123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156 |
- /**
- * llama.cpp - commit 46e3556e01b824e52395fb050b29804b6cff2a7c - do not edit this file
- *
- * MIT License
- *
- * Copyright (c) 2023-2024 The ggml authors
- *
- * Permission is hereby granted, free of charge, to any person obtaining a copy
- * of this software and associated documentation files (the "Software"), to deal
- * in the Software without restriction, including without limitation the rights
- * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
- * copies of the Software, and to permit persons to whom the Software is
- * furnished to do so, subject to the following conditions:
- *
- * The above copyright notice and this permission notice shall be included in all
- * copies or substantial portions of the Software.
- *
- * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
- * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
- * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
- * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
- * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
- * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
- * SOFTWARE.
- */
- #pragma once
- #include "llama.h"
- #include "llama-batch.h"
- #include "llama-cparams.h"
- #include "llama-model.h"
- #include "llama-kv-cache.h"
- #include "llama-adapter.h"
- #include "ggml-cpp.h"
- #include <map>
- #include <unordered_map>
- #include <vector>
- #include <set>
- struct llama_context {
- llama_context(const llama_model & model)
- : model(model)
- , t_start_us(model.t_start_us)
- , t_load_us(model.t_load_us) {}
- const struct llama_model & model;
- struct llama_cparams cparams;
- struct llama_sbatch sbatch; // TODO: revisit if needed
- struct llama_kv_cache kv_self;
- struct llama_control_vector cvec;
- std::unordered_map<struct llama_lora_adapter *, float> lora_adapters;
- std::vector<ggml_backend_ptr> backends;
- std::vector<std::pair<ggml_backend_t, ggml_backend_set_n_threads_t>> set_n_threads_fns;
- ggml_backend_t backend_cpu = nullptr;
- ggml_threadpool_t threadpool = nullptr;
- ggml_threadpool_t threadpool_batch = nullptr;
- bool has_evaluated_once = false;
- mutable int64_t t_start_us;
- mutable int64_t t_load_us;
- mutable int64_t t_p_eval_us = 0;
- mutable int64_t t_eval_us = 0;
- mutable int64_t t_compute_start_us = 0;
- mutable int64_t n_queued_tokens = 0;
- mutable int32_t n_p_eval = 0; // number of tokens in eval calls for the prompt (with batch size > 1)
- mutable int32_t n_eval = 0; // number of eval calls
- // host buffer for the model output (logits and embeddings)
- ggml_backend_buffer_ptr buf_output;
- // decode output (2-dimensional array: [n_outputs][n_vocab])
- size_t logits_size = 0; // capacity (of floats) for logits
- float * logits = nullptr;
- std::vector<int32_t> output_ids; // map batch token positions to ids of the logits and embd buffers
- size_t output_size = 0; // capacity (of tokens positions) for the output buffers
- int32_t n_outputs = 0; // number of actually-used outputs in the current ubatch or last logical batch
- bool logits_all = false;
- // embeddings output (2-dimensional array: [n_outputs][n_embd])
- // populated only when pooling_type == LLAMA_POOLING_TYPE_NONE
- size_t embd_size = 0; // capacity (of floats) for embeddings
- float * embd = nullptr;
- // sequence embeddings output (map of [n_embd] vectors)
- // populated only when pooling_type != LLAMA_POOLING_TYPE_NONE
- std::map<llama_seq_id, std::vector<float>> embd_seq;
- // whether we are computing encoder output or decoder output
- bool is_encoding = false;
- // TODO: find a better way to accommodate mutli-dimension position encoding methods
- // number of position id each token get, 1 for each token in most cases.
- // when using m-rope, it will be 3 position ids per token to representing 3 dimension coordinate.
- int n_pos_per_token = 1;
- // output of the encoder part of the encoder-decoder models
- std::vector<float> embd_enc;
- std::vector<std::set<llama_seq_id>> seq_ids_enc;
- // memory buffers used to evaluate the model
- std::vector<uint8_t> buf_compute_meta;
- ggml_backend_sched_ptr sched;
- ggml_abort_callback abort_callback = nullptr;
- void * abort_callback_data = nullptr;
- // input tensors
- struct ggml_tensor * inp_tokens; // I32 [n_batch]
- struct ggml_tensor * inp_embd; // F32 [n_embd, n_batch]
- struct ggml_tensor * inp_pos; // I32 [n_batch]
- struct ggml_tensor * inp_out_ids; // I32 [n_outputs]
- struct ggml_tensor * inp_KQ_mask; // F32 [kv_size, n_batch]
- struct ggml_tensor * inp_KQ_mask_swa; // F32 [kv_size, n_batch]
- struct ggml_tensor * inp_K_shift; // I32 [kv_size]
- struct ggml_tensor * inp_mean; // F32 [n_batch, n_batch]
- struct ggml_tensor * inp_cls; // I32 [n_batch]
- struct ggml_tensor * inp_s_copy; // I32 [kv_size]
- struct ggml_tensor * inp_s_mask; // F32 [1, n_kv]
- struct ggml_tensor * inp_s_seq; // I32 [n_kv, n_batch]
- struct ggml_tensor * inp_pos_bucket; // I32 [n_batch|n_kv, n_batch]
- struct ggml_tensor * inp_embd_enc; // F32 [n_embd, n_outputs_enc]
- struct ggml_tensor * inp_KQ_mask_cross; // F32 [n_outputs_enc, n_batch]
- struct ggml_tensor * inp_cross_attn_state; // F32 [4, n_embd, 1061]
- };
- // TODO: make these methods of llama_context
- void llama_set_k_shift(struct llama_context & lctx);
- void llama_set_s_copy(struct llama_context & lctx);
- void llama_set_inputs(llama_context & lctx, const llama_ubatch & ubatch);
- // Make sure enough space is available for outputs.
- // Returns max number of outputs for which space was reserved.
- size_t llama_output_reserve(struct llama_context & lctx, size_t n_outputs);
- // make the outputs have the same order they had in the user-provided batch
- void llama_output_reorder(struct llama_context & ctx);
- // For internal test use
- // TODO: remove
- const std::vector<std::pair<std::string, struct ggml_tensor *>> & llama_internal_get_tensor_map(struct llama_context * ctx);
|