1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365236623672368236923702371237223732374237523762377237823792380238123822383238423852386238723882389239023912392239323942395239623972398239924002401240224032404240524062407240824092410241124122413241424152416241724182419242024212422242324242425242624272428242924302431 |
- /**
- * llama.cpp - commit 46e3556e01b824e52395fb050b29804b6cff2a7c - do not edit this file
- *
- * MIT License
- *
- * Copyright (c) 2023-2024 The ggml authors
- *
- * Permission is hereby granted, free of charge, to any person obtaining a copy
- * of this software and associated documentation files (the "Software"), to deal
- * in the Software without restriction, including without limitation the rights
- * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
- * copies of the Software, and to permit persons to whom the Software is
- * furnished to do so, subject to the following conditions:
- *
- * The above copyright notice and this permission notice shall be included in all
- * copies or substantial portions of the Software.
- *
- * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
- * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
- * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
- * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
- * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
- * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
- * SOFTWARE.
- */
- #include "llama-sampling.h"
- #include "llama-impl.h"
- #include "llama-vocab.h"
- #include "llama-grammar.h"
- #include <algorithm>
- #include <cassert>
- #include <cfloat>
- #include <chrono>
- #include <cmath>
- #include <cstdlib>
- #include <cstring>
- #include <ctime>
- #include <numeric>
- #include <random>
- #include <unordered_map>
- #include <stdexcept>
- // the ring buffer works similarly to std::deque, but with a fixed capacity
- template<typename T>
- struct ring_buffer {
- ring_buffer(size_t cap) : capacity(cap), data(cap) {}
- T & front() {
- if (sz == 0) {
- throw std::runtime_error("ring buffer is empty");
- }
- return data[first];
- }
- const T & front() const {
- if (sz == 0) {
- throw std::runtime_error("ring buffer is empty");
- }
- return data[first];
- }
- T & back() {
- if (sz == 0) {
- throw std::runtime_error("ring buffer is empty");
- }
- return data[pos];
- }
- const T & back() const {
- if (sz == 0) {
- throw std::runtime_error("ring buffer is empty");
- }
- return data[pos];
- }
- void push_back(const T & value) {
- if (capacity == 0) {
- throw std::runtime_error("ring buffer: capacity is zero");
- }
- if (sz == capacity) {
- // advance the start when buffer is full
- first = (first + 1) % capacity;
- } else {
- sz++;
- }
- data[pos] = value;
- pos = (pos + 1) % capacity;
- }
- T pop_front() {
- if (sz == 0) {
- throw std::runtime_error("ring buffer is empty");
- }
- T value = data[first];
- first = (first + 1) % capacity;
- sz--;
- return value;
- }
- //T & operator[](size_t i) {
- // if (i >= sz) {
- // throw std::runtime_error("ring buffer: index out of bounds");
- // }
- // return data[(first + i) % capacity];
- //}
- //const T & at(size_t i) const {
- // if (i >= sz) {
- // throw std::runtime_error("ring buffer: index out of bounds");
- // }
- // return data[(first + i) % capacity];
- //}
- const T & rat(size_t i) const {
- if (i >= sz) {
- throw std::runtime_error("ring buffer: index out of bounds");
- }
- return data[(first + sz - i - 1) % capacity];
- }
- std::vector<T> to_vector() const {
- std::vector<T> result;
- result.reserve(sz);
- for (size_t i = 0; i < sz; i++) {
- result.push_back(data[(first + i) % capacity]);
- }
- return result;
- }
- void clear() {
- // here only reset the status of the buffer
- sz = 0;
- first = 0;
- pos = 0;
- }
- bool empty() const {
- return sz == 0;
- }
- size_t size() const {
- return sz;
- }
- size_t capacity = 0;
- size_t sz = 0;
- size_t first = 0;
- size_t pos = 0;
- std::vector<T> data;
- };
- static int llama_sample_dist(llama_token_data_array * cur_p, std::mt19937 & rng) {
- // iterator for the probabilities
- #ifdef __GNUC__
- #pragma GCC diagnostic push
- #pragma GCC diagnostic ignored "-Wunused-local-typedefs"
- #endif
- struct probs_iterator {
- typedef std::input_iterator_tag iterator_category;
- typedef float value_type;
- typedef float * pointer;
- typedef float & reference;
- typedef ptrdiff_t difference_type;
- const llama_token_data * data;
- bool operator==(const probs_iterator & other) const { return data == other.data; }
- bool operator!=(const probs_iterator & other) const { return data != other.data; }
- const float & operator*() const { return data->p; }
- probs_iterator & operator++() { ++data; return *this; }
- probs_iterator operator++(int) { probs_iterator tmp = *this; ++data; return tmp; }
- };
- #ifdef __GNUC__
- #pragma GCC diagnostic pop
- #endif
- std::discrete_distribution<int> dist(probs_iterator{cur_p->data}, probs_iterator{cur_p->data + cur_p->size});
- return dist(rng);
- }
- /*
- static void llama_log_softmax(float * array, size_t size) {
- float max_l = *std::max_element(array, array + size);
- float sum = 0.f;
- for (size_t i = 0; i < size; ++i) {
- float p = expf(array[i] - max_l);
- sum += p;
- array[i] = p;
- }
- for (size_t i = 0; i < size; ++i) {
- array[i] = logf(array[i] / sum);
- }
- }
- */
- static void llama_sampler_temp_impl(llama_token_data_array * cur_p, float temp) {
- if (temp <= 0.0f) {
- // find the token with the highest logit and set the rest to -inf
- size_t max_i = 0;
- float max_l = cur_p->data[0].logit;
- for (size_t i = 1; i < cur_p->size; ++i) {
- if (cur_p->data[i ].logit > max_l) {
- cur_p->data[max_i].logit = -INFINITY;
- max_i = i;
- max_l = cur_p->data[i].logit;
- } else {
- cur_p->data[i].logit = -INFINITY;
- }
- }
- return;
- }
- for (size_t i = 0; i < cur_p->size; ++i) {
- cur_p->data[i].logit /= temp;
- }
- }
- static void llama_sampler_softmax_impl(llama_token_data_array * cur_p) {
- GGML_ASSERT(cur_p->size > 0);
- // Sort the logits in descending order
- if (!cur_p->sorted) {
- std::sort(cur_p->data, cur_p->data + cur_p->size, [](const llama_token_data & a, const llama_token_data & b) {
- return a.logit > b.logit;
- });
- cur_p->sorted = true;
- }
- float max_l = cur_p->data[0].logit;
- float cum_sum = 0.0f;
- for (size_t i = 0; i < cur_p->size; ++i) {
- float p = expf(cur_p->data[i].logit - max_l);
- cur_p->data[i].p = p;
- cum_sum += p;
- }
- for (size_t i = 0; i < cur_p->size; ++i) {
- cur_p->data[i].p /= cum_sum;
- }
- }
- static void llama_sampler_top_k_impl(llama_token_data_array * cur_p, int32_t k) {
- // TODO: move bucket sort to separate function so that top_p/typical/softmax first is equally fast
- // if (k >= (int32_t)cur_p->size) {
- // return;
- // }
- if (k <= 0) {
- k = cur_p->size;
- }
- k = std::min(k, (int) cur_p->size);
- // Sort scores in descending order
- if (!cur_p->sorted) {
- auto comp = [](const llama_token_data & a, const llama_token_data & b) {
- return a.logit > b.logit;
- };
- if (k <= 128) {
- std::partial_sort(cur_p->data, cur_p->data + k, cur_p->data + cur_p->size, comp);
- } else {
- constexpr int nbuckets = 128;
- constexpr float bucket_low = -10.0f;
- constexpr float bucket_high = 10.0f;
- constexpr float bucket_scale = nbuckets/(bucket_high - bucket_low);
- constexpr float bucket_inter = -bucket_low * bucket_scale;
- std::vector<int> bucket_idx(cur_p->size);
- std::vector<int> histo(nbuckets, 0);
- for (int i = 0; i < (int)cur_p->size; ++i) {
- const float val = cur_p->data[i].logit;
- int ib = int(bucket_scale * val + bucket_inter); //nbuckets * (val - bucket_low) / (bucket_high - bucket_low);
- ib = std::max(0, std::min(nbuckets-1, ib));
- bucket_idx[i] = ib;
- ++histo[ib];
- }
- int nhave = 0;
- int ib = nbuckets - 1;
- for ( ; ib >= 0; --ib) {
- nhave += histo[ib];
- if (nhave >= k) {
- break;
- }
- }
- std::vector<llama_token_data> tmp_tokens(nhave);
- auto * ptr = tmp_tokens.data();
- std::vector<llama_token_data*> bucket_ptrs;
- bucket_ptrs.reserve(nbuckets - ib);
- for (int j = nbuckets - 1; j >= ib; --j) {
- bucket_ptrs.push_back(ptr);
- ptr += histo[j];
- }
- for (int i = 0; i < (int)cur_p->size; ++i) {
- int j = bucket_idx[i];
- if (j >= ib) {
- *bucket_ptrs[nbuckets-1-j]++ = cur_p->data[i];
- }
- }
- ptr = tmp_tokens.data();
- int ndone = 0;
- for (int j = nbuckets-1; j > ib; --j) {
- std::sort(ptr, ptr + histo[j], comp);
- ptr += histo[j];
- ndone += histo[j];
- }
- std::partial_sort(ptr, ptr + k - ndone, ptr + histo[ib], comp);
- std::memcpy(cur_p->data, tmp_tokens.data(), k*sizeof(llama_token_data));
- }
- cur_p->sorted = true;
- }
- cur_p->size = k;
- }
- static uint32_t get_rng_seed(uint32_t seed) {
- if (seed == LLAMA_DEFAULT_SEED) {
- // use system clock if std::random_device is not a true RNG
- static bool is_rd_prng = std::random_device().entropy() == 0;
- if (is_rd_prng) {
- return (uint32_t) std::chrono::system_clock::now().time_since_epoch().count();
- }
- std::random_device rd;
- return rd();
- }
- return seed;
- }
- // llama_sampler API
- const char * llama_sampler_name(const struct llama_sampler * smpl) {
- if (!smpl->iface) {
- return "(null)";
- }
- return smpl->iface->name(smpl);
- }
- void llama_sampler_accept(struct llama_sampler * smpl, llama_token token) {
- if (smpl->iface->accept) {
- smpl->iface->accept(smpl, token);
- }
- }
- void llama_sampler_apply(struct llama_sampler * smpl, struct llama_token_data_array * cur_p) {
- GGML_ASSERT(smpl->iface->apply);
- smpl->iface->apply(smpl, cur_p);
- }
- void llama_sampler_reset(struct llama_sampler * smpl) {
- if (smpl->iface->reset) {
- smpl->iface->reset(smpl);
- }
- }
- struct llama_sampler * llama_sampler_clone(const struct llama_sampler * smpl) {
- if (smpl->iface->clone) {
- return smpl->iface->clone(smpl);
- }
- if (smpl->ctx == nullptr) {
- return new llama_sampler {
- /* .iface = */ smpl->iface,
- /* .ctx = */ nullptr,
- };
- }
- GGML_ABORT("the sampler does not support cloning");
- }
- void llama_sampler_free(struct llama_sampler * smpl) {
- if (smpl == nullptr) {
- return;
- }
- if (smpl->iface->free) {
- smpl->iface->free(smpl);
- }
- delete smpl;
- }
- llama_token llama_sampler_sample(struct llama_sampler * smpl, struct llama_context * ctx, int32_t idx) {
- const auto * logits = llama_get_logits_ith(ctx, idx);
- const int n_vocab = llama_n_vocab(llama_get_model(ctx));
- // TODO: do not allocate each time
- std::vector<llama_token_data> cur;
- cur.reserve(n_vocab);
- for (llama_token token_id = 0; token_id < n_vocab; token_id++) {
- cur.emplace_back(llama_token_data{token_id, logits[token_id], 0.0f});
- }
- llama_token_data_array cur_p = {
- /* .data = */ cur.data(),
- /* .size = */ cur.size(),
- /* .selected = */ -1,
- /* .sorted = */ false,
- };
- llama_sampler_apply(smpl, &cur_p);
- GGML_ASSERT(cur_p.selected >= 0 && cur_p.selected < (int32_t) cur_p.size);
- auto token = cur_p.data[cur_p.selected].id;
- llama_sampler_accept(smpl, token);
- return token;
- }
- // sampler chain
- static const char * llama_sampler_chain_name(const struct llama_sampler * /*smpl*/) {
- return "chain";
- }
- static void llama_sampler_chain_accept(struct llama_sampler * smpl, llama_token token) {
- auto * chain = (llama_sampler_chain *) smpl->ctx;
- time_meas tm(chain->t_sample_us, chain->params.no_perf);
- for (auto * smpl : chain->samplers) {
- llama_sampler_accept(smpl, token);
- }
- chain->n_sample++;
- }
- static void llama_sampler_chain_apply(struct llama_sampler * smpl, llama_token_data_array * cur_p) {
- auto * chain = (llama_sampler_chain *) smpl->ctx;
- time_meas tm(chain->t_sample_us, chain->params.no_perf);
- for (auto * smpl : chain->samplers) {
- llama_sampler_apply(smpl, cur_p);
- }
- }
- static void llama_sampler_chain_reset(struct llama_sampler * smpl) {
- auto * chain = (llama_sampler_chain *) smpl->ctx;
- for (auto * smpl : chain->samplers) {
- llama_sampler_reset(smpl);
- }
- chain->t_sample_us = 0;
- chain->n_sample = 0;
- }
- static struct llama_sampler * llama_sampler_chain_clone(const struct llama_sampler * smpl) {
- const auto * chain_src = (const llama_sampler_chain *) smpl->ctx;
- auto * result = llama_sampler_chain_init(chain_src->params);
- for (auto * smpl : chain_src->samplers) {
- llama_sampler_chain_add(result, llama_sampler_clone(smpl));
- }
- return result;
- }
- static void llama_sampler_chain_free(struct llama_sampler * smpl) {
- auto * chain = (llama_sampler_chain *) smpl->ctx;
- for (auto * smpl : chain->samplers) {
- llama_sampler_free(smpl);
- }
- delete chain;
- }
- static struct llama_sampler_i llama_sampler_chain_i = {
- /* .name = */ llama_sampler_chain_name,
- /* .accept = */ llama_sampler_chain_accept,
- /* .apply = */ llama_sampler_chain_apply,
- /* .reset = */ llama_sampler_chain_reset,
- /* .clone = */ llama_sampler_chain_clone,
- /* .free = */ llama_sampler_chain_free,
- };
- struct llama_sampler * llama_sampler_chain_init(struct llama_sampler_chain_params params) {
- return new llama_sampler {
- /* .iface = */ &llama_sampler_chain_i,
- /* .ctx = */ new llama_sampler_chain {
- /* .params = */ params,
- /* .samplers = */ {},
- /* .t_sample_us = */ 0,
- /* .n_sample = */ 0,
- },
- };
- }
- void llama_sampler_chain_add(struct llama_sampler * chain, struct llama_sampler * smpl) {
- auto * p = (llama_sampler_chain *) chain->ctx;
- p->samplers.push_back(smpl);
- }
- struct llama_sampler * llama_sampler_chain_get(const struct llama_sampler * chain, int32_t i) {
- const auto * p = (const llama_sampler_chain *) chain->ctx;
- if (i < 0 || (size_t) i >= p->samplers.size()) {
- return nullptr;
- }
- return p->samplers[i];
- }
- struct llama_sampler * llama_sampler_chain_remove(struct llama_sampler * chain, int32_t i) {
- auto * p = (llama_sampler_chain *) chain->ctx;
- if (i < 0 || (size_t) i >= p->samplers.size()) {
- return nullptr;
- }
- auto * result = p->samplers[i];
- p->samplers.erase(p->samplers.begin() + i);
- return result;
- }
- int llama_sampler_chain_n(const struct llama_sampler * chain) {
- const auto * p = (const llama_sampler_chain *) chain->ctx;
- return p->samplers.size();
- }
- //
- // samplers
- //
- // greedy
- static const char * llama_sampler_greedy_name(const struct llama_sampler * /*smpl*/) {
- return "greedy";
- }
- static void llama_sampler_greedy_apply(struct llama_sampler * /*smpl*/, llama_token_data_array * cur_p) {
- cur_p->selected = 0;
- for (size_t i = 1; i < cur_p->size; ++i) {
- if (cur_p->data[i].logit > cur_p->data[cur_p->selected].logit) {
- cur_p->selected = i;
- }
- }
- }
- static struct llama_sampler_i llama_sampler_greedy_i = {
- /* .name = */ llama_sampler_greedy_name,
- /* .accept = */ nullptr,
- /* .apply = */ llama_sampler_greedy_apply,
- /* .reset = */ nullptr,
- /* .clone = */ nullptr,
- /* .free = */ nullptr,
- };
- struct llama_sampler * llama_sampler_init_greedy() {
- return new llama_sampler {
- /* .iface = */ &llama_sampler_greedy_i,
- /* .ctx = */ nullptr,
- };
- }
- // dist
- struct llama_sampler_dist {
- const uint32_t seed;
- uint32_t seed_cur;
- std::mt19937 rng;
- };
- static const char * llama_sampler_dist_name(const struct llama_sampler * /*smpl*/) {
- return "dist";
- }
- static void llama_sampler_dist_apply(struct llama_sampler * smpl, llama_token_data_array * cur_p) {
- auto * ctx = (llama_sampler_dist *) smpl->ctx;
- llama_sampler_softmax_impl(cur_p);
- cur_p->selected = llama_sample_dist(cur_p, ctx->rng);
- }
- static struct llama_sampler * llama_sampler_dist_clone(const struct llama_sampler * smpl) {
- const auto * ctx = (const llama_sampler_dist *) smpl->ctx;
- auto * result = llama_sampler_init_dist(ctx->seed);
- // copy the state
- {
- auto * result_ctx = (llama_sampler_dist *) result->ctx;
- result_ctx->rng = ctx->rng;
- }
- return result;
- }
- static void llama_sampler_dist_reset(struct llama_sampler * smpl) {
- auto * ctx = (llama_sampler_dist *) smpl->ctx;
- ctx->seed_cur = get_rng_seed(ctx->seed);
- ctx->rng.seed(ctx->seed_cur);
- }
- static void llama_sampler_dist_free(struct llama_sampler * smpl) {
- delete (llama_sampler_dist *) smpl->ctx;
- }
- static struct llama_sampler_i llama_sampler_dist_i = {
- /* .name = */ llama_sampler_dist_name,
- /* .accept = */ nullptr,
- /* .apply = */ llama_sampler_dist_apply,
- /* .reset = */ llama_sampler_dist_reset,
- /* .clone = */ llama_sampler_dist_clone,
- /* .free = */ llama_sampler_dist_free,
- };
- struct llama_sampler * llama_sampler_init_dist(uint32_t seed) {
- auto seed_cur = get_rng_seed(seed);
- return new llama_sampler {
- /* .iface = */ &llama_sampler_dist_i,
- /* .ctx = */ new llama_sampler_dist {
- /* .seed = */ seed,
- /* .seed_cur = */ seed_cur,
- /* .rng = */ std::mt19937(seed_cur),
- },
- };
- }
- // softmax
- static const char * llama_sampler_softmax_name(const struct llama_sampler * /*smpl*/) {
- return "softmax";
- }
- static void llama_sampler_softmax_apply(struct llama_sampler * /*smpl*/, llama_token_data_array * cur_p) {
- llama_sampler_softmax_impl(cur_p);
- }
- static struct llama_sampler_i llama_sampler_softmax_i = {
- /* .name = */ llama_sampler_softmax_name,
- /* .accept = */ nullptr,
- /* .apply = */ llama_sampler_softmax_apply,
- /* .reset = */ nullptr,
- /* .clone = */ nullptr,
- /* .free = */ nullptr,
- };
- struct llama_sampler * llama_sampler_init_softmax() {
- return new llama_sampler {
- /* .iface = */ &llama_sampler_softmax_i,
- /* .ctx = */ nullptr,
- };
- }
- // top-k
- struct llama_sampler_top_k {
- const int32_t k;
- };
- static const char * llama_sampler_top_k_name(const struct llama_sampler * /*smpl*/) {
- return "top-k";
- }
- static void llama_sampler_top_k_apply(struct llama_sampler * smpl, llama_token_data_array * cur_p) {
- const auto * ctx = (llama_sampler_top_k *) smpl->ctx;
- llama_sampler_top_k_impl(cur_p, ctx->k);
- }
- static struct llama_sampler * llama_sampler_top_k_clone(const struct llama_sampler * smpl) {
- const auto * ctx = (const llama_sampler_top_k *) smpl->ctx;
- return llama_sampler_init_top_k(ctx->k);
- }
- static void llama_sampler_top_k_free(struct llama_sampler * smpl) {
- delete (llama_sampler_top_k *) smpl->ctx;
- }
- static struct llama_sampler_i llama_sampler_top_k_i = {
- /* .name = */ llama_sampler_top_k_name,
- /* .accept = */ nullptr,
- /* .apply = */ llama_sampler_top_k_apply,
- /* .reset = */ nullptr,
- /* .clone = */ llama_sampler_top_k_clone,
- /* .free = */ llama_sampler_top_k_free,
- };
- struct llama_sampler * llama_sampler_init_top_k(int32_t k) {
- return new llama_sampler {
- /* .iface = */ &llama_sampler_top_k_i,
- /* .ctx = */ new llama_sampler_top_k {
- /* .k = */ k,
- },
- };
- }
- // top-p
- struct llama_sampler_top_p {
- const float p;
- const size_t min_keep;
- };
- static const char * llama_sampler_top_p_name(const struct llama_sampler * /*smpl*/) {
- return "top-p";
- }
- static void llama_sampler_top_p_apply(struct llama_sampler * smpl, llama_token_data_array * cur_p) {
- const auto * ctx = (llama_sampler_top_p *) smpl->ctx;
- if (ctx->p >= 1.0f) {
- return;
- }
- llama_sampler_softmax_impl(cur_p);
- // Compute the cumulative probabilities
- float cum_sum = 0.0f;
- size_t last_idx = cur_p->size;
- for (size_t i = 0; i < cur_p->size; ++i) {
- cum_sum += cur_p->data[i].p;
- // Check if the running sum is at least p or if we have kept at least min_keep tokens
- // we set the last index to i+1 to indicate that the current iterate should be included in the set
- if (cum_sum >= ctx->p && i + 1 >= ctx->min_keep) {
- last_idx = i + 1;
- break;
- }
- }
- // Resize the output vector to keep only the top-p tokens
- cur_p->size = last_idx;
- }
- static struct llama_sampler * llama_sampler_top_p_clone(const struct llama_sampler * smpl) {
- const auto * ctx = (const llama_sampler_top_p *) smpl->ctx;
- return llama_sampler_init_top_p(ctx->p, ctx->min_keep);
- }
- static void llama_sampler_top_p_free(struct llama_sampler * smpl) {
- delete (llama_sampler_top_p *) smpl->ctx;
- }
- static struct llama_sampler_i llama_sampler_top_p_i = {
- /* .name = */ llama_sampler_top_p_name,
- /* .accept = */ nullptr,
- /* .apply = */ llama_sampler_top_p_apply,
- /* .reset = */ nullptr,
- /* .clone = */ llama_sampler_top_p_clone,
- /* .free = */ llama_sampler_top_p_free,
- };
- struct llama_sampler * llama_sampler_init_top_p(float p, size_t min_keep) {
- return new llama_sampler {
- /* .iface = */ &llama_sampler_top_p_i,
- /* .ctx = */ new llama_sampler_top_p {
- /* .p = */ p,
- /* .min_keep = */ min_keep,
- },
- };
- }
- // min-p
- struct llama_sampler_min_p {
- const float p;
- const size_t min_keep;
- };
- static const char * llama_sampler_min_p_name(const struct llama_sampler * /*smpl*/) {
- return "min-p";
- }
- static void llama_sampler_min_p_apply(struct llama_sampler * smpl, llama_token_data_array * cur_p) {
- const auto * ctx = (llama_sampler_min_p *) smpl->ctx;
- if (ctx->p <= 0.0f || !cur_p->size) {
- return;
- }
- bool min_p_applied = false;
- // if the cur_p aren't sorted, try the unsorted implementation first
- if (!cur_p->sorted) {
- std::vector<llama_token_data> filtered_tokens;
- float max_logit = -FLT_MAX;
- for (size_t i = 0; i < cur_p->size; ++i) {
- max_logit = std::max(max_logit, cur_p->data[i].logit);
- }
- const float min_logit = max_logit + logf(ctx->p); // min logit for p_i >= p * p_max
- for (size_t i = 0; i < cur_p->size; ++i) {
- if (cur_p->data[i].logit >= min_logit) {
- filtered_tokens.push_back(cur_p->data[i]);
- }
- }
- // if we have enough values the operation was a success
- if (filtered_tokens.size() >= ctx->min_keep) {
- memcpy(cur_p->data, filtered_tokens.data(), filtered_tokens.size()*sizeof(llama_token_data));
- cur_p->size = filtered_tokens.size();
- min_p_applied = true;
- }
- }
- // if the cur_p are sorted or the unsorted implementation failed, use this implementation
- if (!min_p_applied) {
- // Sort the logits in descending order
- if (!cur_p->sorted) {
- std::sort(cur_p->data, cur_p->data + cur_p->size, [](const llama_token_data & a, const llama_token_data & b) {
- return a.logit > b.logit;
- });
- cur_p->sorted = true;
- }
- const float min_logit = cur_p->data[0].logit + logf(ctx->p); // min logit for p_i >= p * p_max
- size_t i = 1; // first token always matches
- for (; i < cur_p->size; ++i) {
- if (cur_p->data[i].logit < min_logit && i >= ctx->min_keep) {
- break; // prob too small
- }
- }
- // Resize the output vector to keep only the matching tokens
- cur_p->size = i;
- }
- }
- static struct llama_sampler * llama_sampler_min_p_clone(const struct llama_sampler * smpl) {
- const auto * ctx = (const llama_sampler_min_p *) smpl->ctx;
- return llama_sampler_init_min_p(ctx->p, ctx->min_keep);
- }
- static void llama_sampler_min_p_free(struct llama_sampler * smpl) {
- delete (llama_sampler_min_p *) smpl->ctx;
- }
- static struct llama_sampler_i llama_sampler_min_p_i = {
- /* .name = */ llama_sampler_min_p_name,
- /* .accept = */ nullptr,
- /* .apply = */ llama_sampler_min_p_apply,
- /* .reset = */ nullptr,
- /* .clone = */ llama_sampler_min_p_clone,
- /* .free = */ llama_sampler_min_p_free,
- };
- struct llama_sampler * llama_sampler_init_min_p(float p, size_t min_keep) {
- return new llama_sampler {
- /* .iface = */ &llama_sampler_min_p_i,
- /* .ctx = */ new llama_sampler_min_p {
- /* .p = */ p,
- /* .min_keep = */ min_keep,
- },
- };
- }
- // typical
- struct llama_sampler_typical {
- const float p;
- const size_t min_keep;
- };
- static const char * llama_sampler_typical_name(const struct llama_sampler * /*smpl*/) {
- return "typical";
- }
- static void llama_sampler_typical_apply(struct llama_sampler * smpl, llama_token_data_array * cur_p) {
- const auto * ctx = (llama_sampler_typical *) smpl->ctx;
- // Reference implementation:
- // https://github.com/huggingface/transformers/compare/main...cimeister:typical-sampling:typical-pr
- if (ctx->p >= 1.0f) {
- return;
- }
- // Compute the softmax of logits and calculate entropy
- llama_sampler_softmax_impl(cur_p);
- float entropy = 0.0f;
- for (size_t i = 0; i < cur_p->size; ++i) {
- entropy += -cur_p->data[i].p * logf(cur_p->data[i].p);
- }
- // Compute the absolute difference between negative log probability and entropy for each candidate
- std::vector<float> shifted_scores;
- for (size_t i = 0; i < cur_p->size; ++i) {
- float shifted_score = fabsf(-logf(cur_p->data[i].p) - entropy);
- shifted_scores.push_back(shifted_score);
- }
- // Sort tokens based on the shifted_scores and their corresponding indices
- std::vector<size_t> indices(cur_p->size);
- std::iota(indices.begin(), indices.end(), 0);
- std::sort(indices.begin(), indices.end(), [&](size_t a, size_t b) {
- return shifted_scores[a] < shifted_scores[b];
- });
- // Compute the cumulative probabilities
- float cum_sum = 0.0f;
- size_t last_idx = indices.size();
- for (size_t i = 0; i < indices.size(); ++i) {
- size_t idx = indices[i];
- cum_sum += cur_p->data[idx].p;
- // Check if the running sum is greater than typical or if we have kept at least min_keep tokens
- if (cum_sum > ctx->p && i >= ctx->min_keep - 1) {
- last_idx = i + 1;
- break;
- }
- }
- // Resize the output vector to keep only the locally typical tokens
- std::vector<llama_token_data> cur_p_new;
- for (size_t i = 0; i < last_idx; ++i) {
- size_t idx = indices[i];
- cur_p_new.push_back(cur_p->data[idx]);
- }
- // Replace the data in cur_p with the cur_p_new data
- std::copy(cur_p_new.begin(), cur_p_new.end(), cur_p->data);
- cur_p->size = cur_p_new.size();
- cur_p->sorted = false;
- }
- static struct llama_sampler * llama_sampler_typical_clone(const struct llama_sampler * smpl) {
- const auto * ctx = (const llama_sampler_typical *) smpl->ctx;
- return llama_sampler_init_typical(ctx->p, ctx->min_keep);
- }
- static void llama_sampler_typical_free(struct llama_sampler * smpl) {
- delete (llama_sampler_typical *) smpl->ctx;
- }
- static struct llama_sampler_i llama_sampler_typical_i = {
- /* .name = */ llama_sampler_typical_name,
- /* .accept = */ nullptr,
- /* .apply = */ llama_sampler_typical_apply,
- /* .reset = */ nullptr,
- /* .clone = */ llama_sampler_typical_clone,
- /* .free = */ llama_sampler_typical_free,
- };
- struct llama_sampler * llama_sampler_init_typical(float p, size_t min_keep) {
- return new llama_sampler {
- /* .iface = */ &llama_sampler_typical_i,
- /* .ctx = */ new llama_sampler_typical {
- /* .p = */ p,
- /* .min_keep = */ min_keep,
- },
- };
- }
- // temp
- struct llama_sampler_temp {
- const float temp;
- };
- static const char * llama_sampler_temp_name(const struct llama_sampler * /*smpl*/) {
- return "temp";
- }
- static void llama_sampler_temp_apply(struct llama_sampler * smpl, llama_token_data_array * cur_p) {
- const auto * ctx = (llama_sampler_temp *) smpl->ctx;
- llama_sampler_temp_impl(cur_p, ctx->temp);
- }
- static struct llama_sampler * llama_sampler_temp_clone(const struct llama_sampler * smpl) {
- const auto * ctx = (const llama_sampler_temp *) smpl->ctx;
- return llama_sampler_init_temp(ctx->temp);
- }
- static void llama_sampler_temp_free(struct llama_sampler * smpl) {
- delete (llama_sampler_temp *) smpl->ctx;
- }
- static struct llama_sampler_i llama_sampler_temp_i = {
- /* .name = */ llama_sampler_temp_name,
- /* .accept = */ nullptr,
- /* .apply = */ llama_sampler_temp_apply,
- /* .reset = */ nullptr,
- /* .clone = */ llama_sampler_temp_clone,
- /* .free = */ llama_sampler_temp_free,
- };
- struct llama_sampler * llama_sampler_init_temp(float temp) {
- return new llama_sampler {
- /* .iface = */ &llama_sampler_temp_i,
- /* .ctx = */ new llama_sampler_temp {
- /*.temp = */ temp,
- },
- };
- }
- // temp-ext
- struct llama_sampler_temp_ext {
- const float temp;
- const float delta;
- const float exponent;
- };
- static const char * llama_sampler_temp_ext_name(const struct llama_sampler * /*smpl*/) {
- return "temp-ext";
- }
- static void llama_sampler_temp_ext_apply(struct llama_sampler * smpl, llama_token_data_array * cur_p) {
- const auto * ctx = (llama_sampler_temp_ext *) smpl->ctx;
- if (ctx->delta > 0) {
- const float min_temp = std::max(0.0f, ctx->temp - ctx->delta);
- const float max_temp = ctx->temp + ctx->delta;
- float exponent_val = ctx->exponent;
- // no need to do anything if there is only one (or zero) candidates
- if (cur_p->size <= 1) {
- return;
- }
- // Calculate maximum possible entropy
- float max_entropy = -logf(1.0f / cur_p->size);
- llama_sampler_softmax_impl(cur_p);
- // Calculate entropy of the softmax probabilities
- float entropy = 0.0f;
- for (size_t i = 0; i < cur_p->size; ++i) {
- float prob = cur_p->data[i].p;
- if (prob > 0.0f) { // Ensure no log(0)
- entropy -= prob * logf(prob);
- }
- }
- // Normalize the entropy (max_entropy cannot be 0 here because we checked cur_p->size != 1 above)
- float normalized_entropy = entropy / max_entropy;
- // Map the normalized entropy to the desired temperature range using the power function
- float dyn_temp = min_temp + (max_temp - min_temp) * powf(normalized_entropy, exponent_val);
- #ifdef DEBUG
- LLAMA_LOG_INFO("Your text maxtemp value is: %f\n", max_temp);
- LLAMA_LOG_INFO("Entropy: %f\n", entropy);
- LLAMA_LOG_INFO("Max Possible Entropy: %f\n", max_entropy);
- LLAMA_LOG_INFO("Normalized Entropy: %f\n", normalized_entropy);
- LLAMA_LOG_INFO("Exponent: %f\n", exponent_val);
- LLAMA_LOG_INFO("Dynamic Temperature (dyn_temp): %f\n", dyn_temp);
- #endif
- // Apply the dynamically calculated temperature scaling
- llama_sampler_temp_impl(cur_p, dyn_temp);
- // Re-compute softmax probabilities after scaling logits with dynamic temperature
- const double max_l_double = cur_p->data[0].logit;
- double cum_sum_double = 0.0;
- for (size_t i = 0; i < cur_p->size; ++i) {
- double p = exp(cur_p->data[i].logit - max_l_double);
- cur_p->data[i].p = p; // Store the scaled probability
- cum_sum_double += p;
- }
- for (size_t i = 0; i < cur_p->size; ++i) {
- cur_p->data[i].p /= cum_sum_double; // Re-normalize the probabilities
- }
- #ifdef DEBUG
- // Print the updated top 25 probabilities after temperature scaling
- LLAMA_LOG_INFO("\nUpdated Top 25 Probabilities After Dynamic Temperature Scaling (in percentages):\n");
- for (size_t i = 0; i < 25 && i < cur_p->size; ++i) {
- LLAMA_LOG_INFO("Token %zu: %f%%\n", i + 1, cur_p->data[i].p * 100.0f);
- }
- #endif
- } else {
- llama_sampler_temp_impl(cur_p, ctx->temp);
- }
- }
- static struct llama_sampler * llama_sampler_temp_ext_clone(const struct llama_sampler * smpl) {
- const auto * ctx = (const llama_sampler_temp_ext *) smpl->ctx;
- return llama_sampler_init_temp_ext(ctx->temp, ctx->delta, ctx->exponent);
- }
- static void llama_sampler_temp_ext_free(struct llama_sampler * smpl) {
- delete (llama_sampler_temp_ext *) smpl->ctx;
- }
- static struct llama_sampler_i llama_sampler_temp_ext_i = {
- /* .name = */ llama_sampler_temp_ext_name,
- /* .accept = */ nullptr,
- /* .apply = */ llama_sampler_temp_ext_apply,
- /* .reset = */ nullptr,
- /* .clone = */ llama_sampler_temp_ext_clone,
- /* .free = */ llama_sampler_temp_ext_free,
- };
- struct llama_sampler * llama_sampler_init_temp_ext(float temp, float delta, float exponent) {
- return new llama_sampler {
- /* .iface = */ &llama_sampler_temp_ext_i,
- /* .ctx = */ new llama_sampler_temp_ext {
- /* .temp = */ temp,
- /* .delta = */ delta,
- /* .exponent = */ exponent,
- },
- };
- }
- // xtc
- struct llama_sampler_xtc {
- const float probability;
- const float threshold;
- const size_t min_keep;
- const uint32_t seed;
- uint32_t seed_cur;
- std::mt19937 rng;
- };
- static const char * llama_sampler_xtc_name(const struct llama_sampler * /*smpl*/) {
- return "xtc";
- }
- static void llama_sample_xtc_apply(struct llama_sampler * smpl, llama_token_data_array * cur_p) {
- auto * ctx = (llama_sampler_xtc *) smpl->ctx;
- if (ctx->probability <= 0.0f
- || ctx->threshold > 0.5f
- || cur_p->size < 2) {
- return;
- }
- std::uniform_real_distribution<float> distribution(0.0f, 1.0f);
- float chance = distribution(ctx->rng);
- if (chance > ctx->probability) return;
- // in case it's not sorted/recalculated yet
- llama_sampler_softmax_impl(cur_p);
- int pos_last = 0;
- for (size_t i = 0; i < cur_p->size; ++i) {
- if (cur_p->data[i].p >= ctx->threshold) {
- pos_last = i;
- } else break;
- }
- if (cur_p->size - pos_last >= ctx->min_keep && pos_last > 0) {
- cur_p->data += pos_last;
- cur_p->size -= pos_last;
- }
- }
- static struct llama_sampler * llama_sampler_xtc_clone(const struct llama_sampler * smpl) {
- const auto * ctx = (const llama_sampler_xtc *) smpl->ctx;
- auto * result = llama_sampler_init_xtc(ctx->probability, ctx->threshold, ctx->min_keep, ctx->seed);
- // copy the state
- {
- auto * result_ctx = (llama_sampler_xtc *) result->ctx;
- result_ctx->rng = ctx->rng;
- }
- return result;
- }
- static void llama_sampler_xtc_free(struct llama_sampler * smpl) {
- delete (llama_sampler_xtc *) smpl->ctx;
- }
- static void llama_sampler_xtc_reset(struct llama_sampler * smpl) {
- auto * ctx = (llama_sampler_xtc *) smpl->ctx;
- ctx->seed_cur = get_rng_seed(ctx->seed);
- ctx->rng.seed(ctx->seed_cur);
- }
- static struct llama_sampler_i llama_sampler_xtc_i = {
- /* .name = */ llama_sampler_xtc_name,
- /* .accept = */ nullptr,
- /* .apply = */ llama_sample_xtc_apply,
- /* .reset = */ llama_sampler_xtc_reset,
- /* .clone = */ llama_sampler_xtc_clone,
- /* .free = */ llama_sampler_xtc_free,
- };
- struct llama_sampler * llama_sampler_init_xtc(float p, float t, size_t min_keep, uint32_t seed) {
- auto seed_cur = get_rng_seed(seed);
- return new llama_sampler {
- /* .iface = */ &llama_sampler_xtc_i,
- /* .ctx = */ new llama_sampler_xtc {
- /* .probability = */ p,
- /* .threshold = */ t,
- /* .min_keep = */ min_keep,
- /* .seed = */ seed,
- /* .seed_cur = */ seed_cur,
- /* .rng = */ std::mt19937(seed_cur),
- },
- };
- }
- // mirostat
- struct llama_sampler_mirostat {
- const int32_t n_vocab;
- const uint32_t seed;
- uint32_t seed_cur;
- const float tau;
- const float eta;
- const int32_t m;
- float mu;
- std::mt19937 rng;
- };
- static const char * llama_sampler_mirostat_name(const struct llama_sampler * /*smpl*/) {
- return "mirostat";
- }
- static void llama_sampler_mirostat_apply(struct llama_sampler * smpl, llama_token_data_array * cur_p) {
- auto * ctx = (llama_sampler_mirostat *) smpl->ctx;
- llama_sampler_softmax_impl(cur_p);
- // Estimate s_hat using the most probable m tokens
- float s_hat = 0.0;
- float sum_ti_bi = 0.0;
- float sum_ti_sq = 0.0;
- for (size_t i = 0; i < size_t(ctx->m - 1) && i < cur_p->size - 1; ++i) {
- float t_i = logf(float(i + 2) / float(i + 1));
- float b_i = logf(cur_p->data[i].p / cur_p->data[i + 1].p);
- sum_ti_bi += t_i * b_i;
- sum_ti_sq += t_i * t_i;
- }
- s_hat = sum_ti_bi / sum_ti_sq;
- // Compute k from the estimated s_hat and target surprise value
- float epsilon_hat = s_hat - 1;
- float k = powf((epsilon_hat * powf(2, ctx->mu)) / (1 - powf(ctx->n_vocab, -epsilon_hat)), 1 / s_hat);
- llama_sampler_top_k_impl(cur_p, std::max(int(k), 1));
- llama_sampler_softmax_impl(cur_p);
- const int idx = llama_sample_dist(cur_p, ctx->rng);
- cur_p->selected = idx;
- float observed_surprise = -log2f(cur_p->data[idx].p);
- float e = observed_surprise - ctx->tau;
- // Update mu using the learning rate and error
- ctx->mu = ctx->mu - ctx->eta * e;
- }
- static struct llama_sampler * llama_sampler_mirostat_clone(const struct llama_sampler * smpl) {
- const auto * ctx = (const llama_sampler_mirostat *) smpl->ctx;
- auto * result = llama_sampler_init_mirostat(ctx->n_vocab, ctx->seed, ctx->tau, ctx->eta, ctx->m);
- // copy the state
- {
- auto * result_ctx = (llama_sampler_mirostat *) smpl->ctx;
- result_ctx->mu = ctx->mu;
- result_ctx->rng = ctx->rng;
- }
- return result;
- }
- static void llama_sampler_mirostat_reset(struct llama_sampler * smpl) {
- auto * ctx = (llama_sampler_mirostat *) smpl->ctx;
- ctx->mu = 2.0f*ctx->tau;
- ctx->seed_cur = get_rng_seed(ctx->seed);
- ctx->rng.seed(ctx->seed_cur);
- }
- static void llama_sampler_mirostat_free(struct llama_sampler * smpl) {
- delete (llama_sampler_mirostat *) smpl->ctx;
- }
- static struct llama_sampler_i llama_sampler_mirostat_i = {
- /* .name = */ llama_sampler_mirostat_name,
- /* .accept = */ nullptr,
- /* .apply = */ llama_sampler_mirostat_apply,
- /* .reset = */ llama_sampler_mirostat_reset,
- /* .clone = */ llama_sampler_mirostat_clone,
- /* .free = */ llama_sampler_mirostat_free,
- };
- struct llama_sampler * llama_sampler_init_mirostat(int32_t n_vocab, uint32_t seed, float tau, float eta, int32_t m) {
- auto seed_cur = get_rng_seed(seed);
- return new llama_sampler {
- /* .iface = */ &llama_sampler_mirostat_i,
- /* .ctx = */ new llama_sampler_mirostat {
- /* .n_vocab = */ n_vocab,
- /* .seed = */ seed,
- /* .seed_cur = */ seed_cur,
- /* .tau = */ tau,
- /* .eta = */ eta,
- /* .m = */ m,
- /* .mu = */ 2.0f*tau,
- /* .rng = */ std::mt19937(seed_cur),
- },
- };
- }
- // mirostat v2
- struct llama_sampler_mirostat_v2 {
- const uint32_t seed;
- uint32_t seed_cur;
- const float tau;
- const float eta;
- float mu;
- std::mt19937 rng;
- };
- static const char * llama_sampler_mirostat_v2_name(const struct llama_sampler * /*smpl*/) {
- return "mirostat-v2";
- }
- static void llama_sampler_mirostat_v2_apply(struct llama_sampler * smpl, llama_token_data_array * cur_p) {
- auto * ctx = (llama_sampler_mirostat_v2 *) smpl->ctx;
- llama_sampler_softmax_impl(cur_p);
- // Truncate the words with surprise values greater than mu
- cur_p->size = std::distance(cur_p->data, std::find_if(cur_p->data, cur_p->data + cur_p->size, [&](const llama_token_data & candidate) {
- return -log2f(candidate.p) > ctx->mu;
- }));
- if (cur_p->size == 0) {
- cur_p->size = 1;
- }
- // Normalize the probabilities of the remaining words
- llama_sampler_softmax_impl(cur_p);
- const int idx = llama_sample_dist(cur_p, ctx->rng);
- cur_p->selected = idx;
- float observed_surprise = -log2f(cur_p->data[idx].p);
- float e = observed_surprise - ctx->tau;
- // Update mu using the learning rate and error
- ctx->mu = ctx->mu - ctx->eta * e;
- }
- static void llama_sampler_mirostat_v2_reset(struct llama_sampler * smpl) {
- auto * ctx = (llama_sampler_mirostat_v2 *) smpl->ctx;
- ctx->mu = 2.0f*ctx->tau;
- ctx->seed_cur = get_rng_seed(ctx->seed);
- ctx->rng.seed(ctx->seed_cur);
- }
- static struct llama_sampler * llama_sampler_mirostat_v2_clone(const struct llama_sampler * smpl) {
- const auto * ctx = (const llama_sampler_mirostat_v2 *) smpl->ctx;
- auto * result = llama_sampler_init_mirostat_v2(ctx->seed, ctx->tau, ctx->eta);
- // copy the state
- {
- auto * result_ctx = (llama_sampler_mirostat_v2 *) result->ctx;
- result_ctx->mu = ctx->mu;
- result_ctx->rng = ctx->rng;
- }
- return result;
- }
- static void llama_sampler_mirostat_v2_free(struct llama_sampler * smpl) {
- delete (llama_sampler_mirostat_v2 *) smpl->ctx;
- }
- static struct llama_sampler_i llama_sampler_mirostat_v2_i = {
- /* .name = */ llama_sampler_mirostat_v2_name,
- /* .accept = */ nullptr,
- /* .apply = */ llama_sampler_mirostat_v2_apply,
- /* .reset = */ llama_sampler_mirostat_v2_reset,
- /* .clone = */ llama_sampler_mirostat_v2_clone,
- /* .free = */ llama_sampler_mirostat_v2_free,
- };
- struct llama_sampler * llama_sampler_init_mirostat_v2(uint32_t seed, float tau, float eta) {
- auto seed_cur = get_rng_seed(seed);
- return new llama_sampler {
- /* .iface = */ &llama_sampler_mirostat_v2_i,
- /* .ctx = */ new llama_sampler_mirostat_v2 {
- /* .seed = */ seed,
- /* .seed_cur = */ seed_cur,
- /* .tau = */ tau,
- /* .eta = */ eta,
- /* .mu = */ 2.0f*tau,
- /* .rng = */ std::mt19937(seed_cur),
- },
- };
- }
- // grammar
- struct llama_sampler_grammar {
- const struct llama_vocab * vocab;
- std::string grammar_str;
- std::string grammar_root;
- struct llama_grammar * grammar;
- };
- static const char * llama_sampler_grammar_name(const struct llama_sampler * /*smpl*/) {
- return "grammar";
- }
- static void llama_sampler_grammar_accept_impl(struct llama_sampler * smpl, llama_token token) {
- auto * ctx = (llama_sampler_grammar *) smpl->ctx;
- if (ctx->grammar) {
- llama_grammar_accept_impl(*ctx->grammar, token);
- }
- }
- static void llama_sampler_grammar_apply(struct llama_sampler * smpl, llama_token_data_array * cur_p) {
- auto * ctx = (llama_sampler_grammar *) smpl->ctx;
- if (ctx->grammar) {
- llama_grammar_apply_impl(*ctx->grammar, cur_p);
- }
- }
- static void llama_sampler_grammar_reset(struct llama_sampler * smpl) {
- auto * ctx = (llama_sampler_grammar *) smpl->ctx;
- if (!ctx->grammar) {
- return;
- }
- auto * grammar_new = llama_grammar_init_impl(ctx->grammar->vocab, ctx->grammar_str.c_str(), ctx->grammar_root.c_str());
- llama_grammar_free_impl(ctx->grammar);
- ctx->grammar = grammar_new;
- }
- static struct llama_sampler * llama_sampler_grammar_clone(const struct llama_sampler * smpl) {
- const auto * ctx = (const llama_sampler_grammar *) smpl->ctx;
- auto * result = llama_sampler_init_grammar_impl(*ctx->vocab, nullptr, nullptr);
- // copy the state
- {
- auto * result_ctx = (llama_sampler_grammar *) result->ctx;
- if (ctx->grammar) {
- result_ctx->grammar_str = ctx->grammar_str;
- result_ctx->grammar_root = ctx->grammar_root;
- result_ctx->grammar = llama_grammar_clone_impl(*ctx->grammar);
- }
- }
- return result;
- }
- static void llama_sampler_grammar_free(struct llama_sampler * smpl) {
- const auto * ctx = (llama_sampler_grammar *) smpl->ctx;
- if (ctx->grammar) {
- llama_grammar_free_impl(ctx->grammar);
- }
- delete ctx;
- }
- static struct llama_sampler_i llama_sampler_grammar_i = {
- /* .name = */ llama_sampler_grammar_name,
- /* .accept = */ llama_sampler_grammar_accept_impl,
- /* .apply = */ llama_sampler_grammar_apply,
- /* .reset = */ llama_sampler_grammar_reset,
- /* .clone = */ llama_sampler_grammar_clone,
- /* .free = */ llama_sampler_grammar_free,
- };
- struct llama_sampler * llama_sampler_init_grammar_impl(const struct llama_vocab & vocab, const char * grammar_str, const char * grammar_root) {
- auto * ctx = new llama_sampler_grammar;
- if (grammar_str != nullptr && grammar_str[0] != '\0') {
- *ctx = {
- /* .vocab = */ &vocab,
- /* .grammar_str = */ grammar_str,
- /* .grammar_root = */ grammar_root,
- /* .grammar = */ llama_grammar_init_impl(&vocab, grammar_str, grammar_root),
- };
- } else {
- *ctx = {
- /* .vocab = */ &vocab,
- /* .grammar_str = */ {},
- /* .grammar_root = */ {},
- /* .grammar = */ nullptr,
- };
- }
- return new llama_sampler {
- /* .iface = */ &llama_sampler_grammar_i,
- /* .ctx = */ ctx,
- };
- }
- // penalties
- struct llama_sampler_penalties {
- const int32_t penalty_last_n;
- const float penalty_repeat;
- const float penalty_freq;
- const float penalty_present;
- ring_buffer<llama_token> prev;
- // a frequency map to count token occurrences
- std::unordered_map<llama_token, int> token_count;
- };
- static const char * llama_sampler_penalties_name(const struct llama_sampler * /*smpl*/) {
- return "penalties";
- }
- static void llama_sampler_penalties_accept(struct llama_sampler * smpl, llama_token token) {
- auto * ctx = (llama_sampler_penalties *) smpl->ctx;
- if (ctx->penalty_last_n == 0) {
- return;
- }
- ctx->token_count[token]++;
- // if the ring buffer is full, remove the oldest token
- if (ctx->prev.size() >= (size_t) ctx->penalty_last_n) {
- const auto old = ctx->prev.front();
- ctx->token_count[old]--;
- if (ctx->token_count[old] == 0) {
- ctx->token_count.erase(old);
- }
- }
- ctx->prev.push_back(token);
- #if 0
- // sanity check
- std::unordered_map<llama_token, int> tmp;
- for (int i = 0; i < std::min<int>(ctx->penalty_last_n, ctx->prev.size()); ++i) {
- tmp[ctx->prev.rat(i)]++;
- }
- assert(ctx->token_count == tmp);
- #endif
- }
- static void llama_sampler_penalties_apply(struct llama_sampler * smpl, llama_token_data_array * cur_p) {
- auto * ctx = (llama_sampler_penalties *) smpl->ctx;
- if ((ctx->penalty_last_n == 0) ||
- (ctx->penalty_repeat == 1.0f && ctx->penalty_freq == 0.0f && ctx->penalty_present == 0.0f)) {
- return;
- }
- // Apply frequency and presence penalties to the cur_p
- for (size_t i = 0; i < cur_p->size; ++i) {
- const auto token_iter = ctx->token_count.find(cur_p->data[i].id);
- if (token_iter == ctx->token_count.end()) {
- continue;
- }
- const int count = token_iter->second;
- assert(count > 0 && count <= ctx->penalty_last_n);
- // The academic publication that described this technique actually just only divided, but that would cause tokens with negative logits to become more likely, which is obviously wrong.
- // This is common fix for this problem, which is to multiply by the penalty instead of dividing.
- if (cur_p->data[i].logit <= 0) {
- cur_p->data[i].logit *= ctx->penalty_repeat;
- } else {
- cur_p->data[i].logit /= ctx->penalty_repeat;
- }
- cur_p->data[i].logit -= float(count) * ctx->penalty_freq + float(count > 0) * ctx->penalty_present;
- }
- cur_p->sorted = false;
- }
- static void llama_sampler_penalties_reset(struct llama_sampler * smpl) {
- auto * ctx = (llama_sampler_penalties *) smpl->ctx;
- ctx->prev.clear();
- ctx->token_count.clear();
- }
- static struct llama_sampler * llama_sampler_penalties_clone(const struct llama_sampler * smpl) {
- const auto * ctx = (const llama_sampler_penalties *) smpl->ctx;
- auto * result = llama_sampler_init_penalties(
- ctx->penalty_last_n,
- ctx->penalty_repeat,
- ctx->penalty_freq,
- ctx->penalty_present);
- // copy the state
- {
- auto * result_ctx = (llama_sampler_penalties *) result->ctx;
- result_ctx->prev = ctx->prev;
- }
- return result;
- }
- static void llama_sampler_penalties_free(struct llama_sampler * smpl) {
- delete (llama_sampler_penalties *) smpl->ctx;
- }
- static struct llama_sampler_i llama_sampler_penalties_i = {
- /* .name = */ llama_sampler_penalties_name,
- /* .accept = */ llama_sampler_penalties_accept,
- /* .apply = */ llama_sampler_penalties_apply,
- /* .reset = */ llama_sampler_penalties_reset,
- /* .clone = */ llama_sampler_penalties_clone,
- /* .free = */ llama_sampler_penalties_free,
- };
- struct llama_sampler * llama_sampler_init_penalties(
- int32_t penalty_last_n,
- float penalty_repeat,
- float penalty_freq,
- float penalty_present) {
- penalty_last_n = std::max(penalty_last_n, 0);
- return new llama_sampler {
- /* .iface = */ &llama_sampler_penalties_i,
- /* .ctx = */ new llama_sampler_penalties {
- /* .penalty_last_n = */ penalty_last_n,
- /* .penalty_repeat = */ penalty_repeat,
- /* .penalty_freq = */ penalty_freq,
- /* .penalty_present = */ penalty_present,
- /* .prev = */ ring_buffer<llama_token>(penalty_last_n),
- /* .token_count = */ {},
- },
- };
- }
- // DRY
- struct llama_sampler_dry {
- int32_t total_context_size;
- const float dry_multiplier;
- const float dry_base;
- const int32_t dry_allowed_length;
- const int32_t dry_penalty_last_n;
- std::unordered_multimap<llama_token, std::vector<llama_token>> dry_processed_breakers;
- std::vector<int> dry_repeat_count;
- std::unordered_map<llama_token, int> dry_max_token_repeat;
- ring_buffer<llama_token> last_tokens;
- };
- // Ported from Koboldcpp, original PR: https://github.com/LostRuins/koboldcpp/pull/982 (Original author: pi6am)
- static void get_overlapping_token_sequences(const llama_vocab & vocab, const std::string& str, std::unordered_multimap<llama_token, std::vector<llama_token>>& token_sequences, int max_tail_len = -1) {
- for (llama_token token_id = 0; token_id < (llama_token)vocab.n_vocab; token_id++) {
- std::string word = llama_detokenize(vocab, {token_id}, true);
- if (word.find(str) != std::string::npos) {
- token_sequences.emplace(token_id, std::vector<llama_token>());
- } else {
- size_t word_len = word.size();
- size_t str_len = str.size();
- size_t pos = -1;
- while ((pos = word.find(str[0], pos + 1)) != std::string::npos) {
- bool match = true;
- size_t i;
- for (i = 1; i < str_len && i + pos < word_len; ++i) {
- if (word[pos + i] != str[i]) {
- match = false;
- break;
- }
- }
- if (match) {
- std::vector<llama_token> tokenization = llama_tokenize_internal(vocab, str.substr(i), false, false);
- if (max_tail_len >= 0 && tokenization.size() > (size_t)max_tail_len) {
- tokenization.resize(max_tail_len);
- }
- // Ensure we don't already have a duplicate matching tokenization
- auto its = token_sequences.equal_range(token_id);
- bool found = false;
- for (auto it = its.first; it != its.second; ++it) {
- if (tokenization == it->second) {
- found = true;
- break;
- }
- }
- if (!found) {
- token_sequences.emplace(token_id, tokenization);
- }
- }
- }
- }
- }
- }
- static const char * llama_sampler_dry_name(const struct llama_sampler * /*smpl*/) {
- return "dry";
- }
- static void llama_sampler_dry_accept(struct llama_sampler * smpl, llama_token token) {
- auto * ctx = (llama_sampler_dry *) smpl->ctx;
- if (ctx->dry_multiplier == 0.0f || ctx->dry_base < 1.0f || ctx->dry_penalty_last_n == 0) {
- return;
- }
- ctx->last_tokens.push_back(token);
- }
- // Ported from Koboldcpp, original PR: https://github.com/LostRuins/koboldcpp/pull/982 (Original author: pi6am)
- static void llama_sampler_dry_apply(struct llama_sampler * smpl, llama_token_data_array * cur_p) {
- auto * ctx = (llama_sampler_dry *) smpl->ctx;
- if (ctx->dry_multiplier == 0.0f || ctx->dry_base < 1.0f || ctx->dry_penalty_last_n == 0) {
- return;
- }
- int32_t effective_dry_penalty_last_n = (ctx->dry_penalty_last_n == -1) ? ctx->total_context_size : std::max(ctx->dry_penalty_last_n, 0);
- int last_n_repeat = std::min(std::min((int)ctx->last_tokens.size(), effective_dry_penalty_last_n), ctx->total_context_size);
- if (last_n_repeat <= ctx->dry_allowed_length) {
- return;
- }
- ctx->dry_repeat_count.assign(last_n_repeat, 0);
- ctx->dry_max_token_repeat.clear();
- // Step 1: Look for restart sequences to limit the maximum repetition length.
- // Work backwards through the context looking for any token that begins a restart sequence.
- //
- // The collection `restart_sequences` is a mapping from a "head" token to all "tail"
- // sequences that together comprise a restart sequence. This allows us to quickly check
- // whether each token is the head of a complete sequence. Most restart sequences are actually
- // a single token, and for these the "tail" is an empty vector.
- //
- // If the token is a "head", test all restart sequences that begin with this token
- // (there will often only be one sequence for each token, but if sequences like 'aaaq1' and
- // 'aaa1' are used as restart strings, both could start with 'aaa' when tokenized). The
- // longest matching sequence (if any) is used to limit the maximum repetition length.
- //
- // Note that in the case case of a short sequence contained in a longer one, this might fail to
- // find the smallest value for `rep_limit`. For example, if 'amniotic' and 'ni' are both used as
- // restart sequences, 'ni' will be found first, and since it's shorter it will fail to suppress
- // 'otic'. This is a minor issue since fully contained restart sequences are likely to be rare.
- //
- // This is theoretically worst-case O(N^2) for arbitrary restart sequences, which is why we
- // have already clamped the maximum tail sequence length when generating `restart_sequences`.
- // With clamping, this scan is O(N) in the context length.
- int rep_limit = last_n_repeat;
- for (int i = 0; i < last_n_repeat; ++i) {
- llama_token token = ctx->last_tokens.rat(i);
- auto its = ctx->dry_processed_breakers.equal_range(token);
- if (its.first == ctx->dry_processed_breakers.end()) {
- continue;
- }
- int longest_match = -1;
- for (auto it = its.first; it != its.second; ++it) {
- // Note that (*it) does not contain the head character, so seq_len will be
- // the restart sequence length minus 1.
- // In the common case of a single-token restart sequence, (*it) will be empty
- // and we will trivially match.
- int seq_len = (int)it->second.size();
- if (seq_len > longest_match && seq_len <= (int)i) {
- bool match = true;
- for (int offset = 0; offset < seq_len; ++offset) {
- // The -1 when indexing `last_tokens` is because we already matched the head.
- if (it->second[offset] != ctx->last_tokens.rat(i - offset - 1)) {
- match = false;
- break;
- }
- }
- if (match) {
- longest_match = seq_len;
- }
- }
- }
- if (longest_match >= 0) {
- // We found a restart sequence starting `i` tokens from the end and continuing for
- // `longest_match` tokens.
- rep_limit = i - longest_match;
- break;
- }
- }
- if (rep_limit < ctx->dry_allowed_length) {
- return;
- }
- // Step 2: Iterate in reverse over the last N tokens of the context, using the "Z-algorithm" (in
- // the reverse direction) to efficiently compute the positions and lengths of suffixes appearing
- // elsewhere in the context. We limit the suffix length to `rep_limit` to respect restart sequences.
- //
- // This algorithm is not currently documented on Wikipedia, but there is a clear description here:
- // https://ivanyu.me/blog/2014/10/15/z-algorithm/
- //
- // The code below is adapted from the public domain implementation by the same author here:
- // https://github.com/ivanyu/string-algorithms/blob/master/z_algorithm.py
- //
- // Example:
- // Last N tokens: a b c c b c y a b c
- // Repeat counts: 0 0 3 1 0 2 0 0 0 0
- // ^
- // This `3` means that the last three tokens of the context (a b c) also appear here.
- //
- // This step is worst case O(N) since the Z-algorithm is linear, despite the appearance of nested
- // for/while loops. This can be seen by observing that the `lt` and `rt` bounds are set after each
- // repeated suffix is detected (i.e. after each while loop when n > 0). These bound variables
- // ensure that the inner while loops only examine each token in the context once as the outer
- // for loop iterates over the context.
- {
- const int last = last_n_repeat - 1;
- int rt = 0, lt = 0;
- for (int k = 1; k < last_n_repeat; ++k) {
- if (k > rt) {
- // If k is outside the current Z-box, do naive computation.
- int n = 0;
- while (n + k < last_n_repeat && ctx->last_tokens.rat(n) == ctx->last_tokens.rat(n+k)) {
- ++n;
- }
- ctx->dry_repeat_count[last - k] = std::min(n, rep_limit);
- if (n > 0) {
- lt = k;
- rt = k+n-1;
- }
- } else {
- // If k is inside the current Z-box, consider two cases.
- int p = k - lt; // Pair index.
- int right_part_len = rt - k + 1;
- if (ctx->dry_repeat_count[last - p] < right_part_len) {
- int n = std::min(ctx->dry_repeat_count[last - p], rep_limit);
- ctx->dry_repeat_count[last - k] = n;
- } else {
- int i = rt + 1;
- while (i < last_n_repeat && ctx->last_tokens.rat(i) == ctx->last_tokens.rat(i - k)) {
- i += 1;
- }
- int n = std::min(i - k, rep_limit);
- ctx->dry_repeat_count[last - k] = n;
- lt = k;
- rt = i - 1;
- }
- }
- }
- }
- // Step 3: Iterate over dry_repeat_count and last_tokens, examining the maximum repeat length
- // that would be generated by emitting each new token that would extend a sequence.
- //
- // Following the same example as above:
- // Last N tokens: a b c c b c y a b c
- // Repeat counts: 0 0 3 1 0 2 0 0 0 0
- //
- // For each non-zero, look ahead one token. This token, if emitted, would extend the repetition.
- // c: 3 -> 4 (from `a b c` to `a b c c`)
- // b: 1 -> 2 (from `c` to `c b`)
- // y: 2 -> 3 (from `b c` to `b c y`)
- for (int i = 0; i < last_n_repeat - 1; ++i) {
- int repeat_len = ctx->dry_repeat_count[i];
- if (repeat_len >= ctx->dry_allowed_length) {
- // This token ends a repeat, so the next token would continue one.
- // By convention, the value of `repeat_len` only includes the tokens currently
- // in the context, not the new token that would be added.
- llama_token token = ctx->last_tokens.rat(last_n_repeat - 2 - i);
- // Track the maximum sequence ending in this token.
- const auto& it = ctx->dry_max_token_repeat.find(token);
- if (it == ctx->dry_max_token_repeat.end() || it->second < repeat_len) {
- ctx->dry_max_token_repeat[token] = repeat_len;
- }
- }
- }
- // Step 4: Apply logit penalties based on the maximum repeat length for relevant tokens.
- // Prevent floating point overflow in `pow(penalty_base, exponent)` by clamping to `max_exponent`.
- // Compute it from `penalty_base` and the approximate log of `std::numeric_limits<float>::max()`
- const float FLOAT_MAX_LOG = 88.7228391f;
- int max_exponent = 0;
- if (ctx->dry_base > 1.000001f) {
- max_exponent = FLOAT_MAX_LOG / std::log(ctx->dry_base);
- }
- for (size_t i = 0; i < cur_p->size; ++i) {
- const auto& af_kvp = ctx->dry_max_token_repeat.find(cur_p->data[i].id);
- if (af_kvp != ctx->dry_max_token_repeat.end()) {
- // Check all sequence breakers starting with this token
- auto range = ctx->dry_processed_breakers.equal_range(cur_p->data[i].id);
- bool is_single_token_breaker = false;
- for (auto it = range.first; it != range.second; ++it) {
- if (it->second.empty()) {
- is_single_token_breaker = true;
- break;
- }
- }
- // Apply penalty only if it's not a single-token sequence breaker
- if (!is_single_token_breaker) {
- int repeat_exp = af_kvp->second - ctx->dry_allowed_length;
- if (max_exponent > 0 && repeat_exp > max_exponent) {
- repeat_exp = max_exponent;
- }
- float penalty = ctx->dry_multiplier * std::pow(ctx->dry_base, repeat_exp);
- cur_p->data[i].logit -= penalty;
- }
- }
- }
- cur_p->sorted = false;
- }
- static void llama_sampler_dry_reset(struct llama_sampler * smpl) {
- auto * ctx = (llama_sampler_dry *) smpl->ctx;
- ctx->last_tokens.clear();
- ctx->dry_repeat_count.clear();
- ctx->dry_max_token_repeat.clear();
- }
- static struct llama_sampler * llama_sampler_dry_clone(const struct llama_sampler * smpl) {
- const auto * ctx = (llama_sampler_dry *) smpl->ctx;
- llama_vocab dummy_vocab;
- // dummy vocab is passed because it is only needed for raw sequence breaker processing, which we have already done and will simply be copying
- auto * result = llama_sampler_init_dry_impl(dummy_vocab, ctx->total_context_size, ctx->dry_multiplier, ctx->dry_base, ctx->dry_allowed_length, ctx->dry_penalty_last_n, NULL, 0);
- // Copy the state, including the processed breakers
- {
- auto * result_ctx = (llama_sampler_dry *) result->ctx;
- result_ctx->dry_processed_breakers = ctx->dry_processed_breakers;
- result_ctx->dry_repeat_count = ctx->dry_repeat_count;
- result_ctx->dry_max_token_repeat = ctx->dry_max_token_repeat;
- result_ctx->last_tokens = ctx->last_tokens;
- }
- return result;
- }
- static void llama_sampler_dry_free(struct llama_sampler * smpl) {
- delete (llama_sampler_dry *) smpl->ctx;
- }
- static struct llama_sampler_i llama_sampler_dry_i = {
- /* .name = */ llama_sampler_dry_name,
- /* .accept = */ llama_sampler_dry_accept,
- /* .apply = */ llama_sampler_dry_apply,
- /* .reset = */ llama_sampler_dry_reset,
- /* .clone = */ llama_sampler_dry_clone,
- /* .free = */ llama_sampler_dry_free,
- };
- struct llama_sampler * llama_sampler_init_dry_impl(const struct llama_vocab & vocab, int32_t context_size, float dry_multiplier, float dry_base, int32_t dry_allowed_length, int32_t dry_penalty_last_n, const char** seq_breakers, size_t num_breakers) {
- int32_t effective_dry_penalty_last_n = (dry_penalty_last_n == -1) ? context_size : std::max(dry_penalty_last_n, 0);
- std::unordered_multimap<llama_token, std::vector<llama_token>> processed_breakers;
- const int MAX_CHAR_LEN = 40;
- const int MAX_SEQ_LEN = 20;
- const bool dry_enabled = (dry_multiplier != 0.0f && dry_base >= 1.0f && dry_penalty_last_n != 0);
- if (dry_enabled && seq_breakers != nullptr && num_breakers > 0) {
- // Process sequence breakers
- for (size_t i = 0; i < num_breakers; ++i) {
- if (seq_breakers[i] == nullptr || std::strlen(seq_breakers[i]) == 0) {
- LLAMA_LOG_WARN("skipping null or empty DRY sequence breaker at index %zu\n", i);
- continue;
- }
- std::string sequence_break(seq_breakers[i]);
- if (sequence_break.empty()) {
- LLAMA_LOG_WARN("skipping empty DRY sequence breaker\n");
- continue;
- }
- if (sequence_break.size() > MAX_CHAR_LEN) {
- LLAMA_LOG_WARN("truncating DRY sequence breaker to %d characters\n", MAX_CHAR_LEN);
- sequence_break.resize(MAX_CHAR_LEN);
- }
- get_overlapping_token_sequences(vocab, sequence_break, processed_breakers, MAX_SEQ_LEN);
- }
- }
- return new llama_sampler {
- /* .iface = */ &llama_sampler_dry_i,
- /* .ctx = */ new llama_sampler_dry {
- /* .total_context_size = */ context_size,
- /* .dry_multiplier = */ dry_multiplier,
- /* .dry_base = */ dry_base,
- /* .dry_allowed_length = */ dry_allowed_length,
- /* .dry_penalty_last_n = */ dry_penalty_last_n,
- /* .dry_processed_breakers = */ std::move(processed_breakers),
- /* .dry_repeat_count = */ dry_enabled ? std::vector<int>(effective_dry_penalty_last_n, 0) : std::vector<int>{},
- /* .dry_max_token_repeat = */ {},
- /* .last_tokens = */ dry_enabled ? ring_buffer<llama_token>(effective_dry_penalty_last_n) : ring_buffer<llama_token>(0),
- },
- };
- }
- // wrapper for test-sampling.cpp
- struct llama_sampler * llama_sampler_init_dry_testing(int32_t context_size, float dry_multiplier, float dry_base, int32_t dry_allowed_length, int32_t dry_penalty_last_n, const std::vector<std::vector<llama_token>>& seq_breakers) {
- llama_vocab dummy_vocab;
- auto * result = llama_sampler_init_dry_impl(dummy_vocab, context_size, dry_multiplier, dry_base, dry_allowed_length, dry_penalty_last_n, NULL, 0);
- auto * ctx = (llama_sampler_dry *) result->ctx;
- // Process the token-based sequence breakers
- ctx->dry_processed_breakers.clear();
- if (seq_breakers.empty()) {
- LLAMA_LOG_WARN("empty DRY sequence breakers list in llama_sampler_init_dry_testing\n");
- } else {
- for (const auto& breaker : seq_breakers) {
- if (breaker.empty()) {
- LLAMA_LOG_WARN("skipping DRY empty sequence breaker\n");
- continue;
- }
- llama_token head_token = breaker[0];
- std::vector<llama_token> tail_tokens(breaker.begin() + 1, breaker.end());
- ctx->dry_processed_breakers.emplace(head_token, std::move(tail_tokens));
- }
- if (ctx->dry_processed_breakers.empty()) {
- LLAMA_LOG_WARN("no valid DRY sequence breakers processed in llama_sampler_init_dry_testing\n");
- }
- }
- return result;
- }
- // logit-bias
- struct llama_sampler_logit_bias {
- const int32_t n_vocab;
- const std::vector<llama_logit_bias> logit_bias;
- std::vector<llama_logit_bias> to_search;
- };
- static const char * llama_sampler_logit_bias_name(const struct llama_sampler * /*smpl*/) {
- return "logit-bias";
- }
- static void llama_sampler_logit_bias_apply(struct llama_sampler * smpl, llama_token_data_array * cur_p) {
- auto * ctx = (llama_sampler_logit_bias *) smpl->ctx;
- if (ctx->logit_bias.empty()) {
- return;
- }
- ctx->to_search.clear();
- // update the candidates that have not been shuffled in the vocabulary (i.e. idx == id)
- for (const auto & lb : ctx->logit_bias) {
- if (lb.token >= 0 && cur_p->size > (size_t) lb.token && cur_p->data[lb.token].id == lb.token) {
- cur_p->data[lb.token].logit += lb.bias;
- } else {
- ctx->to_search.push_back(lb);
- }
- }
- if (ctx->to_search.empty()) {
- return;
- }
- // search for the remaining candidates that were not found in the previous step
- for (size_t i = 0; i < cur_p->size; ++i) {
- for (const auto & lb : ctx->to_search) {
- if (cur_p->data[i].id == lb.token) {
- cur_p->data[i].logit += lb.bias;
- break;
- }
- }
- }
- }
- static struct llama_sampler * llama_sampler_logit_bias_clone(const struct llama_sampler * smpl) {
- const auto * ctx = (const llama_sampler_logit_bias *) smpl->ctx;
- return llama_sampler_init_logit_bias(ctx->n_vocab, ctx->logit_bias.size(), ctx->logit_bias.data());
- }
- static void llama_sampler_logit_bias_free(struct llama_sampler * smpl) {
- delete (llama_sampler_logit_bias *) smpl->ctx;
- }
- static struct llama_sampler_i llama_sampler_logit_bias_i = {
- /* .name = */ llama_sampler_logit_bias_name,
- /* .accept = */ nullptr,
- /* .apply = */ llama_sampler_logit_bias_apply,
- /* .reset = */ nullptr,
- /* .clone = */ llama_sampler_logit_bias_clone,
- /* .free = */ llama_sampler_logit_bias_free,
- };
- struct llama_sampler * llama_sampler_init_logit_bias(
- int32_t n_vocab,
- int32_t n_logit_bias,
- const llama_logit_bias * logit_bias) {
- return new llama_sampler {
- /* .iface = */ &llama_sampler_logit_bias_i,
- /* .ctx = */ new llama_sampler_logit_bias {
- /* .n_vocab = */ n_vocab,
- /* .logit_bias = */ std::vector<llama_logit_bias>(logit_bias, logit_bias + n_logit_bias),
- /* .to_search = */ {},
- },
- };
- }
- // infill
- //#define GGML_DEBUG_SAMPLER_INFILL
- struct llama_sampler_infill {
- const struct llama_vocab * vocab;
- std::vector<char> buf0;
- std::vector<char> buf1;
- };
- static const char * llama_sampler_infill_name(const struct llama_sampler * /*smpl*/) {
- return "infill";
- }
- static void llama_sampler_infill_apply(struct llama_sampler * smpl, llama_token_data_array * cur_p) {
- auto * ctx = (llama_sampler_infill *) smpl->ctx;
- llama_sampler_softmax_impl(cur_p);
- #if defined(GGML_DEBUG_SAMPLER_INFILL)
- #define LOG_DBG_CUR LLAMA_LOG_DEBUG
- #else
- #define LOG_DBG_CUR(...)
- #endif
- for (size_t i = 0; i < cur_p->size; ++i) {
- LOG_DBG_CUR("%s: cur_p[%3zu] = { id: %6d, p: %.6f, logit: %6.3f }\n", __func__, i, cur_p->data[i].id, cur_p->data[i].p, cur_p->data[i].logit);
- }
- float p_txt_sum = 0.0f;
- float p_eog_sum = 0.0f;
- for (size_t i = 0; i < cur_p->size; ++i) {
- if (llama_token_is_eog_impl(*ctx->vocab, cur_p->data[i].id)) {
- p_eog_sum += cur_p->data[i].p;
- } else {
- p_txt_sum += cur_p->data[i].p;
- }
- }
- const float rat = p_eog_sum == 0.0 ? INFINITY : p_txt_sum / p_eog_sum; GGML_UNUSED(rat);
- LOG_DBG_CUR("%s: p_txt_sum = %.2f, p_eog_sum = %.2f, rat = %.2f, n = %zu\n", __func__, p_txt_sum, p_eog_sum, rat, cur_p->size);
- if (3*p_eog_sum*cur_p->size > p_txt_sum) {
- LOG_DBG_CUR("%s: the ratio p_txt/p_eog = %.2f is too low -> sampling EOG\n", __func__, p_txt_sum/p_eog_sum);
- // keep just the EOG tokens
- const auto size_org = cur_p->size;
- cur_p->size = 0;
- float p_sum = 0.0f;
- for (size_t i = 0; i < size_org; ++i) {
- if (llama_token_is_eog_impl(*ctx->vocab, cur_p->data[i].id)) {
- p_sum += cur_p->data[i].p;
- cur_p->data[cur_p->size++] = cur_p->data[i];
- }
- }
- // normalize probs
- for (size_t i = 0; i < cur_p->size; ++i) {
- cur_p->data[i].p /= p_sum;
- }
- return;
- }
- size_t n_combined = 0; GGML_UNUSED(n_combined);
- // combine tokens with common prefix
- for (size_t i0 = 0; i0 < cur_p->size; ++i0) {
- for (size_t i1 = 0; i1 < cur_p->size; ++i1) {
- if (cur_p->data[i0].logit == -INFINITY) {
- break;
- }
- if (i0 == i1 || cur_p->data[i1].logit == -INFINITY) {
- continue;
- }
- int len0 = llama_token_to_piece_impl(*ctx->vocab, cur_p->data[i0].id, ctx->buf0.data(), ctx->buf0.size(), 0, false);
- if (len0 < 0) {
- ctx->buf0.resize(len0);
- len0 = llama_token_to_piece_impl(*ctx->vocab, cur_p->data[i0].id, ctx->buf0.data(), ctx->buf0.size(), 0, false);
- assert(len0 > 0);
- }
- int len1 = llama_token_to_piece_impl(*ctx->vocab, cur_p->data[i1].id, ctx->buf1.data(), ctx->buf1.size(), 0, false);
- if (len1 < 0) {
- ctx->buf1.resize(len1);
- len1 = llama_token_to_piece_impl(*ctx->vocab, cur_p->data[i1].id, ctx->buf1.data(), ctx->buf1.size(), 0, false);
- assert(len1 > 0);
- }
- // token i0 is a prefix of token i1
- if (len0 > 0 && len0 <= len1 && memcmp(ctx->buf0.data(), ctx->buf1.data(), len0) == 0) {
- int dst = i0;
- int src = i1;
- // merge into the token with higher probability
- if (cur_p->data[i1].p > cur_p->data[i0].p) {
- std::swap(dst, src);
- }
- cur_p->data[dst].p += cur_p->data[src].p;
- cur_p->data[src].logit = -INFINITY;
- cur_p->data[src].p = 0.0f;
- n_combined++;
- }
- }
- }
- size_t n_non_eog = 0;
- size_t size_org = cur_p->size;
- float p_sum = 0.0f;
- float thold = 0.2f;
- cur_p->size = 0;
- LOG_DBG_CUR("%s: n_combined = %zu, applying thold = %.3f\n", __func__, n_combined, thold);
- for (size_t i = 0; i < size_org; ++i) {
- const bool is_eog = llama_token_is_eog_impl(*ctx->vocab, cur_p->data[i].id);
- if (cur_p->data[i].p < thold && !is_eog) {
- continue;
- }
- if (!is_eog) {
- ++n_non_eog;
- }
- p_sum += cur_p->data[i].p;
- // keep this token
- cur_p->data[cur_p->size++] = cur_p->data[i];
- }
- LOG_DBG_CUR("%s: n_non_eog = %zu\n", __func__, n_non_eog);
- // if no non-EOG tokens are left -> reduce cur_p to single EOT token
- if (n_non_eog == 0) {
- cur_p->size = 1;
- cur_p->data[0].id = llama_token_eot_impl(*ctx->vocab);
- cur_p->data[0].logit = 1.0f;
- return;
- }
- // normalize probs
- for (size_t i = 0; i < cur_p->size; ++i) {
- cur_p->data[i].p /= p_sum;
- LOG_DBG_CUR("%s: cur_p[%3zu] = { id: %6d, p: %.6f, logit: %6.3f }\n", __func__, i, cur_p->data[i].id, cur_p->data[i].p, cur_p->data[i].logit);
- }
- size_org = cur_p->size;
- p_sum = 0.0f;
- thold = 1.0/(n_non_eog + 1);
- cur_p->size = 0;
- LOG_DBG_CUR("%s: applying thold = %.3f\n", __func__, thold);
- for (size_t i = 0; i < size_org; ++i) {
- const bool is_eog = llama_token_is_eog_impl(*ctx->vocab, cur_p->data[i].id);
- if (cur_p->data[i].p < thold && !is_eog) {
- continue;
- }
- p_sum += cur_p->data[i].p;
- cur_p->data[cur_p->size++] = cur_p->data[i];
- }
- // normalize probs
- for (size_t i = 0; i < cur_p->size; ++i) {
- cur_p->data[i].p /= p_sum;
- LOG_DBG_CUR("%s: cur_p[%3zu] = { id: %6d, p: %.6f, logit: %6.3f }\n", __func__, i, cur_p->data[i].id, cur_p->data[i].p, cur_p->data[i].logit);
- }
- #undef LOG_DBG_CUR
- }
- static struct llama_sampler * llama_sampler_infill_clone(const struct llama_sampler * smpl) {
- const auto * ctx = (const llama_sampler_infill *) smpl->ctx;
- return llama_sampler_init_infill_impl(*ctx->vocab);
- }
- static void llama_sampler_infill_free(struct llama_sampler * smpl) {
- delete (llama_sampler_infill *) smpl->ctx;
- }
- static struct llama_sampler_i llama_sampler_infill_i = {
- /* .name = */ llama_sampler_infill_name,
- /* .accept = */ nullptr,
- /* .apply = */ llama_sampler_infill_apply,
- /* .reset = */ nullptr,
- /* .clone = */ llama_sampler_infill_clone,
- /* .free = */ llama_sampler_infill_free,
- };
- struct llama_sampler * llama_sampler_init_infill_impl(
- const struct llama_vocab & vocab) {
- return new llama_sampler {
- /* .iface = */ &llama_sampler_infill_i,
- /* .ctx = */ new llama_sampler_infill {
- /* .vocab = */ &vocab,
- /* .buf0 = */ std::vector<char>(512),
- /* .buf1 = */ std::vector<char>(512),
- },
- };
- }
- // utils
- uint32_t llama_sampler_get_seed(const struct llama_sampler * smpl) {
- if (smpl->iface == &llama_sampler_dist_i) {
- return ((const llama_sampler_dist *) smpl->ctx)->seed_cur;
- }
- if (smpl->iface == &llama_sampler_mirostat_i) {
- return ((const llama_sampler_mirostat *) smpl->ctx)->seed_cur;
- }
- if (smpl->iface == &llama_sampler_mirostat_v2_i) {
- return ((const llama_sampler_mirostat_v2 *) smpl->ctx)->seed_cur;
- }
- if (smpl->iface == &llama_sampler_chain_i) {
- const auto * ctx = (const llama_sampler_chain *) smpl->ctx;
- for (auto it = ctx->samplers.rbegin(); it != ctx->samplers.rend(); ++it) {
- const uint32_t seed = llama_sampler_get_seed(*it);
- if (seed != LLAMA_DEFAULT_SEED) {
- return seed;
- }
- }
- }
- return LLAMA_DEFAULT_SEED;
- }
- // perf
- struct llama_perf_sampler_data llama_perf_sampler(const struct llama_sampler * chain) {
- struct llama_perf_sampler_data data = {};
- if (chain == nullptr || chain->iface != &llama_sampler_chain_i) {
- GGML_ABORT("%s: invalid sampler passed - requires a sampler created with llama_sampler_chain_init()\n", __func__);
- }
- const auto * ctx = (const struct llama_sampler_chain *) chain->ctx;
- data.t_sample_ms = 1e-3 * ctx->t_sample_us;
- data.n_sample = std::max(0, ctx->n_sample);
- return data;
- }
- void llama_perf_sampler_print(const struct llama_sampler * chain) {
- const auto data = llama_perf_sampler(chain);
- LLAMA_LOG_INFO("%s: sampling time = %10.2f ms / %5d runs (%8.2f ms per token, %8.2f tokens per second)\n",
- __func__, data.t_sample_ms, data.n_sample, data.t_sample_ms / data.n_sample, 1e3 / data.t_sample_ms * data.n_sample);
- }
- void llama_perf_sampler_reset(struct llama_sampler * chain) {
- if (chain == nullptr || chain->iface != &llama_sampler_chain_i) {
- GGML_ABORT("%s: invalid sampler passed - requires a sampler created with llama_sampler_chain_init()\n", __func__);
- }
- auto * ctx = (struct llama_sampler_chain *) chain->ctx;
- ctx->t_sample_us = ctx->n_sample = 0;
- }
|