123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471 |
- /**
- * llama.cpp - commit 46e3556e01b824e52395fb050b29804b6cff2a7c - do not edit this file
- *
- * MIT License
- *
- * Copyright (c) 2023-2024 The ggml authors
- *
- * Permission is hereby granted, free of charge, to any person obtaining a copy
- * of this software and associated documentation files (the "Software"), to deal
- * in the Software without restriction, including without limitation the rights
- * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
- * copies of the Software, and to permit persons to whom the Software is
- * furnished to do so, subject to the following conditions:
- *
- * The above copyright notice and this permission notice shall be included in all
- * copies or substantial portions of the Software.
- *
- * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
- * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
- * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
- * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
- * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
- * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
- * SOFTWARE.
- */
- #pragma once
- #include "llama.h"
- #include "llama-arch.h"
- #include "llama-hparams.h"
- #include "llama-vocab.h"
- #include "llama-mmap.h"
- #include "ggml-cpp.h"
- #include <vector>
- #include <stdexcept>
- // available models
- // TODO: this enum does not follow the enum naming convention
- enum llm_type {
- MODEL_UNKNOWN,
- MODEL_14M,
- MODEL_17M,
- MODEL_22M,
- MODEL_33M,
- MODEL_60M,
- MODEL_70M,
- MODEL_80M,
- MODEL_109M,
- MODEL_137M,
- MODEL_160M,
- MODEL_220M,
- MODEL_250M,
- MODEL_270M,
- MODEL_335M,
- MODEL_410M,
- MODEL_450M,
- MODEL_770M,
- MODEL_780M,
- MODEL_0_5B,
- MODEL_1B,
- MODEL_1_3B,
- MODEL_1_4B,
- MODEL_1_5B,
- MODEL_1_6B,
- MODEL_2B,
- MODEL_2_8B,
- MODEL_3B,
- MODEL_4B,
- MODEL_6B,
- MODEL_6_9B,
- MODEL_7B,
- MODEL_8B,
- MODEL_9B,
- MODEL_11B,
- MODEL_12B,
- MODEL_13B,
- MODEL_14B,
- MODEL_15B,
- MODEL_16B,
- MODEL_20B,
- MODEL_22B,
- MODEL_30B,
- MODEL_32B,
- MODEL_34B,
- MODEL_35B,
- MODEL_40B,
- MODEL_65B,
- MODEL_70B,
- MODEL_90B,
- MODEL_236B,
- MODEL_314B,
- MODEL_671B,
- MODEL_SMALL,
- MODEL_MEDIUM,
- MODEL_LARGE,
- MODEL_XL,
- MODEL_A1_7B,
- MODEL_A2_7B,
- MODEL_8x7B,
- MODEL_8x22B,
- MODEL_16x12B,
- MODEL_10B_128x3_66B,
- MODEL_57B_A14B,
- MODEL_27B,
- };
- struct llama_layer_posnet {
- // resnet
- struct ggml_tensor * norm1 = nullptr;
- struct ggml_tensor * norm1_b = nullptr;
- struct ggml_tensor * conv1 = nullptr;
- struct ggml_tensor * conv1_b = nullptr;
- struct ggml_tensor * norm2 = nullptr;
- struct ggml_tensor * norm2_b = nullptr;
- struct ggml_tensor * conv2 = nullptr;
- struct ggml_tensor * conv2_b = nullptr;
- // attention
- struct ggml_tensor * attn_norm = nullptr;
- struct ggml_tensor * attn_norm_b = nullptr;
- struct ggml_tensor * attn_q = nullptr;
- struct ggml_tensor * attn_q_b = nullptr;
- struct ggml_tensor * attn_k = nullptr;
- struct ggml_tensor * attn_k_b = nullptr;
- struct ggml_tensor * attn_v = nullptr;
- struct ggml_tensor * attn_v_b = nullptr;
- struct ggml_tensor * attn_o = nullptr;
- struct ggml_tensor * attn_o_b = nullptr;
- // normalize
- struct ggml_tensor * norm = nullptr;
- struct ggml_tensor * norm_b = nullptr;
- };
- struct llama_layer_convnext {
- struct ggml_tensor * dw = nullptr;
- struct ggml_tensor * dw_b = nullptr;
- struct ggml_tensor * norm = nullptr;
- struct ggml_tensor * norm_b = nullptr;
- struct ggml_tensor * pw1 = nullptr;
- struct ggml_tensor * pw1_b = nullptr;
- struct ggml_tensor * pw2 = nullptr;
- struct ggml_tensor * pw2_b = nullptr;
- struct ggml_tensor * gamma = nullptr;
- };
- struct llama_layer {
- // normalization
- struct ggml_tensor * attn_norm = nullptr;
- struct ggml_tensor * attn_norm_b = nullptr;
- struct ggml_tensor * attn_norm_2 = nullptr;
- struct ggml_tensor * attn_norm_2_b = nullptr;
- struct ggml_tensor * attn_q_norm = nullptr;
- struct ggml_tensor * attn_q_norm_b = nullptr;
- struct ggml_tensor * attn_k_norm = nullptr;
- struct ggml_tensor * attn_k_norm_b = nullptr;
- struct ggml_tensor * attn_out_norm = nullptr;
- struct ggml_tensor * attn_out_norm_b = nullptr;
- struct ggml_tensor * attn_q_a_norm = nullptr;
- struct ggml_tensor * attn_kv_a_norm = nullptr;
- struct ggml_tensor * attn_sub_norm = nullptr;
- struct ggml_tensor * attn_post_norm = nullptr;
- struct ggml_tensor * ffn_sub_norm = nullptr;
- struct ggml_tensor * attn_norm_cross = nullptr;
- struct ggml_tensor * attn_norm_enc = nullptr;
- // attention
- struct ggml_tensor * wq = nullptr;
- struct ggml_tensor * wk = nullptr;
- struct ggml_tensor * wv = nullptr;
- struct ggml_tensor * wo = nullptr;
- struct ggml_tensor * wqkv = nullptr;
- struct ggml_tensor * wq_a = nullptr;
- struct ggml_tensor * wq_b = nullptr;
- struct ggml_tensor * wkv_a_mqa = nullptr;
- struct ggml_tensor * wkv_b = nullptr;
- struct ggml_tensor * wq_cross = nullptr;
- struct ggml_tensor * wk_cross = nullptr;
- struct ggml_tensor * wv_cross = nullptr;
- struct ggml_tensor * wo_cross = nullptr;
- struct ggml_tensor * wq_enc = nullptr;
- struct ggml_tensor * wk_enc = nullptr;
- struct ggml_tensor * wv_enc = nullptr;
- struct ggml_tensor * wo_enc = nullptr;
- // attention bias
- struct ggml_tensor * bq = nullptr;
- struct ggml_tensor * bk = nullptr;
- struct ggml_tensor * bv = nullptr;
- struct ggml_tensor * bo = nullptr;
- struct ggml_tensor * bqkv = nullptr;
- // relative position bias
- struct ggml_tensor * attn_rel_b = nullptr;
- struct ggml_tensor * attn_rel_b_enc = nullptr;
- struct ggml_tensor * attn_rel_b_cross = nullptr;
- // normalization
- struct ggml_tensor * ffn_norm = nullptr;
- struct ggml_tensor * ffn_norm_b = nullptr;
- struct ggml_tensor * ffn_post_norm = nullptr;
- struct ggml_tensor * layer_out_norm = nullptr;
- struct ggml_tensor * layer_out_norm_b = nullptr;
- struct ggml_tensor * ffn_norm_exps = nullptr;
- struct ggml_tensor * ffn_norm_enc = nullptr;
- // ff
- struct ggml_tensor * ffn_gate = nullptr; // w1
- struct ggml_tensor * ffn_down = nullptr; // w2
- struct ggml_tensor * ffn_up = nullptr; // w3
- struct ggml_tensor * ffn_gate_enc = nullptr;
- struct ggml_tensor * ffn_down_enc = nullptr;
- struct ggml_tensor * ffn_up_enc = nullptr;
- // ff MoE
- struct ggml_tensor * ffn_gate_inp = nullptr;
- struct ggml_tensor * ffn_gate_exps = nullptr;
- struct ggml_tensor * ffn_down_exps = nullptr;
- struct ggml_tensor * ffn_up_exps = nullptr;
- // ff shared expert (shexp)
- struct ggml_tensor * ffn_gate_inp_shexp = nullptr;
- struct ggml_tensor * ffn_gate_shexp = nullptr;
- struct ggml_tensor * ffn_down_shexp = nullptr;
- struct ggml_tensor * ffn_up_shexp = nullptr;
- // ff bias
- struct ggml_tensor * ffn_gate_b = nullptr;
- struct ggml_tensor * ffn_down_b = nullptr; // b2
- struct ggml_tensor * ffn_up_b = nullptr; // b3
- struct ggml_tensor * ffn_act = nullptr;
- struct ggml_tensor * ffn_exp_probs_b = nullptr;
- // mamba proj
- struct ggml_tensor * ssm_in = nullptr;
- struct ggml_tensor * ssm_x = nullptr;
- struct ggml_tensor * ssm_dt = nullptr;
- struct ggml_tensor * ssm_out = nullptr;
- // mamba
- struct ggml_tensor * ssm_conv1d = nullptr;
- struct ggml_tensor * ssm_a = nullptr;
- struct ggml_tensor * ssm_d = nullptr;
- // mamba bias
- struct ggml_tensor * ssm_conv1d_b = nullptr;
- struct ggml_tensor * ssm_dt_b = nullptr;
- // rwkv
- struct ggml_tensor * time_mix_w1 = nullptr;
- struct ggml_tensor * time_mix_w2 = nullptr;
- struct ggml_tensor * time_mix_lerp_x = nullptr;
- struct ggml_tensor * time_mix_lerp_w = nullptr;
- struct ggml_tensor * time_mix_lerp_k = nullptr;
- struct ggml_tensor * time_mix_lerp_v = nullptr;
- struct ggml_tensor * time_mix_lerp_r = nullptr;
- struct ggml_tensor * time_mix_lerp_g = nullptr;
- struct ggml_tensor * time_mix_first = nullptr;
- struct ggml_tensor * time_mix_decay = nullptr;
- struct ggml_tensor * time_mix_decay_w1 = nullptr;
- struct ggml_tensor * time_mix_decay_w2 = nullptr;
- struct ggml_tensor * time_mix_key = nullptr;
- struct ggml_tensor * time_mix_value = nullptr;
- struct ggml_tensor * time_mix_receptance = nullptr;
- struct ggml_tensor * time_mix_gate = nullptr;
- struct ggml_tensor * time_mix_ln = nullptr;
- struct ggml_tensor * time_mix_ln_b = nullptr;
- struct ggml_tensor * time_mix_output = nullptr;
- struct ggml_tensor * channel_mix_lerp_k = nullptr;
- struct ggml_tensor * channel_mix_lerp_r = nullptr;
- struct ggml_tensor * channel_mix_key = nullptr;
- struct ggml_tensor * channel_mix_receptance = nullptr;
- struct ggml_tensor * channel_mix_value = nullptr;
- // long rope factors
- struct ggml_tensor * rope_long = nullptr;
- struct ggml_tensor * rope_short = nullptr;
- struct ggml_tensor * rope_freqs = nullptr;
- // bitnet scale
- struct ggml_tensor * wq_scale = nullptr;
- struct ggml_tensor * wk_scale = nullptr;
- struct ggml_tensor * wv_scale = nullptr;
- struct ggml_tensor * wo_scale = nullptr;
- struct ggml_tensor * ffn_gate_scale = nullptr;
- struct ggml_tensor * ffn_up_scale = nullptr;
- struct ggml_tensor * ffn_down_scale = nullptr;
- struct ggml_tensor * bskcn_tv = nullptr;
- // cross attention
- struct ggml_tensor * cross_attn_k_norm = nullptr;
- struct ggml_tensor * cross_attn_k_proj = nullptr;
- struct ggml_tensor * cross_attn_o_proj = nullptr;
- struct ggml_tensor * cross_attn_q_norm = nullptr;
- struct ggml_tensor * cross_attn_q_proj = nullptr;
- struct ggml_tensor * cross_attn_v_proj = nullptr;
- struct ggml_tensor * cross_attn_attn_gate = nullptr;
- struct ggml_tensor * cross_attn_mlp_gate = nullptr;
- struct llama_layer_posnet posnet;
- struct llama_layer_convnext convnext;
- };
- struct llama_model {
- llm_type type = MODEL_UNKNOWN;
- llm_arch arch = LLM_ARCH_UNKNOWN;
- llama_ftype ftype = LLAMA_FTYPE_ALL_F32;
- std::string name = "n/a";
- llama_hparams hparams = {};
- llama_vocab vocab;
- struct ggml_tensor * tok_embd = nullptr;
- struct ggml_tensor * type_embd = nullptr;
- struct ggml_tensor * pos_embd = nullptr;
- struct ggml_tensor * tok_norm = nullptr;
- struct ggml_tensor * tok_norm_b = nullptr;
- struct ggml_tensor * output_norm = nullptr;
- struct ggml_tensor * output_norm_b = nullptr;
- struct ggml_tensor * output = nullptr;
- struct ggml_tensor * output_b = nullptr;
- struct ggml_tensor * output_norm_enc = nullptr;
- // classifier
- struct ggml_tensor * cls = nullptr;
- struct ggml_tensor * cls_b = nullptr;
- struct ggml_tensor * cls_out = nullptr;
- struct ggml_tensor * cls_out_b = nullptr;
- struct ggml_tensor * conv1d = nullptr;
- struct ggml_tensor * conv1d_b = nullptr;
- std::vector<llama_layer> layers;
- // gguf metadata
- std::unordered_map<std::string, std::string> gguf_kv;
- llama_split_mode split_mode;
- int main_gpu;
- int n_gpu_layers;
- std::vector<std::string> rpc_servers;
- // list of devices used in this model
- std::vector<ggml_backend_dev_t> devices;
- // lists of buffer types used for each layer
- using buft_list_t = std::vector<std::pair<ggml_backend_dev_t, ggml_backend_buffer_type_t>>;
- buft_list_t cpu_buft_list;
- std::map<ggml_backend_dev_t, buft_list_t> gpu_buft_list;
- struct layer_dev {
- ggml_backend_dev_t dev;
- buft_list_t * buft_list;
- };
- layer_dev dev_input = {};
- layer_dev dev_output = {};
- std::vector<layer_dev> dev_layer;
- // contexts where the model tensors metadata is stored
- std::vector<ggml_context_ptr> ctxs;
- // the model memory buffers for the tensor data
- std::vector<ggml_backend_buffer_ptr> bufs;
- // model memory mapped files
- llama_mmaps mappings;
- // objects representing data potentially being locked in memory
- llama_mlocks mlock_bufs;
- llama_mlocks mlock_mmaps;
- // for quantize-stats only
- std::vector<std::pair<std::string, struct ggml_tensor *>> tensors_by_name;
- int64_t t_load_us = 0;
- int64_t t_start_us = 0;
- // total number of parameters in the model
- uint64_t n_elements = 0;
- // total size of all the tensors in the model in bytes
- size_t n_bytes = 0;
- };
- const char * llm_type_name(llm_type type);
- std::string llama_model_arch_name (const llama_model & model);
- std::string llama_model_type_name (const llama_model & model);
- std::string llama_model_ftype_name(const llama_model & model);
- template<typename F>
- bool buft_supported(ggml_backend_buffer_type_t buft, ggml_backend_dev_t dev, F & fn) {
- ggml_init_params params = {
- /*.mem_size =*/ ggml_tensor_overhead()*8,
- /*.mem_buffer =*/ NULL,
- /*.no_alloc =*/ true,
- };
- ggml_context_ptr ctx { ggml_init(params) };
- if (!ctx) {
- throw std::runtime_error("failed to create ggml context");
- }
- ggml_backend_buffer_ptr buf { ggml_backend_buft_alloc_buffer(buft, 0) };
- ggml_tensor * op_tensor = fn(ctx.get());
- for (int i = 0; i < GGML_MAX_SRC; i++) {
- if (op_tensor->src[i] != nullptr) {
- op_tensor->src[i]->buffer = buf.get();
- }
- }
- bool op_supported = ggml_backend_dev_supports_op(dev, op_tensor);
- return op_supported;
- }
- template<typename F>
- ggml_backend_buffer_type_t select_buft(const llama_model::buft_list_t & buft_list, const F & fn) {
- for (const auto & cur : buft_list) {
- ggml_backend_dev_t cur_dev = cur.first;
- ggml_backend_buffer_type_t cur_buft = cur.second;
- if (buft_supported(cur_buft, cur_dev, fn)) {
- return cur_buft;
- }
- }
- throw std::runtime_error("no suitable buffer type found");
- }
- // used by llama_adapter_cvec
- ggml_backend_buffer_type_t llama_model_select_buft(const llama_model & model, int il);
- // used by llama_adapter_lora
- struct ggml_tensor * llama_model_get_tensor(const struct llama_model & model, const char * name);
- size_t llama_model_max_nodes(const llama_model & model);
- struct llama_model_loader;
- // TODO: become llama_model methods
- void llm_load_stats (llama_model_loader & ml, llama_model & model);
- void llm_load_arch (llama_model_loader & ml, llama_model & model);
- void llm_load_hparams (llama_model_loader & ml, llama_model & model);
- void llm_load_vocab (llama_model_loader & ml, llama_model & model);
- void llm_load_print_meta(llama_model_loader & ml, llama_model & model);
|