convert_cohere2.go 2.8 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485
  1. package convert
  2. import (
  3. "cmp"
  4. "github.com/ollama/ollama/llm"
  5. )
  6. type cohere2Model struct {
  7. ModelParameters
  8. MaxPositionEmbeddings uint32 `json:"max_position_embeddings"`
  9. HiddenSize uint32 `json:"hidden_size"`
  10. HiddenLayers uint32 `json:"num_hidden_layers"`
  11. IntermediateSize uint32 `json:"intermediate_size"`
  12. NumAttentionHeads uint32 `json:"num_attention_heads"`
  13. NumKeyValueHeads uint32 `json:"num_key_value_heads"`
  14. LayerNormEPS float32 `json:"layer_norm_eps"`
  15. RopeTheta float32 `json:"rope_theta"`
  16. UseQKNorm bool `json:"use_qk_norm"`
  17. MaxLength uint32 `json:"model_max_length"`
  18. LogitScale float32 `json:"logit_scale"`
  19. NCtx uint32 `json:"n_ctx"`
  20. SlidingWindow uint32 `json:"sliding_window"`
  21. HeadDim uint32 `json:"head_dim"`
  22. RotaryPct float32 `json:"rotary_pct"`
  23. VocabSize uint32 `json:"vocab_size"`
  24. }
  25. var _ ModelConverter = (*cohere2Model)(nil)
  26. func (p *cohere2Model) KV(t *Tokenizer) llm.KV {
  27. kv := p.ModelParameters.KV(t)
  28. kv["general.architecture"] = "cohere2"
  29. kv["general.name"] = "C4Ai Command R7B"
  30. kv["cohere2.context_length"] = cmp.Or(p.MaxLength, p.MaxPositionEmbeddings, p.NCtx)
  31. kv["cohere2.embedding_length"] = p.HiddenSize
  32. kv["cohere2.block_count"] = p.HiddenLayers
  33. kv["cohere2.feed_forward_length"] = p.IntermediateSize
  34. kv["cohere2.attention.head_count"] = p.NumAttentionHeads
  35. kv["cohere2.attention.head_count_kv"] = p.NumKeyValueHeads
  36. kv["cohere2.attention.key_length"] = p.HeadDim
  37. kv["cohere2.attention.layer_norm_epsilon"] = p.LayerNormEPS
  38. kv["cohere2.attention.sliding_window"] = p.SlidingWindow
  39. kv["cohere2.attention.value_length"] = p.HeadDim
  40. kv["cohere2.max_position_embeddings"] = cmp.Or(p.MaxLength, p.MaxPositionEmbeddings)
  41. kv["cohere2.logit_scale"] = p.LogitScale
  42. kv["cohere2.rope.dimension_count"] = uint32(p.RotaryPct * float32(p.HiddenSize/p.NumAttentionHeads))
  43. kv["cohere2.rope.freq_base"] = p.RopeTheta
  44. kv["cohere2.rope.scaling.type"] = "none"
  45. kv["cohere2.vocab_size"] = p.VocabSize
  46. return kv
  47. }
  48. func (p *cohere2Model) Tensors(ts []Tensor) []llm.Tensor {
  49. var out []llm.Tensor
  50. for _, t := range ts {
  51. out = append(out, llm.Tensor{
  52. Name: t.Name(),
  53. Kind: t.Kind(),
  54. Shape: t.Shape(),
  55. WriterTo: t,
  56. })
  57. }
  58. return out
  59. }
  60. func (p *cohere2Model) Replacements() []string {
  61. return []string{
  62. "self_attn.q_norm", "attn_q_norm",
  63. "self_attn.k_norm", "attn_k_norm",
  64. "model.layers", "blk",
  65. "input_layernorm", "attn_norm",
  66. "mlp.down_proj", "ffn_down",
  67. "mlp.gate_proj", "ffn_gate",
  68. "mlp.up_proj", "ffn_up",
  69. "self_attn.k_proj", "attn_k",
  70. "self_attn.o_proj", "attn_output",
  71. "self_attn.q_proj", "attn_q",
  72. "self_attn.v_proj", "attn_v",
  73. "model.norm", "output_norm",
  74. "model.embed_tokens", "token_embd",
  75. }
  76. }