123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178 |
- /**
- * llama.cpp - commit 40c6d79fb52f995f47507fedfeaae2ac05d9b35c - do not edit this file
- *
- * MIT License
- *
- * Copyright (c) 2023-2024 The ggml authors
- *
- * Permission is hereby granted, free of charge, to any person obtaining a copy
- * of this software and associated documentation files (the "Software"), to deal
- * in the Software without restriction, including without limitation the rights
- * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
- * copies of the Software, and to permit persons to whom the Software is
- * furnished to do so, subject to the following conditions:
- *
- * The above copyright notice and this permission notice shall be included in all
- * copies or substantial portions of the Software.
- *
- * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
- * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
- * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
- * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
- * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
- * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
- * SOFTWARE.
- */
- #pragma once
- #include "ggml.h"
- #include "ggml-backend.h"
- #ifdef __cplusplus
- extern "C" {
- #endif
- // the compute plan that needs to be prepared for ggml_graph_compute()
- // since https://github.com/ggerganov/ggml/issues/287
- struct ggml_cplan {
- size_t work_size; // size of work buffer, calculated by `ggml_graph_plan()`
- uint8_t * work_data; // work buffer, to be allocated by caller before calling to `ggml_graph_compute()`
- int n_threads;
- struct ggml_threadpool * threadpool;
- // abort ggml_graph_compute when true
- ggml_abort_callback abort_callback;
- void * abort_callback_data;
- };
- // numa strategies
- enum ggml_numa_strategy {
- GGML_NUMA_STRATEGY_DISABLED = 0,
- GGML_NUMA_STRATEGY_DISTRIBUTE = 1,
- GGML_NUMA_STRATEGY_ISOLATE = 2,
- GGML_NUMA_STRATEGY_NUMACTL = 3,
- GGML_NUMA_STRATEGY_MIRROR = 4,
- GGML_NUMA_STRATEGY_COUNT
- };
- GGML_BACKEND_API void ggml_numa_init(enum ggml_numa_strategy numa); // call once for better performance on NUMA systems
- GGML_BACKEND_API bool ggml_is_numa(void); // true if init detected that system has >1 NUMA node
- GGML_BACKEND_API struct ggml_tensor * ggml_new_i32(struct ggml_context * ctx, int32_t value);
- GGML_BACKEND_API struct ggml_tensor * ggml_new_f32(struct ggml_context * ctx, float value);
- GGML_BACKEND_API struct ggml_tensor * ggml_set_i32 (struct ggml_tensor * tensor, int32_t value);
- GGML_BACKEND_API struct ggml_tensor * ggml_set_f32 (struct ggml_tensor * tensor, float value);
- GGML_BACKEND_API int32_t ggml_get_i32_1d(const struct ggml_tensor * tensor, int i);
- GGML_BACKEND_API void ggml_set_i32_1d(const struct ggml_tensor * tensor, int i, int32_t value);
- GGML_BACKEND_API int32_t ggml_get_i32_nd(const struct ggml_tensor * tensor, int i0, int i1, int i2, int i3);
- GGML_BACKEND_API void ggml_set_i32_nd(const struct ggml_tensor * tensor, int i0, int i1, int i2, int i3, int32_t value);
- GGML_BACKEND_API float ggml_get_f32_1d(const struct ggml_tensor * tensor, int i);
- GGML_BACKEND_API void ggml_set_f32_1d(const struct ggml_tensor * tensor, int i, float value);
- GGML_BACKEND_API float ggml_get_f32_nd(const struct ggml_tensor * tensor, int i0, int i1, int i2, int i3);
- GGML_BACKEND_API void ggml_set_f32_nd(const struct ggml_tensor * tensor, int i0, int i1, int i2, int i3, float value);
- GGML_BACKEND_API struct ggml_threadpool * ggml_threadpool_new (struct ggml_threadpool_params * params);
- GGML_BACKEND_API void ggml_threadpool_free (struct ggml_threadpool * threadpool);
- GGML_BACKEND_API int ggml_threadpool_get_n_threads (struct ggml_threadpool * threadpool);
- GGML_BACKEND_API void ggml_threadpool_pause (struct ggml_threadpool * threadpool);
- GGML_BACKEND_API void ggml_threadpool_resume (struct ggml_threadpool * threadpool);
- // ggml_graph_plan() has to be called before ggml_graph_compute()
- // when plan.work_size > 0, caller must allocate memory for plan.work_data
- GGML_BACKEND_API struct ggml_cplan ggml_graph_plan(
- const struct ggml_cgraph * cgraph,
- int n_threads, /* = GGML_DEFAULT_N_THREADS */
- struct ggml_threadpool * threadpool /* = NULL */ );
- GGML_BACKEND_API enum ggml_status ggml_graph_compute(struct ggml_cgraph * cgraph, struct ggml_cplan * cplan);
- // same as ggml_graph_compute() but the work data is allocated as a part of the context
- // note: the drawback of this API is that you must have ensured that the context has enough memory for the work data
- GGML_BACKEND_API enum ggml_status ggml_graph_compute_with_ctx(struct ggml_context * ctx, struct ggml_cgraph * cgraph, int n_threads);
- //
- // system info
- //
- // x86
- GGML_BACKEND_API int ggml_cpu_has_sse3 (void);
- GGML_BACKEND_API int ggml_cpu_has_ssse3 (void);
- GGML_BACKEND_API int ggml_cpu_has_avx (void);
- GGML_BACKEND_API int ggml_cpu_has_avx_vnni (void);
- GGML_BACKEND_API int ggml_cpu_has_avx2 (void);
- GGML_BACKEND_API int ggml_cpu_has_f16c (void);
- GGML_BACKEND_API int ggml_cpu_has_fma (void);
- GGML_BACKEND_API int ggml_cpu_has_avx512 (void);
- GGML_BACKEND_API int ggml_cpu_has_avx512_vbmi(void);
- GGML_BACKEND_API int ggml_cpu_has_avx512_vnni(void);
- GGML_BACKEND_API int ggml_cpu_has_avx512_bf16(void);
- GGML_BACKEND_API int ggml_cpu_has_amx_int8 (void);
- // ARM
- GGML_BACKEND_API int ggml_cpu_has_neon (void);
- GGML_BACKEND_API int ggml_cpu_has_arm_fma (void);
- GGML_BACKEND_API int ggml_cpu_has_fp16_va (void);
- GGML_BACKEND_API int ggml_cpu_has_dotprod (void);
- GGML_BACKEND_API int ggml_cpu_has_matmul_int8(void);
- GGML_BACKEND_API int ggml_cpu_has_sve (void);
- GGML_BACKEND_API int ggml_cpu_get_sve_cnt (void); // sve vector length in bytes
- // other
- GGML_BACKEND_API int ggml_cpu_has_riscv_v (void);
- GGML_BACKEND_API int ggml_cpu_has_vsx (void);
- GGML_BACKEND_API int ggml_cpu_has_wasm_simd (void);
- GGML_BACKEND_API int ggml_cpu_has_llamafile (void);
- // Internal types and functions exposed for tests and benchmarks
- typedef void (*ggml_from_float_to_mat_t)
- (const float * GGML_RESTRICT x, void * GGML_RESTRICT y, int64_t nr, int64_t k, int64_t bs);
- typedef void (*ggml_vec_dot_t) (int n, float * GGML_RESTRICT s, size_t bs, const void * GGML_RESTRICT x, size_t bx,
- const void * GGML_RESTRICT y, size_t by, int nrc);
- typedef void (*ggml_gemv_t) (int n, float * GGML_RESTRICT s, size_t bs, const void * GGML_RESTRICT x,
- const void * GGML_RESTRICT y, int nr, int nc);
- typedef void (*ggml_gemm_t) (int n, float * GGML_RESTRICT s, size_t bs, const void * GGML_RESTRICT x,
- const void * GGML_RESTRICT y, int nr, int nc);
- struct ggml_type_traits_cpu {
- ggml_from_float_t from_float;
- ggml_from_float_to_mat_t from_float_to_mat;
- ggml_vec_dot_t vec_dot;
- enum ggml_type vec_dot_type;
- int64_t nrows; // number of rows to process simultaneously
- int64_t ncols; // number of columns to process simultaneously
- ggml_gemv_t gemv;
- ggml_gemm_t gemm;
- };
- GGML_BACKEND_API const struct ggml_type_traits_cpu * ggml_get_type_traits_cpu(enum ggml_type type);
- GGML_BACKEND_API void ggml_cpu_init(void);
- //
- // CPU backend
- //
- GGML_BACKEND_API ggml_backend_t ggml_backend_cpu_init(void);
- GGML_BACKEND_API bool ggml_backend_is_cpu (ggml_backend_t backend);
- GGML_BACKEND_API void ggml_backend_cpu_set_n_threads (ggml_backend_t backend_cpu, int n_threads);
- GGML_BACKEND_API void ggml_backend_cpu_set_threadpool (ggml_backend_t backend_cpu, ggml_threadpool_t threadpool);
- GGML_BACKEND_API void ggml_backend_cpu_set_abort_callback(ggml_backend_t backend_cpu, ggml_abort_callback abort_callback, void * abort_callback_data);
- GGML_BACKEND_API ggml_backend_reg_t ggml_backend_cpu_reg(void);
- #ifdef GGML_USE_CPU_HBM
- GGML_BACKEND_API ggml_backend_buffer_type_t ggml_backend_cpu_hbm_buffer_type(void);
- #endif
- GGML_BACKEND_API ggml_backend_buffer_type_t ggml_backend_cpu_aarch64_buffer_type(void);
- GGML_BACKEND_API bool ggml_backend_cpu_buft_is_aarch64(ggml_backend_buffer_type_t buft);
- #ifdef __cplusplus
- }
- #endif
|