Nessuna descrizione

Roy Han f16b3db70c oai compat 9 mesi fa
.github 5d604eec5b Bump Go patch version 9 mesi fa
api 46e6327e0f api: add stringifier for `Tool` (#5891) 9 mesi fa
app 0e4d653687 upate to `llama3.1` elsewhere in repo (#6032) 9 mesi fa
auth 0a7fdbe533 prompt to display and add local ollama keys to account (#3717) 1 anno fa
cmd 1a83581a8e Merge pull request #5895 from dhiltgen/sched_faq 9 mesi fa
convert d835368eb8 convert: capture `head_dim` for mistral (#5818) 9 mesi fa
docs 1a83581a8e Merge pull request #5895 from dhiltgen/sched_faq 9 mesi fa
envconfig cc269ba094 Remove no longer supported max vram var 9 mesi fa
examples 94d37fdcae fix: examples/langchain-python-rag-privategpt/requirements.txt (#3382) 10 mesi fa
format e40145a39d lint 11 mesi fa
gpu 7c2a157ca4 Ensure amd gpu nodes are numerically sorted 9 mesi fa
integration ac33aa7d37 Fix Embed Test Flakes (#5893) 9 mesi fa
llm 68ee42f995 update llama.cpp submodule to `6eeaeba1` (#6039) 9 mesi fa
macapp 0e4d653687 upate to `llama3.1` elsewhere in repo (#6032) 9 mesi fa
openai f16b3db70c oai compat 9 mesi fa
parser f3d7a481b7 feat: add support for min_p (resolve #1142) (#1825) 9 mesi fa
progress e40145a39d lint 11 mesi fa
readline 8ce4032e72 more lint 11 mesi fa
scripts ce3c93b08f Report better error on cuda unsupported os/arch 9 mesi fa
server 23ff673bdc correct output 9 mesi fa
template ec4c35fe99 Merge pull request #5512 from ollama/mxyng/detect-stop 9 mesi fa
types 631cfd9e62 types/model: remove knowledge of digest (#5500) 10 mesi fa
util cb42e607c5 llm: speed up gguf decoding by a lot (#5246) 10 mesi fa
version 2c7f956b38 add version 1 anno fa
.dockerignore 5017a15bcb add `macapp` to `.dockerignore` 1 anno fa
.gitattributes f7dc7dcc64 Update .gitattributes 1 anno fa
.gitignore 34a4a94f13 ignore debug bin files 1 anno fa
.gitmodules fac9060da5 Init submodule with new path 1 anno fa
.golangci.yaml 6297f85606 gofmt, goimports 11 mesi fa
.prettierrc.json 8685a5ad18 move .prettierrc.json to root 1 anno fa
Dockerfile f02f83660c bump go version to 1.22.5 to fix security vulnerabilities 9 mesi fa
LICENSE df5fdd6647 `proto` -> `ollama` 1 anno fa
README.md f26aef9a8b docs: update README.md (#6059) 9 mesi fa
go.mod fb6cbc02fb update named templates 10 mesi fa
go.sum 9b6c2e6eb6 detect chat template from KV 10 mesi fa
main.go 1b272d5bcd change `github.com/jmorganca/ollama` to `github.com/ollama/ollama` (#3347) 1 anno fa

README.md

 ollama

Ollama

Discord

Get up and running with large language models.

macOS

Download

Windows preview

Download

Linux

curl -fsSL https://ollama.com/install.sh | sh

Manual install instructions

Docker

The official Ollama Docker image ollama/ollama is available on Docker Hub.

Libraries

Quickstart

To run and chat with Llama 3.1:

ollama run llama3.1

Model library

Ollama supports a list of models available on ollama.com/library

Here are some example models that can be downloaded:

Model Parameters Size Download
Llama 3.1 8B 4.7GB ollama run llama3.1
Llama 3.1 70B 40GB ollama run llama3.1:70b
Llama 3.1 405B 231GB ollama run llama3.1:405b
Phi 3 Mini 3.8B 2.3GB ollama run phi3
Phi 3 Medium 14B 7.9GB ollama run phi3:medium
Gemma 2 9B 5.5GB ollama run gemma2
Gemma 2 27B 16GB ollama run gemma2:27b
Mistral 7B 4.1GB ollama run mistral
Moondream 2 1.4B 829MB ollama run moondream
Neural Chat 7B 4.1GB ollama run neural-chat
Starling 7B 4.1GB ollama run starling-lm
Code Llama 7B 3.8GB ollama run codellama
Llama 2 Uncensored 7B 3.8GB ollama run llama2-uncensored
LLaVA 7B 4.5GB ollama run llava
Solar 10.7B 6.1GB ollama run solar

[!NOTE] You should have at least 8 GB of RAM available to run the 7B models, 16 GB to run the 13B models, and 32 GB to run the 33B models.

Customize a model

Import from GGUF

Ollama supports importing GGUF models in the Modelfile:

  1. Create a file named Modelfile, with a FROM instruction with the local filepath to the model you want to import.

    FROM ./vicuna-33b.Q4_0.gguf
    
  2. Create the model in Ollama

    ollama create example -f Modelfile
    
  3. Run the model

    ollama run example
    

Import from PyTorch or Safetensors

See the guide on importing models for more information.

Customize a prompt

Models from the Ollama library can be customized with a prompt. For example, to customize the llama3.1 model:

ollama pull llama3.1

Create a Modelfile:

FROM llama3.1

# set the temperature to 1 [higher is more creative, lower is more coherent]
PARAMETER temperature 1

# set the system message
SYSTEM """
You are Mario from Super Mario Bros. Answer as Mario, the assistant, only.
"""

Next, create and run the model:

ollama create mario -f ./Modelfile
ollama run mario
>>> hi
Hello! It's your friend Mario.

For more examples, see the examples directory. For more information on working with a Modelfile, see the Modelfile documentation.

CLI Reference

Create a model

ollama create is used to create a model from a Modelfile.

ollama create mymodel -f ./Modelfile

Pull a model

ollama pull llama3.1

This command can also be used to update a local model. Only the diff will be pulled.

Remove a model

ollama rm llama3.1

Copy a model

ollama cp llama3.1 my-model

Multiline input

For multiline input, you can wrap text with """:

>>> """Hello,
... world!
... """
I'm a basic program that prints the famous "Hello, world!" message to the console.

Multimodal models

>>> What's in this image? /Users/jmorgan/Desktop/smile.png
The image features a yellow smiley face, which is likely the central focus of the picture.

Pass the prompt as an argument

$ ollama run llama3.1 "Summarize this file: $(cat README.md)"
 Ollama is a lightweight, extensible framework for building and running language models on the local machine. It provides a simple API for creating, running, and managing models, as well as a library of pre-built models that can be easily used in a variety of applications.

Show model information

ollama show llama3.1

List models on your computer

ollama list

Start Ollama

ollama serve is used when you want to start ollama without running the desktop application.

Building

See the developer guide

Running local builds

Next, start the server:

./ollama serve

Finally, in a separate shell, run a model:

./ollama run llama3.1

REST API

Ollama has a REST API for running and managing models.

Generate a response

curl http://localhost:11434/api/generate -d '{
  "model": "llama3.1",
  "prompt":"Why is the sky blue?"
}'

Chat with a model

curl http://localhost:11434/api/chat -d '{
  "model": "llama3.1",
  "messages": [
    { "role": "user", "content": "why is the sky blue?" }
  ]
}'

See the API documentation for all endpoints.

Community Integrations

Web & Desktop

Terminal

Database

Package managers

Libraries

Mobile

Extensions & Plugins

Supported backends

  • llama.cpp project founded by Georgi Gerganov.