4237. case GGML_TYPE_IQ2_XS:
  4238. case GGML_TYPE_IQ3_XXS:
  4239. case GGML_TYPE_IQ1_S:
  4240. case GGML_TYPE_IQ1_M:
  4241. case GGML_TYPE_IQ4_NL:
  4242. case GGML_TYPE_IQ4_XS:
  4243. case GGML_TYPE_IQ3_S:
  4244. case GGML_TYPE_IQ2_S:
  4245. case GGML_TYPE_Q4_0_4_4:
  4246. case GGML_TYPE_Q4_0_4_8:
  4247. case GGML_TYPE_Q4_0_8_8:
  4248. {
  4249. ggml_compute_forward_add1_q_f32(params, dst);
  4250. } break;
  4251. default:
  4252. {
  4253. GGML_ABORT("fatal error");
  4254. }
  4255. }
  4256. }
  4257. // ggml_compute_forward_acc
  4258. static void ggml_compute_forward_acc_f32(
  4259. const struct ggml_compute_params * params,
  4260. struct ggml_tensor * dst) {
  4261. const struct ggml_tensor * src0 = dst->src[0];
  4262. const struct ggml_tensor * src1 = dst->src[1];
  4263. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  4264. GGML_ASSERT(ggml_is_contiguous(dst) && ggml_is_contiguous(src0));
  4265. // view src0 and dst with these strides and data offset inbytes during acc
  4266. // nb0 is implicitly element_size because src0 and dst are contiguous
  4267. size_t nb1 = ((int32_t *) dst->op_params)[0];
  4268. size_t nb2 = ((int32_t *) dst->op_params)[1];
  4269. size_t nb3 = ((int32_t *) dst->op_params)[2];
  4270. size_t offset = ((int32_t *) dst->op_params)[3];
  4271. bool inplace = (bool) ((int32_t *) dst->op_params)[4];
  4272. if (!inplace) {
  4273. if (params->ith == 0) {
  4274. // memcpy needs to be synchronized across threads to avoid race conditions.
  4275. // => do it in INIT phase
  4276. memcpy(
  4277. ((char *) dst->data),
  4278. ((char *) src0->data),
  4279. ggml_nbytes(dst));
  4280. }
  4281. ggml_barrier(params->threadpool);
  4282. }
  4283. const int ith = params->ith;
  4284. const int nth = params->nth;
  4285. const int nr = ggml_nrows(src1);
  4286. const int nc = src1->ne[0];
  4287. GGML_TENSOR_LOCALS(int64_t, ne1, src1, ne)
  4288. GGML_TENSOR_LOCALS(size_t, nb1, src1, nb)
  4289. // src0 and dst as viewed during acc
  4290. const size_t nb0 = ggml_element_size(src0);
  4291. const size_t nb00 = nb0;
  4292. const size_t nb01 = nb1;
  4293. const size_t nb02 = nb2;
  4294. const size_t nb03 = nb3;
  4295. GGML_ASSERT(offset + (ne10 == 0 ? 0 : ne10-1)*nb0 + (ne11 == 0 ? 0 : ne11-1)*nb1 + (ne12 == 0 ? 0 : ne12-1)*nb2 + (ne13 == 0 ? 0 : ne13-1)*nb3 < ggml_nbytes(dst));
  4296. GGML_ASSERT(offset + (ne10 == 0 ? 0 : ne10-1)*nb00 + (ne11 == 0 ? 0 : ne11-1)*nb01 + (ne12 == 0 ? 0 : ne12-1)*nb02 + (ne13 == 0 ? 0 : ne13-1)*nb03 < ggml_nbytes(src0));
  4297. GGML_ASSERT(nb10 == sizeof(float));
  4298. // rows per thread
  4299. const int dr = (nr + nth - 1)/nth;
  4300. // row range for this thread
  4301. const int ir0 = dr*ith;
  4302. const int ir1 = MIN(ir0 + dr, nr);
  4303. for (int ir = ir0; ir < ir1; ++ir) {
  4304. // src0 and dst are viewed with shape of src1 and offset
  4305. // => same indices
  4306. const int i3 = ir/(ne12*ne11);
  4307. const int i2 = (ir - i3*ne12*ne11)/ne11;
  4308. const int i1 = (ir - i3*ne12*ne11 - i2*ne11);
  4309. #ifdef GGML_USE_ACCELERATE
  4310. vDSP_vadd(
  4311. (float *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + offset), 1,
  4312. (float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11), 1,
  4313. (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + offset), 1, nc);
  4314. #else
  4315. ggml_vec_add_f32(nc,
  4316. (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + offset),
  4317. (float *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + offset),
  4318. (float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11));
  4319. #endif
  4320. }
  4321. }
  4322. static void ggml_compute_forward_acc(
  4323. const struct ggml_compute_params * params,
  4324. struct ggml_tensor * dst) {
  4325. const struct ggml_tensor * src0 = dst->src[0];
  4326. switch (src0->type) {
  4327. case GGML_TYPE_F32:
  4328. {
  4329. ggml_compute_forward_acc_f32(params, dst);
  4330. } break;
  4331. case GGML_TYPE_F16:
  4332. case GGML_TYPE_BF16:
  4333. case GGML_TYPE_Q4_0:
  4334. case GGML_TYPE_Q4_1:
  4335. case GGML_TYPE_Q5_0:
  4336. case GGML_TYPE_Q5_1:
  4337. case GGML_TYPE_Q8_0:
  4338. case GGML_TYPE_Q8_1:
  4339. case GGML_TYPE_Q2_K:
  4340. case GGML_TYPE_Q3_K:
  4341. case GGML_TYPE_Q4_K:
  4342. case GGML_TYPE_Q5_K:
  4343. case GGML_TYPE_Q6_K:
  4344. case GGML_TYPE_TQ1_0:
  4345. case GGML_TYPE_TQ2_0:
  4346. case GGML_TYPE_IQ2_XXS:
  4347. case GGML_TYPE_IQ2_XS:
  4348. case GGML_TYPE_IQ3_XXS:
  4349. case GGML_TYPE_IQ1_S:
  4350. case GGML_TYPE_IQ1_M:
  4351. case GGML_TYPE_IQ4_NL:
  4352. case GGML_TYPE_IQ4_XS:
  4353. case GGML_TYPE_IQ3_S:
  4354. case GGML_TYPE_IQ2_S:
  4355. case GGML_TYPE_Q4_0_4_4:
  4356. case GGML_TYPE_Q4_0_4_8:
  4357. case GGML_TYPE_Q4_0_8_8:
  4358. default:
  4359. {
  4360. GGML_ABORT("fatal error");
  4361. }
  4362. }
  4363. }
  4364. // ggml_compute_forward_sub
  4365. static void ggml_compute_forward_sub_f32(
  4366. const struct ggml_compute_params * params,
  4367. struct ggml_tensor * dst) {
  4368. const struct ggml_tensor * src0 = dst->src[0];
  4369. const struct ggml_tensor * src1 = dst->src[1];
  4370. assert(ggml_can_repeat(src1, src0) && ggml_are_same_shape(src0, dst));
  4371. const int ith = params->ith;
  4372. const int nth = params->nth;
  4373. const int nr = ggml_nrows(src0);
  4374. GGML_TENSOR_BINARY_OP_LOCALS
  4375. GGML_ASSERT( nb0 == sizeof(float));
  4376. GGML_ASSERT(nb00 == sizeof(float));
  4377. // rows per thread
  4378. const int dr = (nr + nth - 1)/nth;
  4379. // row range for this thread
  4380. const int ir0 = dr*ith;
  4381. const int ir1 = MIN(ir0 + dr, nr);
  4382. if (nb10 == sizeof(float)) {
  4383. for (int ir = ir0; ir < ir1; ++ir) {
  4384. // src1 is broadcastable across src0 and dst in i1, i2, i3
  4385. const int64_t i03 = ir/(ne02*ne01);
  4386. const int64_t i02 = (ir - i03*ne02*ne01)/ne01;
  4387. const int64_t i01 = (ir - i03*ne02*ne01 - i02*ne01);
  4388. const int64_t i13 = i03 % ne13;
  4389. const int64_t i12 = i02 % ne12;
  4390. const int64_t i11 = i01 % ne11;
  4391. const int64_t nr0 = ne00 / ne10;
  4392. float * dst_ptr = (float *) ((char *) dst->data + i03*nb3 + i02*nb2 + i01*nb1 );
  4393. float * src0_ptr = (float *) ((char *) src0->data + i03*nb03 + i02*nb02 + i01*nb01);
  4394. float * src1_ptr = (float *) ((char *) src1->data + i13*nb13 + i12*nb12 + i11*nb11);
  4395. for (int64_t r = 0; r < nr0; ++r) {
  4396. #ifdef GGML_USE_ACCELERATE
  4397. vDSP_vsub(src1_ptr, 1, src0_ptr + r*ne10, 1, dst_ptr + r*ne10, 1, ne10);
  4398. #else
  4399. ggml_vec_sub_f32(ne10, dst_ptr + r*ne10, src0_ptr + r*ne10, src1_ptr);
  4400. #endif
  4401. }
  4402. }
  4403. } else {
  4404. // src1 is not contiguous
  4405. for (int ir = ir0; ir < ir1; ++ir) {
  4406. // src1 is broadcastable across src0 and dst in i1, i2, i3
  4407. const int64_t i03 = ir/(ne02*ne01);
  4408. const int64_t i02 = (ir - i03*ne02*ne01)/ne01;
  4409. const int64_t i01 = (ir - i03*ne02*ne01 - i02*ne01);
  4410. const int64_t i13 = i03 % ne13;
  4411. const int64_t i12 = i02 % ne12;
  4412. const int64_t i11 = i01 % ne11;
  4413. float * dst_ptr = (float *) ((char *) dst->data + i03*nb3 + i02*nb2 + i01*nb1 );
  4414. float * src0_ptr = (float *) ((char *) src0->data + i03*nb03 + i02*nb02 + i01*nb01);
  4415. for (int64_t i0 = 0; i0 < ne0; ++i0) {
  4416. const int64_t i10 = i0 % ne10;
  4417. float * src1_ptr = (float *) ((char *) src1->data + i13*nb13 + i12*nb12 + i11*nb11 + i10*nb10);
  4418. dst_ptr[i0] = src0_ptr[i0] - *src1_ptr;
  4419. }
  4420. }
  4421. }
  4422. }
  4423. static void ggml_compute_forward_sub(
  4424. const struct ggml_compute_params * params,
  4425. struct ggml_tensor * dst) {
  4426. const struct ggml_tensor * src0 = dst->src[0];
  4427. switch (src0->type) {
  4428. case GGML_TYPE_F32:
  4429. {
  4430. ggml_compute_forward_sub_f32(params, dst);
  4431. } break;
  4432. default:
  4433. {
  4434. GGML_ABORT("fatal error");
  4435. }
  4436. }
  4437. }
  4438. // ggml_compute_forward_mul
  4439. static void ggml_compute_forward_mul_f32(
  4440. const struct ggml_compute_params * params,
  4441. struct ggml_tensor * dst) {
  4442. const struct ggml_tensor * src0 = dst->src[0];
  4443. const struct ggml_tensor * src1 = dst->src[1];
  4444. GGML_ASSERT(ggml_can_repeat(src1, src0) && ggml_are_same_shape(src0, dst));
  4445. const int ith = params->ith;
  4446. const int nth = params->nth;
  4447. const int64_t nr = ggml_nrows(src0);
  4448. GGML_TENSOR_BINARY_OP_LOCALS
  4449. GGML_ASSERT( nb0 == sizeof(float));
  4450. GGML_ASSERT(nb00 == sizeof(float));
  4451. if (nb10 == sizeof(float)) {
  4452. for (int64_t ir = ith; ir < nr; ir += nth) {
  4453. // src0 and dst are same shape => same indices
  4454. const int64_t i03 = ir/(ne02*ne01);
  4455. const int64_t i02 = (ir - i03*ne02*ne01)/ne01;
  4456. const int64_t i01 = (ir - i03*ne02*ne01 - i02*ne01);
  4457. const int64_t i13 = i03 % ne13;
  4458. const int64_t i12 = i02 % ne12;
  4459. const int64_t i11 = i01 % ne11;
  4460. const int64_t nr0 = ne00 / ne10;
  4461. float * dst_ptr = (float *) ((char *) dst->data + i03*nb3 + i02*nb2 + i01*nb1 );
  4462. float * src0_ptr = (float *) ((char *) src0->data + i03*nb03 + i02*nb02 + i01*nb01);
  4463. float * src1_ptr = (float *) ((char *) src1->data + i13*nb13 + i12*nb12 + i11*nb11);
  4464. for (int64_t r = 0 ; r < nr0; ++r) {
  4465. #ifdef GGML_USE_ACCELERATE
  4466. UNUSED(ggml_vec_mul_f32);
  4467. vDSP_vmul(src0_ptr + r*ne10, 1, src1_ptr, 1, dst_ptr + r*ne10, 1, ne10);
  4468. #else
  4469. ggml_vec_mul_f32(ne10, dst_ptr + r*ne10, src0_ptr + r*ne10, src1_ptr);
  4470. #endif
  4471. }
  4472. }
  4473. } else {
  4474. // src1 is not contiguous
  4475. for (int64_t ir = ith; ir < nr; ir += nth) {
  4476. // src0 and dst are same shape => same indices
  4477. // src1 is broadcastable across src0 and dst in i1, i2, i3
  4478. const int64_t i03 = ir/(ne02*ne01);
  4479. const int64_t i02 = (ir - i03*ne02*ne01)/ne01;
  4480. const int64_t i01 = (ir - i03*ne02*ne01 - i02*ne01);
  4481. const int64_t i13 = i03 % ne13;
  4482. const int64_t i12 = i02 % ne12;
  4483. const int64_t i11 = i01 % ne11;
  4484. float * dst_ptr = (float *) ((char *) dst->data + i03*nb3 + i02*nb2 + i01*nb1 );
  4485. float * src0_ptr = (float *) ((char *) src0->data + i03*nb03 + i02*nb02 + i01*nb01);
  4486. for (int64_t i0 = 0; i0 < ne00; ++i0) {
  4487. const int64_t i10 = i0 % ne10;
  4488. float * src1_ptr = (float *) ((char *) src1->data + i13*nb13 + i12*nb12 + i11*nb11 + i10*nb10);
  4489. dst_ptr[i0] = src0_ptr[i0] * (*src1_ptr);
  4490. }
  4491. }
  4492. }
  4493. }
  4494. static void ggml_compute_forward_mul(
  4495. const struct ggml_compute_params * params,
  4496. struct ggml_tensor * dst) {
  4497. const struct ggml_tensor * src0 = dst->src[0];
  4498. const struct ggml_tensor * src1 = dst->src[1];
  4499. GGML_ASSERT(src1->type == GGML_TYPE_F32 && "only f32 src1 supported for now");
  4500. switch (src0->type) {
  4501. case GGML_TYPE_F32:
  4502. {
  4503. ggml_compute_forward_mul_f32(params, dst);
  4504. } break;
  4505. default:
  4506. {
  4507. GGML_ABORT("fatal error");
  4508. }
  4509. }
  4510. }
  4511. // ggml_compute_forward_div
  4512. static void ggml_compute_forward_div_f32(
  4513. const struct ggml_compute_params * params,
  4514. struct ggml_tensor * dst) {
  4515. const struct ggml_tensor * src0 = dst->src[0];
  4516. const struct ggml_tensor * src1 = dst->src[1];
  4517. GGML_ASSERT(ggml_can_repeat(src1, src0) && ggml_are_same_shape(src0, dst));
  4518. const int ith = params->ith;
  4519. const int nth = params->nth;
  4520. const int64_t nr = ggml_nrows(src0);
  4521. GGML_TENSOR_BINARY_OP_LOCALS
  4522. GGML_ASSERT( nb0 == sizeof(float));
  4523. GGML_ASSERT(nb00 == sizeof(float));
  4524. if (nb10 == sizeof(float)) {
  4525. for (int64_t ir = ith; ir < nr; ir += nth) {
  4526. // src0 and dst are same shape => same indices
  4527. const int64_t i03 = ir/(ne02*ne01);
  4528. const int64_t i02 = (ir - i03*ne02*ne01)/ne01;
  4529. const int64_t i01 = (ir - i03*ne02*ne01 - i02*ne01);
  4530. const int64_t i13 = i03 % ne13;
  4531. const int64_t i12 = i02 % ne12;
  4532. const int64_t i11 = i01 % ne11;
  4533. const int64_t nr0 = ne00 / ne10;
  4534. float * dst_ptr = (float *) ((char *) dst->data + i03*nb3 + i02*nb2 + i01*nb1 );
  4535. float * src0_ptr = (float *) ((char *) src0->data + i03*nb03 + i02*nb02 + i01*nb01);
  4536. float * src1_ptr = (float *) ((char *) src1->data + i13*nb13 + i12*nb12 + i11*nb11);
  4537. for (int64_t r = 0; r < nr0; ++r) {
  4538. #ifdef GGML_USE_ACCELERATE
  4539. UNUSED(ggml_vec_div_f32);
  4540. vDSP_vdiv(src1_ptr, 1, src0_ptr + r*ne10, 1, dst_ptr + r*ne10, 1, ne10);
  4541. #else
  4542. ggml_vec_div_f32(ne10, dst_ptr + r*ne10, src0_ptr + r*ne10, src1_ptr);
  4543. #endif
  4544. }
  4545. }
  4546. } else {
  4547. // src1 is not contiguous
  4548. for (int64_t ir = ith; ir < nr; ir += nth) {
  4549. // src0 and dst are same shape => same indices
  4550. // src1 is broadcastable across src0 and dst in i1, i2, i3
  4551. const int64_t i03 = ir/(ne02*ne01);
  4552. const int64_t i02 = (ir - i03*ne02*ne01)/ne01;
  4553. const int64_t i01 = (ir - i03*ne02*ne01 - i02*ne01);
  4554. const int64_t i13 = i03 % ne13;
  4555. const int64_t i12 = i02 % ne12;
  4556. const int64_t i11 = i01 % ne11;
  4557. float * dst_ptr = (float *) ((char *) dst->data + i03*nb3 + i02*nb2 + i01*nb1 );
  4558. float * src0_ptr = (float *) ((char *) src0->data + i03*nb03 + i02*nb02 + i01*nb01);
  4559. for (int64_t i0 = 0; i0 < ne00; ++i0) {
  4560. const int64_t i10 = i0 % ne10;
  4561. float * src1_ptr = (float *) ((char *) src1->data + i13*nb13 + i12*nb12 + i11*nb11 + i10*nb10);
  4562. dst_ptr[i0] = src0_ptr[i0] / (*src1_ptr);
  4563. }
  4564. }
  4565. }
  4566. }
  4567. static void ggml_compute_forward_div(
  4568. const struct ggml_compute_params * params,
  4569. struct ggml_tensor * dst) {
  4570. const struct ggml_tensor * src0 = dst->src[0];
  4571. switch (src0->type) {
  4572. case GGML_TYPE_F32:
  4573. {
  4574. ggml_compute_forward_div_f32(params, dst);
  4575. } break;
  4576. default:
  4577. {
  4578. GGML_ABORT("fatal error");
  4579. }
  4580. }
  4581. }
  4582. // ggml_compute_forward_sqr
  4583. static void ggml_compute_forward_sqr_f32(
  4584. const struct ggml_compute_params * params,
  4585. struct ggml_tensor * dst) {
  4586. const struct ggml_tensor * src0 = dst->src[0];
  4587. if (params->ith != 0) {
  4588. return;
  4589. }
  4590. assert(ggml_are_same_shape(src0, dst));
  4591. const int n = ggml_nrows(src0);
  4592. const int nc = src0->ne[0];
  4593. assert( dst->nb[0] == sizeof(float));
  4594. assert(src0->nb[0] == sizeof(float));
  4595. for (int i = 0; i < n; i++) {
  4596. ggml_vec_sqr_f32(nc,
  4597. (float *) ((char *) dst->data + i*( dst->nb[1])),
  4598. (float *) ((char *) src0->data + i*(src0->nb[1])));
  4599. }
  4600. }
  4601. static void ggml_compute_forward_sqr(
  4602. const struct ggml_compute_params * params,
  4603. struct ggml_tensor * dst) {
  4604. const struct ggml_tensor * src0 = dst->src[0];
  4605. switch (src0->type) {
  4606. case GGML_TYPE_F32:
  4607. {
  4608. ggml_compute_forward_sqr_f32(params, dst);
  4609. } break;
  4610. default:
  4611. {
  4612. GGML_ABORT("fatal error");
  4613. }
  4614. }
  4615. }
  4616. // ggml_compute_forward_sqrt
  4617. static void ggml_compute_forward_sqrt_f32(
  4618. const struct ggml_compute_params * params,
  4619. struct ggml_tensor * dst) {
  4620. const struct ggml_tensor * src0 = dst->src[0];
  4621. if (params->ith != 0) {
  4622. return;
  4623. }
  4624. assert(ggml_are_same_shape(src0, dst));
  4625. const int n = ggml_nrows(src0);
  4626. const int nc = src0->ne[0];
  4627. assert( dst->nb[0] == sizeof(float));
  4628. assert(src0->nb[0] == sizeof(float));
  4629. for (int i = 0; i < n; i++) {
  4630. ggml_vec_sqrt_f32(nc,
  4631. (float *) ((char *) dst->data + i*( dst->nb[1])),
  4632. (float *) ((char *) src0->data + i*(src0->nb[1])));
  4633. }
  4634. }
  4635. static void ggml_compute_forward_sqrt(
  4636. const struct ggml_compute_params * params,
  4637. struct ggml_tensor * dst) {
  4638. const struct ggml_tensor * src0 = dst->src[0];
  4639. switch (src0->type) {
  4640. case GGML_TYPE_F32:
  4641. {
  4642. ggml_compute_forward_sqrt_f32(params, dst);
  4643. } break;
  4644. default:
  4645. {
  4646. GGML_ABORT("fatal error");
  4647. }
  4648. }
  4649. }
  4650. // ggml_compute_forward_log
  4651. static void ggml_compute_forward_log_f32(
  4652. const struct ggml_compute_params * params,
  4653. struct ggml_tensor * dst) {
  4654. const struct ggml_tensor * src0 = dst->src[0];
  4655. if (params->ith != 0) {
  4656. return;
  4657. }
  4658. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  4659. const int n = ggml_nrows(src0);
  4660. const int nc = src0->ne[0];
  4661. GGML_ASSERT( dst->nb[0] == sizeof(float));
  4662. GGML_ASSERT(src0->nb[0] == sizeof(float));
  4663. for (int i = 0; i < n; i++) {
  4664. ggml_vec_log_f32(nc,
  4665. (float *) ((char *) dst->data + i*( dst->nb[1])),
  4666. (float *) ((char *) src0->data + i*(src0->nb[1])));
  4667. }
  4668. }
  4669. static void ggml_compute_forward_log(
  4670. const struct ggml_compute_params * params,
  4671. struct ggml_tensor * dst) {
  4672. const struct ggml_tensor * src0 = dst->src[0];
  4673. switch (src0->type) {
  4674. case GGML_TYPE_F32:
  4675. {
  4676. ggml_compute_forward_log_f32(params, dst);
  4677. } break;
  4678. default:
  4679. {
  4680. GGML_ABORT("fatal error");
  4681. }
  4682. }
  4683. }
  4684. // ggml_compute_forward_sin
  4685. static void ggml_compute_forward_sin_f32(
  4686. const struct ggml_compute_params * params,
  4687. struct ggml_tensor * dst) {
  4688. const struct ggml_tensor * src0 = dst->src[0];
  4689. if (params->ith != 0) {
  4690. return;
  4691. }
  4692. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  4693. const int n = ggml_nrows(src0);
  4694. const int nc = src0->ne[0];
  4695. GGML_ASSERT( dst->nb[0] == sizeof(float));
  4696. GGML_ASSERT(src0->nb[0] == sizeof(float));
  4697. for (int i = 0; i < n; i++) {
  4698. ggml_vec_sin_f32(nc,
  4699. (float *) ((char *) dst->data + i*( dst->nb[1])),
  4700. (float *) ((char *) src0->data + i*(src0->nb[1])));
  4701. }
  4702. }
  4703. static void ggml_compute_forward_sin(
  4704. const struct ggml_compute_params * params,
  4705. struct ggml_tensor * dst) {
  4706. const struct ggml_tensor * src0 = dst->src[0];
  4707. switch (src0->type) {
  4708. case GGML_TYPE_F32:
  4709. {
  4710. ggml_compute_forward_sin_f32(params, dst);
  4711. } break;
  4712. default:
  4713. {
  4714. GGML_ABORT("fatal error");
  4715. }
  4716. }
  4717. }
  4718. // ggml_compute_forward_cos
  4719. static void ggml_compute_forward_cos_f32(
  4720. const struct ggml_compute_params * params,
  4721. struct ggml_tensor * dst) {
  4722. const struct ggml_tensor * src0 = dst->src[0];
  4723. if (params->ith != 0) {
  4724. return;
  4725. }
  4726. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  4727. const int n = ggml_nrows(src0);
  4728. const int nc = src0->ne[0];
  4729. GGML_ASSERT( dst->nb[0] == sizeof(float));
  4730. GGML_ASSERT(src0->nb[0] == sizeof(float));
  4731. for (int i = 0; i < n; i++) {
  4732. ggml_vec_cos_f32(nc,
  4733. (float *) ((char *) dst->data + i*( dst->nb[1])),
  4734. (float *) ((char *) src0->data + i*(src0->nb[1])));
  4735. }
  4736. }
  4737. static void ggml_compute_forward_cos(
  4738. const struct ggml_compute_params * params,
  4739. struct ggml_tensor * dst) {
  4740. const struct ggml_tensor * src0 = dst->src[0];
  4741. switch (src0->type) {
  4742. case GGML_TYPE_F32:
  4743. {
  4744. ggml_compute_forward_cos_f32(params, dst);
  4745. } break;
  4746. default:
  4747. {
  4748. GGML_ABORT("fatal error");
  4749. }
  4750. }
  4751. }
  4752. // ggml_compute_forward_sum
  4753. static void ggml_compute_forward_sum_f32(
  4754. const struct ggml_compute_params * params,
  4755. struct ggml_tensor * dst) {
  4756. const struct ggml_tensor * src0 = dst->src[0];
  4757. if (params->ith != 0) {
  4758. return;
  4759. }
  4760. assert(ggml_is_scalar(dst));
  4761. assert(src0->nb[0] == sizeof(float));
  4762. GGML_TENSOR_LOCALS(int64_t, ne0, src0, ne)
  4763. GGML_TENSOR_LOCALS(size_t, nb0, src0, nb)
  4764. ggml_float sum = 0;
  4765. ggml_float row_sum = 0;
  4766. for (int64_t i03 = 0; i03 < ne03; i03++) {
  4767. for (int64_t i02 = 0; i02 < ne02; i02++) {
  4768. for (int64_t i01 = 0; i01 < ne01; i01++) {
  4769. ggml_vec_sum_f32_ggf(ne00,
  4770. &row_sum,
  4771. (float *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03));
  4772. sum += row_sum;
  4773. }
  4774. }
  4775. }
  4776. ((float *) dst->data)[0] = sum;
  4777. }
  4778. static void ggml_compute_forward_sum_f16(
  4779. const struct ggml_compute_params * params,
  4780. struct ggml_tensor * dst) {
  4781. const struct ggml_tensor * src0 = dst->src[0];
  4782. if (params->ith != 0) {
  4783. return;
  4784. }
  4785. assert(ggml_is_scalar(dst));
  4786. assert(src0->nb[0] == sizeof(ggml_fp16_t));
  4787. GGML_TENSOR_LOCALS(int64_t, ne0, src0, ne)
  4788. GGML_TENSOR_LOCALS(size_t, nb0, src0, nb)
  4789. float sum = 0;
  4790. float row_sum = 0;
  4791. for (int64_t i03 = 0; i03 < ne03; i03++) {
  4792. for (int64_t i02 = 0; i02 < ne02; i02++) {
  4793. for (int64_t i01 = 0; i01 < ne01; i01++) {
  4794. ggml_vec_sum_f16_ggf(ne00,
  4795. &row_sum,
  4796. (ggml_fp16_t *) ((char *) src0->data + i01 * nb01 + i02 * nb02 + i03 * nb03));
  4797. sum += row_sum;
  4798. }
  4799. }
  4800. }
  4801. ((ggml_fp16_t *) dst->data)[0] = GGML_FP32_TO_FP16(sum);
  4802. }
  4803. static void ggml_compute_forward_sum_bf16(
  4804. const struct ggml_compute_params * params,
  4805. struct ggml_tensor * dst) {
  4806. const struct ggml_tensor * src0 = dst->src[0];
  4807. if (params->ith != 0) {
  4808. return;
  4809. }
  4810. assert(ggml_is_scalar(dst));
  4811. assert(src0->nb[0] == sizeof(ggml_bf16_t));
  4812. GGML_TENSOR_LOCALS(int64_t, ne0, src0, ne)
  4813. GGML_TENSOR_LOCALS(size_t, nb0, src0, nb)
  4814. float sum = 0;
  4815. float row_sum = 0;
  4816. for (int64_t i03 = 0; i03 < ne03; i03++) {
  4817. for (int64_t i02 = 0; i02 < ne02; i02++) {
  4818. for (int64_t i01 = 0; i01 < ne01; i01++) {
  4819. ggml_vec_sum_bf16_ggf(ne00,
  4820. &row_sum,
  4821. (ggml_bf16_t *) ((char *) src0->data + i01 * nb01 + i02 * nb02 + i03 * nb03));
  4822. sum += row_sum;
  4823. }
  4824. }
  4825. }
  4826. ((ggml_bf16_t *) dst->data)[0] = GGML_FP32_TO_BF16(sum);
  4827. }
  4828. static void ggml_compute_forward_sum(
  4829. const struct ggml_compute_params * params,
  4830. struct ggml_tensor * dst) {
  4831. const struct ggml_tensor * src0 = dst->src[0];
  4832. switch (src0->type) {
  4833. case GGML_TYPE_F32:
  4834. {
  4835. ggml_compute_forward_sum_f32(params, dst);
  4836. } break;
  4837. case GGML_TYPE_F16:
  4838. {
  4839. ggml_compute_forward_sum_f16(params, dst);
  4840. } break;
  4841. case GGML_TYPE_BF16:
  4842. {
  4843. ggml_compute_forward_sum_bf16(params, dst);
  4844. } break;
  4845. default:
  4846. {
  4847. GGML_ABORT("fatal error");
  4848. }
  4849. }
  4850. }
  4851. // ggml_compute_forward_sum_rows
  4852. static void ggml_compute_forward_sum_rows_f32(
  4853. const struct ggml_compute_params * params,
  4854. struct ggml_tensor * dst) {
  4855. const struct ggml_tensor * src0 = dst->src[0];
  4856. if (params->ith != 0) {
  4857. return;
  4858. }
  4859. GGML_ASSERT(src0->nb[0] == sizeof(float));
  4860. GGML_ASSERT(dst->nb[0] == sizeof(float));
  4861. GGML_TENSOR_UNARY_OP_LOCALS
  4862. GGML_ASSERT(ne0 == 1);
  4863. GGML_ASSERT(ne1 == ne01);
  4864. GGML_ASSERT(ne2 == ne02);
  4865. GGML_ASSERT(ne3 == ne03);
  4866. for (int64_t i3 = 0; i3 < ne03; i3++) {
  4867. for (int64_t i2 = 0; i2 < ne02; i2++) {
  4868. for (int64_t i1 = 0; i1 < ne01; i1++) {
  4869. float * src_row = (float *) ((char *) src0->data + i1*nb01 + i2*nb02 + i3*nb03);
  4870. float * dst_row = (float *) ((char *) dst->data + i1*nb1 + i2*nb2 + i3*nb3);
  4871. float row_sum = 0;
  4872. ggml_vec_sum_f32(ne00, &row_sum, src_row);
  4873. dst_row[0] = row_sum;
  4874. }
  4875. }
  4876. }
  4877. }
  4878. static void ggml_compute_forward_sum_rows(
  4879. const struct ggml_compute_params * params,
  4880. struct ggml_tensor * dst) {
  4881. const struct ggml_tensor * src0 = dst->src[0];
  4882. switch (src0->type) {
  4883. case GGML_TYPE_F32:
  4884. {
  4885. ggml_compute_forward_sum_rows_f32(params, dst);
  4886. } break;
  4887. default:
  4888. {
  4889. GGML_ABORT("fatal error");
  4890. }
  4891. }
  4892. }
  4893. // ggml_compute_forward_mean
  4894. static void ggml_compute_forward_mean_f32(
  4895. const struct ggml_compute_params * params,
  4896. struct ggml_tensor * dst) {
  4897. const struct ggml_tensor * src0 = dst->src[0];
  4898. if (params->ith != 0) {
  4899. return;
  4900. }
  4901. assert(src0->nb[0] == sizeof(float));
  4902. GGML_TENSOR_UNARY_OP_LOCALS
  4903. assert(ne0 == 1);
  4904. assert(ne1 == ne01);
  4905. assert(ne2 == ne02);
  4906. assert(ne3 == ne03);
  4907. UNUSED(ne0);
  4908. UNUSED(ne1);
  4909. UNUSED(ne2);
  4910. UNUSED(ne3);
  4911. for (int64_t i03 = 0; i03 < ne03; i03++) {
  4912. for (int64_t i02 = 0; i02 < ne02; i02++) {
  4913. for (int64_t i01 = 0; i01 < ne01; i01++) {
  4914. ggml_vec_sum_f32(ne00,
  4915. (float *) ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3),
  4916. (float *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03));
  4917. *(float *) ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3) /= (float) ne00;
  4918. }
  4919. }
  4920. }
  4921. }
  4922. static void ggml_compute_forward_mean(
  4923. const struct ggml_compute_params * params,
  4924. struct ggml_tensor * dst) {
  4925. const struct ggml_tensor * src0 = dst->src[0];
  4926. switch (src0->type) {
  4927. case GGML_TYPE_F32:
  4928. {
  4929. ggml_compute_forward_mean_f32(params, dst);
  4930. } break;
  4931. default:
  4932. {
  4933. GGML_ABORT("fatal error");
  4934. }
  4935. }
  4936. }
  4937. // ggml_compute_forward_argmax
  4938. static void ggml_compute_forward_argmax_f32(
  4939. const struct ggml_compute_params * params,
  4940. struct ggml_tensor * dst) {
  4941. const struct ggml_tensor * src0 = dst->src[0];
  4942. if (params->ith != 0) {
  4943. return;
  4944. }
  4945. assert(src0->nb[0] == sizeof(float));
  4946. assert(dst->nb[0] == sizeof(float));
  4947. const int64_t ne00 = src0->ne[0];
  4948. const int64_t ne01 = src0->ne[1];
  4949. const size_t nb01 = src0->nb[1];
  4950. const size_t nb0 = dst->nb[0];
  4951. for (int64_t i1 = 0; i1 < ne01; i1++) {
  4952. float * src = (float *) ((char *) src0->data + i1*nb01);
  4953. int32_t * dst_ = (int32_t *) ((char *) dst->data + i1*nb0);
  4954. int v = 0;
  4955. ggml_vec_argmax_f32(ne00, &v, src);
  4956. dst_[0] = v;
  4957. }
  4958. }
  4959. static void ggml_compute_forward_argmax(
  4960. const struct ggml_compute_params * params,
  4961. struct ggml_tensor * dst) {
  4962. const struct ggml_tensor * src0 = dst->src[0];
  4963. switch (src0->type) {
  4964. case GGML_TYPE_F32:
  4965. {
  4966. ggml_compute_forward_argmax_f32(params, dst);
  4967. } break;
  4968. default:
  4969. {
  4970. GGML_ABORT("fatal error");
  4971. }
  4972. }
  4973. }
  4974. // ggml_compute_forward_count_equal
  4975. static void ggml_compute_forward_count_equal_i32(
  4976. const struct ggml_compute_params * params,
  4977. struct ggml_tensor * dst) {
  4978. const struct ggml_tensor * src0 = dst->src[0];
  4979. const struct ggml_tensor * src1 = dst->src[1];
  4980. GGML_TENSOR_BINARY_OP_LOCALS;
  4981. GGML_ASSERT(src0->type == GGML_TYPE_I32);
  4982. GGML_ASSERT(src1->type == GGML_TYPE_I32);
  4983. GGML_ASSERT(ggml_are_same_shape(src0, src1));
  4984. GGML_ASSERT(ggml_is_scalar(dst));
  4985. GGML_ASSERT(dst->type == GGML_TYPE_I64);
  4986. const int64_t nr = ggml_nrows(src0);
  4987. const int ith = params->ith;
  4988. const int nth = params->nth;
  4989. int64_t * sums = (int64_t *) params->wdata;
  4990. int64_t sum_thread = 0;
  4991. // rows per thread
  4992. const int64_t dr = (nr + nth - 1)/nth;
  4993. // row range for this thread
  4994. const int64_t ir0 = dr*ith;
  4995. const int64_t ir1 = MIN(ir0 + dr, nr);
  4996. for (int64_t ir = ir0; ir < ir1; ++ir) {
  4997. const int64_t i03 = ir / (ne02*ne01);
  4998. const int64_t i02 = (ir - i03*ne03) / ne01;
  4999. const int64_t i01 = ir - i03*ne03 - i02*ne02;
  5000. const char * data0 = (const char *) src0->data + i03*nb03 + i02*nb02 + i01*nb01;
  5001. const char * data1 = (const char *) src1->data + i03*nb13 + i02*nb12 + i01*nb11;
  5002. for (int64_t i00 = 0; i00 < ne00; ++i00) {
  5003. const int32_t val0 = *((const int32_t *) (data0 + i00*nb00));
  5004. const int32_t val1 = *((const int32_t *) (data1 + i00*nb10));
  5005. sum_thread += val0 == val1;
  5006. }
  5007. }
  5008. if (ith != 0) {
  5009. sums[ith] = sum_thread;
  5010. }
  5011. ggml_barrier(params->threadpool);
  5012. if (ith != 0) {
  5013. return;
  5014. }
  5015. for (int ith_other = 1; ith_other < nth; ++ith_other) {
  5016. sum_thread += sums[ith_other];
  5017. }
  5018. *((int64_t *) dst->data) = sum_thread;
  5019. }
  5020. static void ggml_compute_forward_count_equal(
  5021. const struct ggml_compute_params * params,
  5022. struct ggml_tensor * dst) {
  5023. const struct ggml_tensor * src0 = dst->src[0];
  5024. switch (src0->type) {
  5025. case GGML_TYPE_I32:
  5026. {
  5027. ggml_compute_forward_count_equal_i32(params, dst);
  5028. } break;
  5029. default:
  5030. {
  5031. GGML_ABORT("fatal error");
  5032. }
  5033. }
  5034. }
  5035. // ggml_compute_forward_repeat
  5036. static void ggml_compute_forward_repeat_f32(
  5037. const struct ggml_compute_params * params,
  5038. struct ggml_tensor * dst) {
  5039. const struct ggml_tensor * src0 = dst->src[0];
  5040. if (params->ith != 0) {
  5041. return;
  5042. }
  5043. GGML_ASSERT(ggml_can_repeat(src0, dst));
  5044. GGML_TENSOR_UNARY_OP_LOCALS
  5045. // guaranteed to be an integer due to the check in ggml_can_repeat
  5046. const int nr0 = (int)(ne0/ne00);
  5047. const int nr1 = (int)(ne1/ne01);
  5048. const int nr2 = (int)(ne2/ne02);
  5049. const int nr3 = (int)(ne3/ne03);
  5050. // TODO: support for transposed / permuted tensors
  5051. GGML_ASSERT(nb0 == sizeof(float));
  5052. GGML_ASSERT(nb00 == sizeof(float));
  5053. // TODO: maybe this is not optimal?
  5054. for (int i3 = 0; i3 < nr3; i3++) {
  5055. for (int k3 = 0; k3 < ne03; k3++) {
  5056. for (int i2 = 0; i2 < nr2; i2++) {
  5057. for (int k2 = 0; k2 < ne02; k2++) {
  5058. for (int i1 = 0; i1 < nr1; i1++) {
  5059. for (int k1 = 0; k1 < ne01; k1++) {
  5060. for (int i0 = 0; i0 < nr0; i0++) {
  5061. ggml_vec_cpy_f32(ne00,
  5062. (float *) ((char *) dst->data + (i3*ne03 + k3)*nb3 + (i2*ne02 + k2)*nb2 + (i1*ne01 + k1)*nb1 + (i0*ne00)*nb0),
  5063. (float *) ((char *) src0->data + ( k3)*nb03 + ( k2)*nb02 + ( k1)*nb01));
  5064. }
  5065. }
  5066. }
  5067. }
  5068. }
  5069. }
  5070. }
  5071. }
  5072. static void ggml_compute_forward_repeat_f16(
  5073. const struct ggml_compute_params * params,
  5074. struct ggml_tensor * dst) {
  5075. const struct ggml_tensor * src0 = dst->src[0];
  5076. if (params->ith != 0) {
  5077. return;
  5078. }
  5079. GGML_ASSERT(ggml_can_repeat(src0, dst));
  5080. GGML_TENSOR_UNARY_OP_LOCALS
  5081. // guaranteed to be an integer due to the check in ggml_can_repeat
  5082. const int nr0 = (int)(ne0/ne00);
  5083. const int nr1 = (int)(ne1/ne01);
  5084. const int nr2 = (int)(ne2/ne02);
  5085. const int nr3 = (int)(ne3/ne03);
  5086. // TODO: support for transposed / permuted tensors
  5087. GGML_ASSERT(nb0 == sizeof(ggml_fp16_t));
  5088. GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
  5089. // TODO: maybe this is not optimal?
  5090. for (int i3 = 0; i3 < nr3; i3++) {
  5091. for (int k3 = 0; k3 < ne03; k3++) {
  5092. for (int i2 = 0; i2 < nr2; i2++) {
  5093. for (int k2 = 0; k2 < ne02; k2++) {
  5094. for (int i1 = 0; i1 < nr1; i1++) {
  5095. for (int k1 = 0; k1 < ne01; k1++) {
  5096. for (int i0 = 0; i0 < nr0; i0++) {
  5097. ggml_fp16_t * y = (ggml_fp16_t *) ((char *) dst->data + (i3*ne03 + k3)*nb3 + (i2*ne02 + k2)*nb2 + (i1*ne01 + k1)*nb1 + (i0*ne00)*nb0);
  5098. ggml_fp16_t * x = (ggml_fp16_t *) ((char *) src0->data + ( k3)*nb03 + ( k2)*nb02 + ( k1)*nb01);
  5099. // ggml_vec_cpy_f16(ne00, y, x)
  5100. for (int i = 0; i < ne00; ++i) {
  5101. y[i] = x[i];
  5102. }
  5103. }
  5104. }
  5105. }
  5106. }
  5107. }
  5108. }
  5109. }
  5110. }
  5111. static void ggml_compute_forward_repeat(
  5112. const struct ggml_compute_params * params,
  5113. struct ggml_tensor * dst) {
  5114. const struct ggml_tensor * src0 = dst->src[0];
  5115. switch (src0->type) {
  5116. case GGML_TYPE_F16:
  5117. case GGML_TYPE_BF16:
  5118. case GGML_TYPE_I16:
  5119. {
  5120. ggml_compute_forward_repeat_f16(params, dst);
  5121. } break;
  5122. case GGML_TYPE_F32:
  5123. case GGML_TYPE_I32:
  5124. {
  5125. ggml_compute_forward_repeat_f32(params, dst);
  5126. } break;
  5127. default:
  5128. {
  5129. GGML_ABORT("fatal error");
  5130. }
  5131. }
  5132. }
  5133. // ggml_compute_forward_repeat_back
  5134. static void ggml_compute_forward_repeat_back_f32(
  5135. const struct ggml_compute_params * params,
  5136. struct ggml_tensor * dst) {
  5137. const struct ggml_tensor * src0 = dst->src[0];
  5138. if (params->ith != 0) {
  5139. return;
  5140. }
  5141. GGML_ASSERT(ggml_can_repeat(dst, src0));
  5142. GGML_TENSOR_UNARY_OP_LOCALS
  5143. // guaranteed to be an integer due to the check in ggml_can_repeat
  5144. const int nr0 = (int)(ne00/ne0);
  5145. const int nr1 = (int)(ne01/ne1);
  5146. const int nr2 = (int)(ne02/ne2);
  5147. const int nr3 = (int)(ne03/ne3);
  5148. // TODO: support for transposed / permuted tensors
  5149. GGML_ASSERT(nb0 == sizeof(float));
  5150. GGML_ASSERT(nb00 == sizeof(float));
  5151. if (ggml_is_contiguous(dst)) {
  5152. ggml_vec_set_f32(ne0*ne1*ne2*ne3, dst->data, 0);
  5153. } else {
  5154. for (int k3 = 0; k3 < ne3; k3++) {
  5155. for (int k2 = 0; k2 < ne2; k2++) {
  5156. for (int k1 = 0; k1 < ne1; k1++) {
  5157. ggml_vec_set_f32(ne0,
  5158. (float *) ((char *) dst->data + k1*nb1 + k2*nb2 + k3*nb3),
  5159. 0);
  5160. }
  5161. }
  5162. }
  5163. }
  5164. // TODO: maybe this is not optimal?
  5165. for (int i3 = 0; i3 < nr3; i3++) {
  5166. for (int k3 = 0; k3 < ne3; k3++) {
  5167. for (int i2 = 0; i2 < nr2; i2++) {
  5168. for (int k2 = 0; k2 < ne2; k2++) {
  5169. for (int i1 = 0; i1 < nr1; i1++) {
  5170. for (int k1 = 0; k1 < ne1; k1++) {
  5171. for (int i0 = 0; i0 < nr0; i0++) {
  5172. ggml_vec_acc_f32(ne0,
  5173. (float *) ((char *) dst->data + ( k3)*nb3 + ( k2)*nb2 + ( k1)*nb1),
  5174. (float *) ((char *) src0->data + (i3*ne3 + k3)*nb03 + (i2*ne2 + k2)*nb02 + (i1*ne1 + k1)*nb01 + (i0*ne0)*nb00));
  5175. }
  5176. }
  5177. }
  5178. }
  5179. }
  5180. }
  5181. }
  5182. }
  5183. static void ggml_compute_forward_repeat_back(
  5184. const struct ggml_compute_params * params,
  5185. struct ggml_tensor * dst) {
  5186. const struct ggml_tensor * src0 = dst->src[0];
  5187. switch (src0->type) {
  5188. case GGML_TYPE_F32:
  5189. {
  5190. ggml_compute_forward_repeat_back_f32(params, dst);
  5191. } break;
  5192. default:
  5193. {
  5194. GGML_ABORT("fatal error");
  5195. }
  5196. }
  5197. }
  5198. // ggml_compute_forward_concat
  5199. static void ggml_compute_forward_concat_f32(
  5200. const struct ggml_compute_params * params,
  5201. struct ggml_tensor * dst) {
  5202. const struct ggml_tensor * src0 = dst->src[0];
  5203. const struct ggml_tensor * src1 = dst->src[1];
  5204. GGML_ASSERT(src0->nb[0] == sizeof(float));
  5205. const int ith = params->ith;
  5206. const int nth = params->nth;
  5207. GGML_TENSOR_BINARY_OP_LOCALS
  5208. const int32_t dim = ggml_get_op_params_i32(dst, 0);
  5209. GGML_ASSERT(dim >= 0 && dim < 4);
  5210. int64_t o[4] = {0, 0, 0, 0};
  5211. o[dim] = src0->ne[dim];
  5212. const float * x;
  5213. // TODO: smarter multi-theading
  5214. for (int i3 = 0; i3 < ne3; i3++) {
  5215. for (int i2 = ith; i2 < ne2; i2 += nth) {
  5216. for (int i1 = 0; i1 < ne1; i1++) {
  5217. for (int i0 = 0; i0 < ne0; i0++) {
  5218. if (i0 < ne00 && i1 < ne01 && i2 < ne02 && i3 < ne03) {
  5219. x = (const float *) ((const char *)src0->data + (i0 )*nb00 + (i1 )*nb01 + (i2 )*nb02 + (i3 )*nb03);
  5220. } else {
  5221. x = (const float *) ((const char *)src1->data + (i0 - o[0])*nb10 + (i1 - o[1])*nb11 + (i2 - o[2])*nb12 + (i3 - o[3])*nb13);
  5222. }
  5223. float * y = (float *)((char *)dst->data + i0*nb0 + i1*nb1 + i2*nb2 + i3*nb3);
  5224. *y = *x;
  5225. }
  5226. }
  5227. }
  5228. }
  5229. }
  5230. static void ggml_compute_forward_concat(
  5231. const struct ggml_compute_params * params,
  5232. struct ggml_tensor * dst) {
  5233. const struct ggml_tensor * src0 = dst->src[0];
  5234. switch (src0->type) {
  5235. case GGML_TYPE_F32:
  5236. case GGML_TYPE_I32:
  5237. {
  5238. ggml_compute_forward_concat_f32(params, dst);
  5239. } break;
  5240. default:
  5241. {
  5242. GGML_ABORT("fatal error");
  5243. }
  5244. }
  5245. }
  5246. // ggml_compute_forward_abs
  5247. static void ggml_compute_forward_abs_f32(
  5248. const struct ggml_compute_params * params,
  5249. struct ggml_tensor * dst) {
  5250. const struct ggml_tensor * src0 = dst->src[0];
  5251. if (params->ith != 0) {
  5252. return;
  5253. }
  5254. assert(ggml_is_contiguous_1(src0));
  5255. assert(ggml_is_contiguous_1(dst));
  5256. assert(ggml_are_same_shape(src0, dst));
  5257. const int n = ggml_nrows(src0);
  5258. const int nc = src0->ne[0];
  5259. for (int i = 0; i < n; i++) {
  5260. ggml_vec_abs_f32(nc,
  5261. (float *) ((char *) dst->data + i*( dst->nb[1])),
  5262. (float *) ((char *) src0->data + i*(src0->nb[1])));
  5263. }
  5264. }
  5265. static void ggml_compute_forward_abs(
  5266. const struct ggml_compute_params * params,
  5267. struct ggml_tensor * dst) {
  5268. const struct ggml_tensor * src0 = dst->src[0];
  5269. switch (src0->type) {
  5270. case GGML_TYPE_F32:
  5271. {
  5272. ggml_compute_forward_abs_f32(params, dst);
  5273. } break;
  5274. default:
  5275. {
  5276. GGML_ABORT("fatal error");
  5277. }
  5278. }
  5279. }
  5280. // ggml_compute_forward_sgn
  5281. static void ggml_compute_forward_sgn_f32(
  5282. const struct ggml_compute_params * params,
  5283. struct ggml_tensor * dst) {
  5284. const struct ggml_tensor * src0 = dst->src[0];
  5285. if (params->ith != 0) {
  5286. return;
  5287. }
  5288. assert(ggml_is_contiguous_1(src0));
  5289. assert(ggml_is_contiguous_1(dst));
  5290. assert(ggml_are_same_shape(src0, dst));
  5291. const int n = ggml_nrows(src0);
  5292. const int nc = src0->ne[0];
  5293. for (int i = 0; i < n; i++) {
  5294. ggml_vec_sgn_f32(nc,
  5295. (float *) ((char *) dst->data + i*( dst->nb[1])),
  5296. (float *) ((char *) src0->data + i*(src0->nb[1])));
  5297. }
  5298. }
  5299. static void ggml_compute_forward_sgn(
  5300. const struct ggml_compute_params * params,
  5301. struct ggml_tensor * dst) {
  5302. const struct ggml_tensor * src0 = dst->src[0];
  5303. switch (src0->type) {
  5304. case GGML_TYPE_F32:
  5305. {
  5306. ggml_compute_forward_sgn_f32(params, dst);
  5307. } break;
  5308. default:
  5309. {
  5310. GGML_ABORT("fatal error");
  5311. }
  5312. }
  5313. }
  5314. // ggml_compute_forward_neg
  5315. static void ggml_compute_forward_neg_f32(
  5316. const struct ggml_compute_params * params,
  5317. struct ggml_tensor * dst) {
  5318. const struct ggml_tensor * src0 = dst->src[0];
  5319. if (params->ith != 0) {
  5320. return;
  5321. }
  5322. assert(ggml_is_contiguous_1(src0));
  5323. assert(ggml_is_contiguous_1(dst));
  5324. assert(ggml_are_same_shape(src0, dst));
  5325. const int n = ggml_nrows(src0);
  5326. const int nc = src0->ne[0];
  5327. for (int i = 0; i < n; i++) {
  5328. ggml_vec_neg_f32(nc,
  5329. (float *) ((char *) dst->data + i*( dst->nb[1])),
  5330. (float *) ((char *) src0->data + i*(src0->nb[1])));
  5331. }
  5332. }
  5333. static void ggml_compute_forward_neg(
  5334. const struct ggml_compute_params * params,
  5335. struct ggml_tensor * dst) {
  5336. const struct ggml_tensor * src0 = dst->src[0];
  5337. switch (src0->type) {
  5338. case GGML_TYPE_F32:
  5339. {
  5340. ggml_compute_forward_neg_f32(params, dst);
  5341. } break;
  5342. default:
  5343. {
  5344. GGML_ABORT("fatal error");
  5345. }
  5346. }
  5347. }
  5348. // ggml_compute_forward_step
  5349. static void ggml_compute_forward_step_f32(
  5350. const struct ggml_compute_params * params,
  5351. struct ggml_tensor * dst) {
  5352. const struct ggml_tensor * src0 = dst->src[0];
  5353. if (params->ith != 0) {
  5354. return;
  5355. }
  5356. assert(ggml_is_contiguous_1(src0));
  5357. assert(ggml_is_contiguous_1(dst));
  5358. assert(ggml_are_same_shape(src0, dst));
  5359. const int n = ggml_nrows(src0);
  5360. const int nc = src0->ne[0];
  5361. for (int i = 0; i < n; i++) {
  5362. ggml_vec_step_f32(nc,
  5363. (float *) ((char *) dst->data + i*( dst->nb[1])),
  5364. (float *) ((char *) src0->data + i*(src0->nb[1])));
  5365. }
  5366. }
  5367. static void ggml_compute_forward_step(
  5368. const struct ggml_compute_params * params,
  5369. struct ggml_tensor * dst) {
  5370. const struct ggml_tensor * src0 = dst->src[0];
  5371. switch (src0->type) {
  5372. case GGML_TYPE_F32:
  5373. {
  5374. ggml_compute_forward_step_f32(params, dst);
  5375. } break;
  5376. default:
  5377. {
  5378. GGML_ABORT("fatal error");
  5379. }
  5380. }
  5381. }
  5382. // ggml_compute_forward_tanh
  5383. static void ggml_compute_forward_tanh_f32(
  5384. const struct ggml_compute_params * params,
  5385. struct ggml_tensor * dst) {
  5386. const struct ggml_tensor * src0 = dst->src[0];
  5387. if (params->ith != 0) {
  5388. return;
  5389. }
  5390. assert(ggml_is_contiguous_1(src0));
  5391. assert(ggml_is_contiguous_1(dst));
  5392. assert(ggml_are_same_shape(src0, dst));
  5393. const int n = ggml_nrows(src0);
  5394. const int nc = src0->ne[0];
  5395. for (int i = 0; i < n; i++) {
  5396. ggml_vec_tanh_f32(nc,
  5397. (float *) ((char *) dst->data + i*( dst->nb[1])),
  5398. (float *) ((char *) src0->data + i*(src0->nb[1])));
  5399. }
  5400. }
  5401. static void ggml_compute_forward_tanh(
  5402. const struct ggml_compute_params * params,
  5403. struct ggml_tensor * dst) {
  5404. const struct ggml_tensor * src0 = dst->src[0];
  5405. switch (src0->type) {
  5406. case GGML_TYPE_F32:
  5407. {
  5408. ggml_compute_forward_tanh_f32(params, dst);
  5409. } break;
  5410. default:
  5411. {
  5412. GGML_ABORT("fatal error");
  5413. }
  5414. }
  5415. }
  5416. // ggml_compute_forward_elu
  5417. static void ggml_compute_forward_elu_f32(
  5418. const struct ggml_compute_params * params,
  5419. struct ggml_tensor * dst) {
  5420. const struct ggml_tensor * src0 = dst->src[0];
  5421. if (params->ith != 0) {
  5422. return;
  5423. }
  5424. assert(ggml_is_contiguous_1(src0));
  5425. assert(ggml_is_contiguous_1(dst));
  5426. assert(ggml_are_same_shape(src0, dst));
  5427. const int n = ggml_nrows(src0);
  5428. const int nc = src0->ne[0];
  5429. for (int i = 0; i < n; i++) {
  5430. ggml_vec_elu_f32(nc,
  5431. (float *) ((char *) dst->data + i*( dst->nb[1])),
  5432. (float *) ((char *) src0->data + i*(src0->nb[1])));
  5433. }
  5434. }
  5435. static void ggml_compute_forward_elu(
  5436. const struct ggml_compute_params * params,
  5437. struct ggml_tensor * dst) {
  5438. const struct ggml_tensor * src0 = dst->src[0];
  5439. switch (src0->type) {
  5440. case GGML_TYPE_F32:
  5441. {
  5442. ggml_compute_forward_elu_f32(params, dst);
  5443. } break;
  5444. default:
  5445. {
  5446. GGML_ABORT("fatal error");
  5447. }
  5448. }
  5449. }
  5450. // ggml_compute_forward_relu
  5451. static void ggml_compute_forward_relu_f32(
  5452. const struct ggml_compute_params * params,
  5453. struct ggml_tensor * dst) {
  5454. const struct ggml_tensor * src0 = dst->src[0];
  5455. if (params->ith != 0) {
  5456. return;
  5457. }
  5458. assert(ggml_is_contiguous_1(src0));
  5459. assert(ggml_is_contiguous_1(dst));
  5460. assert(ggml_are_same_shape(src0, dst));
  5461. const int n = ggml_nrows(src0);
  5462. const int nc = src0->ne[0];
  5463. for (int i = 0; i < n; i++) {
  5464. ggml_vec_relu_f32(nc,
  5465. (float *) ((char *) dst->data + i*( dst->nb[1])),
  5466. (float *) ((char *) src0->data + i*(src0->nb[1])));
  5467. }
  5468. }
  5469. static void ggml_compute_forward_relu(
  5470. const struct ggml_compute_params * params,
  5471. struct ggml_tensor * dst) {
  5472. const struct ggml_tensor * src0 = dst->src[0];
  5473. switch (src0->type) {
  5474. case GGML_TYPE_F32:
  5475. {
  5476. ggml_compute_forward_relu_f32(params, dst);
  5477. } break;
  5478. default:
  5479. {
  5480. GGML_ABORT("fatal error");
  5481. }
  5482. }
  5483. }
  5484. // ggml_compute_forward_sigmoid
  5485. static void ggml_compute_forward_sigmoid_f32(
  5486. const struct ggml_compute_params * params,
  5487. struct ggml_tensor * dst) {
  5488. const struct ggml_tensor * src0 = dst->src[0];
  5489. if (params->ith != 0) {
  5490. return;
  5491. }
  5492. assert(ggml_is_contiguous_1(src0));
  5493. assert(ggml_is_contiguous_1(dst));
  5494. assert(ggml_are_same_shape(src0, dst));
  5495. const int n = ggml_nrows(src0);
  5496. const int nc = src0->ne[0];
  5497. for (int i = 0; i < n; i++) {
  5498. ggml_vec_sigmoid_f32(nc,
  5499. (float *) ((char *) dst->data + i*( dst->nb[1])),
  5500. (float *) ((char *) src0->data + i*(src0->nb[1])));
  5501. }
  5502. }
  5503. static void ggml_compute_forward_sigmoid(
  5504. const struct ggml_compute_params * params,
  5505. struct ggml_tensor * dst) {
  5506. const struct ggml_tensor * src0 = dst->src[0];
  5507. switch (src0->type) {
  5508. case GGML_TYPE_F32:
  5509. {
  5510. ggml_compute_forward_sigmoid_f32(params, dst);
  5511. } break;
  5512. default:
  5513. {
  5514. GGML_ABORT("fatal error");
  5515. }
  5516. }
  5517. }
  5518. // ggml_compute_forward_gelu
  5519. static void ggml_compute_forward_gelu_f32(
  5520. const struct ggml_compute_params * params,
  5521. struct ggml_tensor * dst) {
  5522. const struct ggml_tensor * src0 = dst->src[0];
  5523. assert(ggml_is_contiguous_1(src0));
  5524. assert(ggml_is_contiguous_1(dst));
  5525. assert(ggml_are_same_shape(src0, dst));
  5526. const int ith = params->ith;
  5527. const int nth = params->nth;
  5528. const int nc = src0->ne[0];
  5529. const int nr = ggml_nrows(src0);
  5530. // rows per thread
  5531. const int dr = (nr + nth - 1)/nth;
  5532. // row range for this thread
  5533. const int ir0 = dr*ith;
  5534. const int ir1 = MIN(ir0 + dr, nr);
  5535. for (int i1 = ir0; i1 < ir1; i1++) {
  5536. ggml_vec_gelu_f32(nc,
  5537. (float *) ((char *) dst->data + i1*( dst->nb[1])),
  5538. (float *) ((char *) src0->data + i1*(src0->nb[1])));
  5539. #ifndef NDEBUG
  5540. for (int k = 0; k < nc; k++) {
  5541. const float x = ((float *) ((char *) dst->data + i1*( dst->nb[1])))[k];
  5542. UNUSED(x);
  5543. assert(!isnan(x));
  5544. assert(!isinf(x));
  5545. }
  5546. #endif
  5547. }
  5548. }
  5549. static void ggml_compute_forward_gelu(
  5550. const struct ggml_compute_params * params,
  5551. struct ggml_tensor * dst) {
  5552. const struct ggml_tensor * src0 = dst->src[0];
  5553. switch (src0->type) {
  5554. case GGML_TYPE_F32:
  5555. {
  5556. ggml_compute_forward_gelu_f32(params, dst);
  5557. } break;
  5558. default:
  5559. {
  5560. GGML_ABORT("fatal error");
  5561. }
  5562. }
  5563. }
  5564. // ggml_compute_forward_gelu_quick
  5565. static void ggml_compute_forward_gelu_quick_f32(
  5566. const struct ggml_compute_params * params,
  5567. struct ggml_tensor * dst) {
  5568. const struct ggml_tensor * src0 = dst->src[0];
  5569. assert(ggml_is_contiguous_1(src0));
  5570. assert(ggml_is_contiguous_1(dst));
  5571. assert(ggml_are_same_shape(src0, dst));
  5572. const int ith = params->ith;
  5573. const int nth = params->nth;
  5574. const int nc = src0->ne[0];
  5575. const int nr = ggml_nrows(src0);
  5576. // rows per thread
  5577. const int dr = (nr + nth - 1)/nth;
  5578. // row range for this thread
  5579. const int ir0 = dr*ith;
  5580. const int ir1 = MIN(ir0 + dr, nr);
  5581. for (int i1 = ir0; i1 < ir1; i1++) {
  5582. ggml_vec_gelu_quick_f32(nc,
  5583. (float *) ((char *) dst->data + i1*( dst->nb[1])),
  5584. (float *) ((char *) src0->data + i1*(src0->nb[1])));
  5585. #ifndef NDEBUG
  5586. for (int k = 0; k < nc; k++) {
  5587. const float x = ((float *) ((char *) dst->data + i1*( dst->nb[1])))[k];
  5588. UNUSED(x);
  5589. assert(!isnan(x));
  5590. assert(!isinf(x));
  5591. }
  5592. #endif
  5593. }
  5594. }
  5595. static void ggml_compute_forward_gelu_quick(
  5596. const struct ggml_compute_params * params,
  5597. struct ggml_tensor * dst) {
  5598. const struct ggml_tensor * src0 = dst->src[0];
  5599. switch (src0->type) {
  5600. case GGML_TYPE_F32:
  5601. {
  5602. ggml_compute_forward_gelu_quick_f32(params, dst);
  5603. } break;
  5604. default:
  5605. {
  5606. GGML_ABORT("fatal error");
  5607. }
  5608. }
  5609. }
  5610. // ggml_compute_forward_silu
  5611. static void ggml_compute_forward_silu_f32(
  5612. const struct ggml_compute_params * params,
  5613. struct ggml_tensor * dst) {
  5614. const struct ggml_tensor * src0 = dst->src[0];
  5615. assert(ggml_is_contiguous_1(src0));
  5616. assert(ggml_is_contiguous_1(dst));
  5617. assert(ggml_are_same_shape(src0, dst));
  5618. const int ith = params->ith;
  5619. const int nth = params->nth;
  5620. const int nc = src0->ne[0];
  5621. const int nr = ggml_nrows(src0);
  5622. // rows per thread
  5623. const int dr = (nr + nth - 1)/nth;
  5624. // row range for this thread
  5625. const int ir0 = dr*ith;
  5626. const int ir1 = MIN(ir0 + dr, nr);
  5627. for (int i1 = ir0; i1 < ir1; i1++) {
  5628. ggml_vec_silu_f32(nc,
  5629. (float *) ((char *) dst->data + i1*( dst->nb[1])),
  5630. (float *) ((char *) src0->data + i1*(src0->nb[1])));
  5631. #ifndef NDEBUG
  5632. for (int k = 0; k < nc; k++) {
  5633. const float x = ((float *) ((char *) dst->data + i1*(dst->nb[1])))[k];
  5634. UNUSED(x);
  5635. assert(!isnan(x));
  5636. assert(!isinf(x));
  5637. }
  5638. #endif
  5639. }
  5640. }
  5641. static void ggml_compute_forward_silu(
  5642. const struct ggml_compute_params * params,
  5643. struct ggml_tensor * dst) {
  5644. const struct ggml_tensor * src0 = dst->src[0];
  5645. switch (src0->type) {
  5646. case GGML_TYPE_F32:
  5647. {
  5648. ggml_compute_forward_silu_f32(params, dst);
  5649. } break;
  5650. default:
  5651. {
  5652. GGML_ABORT("fatal error");
  5653. }
  5654. }
  5655. }
  5656. // ggml_compute_forward_leaky_relu
  5657. static void ggml_compute_forward_leaky_relu_f32(
  5658. const struct ggml_compute_params * params,
  5659. struct ggml_tensor * dst) {
  5660. const struct ggml_tensor * src0 = dst->src[0];
  5661. if (params->ith != 0) {
  5662. return;
  5663. }
  5664. assert(ggml_is_contiguous_1(src0));
  5665. assert(ggml_is_contiguous_1(dst));
  5666. assert(ggml_are_same_shape(src0, dst));
  5667. const int n = ggml_nrows(src0);
  5668. const int nc = src0->ne[0];
  5669. float negative_slope;
  5670. memcpy(&negative_slope, dst->op_params, sizeof(float));
  5671. assert(dst->nb[0] == sizeof(float));
  5672. assert(src0->nb[0] == sizeof(float));
  5673. for (int i = 0; i < n; i++) {
  5674. ggml_vec_leaky_relu_f32(nc,
  5675. (float *) ((char *) dst->data + i*( dst->nb[1])),
  5676. (float *) ((char *) src0->data + i*(src0->nb[1])), negative_slope);
  5677. }
  5678. }
  5679. static void ggml_compute_forward_leaky_relu(
  5680. const struct ggml_compute_params * params,
  5681. struct ggml_tensor * dst) {
  5682. const struct ggml_tensor * src0 = dst->src[0];
  5683. switch (src0->type) {
  5684. case GGML_TYPE_F32:
  5685. {
  5686. ggml_compute_forward_leaky_relu_f32(params, dst);
  5687. } break;
  5688. default:
  5689. {
  5690. GGML_ABORT("fatal error");
  5691. }
  5692. }
  5693. }
  5694. // ggml_compute_forward_silu_back
  5695. static void ggml_compute_forward_silu_back_f32(
  5696. const struct ggml_compute_params * params,
  5697. struct ggml_tensor * dst) {
  5698. const struct ggml_tensor * src0 = dst->src[0];
  5699. const struct ggml_tensor * grad = dst->src[1];
  5700. assert(ggml_is_contiguous_1(grad));
  5701. assert(ggml_is_contiguous_1(src0));
  5702. assert(ggml_is_contiguous_1(dst));
  5703. assert(ggml_are_same_shape(src0, dst));
  5704. assert(ggml_are_same_shape(src0, grad));
  5705. const int ith = params->ith;
  5706. const int nth = params->nth;
  5707. const int nc = src0->ne[0];
  5708. const int nr = ggml_nrows(src0);
  5709. // rows per thread
  5710. const int dr = (nr + nth - 1)/nth;
  5711. // row range for this thread
  5712. const int ir0 = dr*ith;
  5713. const int ir1 = MIN(ir0 + dr, nr);
  5714. for (int i1 = ir0; i1 < ir1; i1++) {
  5715. ggml_vec_silu_backward_f32(nc,
  5716. (float *) ((char *) dst->data + i1*( dst->nb[1])),
  5717. (float *) ((char *) src0->data + i1*(src0->nb[1])),
  5718. (float *) ((char *) grad->data + i1*(grad->nb[1])));
  5719. #ifndef NDEBUG
  5720. for (int k = 0; k < nc; k++) {
  5721. const float x = ((float *) ((char *) dst->data + i1*( dst->nb[1])))[k];
  5722. UNUSED(x);
  5723. assert(!isnan(x));
  5724. assert(!isinf(x));
  5725. }
  5726. #endif
  5727. }
  5728. }
  5729. static void ggml_compute_forward_silu_back(
  5730. const struct ggml_compute_params * params,
  5731. struct ggml_tensor * dst) {
  5732. const struct ggml_tensor * src0 = dst->src[0];
  5733. switch (src0->type) {
  5734. case GGML_TYPE_F32:
  5735. {
  5736. ggml_compute_forward_silu_back_f32(params, dst);
  5737. } break;
  5738. default:
  5739. {
  5740. GGML_ABORT("fatal error");
  5741. }
  5742. }
  5743. }
  5744. static void ggml_compute_forward_hardswish_f32(
  5745. const struct ggml_compute_params * params,
  5746. struct ggml_tensor * dst) {
  5747. const struct ggml_tensor * src0 = dst->src[0];
  5748. if (params->ith != 0) {
  5749. return;
  5750. }
  5751. assert(ggml_is_contiguous_1(src0));
  5752. assert(ggml_is_contiguous_1(dst));
  5753. assert(ggml_are_same_shape(src0, dst));
  5754. const int n = ggml_nrows(src0);
  5755. const int nc = src0->ne[0];
  5756. for (int i = 0; i < n; i++) {
  5757. ggml_vec_hardswish_f32(nc,
  5758. (float *) ((char *) dst->data + i*( dst->nb[1])),
  5759. (float *) ((char *) src0->data + i*(src0->nb[1])));
  5760. }
  5761. }
  5762. static void ggml_compute_forward_hardswish(
  5763. const struct ggml_compute_params * params,
  5764. struct ggml_tensor * dst) {
  5765. const struct ggml_tensor * src0 = dst->src[0];
  5766. switch (src0->type) {
  5767. case GGML_TYPE_F32:
  5768. {
  5769. ggml_compute_forward_hardswish_f32(params, dst);
  5770. } break;
  5771. default:
  5772. {
  5773. GGML_ABORT("fatal error");
  5774. }
  5775. }
  5776. }
  5777. static void ggml_compute_forward_hardsigmoid_f32(
  5778. const struct ggml_compute_params * params,
  5779. struct ggml_tensor * dst) {
  5780. const struct ggml_tensor * src0 = dst->src[0];
  5781. if (params->ith != 0) {
  5782. return;
  5783. }
  5784. assert(ggml_is_contiguous_1(src0));
  5785. assert(ggml_is_contiguous_1(dst));
  5786. assert(ggml_are_same_shape(src0, dst));
  5787. const int n = ggml_nrows(src0);
  5788. const int nc = src0->ne[0];
  5789. for (int i = 0; i < n; i++) {
  5790. ggml_vec_hardsigmoid_f32(nc,
  5791. (float *) ((char *) dst->data + i*( dst->nb[1])),
  5792. (float *) ((char *) src0->data + i*(src0->nb[1])));
  5793. }
  5794. }
  5795. static void ggml_compute_forward_hardsigmoid(
  5796. const struct ggml_compute_params * params,
  5797. struct ggml_tensor * dst) {
  5798. const struct ggml_tensor * src0 = dst->src[0];
  5799. switch (src0->type) {
  5800. case GGML_TYPE_F32:
  5801. {
  5802. ggml_compute_forward_hardsigmoid_f32(params, dst);
  5803. } break;
  5804. default:
  5805. {
  5806. GGML_ABORT("fatal error");
  5807. }
  5808. }
  5809. }
  5810. static void ggml_compute_forward_exp_f32(
  5811. const struct ggml_compute_params * params,
  5812. struct ggml_tensor * dst) {
  5813. const struct ggml_tensor * src0 = dst->src[0];
  5814. if (params->ith != 0) {
  5815. return;
  5816. }
  5817. assert(ggml_is_contiguous_1(src0));
  5818. assert(ggml_is_contiguous_1(dst));
  5819. assert(ggml_are_same_shape(src0, dst));
  5820. const int n = ggml_nrows(src0);
  5821. const int nc = src0->ne[0];
  5822. for (int i = 0; i < n; i++) {
  5823. ggml_vec_exp_f32(nc,
  5824. (float *) ((char *) dst->data + i*( dst->nb[1])),
  5825. (float *) ((char *) src0->data + i*(src0->nb[1])));
  5826. }
  5827. }
  5828. static void ggml_compute_forward_exp(
  5829. const struct ggml_compute_params * params,
  5830. struct ggml_tensor * dst) {
  5831. const struct ggml_tensor * src0 = dst->src[0];
  5832. switch (src0->type) {
  5833. case GGML_TYPE_F32:
  5834. {
  5835. ggml_compute_forward_exp_f32(params, dst);
  5836. } break;
  5837. default:
  5838. {
  5839. GGML_ABORT("fatal error");
  5840. }
  5841. }
  5842. }
  5843. // ggml_compute_forward_norm
  5844. static void ggml_compute_forward_norm_f32(
  5845. const struct ggml_compute_params * params,
  5846. struct ggml_tensor * dst) {
  5847. const struct ggml_tensor * src0 = dst->src[0];
  5848. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  5849. GGML_ASSERT(src0->nb[0] == sizeof(float));
  5850. const int ith = params->ith;
  5851. const int nth = params->nth;
  5852. GGML_TENSOR_UNARY_OP_LOCALS
  5853. float eps;
  5854. memcpy(&eps, dst->op_params, sizeof(float));
  5855. GGML_ASSERT(eps > 0.0f);
  5856. // TODO: optimize
  5857. for (int64_t i03 = 0; i03 < ne03; i03++) {
  5858. for (int64_t i02 = 0; i02 < ne02; i02++) {
  5859. for (int64_t i01 = ith; i01 < ne01; i01 += nth) {
  5860. const float * x = (float *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03);
  5861. ggml_float sum = 0.0;
  5862. for (int64_t i00 = 0; i00 < ne00; i00++) {
  5863. sum += (ggml_float)x[i00];
  5864. }
  5865. float mean = sum/ne00;
  5866. float * y = (float *) ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3);
  5867. ggml_float sum2 = 0.0;
  5868. for (int64_t i00 = 0; i00 < ne00; i00++) {
  5869. float v = x[i00] - mean;
  5870. y[i00] = v;
  5871. sum2 += (ggml_float)(v*v);
  5872. }
  5873. float variance = sum2/ne00;
  5874. const float scale = 1.0f/sqrtf(variance + eps);
  5875. ggml_vec_scale_f32(ne00, y, scale);
  5876. }
  5877. }
  5878. }
  5879. }
  5880. static void ggml_compute_forward_norm(
  5881. const struct ggml_compute_params * params,
  5882. struct ggml_tensor * dst) {
  5883. const struct ggml_tensor * src0 = dst->src[0];
  5884. switch (src0->type) {
  5885. case GGML_TYPE_F32:
  5886. {
  5887. ggml_compute_forward_norm_f32(params, dst);
  5888. } break;
  5889. default:
  5890. {
  5891. GGML_ABORT("fatal error");
  5892. }
  5893. }
  5894. }
  5895. // ggml_compute_forward_group_rms_norm
  5896. static void ggml_compute_forward_rms_norm_f32(
  5897. const struct ggml_compute_params * params,
  5898. struct ggml_tensor * dst) {
  5899. const struct ggml_tensor * src0 = dst->src[0];
  5900. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  5901. GGML_ASSERT(src0->nb[0] == sizeof(float));
  5902. const int ith = params->ith;
  5903. const int nth = params->nth;
  5904. GGML_TENSOR_UNARY_OP_LOCALS
  5905. float eps;
  5906. memcpy(&eps, dst->op_params, sizeof(float));
  5907. GGML_ASSERT(eps > 0.0f);
  5908. // TODO: optimize
  5909. for (int64_t i03 = 0; i03 < ne03; i03++) {
  5910. for (int64_t i02 = 0; i02 < ne02; i02++) {
  5911. for (int64_t i01 = ith; i01 < ne01; i01 += nth) {
  5912. const float * x = (float *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03);
  5913. ggml_float sum = 0.0;
  5914. for (int64_t i00 = 0; i00 < ne00; i00++) {
  5915. sum += (ggml_float)(x[i00] * x[i00]);
  5916. }
  5917. const float mean = sum/ne00;
  5918. float * y = (float *) ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3);
  5919. memcpy(y, x, ne00 * sizeof(float));
  5920. // for (int i00 = 0; i00 < ne00; i00++) {
  5921. // y[i00] = x[i00];
  5922. // }
  5923. const float scale = 1.0f/sqrtf(mean + eps);
  5924. ggml_vec_scale_f32(ne00, y, scale);
  5925. }
  5926. }
  5927. }
  5928. }
  5929. static void ggml_compute_forward_rms_norm(
  5930. const struct ggml_compute_params * params,
  5931. struct ggml_tensor * dst) {
  5932. const struct ggml_tensor * src0 = dst->src[0];
  5933. switch (src0->type) {
  5934. case GGML_TYPE_F32:
  5935. {
  5936. ggml_compute_forward_rms_norm_f32(params, dst);
  5937. } break;
  5938. default:
  5939. {
  5940. GGML_ABORT("fatal error");
  5941. }
  5942. }
  5943. }
  5944. static void ggml_compute_forward_rms_norm_back_f32(
  5945. const struct ggml_compute_params * params,
  5946. struct ggml_tensor * dst) {
  5947. const struct ggml_tensor * src0 = dst->src[0];
  5948. const struct ggml_tensor * src1 = dst->src[1];
  5949. GGML_ASSERT(ggml_are_same_shape(src0, dst) && ggml_are_same_shape(src0, src1));
  5950. GGML_ASSERT(src0->nb[0] == sizeof(float));
  5951. const int ith = params->ith;
  5952. const int nth = params->nth;
  5953. GGML_TENSOR_BINARY_OP_LOCALS
  5954. float eps;
  5955. memcpy(&eps, dst->op_params, sizeof(float));
  5956. // TODO: optimize
  5957. for (int64_t i03 = 0; i03 < ne03; i03++) {
  5958. for (int64_t i02 = 0; i02 < ne02; i02++) {
  5959. for (int64_t i01 = ith; i01 < ne01; i01 += nth) {
  5960. // src1 is same shape as src0 => same indices
  5961. const int64_t i11 = i01;
  5962. const int64_t i12 = i02;
  5963. const int64_t i13 = i03;
  5964. const float * x = (float *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03);
  5965. const float * dz = (float *) ((char *) src1->data + i11*nb11 + i12*nb12 + i13*nb13);
  5966. ggml_float sum_xx = 0.0;
  5967. ggml_float sum_xdz = 0.0;
  5968. for (int64_t i00 = 0; i00 < ne00; i00++) {
  5969. sum_xx += (ggml_float)(x[i00] * x[i00]);
  5970. sum_xdz += (ggml_float)(x[i00] * dz[i00]);
  5971. }
  5972. //const float mean = (float)(sum_xx)/ne00;
  5973. const float mean_eps = (float)(sum_xx)/ne00 + eps;
  5974. const float sum_eps = (float)(sum_xx) + eps*ne00;
  5975. //const float mean_xdz = (float)(sum_xdz)/ne00;
  5976. // we could cache rms from forward pass to improve performance.
  5977. // to do this implement ggml_rms and compose ggml_rms_norm using ggml_rms.
  5978. //const float rms = sqrtf(mean_eps);
  5979. const float rrms = 1.0f / sqrtf(mean_eps);
  5980. //const float scale = -rrms/(ne00 * mean_eps); // -1/(n*rms**3)
  5981. {
  5982. // z = rms_norm(x)
  5983. //
  5984. // rms_norm(src0) =
  5985. // scale(
  5986. // src0,
  5987. // div(
  5988. // 1,
  5989. // sqrt(
  5990. // add(
  5991. // scale(
  5992. // sum(
  5993. // sqr(
  5994. // src0)),
  5995. // (1.0/N)),
  5996. // eps))));
  5997. // postorder:
  5998. // ## op args grad
  5999. // 00 param src0 grad[#00]
  6000. // 01 const 1
  6001. // 02 sqr (#00) grad[#02]
  6002. // 03 sum (#02) grad[#03]
  6003. // 04 const 1/N
  6004. // 05 scale (#03, #04) grad[#05]
  6005. // 06 const eps
  6006. // 07 add (#05, #06) grad[#07]
  6007. // 08 sqrt (#07) grad[#08]
  6008. // 09 div (#01,#08) grad[#09]
  6009. // 10 scale (#00,#09) grad[#10]
  6010. //
  6011. // backward pass, given grad[#10]
  6012. // #10: scale
  6013. // grad[#00] += scale(grad[#10],#09)
  6014. // grad[#09] += sum(mul(grad[#10],#00))
  6015. // #09: div
  6016. // grad[#08] += neg(mul(grad[#09], div(#09,#08)))
  6017. // #08: sqrt
  6018. // grad[#07] += mul(grad[#08], div(0.5, #08))
  6019. // #07: add
  6020. // grad[#05] += grad[#07]
  6021. // #05: scale
  6022. // grad[#03] += scale(grad[#05],#04)
  6023. // #03: sum
  6024. // grad[#02] += repeat(grad[#03], #02)
  6025. // #02:
  6026. // grad[#00] += scale(mul(#00, grad[#02]), 2.0)
  6027. //
  6028. // substitute and simplify:
  6029. // grad[#00] = scale(grad(#10), #09) + scale(mul(#00, grad[#02]), 2.0)
  6030. // grad[#02] = repeat(grad[#03], #02)
  6031. // grad[#02] = repeat(scale(grad[#05],#04), #02)
  6032. // grad[#02] = repeat(scale(grad[#07],#04), #02)
  6033. // grad[#02] = repeat(scale(mul(grad[#08], div(0.5, #08)),#04), #02)
  6034. // grad[#02] = repeat(scale(mul(neg(mul(grad[#09], div(#09,#08))), div(0.5, #08)),#04), #02)
  6035. // grad[#02] = repeat(scale(mul(neg(mul(sum(mul(grad[#10],#00)), div(#09,#08))), div(0.5, #08)),#04), #02)
  6036. // grad[#02] = repeat(-(sum(mul(grad[#10],#00)) * div(#09,#08) * div(0.5, #08) * (1/N)), #02)
  6037. // grad[#02] = repeat(-(sum(mul(grad[#10],#00)) * div(div(#01,#08),#08) * div(0.5, #08) * (1/N)), #02)
  6038. // grad[#02] = repeat(-(sum(mul(grad[#10],#00)) * div(1,#08*#08) * div(0.5, #08) * (1/N)), #02)
  6039. // grad[#02] = repeat(-(sum(mul(grad[#10],#00)) * div(1,#07) * div(0.5, #08) * (1/N)), #02)
  6040. // grad[#00] = scale(grad(#10), #09) + scale(mul(#00, grad[#02]), 2.0)
  6041. // grad[#00] = scale(grad(#10), #09) + scale(mul(#00, repeat(-(sum(mul(grad[#10],#00)) * div(1,#07) * div(0.5, #08) * (1/N)), #02)), 2.0)
  6042. // grad[#00] = scale(grad(#10), #09) + scale(scale(#00, -(sum(mul(grad[#10],#00)) * div(1,#07) * div(0.5, #08) * (1/N))), 2.0)
  6043. // grad[#00] = scale(grad(#10), #09) + scale(#00, -(sum(mul(grad[#10],#00)) * div(1,#07) * div(1,#08) * (1/N)))
  6044. // grad[#00] = scale(grad(#10), #09) + scale(#00, sum(mul(grad[#10],#00)) * div(1,#07*#08) * (-1/N))
  6045. // grad[#00] = scale(grad(#10), #09) + scale(#00, sum(mul(grad[#10],#00)) * div(1,#07*#08) * (-1/N))
  6046. // grad[#00] = scale(grad(#10), #09) + scale(#00, sum(mul(grad[#10],#00)) * div(1,mean_eps*rms) * (-1/N))
  6047. // grad[#00] = scale(grad(#10), #09) + scale(#00, sum(mul(grad[#10],#00)) * div(-1,rms*N*mean_eps))
  6048. // grad[#00] = scale(grad(#10), #09) + scale(#00, sum(mul(grad[#10],#00)) * div(-1,rms*N*(sum_xx/N+eps)))
  6049. // grad[#00] = scale(grad(#10), #09) + scale(#00, sum(mul(grad[#10],#00)) * div(-1,rms*N*sum_xx+rms*N*eps))
  6050. // grad[#00] = scale(dz, rrms) + scale(x, sum(mul(dz,x)) * div(-1,rms*N*mean_eps))
  6051. // grad[#00] = scale(dz, rrms) + scale(x, sum_xdz * div(-1,rms*N*mean_eps))
  6052. // a = b*c + d*e
  6053. // a = b*c*f/f + d*e*f/f
  6054. // a = (b*c*f + d*e*f)*(1/f)
  6055. // a = (b*c*(1/c) + d*e*(1/c))*(1/(1/c))
  6056. // a = (b + d*e/c)*c
  6057. // b = dz, c = rrms, d = x, e = sum_xdz * div(-1,rms*N*mean_eps)
  6058. // a = (dz + x*sum_xdz * div(-1,rms*N*mean_eps)/rrms)*rrms
  6059. // a = (dz + x*sum_xdz * div(-1,rms*N*mean_eps)*rms)*rrms
  6060. // a = (dz + x*sum_xdz * div(-rms,rms*N*mean_eps))*rrms
  6061. // a = (dz + x*sum_xdz * div(-1,N*mean_eps))*rrms
  6062. // a = (dz + x*div(-sum_xdz,N*mean_eps))*rrms
  6063. // a = (dz + x*div(-mean_xdz,mean_eps))*rrms
  6064. // grad[#00] = scale(dz + scale(x, div(-mean_xdz,mean_eps)),rrms)
  6065. // grad[#00] = scale(dz + scale(x, -mean_xdz/mean_eps),rrms)
  6066. // dx = scale(dz + scale(x, -mean_xdz/mean_eps),rrms)
  6067. }
  6068. // dx = scale(dz + scale(x, -mean_xdz/mean_eps),rrms)
  6069. // post-order:
  6070. // dx := x
  6071. // dx := scale(dx,-mean_xdz/mean_eps)
  6072. // dx := add(dx, dz)
  6073. // dx := scale(dx, rrms)
  6074. float * dx = (float *) ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3);
  6075. ggml_vec_cpy_f32 (ne00, dx, x);
  6076. // ggml_vec_scale_f32(ne00, dx, -mean_xdz/mean_eps);
  6077. ggml_vec_scale_f32(ne00, dx, (float)(-sum_xdz)/sum_eps);
  6078. ggml_vec_acc_f32 (ne00, dx, dz);
  6079. ggml_vec_scale_f32(ne00, dx, rrms);
  6080. }
  6081. }
  6082. }
  6083. }
  6084. static void ggml_compute_forward_rms_norm_back(
  6085. const struct ggml_compute_params * params,
  6086. struct ggml_tensor * dst) {
  6087. const struct ggml_tensor * src0 = dst->src[0];
  6088. switch (src0->type) {
  6089. case GGML_TYPE_F32:
  6090. {
  6091. ggml_compute_forward_rms_norm_back_f32(params, dst);
  6092. } break;
  6093. default:
  6094. {
  6095. GGML_ABORT("fatal error");
  6096. }
  6097. }
  6098. }
  6099. // ggml_compute_forward_group_norm
  6100. static void ggml_compute_forward_group_norm_f32(
  6101. const struct ggml_compute_params * params,
  6102. struct ggml_tensor * dst) {
  6103. const struct ggml_tensor * src0 = dst->src[0];
  6104. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  6105. GGML_ASSERT(src0->nb[0] == sizeof(float));
  6106. const int ith = params->ith;
  6107. const int nth = params->nth;
  6108. GGML_TENSOR_UNARY_OP_LOCALS
  6109. // TODO: optimize
  6110. float eps;
  6111. memcpy(&eps, dst->op_params + 1, sizeof(float));
  6112. int n_channels = src0->ne[2];
  6113. int n_groups = dst->op_params[0];
  6114. int n_channels_per_group = (n_channels + n_groups - 1) / n_groups;
  6115. for (int i = ith; i < n_groups; i += nth) {
  6116. int start = i * n_channels_per_group;
  6117. int end = start + n_channels_per_group;
  6118. if (end > n_channels) {
  6119. end = n_channels;
  6120. }
  6121. int step = end - start;
  6122. for (int64_t i03 = 0; i03 < ne03; i03++) {
  6123. ggml_float sum = 0.0;
  6124. for (int64_t i02 = start; i02 < end; i02++) {
  6125. for (int64_t i01 = 0; i01 < ne01; i01++) {
  6126. const float * x = (float *)((char *) src0->data + i01 * nb01 + i02 * nb02 + i03 * nb03);
  6127. ggml_float sumr = 0.0;
  6128. for (int64_t i00 = 0; i00 < ne00; i00++) {
  6129. sumr += (ggml_float)x[i00];
  6130. }
  6131. sum += sumr;
  6132. }
  6133. }
  6134. const float mean = sum / (ne00 * ne01 * step);
  6135. ggml_float sum2 = 0.0;
  6136. for (int64_t i02 = start; i02 < end; i02++) {
  6137. for (int64_t i01 = 0; i01 < ne01; i01++) {
  6138. const float * x = (float *)((char *) src0->data + i01 * nb01 + i02 * nb02 + i03 * nb03);
  6139. float * y = (float *)((char *) dst->data + i01 * nb1 + i02 * nb2 + i03 * nb3);
  6140. ggml_float sumr = 0.0;
  6141. for (int64_t i00 = 0; i00 < ne00; i00++) {
  6142. float v = x[i00] - mean;
  6143. y[i00] = v;
  6144. sumr += (ggml_float)(v * v);
  6145. }
  6146. sum2 += sumr;
  6147. }
  6148. }
  6149. const float variance = sum2 / (ne00 * ne01 * step);
  6150. const float scale = 1.0f / sqrtf(variance + eps);
  6151. for (int64_t i02 = start; i02 < end; i02++) {
  6152. for (int64_t i01 = 0; i01 < ne01; i01++) {
  6153. float * y = (float *)((char *) dst->data + i01 * nb1 + i02 * nb2 + i03 * nb3);
  6154. ggml_vec_scale_f32(ne00, y, scale);
  6155. }
  6156. }
  6157. }
  6158. }
  6159. }
  6160. static void ggml_compute_forward_group_norm(
  6161. const struct ggml_compute_params * params,
  6162. struct ggml_tensor * dst) {
  6163. const struct ggml_tensor * src0 = dst->src[0];
  6164. switch (src0->type) {
  6165. case GGML_TYPE_F32:
  6166. {
  6167. ggml_compute_forward_group_norm_f32(params, dst);
  6168. } break;
  6169. default:
  6170. {
  6171. GGML_ABORT("fatal error");
  6172. }
  6173. }
  6174. }
  6175. // ggml_compute_forward_mul_mat
  6176. static void ggml_compute_forward_mul_mat_one_chunk(
  6177. const struct ggml_compute_params * params,
  6178. struct ggml_tensor * dst,
  6179. const enum ggml_type type,
  6180. const int64_t num_rows_per_vec_dot,
  6181. const int64_t ir0_start,
  6182. const int64_t ir0_end,
  6183. const int64_t ir1_start,
  6184. const int64_t ir1_end) {
  6185. const struct ggml_tensor * src0 = dst->src[0];
  6186. const struct ggml_tensor * src1 = dst->src[1];
  6187. GGML_TENSOR_BINARY_OP_LOCALS
  6188. const bool src1_cont = ggml_is_contiguous(src1);
  6189. ggml_vec_dot_t const vec_dot = type_traits_cpu[type].vec_dot;
  6190. enum ggml_type const vec_dot_type = type_traits_cpu[type].vec_dot_type;
  6191. // broadcast factors
  6192. const int64_t r2 = ne12 / ne02;
  6193. const int64_t r3 = ne13 / ne03;
  6194. //printf("ir0_start = %6lld, ir0_end = %6lld, ir1_start = %6lld, ir1_end = %6lld\n", ir0_start, ir0_end, ir1_start, ir1_end);
  6195. // threads with no work simply yield (not sure if it helps)
  6196. if (ir0_start >= ir0_end || ir1_start >= ir1_end) {
  6197. return;
  6198. }
  6199. const void * wdata = (src1->type == vec_dot_type) ? src1->data : params->wdata;
  6200. const size_t row_size = ggml_row_size(vec_dot_type, ne10);
  6201. assert(ne12 % ne02 == 0);
  6202. assert(ne13 % ne03 == 0);
  6203. // block-tiling attempt
  6204. const int64_t blck_0 = 16;
  6205. const int64_t blck_1 = 16;
  6206. const size_t src1_col_stride = src1_cont || src1->type != vec_dot_type ? row_size : nb11;
  6207. // attempt to reduce false-sharing (does not seem to make a difference)
  6208. // 16 * 2, accounting for mmla kernels
  6209. float tmp[32];
  6210. for (int64_t iir1 = ir1_start; iir1 < ir1_end; iir1 += blck_1) {
  6211. for (int64_t iir0 = ir0_start; iir0 < ir0_end; iir0 += blck_0) {
  6212. for (int64_t ir1 = iir1; ir1 < iir1 + blck_1 && ir1 < ir1_end; ir1 += num_rows_per_vec_dot) {
  6213. const int64_t i13 = (ir1 / (ne12 * ne1));
  6214. const int64_t i12 = (ir1 - i13 * ne12 * ne1) / ne1;
  6215. const int64_t i11 = (ir1 - i13 * ne12 * ne1 - i12 * ne1);
  6216. // broadcast src0 into src1
  6217. const int64_t i03 = i13 / r3;
  6218. const int64_t i02 = i12 / r2;
  6219. const int64_t i1 = i11;
  6220. const int64_t i2 = i12;
  6221. const int64_t i3 = i13;
  6222. const char * src0_row = (const char*)src0->data + (0 + i02 * nb02 + i03 * nb03);
  6223. // desc: when src1 is not a contiguous memory block we have to calculate the offset using the strides
  6224. // if it is, then we have either copied the data to params->wdata and made it contiguous or we are using
  6225. // the original src1 data pointer, so we should index using the indices directly
  6226. // TODO: this is a bit of a hack, we should probably have a better way to handle this
  6227. const char * src1_col = (const char*)wdata +
  6228. (src1_cont || src1->type != vec_dot_type
  6229. ? (i11 + i12 * ne11 + i13 * ne12 * ne11) * row_size
  6230. : (i11 * nb11 + i12 * nb12 + i13 * nb13));
  6231. float * dst_col = (float*)((char*)dst->data + (i1 * nb1 + i2 * nb2 + i3 * nb3));
  6232. //for (int64_t ir0 = iir0; ir0 < iir0 + blck_0 && ir0 < ir0_end; ++ir0) {
  6233. // vec_dot(ne00, &dst_col[ir0], src0_row + ir0*nb01, src1_col);
  6234. //}
  6235. for (int64_t ir0 = iir0; ir0 < iir0 + blck_0 && ir0 < ir0_end; ir0 += num_rows_per_vec_dot) {
  6236. vec_dot(ne00, &tmp[ir0 - iir0], (num_rows_per_vec_dot > 1 ? 16 : 0), src0_row + ir0 * nb01, (num_rows_per_vec_dot > 1 ? nb01 : 0), src1_col, (num_rows_per_vec_dot > 1 ? src1_col_stride : 0), num_rows_per_vec_dot);
  6237. }
  6238. for (int cn = 0; cn < num_rows_per_vec_dot; ++cn) {
  6239. memcpy(&dst_col[iir0 + cn * nb1 / nb0], tmp + (cn * 16), (MIN(iir0 + blck_0, ir0_end) - iir0) * sizeof(float));
  6240. }
  6241. }
  6242. }
  6243. }
  6244. }
  6245. static void ggml_compute_forward_mul_mat(
  6246. const struct ggml_compute_params * params,
  6247. struct ggml_tensor * dst) {
  6248. const struct ggml_tensor * src0 = dst->src[0];
  6249. const struct ggml_tensor * src1 = dst->src[1];
  6250. GGML_TENSOR_BINARY_OP_LOCALS
  6251. const int ith = params->ith;
  6252. const int nth = params->nth;
  6253. enum ggml_type type = src0->type;
  6254. if (src0->buffer && ggml_backend_cpu_buft_is_aarch64(src0->buffer->buft)) {
  6255. type = (enum ggml_type)(intptr_t)src0->extra;
  6256. }
  6257. #if defined(__AMX_INT8__) && defined(__AVX512VNNI__)
  6258. if (src0->buffer && ggml_backend_amx_buft_is_amx(src0->buffer->buft)) {
  6259. ggml_backend_amx_mul_mat(params, dst);
  6260. return;
  6261. }
  6262. #endif
  6263. enum ggml_type const vec_dot_type = type_traits_cpu[type].vec_dot_type;
  6264. ggml_from_float_t const from_float = type_traits_cpu[vec_dot_type].from_float;
  6265. ggml_from_float_to_mat_t const from_float_to_mat = type_traits_cpu[vec_dot_type].from_float_to_mat;
  6266. int64_t const vec_dot_num_rows = type_traits_cpu[type].nrows;
  6267. int64_t const matmul_num_cols = type_traits_cpu[type].ncols;
  6268. int64_t const blck_size_interleave = ggml_get_type_traits(type)->blck_size_interleave;
  6269. ggml_gemv_t const gemv = type_traits_cpu[type].gemv;
  6270. ggml_gemm_t const gemm = type_traits_cpu[type].gemm;
  6271. GGML_ASSERT(ne0 == ne01);
  6272. GGML_ASSERT(ne1 == ne11);
  6273. GGML_ASSERT(ne2 == ne12);
  6274. GGML_ASSERT(ne3 == ne13);
  6275. // we don't support permuted src0 or src1
  6276. GGML_ASSERT(nb00 == ggml_type_size(type));
  6277. GGML_ASSERT(nb10 == ggml_type_size(src1->type));
  6278. // dst cannot be transposed or permuted
  6279. GGML_ASSERT(nb0 == sizeof(float));
  6280. GGML_ASSERT(nb0 <= nb1);
  6281. GGML_ASSERT(nb1 <= nb2);
  6282. GGML_ASSERT(nb2 <= nb3);
  6283. // nb01 >= nb00 - src0 is not transposed
  6284. // compute by src0 rows
  6285. #if GGML_USE_LLAMAFILE
  6286. // broadcast factors
  6287. const int64_t r2 = ne12 / ne02;
  6288. const int64_t r3 = ne13 / ne03;
  6289. const bool src1_cont = ggml_is_contiguous(src1);
  6290. if (src1_cont) {
  6291. for (int64_t i13 = 0; i13 < ne13; i13++)
  6292. for (int64_t i12 = 0; i12 < ne12; i12++)
  6293. if (!llamafile_sgemm(ne01, ne11, ne00/ggml_blck_size(type),
  6294. (const char *)src0->data + i12/r2*nb02 + i13/r3*nb03,
  6295. nb01/ggml_type_size(type),
  6296. (const char *)src1->data + i12*nb12 + i13*nb13,
  6297. nb11/ggml_type_size(src1->type),
  6298. (char *)dst->data + i12*nb2 + i13*nb3,
  6299. nb1/ggml_type_size(dst->type),
  6300. ith, nth,
  6301. type,
  6302. src1->type,
  6303. dst->type))
  6304. goto UseGgmlGemm1;
  6305. return;
  6306. }
  6307. UseGgmlGemm1:;
  6308. #endif
  6309. if (src1->type != vec_dot_type) {
  6310. char * wdata = params->wdata;
  6311. const size_t nbw1 = ggml_row_size(vec_dot_type, ne10);
  6312. const size_t nbw2 = nbw1*ne11;
  6313. const size_t nbw3 = nbw2*ne12;
  6314. assert(params->wsize >= ne13*nbw3);
  6315. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  6316. for (int64_t i13 = 0; i13 < ne13; ++i13) {
  6317. for (int64_t i12 = 0; i12 < ne12; ++i12) {
  6318. int64_t i11_processed = 0;
  6319. if ((ggml_n_dims(src1) == 2) && from_float_to_mat && gemm) {
  6320. for (int64_t i11 = ith * 4; i11 < ne11 - ne11 % 4; i11 += nth * 4) {
  6321. from_float_to_mat((float *)((char *) src1->data + i13*nb13 + i12*nb12 + i11*nb11),
  6322. (void *) (wdata + i13*nbw3 + i12*nbw2 + i11*nbw1),
  6323. 4, ne10, blck_size_interleave);
  6324. }
  6325. i11_processed = ne11 - ne11 % 4;
  6326. }
  6327. for (int64_t i11 = i11_processed + ith; i11 < ne11; i11 += nth) {
  6328. from_float((float *)((char *) src1->data + i13*nb13 + i12*nb12 + i11*nb11),
  6329. (void *) (wdata + i13*nbw3 + i12*nbw2 + i11*nbw1),
  6330. ne10);
  6331. }
  6332. }
  6333. }
  6334. }
  6335. if (ith == 0) {
  6336. // Every thread starts at ith, so the first unprocessed chunk is nth. This save a bit of coordination right at the start.
  6337. atomic_store_explicit(&params->threadpool->current_chunk, nth, memory_order_relaxed);
  6338. }
  6339. ggml_barrier(params->threadpool);
  6340. #if GGML_USE_LLAMAFILE
  6341. if (src1->type != vec_dot_type) {
  6342. const void* wdata = (src1->type == vec_dot_type) ? src1->data : params->wdata;
  6343. const size_t row_size = ggml_row_size(vec_dot_type, ne10);
  6344. for (int64_t i13 = 0; i13 < ne13; i13++)
  6345. for (int64_t i12 = 0; i12 < ne12; i12++)
  6346. if (!llamafile_sgemm(ne01, ne11, ne00/ggml_blck_size(type),
  6347. (const char *)src0->data + i12/r2*nb02 + i13/r3*nb03,
  6348. nb01/ggml_type_size(type),
  6349. (const char *)wdata + (i12*ne11 + i13*ne12*ne11)*row_size,
  6350. row_size/ggml_type_size(vec_dot_type),
  6351. (char *)dst->data + i12*nb2 + i13*nb3,
  6352. nb1/ggml_type_size(dst->type),
  6353. ith, nth,
  6354. type,
  6355. vec_dot_type,
  6356. dst->type))
  6357. goto UseGgmlGemm2;
  6358. return;
  6359. }
  6360. UseGgmlGemm2:;
  6361. #endif
  6362. // This is the size of the first dimension of the result, so we can iterate that way. (see the ASSERT above, these are the same numbers)
  6363. const int64_t nr0 = ne0;
  6364. // This is the size of the rest of the dimensions of the result
  6365. const int64_t nr1 = ne1 * ne2 * ne3;
  6366. // Now select a reasonable chunk size.
  6367. int chunk_size = 16;
  6368. // We need to step up the size if it's small
  6369. if (nr0 == 1 || nr1 == 1) {
  6370. chunk_size = 64;
  6371. }
  6372. // distribute the work across the inner or outer loop based on which one is larger
  6373. // The number of chunks in the 0/1 dim.
  6374. // CEIL(nr0/chunk_size)
  6375. int64_t nchunk0 = (nr0 + chunk_size - 1) / chunk_size;
  6376. int64_t nchunk1 = (nr1 + chunk_size - 1) / chunk_size;
  6377. // If the chunking is poor for the number of threads on this setup, scrap the whole plan. Re-chunk it by thread.
  6378. // Also, chunking by thread was measured to have perform better on NUMA systems. See https://github.com/ggerganov/llama.cpp/pull/6915
  6379. // In theory, chunking should be just as useful on NUMA and non NUMA systems, but testing disagreed with that.
  6380. if (nchunk0 * nchunk1 < nth * 4 || ggml_is_numa()) {
  6381. // distribute the thread work across the inner or outer loop based on which one is larger
  6382. nchunk0 = nr0 > nr1 ? nth : 1; // parallelize by src0 rows
  6383. nchunk1 = nr0 > nr1 ? 1 : nth; // parallelize by src1 rows
  6384. }
  6385. // The number of elements in each chunk
  6386. const int64_t dr0 = (nr0 + nchunk0 - 1) / nchunk0;
  6387. const int64_t dr1 = (nr1 + nchunk1 - 1) / nchunk1;
  6388. if ((ggml_n_dims(src0) == 2) && gemv) {
  6389. const void * src1_wdata = (src1->type == vec_dot_type) ? src1->data : params->wdata;
  6390. const size_t src1_col_stride = ggml_is_contiguous(src1) || src1->type != vec_dot_type ? ggml_row_size(vec_dot_type, ne10) : nb11;
  6391. int64_t src0_start = (ith * ne01) / nth;
  6392. int64_t src0_end = ((ith + 1) * ne01) / nth;
  6393. src0_start = (src0_start % matmul_num_cols) ? src0_start + matmul_num_cols - (src0_start % matmul_num_cols): src0_start;
  6394. src0_end = (src0_end % matmul_num_cols) ? src0_end + matmul_num_cols - (src0_end % matmul_num_cols): src0_end;
  6395. if (src0_start >= src0_end) return;
  6396. // If there are more than three rows in src1, use gemm; otherwise, use gemv.
  6397. if (gemm && (ne11 > 3)) {
  6398. gemm(ne00, (float *)((char *) dst->data) + src0_start, ne01, (const char *) src0->data + src0_start * nb01,
  6399. (const char *) src1_wdata, ne11 - ne11 % 4, src0_end - src0_start);
  6400. }
  6401. for (int iter = gemm ? ne11 - ne11 % 4 : 0; iter < ne11; iter++) {
  6402. gemv(ne00, (float *)((char *) dst->data + (iter * nb1)) + src0_start, ne01,
  6403. (const char *) src0->data + src0_start * nb01, (const char *) src1_wdata + (src1_col_stride * iter), 1,
  6404. src0_end - src0_start);
  6405. }
  6406. return;
  6407. }
  6408. // The first chunk comes from our thread_id, the rest will get auto-assigned.
  6409. int current_chunk = ith;
  6410. while (current_chunk < nchunk0 * nchunk1) {
  6411. const int64_t ith0 = current_chunk % nchunk0;
  6412. const int64_t ith1 = current_chunk / nchunk0;
  6413. const int64_t ir0_start = dr0 * ith0;
  6414. const int64_t ir0_end = MIN(ir0_start + dr0, nr0);
  6415. const int64_t ir1_start = dr1 * ith1;
  6416. const int64_t ir1_end = MIN(ir1_start + dr1, nr1);
  6417. // dot kernels can handle 1 row and col at a time, but mmla kernels can process 2 rows and cols
  6418. int64_t num_rows_per_vec_dot = vec_dot_num_rows;
  6419. // these checks are needed to avoid crossing dim1 boundaries
  6420. // can be optimized, but the logic would become more complicated, so keeping it like this for simplicity
  6421. if ((nr0 % 2 != 0) || (ne11 % 2 != 0) || ((ir0_end - ir0_start) % 2 != 0) || ((ir1_end - ir1_start) % 2 != 0)) {
  6422. num_rows_per_vec_dot = 1;
  6423. }
  6424. ggml_compute_forward_mul_mat_one_chunk(params, dst, type, num_rows_per_vec_dot, ir0_start, ir0_end, ir1_start, ir1_end);
  6425. if (nth >= nchunk0 * nchunk1) {
  6426. break;
  6427. }
  6428. current_chunk = atomic_fetch_add_explicit(&params->threadpool->current_chunk, 1, memory_order_relaxed);
  6429. }
  6430. }
  6431. // ggml_compute_forward_mul_mat_id
  6432. static void ggml_compute_forward_mul_mat_id(
  6433. const struct ggml_compute_params * params,
  6434. struct ggml_tensor * dst) {
  6435. const struct ggml_tensor * src0 = dst->src[0];
  6436. const struct ggml_tensor * src1 = dst->src[1];
  6437. const struct ggml_tensor * ids = dst->src[2];
  6438. GGML_TENSOR_BINARY_OP_LOCALS
  6439. const int ith = params->ith;
  6440. const int nth = params->nth;
  6441. const enum ggml_type type = src0->type;
  6442. const bool src1_cont = ggml_is_contiguous(src1);
  6443. ggml_vec_dot_t const vec_dot = type_traits_cpu[type].vec_dot;
  6444. enum ggml_type const vec_dot_type = type_traits_cpu[type].vec_dot_type;
  6445. ggml_from_float_t const from_float = type_traits_cpu[vec_dot_type].from_float;
  6446. int64_t const matmul_num_cols = type_traits_cpu[type].ncols;
  6447. ggml_gemv_t const gemv = type_traits_cpu[type].gemv;
  6448. // we don't support permuted src0 or src1
  6449. GGML_ASSERT(nb00 == ggml_type_size(type));
  6450. GGML_ASSERT(nb10 == ggml_type_size(src1->type));
  6451. // dst cannot be transposed or permuted
  6452. GGML_ASSERT(nb0 == sizeof(float));
  6453. GGML_ASSERT(nb0 <= nb1);
  6454. GGML_ASSERT(nb1 <= nb2);
  6455. GGML_ASSERT(nb2 <= nb3);
  6456. // row groups
  6457. const int n_ids = ids->ne[0]; // n_expert_used
  6458. const int n_as = ne02; // n_expert
  6459. char * wdata_src1_end = (src1->type == vec_dot_type) ?
  6460. (char *) params->wdata :
  6461. (char *) params->wdata + GGML_PAD(ggml_row_size(vec_dot_type, ggml_nelements(src1)), sizeof(int64_t));
  6462. struct mmid_row_mapping {
  6463. int32_t i1;
  6464. int32_t i2;
  6465. };
  6466. int64_t * matrix_row_counts = (int64_t *) (wdata_src1_end); // [n_as]
  6467. struct mmid_row_mapping * matrix_rows = (struct mmid_row_mapping *)(matrix_row_counts + n_as); // [n_as][ne11]
  6468. if (src1->type != vec_dot_type) {
  6469. char * wdata = params->wdata;
  6470. const size_t nbw1 = ggml_row_size(vec_dot_type, ne10);
  6471. const size_t nbw2 = nbw1*ne11;
  6472. const size_t nbw3 = nbw2*ne12;
  6473. assert(params->wsize >= ne13*nbw3);
  6474. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  6475. for (int64_t i13 = 0; i13 < ne13; ++i13) {
  6476. for (int64_t i12 = 0; i12 < ne12; ++i12) {
  6477. for (int64_t i11 = ith; i11 < ne11; i11 += nth) {
  6478. from_float((float *)((char *) src1->data + i13*nb13 + i12*nb12 + i11*nb11),
  6479. (void *) (wdata + i13*nbw3 + i12*nbw2 + i11*nbw1),
  6480. ne10);
  6481. }
  6482. }
  6483. }
  6484. }
  6485. #define MMID_MATRIX_ROW(row_id, i1) matrix_rows[(row_id)*ne12 + (i1)]
  6486. if (ith == 0) {
  6487. // initialize matrix_row_counts
  6488. memset(matrix_row_counts, 0, n_as*sizeof(int64_t));
  6489. // group rows by src0 matrix
  6490. for (int64_t iid1 = 0; iid1 < ids->ne[1]; ++iid1) {
  6491. for (int id = 0; id < n_ids; ++id) {
  6492. const int32_t i02 = *(const int32_t *) ((const char *) ids->data + iid1*ids->nb[1] + id*ids->nb[0]);
  6493. assert(i02 >= 0 && i02 < n_as);
  6494. MMID_MATRIX_ROW(i02, matrix_row_counts[i02]) = (struct mmid_row_mapping) {id, iid1};
  6495. matrix_row_counts[i02] += 1;
  6496. }
  6497. }
  6498. }
  6499. ggml_barrier(params->threadpool);
  6500. // compute each matrix multiplication in sequence
  6501. for (int cur_a = 0; cur_a < n_as; ++cur_a) {
  6502. const int64_t cne1 = matrix_row_counts[cur_a];
  6503. if (cne1 == 0) {
  6504. continue;
  6505. }
  6506. const char * src0_cur = (const char *) src0->data + cur_a*nb02;
  6507. const void * wdata = (src1->type == vec_dot_type) ? src1->data : params->wdata;
  6508. const size_t row_size = ggml_row_size(vec_dot_type, ne10);
  6509. const int64_t nr0 = ne01; // src0 rows
  6510. const int64_t nr1 = cne1; // src1 rows
  6511. if (((ggml_n_dims(src0) - 1) == 2) && gemv) {
  6512. int64_t src0_cur_start = (ith * ne01) / nth;
  6513. int64_t src0_cur_end = ((ith + 1) * ne01) / nth;
  6514. src0_cur_start = (src0_cur_start % matmul_num_cols) ? src0_cur_start + matmul_num_cols - (src0_cur_start % matmul_num_cols): src0_cur_start;
  6515. src0_cur_end = (src0_cur_end % matmul_num_cols) ? src0_cur_end + matmul_num_cols - (src0_cur_end % matmul_num_cols): src0_cur_end;
  6516. if (src0_cur_start >= src0_cur_end) return;
  6517. for (int ir1 = 0; ir1 < nr1; ir1++) {
  6518. struct mmid_row_mapping row_mapping = MMID_MATRIX_ROW(cur_a, ir1);
  6519. const int id = row_mapping.i1; // selected expert index
  6520. const int64_t i11 = id % ne11;
  6521. const int64_t i12 = row_mapping.i2; // row index in src1
  6522. const int64_t i1 = id; // selected expert index
  6523. const int64_t i2 = i12; // row
  6524. const char * src1_col = (const char *) wdata +
  6525. (src1_cont || src1->type != vec_dot_type
  6526. ? (i11 + i12 * ne11) * row_size
  6527. : (i11 * nb11 + i12 * nb12));
  6528. gemv(ne00, (float *)((char *) dst->data + (i1 * nb1 + i2 * nb2)) + src0_cur_start, ne01,
  6529. (const char *) src0_cur + src0_cur_start * nb01, src1_col, 1, src0_cur_end - src0_cur_start);
  6530. }
  6531. continue;
  6532. }
  6533. // distribute the thread work across the inner or outer loop based on which one is larger
  6534. const int64_t nth0 = nr0 > nr1 ? nth : 1; // parallelize by src0 rows
  6535. const int64_t nth1 = nr0 > nr1 ? 1 : nth; // parallelize by src1 rows
  6536. const int64_t ith0 = ith % nth0;
  6537. const int64_t ith1 = ith / nth0;
  6538. const int64_t dr0 = (nr0 + nth0 - 1)/nth0;
  6539. const int64_t dr1 = (nr1 + nth1 - 1)/nth1;
  6540. const int64_t ir010 = dr0*ith0;
  6541. const int64_t ir011 = MIN(ir010 + dr0, nr0);
  6542. const int64_t ir110 = dr1*ith1;
  6543. const int64_t ir111 = MIN(ir110 + dr1, nr1);
  6544. // threads with no work simply yield (not sure if it helps)
  6545. //if (ir010 >= ir011 || ir110 >= ir111) {
  6546. // sched_yield();
  6547. // continue;
  6548. //}
  6549. // block-tiling attempt
  6550. const int64_t blck_0 = 16;
  6551. const int64_t blck_1 = 16;
  6552. // attempt to reduce false-sharing (does not seem to make a difference)
  6553. float tmp[16];
  6554. for (int64_t iir1 = ir110; iir1 < ir111; iir1 += blck_1) {
  6555. for (int64_t iir0 = ir010; iir0 < ir011; iir0 += blck_0) {
  6556. for (int64_t ir1 = iir1; ir1 < iir1 + blck_1 && ir1 < ir111; ++ir1) {
  6557. const int64_t _i12 = ir1; // logical row index for this expert
  6558. struct mmid_row_mapping row_mapping = MMID_MATRIX_ROW(cur_a, _i12);
  6559. const int id = row_mapping.i1; // selected expert index
  6560. const int64_t i11 = id % ne11;
  6561. const int64_t i12 = row_mapping.i2; // row index in src1
  6562. const int64_t i1 = id; // selected expert index
  6563. const int64_t i2 = i12; // row
  6564. // desc: when src1 is not a contiguous memory block we have to calculate the offset using the strides
  6565. // if it is, then we have either copied the data to params->wdata and made it contiguous or we are using
  6566. // the original src1 data pointer, so we should index using the indices directly
  6567. // TODO: this is a bit of a hack, we should probably have a better way to handle this
  6568. const char * src1_col = (const char *) wdata +
  6569. (src1_cont || src1->type != vec_dot_type
  6570. ? (i11 + i12*ne11)*row_size
  6571. : (i11*nb11 + i12*nb12));
  6572. float * dst_col = (float *) ((char *) dst->data + (i1*nb1 + i2*nb2));
  6573. //for (int64_t ir0 = iir0; ir0 < iir0 + blck_0 && ir0 < ir011; ++ir0) {
  6574. // vec_dot(ne00, &dst_col[ir0], src0_row + ir0*nb01, src1_col);
  6575. //}
  6576. for (int64_t ir0 = iir0; ir0 < iir0 + blck_0 && ir0 < ir011; ++ir0) {
  6577. vec_dot(ne00, &tmp[ir0 - iir0], 0, src0_cur + ir0*nb01, 0, src1_col, 0, 1);
  6578. }
  6579. memcpy(&dst_col[iir0], tmp, (MIN(iir0 + blck_0, ir011) - iir0)*sizeof(float));
  6580. }
  6581. }
  6582. }
  6583. }
  6584. #undef MMID_MATRIX_ROW
  6585. }
  6586. // ggml_compute_forward_out_prod
  6587. static void ggml_compute_forward_out_prod_f32(
  6588. const struct ggml_compute_params * params,
  6589. struct ggml_tensor * dst) {
  6590. const struct ggml_tensor * src0 = dst->src[0];
  6591. const struct ggml_tensor * src1 = dst->src[1];
  6592. GGML_TENSOR_BINARY_OP_LOCALS
  6593. GGML_ASSERT(dst->type == GGML_TYPE_F32);
  6594. GGML_ASSERT(src0->type == GGML_TYPE_F32);
  6595. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  6596. const int ith = params->ith;
  6597. const int nth = params->nth;
  6598. GGML_ASSERT(ne0 == ne00);
  6599. GGML_ASSERT(ne1 == ne10);
  6600. GGML_ASSERT(ne2 == ne02);
  6601. GGML_ASSERT(ne02 == ne12);
  6602. GGML_ASSERT(ne3 == ne13);
  6603. GGML_ASSERT(ne03 == ne13);
  6604. // we don't support permuted src0 or src1
  6605. GGML_ASSERT(nb00 == sizeof(float));
  6606. // dst cannot be transposed or permuted
  6607. GGML_ASSERT(nb0 == sizeof(float));
  6608. // GGML_ASSERT(nb0 <= nb1);
  6609. // GGML_ASSERT(nb1 <= nb2);
  6610. // GGML_ASSERT(nb2 <= nb3);
  6611. // nb01 >= nb00 - src0 is not transposed
  6612. // compute by src0 rows
  6613. if (ith == 0) {
  6614. ggml_vec_set_f32(ne0*ne1*ne2*ne3, dst->data, 0);
  6615. }
  6616. ggml_barrier(params->threadpool);
  6617. // dst[:,:,:,:] = 0
  6618. // for i2,i3:
  6619. // for i1:
  6620. // for i01:
  6621. // for i0:
  6622. // dst[i0,i1,i2,i3] += src0[i0,i01,i2,i3] * src1[i1,i01,i2,i3]
  6623. // parallelize by last three dimensions
  6624. // total rows in dst
  6625. const int64_t nr = ne1*ne2*ne3;
  6626. // rows per thread
  6627. const int64_t dr = (nr + nth - 1)/nth;
  6628. // row range for this thread
  6629. const int64_t ir0 = dr*ith;
  6630. const int64_t ir1 = MIN(ir0 + dr, nr);
  6631. // block-tiling attempt
  6632. const int64_t blck_0 = MAX(GGML_VEC_MAD_UNROLL, 32);
  6633. const int64_t blck_1 = 16;
  6634. for (int64_t bir = ir0; bir < ir1; bir += blck_1) {
  6635. const int64_t bir1 = MIN(bir + blck_1, ir1);
  6636. for (int64_t bi01 = 0; bi01 < ne01; bi01 += blck_0) {
  6637. const int64_t bne01 = MIN(bi01 + blck_0, ne01);
  6638. for (int64_t ir = bir; ir < bir1; ++ir) {
  6639. // dst indices
  6640. const int64_t i3 = ir/(ne2*ne1);
  6641. const int64_t i2 = (ir - i3*ne2*ne1)/ne1;
  6642. const int64_t i1 = (ir - i3*ne2*ne1 - i2*ne1);
  6643. const int64_t i02 = i2;
  6644. const int64_t i03 = i3;
  6645. //const int64_t i10 = i1;
  6646. const int64_t i12 = i2;
  6647. const int64_t i13 = i3;
  6648. #if GGML_VEC_MAD_UNROLL > 2
  6649. const int64_t bne01_unroll = bne01 - (bne01 % GGML_VEC_MAD_UNROLL);
  6650. for (int64_t i01 = bi01; i01 < bne01_unroll; i01 += GGML_VEC_MAD_UNROLL) {
  6651. const int64_t i11 = i01;
  6652. float * s0 = (float *) ((char *) src0->data + ( i01*nb01 + i02*nb02 + i03*nb03));
  6653. float * s1 = (float *) ((char *) src1->data + (i1*nb10 + i11*nb11 + i12*nb12 + i13*nb13));
  6654. float * d = (float *) ((char *) dst->data + ( i1*nb1 + i2*nb2 + i3*nb3));
  6655. ggml_vec_mad_f32_unroll(ne0, nb01, nb11, d, s0, s1);
  6656. }
  6657. for (int64_t i01 = bne01_unroll; i01 < bne01; ++i01) {
  6658. const int64_t i11 = i01;
  6659. float * s0 = (float *) ((char *) src0->data + ( i01*nb01 + i02*nb02 + i03*nb03));
  6660. float * s1 = (float *) ((char *) src1->data + (i1*nb10 + i11*nb11 + i12*nb12 + i13*nb13));
  6661. float * d = (float *) ((char *) dst->data + ( i1*nb1 + i2*nb2 + i3*nb3));
  6662. ggml_vec_mad_f32(ne0, d, s0, *s1);
  6663. }
  6664. #else
  6665. for (int64_t i01 = bi01; i01 < bne01; ++i01) {
  6666. const int64_t i11 = i01;
  6667. float * s0 = (float *) ((char *) src0->data + ( i01*nb01 + i02*nb02 + i03*nb03));
  6668. float * s1 = (float *) ((char *) src1->data + (i1*nb10 + i11*nb11 + i12*nb12 + i13*nb13));
  6669. float * d = (float *) ((char *) dst->data + ( i1*nb1 + i2*nb2 + i3*nb3));
  6670. ggml_vec_mad_f32(ne0, d, s0, *s1);
  6671. }
  6672. #endif
  6673. }
  6674. }
  6675. }
  6676. }
  6677. static void ggml_compute_forward_out_prod_q_f32(
  6678. const struct ggml_compute_params * params,
  6679. struct ggml_tensor * dst) {
  6680. const struct ggml_tensor * src0 = dst->src[0];
  6681. const struct ggml_tensor * src1 = dst->src[1];
  6682. GGML_TENSOR_BINARY_OP_LOCALS;
  6683. const int ith = params->ith;
  6684. const int nth = params->nth;
  6685. const enum ggml_type type = src0->type;
  6686. ggml_to_float_t const dequantize_row_q = ggml_get_type_traits(type)->to_float;
  6687. GGML_ASSERT(ne02 == ne12);
  6688. GGML_ASSERT(ne03 == ne13);
  6689. GGML_ASSERT(ne2 == ne12);
  6690. GGML_ASSERT(ne3 == ne13);
  6691. // we don't support permuted src0 dim0
  6692. GGML_ASSERT(nb00 == ggml_type_size(type));
  6693. // dst dim0 cannot be transposed or permuted
  6694. GGML_ASSERT(nb0 == sizeof(float));
  6695. // GGML_ASSERT(nb0 <= nb1);
  6696. // GGML_ASSERT(nb1 <= nb2);
  6697. // GGML_ASSERT(nb2 <= nb3);
  6698. GGML_ASSERT(ne0 == ne00);
  6699. GGML_ASSERT(ne1 == ne10);
  6700. GGML_ASSERT(ne2 == ne02);
  6701. GGML_ASSERT(ne3 == ne03);
  6702. // nb01 >= nb00 - src0 is not transposed
  6703. // compute by src0 rows
  6704. if (ith == 0) {
  6705. ggml_vec_set_f32(ne0*ne1*ne2*ne3, dst->data, 0);
  6706. }
  6707. ggml_barrier(params->threadpool);
  6708. // parallelize by last three dimensions
  6709. // total rows in dst
  6710. const int64_t nr = ne1*ne2*ne3;
  6711. // rows per thread
  6712. const int64_t dr = (nr + nth - 1)/nth;
  6713. // row range for this thread
  6714. const int64_t ir0 = dr*ith;
  6715. const int64_t ir1 = MIN(ir0 + dr, nr);
  6716. // dst[:,:,:,:] = 0
  6717. // for i2,i3:
  6718. // for i1:
  6719. // for i01:
  6720. // for i0:
  6721. // dst[i0,i1,i2,i3] += src0[i0,i01,i2,i3] * src1[i1,i01,i2,i3]
  6722. float * wdata = (float *) params->wdata + (ne0 + CACHE_LINE_SIZE_F32) * ith;
  6723. for (int64_t ir = ir0; ir < ir1; ++ir) {
  6724. // dst indices
  6725. const int64_t i3 = ir/(ne2*ne1);
  6726. const int64_t i2 = (ir - i3*ne2*ne1)/ne1;
  6727. const int64_t i1 = (ir - i3*ne2*ne1 - i2*ne1);
  6728. const int64_t i02 = i2;
  6729. const int64_t i03 = i3;
  6730. //const int64_t i10 = i1;
  6731. const int64_t i12 = i2;
  6732. const int64_t i13 = i3;
  6733. for (int64_t i01 = 0; i01 < ne01; ++i01) {
  6734. const int64_t i11 = i01;
  6735. float * s0 = (float *) ((char *) src0->data + ( i01*nb01 + i02*nb02 + i03*nb03));
  6736. float * s1 = (float *) ((char *) src1->data + (i1*nb10 + i11*nb11 + i12*nb12 + i13*nb13));
  6737. float * d = (float *) ((char *) dst->data + ( i1*nb1 + i2*nb2 + i3*nb3));
  6738. dequantize_row_q(s0, wdata, ne0);
  6739. ggml_vec_mad_f32(ne0, d, wdata, *s1);
  6740. }
  6741. }
  6742. }
  6743. static void ggml_compute_forward_out_prod(
  6744. const struct ggml_compute_params * params,
  6745. struct ggml_tensor * dst) {
  6746. const struct ggml_tensor * src0 = dst->src[0];
  6747. switch (src0->type) {
  6748. case GGML_TYPE_Q4_0:
  6749. case GGML_TYPE_Q4_1:
  6750. case GGML_TYPE_Q5_0:
  6751. case GGML_TYPE_Q5_1:
  6752. case GGML_TYPE_Q8_0:
  6753. case GGML_TYPE_Q2_K:
  6754. case GGML_TYPE_Q3_K:
  6755. case GGML_TYPE_Q4_K:
  6756. case GGML_TYPE_Q5_K:
  6757. case GGML_TYPE_Q6_K:
  6758. case GGML_TYPE_TQ1_0:
  6759. case GGML_TYPE_TQ2_0:
  6760. case GGML_TYPE_IQ2_XXS:
  6761. case GGML_TYPE_IQ2_XS:
  6762. case GGML_TYPE_IQ3_XXS:
  6763. case GGML_TYPE_IQ1_S:
  6764. case GGML_TYPE_IQ1_M:
  6765. case GGML_TYPE_IQ4_NL:
  6766. case GGML_TYPE_IQ4_XS:
  6767. case GGML_TYPE_IQ3_S:
  6768. case GGML_TYPE_IQ2_S:
  6769. case GGML_TYPE_Q4_0_4_4:
  6770. case GGML_TYPE_Q4_0_4_8:
  6771. case GGML_TYPE_Q4_0_8_8:
  6772. {
  6773. ggml_compute_forward_out_prod_q_f32(params, dst);
  6774. } break;
  6775. case GGML_TYPE_F16:
  6776. {
  6777. GGML_ABORT("fatal error"); // todo
  6778. // ggml_compute_forward_out_prod_f16_f32(params, dst);
  6779. }
  6780. case GGML_TYPE_F32:
  6781. {
  6782. ggml_compute_forward_out_prod_f32(params, dst);
  6783. } break;
  6784. default:
  6785. {
  6786. GGML_ABORT("fatal error");
  6787. }
  6788. }
  6789. }
  6790. // ggml_compute_forward_scale
  6791. static void ggml_compute_forward_scale_f32(
  6792. const struct ggml_compute_params * params,
  6793. struct ggml_tensor * dst) {
  6794. const struct ggml_tensor * src0 = dst->src[0];
  6795. GGML_ASSERT(ggml_is_contiguous(src0));
  6796. GGML_ASSERT(ggml_is_contiguous(dst));
  6797. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  6798. // scale factor
  6799. float v;
  6800. memcpy(&v, dst->op_params, sizeof(float));
  6801. const int ith = params->ith;
  6802. const int nth = params->nth;
  6803. const int nc = src0->ne[0];
  6804. const int nr = ggml_nrows(src0);
  6805. // rows per thread
  6806. const int dr = (nr + nth - 1)/nth;
  6807. // row range for this thread
  6808. const int ir0 = dr*ith;
  6809. const int ir1 = MIN(ir0 + dr, nr);
  6810. const size_t nb01 = src0->nb[1];
  6811. const size_t nb1 = dst->nb[1];
  6812. for (int i1 = ir0; i1 < ir1; i1++) {
  6813. if (dst->data != src0->data) {
  6814. // src0 is same shape as dst => same indices
  6815. memcpy((char *)dst->data + i1*nb1, (char *)src0->data + i1*nb01, nc * sizeof(float));
  6816. }
  6817. ggml_vec_scale_f32(nc, (float *) ((char *) dst->data + i1*nb1), v);
  6818. }
  6819. }
  6820. static void ggml_compute_forward_scale(
  6821. const struct ggml_compute_params * params,
  6822. struct ggml_tensor * dst) {
  6823. const struct ggml_tensor * src0 = dst->src[0];
  6824. switch (src0->type) {
  6825. case GGML_TYPE_F32:
  6826. {
  6827. ggml_compute_forward_scale_f32(params, dst);
  6828. } break;
  6829. default:
  6830. {
  6831. GGML_ABORT("fatal error");
  6832. }
  6833. }
  6834. }
  6835. // ggml_compute_forward_set
  6836. static void ggml_compute_forward_set_f32(
  6837. const struct ggml_compute_params * params,
  6838. struct ggml_tensor * dst) {
  6839. const struct ggml_tensor * src0 = dst->src[0];
  6840. const struct ggml_tensor * src1 = dst->src[1];
  6841. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  6842. GGML_ASSERT(ggml_is_contiguous(dst) && ggml_is_contiguous(src0));
  6843. // view src0 and dst with these strides and data offset inbytes during set
  6844. // nb0 is implicitly element_size because src0 and dst are contiguous
  6845. size_t nb1 = ((int32_t *) dst->op_params)[0];
  6846. size_t nb2 = ((int32_t *) dst->op_params)[1];
  6847. size_t nb3 = ((int32_t *) dst->op_params)[2];
  6848. size_t offset = ((int32_t *) dst->op_params)[3];
  6849. bool inplace = (bool) ((int32_t *) dst->op_params)[4];
  6850. if (!inplace) {
  6851. if (params->ith == 0) {
  6852. // memcpy needs to be synchronized across threads to avoid race conditions.
  6853. // => do it in INIT phase
  6854. memcpy(
  6855. ((char *) dst->data),
  6856. ((char *) src0->data),
  6857. ggml_nbytes(dst));
  6858. }
  6859. ggml_barrier(params->threadpool);
  6860. }
  6861. const int ith = params->ith;
  6862. const int nth = params->nth;
  6863. const int nr = ggml_nrows(src1);
  6864. const int nc = src1->ne[0];
  6865. GGML_TENSOR_LOCALS(int64_t, ne1, src1, ne)
  6866. GGML_TENSOR_LOCALS(size_t, nb1, src1, nb)
  6867. // src0 and dst as viewed during set
  6868. const size_t nb0 = ggml_element_size(src0);
  6869. const int im0 = (ne10 == 0 ? 0 : ne10-1);
  6870. const int im1 = (ne11 == 0 ? 0 : ne11-1);
  6871. const int im2 = (ne12 == 0 ? 0 : ne12-1);
  6872. const int im3 = (ne13 == 0 ? 0 : ne13-1);
  6873. GGML_ASSERT(offset + im0*nb0 + im1*nb1 + im2*nb2 + im3*nb3 <= ggml_nbytes(dst));
  6874. GGML_ASSERT(nb10 == sizeof(float));
  6875. // rows per thread
  6876. const int dr = (nr + nth - 1)/nth;
  6877. // row range for this thread
  6878. const int ir0 = dr*ith;
  6879. const int ir1 = MIN(ir0 + dr, nr);
  6880. for (int ir = ir0; ir < ir1; ++ir) {
  6881. // src0 and dst are viewed with shape of src1 and offset
  6882. // => same indices
  6883. const int i3 = ir/(ne12*ne11);
  6884. const int i2 = (ir - i3*ne12*ne11)/ne11;
  6885. const int i1 = (ir - i3*ne12*ne11 - i2*ne11);
  6886. ggml_vec_cpy_f32(nc,
  6887. (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + offset),
  6888. (float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11));
  6889. }
  6890. }
  6891. static void ggml_compute_forward_set(
  6892. const struct ggml_compute_params * params,
  6893. struct ggml_tensor * dst) {
  6894. const struct ggml_tensor * src0 = dst->src[0];
  6895. switch (src0->type) {
  6896. case GGML_TYPE_F32:
  6897. {
  6898. ggml_compute_forward_set_f32(params, dst);
  6899. } break;
  6900. case GGML_TYPE_F16:
  6901. case GGML_TYPE_BF16:
  6902. case GGML_TYPE_Q4_0:
  6903. case GGML_TYPE_Q4_1:
  6904. case GGML_TYPE_Q5_0:
  6905. case GGML_TYPE_Q5_1:
  6906. case GGML_TYPE_Q8_0:
  6907. case GGML_TYPE_Q8_1:
  6908. case GGML_TYPE_Q2_K:
  6909. case GGML_TYPE_Q3_K:
  6910. case GGML_TYPE_Q4_K:
  6911. case GGML_TYPE_Q5_K:
  6912. case GGML_TYPE_Q6_K:
  6913. case GGML_TYPE_TQ1_0:
  6914. case GGML_TYPE_TQ2_0:
  6915. case GGML_TYPE_IQ2_XXS:
  6916. case GGML_TYPE_IQ2_XS:
  6917. case GGML_TYPE_IQ3_XXS:
  6918. case GGML_TYPE_IQ1_S:
  6919. case GGML_TYPE_IQ1_M:
  6920. case GGML_TYPE_IQ4_NL:
  6921. case GGML_TYPE_IQ4_XS:
  6922. case GGML_TYPE_IQ3_S:
  6923. case GGML_TYPE_IQ2_S:
  6924. case GGML_TYPE_Q4_0_4_4:
  6925. case GGML_TYPE_Q4_0_4_8:
  6926. case GGML_TYPE_Q4_0_8_8:
  6927. default:
  6928. {
  6929. GGML_ABORT("fatal error");
  6930. }
  6931. }
  6932. }
  6933. // ggml_compute_forward_cpy
  6934. static void ggml_compute_forward_cpy(
  6935. const struct ggml_compute_params * params,
  6936. struct ggml_tensor * dst) {
  6937. ggml_compute_forward_dup(params, dst);
  6938. }
  6939. // ggml_compute_forward_cont
  6940. static void ggml_compute_forward_cont(
  6941. const struct ggml_compute_params * params,
  6942. struct ggml_tensor * dst) {
  6943. ggml_compute_forward_dup(params, dst);
  6944. }
  6945. // ggml_compute_forward_reshape
  6946. static void ggml_compute_forward_reshape(
  6947. const struct ggml_compute_params * params,
  6948. struct ggml_tensor * dst) {
  6949. // NOP
  6950. UNUSED(params);
  6951. UNUSED(dst);
  6952. }
  6953. // ggml_compute_forward_view
  6954. static void ggml_compute_forward_view(
  6955. const struct ggml_compute_params * params,
  6956. const struct ggml_tensor * dst) {
  6957. // NOP
  6958. UNUSED(params);
  6959. UNUSED(dst);
  6960. }
  6961. // ggml_compute_forward_permute
  6962. static void ggml_compute_forward_permute(
  6963. const struct ggml_compute_params * params,
  6964. const struct ggml_tensor * dst) {
  6965. // NOP
  6966. UNUSED(params);
  6967. UNUSED(dst);
  6968. }
  6969. // ggml_compute_forward_transpose
  6970. static void ggml_compute_forward_transpose(
  6971. const struct ggml_compute_params * params,
  6972. const struct ggml_tensor * dst) {
  6973. // NOP
  6974. UNUSED(params);
  6975. UNUSED(dst);
  6976. }
  6977. // ggml_compute_forward_get_rows
  6978. static void ggml_compute_forward_get_rows_q(
  6979. const struct ggml_compute_params * params,
  6980. struct ggml_tensor * dst) {
  6981. const struct ggml_tensor * src0 = dst->src[0];
  6982. const struct ggml_tensor * src1 = dst->src[1];
  6983. GGML_TENSOR_BINARY_OP_LOCALS
  6984. const int64_t nc = ne00;
  6985. const int64_t nr = ggml_nelements(src1);
  6986. const enum ggml_type type = src0->type;
  6987. ggml_to_float_t const dequantize_row_q = ggml_get_type_traits(type)->to_float;
  6988. assert(ne0 == nc);
  6989. assert(ne02 == ne11);
  6990. assert(nb00 == ggml_type_size(type));
  6991. assert(ggml_nrows(dst) == nr);
  6992. const int ith = params->ith;
  6993. const int nth = params->nth;
  6994. // rows per thread
  6995. const int dr = (nr + nth - 1)/nth;
  6996. // row range for this thread
  6997. const int ir0 = dr*ith;
  6998. const int ir1 = MIN(ir0 + dr, nr);
  6999. for (int64_t i = ir0; i < ir1; ++i) {
  7000. const int64_t i12 = i/(ne11*ne10);
  7001. const int64_t i11 = (i - i12*ne11*ne10)/ne10;
  7002. const int64_t i10 = (i - i12*ne11*ne10 - i11*ne10);
  7003. const int64_t i01 = *(int32_t *) ((char *) src1->data + i10*nb10 + i11*nb11 + i12*nb12);
  7004. GGML_ASSERT(i01 >= 0 && i01 < ne01);
  7005. dequantize_row_q(
  7006. (const void *) ((char *) src0->data + i01*nb01 + i11*nb02 + i12*nb03),
  7007. (float *) ((char *) dst->data + i10*nb1 + i11*nb2 + i12*nb3), nc);
  7008. }
  7009. }
  7010. static void ggml_compute_forward_get_rows_f16(
  7011. const struct ggml_compute_params * params,
  7012. struct ggml_tensor * dst) {
  7013. const struct ggml_tensor * src0 = dst->src[0];
  7014. const struct ggml_tensor * src1 = dst->src[1];
  7015. GGML_TENSOR_BINARY_OP_LOCALS
  7016. const int64_t nc = ne00;
  7017. const int64_t nr = ggml_nelements(src1);
  7018. assert(ne0 == nc);
  7019. assert(ne02 == ne11);
  7020. assert(nb00 == sizeof(ggml_fp16_t));
  7021. assert(ggml_nrows(dst) == nr);
  7022. const int ith = params->ith;
  7023. const int nth = params->nth;
  7024. // rows per thread
  7025. const int dr = (nr + nth - 1)/nth;
  7026. // row range for this thread
  7027. const int ir0 = dr*ith;
  7028. const int ir1 = MIN(ir0 + dr, nr);
  7029. for (int64_t i = ir0; i < ir1; ++i) {
  7030. const int64_t i12 = i/(ne11*ne10);
  7031. const int64_t i11 = (i - i12*ne11*ne10)/ne10;
  7032. const int64_t i10 = (i - i12*ne11*ne10 - i11*ne10);
  7033. const int64_t i01 = *(int32_t *) ((char *) src1->data + i10*nb10 + i11*nb11 + i12*nb12);
  7034. GGML_ASSERT(i01 >= 0 && i01 < ne01);
  7035. ggml_fp16_to_fp32_row(
  7036. (const void *) ((char *) src0->data + i01*nb01 + i11*nb02 + i12*nb03),
  7037. (float *) ((char *) dst->data + i10*nb1 + i11*nb2 + i12*nb3), nc);
  7038. }
  7039. }
  7040. static void ggml_compute_forward_get_rows_bf16(
  7041. const struct ggml_compute_params * params,
  7042. struct ggml_tensor * dst) {
  7043. const struct ggml_tensor * src0 = dst->src[0];
  7044. const struct ggml_tensor * src1 = dst->src[1];
  7045. GGML_TENSOR_BINARY_OP_LOCALS
  7046. const int64_t nc = ne00;
  7047. const int64_t nr = ggml_nelements(src1);
  7048. assert(ne0 == nc);
  7049. assert(ne02 == ne11);
  7050. assert(nb00 == sizeof(ggml_bf16_t));
  7051. assert(ggml_nrows(dst) == nr);
  7052. const int ith = params->ith;
  7053. const int nth = params->nth;
  7054. // rows per thread
  7055. const int dr = (nr + nth - 1)/nth;
  7056. // row range for this thread
  7057. const int ir0 = dr*ith;
  7058. const int ir1 = MIN(ir0 + dr, nr);
  7059. for (int64_t i = ir0; i < ir1; ++i) {
  7060. const int64_t i12 = i/(ne11*ne10);
  7061. const int64_t i11 = (i - i12*ne11*ne10)/ne10;
  7062. const int64_t i10 = (i - i12*ne11*ne10 - i11*ne10);
  7063. const int64_t i01 = *(int32_t *) ((char *) src1->data + i10*nb10 + i11*nb11 + i12*nb12);
  7064. GGML_ASSERT(i01 >= 0 && i01 < ne01);
  7065. ggml_bf16_to_fp32_row(
  7066. (const void *) ((char *) src0->data + i01*nb01 + i11*nb02 + i12*nb03),
  7067. (float *) ((char *) dst->data + i10*nb1 + i11*nb2 + i12*nb3), nc);
  7068. }
  7069. }
  7070. static void ggml_compute_forward_get_rows_f32(
  7071. const struct ggml_compute_params * params,
  7072. struct ggml_tensor * dst) {
  7073. const struct ggml_tensor * src0 = dst->src[0];
  7074. const struct ggml_tensor * src1 = dst->src[1];
  7075. GGML_TENSOR_BINARY_OP_LOCALS
  7076. const int64_t nc = ne00;
  7077. const int64_t nr = ggml_nelements(src1);
  7078. assert(ne0 == nc);
  7079. assert(ne02 == ne11);
  7080. assert(nb00 == sizeof(float));
  7081. assert(ggml_nrows(dst) == nr);
  7082. const int ith = params->ith;
  7083. const int nth = params->nth;
  7084. // rows per thread
  7085. const int dr = (nr + nth - 1)/nth;
  7086. // row range for this thread
  7087. const int ir0 = dr*ith;
  7088. const int ir1 = MIN(ir0 + dr, nr);
  7089. for (int64_t i = ir0; i < ir1; ++i) {
  7090. const int64_t i12 = i/(ne11*ne10);
  7091. const int64_t i11 = (i - i12*ne11*ne10)/ne10;
  7092. const int64_t i10 = (i - i12*ne11*ne10 - i11*ne10);
  7093. const int64_t i01 = *(int32_t *) ((char *) src1->data + i10*nb10 + i11*nb11 + i12*nb12);
  7094. GGML_ASSERT(i01 >= 0 && i01 < ne01);
  7095. ggml_vec_cpy_f32(nc,
  7096. (float *) ((char *) dst->data + i10*nb1 + i11*nb2 + i12*nb3),
  7097. (float *) ((char *) src0->data + i01*nb01 + i11*nb02 + i12*nb03));
  7098. }
  7099. }
  7100. static void ggml_compute_forward_get_rows(
  7101. const struct ggml_compute_params * params,
  7102. struct ggml_tensor * dst) {
  7103. const struct ggml_tensor * src0 = dst->src[0];
  7104. switch (src0->type) {
  7105. case GGML_TYPE_Q4_0:
  7106. case GGML_TYPE_Q4_1:
  7107. case GGML_TYPE_Q5_0:
  7108. case GGML_TYPE_Q5_1:
  7109. case GGML_TYPE_Q8_0:
  7110. case GGML_TYPE_Q8_1:
  7111. case GGML_TYPE_Q2_K:
  7112. case GGML_TYPE_Q3_K:
  7113. case GGML_TYPE_Q4_K:
  7114. case GGML_TYPE_Q5_K:
  7115. case GGML_TYPE_Q6_K:
  7116. case GGML_TYPE_TQ1_0:
  7117. case GGML_TYPE_TQ2_0:
  7118. case GGML_TYPE_IQ2_XXS:
  7119. case GGML_TYPE_IQ2_XS:
  7120. case GGML_TYPE_IQ3_XXS:
  7121. case GGML_TYPE_IQ1_S:
  7122. case GGML_TYPE_IQ1_M:
  7123. case GGML_TYPE_IQ4_NL:
  7124. case GGML_TYPE_IQ4_XS:
  7125. case GGML_TYPE_IQ3_S:
  7126. case GGML_TYPE_IQ2_S:
  7127. case GGML_TYPE_Q4_0_4_4:
  7128. case GGML_TYPE_Q4_0_4_8:
  7129. case GGML_TYPE_Q4_0_8_8:
  7130. {
  7131. ggml_compute_forward_get_rows_q(params, dst);
  7132. } break;
  7133. case GGML_TYPE_F16:
  7134. {
  7135. ggml_compute_forward_get_rows_f16(params, dst);
  7136. } break;
  7137. case GGML_TYPE_BF16:
  7138. {
  7139. ggml_compute_forward_get_rows_bf16(params, dst);
  7140. } break;
  7141. case GGML_TYPE_F32:
  7142. case GGML_TYPE_I32:
  7143. {
  7144. ggml_compute_forward_get_rows_f32(params, dst);
  7145. } break;
  7146. default:
  7147. {
  7148. GGML_ABORT("fatal error");
  7149. }
  7150. }
  7151. //static bool first = true;
  7152. //printf("ne0 = %d, ne1 = %d, ne2 = %d\n", dst->ne[0], dst->ne[1], dst->ne[2]);
  7153. //if (first) {
  7154. // first = false;
  7155. //} else {
  7156. // for (int k = 0; k < dst->ne[1]; ++k) {
  7157. // for (int j = 0; j < dst->ne[0]/16; ++j) {
  7158. // for (int i = 0; i < 16; ++i) {
  7159. // printf("%8.4f ", ((float *) dst->data)[k*dst->ne[0] + j*16 + i]);
  7160. // }
  7161. // printf("\n");
  7162. // }
  7163. // printf("\n");
  7164. // }
  7165. // printf("\n");
  7166. // exit(0);
  7167. //}
  7168. }
  7169. // ggml_compute_forward_get_rows_back
  7170. static void ggml_compute_forward_get_rows_back_f32_f16(
  7171. const struct ggml_compute_params * params,
  7172. struct ggml_tensor * dst) {
  7173. const struct ggml_tensor * src0 = dst->src[0];
  7174. const struct ggml_tensor * src1 = dst->src[1];
  7175. if (params->ith != 0) {
  7176. return;
  7177. }
  7178. GGML_ASSERT(ggml_is_contiguous(dst));
  7179. // ggml_compute_forward_dup_same_cont(params, opt0, dst);
  7180. memset(dst->data, 0, ggml_nbytes(dst));
  7181. const int nc = src0->ne[0];
  7182. const int nr = ggml_nelements(src1);
  7183. GGML_ASSERT( dst->ne[0] == nc);
  7184. GGML_ASSERT(src0->nb[0] == sizeof(ggml_fp16_t));
  7185. for (int i = 0; i < nr; ++i) {
  7186. const int r = ((int32_t *) src1->data)[i];
  7187. for (int j = 0; j < nc; ++j) {
  7188. ggml_fp16_t v = ((ggml_fp16_t *) ((char *) src0->data + i*src0->nb[1]))[j];
  7189. ((float *) ((char *) dst->data + r*dst->nb[1]))[j] += GGML_FP16_TO_FP32(v);
  7190. }
  7191. }
  7192. }
  7193. static void ggml_compute_forward_get_rows_back_f32(
  7194. const struct ggml_compute_params * params,
  7195. struct ggml_tensor * dst) {
  7196. const struct ggml_tensor * src0 = dst->src[0];
  7197. const struct ggml_tensor * src1 = dst->src[1];
  7198. if (params->ith != 0) {
  7199. return;
  7200. }
  7201. GGML_ASSERT(ggml_is_contiguous(dst));
  7202. // ggml_compute_forward_dup_same_cont(params, opt0, dst);
  7203. memset(dst->data, 0, ggml_nbytes(dst));
  7204. const int nc = src0->ne[0];
  7205. const int nr = ggml_nelements(src1);
  7206. GGML_ASSERT( dst->ne[0] == nc);
  7207. GGML_ASSERT(src0->nb[0] == sizeof(float));
  7208. for (int i = 0; i < nr; ++i) {
  7209. const int r = ((int32_t *) src1->data)[i];
  7210. ggml_vec_add_f32(nc,
  7211. (float *) ((char *) dst->data + r*dst->nb[1]),
  7212. (float *) ((char *) dst->data + r*dst->nb[1]),
  7213. (float *) ((char *) src0->data + i*src0->nb[1]));
  7214. }
  7215. }
  7216. static void ggml_compute_forward_get_rows_back(
  7217. const struct ggml_compute_params * params,
  7218. struct ggml_tensor * dst) {
  7219. const struct ggml_tensor * src0 = dst->src[0];
  7220. switch (src0->type) {
  7221. case GGML_TYPE_F16:
  7222. {
  7223. ggml_compute_forward_get_rows_back_f32_f16(params, dst);
  7224. } break;
  7225. case GGML_TYPE_F32:
  7226. {
  7227. ggml_compute_forward_get_rows_back_f32(params, dst);
  7228. } break;
  7229. default:
  7230. {
  7231. GGML_ABORT("fatal error");
  7232. }
  7233. }
  7234. //static bool first = true;
  7235. //printf("ne0 = %d, ne1 = %d, ne2 = %d\n", dst->ne[0], dst->ne[1], dst->ne[2]);
  7236. //if (first) {
  7237. // first = false;
  7238. //} else {
  7239. // for (int k = 0; k < dst->ne[1]; ++k) {
  7240. // for (int j = 0; j < dst->ne[0]/16; ++j) {
  7241. // for (int i = 0; i < 16; ++i) {
  7242. // printf("%8.4f ", ((float *) dst->data)[k*dst->ne[0] + j*16 + i]);
  7243. // }
  7244. // printf("\n");
  7245. // }
  7246. // printf("\n");
  7247. // }
  7248. // printf("\n");
  7249. // exit(0);
  7250. //}
  7251. }
  7252. // ggml_compute_forward_diag
  7253. static void ggml_compute_forward_diag_f32(
  7254. const struct ggml_compute_params * params,
  7255. struct ggml_tensor * dst) {
  7256. const struct ggml_tensor * src0 = dst->src[0];
  7257. if (params->ith != 0) {
  7258. return;
  7259. }
  7260. // TODO: handle transposed/permuted matrices
  7261. GGML_TENSOR_UNARY_OP_LOCALS
  7262. GGML_ASSERT(ne00 == ne0);
  7263. GGML_ASSERT(ne00 == ne1);
  7264. GGML_ASSERT(ne01 == 1);
  7265. GGML_ASSERT(ne02 == ne2);
  7266. GGML_ASSERT(ne03 == ne3);
  7267. GGML_ASSERT(nb00 == sizeof(float));
  7268. GGML_ASSERT(nb0 == sizeof(float));
  7269. for (int i3 = 0; i3 < ne3; i3++) {
  7270. for (int i2 = 0; i2 < ne2; i2++) {
  7271. for (int i1 = 0; i1 < ne1; i1++) {
  7272. float * d = (float *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1);
  7273. float * s = (float *)((char *) src0->data + i3*nb03 + i2*nb02);
  7274. for (int i0 = 0; i0 < i1; i0++) {
  7275. d[i0] = 0;
  7276. }
  7277. d[i1] = s[i1];
  7278. for (int i0 = i1+1; i0 < ne0; i0++) {
  7279. d[i0] = 0;
  7280. }
  7281. }
  7282. }
  7283. }
  7284. }
  7285. static void ggml_compute_forward_diag(
  7286. const struct ggml_compute_params * params,
  7287. struct ggml_tensor * dst) {
  7288. const struct ggml_tensor * src0 = dst->src[0];
  7289. switch (src0->type) {
  7290. case GGML_TYPE_F32:
  7291. {
  7292. ggml_compute_forward_diag_f32(params, dst);
  7293. } break;
  7294. default:
  7295. {
  7296. GGML_ABORT("fatal error");
  7297. }
  7298. }
  7299. }
  7300. // ggml_compute_forward_diag_mask_inf
  7301. static void ggml_compute_forward_diag_mask_f32(
  7302. const struct ggml_compute_params * params,
  7303. struct ggml_tensor * dst,
  7304. const float value) {
  7305. const struct ggml_tensor * src0 = dst->src[0];
  7306. const int ith = params->ith;
  7307. const int nth = params->nth;
  7308. const int n_past = ((int32_t *) dst->op_params)[0];
  7309. const bool inplace = src0->data == dst->data;
  7310. GGML_ASSERT(n_past >= 0);
  7311. if (!inplace) {
  7312. if (ith == 0) {
  7313. // memcpy needs to be synchronized across threads to avoid race conditions.
  7314. // => do it in INIT phase
  7315. GGML_ASSERT(ggml_nelements(dst) == ggml_nelements(src0));
  7316. GGML_ASSERT(ggml_is_contiguous(dst) && ggml_is_contiguous(src0));
  7317. memcpy(
  7318. ((char *) dst->data),
  7319. ((char *) src0->data),
  7320. ggml_nbytes(dst));
  7321. }
  7322. ggml_barrier(params->threadpool);
  7323. }
  7324. // TODO: handle transposed/permuted matrices
  7325. const int n = ggml_nrows(src0);
  7326. const int nc = src0->ne[0];
  7327. const int nr = src0->ne[1];
  7328. const int nz = n/nr;
  7329. GGML_ASSERT( dst->nb[0] == sizeof(float));
  7330. GGML_ASSERT(src0->nb[0] == sizeof(float));
  7331. for (int k = 0; k < nz; k++) {
  7332. for (int j = ith; j < nr; j += nth) {
  7333. for (int i = n_past; i < nc; i++) {
  7334. if (i > n_past + j) {
  7335. *(float *)((char *) dst->data + k*dst->nb[2] + j*dst->nb[1] + i*dst->nb[0]) = value;
  7336. }
  7337. }
  7338. }
  7339. }
  7340. }
  7341. static void ggml_compute_forward_diag_mask_inf(
  7342. const struct ggml_compute_params * params,
  7343. struct ggml_tensor * dst) {
  7344. const struct ggml_tensor * src0 = dst->src[0];
  7345. switch (src0->type) {
  7346. case GGML_TYPE_F32:
  7347. {
  7348. ggml_compute_forward_diag_mask_f32(params, dst, -INFINITY);
  7349. } break;
  7350. default:
  7351. {
  7352. GGML_ABORT("fatal error");
  7353. }
  7354. }
  7355. }
  7356. static void ggml_compute_forward_diag_mask_zero(
  7357. const struct ggml_compute_params * params,
  7358. struct ggml_tensor * dst) {
  7359. const struct ggml_tensor * src0 = dst->src[0];
  7360. switch (src0->type) {
  7361. case GGML_TYPE_F32:
  7362. {
  7363. ggml_compute_forward_diag_mask_f32(params, dst, 0);
  7364. } break;
  7365. default:
  7366. {
  7367. GGML_ABORT("fatal error");
  7368. }
  7369. }
  7370. }
  7371. // ggml_compute_forward_soft_max
  7372. static void ggml_compute_forward_soft_max_f32(
  7373. const struct ggml_compute_params * params,
  7374. struct ggml_tensor * dst) {
  7375. const struct ggml_tensor * src0 = dst->src[0];
  7376. const struct ggml_tensor * src1 = dst->src[1];
  7377. assert(ggml_is_contiguous(dst));
  7378. assert(ggml_are_same_shape(src0, dst));
  7379. float scale = 1.0f;
  7380. float max_bias = 0.0f;
  7381. memcpy(&scale, (float *) dst->op_params + 0, sizeof(float));
  7382. memcpy(&max_bias, (float *) dst->op_params + 1, sizeof(float));
  7383. // TODO: handle transposed/permuted matrices
  7384. const int ith = params->ith;
  7385. const int nth = params->nth;
  7386. GGML_TENSOR_UNARY_OP_LOCALS
  7387. //const int64_t ne11 = src1 ? src1->ne[1] : 1;
  7388. // TODO: is this supposed to be ceil instead of floor?
  7389. // https://huggingface.co/mosaicml/mpt-7b/blob/main/attention.py#L370
  7390. const uint32_t n_head = ne02;
  7391. const uint32_t n_head_log2 = 1u << (uint32_t) floor(log2(n_head));
  7392. const float m0 = powf(2.0f, -(max_bias ) / n_head_log2);
  7393. const float m1 = powf(2.0f, -(max_bias / 2.0f) / n_head_log2);
  7394. const int nc = src0->ne[0];
  7395. const int nr = ggml_nrows(src0);
  7396. // rows per thread
  7397. const int dr = (nr + nth - 1)/nth;
  7398. // row range for this thread
  7399. const int ir0 = dr*ith;
  7400. const int ir1 = MIN(ir0 + dr, nr);
  7401. float * wp = (float *) params->wdata + (nc + CACHE_LINE_SIZE_F32) * ith;
  7402. const bool use_f16 = (src1 && src1->type == GGML_TYPE_F16);
  7403. for (int i1 = ir0; i1 < ir1; i1++) {
  7404. // ALiBi
  7405. const uint32_t h = (i1/ne01)%ne02; // head
  7406. const float slope = (max_bias > 0.0f) ? h < n_head_log2 ? powf(m0, h + 1) : powf(m1, 2*(h - n_head_log2) + 1) : 1.0f;
  7407. float * sp = (float *)((char *) src0->data + i1*src0->nb[1]);
  7408. float * dp = (float *)((char *) dst->data + i1*dst->nb[1]);
  7409. // broadcast the mask across rows
  7410. ggml_fp16_t * mp_f16 = src1 ? (ggml_fp16_t *)((char *) src1->data) + (i1%ne01)*ne00 : NULL;
  7411. float * mp_f32 = src1 ? (float *)((char *) src1->data) + (i1%ne01)*ne00 : NULL;
  7412. ggml_vec_cpy_f32 (nc, wp, sp);
  7413. ggml_vec_scale_f32(nc, wp, scale);
  7414. if (mp_f32) {
  7415. if (use_f16) {
  7416. for (int i = 0; i < nc; ++i) {
  7417. wp[i] += slope*GGML_FP16_TO_FP32(mp_f16[i]);
  7418. }
  7419. } else {
  7420. for (int i = 0; i < nc; ++i) {
  7421. wp[i] += slope*mp_f32[i];
  7422. }
  7423. }
  7424. }
  7425. #ifndef NDEBUG
  7426. for (int i = 0; i < nc; ++i) {
  7427. //printf("p[%d] = %f\n", i, p[i]);
  7428. assert(!isnan(wp[i]));
  7429. }
  7430. #endif
  7431. float max = -INFINITY;
  7432. ggml_vec_max_f32(nc, &max, wp);
  7433. ggml_float sum = ggml_vec_soft_max_f32(nc, dp, wp, max);
  7434. assert(sum > 0.0);
  7435. sum = 1.0/sum;
  7436. ggml_vec_scale_f32(nc, dp, sum);
  7437. #ifndef NDEBUG
  7438. for (int i = 0; i < nc; ++i) {
  7439. assert(!isnan(dp[i]));
  7440. assert(!isinf(dp[i]));
  7441. }
  7442. #endif
  7443. }
  7444. }
  7445. static void ggml_compute_forward_soft_max(
  7446. const struct ggml_compute_params * params,
  7447. struct ggml_tensor * dst) {
  7448. const struct ggml_tensor * src0 = dst->src[0];
  7449. switch (src0->type) {
  7450. case GGML_TYPE_F32:
  7451. {
  7452. ggml_compute_forward_soft_max_f32(params, dst);
  7453. } break;
  7454. default:
  7455. {
  7456. GGML_ABORT("fatal error");
  7457. }
  7458. }
  7459. }
  7460. // ggml_compute_forward_soft_max_back
  7461. static void ggml_compute_forward_soft_max_back_f32(
  7462. const struct ggml_compute_params * params,
  7463. struct ggml_tensor * dst) {
  7464. const struct ggml_tensor * src0 = dst->src[0];
  7465. const struct ggml_tensor * src1 = dst->src[1];
  7466. GGML_ASSERT(ggml_is_contiguous(src0));
  7467. GGML_ASSERT(ggml_is_contiguous(src1));
  7468. GGML_ASSERT(ggml_is_contiguous(dst));
  7469. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  7470. GGML_ASSERT(ggml_are_same_shape(src1, dst));
  7471. // TODO: handle transposed/permuted matrices
  7472. const int ith = params->ith;
  7473. const int nth = params->nth;
  7474. const int nc = src0->ne[0];
  7475. const int nr = ggml_nrows(src0);
  7476. // rows per thread
  7477. const int dr = (nr + nth - 1)/nth;
  7478. // row range for this thread
  7479. const int ir0 = dr*ith;
  7480. const int ir1 = MIN(ir0 + dr, nr);
  7481. for (int i1 = ir0; i1 < ir1; i1++) {
  7482. float *dy = (float *)((char *) src0->data + i1*src0->nb[1]);
  7483. float *y = (float *)((char *) src1->data + i1*src1->nb[1]);
  7484. float *dx = (float *)((char *) dst->data + i1*dst->nb[1]);
  7485. #ifndef NDEBUG
  7486. for (int i = 0; i < nc; ++i) {
  7487. //printf("p[%d] = %f\n", i, p[i]);
  7488. assert(!isnan(dy[i]));
  7489. assert(!isnan(y[i]));
  7490. }
  7491. #endif
  7492. // Jii = yi - yi*yi
  7493. // Jij = -yi*yj
  7494. // J = diag(y)-y.T*y
  7495. // dx = J * dy
  7496. // dxk = sum_i(Jki * dyi)
  7497. // dxk = sum_i(-yk*yi * dyi) - (-yk*yk)*dyk + (yk - yk*yk)*dyk
  7498. // dxk = sum_i(-yk*yi * dyi) + yk*yk*dyk + yk*dyk - yk*yk*dyk
  7499. // dxk = sum_i(-yk*yi * dyi) + yk*dyk
  7500. // dxk = -yk * sum_i(yi * dyi) + yk*dyk
  7501. // dxk = -yk * dot(y, dy) + yk*dyk
  7502. // dxk = yk * (- dot(y, dy) + dyk)
  7503. // dxk = yk * (dyk - dot(y, dy))
  7504. //
  7505. // post-order:
  7506. // dot_y_dy := dot(y, dy)
  7507. // dx := dy
  7508. // dx := dx - dot_y_dy
  7509. // dx := dx * y
  7510. // linear runtime, no additional memory
  7511. float dot_y_dy = 0;
  7512. ggml_vec_dot_f32 (nc, &dot_y_dy, 0, y, 0, dy, 0, 1);
  7513. ggml_vec_cpy_f32 (nc, dx, dy);
  7514. ggml_vec_acc1_f32(nc, dx, -dot_y_dy);
  7515. ggml_vec_mul_f32 (nc, dx, dx, y);
  7516. #ifndef NDEBUG
  7517. for (int i = 0; i < nc; ++i) {
  7518. assert(!isnan(dx[i]));
  7519. assert(!isinf(dx[i]));
  7520. }
  7521. #endif
  7522. }
  7523. }
  7524. static void ggml_compute_forward_soft_max_back(
  7525. const struct ggml_compute_params * params,
  7526. struct ggml_tensor * dst) {
  7527. const struct ggml_tensor * src0 = dst->src[0];
  7528. switch (src0->type) {
  7529. case GGML_TYPE_F32:
  7530. {
  7531. ggml_compute_forward_soft_max_back_f32(params, dst);
  7532. } break;
  7533. default:
  7534. {
  7535. GGML_ABORT("fatal error");
  7536. }
  7537. }
  7538. }
  7539. // ggml_compute_forward_clamp
  7540. static void ggml_compute_forward_clamp_f32(
  7541. const struct ggml_compute_params * params,
  7542. struct ggml_tensor * dst) {
  7543. const struct ggml_tensor * src0 = dst->src[0];
  7544. if (params->ith != 0) {
  7545. return;
  7546. }
  7547. float min;
  7548. float max;
  7549. memcpy(&min, (float *) dst->op_params + 0, sizeof(float));
  7550. memcpy(&max, (float *) dst->op_params + 1, sizeof(float));
  7551. const int ith = params->ith;
  7552. const int nth = params->nth;
  7553. const int n = ggml_nrows(src0);
  7554. const int nc = src0->ne[0];
  7555. const size_t nb00 = src0->nb[0];
  7556. const size_t nb01 = src0->nb[1];
  7557. const size_t nb0 = dst->nb[0];
  7558. const size_t nb1 = dst->nb[1];
  7559. GGML_ASSERT( nb0 == sizeof(float));
  7560. GGML_ASSERT(nb00 == sizeof(float));
  7561. for (int j = ith; j < n; j += nth) {
  7562. float * dst_ptr = (float *) ((char *) dst->data + j*nb1);
  7563. float * src0_ptr = (float *) ((char *) src0->data + j*nb01);
  7564. for (int i = 0; i < nc; i++) {
  7565. dst_ptr[i] = MAX(MIN(src0_ptr[i], max), min);
  7566. }
  7567. }
  7568. }
  7569. static void ggml_compute_forward_clamp(
  7570. const struct ggml_compute_params * params,
  7571. struct ggml_tensor * dst) {
  7572. const struct ggml_tensor * src0 = dst->src[0];
  7573. switch (src0->type) {
  7574. case GGML_TYPE_F32:
  7575. {
  7576. ggml_compute_forward_clamp_f32(params, dst);
  7577. } break;
  7578. case GGML_TYPE_F16:
  7579. case GGML_TYPE_BF16:
  7580. case GGML_TYPE_Q4_0:
  7581. case GGML_TYPE_Q4_1:
  7582. case GGML_TYPE_Q5_0:
  7583. case GGML_TYPE_Q5_1:
  7584. case GGML_TYPE_Q8_0:
  7585. case GGML_TYPE_Q8_1:
  7586. case GGML_TYPE_Q2_K:
  7587. case GGML_TYPE_Q3_K:
  7588. case GGML_TYPE_Q4_K:
  7589. case GGML_TYPE_Q5_K:
  7590. case GGML_TYPE_Q6_K:
  7591. case GGML_TYPE_TQ1_0:
  7592. case GGML_TYPE_TQ2_0:
  7593. case GGML_TYPE_IQ2_XXS:
  7594. case GGML_TYPE_IQ2_XS:
  7595. case GGML_TYPE_IQ3_XXS:
  7596. case GGML_TYPE_IQ1_S:
  7597. case GGML_TYPE_IQ1_M:
  7598. case GGML_TYPE_IQ4_NL:
  7599. case GGML_TYPE_IQ4_XS:
  7600. case GGML_TYPE_IQ3_S:
  7601. case GGML_TYPE_IQ2_S:
  7602. case GGML_TYPE_Q8_K:
  7603. case GGML_TYPE_Q4_0_4_4:
  7604. case GGML_TYPE_Q4_0_4_8:
  7605. case GGML_TYPE_Q4_0_8_8:
  7606. case GGML_TYPE_IQ4_NL_4_4:
  7607. case GGML_TYPE_I8:
  7608. case GGML_TYPE_I16:
  7609. case GGML_TYPE_I32:
  7610. case GGML_TYPE_I64:
  7611. case GGML_TYPE_F64:
  7612. case GGML_TYPE_COUNT:
  7613. {
  7614. GGML_ABORT("fatal error");
  7615. }
  7616. }
  7617. }
  7618. // ggml_compute_forward_rope
  7619. static float rope_yarn_ramp(const float low, const float high, const int i0) {
  7620. const float y = (i0 / 2 - low) / MAX(0.001f, high - low);
  7621. return 1 - MIN(1, MAX(0, y));
  7622. }
  7623. // YaRN algorithm based on LlamaYaRNScaledRotaryEmbedding.py from https://github.com/jquesnelle/yarn
  7624. // MIT licensed. Copyright (c) 2023 Jeffrey Quesnelle and Bowen Peng.
  7625. static void rope_yarn(
  7626. float theta_extrap, float freq_scale, float corr_dims[2], int64_t i0, float ext_factor, float mscale,
  7627. float * cos_theta, float * sin_theta) {
  7628. // Get n-d rotational scaling corrected for extrapolation
  7629. float theta_interp = freq_scale * theta_extrap;
  7630. float theta = theta_interp;
  7631. if (ext_factor != 0.0f) {
  7632. float ramp_mix = rope_yarn_ramp(corr_dims[0], corr_dims[1], i0) * ext_factor;
  7633. theta = theta_interp * (1 - ramp_mix) + theta_extrap * ramp_mix;
  7634. // Get n-d magnitude scaling corrected for interpolation
  7635. mscale *= 1.0f + 0.1f * logf(1.0f / freq_scale);
  7636. }
  7637. *cos_theta = cosf(theta) * mscale;
  7638. *sin_theta = sinf(theta) * mscale;
  7639. }
  7640. static void ggml_rope_cache_init(
  7641. float theta_base, float freq_scale, const float * freq_factors, float corr_dims[2], int64_t ne0, float ext_factor, float mscale,
  7642. float * cache, float sin_sign, float theta_scale) {
  7643. // ref: https://github.com/jquesnelle/yarn/blob/master/scaled_rope/LlamaYaRNScaledRotaryEmbedding.py
  7644. float theta = theta_base;
  7645. for (int64_t i0 = 0; i0 < ne0; i0 += 2) {
  7646. const float ff = freq_factors ? freq_factors[i0/2] : 1.0f;
  7647. rope_yarn(
  7648. theta/ff, freq_scale, corr_dims, i0, ext_factor, mscale, &cache[i0 + 0], &cache[i0 + 1]
  7649. );
  7650. cache[i0 + 1] *= sin_sign;
  7651. theta *= theta_scale;
  7652. }
  7653. }
  7654. static void ggml_compute_forward_rope_f32(
  7655. const struct ggml_compute_params * params,
  7656. struct ggml_tensor * dst,
  7657. const bool forward) {
  7658. const struct ggml_tensor * src0 = dst->src[0];
  7659. const struct ggml_tensor * src1 = dst->src[1];
  7660. const struct ggml_tensor * src2 = dst->src[2];
  7661. float freq_base, freq_scale, ext_factor, attn_factor, beta_fast, beta_slow;
  7662. //const int n_past = ((int32_t *) dst->op_params)[0];
  7663. const int n_dims = ((int32_t *) dst->op_params)[1];
  7664. const int mode = ((int32_t *) dst->op_params)[2];
  7665. //const int n_ctx = ((int32_t *) dst->op_params)[3];
  7666. const int n_ctx_orig = ((int32_t *) dst->op_params)[4];
  7667. memcpy(&freq_base, (int32_t *) dst->op_params + 5, sizeof(float));
  7668. memcpy(&freq_scale, (int32_t *) dst->op_params + 6, sizeof(float));
  7669. memcpy(&ext_factor, (int32_t *) dst->op_params + 7, sizeof(float));
  7670. memcpy(&attn_factor, (int32_t *) dst->op_params + 8, sizeof(float));
  7671. memcpy(&beta_fast, (int32_t *) dst->op_params + 9, sizeof(float));
  7672. memcpy(&beta_slow, (int32_t *) dst->op_params + 10, sizeof(float));
  7673. GGML_TENSOR_UNARY_OP_LOCALS
  7674. //printf("ne0: %d, ne1: %d, ne2: %d, ne3: %d\n", ne0, ne1, ne2, ne3);
  7675. //printf("n_past = %d, ne2 = %d\n", n_past, ne2);
  7676. GGML_ASSERT(nb00 == sizeof(float));
  7677. const int ith = params->ith;
  7678. const int nth = params->nth;
  7679. const int nr = ggml_nrows(dst);
  7680. GGML_ASSERT(n_dims <= ne0);
  7681. GGML_ASSERT(n_dims % 2 == 0);
  7682. // rows per thread
  7683. const int dr = (nr + nth - 1)/nth;
  7684. // row range for this thread
  7685. const int ir0 = dr*ith;
  7686. const int ir1 = MIN(ir0 + dr, nr);
  7687. // row index used to determine which thread to use
  7688. int ir = 0;
  7689. const float theta_scale = powf(freq_base, -2.0f/n_dims);
  7690. float corr_dims[2];
  7691. ggml_rope_yarn_corr_dims(n_dims, n_ctx_orig, freq_base, beta_fast, beta_slow, corr_dims);
  7692. const bool is_neox = mode & GGML_ROPE_TYPE_NEOX;
  7693. const float * freq_factors = NULL;
  7694. if (src2 != NULL) {
  7695. GGML_ASSERT(src2->type == GGML_TYPE_F32);
  7696. GGML_ASSERT(src2->ne[0] >= n_dims / 2);
  7697. freq_factors = (const float *) src2->data;
  7698. }
  7699. // backward process uses inverse rotation by cos and sin.
  7700. // cos and sin build a rotation matrix, where the inverse is the transpose.
  7701. // this essentially just switches the sign of sin.
  7702. const float sin_sign = forward ? 1.0f : -1.0f;
  7703. const int32_t * pos = (const int32_t *) src1->data;
  7704. for (int64_t i3 = 0; i3 < ne3; i3++) {
  7705. for (int64_t i2 = 0; i2 < ne2; i2++) {
  7706. const int64_t p = pos[i2];
  7707. float * cache = (float *) params->wdata + (ne0 + CACHE_LINE_SIZE_F32)*ith;
  7708. ggml_rope_cache_init(p, freq_scale, freq_factors, corr_dims, ne0, ext_factor, attn_factor, cache, sin_sign, theta_scale);
  7709. for (int64_t i1 = 0; i1 < ne1; i1++) {
  7710. if (ir++ < ir0) continue;
  7711. if (ir > ir1) break;
  7712. if (!is_neox) {
  7713. for (int64_t i0 = 0; i0 < n_dims; i0 += 2) {
  7714. const float cos_theta = cache[i0 + 0];
  7715. const float sin_theta = cache[i0 + 1];
  7716. const float * const src = (float *)((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + i0*nb00);
  7717. float * dst_data = (float *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
  7718. const float x0 = src[0];
  7719. const float x1 = src[1];
  7720. dst_data[0] = x0*cos_theta - x1*sin_theta;
  7721. dst_data[1] = x0*sin_theta + x1*cos_theta;
  7722. }
  7723. } else {
  7724. for (int64_t i0 = 0; i0 < n_dims; i0 += 2) {
  7725. const int64_t ic = i0/2;
  7726. const float cos_theta = cache[i0 + 0];
  7727. const float sin_theta = cache[i0 + 1];
  7728. const float * const src = (float *)((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + ic*nb00);
  7729. float * dst_data = (float *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + ic*nb0);
  7730. const float x0 = src[0];
  7731. const float x1 = src[n_dims/2];
  7732. dst_data[0] = x0*cos_theta - x1*sin_theta;
  7733. dst_data[n_dims/2] = x0*sin_theta + x1*cos_theta;
  7734. }
  7735. }
  7736. for (int64_t i0 = n_dims; i0 < ne0; i0 += 2) {
  7737. const float * const src = (float *)((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + i0*nb00);
  7738. float * dst_data = (float *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
  7739. dst_data[0] = src[0];
  7740. dst_data[1] = src[1];
  7741. }
  7742. }
  7743. }
  7744. }
  7745. }
  7746. // TODO: deduplicate f16/f32 code
  7747. static void ggml_compute_forward_rope_f16(
  7748. const struct ggml_compute_params * params,
  7749. struct ggml_tensor * dst,
  7750. const bool forward) {
  7751. const struct ggml_tensor * src0 = dst->src[0];
  7752. const struct ggml_tensor * src1 = dst->src[1];
  7753. const struct ggml_tensor * src2 = dst->src[2];
  7754. float freq_base, freq_scale, ext_factor, attn_factor, beta_fast, beta_slow;
  7755. //const int n_past = ((int32_t *) dst->op_params)[0];
  7756. const int n_dims = ((int32_t *) dst->op_params)[1];
  7757. const int mode = ((int32_t *) dst->op_params)[2];
  7758. //const int n_ctx = ((int32_t *) dst->op_params)[3];
  7759. const int n_ctx_orig = ((int32_t *) dst->op_params)[4];
  7760. memcpy(&freq_base, (int32_t *) dst->op_params + 5, sizeof(float));
  7761. memcpy(&freq_scale, (int32_t *) dst->op_params + 6, sizeof(float));
  7762. memcpy(&ext_factor, (int32_t *) dst->op_params + 7, sizeof(float));
  7763. memcpy(&attn_factor, (int32_t *) dst->op_params + 8, sizeof(float));
  7764. memcpy(&beta_fast, (int32_t *) dst->op_params + 9, sizeof(float));
  7765. memcpy(&beta_slow, (int32_t *) dst->op_params + 10, sizeof(float));
  7766. GGML_TENSOR_UNARY_OP_LOCALS
  7767. //printf("ne0: %d, ne1: %d, ne2: %d, ne3: %d\n", ne0, ne1, ne2, ne3);
  7768. //printf("n_past = %d, ne2 = %d\n", n_past, ne2);
  7769. GGML_ASSERT(nb0 == sizeof(ggml_fp16_t));
  7770. const int ith = params->ith;
  7771. const int nth = params->nth;
  7772. const int nr = ggml_nrows(dst);
  7773. GGML_ASSERT(n_dims <= ne0);
  7774. GGML_ASSERT(n_dims % 2 == 0);
  7775. // rows per thread
  7776. const int dr = (nr + nth - 1)/nth;
  7777. // row range for this thread
  7778. const int ir0 = dr*ith;
  7779. const int ir1 = MIN(ir0 + dr, nr);
  7780. // row index used to determine which thread to use
  7781. int ir = 0;
  7782. const float theta_scale = powf(freq_base, -2.0f/n_dims);
  7783. float corr_dims[2];
  7784. ggml_rope_yarn_corr_dims(n_dims, n_ctx_orig, freq_base, beta_fast, beta_slow, corr_dims);
  7785. const bool is_neox = mode & GGML_ROPE_TYPE_NEOX;
  7786. const float * freq_factors = NULL;
  7787. if (src2 != NULL) {
  7788. GGML_ASSERT(src2->type == GGML_TYPE_F32);
  7789. GGML_ASSERT(src2->ne[0] >= n_dims / 2);
  7790. freq_factors = (const float *) src2->data;
  7791. }
  7792. // backward process uses inverse rotation by cos and sin.
  7793. // cos and sin build a rotation matrix, where the inverse is the transpose.
  7794. // this essentially just switches the sign of sin.
  7795. const float sin_sign = forward ? 1.0f : -1.0f;
  7796. const int32_t * pos = (const int32_t *) src1->data;
  7797. for (int64_t i3 = 0; i3 < ne3; i3++) {
  7798. for (int64_t i2 = 0; i2 < ne2; i2++) {
  7799. const int64_t p = pos[i2];
  7800. float * cache = (float *) params->wdata + (ne0 + CACHE_LINE_SIZE_F32)*ith;
  7801. ggml_rope_cache_init(p, freq_scale, freq_factors, corr_dims, ne0, ext_factor, attn_factor, cache, sin_sign, theta_scale);
  7802. for (int64_t i1 = 0; i1 < ne1; i1++) {
  7803. if (ir++ < ir0) continue;
  7804. if (ir > ir1) break;
  7805. if (!is_neox) {
  7806. for (int64_t i0 = 0; i0 < n_dims; i0 += 2) {
  7807. const float cos_theta = cache[i0 + 0];
  7808. const float sin_theta = cache[i0 + 1];
  7809. const ggml_fp16_t * const src = (ggml_fp16_t *)((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + i0*nb00);
  7810. ggml_fp16_t * dst_data = (ggml_fp16_t *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
  7811. const float x0 = GGML_FP16_TO_FP32(src[0]);
  7812. const float x1 = GGML_FP16_TO_FP32(src[1]);
  7813. dst_data[0] = GGML_FP32_TO_FP16(x0*cos_theta - x1*sin_theta);
  7814. dst_data[1] = GGML_FP32_TO_FP16(x0*sin_theta + x1*cos_theta);
  7815. }
  7816. } else {
  7817. for (int64_t i0 = 0; i0 < n_dims; i0 += 2) {
  7818. const int64_t ic = i0/2;
  7819. const float cos_theta = cache[i0 + 0];
  7820. const float sin_theta = cache[i0 + 1];
  7821. const ggml_fp16_t * const src = (ggml_fp16_t *)((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + ic*nb00);
  7822. ggml_fp16_t * dst_data = (ggml_fp16_t *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + ic*nb0);
  7823. const float x0 = GGML_FP16_TO_FP32(src[0]);
  7824. const float x1 = GGML_FP16_TO_FP32(src[n_dims/2]);
  7825. dst_data[0] = GGML_FP32_TO_FP16(x0*cos_theta - x1*sin_theta);
  7826. dst_data[n_dims/2] = GGML_FP32_TO_FP16(x0*sin_theta + x1*cos_theta);
  7827. }
  7828. }
  7829. for (int64_t i0 = n_dims; i0 < ne0; i0 += 2) {
  7830. const ggml_fp16_t * const src = (ggml_fp16_t *)((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + i0*nb00);
  7831. ggml_fp16_t * dst_data = (ggml_fp16_t *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
  7832. dst_data[0] = src[0];
  7833. dst_data[1] = src[1];
  7834. }
  7835. }
  7836. }
  7837. }
  7838. }
  7839. static void ggml_compute_forward_rope(
  7840. const struct ggml_compute_params * params,
  7841. struct ggml_tensor * dst) {
  7842. const struct ggml_tensor * src0 = dst->src[0];
  7843. switch (src0->type) {
  7844. case GGML_TYPE_F16:
  7845. {
  7846. ggml_compute_forward_rope_f16(params, dst, true);
  7847. } break;
  7848. case GGML_TYPE_F32:
  7849. {
  7850. ggml_compute_forward_rope_f32(params, dst, true);
  7851. } break;
  7852. default:
  7853. {
  7854. GGML_ABORT("fatal error");
  7855. }
  7856. }
  7857. }
  7858. // ggml_compute_forward_rope_back
  7859. static void ggml_compute_forward_rope_back(
  7860. const struct ggml_compute_params * params,
  7861. struct ggml_tensor * dst) {
  7862. const struct ggml_tensor * src0 = dst->src[0];
  7863. switch (src0->type) {
  7864. case GGML_TYPE_F16:
  7865. {
  7866. ggml_compute_forward_rope_f16(params, dst, false);
  7867. } break;
  7868. case GGML_TYPE_F32:
  7869. {
  7870. ggml_compute_forward_rope_f32(params, dst, false);
  7871. } break;
  7872. default:
  7873. {
  7874. GGML_ABORT("fatal error");
  7875. }
  7876. }
  7877. }
  7878. // ggml_compute_forward_conv_transpose_1d
  7879. static void ggml_compute_forward_conv_transpose_1d_f16_f32(
  7880. const struct ggml_compute_params * params,
  7881. struct ggml_tensor * dst) {
  7882. const struct ggml_tensor * src0 = dst->src[0];
  7883. const struct ggml_tensor * src1 = dst->src[1];
  7884. GGML_ASSERT(src0->type == GGML_TYPE_F16);
  7885. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  7886. GGML_ASSERT( dst->type == GGML_TYPE_F32);
  7887. GGML_TENSOR_BINARY_OP_LOCALS
  7888. const int ith = params->ith;
  7889. const int nth = params->nth;
  7890. const int nk = ne00*ne01*ne02;
  7891. GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
  7892. GGML_ASSERT(nb10 == sizeof(float));
  7893. if (ith == 0) {
  7894. memset(params->wdata, 0, params->wsize);
  7895. // permute kernel data (src0) from (K x Cout x Cin) to (Cin x K x Cout)
  7896. {
  7897. ggml_fp16_t * const wdata = (ggml_fp16_t *) params->wdata + 0;
  7898. for (int64_t i02 = 0; i02 < ne02; i02++) {
  7899. for (int64_t i01 = 0; i01 < ne01; i01++) {
  7900. const ggml_fp16_t * const src = (ggml_fp16_t *)((char *) src0->data + i02*nb02 + i01*nb01);
  7901. ggml_fp16_t * dst_data = wdata + i01*ne00*ne02;
  7902. for (int64_t i00 = 0; i00 < ne00; i00++) {
  7903. dst_data[i00*ne02 + i02] = src[i00];
  7904. }
  7905. }
  7906. }
  7907. }
  7908. // permute source data (src1) from (L x Cin) to (Cin x L)
  7909. {
  7910. ggml_fp16_t * const wdata = (ggml_fp16_t *) params->wdata + nk;
  7911. ggml_fp16_t * dst_data = wdata;
  7912. for (int64_t i11 = 0; i11 < ne11; i11++) {
  7913. const float * const src = (float *)((char *) src1->data + i11*nb11);
  7914. for (int64_t i10 = 0; i10 < ne10; i10++) {
  7915. dst_data[i10*ne11 + i11] = GGML_FP32_TO_FP16(src[i10]);
  7916. }
  7917. }
  7918. }
  7919. // need to zero dst since we are accumulating into it
  7920. memset(dst->data, 0, ggml_nbytes(dst));
  7921. }
  7922. ggml_barrier(params->threadpool);
  7923. const int32_t s0 = ((const int32_t*)(dst->op_params))[0];
  7924. // total rows in dst
  7925. const int nr = ne1;
  7926. // rows per thread
  7927. const int dr = (nr + nth - 1)/nth;
  7928. // row range for this thread
  7929. const int ir0 = dr*ith;
  7930. const int ir1 = MIN(ir0 + dr, nr);
  7931. ggml_fp16_t * const wdata = (ggml_fp16_t *) params->wdata + 0;
  7932. ggml_fp16_t * const wdata_src = wdata + nk;
  7933. for (int i1 = ir0; i1 < ir1; i1++) {
  7934. float * dst_data = (float *)((char *) dst->data + i1*nb1);
  7935. ggml_fp16_t * wdata_kernel = wdata + i1*ne02*ne00;
  7936. for (int i10 = 0; i10 < ne10; i10++) {
  7937. const int i1n = i10*ne11;
  7938. for (int i00 = 0; i00 < ne00; i00++) {
  7939. float v = 0;
  7940. ggml_vec_dot_f16(ne02, &v, 0,
  7941. (ggml_fp16_t *) wdata_src + i1n, 0,
  7942. (ggml_fp16_t *) wdata_kernel + i00*ne02, 0, 1);
  7943. dst_data[i10*s0 + i00] += v;
  7944. }
  7945. }
  7946. }
  7947. }
  7948. static void ggml_compute_forward_conv_transpose_1d_f32(
  7949. const struct ggml_compute_params * params,
  7950. struct ggml_tensor * dst) {
  7951. const struct ggml_tensor * src0 = dst->src[0];
  7952. const struct ggml_tensor * src1 = dst->src[1];
  7953. GGML_ASSERT(src0->type == GGML_TYPE_F32);
  7954. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  7955. GGML_ASSERT( dst->type == GGML_TYPE_F32);
  7956. GGML_TENSOR_BINARY_OP_LOCALS
  7957. const int ith = params->ith;
  7958. const int nth = params->nth;
  7959. const int nk = ne00*ne01*ne02;
  7960. GGML_ASSERT(nb00 == sizeof(float));
  7961. GGML_ASSERT(nb10 == sizeof(float));
  7962. if (ith == 0) {
  7963. memset(params->wdata, 0, params->wsize);
  7964. // prepare kernel data (src0) from (K x Cout x Cin) to (Cin x K x Cout)
  7965. {
  7966. float * const wdata = (float *) params->wdata + 0;
  7967. for (int64_t i02 = 0; i02 < ne02; i02++) {
  7968. for (int64_t i01 = 0; i01 < ne01; i01++) {
  7969. const float * const src = (float *)((char *) src0->data + i02*nb02 + i01*nb01);
  7970. float * dst_data = wdata + i01*ne00*ne02;
  7971. for (int64_t i00 = 0; i00 < ne00; i00++) {
  7972. dst_data[i00*ne02 + i02] = src[i00];
  7973. }
  7974. }
  7975. }
  7976. }
  7977. // prepare source data (src1)
  7978. {
  7979. float * const wdata = (float *) params->wdata + nk;
  7980. float * dst_data = wdata;
  7981. for (int64_t i11 = 0; i11 < ne11; i11++) {
  7982. const float * const src = (float *)((char *) src1->data + i11*nb11);
  7983. for (int64_t i10 = 0; i10 < ne10; i10++) {
  7984. dst_data[i10*ne11 + i11] = src[i10];
  7985. }
  7986. }
  7987. }
  7988. // need to zero dst since we are accumulating into it
  7989. memset(dst->data, 0, ggml_nbytes(dst));
  7990. }
  7991. ggml_barrier(params->threadpool);
  7992. const int32_t s0 = ((const int32_t*)(dst->op_params))[0];
  7993. // total rows in dst
  7994. const int nr = ne1;
  7995. // rows per thread
  7996. const int dr = (nr + nth - 1)/nth;
  7997. // row range for this thread
  7998. const int ir0 = dr*ith;
  7999. const int ir1 = MIN(ir0 + dr, nr);
  8000. float * const wdata = (float *) params->wdata + 0;
  8001. float * const wdata_src = wdata + nk;
  8002. for (int i1 = ir0; i1 < ir1; i1++) {
  8003. float * dst_data = (float *)((char *) dst->data + i1*nb1);
  8004. float * wdata_kernel = wdata + i1*ne02*ne00;
  8005. for (int i10 = 0; i10 < ne10; i10++) {
  8006. const int i1n = i10*ne11;
  8007. for (int i00 = 0; i00 < ne00; i00++) {
  8008. float v = 0;
  8009. ggml_vec_dot_f32(ne02, &v, 0,
  8010. wdata_src + i1n, 0,
  8011. wdata_kernel + i00*ne02, 0, 1);
  8012. dst_data[i10*s0 + i00] += v;
  8013. }
  8014. }
  8015. }
  8016. }
  8017. static void ggml_compute_forward_conv_transpose_1d(
  8018. const struct ggml_compute_params * params,
  8019. struct ggml_tensor * dst) {
  8020. const struct ggml_tensor * src0 = dst->src[0];
  8021. switch (src0->type) {
  8022. case GGML_TYPE_F16:
  8023. {
  8024. ggml_compute_forward_conv_transpose_1d_f16_f32(params, dst);
  8025. } break;
  8026. case GGML_TYPE_F32:
  8027. {
  8028. ggml_compute_forward_conv_transpose_1d_f32(params, dst);
  8029. } break;
  8030. default:
  8031. {
  8032. GGML_ABORT("fatal error");
  8033. }
  8034. }
  8035. }
  8036. // ggml_compute_forward_im2col_f32
  8037. // src0: kernel [OC, IC, KH, KW]
  8038. // src1: image [N, IC, IH, IW]
  8039. // dst: result [N, OH, OW, IC*KH*KW]
  8040. static void ggml_compute_forward_im2col_f32(
  8041. const struct ggml_compute_params * params,
  8042. struct ggml_tensor * dst) {
  8043. const struct ggml_tensor * src0 = dst->src[0];
  8044. const struct ggml_tensor * src1 = dst->src[1];
  8045. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  8046. GGML_ASSERT( dst->type == GGML_TYPE_F32);
  8047. GGML_TENSOR_BINARY_OP_LOCALS;
  8048. const int32_t s0 = ((const int32_t *)(dst->op_params))[0];
  8049. const int32_t s1 = ((const int32_t *)(dst->op_params))[1];
  8050. const int32_t p0 = ((const int32_t *)(dst->op_params))[2];
  8051. const int32_t p1 = ((const int32_t *)(dst->op_params))[3];
  8052. const int32_t d0 = ((const int32_t *)(dst->op_params))[4];
  8053. const int32_t d1 = ((const int32_t *)(dst->op_params))[5];
  8054. const bool is_2D = ((const int32_t *)(dst->op_params))[6] == 1;
  8055. const int ith = params->ith;
  8056. const int nth = params->nth;
  8057. const int64_t N = is_2D ? ne13 : ne12;
  8058. const int64_t IC = is_2D ? ne12 : ne11;
  8059. const int64_t IH = is_2D ? ne11 : 1;
  8060. const int64_t IW = ne10;
  8061. const int64_t KH = is_2D ? ne01 : 1;
  8062. const int64_t KW = ne00;
  8063. const int64_t OH = is_2D ? ne2 : 1;
  8064. const int64_t OW = ne1;
  8065. int ofs0 = is_2D ? nb13 : nb12;
  8066. int ofs1 = is_2D ? nb12 : nb11;
  8067. GGML_ASSERT(nb10 == sizeof(float));
  8068. // im2col: [N, IC, IH, IW] => [N, OH, OW, IC*KH*KW]
  8069. {
  8070. float * const wdata = (float *) dst->data;
  8071. for (int64_t in = 0; in < N; in++) {
  8072. for (int64_t ioh = 0; ioh < OH; ioh++) { // 1
  8073. for (int64_t iow = 0; iow < OW; iow++) {
  8074. for (int64_t iic = ith; iic < IC; iic += nth) {
  8075. // micro kernel
  8076. float * dst_data = wdata + (in*OH*OW + ioh*OW + iow)*(IC*KH*KW); // [IC, KH, KW]
  8077. const float * const src_data = (float *)((char *) src1->data + in*ofs0 + iic*ofs1); // [IH, IW]
  8078. for (int64_t ikh = 0; ikh < KH; ikh++) { // 1
  8079. for (int64_t ikw = 0; ikw < KW; ikw++) {
  8080. const int64_t iiw = iow*s0 + ikw*d0 - p0;
  8081. const int64_t iih = ioh*s1 + ikh*d1 - p1;
  8082. if (iih < 0 || iih >= IH || iiw < 0 || iiw >= IW) {
  8083. dst_data[iic*(KH*KW) + ikh*KW + ikw] = 0;
  8084. } else {
  8085. dst_data[iic*(KH*KW) + ikh*KW + ikw] = (src_data[iih*IW + iiw]);
  8086. }
  8087. }
  8088. }
  8089. }
  8090. }
  8091. }
  8092. }
  8093. }
  8094. }
  8095. // ggml_compute_forward_im2col_f16
  8096. // src0: kernel [OC, IC, KH, KW]
  8097. // src1: image [N, IC, IH, IW]
  8098. // dst: result [N, OH, OW, IC*KH*KW]
  8099. static void ggml_compute_forward_im2col_f16(
  8100. const struct ggml_compute_params * params,
  8101. struct ggml_tensor * dst) {
  8102. const struct ggml_tensor * src0 = dst->src[0];
  8103. const struct ggml_tensor * src1 = dst->src[1];
  8104. GGML_ASSERT(src0->type == GGML_TYPE_F16);
  8105. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  8106. GGML_ASSERT( dst->type == GGML_TYPE_F16);
  8107. GGML_TENSOR_BINARY_OP_LOCALS;
  8108. const int32_t s0 = ((const int32_t *)(dst->op_params))[0];
  8109. const int32_t s1 = ((const int32_t *)(dst->op_params))[1];
  8110. const int32_t p0 = ((const int32_t *)(dst->op_params))[2];
  8111. const int32_t p1 = ((const int32_t *)(dst->op_params))[3];
  8112. const int32_t d0 = ((const int32_t *)(dst->op_params))[4];
  8113. const int32_t d1 = ((const int32_t *)(dst->op_params))[5];
  8114. const bool is_2D = ((const int32_t *)(dst->op_params))[6] == 1;
  8115. const int ith = params->ith;
  8116. const int nth = params->nth;
  8117. const int64_t N = is_2D ? ne13 : ne12;
  8118. const int64_t IC = is_2D ? ne12 : ne11;
  8119. const int64_t IH = is_2D ? ne11 : 1;
  8120. const int64_t IW = ne10;
  8121. const int64_t KH = is_2D ? ne01 : 1;
  8122. const int64_t KW = ne00;
  8123. const int64_t OH = is_2D ? ne2 : 1;
  8124. const int64_t OW = ne1;
  8125. int ofs0 = is_2D ? nb13 : nb12;
  8126. int ofs1 = is_2D ? nb12 : nb11;
  8127. GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
  8128. GGML_ASSERT(nb10 == sizeof(float));
  8129. // im2col: [N, IC, IH, IW] => [N, OH, OW, IC*KH*KW]
  8130. {
  8131. ggml_fp16_t * const wdata = (ggml_fp16_t *) dst->data;
  8132. for (int64_t in = 0; in < N; in++) {
  8133. for (int64_t ioh = 0; ioh < OH; ioh++) { // 1
  8134. for (int64_t iow = 0; iow < OW; iow++) {
  8135. for (int64_t iic = ith; iic < IC; iic += nth) {
  8136. // micro kernel
  8137. ggml_fp16_t * dst_data = wdata + (in*OH*OW + ioh*OW + iow)*(IC*KH*KW); // [IC, KH, KW]
  8138. const float * const src_data = (float *)((char *) src1->data + in*ofs0 + iic*ofs1); // [IH, IW]
  8139. for (int64_t ikh = 0; ikh < KH; ikh++) { // 1
  8140. for (int64_t ikw = 0; ikw < KW; ikw++) {
  8141. const int64_t iiw = iow*s0 + ikw*d0 - p0;
  8142. const int64_t iih = ioh*s1 + ikh*d1 - p1;
  8143. if (iih < 0 || iih >= IH || iiw < 0 || iiw >= IW) {
  8144. dst_data[iic*(KH*KW) + ikh*KW + ikw] = 0;
  8145. } else {
  8146. dst_data[iic*(KH*KW) + ikh*KW + ikw] = GGML_FP32_TO_FP16(src_data[iih*IW + iiw]);
  8147. }
  8148. }
  8149. }
  8150. }
  8151. }
  8152. }
  8153. }
  8154. }
  8155. }
  8156. static void ggml_compute_forward_im2col(
  8157. const struct ggml_compute_params * params,
  8158. struct ggml_tensor * dst) {
  8159. switch (dst->type) {
  8160. case GGML_TYPE_F16:
  8161. {
  8162. ggml_compute_forward_im2col_f16(params, dst);
  8163. } break;
  8164. case GGML_TYPE_F32:
  8165. {
  8166. ggml_compute_forward_im2col_f32(params, dst);
  8167. } break;
  8168. default:
  8169. {
  8170. GGML_ABORT("fatal error");
  8171. }
  8172. }
  8173. }
  8174. // ggml_compute_forward_im2col_back_f32
  8175. static void ggml_compute_forward_im2col_back_f32(
  8176. const struct ggml_compute_params * params,
  8177. struct ggml_tensor * dst) {
  8178. const struct ggml_tensor * src0 = dst->src[0];
  8179. const struct ggml_tensor * src1 = dst->src[1];
  8180. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  8181. GGML_ASSERT( dst->type == GGML_TYPE_F32);
  8182. GGML_TENSOR_BINARY_OP_LOCALS;
  8183. const int32_t s0 = ((const int32_t *)(dst->op_params))[0];
  8184. const int32_t s1 = ((const int32_t *)(dst->op_params))[1];
  8185. const int32_t p0 = ((const int32_t *)(dst->op_params))[2];
  8186. const int32_t p1 = ((const int32_t *)(dst->op_params))[3];
  8187. const int32_t d0 = ((const int32_t *)(dst->op_params))[4];
  8188. const int32_t d1 = ((const int32_t *)(dst->op_params))[5];
  8189. const bool is_2D = ((const int32_t *)(dst->op_params))[6] == 1;
  8190. const int ith = params->ith;
  8191. const int nth = params->nth;
  8192. const int64_t N = is_2D ? ne3 : ne2;
  8193. const int64_t IC = is_2D ? ne2 : ne1;
  8194. const int64_t IH = is_2D ? ne1 : 1;
  8195. const int64_t IW = ne0;
  8196. const int64_t KH = is_2D ? ne01 : 1;
  8197. const int64_t KW = ne00;
  8198. const int64_t OH = is_2D ? ne12 : 1;
  8199. const int64_t OW = ne11;
  8200. int ofs0 = is_2D ? nb3 : nb2;
  8201. int ofs1 = is_2D ? nb2 : nb1;
  8202. GGML_ASSERT(nb0 == sizeof(float));
  8203. // im2col: [N, IC, IH, IW] => [N, OH, OW, IC*KH*KW]
  8204. {
  8205. float * const wdata = (float *) dst->data;
  8206. for (int64_t in = 0; in < N; in++) {
  8207. for (int64_t iic = ith; iic < IC; iic += nth) {
  8208. for (int64_t iih = 0; iih < IH; iih++) {
  8209. for (int64_t iiw = 0; iiw < IW; iiw++) {
  8210. // micro kernel
  8211. float grad = 0.0f;
  8212. for (int64_t ikh = 0; ikh < KH; ikh++) {
  8213. for (int64_t ikw = 0; ikw < KW; ikw++) {
  8214. // For s0 > 1 some values were skipped over in the forward pass.
  8215. // These values have tmpw % s0 != 0 and need to be skipped in the backwards pass as well.
  8216. const int64_t tmpw = (iiw + p0 - ikw*d0);
  8217. if (tmpw % s0 != 0) {
  8218. continue;
  8219. }
  8220. const int64_t iow = tmpw / s0;
  8221. // Equivalent logic as above except for s1.
  8222. int64_t ioh;
  8223. if (is_2D) {
  8224. const int64_t tmph = iih + p1 - ikh*d1;
  8225. if (tmph % s1 != 0) {
  8226. continue;
  8227. }
  8228. ioh = tmph / s1;
  8229. } else {
  8230. ioh = 0;
  8231. }
  8232. if (iow < 0 || iow >= OW || ioh < 0 || ioh >= OH) {
  8233. continue;
  8234. }
  8235. const float * const src_data = (const float *) src1->data
  8236. + (in*OH*OW + ioh*OW + iow)*(IC*KH*KW); // [IC, KH, KW]
  8237. grad += src_data[iic*(KH*KW) + ikh*KW + ikw];
  8238. }
  8239. }
  8240. float * dst_data = (float *)((char *) wdata + (in*ofs0 + iic*ofs1)); // [IH, IW]
  8241. dst_data[iih*IW + iiw] = grad;
  8242. }
  8243. }
  8244. }
  8245. }
  8246. }
  8247. }
  8248. // ggml_compute_forward_conv_transpose_2d
  8249. static void ggml_compute_forward_conv_transpose_2d(
  8250. const struct ggml_compute_params * params,
  8251. struct ggml_tensor * dst) {
  8252. const struct ggml_tensor * src0 = dst->src[0];
  8253. const struct ggml_tensor * src1 = dst->src[1];
  8254. GGML_ASSERT(src0->type == GGML_TYPE_F16);
  8255. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  8256. GGML_ASSERT( dst->type == GGML_TYPE_F32);
  8257. GGML_TENSOR_BINARY_OP_LOCALS
  8258. const int ith = params->ith;
  8259. const int nth = params->nth;
  8260. const int nk = ne00*ne01*ne02*ne03;
  8261. GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
  8262. GGML_ASSERT(nb10 == sizeof(float));
  8263. if (ith == 0) {
  8264. memset(params->wdata, 0, params->wsize);
  8265. // permute kernel data (src0) from (Kw x Kh x Cout x Cin) to (Cin x Kw x Kh x Cout)
  8266. {
  8267. ggml_fp16_t * const wdata = (ggml_fp16_t *) params->wdata + 0;
  8268. for (int64_t i03 = 0; i03 < ne03; i03++) {
  8269. for (int64_t i02 = 0; i02 < ne02; i02++) {
  8270. const ggml_fp16_t * const src = (ggml_fp16_t *)((char *) src0->data + i03*nb03 + i02*nb02);
  8271. ggml_fp16_t * dst_data = wdata + i02*ne01*ne00*ne03;
  8272. for (int64_t i01 = 0; i01 < ne01; i01++) {
  8273. for (int64_t i00 = 0; i00 < ne00; i00++) {
  8274. dst_data[i01*ne00*ne03 + i00*ne03 + i03] = src[i01 * ne00 + i00];
  8275. }
  8276. }
  8277. }
  8278. }
  8279. }
  8280. // permute source data (src1) from (Sw x Sh x Cin) to (Cin x Sw x Sh)
  8281. {
  8282. ggml_fp16_t * const wdata = (ggml_fp16_t *) params->wdata + nk;
  8283. for (int i12 = 0; i12 < ne12; i12++) {
  8284. for (int i11 = 0; i11 < ne11; i11++) {
  8285. const float * const src = (float *)((char *) src1->data + i12*nb12 + i11*nb11);
  8286. ggml_fp16_t * dst_data = wdata + i11*ne10*ne12;
  8287. for (int i10 = 0; i10 < ne10; i10++) {
  8288. dst_data[i10*ne12 + i12] = GGML_FP32_TO_FP16(src[i10]);
  8289. }
  8290. }
  8291. }
  8292. }
  8293. memset(dst->data, 0, ggml_nbytes(dst));
  8294. }
  8295. ggml_barrier(params->threadpool);
  8296. const int32_t stride = ggml_get_op_params_i32(dst, 0);
  8297. // total patches in dst
  8298. const int np = ne2;
  8299. // patches per thread
  8300. const int dp = (np + nth - 1)/nth;
  8301. // patch range for this thread
  8302. const int ip0 = dp*ith;
  8303. const int ip1 = MIN(ip0 + dp, np);
  8304. ggml_fp16_t * const wdata = (ggml_fp16_t *) params->wdata + 0;
  8305. ggml_fp16_t * const wdata_src = wdata + nk;
  8306. for (int i2 = ip0; i2 < ip1; i2++) { // Cout
  8307. float * dst_data = (float *)((char *) dst->data + i2*nb2);
  8308. ggml_fp16_t * wdata_kernel = wdata + i2*ne01*ne00*ne03;
  8309. for (int i11 = 0; i11 < ne11; i11++) {
  8310. for (int i10 = 0; i10 < ne10; i10++) {
  8311. const int i1n = i11*ne10*ne12 + i10*ne12;
  8312. for (int i01 = 0; i01 < ne01; i01++) {
  8313. for (int i00 = 0; i00 < ne00; i00++) {
  8314. float v = 0;
  8315. ggml_vec_dot_f16(ne03, &v, 0,
  8316. wdata_src + i1n, 0,
  8317. wdata_kernel + i01*ne00*ne03 + i00*ne03, 0, 1);
  8318. dst_data[(i11*stride + i01)*ne0 + i10*stride + i00] += v;
  8319. }
  8320. }
  8321. }
  8322. }
  8323. }
  8324. }
  8325. // ggml_compute_forward_pool_1d_sk_p0
  8326. static void ggml_compute_forward_pool_1d_sk_p0(
  8327. const struct ggml_compute_params * params,
  8328. const enum ggml_op_pool op,
  8329. const int k,
  8330. struct ggml_tensor * dst) {
  8331. const struct ggml_tensor * src = dst->src[0];
  8332. assert(src->type == GGML_TYPE_F32 || src->type == GGML_TYPE_F16);
  8333. if (params->ith != 0) {
  8334. return;
  8335. }
  8336. const char * cdata = (const char *)src->data;
  8337. const char * const data_end = cdata + ggml_nbytes(src);
  8338. float * drow = (float *)dst->data;
  8339. const int64_t rs = dst->ne[0];
  8340. while (cdata < data_end) {
  8341. const void * srow = (const void *)cdata;
  8342. int j = 0;
  8343. for (int64_t i = 0; i < rs; ++i) {
  8344. switch (op) {
  8345. case GGML_OP_POOL_AVG: drow[i] = 0; break;
  8346. case GGML_OP_POOL_MAX: drow[i] = -FLT_MAX; break;
  8347. case GGML_OP_POOL_COUNT: GGML_ABORT("fatal error");
  8348. }
  8349. for (int ki = 0; ki < k; ++ki) {
  8350. const float srow_j = (src->type == GGML_TYPE_F32) ? ((const float*)srow)[j] : GGML_FP16_TO_FP32(((const ggml_fp16_t*)srow)[j]);
  8351. switch (op) {
  8352. case GGML_OP_POOL_AVG: drow[i] += srow_j; break;
  8353. case GGML_OP_POOL_MAX: if (srow_j > drow[i]) drow[i] = srow_j; break;
  8354. case GGML_OP_POOL_COUNT: GGML_ABORT("fatal error");
  8355. }
  8356. ++j;
  8357. }
  8358. switch (op) {
  8359. case GGML_OP_POOL_AVG: drow[i] /= k; break;
  8360. case GGML_OP_POOL_MAX: break;
  8361. case GGML_OP_POOL_COUNT: GGML_ABORT("fatal error");
  8362. }
  8363. }
  8364. cdata += src->nb[1];
  8365. drow += rs;
  8366. }
  8367. }
  8368. // ggml_compute_forward_pool_1d
  8369. static void ggml_compute_forward_pool_1d(
  8370. const struct ggml_compute_params * params,
  8371. struct ggml_tensor * dst) {
  8372. const int32_t * opts = (const int32_t *)dst->op_params;
  8373. enum ggml_op_pool op = opts[0];
  8374. const int k0 = opts[1];
  8375. const int s0 = opts[2];
  8376. const int p0 = opts[3];
  8377. GGML_ASSERT(p0 == 0); // padding not supported
  8378. GGML_ASSERT(k0 == s0); // only s = k supported
  8379. ggml_compute_forward_pool_1d_sk_p0(params, op, k0, dst);
  8380. }
  8381. // ggml_compute_forward_pool_2d
  8382. static void ggml_compute_forward_pool_2d(
  8383. const struct ggml_compute_params * params,
  8384. struct ggml_tensor * dst) {
  8385. const struct ggml_tensor * src = dst->src[0];
  8386. assert(src->type == GGML_TYPE_F32 || src->type == GGML_TYPE_F16);
  8387. if (params->ith != 0) {
  8388. return;
  8389. }
  8390. const int32_t * opts = (const int32_t *)dst->op_params;
  8391. enum ggml_op_pool op = opts[0];
  8392. const int k0 = opts[1];
  8393. const int k1 = opts[2];
  8394. const int s0 = opts[3];
  8395. const int s1 = opts[4];
  8396. const int p0 = opts[5];
  8397. const int p1 = opts[6];
  8398. const char * cdata = (const char*)src->data;
  8399. const char * const data_end = cdata + ggml_nbytes(src);
  8400. const int64_t px = dst->ne[0];
  8401. const int64_t py = dst->ne[1];
  8402. const int64_t pa = px * py;
  8403. float * dplane = (float *)dst->data;
  8404. const int ka = k0 * k1;
  8405. const int offset0 = -p0;
  8406. const int offset1 = -p1;
  8407. while (cdata < data_end) {
  8408. for (int oy = 0; oy < py; ++oy) {
  8409. float * const drow = dplane + oy * px;
  8410. for (int ox = 0; ox < px; ++ox) {
  8411. float * const out = drow + ox;
  8412. switch (op) {
  8413. case GGML_OP_POOL_AVG: *out = 0; break;
  8414. case GGML_OP_POOL_MAX: *out = -FLT_MAX; break;
  8415. case GGML_OP_POOL_COUNT: GGML_ABORT("fatal error");
  8416. }
  8417. const int ix = offset0 + ox * s0;
  8418. const int iy = offset1 + oy * s1;
  8419. for (int ky = 0; ky < k1; ++ky) {
  8420. if (iy + ky < 0 || iy + ky >= src->ne[1]) continue;
  8421. const void * srow = (const void *)(cdata + src->nb[1] * (iy + ky));
  8422. for (int kx = 0; kx < k0; ++kx) {
  8423. int j = ix + kx;
  8424. if (j < 0 || j >= src->ne[0]) continue;
  8425. const float srow_j = (src->type == GGML_TYPE_F32) ? ((const float*)srow)[j] : GGML_FP16_TO_FP32(((const ggml_fp16_t*)srow)[j]);
  8426. switch (op) {
  8427. case GGML_OP_POOL_AVG: *out += srow_j; break;
  8428. case GGML_OP_POOL_MAX: if (srow_j > *out) *out = srow_j; break;
  8429. case GGML_OP_POOL_COUNT: GGML_ABORT("fatal error");
  8430. }
  8431. }
  8432. }
  8433. switch (op) {
  8434. case GGML_OP_POOL_AVG: *out /= ka; break;
  8435. case GGML_OP_POOL_MAX: break;
  8436. case GGML_OP_POOL_COUNT: GGML_ABORT("fatal error");
  8437. }
  8438. }
  8439. }
  8440. cdata += src->nb[2];
  8441. dplane += pa;
  8442. }
  8443. }
  8444. // ggml_compute_forward_pool_2d_back
  8445. static void ggml_compute_forward_pool_2d_back(
  8446. const struct ggml_compute_params * params,
  8447. struct ggml_tensor * dst) {
  8448. const struct ggml_tensor * src = dst->src[0];
  8449. const struct ggml_tensor * dstf = dst->src[1]; // forward tensor of dst
  8450. assert(dst->type == GGML_TYPE_F32 || dst->type == GGML_TYPE_F16);
  8451. if (params->ith != 0) {
  8452. return;
  8453. }
  8454. const int32_t * opts = (const int32_t *)dst->op_params;
  8455. enum ggml_op_pool op = opts[0];
  8456. const int k0 = opts[1];
  8457. const int k1 = opts[2];
  8458. const int s0 = opts[3];
  8459. const int s1 = opts[4];
  8460. const int p0 = opts[5];
  8461. const int p1 = opts[6];
  8462. char * cdata = (char *) dst->data;
  8463. const char * cdataf = (const char *) dstf->data;
  8464. const char * const data_end = cdata + ggml_nbytes(dst);
  8465. GGML_ASSERT(params->ith == 0);
  8466. memset(cdata, 0, ggml_nbytes(dst));
  8467. const int64_t px = src->ne[0];
  8468. const int64_t py = src->ne[1];
  8469. const int64_t pa = px * py;
  8470. const float * splane = (const float *) src->data;
  8471. const int ka = k0 * k1;
  8472. const int offset0 = -p0;
  8473. const int offset1 = -p1;
  8474. while (cdata < data_end) {
  8475. for (int oy = 0; oy < py; ++oy) {
  8476. const float * const srow = splane + oy * px;
  8477. for (int ox = 0; ox < px; ++ox) {
  8478. const float grad0 = srow[ox];
  8479. const int ix = offset0 + ox * s0;
  8480. const int iy = offset1 + oy * s1;
  8481. if (op == GGML_OP_POOL_MAX) {
  8482. float maxval = -FLT_MAX;
  8483. int kxmax = -1;
  8484. int kymax = -1;
  8485. for (int ky = 0; ky < k1; ++ky) {
  8486. if (iy + ky < 0 || iy + ky >= dst->ne[1]) {
  8487. continue;
  8488. }
  8489. const void * drowf = (const void *)(cdataf + dst->nb[1] * (iy + ky));
  8490. for (int kx = 0; kx < k0; ++kx) {
  8491. int j = ix + kx;
  8492. if (j < 0 || j >= dst->ne[0]) {
  8493. continue;
  8494. }
  8495. const float val = dst->type == GGML_TYPE_F32 ?
  8496. ((const float *) drowf)[j] : GGML_FP16_TO_FP32(((const ggml_fp16_t *) drowf)[j]);
  8497. if (val <= maxval) {
  8498. continue;
  8499. }
  8500. maxval = val;
  8501. kxmax = kx;
  8502. kymax = ky;
  8503. }
  8504. }
  8505. if (kxmax == -1 || kymax == -1) {
  8506. continue;
  8507. }
  8508. void * drow = (void *)(cdata + dst->nb[1] * (iy + kymax));
  8509. const int j = ix + kxmax;
  8510. if (dst->type == GGML_TYPE_F32) {
  8511. ((float *) drow)[j] += grad0;
  8512. } else {
  8513. ((ggml_fp16_t *) drow)[j] = GGML_FP32_TO_FP16(grad0 + GGML_FP16_TO_FP32(((const ggml_fp16_t *) drow)[j]));
  8514. }
  8515. } else if (op == GGML_OP_POOL_AVG) {
  8516. const float grad = grad0 / ka;
  8517. for (int ky = 0; ky < k1; ++ky) {
  8518. if (iy + ky < 0 || iy + ky >= dst->ne[1]) {
  8519. continue;
  8520. }
  8521. void * drow = (void *)(cdata + dst->nb[1] * (iy + ky));
  8522. for (int kx = 0; kx < k0; ++kx) {
  8523. int j = ix + kx;
  8524. if (j < 0 || j >= dst->ne[0]) {
  8525. continue;
  8526. }
  8527. if (dst->type == GGML_TYPE_F32) {
  8528. ((float *) drow)[j] += grad;
  8529. } else {
  8530. ((ggml_fp16_t *) drow)[j] += GGML_FP32_TO_FP16(grad);
  8531. }
  8532. }
  8533. }
  8534. } else {
  8535. GGML_ASSERT(false);
  8536. }
  8537. }
  8538. }
  8539. cdata += dst->nb[2];
  8540. cdataf += dst->nb[2];
  8541. splane += pa;
  8542. }
  8543. }
  8544. // ggml_compute_forward_upscale
  8545. static void ggml_compute_forward_upscale_f32(
  8546. const struct ggml_compute_params * params,
  8547. struct ggml_tensor * dst) {
  8548. const struct ggml_tensor * src0 = dst->src[0];
  8549. GGML_ASSERT(src0->type == GGML_TYPE_F32);
  8550. const int ith = params->ith;
  8551. const int nth = params->nth;
  8552. GGML_TENSOR_UNARY_OP_LOCALS
  8553. const float sf0 = (float)ne0/src0->ne[0];
  8554. const float sf1 = (float)ne1/src0->ne[1];
  8555. const float sf2 = (float)ne2/src0->ne[2];
  8556. const float sf3 = (float)ne3/src0->ne[3];
  8557. // TODO: optimize
  8558. for (int64_t i3 = 0; i3 < ne3; i3++) {
  8559. const int64_t i03 = i3 / sf3;
  8560. for (int64_t i2 = ith; i2 < ne2; i2 += nth) {
  8561. const int64_t i02 = i2 / sf2;
  8562. for (int64_t i1 = 0; i1 < ne1; i1++) {
  8563. const int64_t i01 = i1 / sf1;
  8564. for (int64_t i0 = 0; i0 < ne0; i0++) {
  8565. const int64_t i00 = i0 / sf0;
  8566. const float * x = (float *)((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  8567. float * y = (float *)((char *) dst->data + i0*nb0 + i1*nb1 + i2*nb2 + i3*nb3);
  8568. *y = *x;
  8569. }
  8570. }
  8571. }
  8572. }
  8573. }
  8574. static void ggml_compute_forward_upscale(
  8575. const struct ggml_compute_params * params,
  8576. struct ggml_tensor * dst) {
  8577. const struct ggml_tensor * src0 = dst->src[0];
  8578. switch (src0->type) {
  8579. case GGML_TYPE_F32:
  8580. {
  8581. ggml_compute_forward_upscale_f32(params, dst);
  8582. } break;
  8583. default:
  8584. {
  8585. GGML_ABORT("fatal error");
  8586. }
  8587. }
  8588. }
  8589. // ggml_compute_forward_pad
  8590. static void ggml_compute_forward_pad_f32(
  8591. const struct ggml_compute_params * params,
  8592. struct ggml_tensor * dst) {
  8593. const struct ggml_tensor * src0 = dst->src[0];
  8594. GGML_ASSERT(src0->nb[0] == sizeof(float));
  8595. GGML_ASSERT( dst->nb[0] == sizeof(float));
  8596. const int ith = params->ith;
  8597. const int nth = params->nth;
  8598. GGML_TENSOR_UNARY_OP_LOCALS
  8599. float * dst_ptr = (float *) dst->data;
  8600. // TODO: optimize
  8601. for (int64_t i2 = 0; i2 < ne2; ++i2) {
  8602. for (int64_t i1 = ith; i1 < ne1; i1 += nth) {
  8603. for (int64_t i0 = 0; i0 < ne0; ++i0) {
  8604. for (int64_t i3 = 0; i3 < ne3; ++i3) {
  8605. const int64_t dst_idx = i3*(ne0*ne1*ne2) + i2*(ne0*ne1) + i1*ne0 + i0;
  8606. const float * src_ptr = (const float *)((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + i0*nb00);
  8607. if (i0 < ne00 && i1 < ne01 && i2 < ne02 && i3 < ne03) {
  8608. dst_ptr[dst_idx] = *src_ptr;
  8609. } else {
  8610. dst_ptr[dst_idx] = 0;
  8611. }
  8612. }
  8613. }
  8614. }
  8615. }
  8616. }
  8617. static void ggml_compute_forward_pad(
  8618. const struct ggml_compute_params * params,
  8619. struct ggml_tensor * dst) {
  8620. const struct ggml_tensor * src0 = dst->src[0];
  8621. switch (src0->type) {
  8622. case GGML_TYPE_F32:
  8623. {
  8624. ggml_compute_forward_pad_f32(params, dst);
  8625. } break;
  8626. default:
  8627. {
  8628. GGML_ABORT("fatal error");
  8629. }
  8630. }
  8631. }
  8632. static void ggml_compute_forward_unpad_f32(
  8633. const struct ggml_compute_params *params,
  8634. struct ggml_tensor *dst) {
  8635. const struct ggml_tensor * src0 = dst->src[0];
  8636. GGML_ASSERT(src0->nb[0] == sizeof(float));
  8637. GGML_ASSERT( dst->nb[0] == sizeof(float));
  8638. const int ith = params->ith;
  8639. const int nth = params->nth;
  8640. GGML_TENSOR_UNARY_OP_LOCALS
  8641. float * dst_ptr = (float *) dst->data;
  8642. // TODO: optimize
  8643. for (int64_t i2 = 0; i2 < ne2; ++i2) {
  8644. for (int64_t i1 = ith; i1 < ne1; i1 += nth) {
  8645. for (int64_t i0 = 0; i0 < ne0; ++i0) {
  8646. for (int64_t i3 = 0; i3 < ne3; ++i3) {
  8647. const int64_t dst_idx = i3*(ne0*ne1*ne2) + i2*(ne0*ne1) + i1*ne0 + i0;
  8648. const float * src_ptr = (const float *)((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + i0*nb00);
  8649. if (i0 < ne00 && i1 < ne01 && i2 < ne02 && i3 < ne03) {
  8650. dst_ptr[dst_idx] = *src_ptr;
  8651. }
  8652. }
  8653. }
  8654. }
  8655. }
  8656. }
  8657. static void ggml_compute_forward_unpad(
  8658. const struct ggml_compute_params * params,
  8659. struct ggml_tensor * dst) {
  8660. const struct ggml_tensor * src0 = dst->src[0];
  8661. switch (src0->type) {
  8662. case GGML_TYPE_F32:
  8663. {
  8664. ggml_compute_forward_unpad_f32(params, dst);
  8665. } break;
  8666. default:
  8667. {
  8668. GGML_ABORT("fatal error");
  8669. }
  8670. }
  8671. }
  8672. // ggml_compute_forward_arange
  8673. static void ggml_compute_forward_arange_f32(
  8674. const struct ggml_compute_params * params,
  8675. struct ggml_tensor * dst) {
  8676. GGML_ASSERT(dst->nb[0] == sizeof(float));
  8677. const int ith = params->ith;
  8678. const int nth = params->nth;
  8679. const float start = ggml_get_op_params_f32(dst, 0);
  8680. const float stop = ggml_get_op_params_f32(dst, 1);
  8681. const float step = ggml_get_op_params_f32(dst, 2);
  8682. const int64_t steps = (int64_t) ceilf((stop - start) / step);
  8683. GGML_ASSERT(ggml_nelements(dst) == steps);
  8684. for (int64_t i = ith; i < steps; i+= nth) {
  8685. float value = start + step * i;
  8686. ((float *)dst->data)[i] = value;
  8687. }
  8688. }
  8689. static void ggml_compute_forward_arange(
  8690. const struct ggml_compute_params * params,
  8691. struct ggml_tensor * dst) {
  8692. switch (dst->type) {
  8693. case GGML_TYPE_F32:
  8694. {
  8695. ggml_compute_forward_arange_f32(params, dst);
  8696. } break;
  8697. default:
  8698. {
  8699. GGML_ABORT("fatal error");
  8700. }
  8701. }
  8702. }
  8703. static void ggml_compute_forward_timestep_embedding_f32(
  8704. const struct ggml_compute_params * params,
  8705. struct ggml_tensor * dst) {
  8706. const struct ggml_tensor * src0 = dst->src[0];
  8707. GGML_ASSERT(src0->nb[0] == sizeof(float));
  8708. const int ith = params->ith;
  8709. const int nth = params->nth;
  8710. GGML_TENSOR_UNARY_OP_LOCALS
  8711. const int dim = ggml_get_op_params_i32(dst, 0);
  8712. const int max_period = ggml_get_op_params_i32(dst, 1);
  8713. int half = dim / 2;
  8714. for (int64_t i = 0; i < ne00; i++) {
  8715. float * embed_data = (float *)((char *) dst->data + i*nb1);
  8716. for (int64_t j = ith; j < half; j += nth) {
  8717. float timestep = ((float *)src0->data)[i];
  8718. float freq = (float)expf(-logf(max_period) * j / half);
  8719. float arg = timestep * freq;
  8720. embed_data[j] = cosf(arg);
  8721. embed_data[j + half] = sinf(arg);
  8722. }
  8723. if (dim % 2 != 0 && ith == 0) {
  8724. embed_data[dim] = 0.f;
  8725. }
  8726. }
  8727. }
  8728. static void ggml_compute_forward_timestep_embedding(
  8729. const struct ggml_compute_params * params,
  8730. struct ggml_tensor * dst) {
  8731. const struct ggml_tensor * src0 = dst->src[0];
  8732. switch (src0->type) {
  8733. case GGML_TYPE_F32:
  8734. {
  8735. ggml_compute_forward_timestep_embedding_f32(params, dst);
  8736. } break;
  8737. default:
  8738. {
  8739. GGML_ABORT("fatal error");
  8740. }
  8741. }
  8742. }
  8743. // ggml_compute_forward_argsort
  8744. static void ggml_compute_forward_argsort_f32(
  8745. const struct ggml_compute_params * params,
  8746. struct ggml_tensor * dst) {
  8747. const struct ggml_tensor * src0 = dst->src[0];
  8748. GGML_TENSOR_UNARY_OP_LOCALS
  8749. GGML_ASSERT(nb0 == sizeof(float));
  8750. const int ith = params->ith;
  8751. const int nth = params->nth;
  8752. const int64_t nr = ggml_nrows(src0);
  8753. enum ggml_sort_order order = (enum ggml_sort_order) ggml_get_op_params_i32(dst, 0);
  8754. for (int64_t i = ith; i < nr; i += nth) {
  8755. int32_t * dst_data = (int32_t *)((char *) dst->data + i*nb1);
  8756. const float * src_data = (float *)((char *) src0->data + i*nb01);
  8757. for (int64_t j = 0; j < ne0; j++) {
  8758. dst_data[j] = j;
  8759. }
  8760. // C doesn't have a functional sort, so we do a bubble sort instead
  8761. for (int64_t j = 0; j < ne0; j++) {
  8762. for (int64_t k = j + 1; k < ne0; k++) {
  8763. if ((order == GGML_SORT_ORDER_ASC && src_data[dst_data[j]] > src_data[dst_data[k]]) ||
  8764. (order == GGML_SORT_ORDER_DESC && src_data[dst_data[j]] < src_data[dst_data[k]])) {
  8765. int32_t tmp = dst_data[j];
  8766. dst_data[j] = dst_data[k];
  8767. dst_data[k] = tmp;
  8768. }
  8769. }
  8770. }
  8771. }
  8772. }
  8773. static void ggml_compute_forward_argsort(
  8774. const struct ggml_compute_params * params,
  8775. struct ggml_tensor * dst) {
  8776. const struct ggml_tensor * src0 = dst->src[0];
  8777. switch (src0->type) {
  8778. case GGML_TYPE_F32:
  8779. {
  8780. ggml_compute_forward_argsort_f32(params, dst);
  8781. } break;
  8782. default:
  8783. {
  8784. GGML_ABORT("fatal error");
  8785. }
  8786. }
  8787. }
  8788. // ggml_compute_forward_flash_attn_ext
  8789. static void ggml_compute_forward_flash_attn_ext_f16(
  8790. const struct ggml_compute_params * params,
  8791. const struct ggml_tensor * q,
  8792. const struct ggml_tensor * k,
  8793. const struct ggml_tensor * v,
  8794. const struct ggml_tensor * mask,
  8795. struct ggml_tensor * dst) {
  8796. GGML_TENSOR_LOCALS(int64_t, neq, q, ne)
  8797. GGML_TENSOR_LOCALS(size_t, nbq, q, nb)
  8798. GGML_TENSOR_LOCALS(int64_t, nek, k, ne)
  8799. GGML_TENSOR_LOCALS(size_t, nbk, k, nb)
  8800. GGML_TENSOR_LOCALS(int64_t, nev, v, ne)
  8801. GGML_TENSOR_LOCALS(size_t, nbv, v, nb)
  8802. GGML_TENSOR_LOCALS(int64_t, ne, dst, ne)
  8803. GGML_TENSOR_LOCALS(size_t, nb, dst, nb)
  8804. const int ith = params->ith;
  8805. const int nth = params->nth;
  8806. const int64_t D = neq0;
  8807. const int64_t N = neq1;
  8808. GGML_ASSERT(ne0 == D);
  8809. GGML_ASSERT(ne2 == N);
  8810. // input tensor rows must be contiguous
  8811. GGML_ASSERT(nbq0 == ggml_type_size(q->type));
  8812. GGML_ASSERT(nbk0 == ggml_type_size(k->type));
  8813. GGML_ASSERT(nbv0 == ggml_type_size(v->type));
  8814. GGML_ASSERT(neq0 == D);
  8815. GGML_ASSERT(nek0 == D);
  8816. GGML_ASSERT(nev0 == D);
  8817. GGML_ASSERT(neq1 == N);
  8818. GGML_ASSERT(nev0 == D);
  8819. // dst cannot be transposed or permuted
  8820. GGML_ASSERT(nb0 == sizeof(float));
  8821. GGML_ASSERT(nb0 <= nb1);
  8822. GGML_ASSERT(nb1 <= nb2);
  8823. GGML_ASSERT(nb2 <= nb3);
  8824. // broadcast factors
  8825. const int64_t rk2 = neq2/nek2;
  8826. const int64_t rk3 = neq3/nek3;
  8827. const int64_t rv2 = neq2/nev2;
  8828. const int64_t rv3 = neq3/nev3;
  8829. // parallelize by q rows using ggml_vec_dot_f32
  8830. // total rows in q
  8831. const int nr = neq1*neq2*neq3;
  8832. // rows per thread
  8833. const int dr = (nr + nth - 1)/nth;
  8834. // row range for this thread
  8835. const int ir0 = dr*ith;
  8836. const int ir1 = MIN(ir0 + dr, nr);
  8837. float scale = 1.0f;
  8838. float max_bias = 0.0f;
  8839. float logit_softcap = 0.0f;
  8840. memcpy(&scale, (float *) dst->op_params + 0, sizeof(float));
  8841. memcpy(&max_bias, (float *) dst->op_params + 1, sizeof(float));
  8842. memcpy(&logit_softcap, (float *) dst->op_params + 2, sizeof(float));
  8843. if (logit_softcap != 0) {
  8844. scale /= logit_softcap;
  8845. }
  8846. const uint32_t n_head = neq2;
  8847. const uint32_t n_head_log2 = 1u << (uint32_t) floor(log2(n_head));
  8848. const float m0 = powf(2.0f, -(max_bias ) / n_head_log2);
  8849. const float m1 = powf(2.0f, -(max_bias / 2.0f) / n_head_log2);
  8850. enum ggml_type const k_vec_dot_type = type_traits_cpu[k->type].vec_dot_type;
  8851. ggml_from_float_t const q_to_vec_dot = type_traits_cpu[k_vec_dot_type].from_float;
  8852. ggml_vec_dot_t const kq_vec_dot = type_traits_cpu[k->type].vec_dot;
  8853. ggml_to_float_t const v_to_float = ggml_get_type_traits(v->type)->to_float;
  8854. GGML_ASSERT(q_to_vec_dot && "fattn: unsupported K-type");
  8855. GGML_ASSERT(v_to_float && "fattn: unsupported V-type");
  8856. // loop over n_batch and n_head
  8857. for (int ir = ir0; ir < ir1; ++ir) {
  8858. // q indices
  8859. const int iq3 = ir/(neq2*neq1);
  8860. const int iq2 = (ir - iq3*neq2*neq1)/neq1;
  8861. const int iq1 = (ir - iq3*neq2*neq1 - iq2*neq1);
  8862. const uint32_t h = iq2; // head index
  8863. const float slope = (max_bias > 0.0f) ? h < n_head_log2 ? powf(m0, h + 1) : powf(m1, 2*(h - n_head_log2) + 1) : 1.0f;
  8864. float S = 0.0f; // sum
  8865. float M = -INFINITY; // maximum KQ value
  8866. float * VKQ32 = (float *) params->wdata + ith*(3*D + CACHE_LINE_SIZE_F32); // FP32 VKQ accumulator
  8867. float * V32 = (VKQ32 + 1*D); // (temporary) FP32 V buffer
  8868. ggml_fp16_t * VKQ16 = (ggml_fp16_t *) (VKQ32 + 1*D); // (temporary) FP16 VKQ accumulator
  8869. ggml_fp16_t * Q_q = (ggml_fp16_t *) (VKQ32 + 2*D); // (temporary) buffer for Q converted to quantized/FP16
  8870. if (v->type == GGML_TYPE_F16) {
  8871. memset(VKQ16, 0, D*sizeof(ggml_fp16_t));
  8872. } else {
  8873. memset(VKQ32, 0, D*sizeof(float));
  8874. }
  8875. const ggml_fp16_t * mp = mask ? (ggml_fp16_t *)((char *) mask->data + iq1*mask->nb[1]) : NULL;
  8876. // k indices
  8877. const int ik3 = iq3 / rk3;
  8878. const int ik2 = iq2 / rk2;
  8879. // v indices
  8880. const int iv3 = iq3 / rv3;
  8881. const int iv2 = iq2 / rv2;
  8882. const float * pq = (const float *) ((char *) q->data + (iq1*nbq1 + iq2*nbq2 + iq3*nbq3));
  8883. q_to_vec_dot(pq, Q_q, D);
  8884. // online softmax / attention
  8885. // loop over n_kv and n_head_kv
  8886. // ref: https://arxiv.org/pdf/2112.05682.pdf
  8887. for (int64_t ic = 0; ic < nek1; ++ic) {
  8888. const float mv = mp ? slope*GGML_FP16_TO_FP32(mp[ic]) : 0.0f;
  8889. if (mv == -INFINITY) {
  8890. continue;
  8891. }
  8892. float s; // KQ value
  8893. const char * k_data = (const char *) k->data + ( ic*nbk1 + ik2*nbk2 + ik3*nbk3);
  8894. kq_vec_dot(D, &s, 0, k_data, 0, Q_q, 0, 1);
  8895. s = s*scale; // scale KQ value
  8896. if (logit_softcap != 0.0f) {
  8897. s = logit_softcap*tanhf(s);
  8898. }
  8899. s += mv; // apply mask
  8900. const float Mold = M;
  8901. float ms = 1.0f; // upon new higher max val, scale VKQ and KQ sum with this value
  8902. float vs = 1.0f; // post-softmax KQ value, expf(s - M)
  8903. const char * v_data = ((const char *) v->data + (ic*nbv1 + iv2*nbv2 + iv3*nbv3));
  8904. if (v->type == GGML_TYPE_F16) {
  8905. if (s > M) {
  8906. // s is new maximum, ms < 1.0f, vs == expf(s - s) == 1.0f
  8907. M = s;
  8908. ms = expf(Mold - M);
  8909. // V = V*expf(Mold - M)
  8910. ggml_vec_scale_f16(D, VKQ16, ms);
  8911. } else {
  8912. // no new maximum, ms == 1.0f, vs != 1.0f
  8913. vs = expf(s - M);
  8914. }
  8915. // V += v*expf(s - M)
  8916. ggml_vec_mad_f16(D, VKQ16, (const ggml_fp16_t *) v_data, vs);
  8917. } else {
  8918. if (s > M) {
  8919. // s is new maximum, ms < 1.0f, vs == expf(s - s) == 1.0f
  8920. M = s;
  8921. ms = expf(Mold - M);
  8922. // V = V*expf(Mold - M)
  8923. ggml_vec_scale_f32(D, VKQ32, ms);
  8924. } else {
  8925. // no new maximum, ms == 1.0f, vs != 1.0f
  8926. vs = expf(s - M);
  8927. }
  8928. v_to_float(v_data, V32, D);
  8929. // V += v*expf(s - M)
  8930. ggml_vec_mad_f32(D, VKQ32, V32, vs);
  8931. }
  8932. S = S*ms + vs; // scale and increment sum with partial sum
  8933. }
  8934. if (v->type == GGML_TYPE_F16) {
  8935. for (int64_t d = 0; d < D; ++d) {
  8936. VKQ32[d] = GGML_FP16_TO_FP32(VKQ16[d]);
  8937. }
  8938. }
  8939. // V /= S
  8940. const float S_inv = 1.0f/S;
  8941. ggml_vec_scale_f32(D, VKQ32, S_inv);
  8942. // dst indices
  8943. const int i1 = iq1;
  8944. const int i2 = iq2;
  8945. const int i3 = iq3;
  8946. // original
  8947. //memcpy((char *) dst->data + (i1*nb1 + i2*nb2 + i3*nb3), V, nev0*sizeof(float));
  8948. // permute(0, 2, 1, 3)
  8949. memcpy((char *) dst->data + (i3*ne2*ne1 + i2 + i1*ne1)*nb1, VKQ32, nb1);
  8950. }
  8951. }
  8952. static void ggml_compute_forward_flash_attn_ext(
  8953. const struct ggml_compute_params * params,
  8954. const struct ggml_tensor * q,
  8955. const struct ggml_tensor * k,
  8956. const struct ggml_tensor * v,
  8957. const struct ggml_tensor * mask,
  8958. struct ggml_tensor * dst) {
  8959. switch (dst->op_params[3]) {
  8960. case GGML_PREC_DEFAULT:
  8961. case GGML_PREC_F32:
  8962. {
  8963. // uses F32 accumulators
  8964. ggml_compute_forward_flash_attn_ext_f16(params, q, k, v, mask, dst);
  8965. } break;
  8966. default:
  8967. {
  8968. GGML_ABORT("fatal error");
  8969. }
  8970. }
  8971. }
  8972. // ggml_compute_forward_flash_attn_back
  8973. static void ggml_compute_forward_flash_attn_back_f32(
  8974. const struct ggml_compute_params * params,
  8975. const bool masked,
  8976. struct ggml_tensor * dst) {
  8977. const struct ggml_tensor * q = dst->src[0];
  8978. const struct ggml_tensor * k = dst->src[1];
  8979. const struct ggml_tensor * v = dst->src[2];
  8980. const struct ggml_tensor * d = dst->src[3];
  8981. GGML_TENSOR_LOCALS(int64_t, neq, q, ne)
  8982. GGML_TENSOR_LOCALS(size_t, nbq, q, nb)
  8983. GGML_TENSOR_LOCALS(int64_t, nek, k, ne)
  8984. GGML_TENSOR_LOCALS(size_t, nbk, k, nb)
  8985. GGML_TENSOR_LOCALS(int64_t, nev, v, ne)
  8986. GGML_TENSOR_LOCALS(size_t, nbv, v, nb)
  8987. GGML_TENSOR_LOCALS(int64_t, ned, d, ne)
  8988. GGML_TENSOR_LOCALS(size_t, nbd, d, nb)
  8989. GGML_TENSOR_LOCALS(int64_t, ne, dst, ne)
  8990. GGML_TENSOR_LOCALS(size_t, nb, dst, nb)
  8991. const int ith = params->ith;
  8992. const int nth = params->nth;
  8993. const int64_t D = neq0;
  8994. const int64_t N = neq1;
  8995. const int64_t P = nek1 - N;
  8996. const int64_t M = P + N;
  8997. const int Mup = ggml_up(M, GGML_SOFT_MAX_UNROLL);
  8998. const int mxDM = MAX(D, Mup);
  8999. // GGML_ASSERT(ne0 == D);
  9000. // GGML_ASSERT(ne1 == N);
  9001. GGML_ASSERT(P >= 0);
  9002. GGML_ASSERT(nbq0 == sizeof(float));
  9003. GGML_ASSERT(nbk0 == sizeof(float));
  9004. GGML_ASSERT(nbv0 == sizeof(float));
  9005. GGML_ASSERT(neq0 == D);
  9006. GGML_ASSERT(nek0 == D);
  9007. GGML_ASSERT(nev1 == D);
  9008. GGML_ASSERT(ned0 == D);
  9009. GGML_ASSERT(neq1 == N);
  9010. GGML_ASSERT(nek1 == N + P);
  9011. GGML_ASSERT(nev1 == D);
  9012. GGML_ASSERT(ned1 == N);
  9013. // dst cannot be transposed or permuted
  9014. GGML_ASSERT(nb0 == sizeof(float));
  9015. GGML_ASSERT(nb0 <= nb1);
  9016. GGML_ASSERT(nb1 <= nb2);
  9017. GGML_ASSERT(nb2 <= nb3);
  9018. if (ith == 0) {
  9019. memset(dst->data, 0, nb0*ne0*ne1*ne2*ne3);
  9020. }
  9021. ggml_barrier(params->threadpool);
  9022. const int64_t elem_q = ggml_nelements(q);
  9023. const int64_t elem_k = ggml_nelements(k);
  9024. enum ggml_type result_type = dst->type;
  9025. GGML_ASSERT(ggml_blck_size(result_type) == 1);
  9026. const size_t tsize = ggml_type_size(result_type);
  9027. const size_t offs_q = 0;
  9028. const size_t offs_k = offs_q + GGML_PAD(elem_q * tsize, GGML_MEM_ALIGN);
  9029. const size_t offs_v = offs_k + GGML_PAD(elem_k * tsize, GGML_MEM_ALIGN);
  9030. void * grad_q = (char *) dst->data;
  9031. void * grad_k = (char *) dst->data + offs_k;
  9032. void * grad_v = (char *) dst->data + offs_v;
  9033. const size_t nbgq1 = nb0*neq0;
  9034. const size_t nbgq2 = nb0*neq0*neq1;
  9035. const size_t nbgq3 = nb0*neq0*neq1*neq2;
  9036. const size_t nbgk1 = nb0*nek0;
  9037. const size_t nbgk2 = nb0*nek0*nek1;
  9038. const size_t nbgk3 = nb0*nek0*nek1*neq2;
  9039. const size_t nbgv1 = nb0*nev0;
  9040. const size_t nbgv2 = nb0*nev0*nev1;
  9041. const size_t nbgv3 = nb0*nev0*nev1*neq2;
  9042. // parallelize by k rows using ggml_vec_dot_f32
  9043. // total rows in k
  9044. const int nr = nek2*nek3;
  9045. // rows per thread
  9046. const int dr = (nr + nth - 1)/nth;
  9047. // row range for this thread
  9048. const int ir0 = dr*ith;
  9049. const int ir1 = MIN(ir0 + dr, nr);
  9050. const float scale = 1.0f/sqrtf(D);
  9051. //printf("P=%d N=%d D=%d ir0=%d ir1=%d scale = %f\n", P, N, D, ir0, ir1, scale);
  9052. // how often k2 (and v2) is repeated in q2
  9053. int nrep = neq2/nek2;
  9054. for (int ir = ir0; ir < ir1; ++ir) {
  9055. // q indices
  9056. const int ik3 = ir/(nek2);
  9057. const int ik2 = ir - ik3*nek2;
  9058. const int iq3 = ik3;
  9059. const int id3 = ik3;
  9060. const int iv3 = ik3;
  9061. const int iv2 = ik2;
  9062. for (int irep = 0; irep < nrep; ++irep) {
  9063. const int iq2 = ik2 + irep*nek2;
  9064. const int id2 = iq2;
  9065. // (ik2 + irep*nek2) % nek2 == ik2
  9066. for (int iq1 = 0; iq1 < neq1; ++iq1) {
  9067. const int id1 = iq1;
  9068. // not sure about CACHE_LINE_SIZE_F32..
  9069. // - maybe it must not be multiplied by 2 and excluded from .. in SM 1*(..) offset?
  9070. float * S = (float *) params->wdata + ith*2*(mxDM + CACHE_LINE_SIZE_F32) + 0*(mxDM+CACHE_LINE_SIZE_F32);
  9071. float * SM = (float *) params->wdata + ith*2*(mxDM + CACHE_LINE_SIZE_F32) + 1*(mxDM+CACHE_LINE_SIZE_F32);
  9072. for (int i = M; i < Mup; ++i) {
  9073. S[i] = -INFINITY;
  9074. }
  9075. const int64_t masked_begin = masked ? (P + iq1 + 1) : M;
  9076. for (int64_t ic = 0; ic < masked_begin; ++ic) {
  9077. // k indices
  9078. const int ik1 = ic;
  9079. // S indices
  9080. const int i1 = ik1;
  9081. ggml_vec_dot_f32(neq0,
  9082. S + i1, 0,
  9083. (float *) ((char *) k->data + (ik1*nbk1 + ik2*nbk2 + ik3*nbk3)), 0,
  9084. (float *) ((char *) q->data + (iq1*nbq1 + iq2*nbq2 + iq3*nbq3)), 0, 1);
  9085. }
  9086. // scale
  9087. ggml_vec_scale_f32(masked_begin, S, scale);
  9088. for (int64_t i = masked_begin; i < M; i++) {
  9089. S[i] = -INFINITY;
  9090. }
  9091. // softmax
  9092. // exclude known -INF S[..] values from max and loop
  9093. // dont forget to set their SM values to zero
  9094. {
  9095. float max = -INFINITY;
  9096. ggml_vec_max_f32(masked_begin, &max, S);
  9097. ggml_float sum = 0.0;
  9098. {
  9099. #ifdef GGML_SOFT_MAX_ACCELERATE
  9100. max = -max;
  9101. vDSP_vsadd(SM, 1, &max, SM, 1, Mup);
  9102. vvexpf(SM, SM, &Mup);
  9103. ggml_vec_sum_f32(Mup, &sum, SM);
  9104. #else
  9105. sum = ggml_vec_soft_max_f32(Mup, SM, S, max);
  9106. #endif
  9107. }
  9108. assert(sum > 0.0);
  9109. sum = 1.0/sum;
  9110. ggml_vec_scale_f32(masked_begin, SM, sum);
  9111. }
  9112. // step-by-step explanation
  9113. {
  9114. // forward-process shape grads from backward process
  9115. // parallel_for ik2,ik3:
  9116. // for irep:
  9117. // iq2 = ik2 + irep*nek2
  9118. // k[:D,:M,:,:] [D,M,:,:] grad[k][:D,:M,ik2,ik3] += grad[kcur]
  9119. // q[:D,:N,:,:] [D,N,:,:] grad[q][:D,iq1,iq2,iq3] += grad[qcur]
  9120. // v[:M,:D,:,:] [M,D,:,:] grad[v][:M,:D,iv2,iv3] += grad[vcur]
  9121. // for iq1:
  9122. // kcur = k[:D,:M,ik2,ik3] [D,M,1,1] grad[kcur] = grad[S1].T @ qcur
  9123. // qcur = q[:D,iq1,iq2,iq3] [D,1,1,1] grad[qcur] = grad[S1] @ kcur
  9124. // vcur = v[:M,:D,iv2,iv3] [M,D,1,1] grad[vcur] = grad[S5].T @ S4
  9125. // S0 = -Inf [D,1,1,1]
  9126. // ~S1[i] = dot(kcur[:D,i], qcur)
  9127. // S1 = qcur @ kcur.T [M,1,1,1] grad[S1] = grad[S2] * scale
  9128. // S2 = S1 * scale [M,1,1,1] grad[S2] = diag_mask_zero(grad[S3], P)
  9129. // S3 = diag_mask_inf(S2, P) [M,1,1,1] grad[S3] = S4 * (grad[S4] - dot(S4, grad[S4]))
  9130. // S4 = softmax(S3) [M,1,1,1] grad[S4] = grad[S5] @ vcur
  9131. // ~S5[i] = dot(vcur[:,i], S4)
  9132. // S5 = S4 @ vcur.T [D,1,1,1] grad[S5] = d[:D,id1,id2,id3]
  9133. // ~dst[i,iq1,iq2,iq3] = S5[i] ^
  9134. // dst[:D,iq1,iq2,iq3] = S5 | grad[dst[:D,iq1,iq2,iq3]] = d[:D,id1,id2,id3]
  9135. // dst backward-/ grad[dst] = d
  9136. //
  9137. // output gradients with their dependencies:
  9138. //
  9139. // grad[kcur] = grad[S1].T @ qcur
  9140. // grad[S1] = diag_mask_zero(grad[S3], P) * scale
  9141. // grad[S3] = S4 * (grad[S4] - dot(S4, grad[S4]))
  9142. // grad[S4] = grad[S5] @ vcur
  9143. // grad[S4] = d[:D,id1,id2,id3] @ vcur
  9144. // grad[qcur] = grad[S1] @ kcur
  9145. // grad[vcur] = grad[S5].T @ S4
  9146. // grad[vcur] = d[:D,id1,id2,id3].T @ S4
  9147. //
  9148. // in post-order:
  9149. //
  9150. // S1 = qcur @ kcur.T
  9151. // S2 = S1 * scale
  9152. // S3 = diag_mask_inf(S2, P)
  9153. // S4 = softmax(S3)
  9154. // grad[S4] = d[:D,id1,id2,id3] @ vcur
  9155. // grad[S3] = S4 * (grad[S4] - dot(S4, grad[S4]))
  9156. // grad[S1] = diag_mask_zero(grad[S3], P) * scale
  9157. // grad[qcur] = grad[S1] @ kcur
  9158. // grad[kcur] = grad[S1].T @ qcur
  9159. // grad[vcur] = d[:D,id1,id2,id3].T @ S4
  9160. //
  9161. // using less variables (SM=S4):
  9162. //
  9163. // S = diag_mask_inf(qcur @ kcur.T * scale, P)
  9164. // SM = softmax(S)
  9165. // S = d[:D,iq1,iq2,iq3] @ vcur
  9166. // dot_SM_gradSM = dot(SM, S)
  9167. // S = SM * (S - dot(SM, S))
  9168. // S = diag_mask_zero(S, P) * scale
  9169. //
  9170. // grad[q][:D,iq1,iq2,iq3] += S @ kcur
  9171. // grad[k][:D,:M,ik2,ik3] += S.T @ qcur
  9172. // grad[v][:M,:D,iv2,iv3] += d[:D,id1,id2,id3].T @ SM
  9173. }
  9174. // S = gradSM = d[:D,id1,id2,id3] @ vcur[:,:,iv2,iv3]
  9175. // S = d[:D,id1,id2,id3] @ vcur[:,:,iv2,iv3]
  9176. // for ic:
  9177. // S[:M] += vcur[:M,ic,iv2,iv3] * d[ic,id1,id2,id3]
  9178. // exclude known future zero S[..] values from operation
  9179. ggml_vec_set_f32(masked_begin, S, 0);
  9180. for (int64_t ic = 0; ic < D; ++ic) {
  9181. ggml_vec_mad_f32(masked_begin,
  9182. S,
  9183. (float *) ((char *) v->data + ( ic*nbv1 + iv2*nbv2 + iv3*nbv3)),
  9184. *(float *) ((char *) d->data + (ic*nbd0 + id1*nbd1 + id2*nbd2 + id3*nbd3)));
  9185. }
  9186. // S = SM * (S - dot(SM, S))
  9187. float dot_SM_gradSM = 0;
  9188. ggml_vec_dot_f32 (masked_begin, &dot_SM_gradSM, 0, SM, 0, S, 0, 1);
  9189. ggml_vec_acc1_f32(M, S, -dot_SM_gradSM);
  9190. ggml_vec_mul_f32 (masked_begin, S, S, SM);
  9191. // S = diag_mask_zero(S, P) * scale
  9192. // already done by above ggml_vec_set_f32
  9193. // exclude known zero S[..] values from operation
  9194. ggml_vec_scale_f32(masked_begin, S, scale);
  9195. // S shape [M,1]
  9196. // SM shape [M,1]
  9197. // kcur shape [D,M]
  9198. // qcur shape [D,1]
  9199. // vcur shape [M,D]
  9200. // grad[q][:D,iq1,iq2,iq3] += S @ kcur
  9201. // grad[q][:D,iq1,iq2,iq3] += shape[M,1] @ shape[D,M]
  9202. // for ic:
  9203. // grad[q][:D,iq1,iq2,iq3] += S[ic] * kcur[:D,ic,ik2,ik3]
  9204. // exclude known zero S[..] values from loop
  9205. for (int64_t ic = 0; ic < masked_begin; ++ic) {
  9206. ggml_vec_mad_f32(D,
  9207. (float *) ((char *) grad_q + (iq1*nbgq1 + iq2*nbgq2 + iq3*nbgq3)),
  9208. (float *) ((char *) k->data + (ic*nbk1 + ik2*nbk2 + ik3*nbk3)),
  9209. S[ic]);
  9210. }
  9211. // grad[k][:D,:M,iq2,iq3] += S.T @ qcur
  9212. // for ic:
  9213. // grad[k][:D,ic,iq2,iq3] += S.T[0,ic] * qcur[:D,0]
  9214. // grad[k][:D,ic,iq2,iq3] += S[ic] * qcur[:D,0]
  9215. // exclude known zero S[..] values from loop
  9216. for (int64_t ic = 0; ic < masked_begin; ++ic) {
  9217. ggml_vec_mad_f32(D,
  9218. (float *) ((char *) grad_k + (ic*nbgk1 + ik2*nbgk2 + ik3*nbgk3)),
  9219. (float *) ((char *) q->data + (iq1*nbq1 + iq2*nbq2 + iq3*nbq3)),
  9220. S[ic]);
  9221. }
  9222. // grad[v][:M,:D,iv2,iv3] += d[:D,id1,id2,id3].T @ SM
  9223. // for ic:
  9224. // grad[v][:M,ic,iv2,iv3] += d[:D,id1,id2,id3].T[0,ic] * SM[:M]
  9225. // grad[v][:M,ic,iv2,iv3] += d[ic,id1,id2,id3] * SM[:M]
  9226. // exclude known zero SM[..] values from mad
  9227. for (int64_t ic = 0; ic < D; ++ic) {
  9228. ggml_vec_mad_f32(masked_begin,
  9229. (float *) ((char *) grad_v + ( ic*nbgv1 + iv2*nbgv2 + iv3*nbgv3)),
  9230. SM,
  9231. *(float *) ((char *) d->data + (ic*nbd0 + id1*nbd1 + id2*nbd2 + id3*nbd3)));
  9232. }
  9233. }
  9234. }
  9235. }
  9236. }
  9237. static void ggml_compute_forward_flash_attn_back(
  9238. const struct ggml_compute_params * params,
  9239. const bool masked,
  9240. struct ggml_tensor * dst) {
  9241. const struct ggml_tensor * q = dst->src[0];
  9242. switch (q->type) {
  9243. case GGML_TYPE_F32:
  9244. {
  9245. ggml_compute_forward_flash_attn_back_f32(params, masked, dst);
  9246. } break;
  9247. default:
  9248. {
  9249. GGML_ABORT("fatal error");
  9250. }
  9251. }
  9252. }
  9253. // ggml_compute_forward_ssm_conv
  9254. static void ggml_compute_forward_ssm_conv_f32(
  9255. const struct ggml_compute_params * params,
  9256. struct ggml_tensor * dst) {
  9257. const struct ggml_tensor * src0 = dst->src[0]; // conv_x
  9258. const struct ggml_tensor * src1 = dst->src[1]; // conv1d.weight
  9259. const int ith = params->ith;
  9260. const int nth = params->nth;
  9261. const int nc = src1->ne[0]; // d_conv
  9262. const int ncs = src0->ne[0]; // d_conv - 1 + n_t
  9263. const int nr = src0->ne[1]; // d_inner
  9264. const int n_t = dst->ne[1]; // tokens per sequence
  9265. const int n_s = dst->ne[2]; // number of sequences in the batch
  9266. GGML_ASSERT( dst->ne[0] == nr);
  9267. GGML_ASSERT(src0->nb[0] == sizeof(float));
  9268. GGML_ASSERT(src1->nb[0] == sizeof(float));
  9269. GGML_ASSERT(src0->nb[1] == src0->ne[0]*sizeof(float));
  9270. // rows per thread
  9271. const int dr = (nr + nth - 1)/nth;
  9272. // row range for this thread
  9273. const int ir0 = dr*ith;
  9274. const int ir1 = MIN(ir0 + dr, nr);
  9275. const int ir = ir1 - ir0;
  9276. for (int i3 = 0; i3 < n_s; ++i3) {
  9277. for (int i2 = 0; i2 < n_t; ++i2) {
  9278. // {d_conv - 1 + n_t, d_inner, n_seqs}
  9279. // sliding window
  9280. const float * s = (const float *) ((const char *) src0->data + ir0*(src0->nb[1]) + i2*(src0->nb[0]) + i3*(src0->nb[2])); // {d_conv, d_inner, n_s}
  9281. const float * c = (const float *) ((const char *) src1->data + ir0*(src1->nb[1])); // {d_conv, d_inner}
  9282. float * x = (float *) ((char *) dst->data + ir0*(dst->nb[0]) + i2*(dst->nb[1]) + i3*(dst->nb[2])); // {d_inner, n_t, n_s}
  9283. // TODO: transpose the output for smaller strides for big batches?
  9284. // d_inner
  9285. for (int i1 = 0; i1 < ir; ++i1) {
  9286. // rowwise dot product
  9287. // NOTE: not using ggml_vec_dot_f32, because its sum is in double precision
  9288. float sumf = 0.0f;
  9289. // d_conv
  9290. for (int i0 = 0; i0 < nc; ++i0) {
  9291. sumf += s[i0 + i1*ncs] * c[i0 + i1*nc];
  9292. }
  9293. x[i1] = sumf;
  9294. }
  9295. }
  9296. }
  9297. }
  9298. static void ggml_compute_forward_ssm_conv(
  9299. const struct ggml_compute_params * params,
  9300. struct ggml_tensor * dst) {
  9301. switch (dst->src[0]->type) {
  9302. case GGML_TYPE_F32:
  9303. {
  9304. ggml_compute_forward_ssm_conv_f32(params, dst);
  9305. } break;
  9306. default:
  9307. {
  9308. GGML_ABORT("fatal error");
  9309. }
  9310. }
  9311. }
  9312. // ggml_compute_forward_ssm_scan
  9313. static void ggml_compute_forward_ssm_scan_f32(
  9314. const struct ggml_compute_params * params,
  9315. struct ggml_tensor * dst) {
  9316. const struct ggml_tensor * src0 = dst->src[0]; // s
  9317. const struct ggml_tensor * src1 = dst->src[1]; // x
  9318. const struct ggml_tensor * src2 = dst->src[2]; // dt
  9319. const struct ggml_tensor * src3 = dst->src[3]; // A
  9320. const struct ggml_tensor * src4 = dst->src[4]; // B
  9321. const struct ggml_tensor * src5 = dst->src[5]; // C
  9322. const int ith = params->ith;
  9323. const int nth = params->nth;
  9324. const int64_t nc = src0->ne[0]; // d_state
  9325. const int64_t nr = src0->ne[1]; // d_inner
  9326. const int64_t n_t = src1->ne[1]; // number of tokens per sequence
  9327. const int64_t n_s = src0->ne[2]; // number of sequences in the batch
  9328. GGML_ASSERT(ggml_nelements(src1) + ggml_nelements(src0) == ggml_nelements(dst));
  9329. GGML_ASSERT(src0->nb[0] == sizeof(float));
  9330. GGML_ASSERT(src1->nb[0] == sizeof(float));
  9331. GGML_ASSERT(src2->nb[0] == sizeof(float));
  9332. GGML_ASSERT(src3->nb[0] == sizeof(float));
  9333. GGML_ASSERT(src4->nb[0] == sizeof(float));
  9334. GGML_ASSERT(src5->nb[0] == sizeof(float));
  9335. // required for the dot product between s and C
  9336. GGML_ASSERT(src0->nb[1] == src0->ne[0]*sizeof(float));
  9337. // required for per-sequence offsets for states
  9338. GGML_ASSERT(src0->nb[2] == src0->ne[0]*src0->ne[1]*sizeof(float));
  9339. // required to get correct offset for state destination (i.e. src1->nb[3])
  9340. GGML_ASSERT(src1->nb[3] == src1->ne[0]*src1->ne[1]*src1->ne[2]*sizeof(float));
  9341. // rows per thread
  9342. const int dr = (nr + nth - 1)/nth;
  9343. // row range for this thread
  9344. const int ir0 = dr*ith;
  9345. const int ir1 = MIN(ir0 + dr, nr);
  9346. const int ir = ir1 - ir0;
  9347. for (int i3 = 0; i3 < n_s; ++i3) {
  9348. for (int i2 = 0; i2 < n_t; ++i2) {
  9349. const float * s0 = (const float *) ((const char *) src0->data + ir0*(src0->nb[1]) + i3*(src0->nb[2])); // {d_state, d_inner, n_s}
  9350. const float * x = (const float *) ((const char *) src1->data + ir0*(src1->nb[0]) + i2*(src1->nb[1]) + i3*(src1->nb[2])); // {d_inner, n_t, n_s}
  9351. const float * dt = (const float *) ((const char *) src2->data + ir0*(src2->nb[0]) + i2*(src2->nb[1]) + i3*(src2->nb[2])); // {d_inner, n_t, n_s}
  9352. const float * A = (const float *) ((const char *) src3->data + ir0*(src3->nb[1])); // {d_state, d_inner}
  9353. const float * B = (const float *) ((const char *) src4->data + i2*(src4->nb[1]) + i3*(src4->nb[2])); // {d_state, n_t, n_s}
  9354. const float * C = (const float *) ((const char *) src5->data + i2*(src5->nb[1]) + i3*(src5->nb[2])); // {d_state, n_t, n_s}
  9355. float * y = ( float *) (( char *) dst->data + ir0*(src1->nb[0]) + i2*(src1->nb[1]) + i3*(src1->nb[2])); // {d_inner, n_t, n_s}
  9356. float * s = ( float *) (( char *) dst->data + ir0*(src0->nb[1]) + i3*(src0->nb[2]) + src1->nb[3]); // {d_state, d_inner, n_s}
  9357. // use the output as the source for the next token-wise iterations
  9358. if (i2 > 0) { s0 = s; }
  9359. // d_inner
  9360. for (int i1 = 0; i1 < ir; ++i1) {
  9361. // ref: https://github.com/state-spaces/mamba/blob/34076d664838588a3c97727b263478ab9f621a07/mamba_ssm/ops/triton/selective_state_update.py#L78
  9362. float dt_soft_plus = dt[i1] <= 20.0f ? log1pf(expf(dt[i1])) : dt[i1];
  9363. float x_dt = x[i1] * dt_soft_plus;
  9364. float sumf = 0.0f;
  9365. // d_state
  9366. for (int i0 = 0; i0 < nc; ++i0) {
  9367. int i = i0 + i1*nc;
  9368. // state = prev_state * dA + dB * x
  9369. float state = (s0[i] * expf(dt_soft_plus * A[i])) + (B[i0] * x_dt);
  9370. // y = rowwise_dotprod(state, C)
  9371. sumf += state * C[i0];
  9372. s[i] = state;
  9373. }
  9374. y[i1] = sumf;
  9375. }
  9376. }
  9377. }
  9378. }
  9379. static void ggml_compute_forward_ssm_scan(
  9380. const struct ggml_compute_params * params,
  9381. struct ggml_tensor * dst) {
  9382. switch (dst->src[0]->type) {
  9383. case GGML_TYPE_F32:
  9384. {
  9385. ggml_compute_forward_ssm_scan_f32(params, dst);
  9386. } break;
  9387. default:
  9388. {
  9389. GGML_ABORT("fatal error");
  9390. }
  9391. }
  9392. }
  9393. // ggml_compute_forward_win_part
  9394. static void ggml_compute_forward_win_part_f32(
  9395. const struct ggml_compute_params * params,
  9396. struct ggml_tensor * dst) {
  9397. UNUSED(params);
  9398. const struct ggml_tensor * src0 = dst->src[0];
  9399. GGML_TENSOR_LOCALS(int64_t, ne0, src0, ne)
  9400. GGML_TENSOR_LOCALS(int64_t, ne, dst, ne)
  9401. const int32_t nep0 = ((const int32_t *)(dst->op_params))[0];
  9402. const int32_t nep1 = ((const int32_t *)(dst->op_params))[1];
  9403. const int32_t w = ((const int32_t *)(dst->op_params))[2];
  9404. assert(ne00 == ne0);
  9405. assert(ne3 == nep0*nep1);
  9406. // TODO: optimize / multi-thread
  9407. for (int py = 0; py < nep1; ++py) {
  9408. for (int px = 0; px < nep0; ++px) {
  9409. const int64_t i3 = py*nep0 + px;
  9410. for (int64_t i2 = 0; i2 < ne2; ++i2) {
  9411. for (int64_t i1 = 0; i1 < ne1; ++i1) {
  9412. for (int64_t i0 = 0; i0 < ne0; ++i0) {
  9413. const int64_t i02 = py*w + i2;
  9414. const int64_t i01 = px*w + i1;
  9415. const int64_t i00 = i0;
  9416. const int64_t i = i3*ne2*ne1*ne0 + i2*ne1*ne0 + i1*ne0 + i0;
  9417. const int64_t j = i02*ne01*ne00 + i01*ne00 + i00;
  9418. if (py*w + i2 >= ne02 || px*w + i1 >= ne01) {
  9419. ((float *) dst->data)[i] = 0.0f;
  9420. } else {
  9421. ((float *) dst->data)[i] = ((float *) src0->data)[j];
  9422. }
  9423. }
  9424. }
  9425. }
  9426. }
  9427. }
  9428. }
  9429. static void ggml_compute_forward_win_part(
  9430. const struct ggml_compute_params * params,
  9431. struct ggml_tensor * dst) {
  9432. const struct ggml_tensor * src0 = dst->src[0];
  9433. switch (src0->type) {
  9434. case GGML_TYPE_F32:
  9435. {
  9436. ggml_compute_forward_win_part_f32(params, dst);
  9437. } break;
  9438. default:
  9439. {
  9440. GGML_ABORT("fatal error");
  9441. }
  9442. }
  9443. }
  9444. // ggml_compute_forward_win_unpart
  9445. static void ggml_compute_forward_win_unpart_f32(
  9446. const struct ggml_compute_params * params,
  9447. struct ggml_tensor * dst) {
  9448. UNUSED(params);
  9449. const struct ggml_tensor * src0 = dst->src[0];
  9450. GGML_TENSOR_LOCALS(int64_t, ne0, src0, ne)
  9451. GGML_TENSOR_LOCALS(int64_t, ne, dst, ne)
  9452. const int32_t w = ((const int32_t *)(dst->op_params))[0];
  9453. // padding
  9454. const int px = (w - ne1%w)%w;
  9455. //const int py = (w - ne2%w)%w;
  9456. const int npx = (px + ne1)/w;
  9457. //const int npy = (py + ne2)/w;
  9458. assert(ne0 == ne00);
  9459. // TODO: optimize / multi-thread
  9460. for (int64_t i2 = 0; i2 < ne2; ++i2) {
  9461. for (int64_t i1 = 0; i1 < ne1; ++i1) {
  9462. for (int64_t i0 = 0; i0 < ne0; ++i0) {
  9463. const int ip2 = i2/w;
  9464. const int ip1 = i1/w;
  9465. const int64_t i02 = i2%w;
  9466. const int64_t i01 = i1%w;
  9467. const int64_t i00 = i0;
  9468. const int64_t i = (ip2*npx + ip1)*ne02*ne01*ne00 + i02*ne01*ne00 + i01*ne00 + i00;
  9469. const int64_t j = i2*ne1*ne0 + i1*ne0 + i0;
  9470. ((float *) dst->data)[j] = ((float *) src0->data)[i];
  9471. }
  9472. }
  9473. }
  9474. }
  9475. static void ggml_compute_forward_win_unpart(
  9476. const struct ggml_compute_params * params,
  9477. struct ggml_tensor * dst) {
  9478. const struct ggml_tensor * src0 = dst->src[0];
  9479. switch (src0->type) {
  9480. case GGML_TYPE_F32:
  9481. {
  9482. ggml_compute_forward_win_unpart_f32(params, dst);
  9483. } break;
  9484. default:
  9485. {
  9486. GGML_ABORT("fatal error");
  9487. }
  9488. }
  9489. }
  9490. //gmml_compute_forward_unary
  9491. static void ggml_compute_forward_unary(
  9492. const struct ggml_compute_params * params,
  9493. struct ggml_tensor * dst) {
  9494. const enum ggml_unary_op op = ggml_get_unary_op(dst);
  9495. switch (op) {
  9496. case GGML_UNARY_OP_ABS:
  9497. {
  9498. ggml_compute_forward_abs(params, dst);
  9499. } break;
  9500. case GGML_UNARY_OP_SGN:
  9501. {
  9502. ggml_compute_forward_sgn(params, dst);
  9503. } break;
  9504. case GGML_UNARY_OP_NEG:
  9505. {
  9506. ggml_compute_forward_neg(params, dst);
  9507. } break;
  9508. case GGML_UNARY_OP_STEP:
  9509. {
  9510. ggml_compute_forward_step(params, dst);
  9511. } break;
  9512. case GGML_UNARY_OP_TANH:
  9513. {
  9514. ggml_compute_forward_tanh(params, dst);
  9515. } break;
  9516. case GGML_UNARY_OP_ELU:
  9517. {
  9518. ggml_compute_forward_elu(params, dst);
  9519. } break;
  9520. case GGML_UNARY_OP_RELU:
  9521. {
  9522. ggml_compute_forward_relu(params, dst);
  9523. } break;
  9524. case GGML_UNARY_OP_SIGMOID:
  9525. {
  9526. ggml_compute_forward_sigmoid(params, dst);
  9527. } break;
  9528. case GGML_UNARY_OP_GELU:
  9529. {
  9530. ggml_compute_forward_gelu(params, dst);
  9531. } break;
  9532. case GGML_UNARY_OP_GELU_QUICK:
  9533. {
  9534. ggml_compute_forward_gelu_quick(params, dst);
  9535. } break;
  9536. case GGML_UNARY_OP_SILU:
  9537. {
  9538. ggml_compute_forward_silu(params, dst);
  9539. } break;
  9540. case GGML_UNARY_OP_HARDSWISH:
  9541. {
  9542. ggml_compute_forward_hardswish(params, dst);
  9543. } break;
  9544. case GGML_UNARY_OP_HARDSIGMOID:
  9545. {
  9546. ggml_compute_forward_hardsigmoid(params, dst);
  9547. } break;
  9548. case GGML_UNARY_OP_EXP:
  9549. {
  9550. ggml_compute_forward_exp(params, dst);
  9551. } break;
  9552. default:
  9553. {
  9554. GGML_ABORT("fatal error");
  9555. }
  9556. }
  9557. }
  9558. // ggml_compute_forward_get_rel_pos
  9559. static void ggml_compute_forward_get_rel_pos_f16(
  9560. const struct ggml_compute_params * params,
  9561. struct ggml_tensor * dst) {
  9562. UNUSED(params);
  9563. const struct ggml_tensor * src0 = dst->src[0];
  9564. // ref: https://github.com/facebookresearch/segment-anything/blob/main/segment_anything/modeling/image_encoder.py#L292-L322
  9565. GGML_TENSOR_UNARY_OP_LOCALS
  9566. const int64_t w = ne1;
  9567. ggml_fp16_t * src0_data = (ggml_fp16_t *) src0->data;
  9568. ggml_fp16_t * dst_data = (ggml_fp16_t *) dst->data;
  9569. for (int64_t i2 = 0; i2 < ne2; ++i2) {
  9570. for (int64_t i1 = 0; i1 < ne1; ++i1) {
  9571. const int64_t pos = (w - i1 - 1) + i2;
  9572. for (int64_t i0 = 0; i0 < ne0; ++i0) {
  9573. dst_data[i2*ne1*ne0 + i1*ne0 + i0] = src0_data[pos*ne00 + i0];
  9574. }
  9575. }
  9576. }
  9577. }
  9578. static void ggml_compute_forward_get_rel_pos(
  9579. const struct ggml_compute_params * params,
  9580. struct ggml_tensor * dst) {
  9581. const struct ggml_tensor * src0 = dst->src[0];
  9582. switch (src0->type) {
  9583. case GGML_TYPE_F16:
  9584. case GGML_TYPE_BF16:
  9585. {
  9586. ggml_compute_forward_get_rel_pos_f16(params, dst);
  9587. } break;
  9588. default:
  9589. {
  9590. GGML_ABORT("fatal error");
  9591. }
  9592. }
  9593. }
  9594. // ggml_compute_forward_add_rel_pos
  9595. static void ggml_compute_forward_add_rel_pos_f32(
  9596. const struct ggml_compute_params * params,
  9597. struct ggml_tensor * dst) {
  9598. const struct ggml_tensor * src0 = dst->src[0];
  9599. const struct ggml_tensor * src1 = dst->src[1];
  9600. const struct ggml_tensor * src2 = dst->src[2];
  9601. const bool inplace = (bool) ((int32_t *) dst->op_params)[0];
  9602. if (!inplace) {
  9603. if (params->ith == 0) {
  9604. memcpy((char *) dst->data, (char *) src0->data, ggml_nbytes(dst));
  9605. }
  9606. ggml_barrier(params->threadpool);
  9607. }
  9608. // ref: https://github.com/facebookresearch/segment-anything/blob/main/segment_anything/modeling/image_encoder.py#L357-L359
  9609. float * src1_data = (float *) src1->data;
  9610. float * src2_data = (float *) src2->data;
  9611. float * dst_data = (float *) dst->data;
  9612. const int64_t ne10 = src1->ne[0];
  9613. const int64_t ne11 = src1->ne[1];
  9614. const int64_t ne12 = src1->ne[2];
  9615. const int64_t ne13 = src1->ne[3];
  9616. const int ith = params->ith;
  9617. const int nth = params->nth;
  9618. // total patches in dst
  9619. const int np = ne13;
  9620. // patches per thread
  9621. const int dp = (np + nth - 1)/nth;
  9622. // patch range for this thread
  9623. const int ip0 = dp*ith;
  9624. const int ip1 = MIN(ip0 + dp, np);
  9625. for (int64_t i13 = ip0; i13 < ip1; ++i13) {
  9626. for (int64_t i12 = 0; i12 < ne12; ++i12) {
  9627. for (int64_t i11 = 0; i11 < ne11; ++i11) {
  9628. const int64_t jp1 = i13*ne12*ne11*ne10 + i12*ne11*ne10 + i11*ne10;
  9629. for (int64_t i10 = 0; i10 < ne10; ++i10) {
  9630. const int64_t jp0 = jp1 + i10;
  9631. const float src1_e = src1_data[jp0];
  9632. const float src2_e = src2_data[jp0];
  9633. const int64_t jdh = jp0 * ne10;
  9634. const int64_t jdw = jdh - (ne10 - 1) * i10;
  9635. for (int64_t j = 0; j < ne10; ++j) {
  9636. dst_data[jdh + j ] += src2_e;
  9637. dst_data[jdw + j*ne10] += src1_e;
  9638. }
  9639. }
  9640. }
  9641. }
  9642. }
  9643. }
  9644. static void ggml_compute_forward_add_rel_pos(
  9645. const struct ggml_compute_params * params,
  9646. struct ggml_tensor * dst) {
  9647. const struct ggml_tensor * src0 = dst->src[0];
  9648. switch (src0->type) {
  9649. case GGML_TYPE_F32:
  9650. {
  9651. ggml_compute_forward_add_rel_pos_f32(params, dst);
  9652. } break;
  9653. default:
  9654. {
  9655. GGML_ABORT("fatal error");
  9656. }
  9657. }
  9658. }
  9659. // ggml_compute_forward_rwkv_wkv6
  9660. static void ggml_compute_forward_rwkv_wkv6_f32(
  9661. const struct ggml_compute_params * params,
  9662. struct ggml_tensor * dst) {
  9663. const int64_t T = dst->src[1]->ne[3];
  9664. const int64_t C = dst->ne[0];
  9665. const int64_t HEADS = dst->src[1]->ne[2];
  9666. const int64_t n_seqs = dst->src[5]->ne[1];
  9667. const int64_t head_size = C / HEADS;
  9668. float * dst_data = (float *) dst->data;
  9669. float * state = ((float *) dst->data) + C * T;
  9670. const int ith = params->ith;
  9671. const int nth = params->nth;
  9672. if (ith >= HEADS) {
  9673. return;
  9674. }
  9675. const int h_start = (HEADS * ith) / nth;
  9676. const int h_end = ((HEADS * (ith + 1)) / nth < HEADS) ?
  9677. (HEADS * (ith + 1)) / nth : HEADS;
  9678. float * k = (float *) dst->src[0]->data;
  9679. float * v = (float *) dst->src[1]->data;
  9680. float * r = (float *) dst->src[2]->data;
  9681. float * time_faaaa = (float *) dst->src[3]->data;
  9682. float * time_decay = (float *) dst->src[4]->data;
  9683. size_t t_stride = HEADS * head_size; // Same to C
  9684. size_t h_stride = C / HEADS;
  9685. GGML_ASSERT(C % HEADS == 0); // C must be divisible by HEADS
  9686. size_t h_stride_2d = head_size * head_size;
  9687. if (ith == 0) {
  9688. memset(dst_data, 0, T * C * sizeof(float));
  9689. }
  9690. ggml_barrier(params->threadpool);
  9691. #if defined(__AVX__) && !defined(__AVX512F__)
  9692. #define GGML_F32X GGML_F32x8
  9693. #define GGML_F32X_SET1 GGML_F32x8_SET1
  9694. #define GGML_F32X_LOAD GGML_F32x8_LOAD
  9695. #define GGML_F32X_STORE GGML_F32x8_STORE
  9696. #define GGML_F32X_MUL GGML_F32x8_MUL
  9697. #define GGML_F32X_FMA GGML_F32x8_FMA
  9698. #define WKV_VECTOR_SIZE 8
  9699. #elif defined(__AVX512F__)
  9700. #define GGML_F32X GGML_F32x16
  9701. #define GGML_F32X_SET1 GGML_F32x16_SET1
  9702. #define GGML_F32X_LOAD GGML_F32x16_LOAD
  9703. #define GGML_F32X_STORE GGML_F32x16_STORE
  9704. #define GGML_F32X_MUL GGML_F32x16_MUL
  9705. #define GGML_F32X_FMA GGML_F32x16_FMA
  9706. #define WKV_VECTOR_SIZE 16
  9707. #elif defined(__ARM_NEON) && defined(__aarch64__)
  9708. #define GGML_F32X GGML_F32x4
  9709. #define GGML_F32X_SET1 GGML_F32x4_SET1
  9710. #define GGML_F32X_LOAD GGML_F32x4_LOAD
  9711. #define GGML_F32X_STORE GGML_F32x4_STORE
  9712. #define GGML_F32X_MUL GGML_F32x4_MUL
  9713. #define GGML_F32X_FMA GGML_F32x4_FMA
  9714. #define WKV_VECTOR_SIZE 4
  9715. #endif
  9716. #ifdef WKV_VECTOR_SIZE
  9717. const int64_t vec_count = head_size / WKV_VECTOR_SIZE;
  9718. for (int64_t t = 0; t < T; t++) {
  9719. size_t t_offset = t * t_stride;
  9720. size_t state_offset = head_size * C * (t / (T / n_seqs));
  9721. float * state_cur = state + state_offset;
  9722. float * state_prev = t % (T / n_seqs) ? state_cur : (float*)dst->src[5]->data + state_offset;
  9723. for (int64_t h = h_start; h < h_end; h++) {
  9724. size_t h_offset = h * h_stride;
  9725. size_t t_h_offset = t_offset + h_offset;
  9726. size_t h_2d_offset = h * h_stride_2d;
  9727. for (int64_t i = 0; i < head_size; i++) {
  9728. size_t t_h_i_offset = t_h_offset + i;
  9729. size_t h_i_offset = h_offset + i;
  9730. size_t h_2d_i_offset = h_2d_offset + i * h_stride;
  9731. float k_val = k[t_h_i_offset];
  9732. float r_val = r[t_h_i_offset];
  9733. float time_faaaa_val = time_faaaa[h_i_offset];
  9734. float time_decay_val = time_decay[t_h_i_offset];
  9735. // Broadcast scalar values to vectors
  9736. GGML_F32X k_vec = GGML_F32X_SET1(k_val);
  9737. GGML_F32X r_vec = GGML_F32X_SET1(r_val);
  9738. GGML_F32X time_faaaa_vec = GGML_F32X_SET1(time_faaaa_val);
  9739. GGML_F32X time_decay_vec = GGML_F32X_SET1(time_decay_val);
  9740. for (int64_t j = 0; j < vec_count; j++) {
  9741. size_t base_j = j * WKV_VECTOR_SIZE;
  9742. size_t t_h_j_offset = t_h_offset + base_j;
  9743. size_t h_2d_i_j_offset = h_2d_i_offset + base_j;
  9744. // Load x elements at once
  9745. GGML_F32X v_vec = GGML_F32X_LOAD(&v[t_h_j_offset]);
  9746. GGML_F32X prev_state_vec = GGML_F32X_LOAD(&state_prev[h_2d_i_j_offset]);
  9747. GGML_F32X dst_vec = GGML_F32X_LOAD(&dst_data[t_h_j_offset]);
  9748. // Compute kv = v * k
  9749. GGML_F32X kv_vec = GGML_F32X_MUL(v_vec, k_vec);
  9750. // Compute temp = kv * time_faaaa + prev_state
  9751. GGML_F32X temp_vec = GGML_F32X_FMA(prev_state_vec, kv_vec, time_faaaa_vec);
  9752. // Update dst: dst += temp * r
  9753. dst_vec = GGML_F32X_FMA(dst_vec, temp_vec, r_vec);
  9754. GGML_F32X_STORE(&dst_data[t_h_j_offset], dst_vec);
  9755. // Update state: state = prev_state * time_decay + kv
  9756. GGML_F32X new_state_vec = GGML_F32X_FMA(kv_vec, prev_state_vec, time_decay_vec);
  9757. GGML_F32X_STORE(&state_cur[h_2d_i_j_offset], new_state_vec);
  9758. }
  9759. // Handle remaining elements, this will not be used.
  9760. for (int64_t j = vec_count * WKV_VECTOR_SIZE; j < head_size; j++) {
  9761. size_t t_h_j_offset = t_h_offset + j;
  9762. size_t h_2d_i_j_offset = h_2d_i_offset + j;
  9763. float v_val = v[t_h_j_offset];
  9764. float kv_val = v_val * k_val;
  9765. float prev_state_val = state_prev[h_2d_i_j_offset];
  9766. float temp_val = kv_val * time_faaaa_val + prev_state_val;
  9767. dst_data[t_h_j_offset] += temp_val * r_val;
  9768. state_cur[h_2d_i_j_offset] = prev_state_val * time_decay_val + kv_val;
  9769. }
  9770. }
  9771. }
  9772. }
  9773. #else
  9774. // basically fused operations:
  9775. // dst = r @ (time_faaaa * (k @ v) + state),
  9776. // state = time_decay * state + (k @ v),
  9777. // recursive through each token
  9778. for (int64_t t = 0; t < T; t++) {
  9779. size_t t_offset = t * t_stride;
  9780. size_t state_offset = head_size * C * (t / (T / n_seqs));
  9781. float * state_cur = state + state_offset;
  9782. float * state_prev = t % (T / n_seqs) ? state_cur : (float*)dst->src[5]->data + state_offset;
  9783. for (int64_t h = h_start; h < h_end; h++) {
  9784. size_t h_offset = h * h_stride;
  9785. size_t t_h_offset = t_offset + h_offset;
  9786. size_t h_2d_offset = h * h_stride_2d;
  9787. for (int64_t i = 0; i < head_size; i++) {
  9788. size_t t_h_i_offset = t_h_offset + i;
  9789. size_t h_i_offset = h_offset + i;
  9790. size_t h_2d_i_offset = h_2d_offset + i * h_stride;
  9791. float k_val = k[t_h_i_offset];
  9792. float r_val = r[t_h_i_offset];
  9793. float time_faaaa_val = time_faaaa[h_i_offset];
  9794. // RWKV v6: different time_decay for each token.
  9795. float time_decay_val = time_decay[t_h_i_offset];
  9796. for (int64_t j = 0; j < head_size; j++) {
  9797. size_t t_h_j_offset = t_h_offset + j;
  9798. size_t h_2d_i_j_offset = h_2d_i_offset + j;
  9799. float v_val = v[t_h_j_offset];
  9800. float kv_val = v_val * k_val;
  9801. float prev_state_val = state_prev[h_2d_i_j_offset];
  9802. float temp_val = kv_val * time_faaaa_val + prev_state_val;
  9803. dst_data[t_h_j_offset] += temp_val * r_val;
  9804. state_cur[h_2d_i_j_offset] = prev_state_val * time_decay_val + kv_val;
  9805. }
  9806. }
  9807. }
  9808. }
  9809. #endif
  9810. }
  9811. static void ggml_compute_forward_rwkv_wkv6(
  9812. const struct ggml_compute_params * params,
  9813. struct ggml_tensor * dst) {
  9814. const struct ggml_tensor * src0 = dst->src[0];
  9815. switch (src0->type) {
  9816. case GGML_TYPE_F32:
  9817. {
  9818. ggml_compute_forward_rwkv_wkv6_f32(params, dst);
  9819. } break;
  9820. default:
  9821. {
  9822. GGML_ABORT("fatal error");
  9823. }
  9824. }
  9825. }
  9826. // ggml_compute_forward_map_unary
  9827. static void ggml_compute_forward_map_unary_f32(
  9828. const struct ggml_compute_params * params,
  9829. struct ggml_tensor * dst,
  9830. const ggml_unary_op_f32_t fun) {
  9831. const struct ggml_tensor * src0 = dst->src[0];
  9832. if (params->ith != 0) {
  9833. return;
  9834. }
  9835. assert(ggml_is_contiguous_1(src0));
  9836. assert(ggml_is_contiguous_1(dst));
  9837. assert(ggml_are_same_shape(src0, dst));
  9838. const int n = ggml_nrows(src0);
  9839. const int nc = src0->ne[0];
  9840. for (int i = 0; i < n; i++) {
  9841. fun(nc,
  9842. (float *) ((char *) dst->data + i*( dst->nb[1])),
  9843. (float *) ((char *) src0->data + i*(src0->nb[1])));
  9844. }
  9845. }
  9846. static void ggml_compute_forward_map_unary(
  9847. const struct ggml_compute_params * params,
  9848. struct ggml_tensor * dst,
  9849. const ggml_unary_op_f32_t fun) {
  9850. const struct ggml_tensor * src0 = dst->src[0];
  9851. switch (src0->type) {
  9852. case GGML_TYPE_F32:
  9853. {
  9854. ggml_compute_forward_map_unary_f32(params, dst, fun);
  9855. } break;
  9856. default:
  9857. {
  9858. GGML_ABORT("fatal error");
  9859. }
  9860. }
  9861. }
  9862. // ggml_compute_forward_map_binary
  9863. static void ggml_compute_forward_map_binary_f32(
  9864. const struct ggml_compute_params * params,
  9865. struct ggml_tensor * dst,
  9866. const ggml_binary_op_f32_t fun) {
  9867. const struct ggml_tensor * src0 = dst->src[0];
  9868. const struct ggml_tensor * src1 = dst->src[1];
  9869. if (params->ith != 0) {
  9870. return;
  9871. }
  9872. assert(ggml_is_contiguous_1(src0));
  9873. assert(ggml_is_contiguous_1(src1));
  9874. assert(ggml_is_contiguous_1(dst));
  9875. assert(ggml_are_same_shape(src0, src1) && ggml_are_same_shape(src0, dst));
  9876. const int n = ggml_nrows(src0);
  9877. const int nc = src0->ne[0];
  9878. for (int i = 0; i < n; i++) {
  9879. fun(nc,
  9880. (float *) ((char *) dst->data + i*( dst->nb[1])),
  9881. (float *) ((char *) src0->data + i*(src0->nb[1])),
  9882. (float *) ((char *) src1->data + i*(src1->nb[1])));
  9883. }
  9884. }
  9885. static void ggml_compute_forward_map_binary(
  9886. const struct ggml_compute_params * params,
  9887. struct ggml_tensor * dst,
  9888. const ggml_binary_op_f32_t fun) {
  9889. const struct ggml_tensor * src0 = dst->src[0];
  9890. switch (src0->type) {
  9891. case GGML_TYPE_F32:
  9892. {
  9893. ggml_compute_forward_map_binary_f32(params, dst, fun);
  9894. } break;
  9895. default:
  9896. {
  9897. GGML_ABORT("fatal error");
  9898. }
  9899. }
  9900. }
  9901. // ggml_compute_forward_map_custom1
  9902. static void ggml_compute_forward_map_custom1_f32(
  9903. const struct ggml_compute_params * params,
  9904. struct ggml_tensor * dst,
  9905. const ggml_custom1_op_f32_t fun) {
  9906. const struct ggml_tensor * a = dst->src[0];
  9907. if (params->ith != 0) {
  9908. return;
  9909. }
  9910. fun(dst, a);
  9911. }
  9912. // ggml_compute_forward_map_custom2
  9913. static void ggml_compute_forward_map_custom2_f32(
  9914. const struct ggml_compute_params * params,
  9915. struct ggml_tensor * dst,
  9916. const ggml_custom2_op_f32_t fun) {
  9917. const struct ggml_tensor * a = dst->src[0];
  9918. const struct ggml_tensor * b = dst->src[1];
  9919. if (params->ith != 0) {
  9920. return;
  9921. }
  9922. fun(dst, a, b);
  9923. }
  9924. // ggml_compute_forward_map_custom3
  9925. static void ggml_compute_forward_map_custom3_f32(
  9926. const struct ggml_compute_params * params,
  9927. struct ggml_tensor * dst,
  9928. const ggml_custom3_op_f32_t fun) {
  9929. const struct ggml_tensor * a = dst->src[0];
  9930. const struct ggml_tensor * b = dst->src[1];
  9931. const struct ggml_tensor * c = dst->src[1];
  9932. if (params->ith != 0) {
  9933. return;
  9934. }
  9935. fun(dst, a, b, c);
  9936. }
  9937. // ggml_compute_forward_map_custom1
  9938. static void ggml_compute_forward_map_custom1(
  9939. const struct ggml_compute_params * params,
  9940. struct ggml_tensor * dst) {
  9941. const struct ggml_tensor * a = dst->src[0];
  9942. struct ggml_map_custom1_op_params p;
  9943. memcpy(&p, dst->op_params, sizeof(p));
  9944. p.fun(dst, a, params->ith, params->nth, p.userdata);
  9945. }
  9946. // ggml_compute_forward_map_custom2
  9947. static void ggml_compute_forward_map_custom2(
  9948. const struct ggml_compute_params * params,
  9949. struct ggml_tensor * dst) {
  9950. const struct ggml_tensor * a = dst->src[0];
  9951. const struct ggml_tensor * b = dst->src[1];
  9952. struct ggml_map_custom2_op_params p;
  9953. memcpy(&p, dst->op_params, sizeof(p));
  9954. p.fun(dst, a, b, params->ith, params->nth, p.userdata);
  9955. }
  9956. // ggml_compute_forward_map_custom3
  9957. static void ggml_compute_forward_map_custom3(
  9958. const struct ggml_compute_params * params,
  9959. struct ggml_tensor * dst) {
  9960. const struct ggml_tensor * a = dst->src[0];
  9961. const struct ggml_tensor * b = dst->src[1];
  9962. const struct ggml_tensor * c = dst->src[2];
  9963. struct ggml_map_custom3_op_params p;
  9964. memcpy(&p, dst->op_params, sizeof(p));
  9965. p.fun(dst, a, b, c, params->ith, params->nth, p.userdata);
  9966. }
  9967. // ggml_compute_forward_cross_entropy_loss
  9968. static void ggml_compute_forward_cross_entropy_loss_f32(
  9969. const struct ggml_compute_params * params,
  9970. struct ggml_tensor * dst) {
  9971. const struct ggml_tensor * src0 = dst->src[0];
  9972. const struct ggml_tensor * src1 = dst->src[1];
  9973. GGML_ASSERT(src0->type == GGML_TYPE_F32);
  9974. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  9975. GGML_ASSERT(src0->nb[0] == ggml_type_size(src0->type));
  9976. GGML_ASSERT(src1->nb[0] == ggml_type_size(src1->type));
  9977. GGML_ASSERT(ggml_are_same_shape(src0, src1));
  9978. GGML_ASSERT(ggml_is_scalar(dst));
  9979. GGML_ASSERT(dst->type == GGML_TYPE_F32);
  9980. // TODO: handle transposed/permuted matrices
  9981. const int64_t nc = src0->ne[0];
  9982. const int64_t nr = ggml_nrows(src0);
  9983. const int ith = params->ith;
  9984. const int nth = params->nth;
  9985. float * sums = (float *) params->wdata;
  9986. float * st = ((float *) params->wdata) + nth + ith*nc;
  9987. float sum_thread = 0.0f;
  9988. GGML_ASSERT(params->wsize >= sizeof(float) * (nth + nth * nc));
  9989. // rows per thread
  9990. const int64_t dr = (nr + nth - 1)/nth;
  9991. // row range for this thread
  9992. const int64_t ir0 = dr*ith;
  9993. const int64_t ir1 = MIN(ir0 + dr, nr);
  9994. for (int64_t i1 = ir0; i1 < ir1; ++i1) {
  9995. const float * s0 = (const float *)((const char *) src0->data + i1*src0->nb[1]);
  9996. const float * s1 = (const float *)((const char *) src1->data + i1*src1->nb[1]);
  9997. #ifndef NDEBUG
  9998. for (int64_t i = 0; i < nc; ++i) {
  9999. //printf("p[%d] = %f\n", i, p[i]);
  10000. assert(!isnan(s0[i]));
  10001. assert(!isnan(s1[i]));
  10002. }
  10003. #endif
  10004. float max = -INFINITY;
  10005. ggml_vec_max_f32(nc, &max, s0);
  10006. const ggml_float sum_softmax = ggml_vec_log_soft_max_f32(nc, st, s0, max);
  10007. assert(sum_softmax >= 0.0);
  10008. ggml_vec_add1_f32(nc, st, st, -sum_softmax);
  10009. ggml_vec_mul_f32(nc, st, st, s1);
  10010. float sum_st = 0.0f;
  10011. ggml_vec_sum_f32(nc, &sum_st, st);
  10012. sum_thread += sum_st;
  10013. #ifndef NDEBUG
  10014. for (int64_t i = 0; i < nc; ++i) {
  10015. assert(!isnan(st[i]));
  10016. assert(!isinf(st[i]));
  10017. }
  10018. #endif
  10019. }
  10020. sums[ith] = sum_thread;
  10021. ggml_barrier(params->threadpool);
  10022. if (ith == 0) {
  10023. float * dp = (float *) dst->data;
  10024. ggml_vec_sum_f32(nth, dp, sums);
  10025. dp[0] *= -1.0f / (float) nr;
  10026. }
  10027. }
  10028. static void ggml_compute_forward_cross_entropy_loss(
  10029. const struct ggml_compute_params * params,
  10030. struct ggml_tensor * dst) {
  10031. const struct ggml_tensor * src0 = dst->src[0];
  10032. switch (src0->type) {
  10033. case GGML_TYPE_F32:
  10034. {
  10035. ggml_compute_forward_cross_entropy_loss_f32(params, dst);
  10036. } break;
  10037. default:
  10038. {
  10039. GGML_ABORT("fatal error");
  10040. }
  10041. }
  10042. }
  10043. // ggml_compute_forward_cross_entropy_loss_back
  10044. static void ggml_compute_forward_cross_entropy_loss_back_f32(
  10045. const struct ggml_compute_params * params,
  10046. struct ggml_tensor * dst) {
  10047. const struct ggml_tensor * src0 = dst->src[0];
  10048. const struct ggml_tensor * src1 = dst->src[1];
  10049. const struct ggml_tensor * opt0 = dst->src[2];
  10050. GGML_ASSERT(ggml_is_contiguous(dst));
  10051. GGML_ASSERT(ggml_is_contiguous(src0));
  10052. GGML_ASSERT(ggml_is_contiguous(src1));
  10053. GGML_ASSERT(ggml_is_contiguous(opt0));
  10054. GGML_ASSERT(ggml_are_same_shape(src0, src1) && ggml_are_same_shape(src0, dst));
  10055. const int64_t ith = params->ith;
  10056. const int64_t nth = params->nth;
  10057. // TODO: handle transposed/permuted matrices
  10058. const int64_t nc = src0->ne[0];
  10059. const int64_t nr = ggml_nrows(src0);
  10060. // rows per thread
  10061. const int64_t dr = (nr + nth - 1)/nth;
  10062. // row range for this thread
  10063. const int64_t ir0 = dr*ith;
  10064. const int64_t ir1 = MIN(ir0 + dr, nr);
  10065. const float d_by_nr = ((const float *) opt0->data)[0] / (float) nr;
  10066. for (int64_t i1 = ir0; i1 < ir1; i1++) {
  10067. float * ds0 = (float *)((char *) dst->data + i1*dst->nb[1]);
  10068. float * s0 = (float *)((char *) src0->data + i1*src0->nb[1]);
  10069. float * s1 = (float *)((char *) src1->data + i1*src1->nb[1]);
  10070. #ifndef NDEBUG
  10071. for (int64_t i = 0; i < nc; ++i) {
  10072. //printf("p[%d] = %f\n", i, p[i]);
  10073. assert(!isnan(s0[i]));
  10074. assert(!isnan(s1[i]));
  10075. }
  10076. #endif
  10077. // soft_max
  10078. float max = -INFINITY;
  10079. ggml_vec_max_f32(nc, &max, s0);
  10080. ggml_float sum = ggml_vec_soft_max_f32(nc, ds0, s0, max);
  10081. assert(sum > 0.0);
  10082. ggml_vec_scale_f32(nc, ds0, 1.0/sum);
  10083. // grad(src0) = (softmax(src0) - src1) * grad(cross_entropy_loss(src0, src1)) / nr
  10084. ggml_vec_sub_f32(nc, ds0, ds0, s1);
  10085. ggml_vec_scale_f32(nc, ds0, d_by_nr);
  10086. #ifndef NDEBUG
  10087. for (int64_t i = 0; i < nc; ++i) {
  10088. assert(!isnan(ds0[i]));
  10089. assert(!isinf(ds0[i]));
  10090. }
  10091. #endif
  10092. }
  10093. }
  10094. static void ggml_compute_forward_cross_entropy_loss_back(
  10095. const struct ggml_compute_params * params,
  10096. struct ggml_tensor * dst) {
  10097. const struct ggml_tensor * src0 = dst->src[0];
  10098. switch (src0->type) {
  10099. case GGML_TYPE_F32:
  10100. {
  10101. ggml_compute_forward_cross_entropy_loss_back_f32(params, dst);
  10102. } break;
  10103. default:
  10104. {
  10105. GGML_ABORT("fatal error");
  10106. }
  10107. }
  10108. }
  10109. static void ggml_compute_forward_opt_step_adamw_f32(
  10110. const struct ggml_compute_params * params,
  10111. struct ggml_tensor * dst) {
  10112. const struct ggml_tensor * src0 = dst->src[0];
  10113. const struct ggml_tensor * src0_grad = dst->src[1];
  10114. const struct ggml_tensor * src0_grad_m = dst->src[2];
  10115. const struct ggml_tensor * src0_grad_v = dst->src[3];
  10116. const struct ggml_tensor * adamw_params = dst->src[4];
  10117. GGML_ASSERT(ggml_are_same_shape(src0, src0_grad));
  10118. GGML_ASSERT(ggml_are_same_shape(src0, src0_grad_m));
  10119. GGML_ASSERT(ggml_are_same_shape(src0, src0_grad_v));
  10120. GGML_ASSERT(ggml_nelements(adamw_params) == 7);
  10121. const int ith = params->ith;
  10122. const int nth = params->nth;
  10123. const int nr = ggml_nrows(src0);
  10124. GGML_TENSOR_UNARY_OP_LOCALS
  10125. GGML_ASSERT(nb00 == sizeof(float));
  10126. // rows per thread
  10127. const int dr = (nr + nth - 1)/nth;
  10128. // row range for this thread
  10129. const int ir0 = dr*ith;
  10130. const int ir1 = MIN(ir0 + dr, nr);
  10131. const float * adamw_params_ptr = ggml_get_data_f32(adamw_params);
  10132. const float alpha = adamw_params_ptr[0];
  10133. const float beta1 = adamw_params_ptr[1];
  10134. const float beta2 = adamw_params_ptr[2];
  10135. const float eps = adamw_params_ptr[3];
  10136. const float wd = adamw_params_ptr[4];
  10137. const float beta1h = adamw_params_ptr[5];
  10138. const float beta2h = adamw_params_ptr[6];
  10139. for (int ir = ir0; ir < ir1; ++ir) {
  10140. const int64_t i03 = ir/(ne02*ne01);
  10141. const int64_t i02 = (ir - i03*ne02*ne01)/ne01;
  10142. const int64_t i01 = (ir - i03*ne02*ne01 - i02*ne01);
  10143. const size_t offset = i03*nb03 + i02*nb02 + i01*nb01;
  10144. float * w = (float *) ((char *) src0->data + offset); // weight
  10145. const float * g = (const float *) ((const char *) src0_grad->data + offset); // grad
  10146. float * m = (float *) ((char *) src0_grad_m->data + offset);
  10147. float * v = (float *) ((char *) src0_grad_v->data + offset);
  10148. for (int i00 = 0; i00 < ne00; ++i00) {
  10149. m[i00] = m[i00]*beta1 + g[i00]*(1.0f - beta1);
  10150. v[i00] = v[i00]*beta2 + g[i00]*g[i00]*(1.0f - beta2);
  10151. const float mh = m[i00]*beta1h;
  10152. const float vh = sqrtf(v[i00]*beta2h) + eps;
  10153. // The weight decay is applied independently of the Adam momenta m and v.
  10154. // This is NOT equivalent to l2 regularization that adds w[i00]*w[i00] to the loss.
  10155. // See: https://arxiv.org/pdf/1711.05101v3.pdf
  10156. w[i00] = w[i00]*(1.0f - alpha*wd) - alpha*mh/vh;
  10157. }
  10158. }
  10159. }
  10160. static void ggml_compute_forward_opt_step_adamw(
  10161. const struct ggml_compute_params * params,
  10162. struct ggml_tensor * dst) {
  10163. const struct ggml_tensor * src0 = dst->src[0];
  10164. switch (src0->type) {
  10165. case GGML_TYPE_F32:
  10166. {
  10167. ggml_compute_forward_opt_step_adamw_f32(params, dst);
  10168. } break;
  10169. default:
  10170. {
  10171. GGML_ABORT("fatal error");
  10172. }
  10173. }
  10174. }
  10175. /////////////////////////////////
  10176. static void ggml_compute_forward(struct ggml_compute_params * params, struct ggml_tensor * tensor) {
  10177. GGML_ASSERT(params);
  10178. if (tensor->op == GGML_OP_NONE || ggml_is_empty(tensor)) {
  10179. return;
  10180. }
  10181. switch (tensor->op) {
  10182. case GGML_OP_DUP:
  10183. {
  10184. ggml_compute_forward_dup(params, tensor);
  10185. } break;
  10186. case GGML_OP_ADD:
  10187. {
  10188. ggml_compute_forward_add(params, tensor);
  10189. } break;
  10190. case GGML_OP_ADD1:
  10191. {
  10192. ggml_compute_forward_add1(params, tensor);
  10193. } break;
  10194. case GGML_OP_ACC:
  10195. {
  10196. ggml_compute_forward_acc(params, tensor);
  10197. } break;
  10198. case GGML_OP_SUB:
  10199. {
  10200. ggml_compute_forward_sub(params, tensor);
  10201. } break;
  10202. case GGML_OP_MUL:
  10203. {
  10204. ggml_compute_forward_mul(params, tensor);
  10205. } break;
  10206. case GGML_OP_DIV:
  10207. {
  10208. ggml_compute_forward_div(params, tensor);
  10209. } break;
  10210. case GGML_OP_SQR:
  10211. {
  10212. ggml_compute_forward_sqr(params, tensor);
  10213. } break;
  10214. case GGML_OP_SQRT:
  10215. {
  10216. ggml_compute_forward_sqrt(params, tensor);
  10217. } break;
  10218. case GGML_OP_LOG:
  10219. {
  10220. ggml_compute_forward_log(params, tensor);
  10221. } break;
  10222. case GGML_OP_SIN:
  10223. {
  10224. ggml_compute_forward_sin(params, tensor);
  10225. } break;
  10226. case GGML_OP_COS:
  10227. {
  10228. ggml_compute_forward_cos(params, tensor);
  10229. } break;
  10230. case GGML_OP_SUM:
  10231. {
  10232. ggml_compute_forward_sum(params, tensor);
  10233. } break;
  10234. case GGML_OP_SUM_ROWS:
  10235. {
  10236. ggml_compute_forward_sum_rows(params, tensor);
  10237. } break;
  10238. case GGML_OP_MEAN:
  10239. {
  10240. ggml_compute_forward_mean(params, tensor);
  10241. } break;
  10242. case GGML_OP_ARGMAX:
  10243. {
  10244. ggml_compute_forward_argmax(params, tensor);
  10245. } break;
  10246. case GGML_OP_COUNT_EQUAL:
  10247. {
  10248. ggml_compute_forward_count_equal(params, tensor);
  10249. } break;
  10250. case GGML_OP_REPEAT:
  10251. {
  10252. ggml_compute_forward_repeat(params, tensor);
  10253. } break;
  10254. case GGML_OP_REPEAT_BACK:
  10255. {
  10256. ggml_compute_forward_repeat_back(params, tensor);
  10257. } break;
  10258. case GGML_OP_CONCAT:
  10259. {
  10260. ggml_compute_forward_concat(params, tensor);
  10261. } break;
  10262. case GGML_OP_SILU_BACK:
  10263. {
  10264. ggml_compute_forward_silu_back(params, tensor);
  10265. } break;
  10266. case GGML_OP_NORM:
  10267. {
  10268. ggml_compute_forward_norm(params, tensor);
  10269. } break;
  10270. case GGML_OP_RMS_NORM:
  10271. {
  10272. ggml_compute_forward_rms_norm(params, tensor);
  10273. } break;
  10274. case GGML_OP_RMS_NORM_BACK:
  10275. {
  10276. ggml_compute_forward_rms_norm_back(params, tensor);
  10277. } break;
  10278. case GGML_OP_GROUP_NORM:
  10279. {
  10280. ggml_compute_forward_group_norm(params, tensor);
  10281. } break;
  10282. case GGML_OP_MUL_MAT:
  10283. {
  10284. ggml_compute_forward_mul_mat(params, tensor);
  10285. } break;
  10286. case GGML_OP_MUL_MAT_ID:
  10287. {
  10288. ggml_compute_forward_mul_mat_id(params, tensor);
  10289. } break;
  10290. case GGML_OP_OUT_PROD:
  10291. {
  10292. ggml_compute_forward_out_prod(params, tensor);
  10293. } break;
  10294. case GGML_OP_SCALE:
  10295. {
  10296. ggml_compute_forward_scale(params, tensor);
  10297. } break;
  10298. case GGML_OP_SET:
  10299. {
  10300. ggml_compute_forward_set(params, tensor);
  10301. } break;
  10302. case GGML_OP_CPY:
  10303. {
  10304. ggml_compute_forward_cpy(params, tensor);
  10305. } break;
  10306. case GGML_OP_CONT:
  10307. {
  10308. ggml_compute_forward_cont(params, tensor);
  10309. } break;
  10310. case GGML_OP_RESHAPE:
  10311. {
  10312. ggml_compute_forward_reshape(params, tensor);
  10313. } break;
  10314. case GGML_OP_VIEW:
  10315. {
  10316. ggml_compute_forward_view(params, tensor);
  10317. } break;
  10318. case GGML_OP_PERMUTE:
  10319. {
  10320. ggml_compute_forward_permute(params, tensor);
  10321. } break;
  10322. case GGML_OP_TRANSPOSE:
  10323. {
  10324. ggml_compute_forward_transpose(params, tensor);
  10325. } break;
  10326. case GGML_OP_GET_ROWS:
  10327. {
  10328. ggml_compute_forward_get_rows(params, tensor);
  10329. } break;
  10330. case GGML_OP_GET_ROWS_BACK:
  10331. {
  10332. ggml_compute_forward_get_rows_back(params, tensor);
  10333. } break;
  10334. case GGML_OP_DIAG:
  10335. {
  10336. ggml_compute_forward_diag(params, tensor);
  10337. } break;
  10338. case GGML_OP_DIAG_MASK_INF:
  10339. {
  10340. ggml_compute_forward_diag_mask_inf(params, tensor);
  10341. } break;
  10342. case GGML_OP_DIAG_MASK_ZERO:
  10343. {
  10344. ggml_compute_forward_diag_mask_zero(params, tensor);
  10345. } break;
  10346. case GGML_OP_SOFT_MAX:
  10347. {
  10348. ggml_compute_forward_soft_max(params, tensor);
  10349. } break;
  10350. case GGML_OP_SOFT_MAX_BACK:
  10351. {
  10352. ggml_compute_forward_soft_max_back(params, tensor);
  10353. } break;
  10354. case GGML_OP_ROPE:
  10355. {
  10356. ggml_compute_forward_rope(params, tensor);
  10357. } break;
  10358. case GGML_OP_ROPE_BACK:
  10359. {
  10360. ggml_compute_forward_rope_back(params, tensor);
  10361. } break;
  10362. case GGML_OP_CLAMP:
  10363. {
  10364. ggml_compute_forward_clamp(params, tensor);
  10365. } break;
  10366. case GGML_OP_CONV_TRANSPOSE_1D:
  10367. {
  10368. ggml_compute_forward_conv_transpose_1d(params, tensor);
  10369. } break;
  10370. case GGML_OP_IM2COL:
  10371. {
  10372. ggml_compute_forward_im2col(params, tensor);
  10373. } break;
  10374. case GGML_OP_IM2COL_BACK:
  10375. {
  10376. ggml_compute_forward_im2col_back_f32(params, tensor);
  10377. } break;
  10378. case GGML_OP_CONV_TRANSPOSE_2D:
  10379. {
  10380. ggml_compute_forward_conv_transpose_2d(params, tensor);
  10381. } break;
  10382. case GGML_OP_POOL_1D:
  10383. {
  10384. ggml_compute_forward_pool_1d(params, tensor);
  10385. } break;
  10386. case GGML_OP_POOL_2D:
  10387. {
  10388. ggml_compute_forward_pool_2d(params, tensor);
  10389. } break;
  10390. case GGML_OP_POOL_2D_BACK:
  10391. {
  10392. ggml_compute_forward_pool_2d_back(params, tensor);
  10393. } break;
  10394. case GGML_OP_UPSCALE:
  10395. {
  10396. ggml_compute_forward_upscale(params, tensor);
  10397. } break;
  10398. case GGML_OP_PAD:
  10399. {
  10400. ggml_compute_forward_pad(params, tensor);
  10401. } break;
  10402. case GGML_OP_UNPAD:
  10403. {
  10404. ggml_compute_forward_unpad(params, tensor);
  10405. } break;
  10406. case GGML_OP_ARANGE:
  10407. {
  10408. ggml_compute_forward_arange(params, tensor);
  10409. } break;
  10410. case GGML_OP_TIMESTEP_EMBEDDING:
  10411. {
  10412. ggml_compute_forward_timestep_embedding(params, tensor);
  10413. } break;
  10414. case GGML_OP_ARGSORT:
  10415. {
  10416. ggml_compute_forward_argsort(params, tensor);
  10417. } break;
  10418. case GGML_OP_LEAKY_RELU:
  10419. {
  10420. ggml_compute_forward_leaky_relu(params, tensor);
  10421. } break;
  10422. case GGML_OP_FLASH_ATTN_EXT:
  10423. {
  10424. ggml_compute_forward_flash_attn_ext(params, tensor->src[0], tensor->src[1], tensor->src[2], tensor->src[3], tensor);
  10425. } break;
  10426. case GGML_OP_FLASH_ATTN_BACK:
  10427. {
  10428. int32_t t = ggml_get_op_params_i32(tensor, 0);
  10429. GGML_ASSERT(t == 0 || t == 1);
  10430. bool masked = t != 0;
  10431. ggml_compute_forward_flash_attn_back(params, masked, tensor);
  10432. } break;
  10433. case GGML_OP_SSM_CONV:
  10434. {
  10435. ggml_compute_forward_ssm_conv(params, tensor);
  10436. } break;
  10437. case GGML_OP_SSM_SCAN:
  10438. {
  10439. ggml_compute_forward_ssm_scan(params, tensor);
  10440. } break;
  10441. case GGML_OP_WIN_PART:
  10442. {
  10443. ggml_compute_forward_win_part(params, tensor);
  10444. } break;
  10445. case GGML_OP_WIN_UNPART:
  10446. {
  10447. ggml_compute_forward_win_unpart(params, tensor);
  10448. } break;
  10449. case GGML_OP_UNARY:
  10450. {
  10451. ggml_compute_forward_unary(params, tensor);
  10452. } break;
  10453. case GGML_OP_GET_REL_POS:
  10454. {
  10455. ggml_compute_forward_get_rel_pos(params, tensor);
  10456. } break;
  10457. case GGML_OP_ADD_REL_POS:
  10458. {
  10459. ggml_compute_forward_add_rel_pos(params, tensor);
  10460. } break;
  10461. case GGML_OP_RWKV_WKV6:
  10462. {
  10463. ggml_compute_forward_rwkv_wkv6(params, tensor);
  10464. } break;
  10465. case GGML_OP_MAP_UNARY:
  10466. {
  10467. ggml_unary_op_f32_t fun;
  10468. memcpy(&fun, tensor->op_params, sizeof(fun));
  10469. ggml_compute_forward_map_unary(params, tensor, fun);
  10470. }
  10471. break;
  10472. case GGML_OP_MAP_BINARY:
  10473. {
  10474. ggml_binary_op_f32_t fun;
  10475. memcpy(&fun, tensor->op_params, sizeof(fun));
  10476. ggml_compute_forward_map_binary(params, tensor, fun);
  10477. }
  10478. break;
  10479. case GGML_OP_MAP_CUSTOM1_F32:
  10480. {
  10481. ggml_custom1_op_f32_t fun;
  10482. memcpy(&fun, tensor->op_params, sizeof(fun));
  10483. ggml_compute_forward_map_custom1_f32(params, tensor, fun);
  10484. }
  10485. break;
  10486. case GGML_OP_MAP_CUSTOM2_F32:
  10487. {
  10488. ggml_custom2_op_f32_t fun;
  10489. memcpy(&fun, tensor->op_params, sizeof(fun));
  10490. ggml_compute_forward_map_custom2_f32(params, tensor, fun);
  10491. }
  10492. break;
  10493. case GGML_OP_MAP_CUSTOM3_F32:
  10494. {
  10495. ggml_custom3_op_f32_t fun;
  10496. memcpy(&fun, tensor->op_params, sizeof(fun));
  10497. ggml_compute_forward_map_custom3_f32(params, tensor, fun);
  10498. }
  10499. break;
  10500. case GGML_OP_MAP_CUSTOM1:
  10501. {
  10502. ggml_compute_forward_map_custom1(params, tensor);
  10503. }
  10504. break;
  10505. case GGML_OP_MAP_CUSTOM2:
  10506. {
  10507. ggml_compute_forward_map_custom2(params, tensor);
  10508. }
  10509. break;
  10510. case GGML_OP_MAP_CUSTOM3:
  10511. {
  10512. ggml_compute_forward_map_custom3(params, tensor);
  10513. }
  10514. break;
  10515. case GGML_OP_CROSS_ENTROPY_LOSS:
  10516. {
  10517. ggml_compute_forward_cross_entropy_loss(params, tensor);
  10518. }
  10519. break;
  10520. case GGML_OP_CROSS_ENTROPY_LOSS_BACK:
  10521. {
  10522. ggml_compute_forward_cross_entropy_loss_back(params, tensor);
  10523. }
  10524. break;
  10525. case GGML_OP_OPT_STEP_ADAMW:
  10526. {
  10527. ggml_compute_forward_opt_step_adamw(params, tensor);
  10528. }
  10529. break;
  10530. case GGML_OP_NONE:
  10531. {
  10532. // nop
  10533. } break;
  10534. case GGML_OP_COUNT:
  10535. {
  10536. GGML_ABORT("fatal error");
  10537. }
  10538. }
  10539. }
  10540. // Android's libc implementation "bionic" does not support setting affinity
  10541. #if defined(__gnu_linux__)
  10542. static void set_numa_thread_affinity(int thread_n) {
  10543. if (!ggml_is_numa()) {
  10544. return;
  10545. }
  10546. int node_num;
  10547. int rv;
  10548. size_t setsize = CPU_ALLOC_SIZE(g_state.numa.total_cpus);
  10549. switch(g_state.numa.numa_strategy) {
  10550. case GGML_NUMA_STRATEGY_DISTRIBUTE:
  10551. // run thread on node_num thread_n / (threads per node)
  10552. node_num = thread_n % g_state.numa.n_nodes;
  10553. break;
  10554. case GGML_NUMA_STRATEGY_ISOLATE:
  10555. // run thread on current_node
  10556. node_num = g_state.numa.current_node;
  10557. break;
  10558. case GGML_NUMA_STRATEGY_NUMACTL:
  10559. // use the cpuset that numactl gave us
  10560. rv = pthread_setaffinity_np(pthread_self(), setsize, &g_state.numa.cpuset);
  10561. if (rv) {
  10562. fprintf(stderr, "warning: pthread_setaffinity_np() failed: %s\n",strerror(rv));
  10563. }
  10564. return;
  10565. default:
  10566. return;
  10567. }
  10568. struct ggml_numa_node * node = &g_state.numa.nodes[node_num];
  10569. cpu_set_t * cpus = CPU_ALLOC(g_state.numa.total_cpus);
  10570. CPU_ZERO_S(setsize, cpus);
  10571. for (size_t i = 0; i < node->n_cpus; ++i) {
  10572. CPU_SET_S(node->cpus[i], setsize, cpus);
  10573. }
  10574. rv = pthread_setaffinity_np(pthread_self(), setsize, cpus);
  10575. if (rv) {
  10576. fprintf(stderr, "warning: pthread_setaffinity_np() failed: %s\n", strerror(rv));
  10577. }
  10578. CPU_FREE(cpus);
  10579. }
  10580. static void clear_numa_thread_affinity(void) {
  10581. if (!ggml_is_numa()) {
  10582. return;
  10583. }
  10584. size_t setsize = CPU_ALLOC_SIZE(g_state.numa.total_cpus);
  10585. cpu_set_t * cpus = CPU_ALLOC(g_state.numa.total_cpus);
  10586. CPU_ZERO_S(setsize, cpus);
  10587. for (unsigned i = 0; i < g_state.numa.total_cpus; ++i) {
  10588. CPU_SET_S(i, setsize, cpus);
  10589. }
  10590. int rv = pthread_setaffinity_np(pthread_self(), setsize, cpus);
  10591. if (rv) {
  10592. fprintf(stderr, "warning: pthread_setaffinity_np() failed: %s\n", strerror(rv));
  10593. }
  10594. CPU_FREE(cpus);
  10595. }
  10596. #else
  10597. // TODO: Windows etc.
  10598. // (the linux implementation may also work on BSD, someone should test)
  10599. static void set_numa_thread_affinity(int thread_n) { UNUSED(thread_n); }
  10600. static void clear_numa_thread_affinity(void) {}
  10601. #endif
  10602. static int ggml_get_n_tasks(struct ggml_tensor * node, int n_threads) {
  10603. int n_tasks = 0;
  10604. if (ggml_is_empty(node)) {
  10605. // no need to multi-thread a no-op
  10606. n_tasks = 1;
  10607. return n_tasks;
  10608. }
  10609. switch (node->op) {
  10610. case GGML_OP_CPY:
  10611. case GGML_OP_DUP:
  10612. case GGML_OP_CONT:
  10613. case GGML_OP_ADD:
  10614. case GGML_OP_ADD1:
  10615. case GGML_OP_ACC:
  10616. {
  10617. n_tasks = n_threads;
  10618. } break;
  10619. case GGML_OP_SUB:
  10620. case GGML_OP_SQR:
  10621. case GGML_OP_SQRT:
  10622. case GGML_OP_LOG:
  10623. case GGML_OP_SIN:
  10624. case GGML_OP_COS:
  10625. case GGML_OP_SUM:
  10626. case GGML_OP_SUM_ROWS:
  10627. case GGML_OP_MEAN:
  10628. case GGML_OP_ARGMAX:
  10629. {
  10630. n_tasks = 1;
  10631. } break;
  10632. case GGML_OP_COUNT_EQUAL:
  10633. {
  10634. n_tasks = n_threads;
  10635. } break;
  10636. case GGML_OP_REPEAT:
  10637. case GGML_OP_REPEAT_BACK:
  10638. case GGML_OP_LEAKY_RELU:
  10639. {
  10640. n_tasks = 1;
  10641. } break;
  10642. case GGML_OP_UNARY:
  10643. switch (ggml_get_unary_op(node)) {
  10644. case GGML_UNARY_OP_ABS:
  10645. case GGML_UNARY_OP_SGN:
  10646. case GGML_UNARY_OP_NEG:
  10647. case GGML_UNARY_OP_STEP:
  10648. case GGML_UNARY_OP_TANH:
  10649. case GGML_UNARY_OP_ELU:
  10650. case GGML_UNARY_OP_RELU:
  10651. case GGML_UNARY_OP_SIGMOID:
  10652. case GGML_UNARY_OP_HARDSWISH:
  10653. case GGML_UNARY_OP_HARDSIGMOID:
  10654. case GGML_UNARY_OP_EXP:
  10655. {
  10656. n_tasks = 1;
  10657. } break;
  10658. case GGML_UNARY_OP_GELU:
  10659. case GGML_UNARY_OP_GELU_QUICK:
  10660. case GGML_UNARY_OP_SILU:
  10661. {
  10662. n_tasks = n_threads;
  10663. } break;
  10664. default:
  10665. GGML_ABORT("fatal error");
  10666. }
  10667. break;
  10668. case GGML_OP_SILU_BACK:
  10669. case GGML_OP_MUL:
  10670. case GGML_OP_DIV:
  10671. case GGML_OP_NORM:
  10672. case GGML_OP_RMS_NORM:
  10673. case GGML_OP_RMS_NORM_BACK:
  10674. case GGML_OP_GROUP_NORM:
  10675. case GGML_OP_CONCAT:
  10676. case GGML_OP_MUL_MAT:
  10677. case GGML_OP_MUL_MAT_ID:
  10678. case GGML_OP_OUT_PROD:
  10679. {
  10680. n_tasks = n_threads;
  10681. } break;
  10682. case GGML_OP_GET_ROWS:
  10683. {
  10684. // FIXME: get_rows can use additional threads, but the cost of launching additional threads
  10685. // decreases performance with GPU offloading
  10686. //n_tasks = n_threads;
  10687. n_tasks = 1;
  10688. } break;
  10689. case GGML_OP_SCALE:
  10690. case GGML_OP_SET:
  10691. case GGML_OP_RESHAPE:
  10692. case GGML_OP_VIEW:
  10693. case GGML_OP_PERMUTE:
  10694. case GGML_OP_TRANSPOSE:
  10695. case GGML_OP_GET_ROWS_BACK:
  10696. case GGML_OP_DIAG:
  10697. {
  10698. n_tasks = 1;
  10699. } break;
  10700. case GGML_OP_DIAG_MASK_ZERO:
  10701. case GGML_OP_DIAG_MASK_INF:
  10702. case GGML_OP_SOFT_MAX_BACK:
  10703. case GGML_OP_ROPE:
  10704. case GGML_OP_ROPE_BACK:
  10705. case GGML_OP_ADD_REL_POS:
  10706. {
  10707. n_tasks = n_threads;
  10708. } break;
  10709. case GGML_OP_CLAMP:
  10710. {
  10711. n_tasks = 1; //TODO
  10712. } break;
  10713. case GGML_OP_SOFT_MAX:
  10714. {
  10715. n_tasks = MIN(n_threads, ggml_nrows(node->src[0]));
  10716. } break;
  10717. case GGML_OP_IM2COL:
  10718. case GGML_OP_IM2COL_BACK:
  10719. case GGML_OP_CONV_TRANSPOSE_1D:
  10720. case GGML_OP_CONV_TRANSPOSE_2D:
  10721. {
  10722. n_tasks = n_threads;
  10723. } break;
  10724. case GGML_OP_POOL_1D:
  10725. case GGML_OP_POOL_2D:
  10726. case GGML_OP_POOL_2D_BACK:
  10727. {
  10728. n_tasks = 1;
  10729. } break;
  10730. case GGML_OP_UPSCALE:
  10731. case GGML_OP_PAD:
  10732. case GGML_OP_UNPAD:
  10733. case GGML_OP_ARANGE:
  10734. case GGML_OP_TIMESTEP_EMBEDDING:
  10735. case GGML_OP_ARGSORT:
  10736. case GGML_OP_FLASH_ATTN_EXT:
  10737. case GGML_OP_FLASH_ATTN_BACK:
  10738. case GGML_OP_SSM_CONV:
  10739. case GGML_OP_SSM_SCAN:
  10740. {
  10741. n_tasks = n_threads;
  10742. } break;
  10743. case GGML_OP_WIN_PART:
  10744. case GGML_OP_WIN_UNPART:
  10745. case GGML_OP_GET_REL_POS:
  10746. case GGML_OP_RWKV_WKV6:
  10747. case GGML_OP_MAP_UNARY:
  10748. case GGML_OP_MAP_BINARY:
  10749. case GGML_OP_MAP_CUSTOM1_F32:
  10750. case GGML_OP_MAP_CUSTOM2_F32:
  10751. case GGML_OP_MAP_CUSTOM3_F32:
  10752. {
  10753. n_tasks = 1;
  10754. } break;
  10755. case GGML_OP_MAP_CUSTOM1:
  10756. {
  10757. struct ggml_map_custom1_op_params p;
  10758. memcpy(&p, node->op_params, sizeof(p));
  10759. if (p.n_tasks == GGML_N_TASKS_MAX) {
  10760. n_tasks = n_threads;
  10761. } else {
  10762. n_tasks = MIN(p.n_tasks, n_threads);
  10763. }
  10764. } break;
  10765. case GGML_OP_MAP_CUSTOM2:
  10766. {
  10767. struct ggml_map_custom2_op_params p;
  10768. memcpy(&p, node->op_params, sizeof(p));
  10769. if (p.n_tasks == GGML_N_TASKS_MAX) {
  10770. n_tasks = n_threads;
  10771. } else {
  10772. n_tasks = MIN(p.n_tasks, n_threads);
  10773. }
  10774. } break;
  10775. case GGML_OP_MAP_CUSTOM3:
  10776. {
  10777. struct ggml_map_custom3_op_params p;
  10778. memcpy(&p, node->op_params, sizeof(p));
  10779. if (p.n_tasks == GGML_N_TASKS_MAX) {
  10780. n_tasks = n_threads;
  10781. } else {
  10782. n_tasks = MIN(p.n_tasks, n_threads);
  10783. }
  10784. } break;
  10785. case GGML_OP_CROSS_ENTROPY_LOSS:
  10786. case GGML_OP_CROSS_ENTROPY_LOSS_BACK:
  10787. case GGML_OP_OPT_STEP_ADAMW:
  10788. {
  10789. n_tasks = n_threads;
  10790. } break;
  10791. case GGML_OP_NONE:
  10792. {
  10793. n_tasks = 1;
  10794. } break;
  10795. case GGML_OP_COUNT:
  10796. {
  10797. GGML_ABORT("fatal error");
  10798. }
  10799. default:
  10800. {
  10801. fprintf(stderr, "%s: op not implemented: ", __func__);
  10802. if (node->op < GGML_OP_COUNT) {
  10803. fprintf(stderr, "%s\n", ggml_op_name(node->op));
  10804. } else {
  10805. fprintf(stderr, "%d\n", node->op);
  10806. }
  10807. GGML_ABORT("fatal error");
  10808. }
  10809. }
  10810. assert(n_tasks > 0);
  10811. return n_tasks;
  10812. }
  10813. static thread_ret_t ggml_graph_compute_secondary_thread(void* data);
  10814. #if defined(_WIN32)
  10815. #include "windows.h"
  10816. // TODO: support > 64 CPUs
  10817. bool ggml_thread_apply_affinity(bool * mask) {
  10818. HANDLE h = GetCurrentThread();
  10819. uint64_t bitmask = 0ULL;
  10820. assert(GGML_MAX_N_THREADS >= 64);
  10821. for (int32_t i = 0; i < 8; i++) {
  10822. int32_t idx = i * 8;
  10823. uint8_t val = 0;
  10824. val |= mask[idx + 0] << 0;
  10825. val |= mask[idx + 1] << 1;
  10826. val |= mask[idx + 2] << 2;
  10827. val |= mask[idx + 3] << 3;
  10828. val |= mask[idx + 4] << 4;
  10829. val |= mask[idx + 5] << 5;
  10830. val |= mask[idx + 6] << 6;
  10831. val |= mask[idx + 7] << 7;
  10832. bitmask |= (uint64_t)val << idx;
  10833. }
  10834. for (int32_t i = 64; i < GGML_MAX_N_THREADS; i++) {
  10835. if (mask[i]) {
  10836. fprintf(stderr, "warn: setting thread-affinity for > 64 CPUs isn't supported on windows!\n");
  10837. break;
  10838. }
  10839. }
  10840. DWORD_PTR m = (DWORD_PTR)bitmask;
  10841. m = SetThreadAffinityMask(h, m);
  10842. return m != 0;
  10843. }
  10844. static bool ggml_thread_apply_priority(int32_t prio) {
  10845. // Note that on Windows the Process Priority Class must be updated in order to set Thread priority.
  10846. // This is up to the applications.
  10847. DWORD p = THREAD_PRIORITY_NORMAL;
  10848. switch (prio) {
  10849. case GGML_SCHED_PRIO_NORMAL: p = THREAD_PRIORITY_NORMAL; break;
  10850. case GGML_SCHED_PRIO_MEDIUM: p = THREAD_PRIORITY_ABOVE_NORMAL; break;
  10851. case GGML_SCHED_PRIO_HIGH: p = THREAD_PRIORITY_HIGHEST; break;
  10852. case GGML_SCHED_PRIO_REALTIME: p = THREAD_PRIORITY_TIME_CRITICAL; break;
  10853. }
  10854. if (prio == GGML_SCHED_PRIO_NORMAL) {
  10855. // Keep inherited policy/priority
  10856. return true;
  10857. }
  10858. if (!SetThreadPriority(GetCurrentThread(), p)) {
  10859. fprintf(stderr, "warn: failed to set thread priority %d : (%d)\n", prio, (int) GetLastError());
  10860. return false;
  10861. }
  10862. return true;
  10863. }
  10864. #elif defined(__APPLE__)
  10865. #include <sys/types.h>
  10866. #include <sys/resource.h>
  10867. static bool ggml_thread_apply_affinity(const bool * mask) {
  10868. // Not supported on Apple platforms
  10869. UNUSED(mask);
  10870. return true;
  10871. }
  10872. static bool ggml_thread_apply_priority(int32_t prio) {
  10873. struct sched_param p;
  10874. int32_t policy = SCHED_OTHER;
  10875. switch (prio) {
  10876. case GGML_SCHED_PRIO_NORMAL: policy = SCHED_OTHER; p.sched_priority = 0; break;
  10877. case GGML_SCHED_PRIO_MEDIUM: policy = SCHED_FIFO; p.sched_priority = 40; break;
  10878. case GGML_SCHED_PRIO_HIGH: policy = SCHED_FIFO; p.sched_priority = 80; break;
  10879. case GGML_SCHED_PRIO_REALTIME: policy = SCHED_FIFO; p.sched_priority = 90; break;
  10880. }
  10881. if (prio == GGML_SCHED_PRIO_NORMAL) {
  10882. // Keep inherited policy/priority
  10883. return true;
  10884. }
  10885. int32_t err = pthread_setschedparam(pthread_self(), policy, &p);
  10886. if (err != 0) {
  10887. fprintf(stderr, "warn: failed to set thread priority %d : %s (%d)\n", prio, strerror(err), err);
  10888. return false;
  10889. }
  10890. return true;
  10891. }
  10892. #elif defined(__gnu_linux__)
  10893. // TODO: this may not work on BSD, to be verified
  10894. static bool ggml_thread_apply_affinity(const bool * mask) {
  10895. cpu_set_t cpuset;
  10896. int err;
  10897. CPU_ZERO(&cpuset);
  10898. for (uint32_t i = 0; i < GGML_MAX_N_THREADS; i++) {
  10899. if (mask[i]) {
  10900. GGML_PRINT_DEBUG("Thread %lx: adding %d to cpuset\n", pthread_self(), i);
  10901. CPU_SET(i, &cpuset);
  10902. }
  10903. }
  10904. #ifdef __ANDROID__
  10905. err = sched_setaffinity(0, sizeof(cpuset), &cpuset);
  10906. if (err < 0) {
  10907. err = errno;
  10908. }
  10909. #else
  10910. err = pthread_setaffinity_np(pthread_self(), sizeof(cpuset), &cpuset);
  10911. #endif
  10912. if (err != 0) {
  10913. fprintf(stderr, "warn: failed to set affinity mask 0x%llx : %s (%d)\n", (unsigned long long)mask, strerror(err), err);
  10914. return false;
  10915. }
  10916. return true;
  10917. }
  10918. static bool ggml_thread_apply_priority(int32_t prio) {
  10919. struct sched_param p;
  10920. int32_t policy = SCHED_OTHER;
  10921. switch (prio) {
  10922. case GGML_SCHED_PRIO_NORMAL: policy = SCHED_OTHER; p.sched_priority = 0; break;
  10923. case GGML_SCHED_PRIO_MEDIUM: policy = SCHED_FIFO; p.sched_priority = 40; break;
  10924. case GGML_SCHED_PRIO_HIGH: policy = SCHED_FIFO; p.sched_priority = 80; break;
  10925. case GGML_SCHED_PRIO_REALTIME: policy = SCHED_FIFO; p.sched_priority = 90; break;
  10926. }
  10927. if (prio == GGML_SCHED_PRIO_NORMAL) {
  10928. // Keep inherited policy/priority
  10929. return true;
  10930. }
  10931. int32_t err = pthread_setschedparam(pthread_self(), policy, &p);
  10932. if (err != 0) {
  10933. fprintf(stderr, "warn: failed to set thread priority %d : %s (%d)\n", prio, strerror(err), err);
  10934. return false;
  10935. }
  10936. return true;
  10937. }
  10938. #else // unsupported platforms
  10939. static bool ggml_thread_apply_affinity(const bool * mask) {
  10940. UNUSED(mask);
  10941. return true;
  10942. }
  10943. static bool ggml_thread_apply_priority(int32_t prio) {
  10944. UNUSED(prio);
  10945. return true;
  10946. }
  10947. #endif
  10948. static bool ggml_thread_cpumask_is_valid(const bool * mask) {
  10949. for (int i = 0; i < GGML_MAX_N_THREADS; i++) {
  10950. if (mask[i]) { return true; }
  10951. }
  10952. return false;
  10953. }
  10954. static void ggml_thread_cpumask_next(const bool * global_mask, bool * local_mask, bool strict, int32_t* iter) {
  10955. if (!strict) {
  10956. memcpy(local_mask, global_mask, GGML_MAX_N_THREADS);
  10957. return;
  10958. } else {
  10959. memset(local_mask, 0, GGML_MAX_N_THREADS);
  10960. int32_t base_idx = *iter;
  10961. for (int32_t i = 0; i < GGML_MAX_N_THREADS; i++) {
  10962. int32_t idx = base_idx + i;
  10963. if (idx >= GGML_MAX_N_THREADS) {
  10964. // Just a cheaper modulo
  10965. idx -= GGML_MAX_N_THREADS;
  10966. }
  10967. if (global_mask[idx]) {
  10968. local_mask[idx] = 1;
  10969. *iter = idx + 1;
  10970. return;
  10971. }
  10972. }
  10973. }
  10974. }
  10975. void ggml_threadpool_free(struct ggml_threadpool* threadpool) {
  10976. if (!threadpool) return;
  10977. const int n_threads = threadpool->n_threads_max;
  10978. #ifndef GGML_USE_OPENMP
  10979. struct ggml_compute_state* workers = threadpool->workers;
  10980. ggml_mutex_lock(&threadpool->mutex);
  10981. threadpool->stop = true;
  10982. threadpool->pause = false;
  10983. ggml_cond_broadcast(&threadpool->cond);
  10984. ggml_mutex_unlock(&threadpool->mutex);
  10985. for (int j = 1; j < n_threads; j++) {
  10986. int32_t rc = ggml_thread_join(workers[j].thrd, NULL);
  10987. GGML_ASSERT(rc == GGML_EXIT_SUCCESS || rc == GGML_EXIT_ABORTED);
  10988. UNUSED(rc);
  10989. }
  10990. ggml_mutex_destroy(&threadpool->mutex);
  10991. ggml_cond_destroy(&threadpool->cond);
  10992. #endif // GGML_USE_OPENMP
  10993. const size_t workers_size = sizeof(struct ggml_compute_state) * n_threads;
  10994. ggml_aligned_free(threadpool->workers, workers_size);
  10995. ggml_aligned_free(threadpool, sizeof(struct ggml_threadpool));
  10996. }
  10997. #ifndef GGML_USE_OPENMP
  10998. // pause/resume must be called under mutex
  10999. static void ggml_threadpool_pause_locked(struct ggml_threadpool * threadpool) {
  11000. GGML_PRINT_DEBUG("Pausing threadpool\n");
  11001. threadpool->pause = true;
  11002. ggml_cond_broadcast(&threadpool->cond);
  11003. }
  11004. static void ggml_threadpool_resume_locked(struct ggml_threadpool * threadpool) {
  11005. GGML_PRINT_DEBUG("Resuming threadpool\n");
  11006. threadpool->pause = false;
  11007. ggml_cond_broadcast(&threadpool->cond);
  11008. }
  11009. #endif
  11010. void ggml_threadpool_pause(struct ggml_threadpool * threadpool) {
  11011. #ifndef GGML_USE_OPENMP
  11012. ggml_mutex_lock(&threadpool->mutex);
  11013. if (!threadpool->pause) {
  11014. ggml_threadpool_pause_locked(threadpool);
  11015. }
  11016. ggml_mutex_unlock(&threadpool->mutex);
  11017. #else
  11018. UNUSED(threadpool);
  11019. #endif
  11020. }
  11021. void ggml_threadpool_resume(struct ggml_threadpool * threadpool) {
  11022. #ifndef GGML_USE_OPENMP
  11023. ggml_mutex_lock(&threadpool->mutex);
  11024. if (threadpool->pause) {
  11025. ggml_threadpool_resume_locked(threadpool);
  11026. }
  11027. ggml_mutex_unlock(&threadpool->mutex);
  11028. #else
  11029. UNUSED(threadpool);
  11030. #endif
  11031. }
  11032. struct ggml_cplan ggml_graph_plan(
  11033. const struct ggml_cgraph * cgraph,
  11034. int n_threads,
  11035. struct ggml_threadpool * threadpool) {
  11036. if (threadpool == NULL) {
  11037. //GGML_PRINT_DEBUG("Threadpool is not specified. Will create a disposable threadpool : n_threads %d\n", n_threads);
  11038. }
  11039. if (n_threads <= 0) {
  11040. n_threads = threadpool ? threadpool->n_threads_max : GGML_DEFAULT_N_THREADS;
  11041. }
  11042. size_t work_size = 0;
  11043. struct ggml_cplan cplan;
  11044. memset(&cplan, 0, sizeof(struct ggml_cplan));
  11045. int max_tasks = 1;
  11046. // thread scheduling for the different operations + work buffer size estimation
  11047. for (int i = 0; i < cgraph->n_nodes; i++) {
  11048. struct ggml_tensor * node = cgraph->nodes[i];
  11049. const int n_tasks = ggml_get_n_tasks(node, n_threads);
  11050. max_tasks = MAX(max_tasks, n_tasks);
  11051. size_t cur = 0;
  11052. switch (node->op) {
  11053. case GGML_OP_CPY:
  11054. case GGML_OP_DUP:
  11055. {
  11056. if (ggml_is_quantized(node->type) ||
  11057. // F16 -> BF16 and BF16 -> F16 copies go through intermediate F32
  11058. (node->src[0]->type == GGML_TYPE_F16 && node->src[1] && node->src[1]->type == GGML_TYPE_BF16) ||
  11059. (node->src[0]->type == GGML_TYPE_BF16 && node->src[1] && node->src[1]->type == GGML_TYPE_F16)) {
  11060. cur = ggml_type_size(GGML_TYPE_F32) * node->ne[0] * n_tasks;
  11061. }
  11062. } break;
  11063. case GGML_OP_ADD:
  11064. case GGML_OP_ADD1:
  11065. {
  11066. if (ggml_is_quantized(node->src[0]->type)) {
  11067. cur = ggml_type_size(GGML_TYPE_F32) * node->src[0]->ne[0] * n_tasks;
  11068. }
  11069. } break;
  11070. case GGML_OP_ACC:
  11071. {
  11072. if (ggml_is_quantized(node->src[0]->type)) {
  11073. cur = ggml_type_size(GGML_TYPE_F32) * node->src[1]->ne[0] * n_tasks;
  11074. }
  11075. } break;
  11076. case GGML_OP_COUNT_EQUAL:
  11077. {
  11078. cur = ggml_type_size(node->type)*n_tasks;
  11079. } break;
  11080. case GGML_OP_MUL_MAT:
  11081. {
  11082. #if defined(__AMX_INT8__) && defined(__AVX512VNNI__)
  11083. if (node->src[0]->buffer && ggml_backend_amx_buft_is_amx(node->src[0]->buffer->buft)) {
  11084. cur = ggml_backend_amx_desired_wsize(node);
  11085. }
  11086. #endif
  11087. const enum ggml_type vec_dot_type = type_traits_cpu[node->src[0]->type].vec_dot_type;
  11088. if (node->src[1]->type != vec_dot_type) {
  11089. size_t cur2 = ggml_row_size(vec_dot_type, ggml_nelements(node->src[1]));
  11090. cur = MAX(cur, cur2);
  11091. }
  11092. } break;
  11093. case GGML_OP_MUL_MAT_ID:
  11094. {
  11095. cur = 0;
  11096. const struct ggml_tensor * src0 = node->src[0];
  11097. const struct ggml_tensor * src1 = node->src[1];
  11098. const enum ggml_type vec_dot_type = type_traits_cpu[src0->type].vec_dot_type;
  11099. if (src1->type != vec_dot_type) {
  11100. cur += ggml_row_size(vec_dot_type, ggml_nelements(src1));
  11101. }
  11102. const int n_as = src0->ne[2];
  11103. cur += GGML_PAD(cur, sizeof(int64_t)); // align
  11104. cur += n_as * sizeof(int64_t); // matrix_row_counts
  11105. cur += n_as * src1->ne[2] * sizeof(int64_t); // matrix_rows
  11106. } break;
  11107. case GGML_OP_OUT_PROD:
  11108. {
  11109. if (ggml_is_quantized(node->src[0]->type)) {
  11110. cur = ggml_type_size(GGML_TYPE_F32) * node->src[0]->ne[0] * n_tasks;
  11111. }
  11112. } break;
  11113. case GGML_OP_SOFT_MAX:
  11114. case GGML_OP_ROPE:
  11115. {
  11116. cur = ggml_type_size(GGML_TYPE_F32) * node->ne[0] * n_tasks;
  11117. } break;
  11118. case GGML_OP_CONV_TRANSPOSE_1D:
  11119. {
  11120. GGML_ASSERT(node->src[0]->ne[3] == 1);
  11121. GGML_ASSERT(node->src[1]->ne[2] == 1);
  11122. GGML_ASSERT(node->src[1]->ne[3] == 1);
  11123. const int64_t ne00 = node->src[0]->ne[0]; // K
  11124. const int64_t ne01 = node->src[0]->ne[1]; // Cout
  11125. const int64_t ne02 = node->src[0]->ne[2]; // Cin
  11126. const int64_t ne10 = node->src[1]->ne[0]; // L
  11127. const int64_t ne11 = node->src[1]->ne[1]; // Cin
  11128. if ((node->src[0]->type == GGML_TYPE_F16 ||
  11129. node->src[0]->type == GGML_TYPE_BF16) &&
  11130. node->src[1]->type == GGML_TYPE_F32) {
  11131. cur += sizeof(ggml_fp16_t)*ne00*ne01*ne02;
  11132. cur += sizeof(ggml_fp16_t)*ne10*ne11;
  11133. } else if (node->src[0]->type == GGML_TYPE_F32 &&
  11134. node->src[1]->type == GGML_TYPE_F32) {
  11135. cur += sizeof(float)*ne00*ne01*ne02;
  11136. cur += sizeof(float)*ne10*ne11;
  11137. } else {
  11138. GGML_ABORT("fatal error");
  11139. }
  11140. } break;
  11141. case GGML_OP_CONV_TRANSPOSE_2D:
  11142. {
  11143. const int64_t ne00 = node->src[0]->ne[0]; // W
  11144. const int64_t ne01 = node->src[0]->ne[1]; // H
  11145. const int64_t ne02 = node->src[0]->ne[2]; // Channels Out
  11146. const int64_t ne03 = node->src[0]->ne[3]; // Channels In
  11147. const int64_t ne10 = node->src[1]->ne[0]; // W
  11148. const int64_t ne11 = node->src[1]->ne[1]; // H
  11149. const int64_t ne12 = node->src[1]->ne[2]; // Channels In
  11150. cur += sizeof(ggml_fp16_t)*ne00*ne01*ne02*ne03;
  11151. cur += sizeof(ggml_fp16_t)*ne10*ne11*ne12;
  11152. } break;
  11153. case GGML_OP_FLASH_ATTN_EXT:
  11154. {
  11155. const int64_t ne00 = node->src[0]->ne[0]; // D
  11156. cur = 3*sizeof(float)*ne00*n_tasks; // 3x head size/thread
  11157. } break;
  11158. case GGML_OP_FLASH_ATTN_BACK:
  11159. {
  11160. const int64_t D = node->src[0]->ne[0];
  11161. const int64_t ne11 = ggml_up(node->src[1]->ne[1], GGML_SOFT_MAX_UNROLL);
  11162. const int64_t mxDn = MAX(D, ne11) * 2; // *2 because of S and SM in ggml_compute_forward_flash_attn_back
  11163. if (node->src[1]->type == GGML_TYPE_F32) {
  11164. cur = sizeof(float)*mxDn*n_tasks; // TODO: this can become (n_tasks-1)
  11165. cur += sizeof(float)*mxDn*n_tasks; // this is overestimated by x2
  11166. } else if (node->src[1]->type == GGML_TYPE_F16) {
  11167. cur = sizeof(float)*mxDn*n_tasks; // TODO: this can become (n_tasks-1)
  11168. cur += sizeof(float)*mxDn*n_tasks; // this is overestimated by x2
  11169. } else if (node->src[1]->type == GGML_TYPE_BF16) {
  11170. cur = sizeof(float)*mxDn*n_tasks; // TODO: this can become (n_tasks-1)
  11171. cur += sizeof(float)*mxDn*n_tasks; // this is overestimated by x2
  11172. }
  11173. } break;
  11174. case GGML_OP_CROSS_ENTROPY_LOSS:
  11175. {
  11176. cur = ggml_type_size(node->type)*(n_tasks + node->src[0]->ne[0]*n_tasks);
  11177. } break;
  11178. case GGML_OP_COUNT:
  11179. {
  11180. GGML_ABORT("fatal error");
  11181. }
  11182. default:
  11183. break;
  11184. }
  11185. work_size = MAX(work_size, cur);
  11186. }
  11187. if (work_size > 0) {
  11188. work_size += CACHE_LINE_SIZE*(n_threads);
  11189. }
  11190. cplan.threadpool = threadpool;
  11191. cplan.n_threads = MIN(max_tasks, n_threads);
  11192. cplan.work_size = work_size;
  11193. cplan.work_data = NULL;
  11194. return cplan;
  11195. }
  11196. static thread_ret_t ggml_graph_compute_thread(void * data) {
  11197. struct ggml_compute_state * state = (struct ggml_compute_state *) data;
  11198. struct ggml_threadpool * tp = state->threadpool;
  11199. const struct ggml_cgraph * cgraph = tp->cgraph;
  11200. const struct ggml_cplan * cplan = tp->cplan;
  11201. set_numa_thread_affinity(state->ith);
  11202. struct ggml_compute_params params = {
  11203. /*.ith =*/ state->ith,
  11204. /*.nth =*/ atomic_load_explicit(&tp->n_threads_cur, memory_order_relaxed),
  11205. /*.wsize =*/ cplan->work_size,
  11206. /*.wdata =*/ cplan->work_data,
  11207. /*.threadpool=*/ tp,
  11208. };
  11209. for (int node_n = 0; node_n < cgraph->n_nodes && !tp->abort; node_n++) {
  11210. struct ggml_tensor * node = cgraph->nodes[node_n];
  11211. ggml_compute_forward(&params, node);
  11212. if (state->ith == 0 && cplan->abort_callback &&
  11213. cplan->abort_callback(cplan->abort_callback_data)) {
  11214. tp->abort = true;
  11215. tp->ec = GGML_STATUS_ABORTED;
  11216. }
  11217. ggml_barrier(state->threadpool);
  11218. }
  11219. return 0;
  11220. }
  11221. #ifndef GGML_USE_OPENMP
  11222. // check if thread is active
  11223. static inline bool ggml_graph_compute_thread_active(struct ggml_compute_state * state) {
  11224. struct ggml_threadpool * threadpool = state->threadpool;
  11225. int n_threads = atomic_load_explicit(&threadpool->n_threads_cur, memory_order_relaxed);
  11226. return (state->ith < n_threads);
  11227. }
  11228. // check if thread is ready to proceed (exit from polling or sleeping)
  11229. static inline bool ggml_graph_compute_thread_ready(struct ggml_compute_state * state) {
  11230. struct ggml_threadpool * threadpool = state->threadpool;
  11231. if (state->pending || threadpool->stop || threadpool->pause) { return true; }
  11232. // check for new graph/work
  11233. int new_graph = atomic_load_explicit(&threadpool->n_graph, memory_order_relaxed);
  11234. if (new_graph != state->last_graph) {
  11235. state->pending = ggml_graph_compute_thread_active(state);
  11236. state->last_graph = new_graph;
  11237. }
  11238. return state->pending;
  11239. }
  11240. // sync thread state after polling
  11241. static inline void ggml_graph_compute_thread_sync(struct ggml_compute_state * state) {
  11242. // TSAN doesn't support standalone fence yet, we use a dummy read-modify-write instead
  11243. #ifdef GGML_TSAN_ENABLED
  11244. atomic_fetch_add_explicit(&state->threadpool->n_graph, 0, memory_order_seq_cst);
  11245. #else
  11246. atomic_thread_fence(memory_order_seq_cst);
  11247. #endif
  11248. UNUSED(state);
  11249. }
  11250. static inline bool ggml_graph_compute_poll_for_work(struct ggml_compute_state * state) {
  11251. struct ggml_threadpool * threadpool = state->threadpool;
  11252. // Skip polling for unused threads
  11253. if (!ggml_graph_compute_thread_active(state)) {
  11254. return state->pending;
  11255. }
  11256. // This seems to make 0 ... 100 a decent range for polling level across modern processors.
  11257. // Perhaps, we can adjust it dynamically based on load and things.
  11258. const uint64_t n_rounds = 1024UL * 128 * threadpool->poll;
  11259. for (uint64_t i=0; !ggml_graph_compute_thread_ready(state) && i < n_rounds; i++) {
  11260. // No new work. Keep polling.
  11261. ggml_thread_cpu_relax();
  11262. }
  11263. return state->pending;
  11264. }
  11265. static inline bool ggml_graph_compute_check_for_work(struct ggml_compute_state * state) {
  11266. struct ggml_threadpool * threadpool = state->threadpool;
  11267. if (ggml_graph_compute_poll_for_work(state)) {
  11268. ggml_graph_compute_thread_sync(state);
  11269. return state->pending;
  11270. }
  11271. ggml_mutex_lock_shared(&threadpool->mutex);
  11272. while (!ggml_graph_compute_thread_ready(state)) {
  11273. // No new work. Wait for the signal.
  11274. GGML_PRINT_DEBUG("thread #%d waiting for work (sleeping)\n", state->ith);
  11275. ggml_cond_wait(&threadpool->cond, &threadpool->mutex);
  11276. }
  11277. ggml_mutex_unlock_shared(&threadpool->mutex);
  11278. return state->pending;
  11279. }
  11280. static thread_ret_t ggml_graph_compute_secondary_thread(void* data) {
  11281. struct ggml_compute_state * state = (struct ggml_compute_state *) data;
  11282. struct ggml_threadpool * threadpool = state->threadpool;
  11283. ggml_thread_apply_priority(threadpool->prio);
  11284. if (ggml_thread_cpumask_is_valid(state->cpumask)) {
  11285. ggml_thread_apply_affinity(state->cpumask);
  11286. }
  11287. while (true) {
  11288. // Check if we need to sleep
  11289. while (threadpool->pause) {
  11290. GGML_PRINT_DEBUG("thread #%d inside pause loop\n", state->ith);
  11291. ggml_mutex_lock_shared(&threadpool->mutex);
  11292. if (threadpool->pause) {
  11293. ggml_cond_wait(&threadpool->cond, &threadpool->mutex);
  11294. }
  11295. GGML_PRINT_DEBUG("thread #%d resuming after wait\n", state->ith);
  11296. ggml_mutex_unlock_shared(&threadpool->mutex);
  11297. }
  11298. // This needs to be checked for after the cond_wait
  11299. if (threadpool->stop) break;
  11300. // Check if there is new work
  11301. // The main thread is the only one that can dispatch new work
  11302. ggml_graph_compute_check_for_work(state);
  11303. if (state->pending) {
  11304. state->pending = false;
  11305. ggml_graph_compute_thread(state);
  11306. }
  11307. }
  11308. return (thread_ret_t) 0;
  11309. }
  11310. // Start processing new graph
  11311. static void ggml_graph_compute_kickoff(struct ggml_threadpool * threadpool, int n_threads)
  11312. {
  11313. // Always take the mutex here because the worker threads are doing hybrid poll/wait
  11314. ggml_mutex_lock(&threadpool->mutex);
  11315. GGML_PRINT_DEBUG("threadpool: n_threads_cur %d n_threads %d\n", threadpool->n_threads_cur, n_threads);
  11316. // Update the number of active threads
  11317. atomic_store_explicit(&threadpool->n_threads_cur, n_threads, memory_order_relaxed);
  11318. // Indicate the graph is ready to be processed
  11319. // We need the full seq-cst fence here because of the polling threads (used in thread_sync)
  11320. atomic_fetch_add_explicit(&threadpool->n_graph, 1, memory_order_seq_cst);
  11321. if (threadpool->pause) {
  11322. // Update main thread prio and affinity to match the threadpool settings
  11323. ggml_thread_apply_priority(threadpool->prio);
  11324. if (ggml_thread_cpumask_is_valid(threadpool->workers[0].cpumask)) {
  11325. ggml_thread_apply_affinity(threadpool->workers[0].cpumask);
  11326. }
  11327. // resume does cond broadcast
  11328. ggml_threadpool_resume_locked(threadpool);
  11329. } else {
  11330. ggml_cond_broadcast(&threadpool->cond);
  11331. }
  11332. ggml_mutex_unlock(&threadpool->mutex);
  11333. }
  11334. #endif // GGML_USE_OPENMP
  11335. static struct ggml_threadpool * ggml_threadpool_new_impl(
  11336. struct ggml_threadpool_params * tpp,
  11337. struct ggml_cgraph * cgraph,
  11338. struct ggml_cplan * cplan) {
  11339. struct ggml_threadpool * threadpool =
  11340. ggml_aligned_malloc(sizeof(struct ggml_threadpool));
  11341. {
  11342. threadpool->cgraph = cgraph;
  11343. threadpool->cplan = cplan;
  11344. threadpool->n_graph = 0;
  11345. threadpool->n_barrier = 0;
  11346. threadpool->n_barrier_passed = 0;
  11347. threadpool->current_chunk = 0;
  11348. threadpool->stop = false;
  11349. threadpool->pause = tpp->paused;
  11350. threadpool->abort = false;
  11351. threadpool->workers = NULL;
  11352. threadpool->n_threads_max = tpp->n_threads;
  11353. threadpool->n_threads_cur = tpp->n_threads;
  11354. threadpool->poll = tpp->poll;
  11355. threadpool->prio = tpp->prio;
  11356. threadpool->ec = GGML_STATUS_SUCCESS;
  11357. }
  11358. // Allocate and init workers state
  11359. const size_t workers_size = sizeof(struct ggml_compute_state) * tpp->n_threads;
  11360. struct ggml_compute_state * workers = ggml_aligned_malloc(workers_size);
  11361. memset(workers, 0, workers_size);
  11362. for (int j = 0; j < tpp->n_threads; j++) {
  11363. workers[j].threadpool = threadpool;
  11364. workers[j].ith = j;
  11365. }
  11366. threadpool->workers = workers;
  11367. #ifndef GGML_USE_OPENMP
  11368. ggml_mutex_init(&threadpool->mutex);
  11369. ggml_cond_init(&threadpool->cond);
  11370. // Spin the threads for all workers, and update CPU placements.
  11371. // Place the main thread last (towards the higher numbered CPU cores).
  11372. int32_t cpumask_iter = 0;
  11373. for (int j = 1; j < tpp->n_threads; j++) {
  11374. ggml_thread_cpumask_next(tpp->cpumask, workers[j].cpumask, tpp->strict_cpu, &cpumask_iter);
  11375. int32_t rc = ggml_thread_create(&workers[j].thrd, NULL, ggml_graph_compute_secondary_thread, &workers[j]);
  11376. GGML_ASSERT(rc == 0);
  11377. }
  11378. ggml_thread_cpumask_next(tpp->cpumask, workers[0].cpumask, tpp->strict_cpu, &cpumask_iter);
  11379. if (!threadpool->pause) {
  11380. // Update main thread prio and affinity at the start, otherwise we'll do it in resume
  11381. ggml_thread_apply_priority(threadpool->prio);
  11382. if (ggml_thread_cpumask_is_valid(threadpool->workers[0].cpumask)) {
  11383. ggml_thread_apply_affinity(threadpool->workers[0].cpumask);
  11384. }
  11385. }
  11386. #endif // GGML_USE_OPENMP
  11387. return threadpool;
  11388. }
  11389. struct ggml_threadpool * ggml_threadpool_new(struct ggml_threadpool_params * tpp) {
  11390. return ggml_threadpool_new_impl(tpp, NULL, NULL);
  11391. }
  11392. enum ggml_status ggml_graph_compute(struct ggml_cgraph * cgraph, struct ggml_cplan * cplan) {
  11393. ggml_cpu_init();
  11394. GGML_ASSERT(cplan);
  11395. GGML_ASSERT(cplan->n_threads > 0);
  11396. GGML_ASSERT(cplan->work_size == 0 || cplan->work_data != NULL);
  11397. int n_threads = cplan->n_threads;
  11398. struct ggml_threadpool * threadpool = cplan->threadpool;
  11399. bool disposable_threadpool = false;
  11400. if (threadpool == NULL) {
  11401. //GGML_PRINT_DEBUG("Threadpool is not specified. Will create a disposable threadpool : n_threads %d\n", n_threads);
  11402. disposable_threadpool = true;
  11403. struct ggml_threadpool_params ttp = ggml_threadpool_params_default(n_threads);
  11404. threadpool = ggml_threadpool_new_impl(&ttp, cgraph, cplan);
  11405. } else {
  11406. // Reset some of the parameters that need resetting
  11407. // No worker threads should be accessing the parameters below at this stage
  11408. threadpool->cgraph = cgraph;
  11409. threadpool->cplan = cplan;
  11410. threadpool->current_chunk = 0;
  11411. threadpool->abort = false;
  11412. threadpool->ec = GGML_STATUS_SUCCESS;
  11413. }
  11414. #ifdef GGML_USE_OPENMP
  11415. if (n_threads > 1) {
  11416. #pragma omp parallel num_threads(n_threads)
  11417. {
  11418. #pragma omp single
  11419. {
  11420. // update the number of threads from the actual number of threads that we got from OpenMP
  11421. n_threads = omp_get_num_threads();
  11422. atomic_store_explicit(&threadpool->n_threads_cur, n_threads, memory_order_relaxed);
  11423. }
  11424. ggml_graph_compute_thread(&threadpool->workers[omp_get_thread_num()]);
  11425. }
  11426. } else {
  11427. atomic_store_explicit(&threadpool->n_threads_cur, 1, memory_order_relaxed);
  11428. ggml_graph_compute_thread(&threadpool->workers[0]);
  11429. }
  11430. #else
  11431. if (n_threads > threadpool->n_threads_max) {
  11432. GGML_LOG_WARN("cplan requested more threads (%d) than available (%d)\n", n_threads, threadpool->n_threads_max);
  11433. n_threads = threadpool->n_threads_max;
  11434. }
  11435. // Kick all threads to start the new graph
  11436. ggml_graph_compute_kickoff(threadpool, n_threads);
  11437. // This is a work thread too
  11438. ggml_graph_compute_thread(&threadpool->workers[0]);
  11439. #endif
  11440. // don't leave affinity set on the main thread
  11441. clear_numa_thread_affinity();
  11442. enum ggml_status ret = threadpool->ec;
  11443. if (disposable_threadpool) {
  11444. ggml_threadpool_free(threadpool);
  11445. }
  11446. return ret;
  11447. }
  11448. enum ggml_status ggml_graph_compute_with_ctx(struct ggml_context * ctx, struct ggml_cgraph * cgraph, int n_threads) {
  11449. struct ggml_cplan cplan = ggml_graph_plan(cgraph, n_threads, NULL);
  11450. cplan.work_data = (uint8_t *)ggml_new_buffer(ctx, cplan.work_size);
  11451. return ggml_graph_compute(cgraph, &cplan);
  11452. }
  11453. int ggml_cpu_has_avx(void) {
  11454. #if defined(__AVX__)
  11455. return 1;
  11456. #else
  11457. return 0;
  11458. #endif
  11459. }
  11460. int ggml_cpu_has_avx_vnni(void) {
  11461. #if defined(__AVXVNNI__)
  11462. return 1;
  11463. #else
  11464. return 0;
  11465. #endif
  11466. }
  11467. int ggml_cpu_has_avx2(void) {
  11468. #if defined(__AVX2__)
  11469. return 1;
  11470. #else
  11471. return 0;
  11472. #endif
  11473. }
  11474. int ggml_cpu_has_avx512(void) {
  11475. #if defined(__AVX512F__)
  11476. return 1;
  11477. #else
  11478. return 0;
  11479. #endif
  11480. }
  11481. int ggml_cpu_has_avx512_vbmi(void) {
  11482. #if defined(__AVX512VBMI__)
  11483. return 1;
  11484. #else
  11485. return 0;
  11486. #endif
  11487. }
  11488. int ggml_cpu_has_avx512_vnni(void) {
  11489. #if defined(__AVX512VNNI__)
  11490. return 1;
  11491. #else
  11492. return 0;
  11493. #endif
  11494. }
  11495. int ggml_cpu_has_avx512_bf16(void) {
  11496. #if defined(__AVX512BF16__)
  11497. return 1;
  11498. #else
  11499. return 0;
  11500. #endif
  11501. }
  11502. int ggml_cpu_has_amx_int8(void) {
  11503. #if defined(__AMX_INT8__)
  11504. return 1;
  11505. #else
  11506. return 0;
  11507. #endif
  11508. }
  11509. int ggml_cpu_has_fma(void) {
  11510. #if defined(__FMA__)
  11511. return 1;
  11512. #else
  11513. return 0;
  11514. #endif
  11515. }
  11516. int ggml_cpu_has_arm_fma(void) {
  11517. #if defined(__ARM_FEATURE_FMA)
  11518. return 1;
  11519. #else
  11520. return 0;
  11521. #endif
  11522. }
  11523. int ggml_cpu_has_riscv_v(void) {
  11524. #if defined(__riscv_v_intrinsic)
  11525. return 1;
  11526. #else
  11527. return 0;
  11528. #endif
  11529. }
  11530. int ggml_cpu_has_f16c(void) {
  11531. #if defined(__F16C__)
  11532. return 1;
  11533. #else
  11534. return 0;
  11535. #endif
  11536. }
  11537. int ggml_cpu_has_fp16_va(void) {
  11538. #if defined(__ARM_FEATURE_FP16_VECTOR_ARITHMETIC)
  11539. return 1;
  11540. #else
  11541. return 0;
  11542. #endif
  11543. }
  11544. int ggml_cpu_has_wasm_simd(void) {
  11545. #if defined(__wasm_simd128__)
  11546. return 1;
  11547. #else
  11548. return 0;
  11549. #endif
  11550. }
  11551. int ggml_cpu_has_llamafile(void) {
  11552. #if defined(GGML_USE_LLAMAFILE)
  11553. return 1;
  11554. #else
  11555. return 0;
  11556. #endif
  11557. }
  11558. int ggml_cpu_has_sse3(void) {
  11559. #if defined(__SSE3__)
  11560. return 1;
  11561. #else
  11562. return 0;
  11563. #endif
  11564. }
  11565. int ggml_cpu_has_ssse3(void) {
  11566. #if defined(__SSSE3__)
  11567. return 1;
  11568. #else
  11569. return 0;
  11570. #endif
  11571. }
  11572. int ggml_cpu_has_vsx(void) {
  11573. #if defined(__POWER9_VECTOR__)
  11574. return 1;
  11575. #else
  11576. return 0;
  11577. #endif
  11578. }
  11579. int ggml_cpu_has_neon(void) {
  11580. #if defined(__ARM_ARCH) && defined(__ARM_NEON)
  11581. return ggml_arm_arch_features.has_neon;
  11582. #else
  11583. return 0;
  11584. #endif
  11585. }
  11586. int ggml_cpu_has_dotprod(void) {
  11587. #if defined(__ARM_ARCH) && defined(__ARM_FEATURE_DOTPROD)
  11588. return ggml_arm_arch_features.has_dotprod;
  11589. #else
  11590. return 0;
  11591. #endif
  11592. }
  11593. int ggml_cpu_has_sve(void) {
  11594. #if defined(__ARM_ARCH) && defined(__ARM_FEATURE_SVE)
  11595. return ggml_arm_arch_features.has_sve;
  11596. #else
  11597. return 0;
  11598. #endif
  11599. }
  11600. int ggml_cpu_has_matmul_int8(void) {
  11601. #if defined(__ARM_ARCH) && defined(__ARM_FEATURE_MATMUL_INT8)
  11602. return ggml_arm_arch_features.has_i8mm;
  11603. #else
  11604. return 0;
  11605. #endif
  11606. }
  11607. int ggml_cpu_get_sve_cnt(void) {
  11608. #if defined(__ARM_ARCH) && defined(__ARM_FEATURE_SVE)
  11609. return ggml_arm_arch_features.sve_cnt;
  11610. #else
  11611. return 0;
  11612. #endif
  11613. }
  11614. void ggml_cpu_init(void) {
  11615. // needed to initialize f16 tables
  11616. {
  11617. struct ggml_init_params params = { 0, NULL, false };
  11618. struct ggml_context * ctx = ggml_init(params);
  11619. ggml_free(ctx);
  11620. }
  11621. ggml_critical_section_start();
  11622. static bool is_first_call = true;
  11623. if (is_first_call) {
  11624. // initialize GELU, Quick GELU, SILU and EXP F32 tables
  11625. {
  11626. const uint64_t t_start = ggml_time_us(); UNUSED(t_start);
  11627. for (int i = 0; i < (1 << 16); ++i) {
  11628. union {
  11629. uint16_t u16;
  11630. ggml_fp16_t fp16;
  11631. } u = {i};
  11632. float f = GGML_FP16_TO_FP32(u.fp16);
  11633. ggml_table_gelu_f16[i] = GGML_FP32_TO_FP16(ggml_gelu_f32(f));
  11634. ggml_table_gelu_quick_f16[i] = GGML_FP32_TO_FP16(ggml_gelu_quick_f32(f));
  11635. }
  11636. const uint64_t t_end = ggml_time_us(); UNUSED(t_end);
  11637. GGML_PRINT_DEBUG("%s: GELU, Quick GELU, SILU and EXP tables initialized in %f ms\n", __func__, (t_end - t_start)/1000.0);
  11638. }
  11639. #if defined(__ARM_ARCH)
  11640. ggml_init_arm_arch_features();
  11641. #endif
  11642. is_first_call = false;
  11643. }
  11644. ggml_critical_section_end();
  11645. }