Ei kuvausta

Roy Han 5f0403d208 Isolated Deletions 11 kuukautta sitten
.github afd2b058b4 set codesign timeout to longer (#4605) 11 kuukautta sitten
api 6845988807 Ollama `ps` command for showing currently loaded models (#4327) 11 kuukautta sitten
app 4cc3be3035 Move envconfig and consolidate env vars (#4608) 11 kuukautta sitten
auth 0a7fdbe533 prompt to display and add local ollama keys to account (#3717) 1 vuosi sitten
cmd 4cc3be3035 Move envconfig and consolidate env vars (#4608) 11 kuukautta sitten
convert 955c317cab chore: update tokenizer.go (#4571) 11 kuukautta sitten
docs 1b2d156094 Tidy up developer guide a little 11 kuukautta sitten
envconfig 4cc3be3035 Move envconfig and consolidate env vars (#4608) 11 kuukautta sitten
examples 8a8e7afa96 small fix on examples/python-simplechat/client.py to actually get a streamed response and get tokens printed as we receive it (#4671) 11 kuukautta sitten
format 6845988807 Ollama `ps` command for showing currently loaded models (#4327) 11 kuukautta sitten
gpu 646371f56d Merge pull request #3278 from zhewang1-intc/rebase_ollama_main 11 kuukautta sitten
integration 7f2fbad736 Skip max queue test on remote 11 kuukautta sitten
llm 646371f56d Merge pull request #3278 from zhewang1-intc/rebase_ollama_main 11 kuukautta sitten
macapp 8aadad9c72 updated updateURL 11 kuukautta sitten
openai 41ba3017fd Fix OpenAI `finish_reason` values when empty (#4368) 11 kuukautta sitten
parser ccdf0b2a44 Move the parser back + handle utf16 files (#4533) 11 kuukautta sitten
progress 1b272d5bcd change `github.com/jmorganca/ollama` to `github.com/ollama/ollama` (#3347) 1 vuosi sitten
readline ad897080a2 working on integration of multi-byte and multi-width runes (#4549) 11 kuukautta sitten
scripts 1f5008544b Update install.sh 11 kuukautta sitten
server 5f0403d208 Isolated Deletions 11 kuukautta sitten
types ccdf0b2a44 Move the parser back + handle utf16 files (#4533) 11 kuukautta sitten
version 2c7f956b38 add version 1 vuosi sitten
.dockerignore 5017a15bcb add `macapp` to `.dockerignore` 1 vuosi sitten
.gitattributes f7dc7dcc64 Update .gitattributes 1 vuosi sitten
.gitignore 34a4a94f13 ignore debug bin files 1 vuosi sitten
.gitmodules fac9060da5 Init submodule with new path 1 vuosi sitten
.golangci.yaml 4d4f75a8a8 Revert "fix golangci workflow missing gofmt and goimports (#4190)" 1 vuosi sitten
.prettierrc.json 8685a5ad18 move .prettierrc.json to root 1 vuosi sitten
Dockerfile 8aec92fa6d rearranged conditional logic for static build, dockerfile updated 1 vuosi sitten
LICENSE df5fdd6647 `proto` -> `ollama` 1 vuosi sitten
README.md 9db0996ed4 Add OllamaSpring Project to Readme (#4672) 11 kuukautta sitten
go.mod 171eb040fc simplify safetensors reading 11 kuukautta sitten
go.sum 171eb040fc simplify safetensors reading 11 kuukautta sitten
main.go 1b272d5bcd change `github.com/jmorganca/ollama` to `github.com/ollama/ollama` (#3347) 1 vuosi sitten

README.md

 ollama

Ollama

Discord

Get up and running with large language models locally.

macOS

Download

Windows preview

Download

Linux

curl -fsSL https://ollama.com/install.sh | sh

Manual install instructions

Docker

The official Ollama Docker image ollama/ollama is available on Docker Hub.

Libraries

Quickstart

To run and chat with Llama 3:

ollama run llama3

Model library

Ollama supports a list of models available on ollama.com/library

Here are some example models that can be downloaded:

Model Parameters Size Download
Llama 3 8B 4.7GB ollama run llama3
Llama 3 70B 40GB ollama run llama3:70b
Phi 3 Mini 3.8B 2.3GB ollama run phi3
Phi 3 Medium 14B 7.9GB ollama run phi3:medium
Gemma 2B 1.4GB ollama run gemma:2b
Gemma 7B 4.8GB ollama run gemma:7b
Mistral 7B 4.1GB ollama run mistral
Moondream 2 1.4B 829MB ollama run moondream
Neural Chat 7B 4.1GB ollama run neural-chat
Starling 7B 4.1GB ollama run starling-lm
Code Llama 7B 3.8GB ollama run codellama
Llama 2 Uncensored 7B 3.8GB ollama run llama2-uncensored
LLaVA 7B 4.5GB ollama run llava
Solar 10.7B 6.1GB ollama run solar

Note: You should have at least 8 GB of RAM available to run the 7B models, 16 GB to run the 13B models, and 32 GB to run the 33B models.

Customize a model

Import from GGUF

Ollama supports importing GGUF models in the Modelfile:

  1. Create a file named Modelfile, with a FROM instruction with the local filepath to the model you want to import.

    FROM ./vicuna-33b.Q4_0.gguf
    
  2. Create the model in Ollama

    ollama create example -f Modelfile
    
  3. Run the model

    ollama run example
    

Import from PyTorch or Safetensors

See the guide on importing models for more information.

Customize a prompt

Models from the Ollama library can be customized with a prompt. For example, to customize the llama3 model:

ollama pull llama3

Create a Modelfile:

FROM llama3

# set the temperature to 1 [higher is more creative, lower is more coherent]
PARAMETER temperature 1

# set the system message
SYSTEM """
You are Mario from Super Mario Bros. Answer as Mario, the assistant, only.
"""

Next, create and run the model:

ollama create mario -f ./Modelfile
ollama run mario
>>> hi
Hello! It's your friend Mario.

For more examples, see the examples directory. For more information on working with a Modelfile, see the Modelfile documentation.

CLI Reference

Create a model

ollama create is used to create a model from a Modelfile.

ollama create mymodel -f ./Modelfile

Pull a model

ollama pull llama3

This command can also be used to update a local model. Only the diff will be pulled.

Remove a model

ollama rm llama3

Copy a model

ollama cp llama3 my-model

Multiline input

For multiline input, you can wrap text with """:

>>> """Hello,
... world!
... """
I'm a basic program that prints the famous "Hello, world!" message to the console.

Multimodal models

>>> What's in this image? /Users/jmorgan/Desktop/smile.png
The image features a yellow smiley face, which is likely the central focus of the picture.

Pass the prompt as an argument

$ ollama run llama3 "Summarize this file: $(cat README.md)"
 Ollama is a lightweight, extensible framework for building and running language models on the local machine. It provides a simple API for creating, running, and managing models, as well as a library of pre-built models that can be easily used in a variety of applications.

List models on your computer

ollama list

Start Ollama

ollama serve is used when you want to start ollama without running the desktop application.

Building

See the developer guide

Running local builds

Next, start the server:

./ollama serve

Finally, in a separate shell, run a model:

./ollama run llama3

REST API

Ollama has a REST API for running and managing models.

Generate a response

curl http://localhost:11434/api/generate -d '{
  "model": "llama3",
  "prompt":"Why is the sky blue?"
}'

Chat with a model

curl http://localhost:11434/api/chat -d '{
  "model": "llama3",
  "messages": [
    { "role": "user", "content": "why is the sky blue?" }
  ]
}'

See the API documentation for all endpoints.

Community Integrations

Web & Desktop

Terminal

Database

Package managers

Libraries

Extensions & Plugins

Supported backends

  • llama.cpp project founded by Georgi Gerganov.