No Description

Jeffrey Morgan 2789ed31a7 improve scratch buffer estimates 1 year ago
.github e299831e2c Merge pull request #1958 from purificant/ci 1 year ago
api 745b5934fa add model to ModelResponse 1 year ago
app cbfff4f868 update dependencies in `app/` 1 year ago
cmd b6c0ef1e70 Merge pull request #1961 from jmorganca/mxyng/rm-double-newline 1 year ago
docs abec7f06e5 Merge pull request #2056 from dhiltgen/slog 1 year ago
examples c5f21f73a4 follow best practices by adding resp.Body.Close() (#1708) 1 year ago
format 424d53ac70 progress: fix bar rate 1 year ago
gpu 2789ed31a7 improve scratch buffer estimates 1 year ago
llm 2789ed31a7 improve scratch buffer estimates 1 year ago
parser fedd705aea Mechanical switch from log to slog 1 year ago
progress 2bb2bdd5d4 fix lint 1 year ago
readline f95d2f25f3 fix temporary history file permissions 1 year ago
scripts dc88cc3981 use `gzip` for runner embedding (#2067) 1 year ago
server aac9ab4db7 fix show handler 1 year ago
version 2c7f956b38 add version 1 year ago
.dockerignore 77d96da94b Code shuffle to clean up the llm dir 1 year ago
.gitignore d4cd695759 Add cgo implementation for llama.cpp 1 year ago
.gitmodules fac9060da5 Init submodule with new path 1 year ago
.golangci.yaml acfc376efd add .golangci.yaml 1 year ago
.prettierrc.json 8685a5ad18 move .prettierrc.json to root 1 year ago
Dockerfile 0409c1fa59 docker: set PATH, LD_LIBRARY_PATH, and capabilities (#1336) 1 year ago
Dockerfile.build 1b249748ab Add multiple CPU variants for Intel Mac 1 year ago
LICENSE df5fdd6647 `proto` -> `ollama` 1 year ago
README.md 82ee019bfc add open interpreter to list of extensions (#2016) 1 year ago
go.mod ecbfc0182f Go bump to v1.21 to pick up slog 1 year ago
go.sum d4cd695759 Add cgo implementation for llama.cpp 1 year ago
main.go 76b85bc0e9 set non-zero error code on error 1 year ago

README.md

logo

Ollama

Discord

Get up and running with large language models locally.

macOS

Download

Windows

Coming soon! For now, you can install Ollama on Windows via WSL2.

Linux & WSL2

curl https://ollama.ai/install.sh | sh

Manual install instructions

Docker

The official Ollama Docker image ollama/ollama is available on Docker Hub.

Quickstart

To run and chat with Llama 2:

ollama run llama2

Model library

Ollama supports a list of open-source models available on ollama.ai/library

Here are some example open-source models that can be downloaded:

Model Parameters Size Download
Llama 2 7B 3.8GB ollama run llama2
Mistral 7B 4.1GB ollama run mistral
Dolphin Phi 2.7B 1.6GB ollama run dolphin-phi
Phi-2 2.7B 1.7GB ollama run phi
Neural Chat 7B 4.1GB ollama run neural-chat
Starling 7B 4.1GB ollama run starling-lm
Code Llama 7B 3.8GB ollama run codellama
Llama 2 Uncensored 7B 3.8GB ollama run llama2-uncensored
Llama 2 13B 13B 7.3GB ollama run llama2:13b
Llama 2 70B 70B 39GB ollama run llama2:70b
Orca Mini 3B 1.9GB ollama run orca-mini
Vicuna 7B 3.8GB ollama run vicuna
LLaVA 7B 4.5GB ollama run llava

Note: You should have at least 8 GB of RAM available to run the 7B models, 16 GB to run the 13B models, and 32 GB to run the 33B models.

Customize a model

Import from GGUF

Ollama supports importing GGUF models in the Modelfile:

  1. Create a file named Modelfile, with a FROM instruction with the local filepath to the model you want to import.

    FROM ./vicuna-33b.Q4_0.gguf
    
  2. Create the model in Ollama

    ollama create example -f Modelfile
    
  3. Run the model

    ollama run example
    

Import from PyTorch or Safetensors

See the guide on importing models for more information.

Customize a prompt

Models from the Ollama library can be customized with a prompt. For example, to customize the llama2 model:

ollama pull llama2

Create a Modelfile:

FROM llama2

# set the temperature to 1 [higher is more creative, lower is more coherent]
PARAMETER temperature 1

# set the system message
SYSTEM """
You are Mario from Super Mario Bros. Answer as Mario, the assistant, only.
"""

Next, create and run the model:

ollama create mario -f ./Modelfile
ollama run mario
>>> hi
Hello! It's your friend Mario.

For more examples, see the examples directory. For more information on working with a Modelfile, see the Modelfile documentation.

CLI Reference

Create a model

ollama create is used to create a model from a Modelfile.

ollama create mymodel -f ./Modelfile

Pull a model

ollama pull llama2

This command can also be used to update a local model. Only the diff will be pulled.

Remove a model

ollama rm llama2

Copy a model

ollama cp llama2 my-llama2

Multiline input

For multiline input, you can wrap text with """:

>>> """Hello,
... world!
... """
I'm a basic program that prints the famous "Hello, world!" message to the console.

Multimodal models

>>> What's in this image? /Users/jmorgan/Desktop/smile.png
The image features a yellow smiley face, which is likely the central focus of the picture.

Pass in prompt as arguments

$ ollama run llama2 "Summarize this file: $(cat README.md)"
 Ollama is a lightweight, extensible framework for building and running language models on the local machine. It provides a simple API for creating, running, and managing models, as well as a library of pre-built models that can be easily used in a variety of applications.

List models on your computer

ollama list

Start Ollama

ollama serve is used when you want to start ollama without running the desktop application.

Building

Install cmake and go:

brew install cmake go

Then generate dependencies:

go generate ./...

Then build the binary:

go build .

More detailed instructions can be found in the developer guide

Running local builds

Next, start the server:

./ollama serve

Finally, in a separate shell, run a model:

./ollama run llama2

REST API

Ollama has a REST API for running and managing models.

Generate a response

curl http://localhost:11434/api/generate -d '{
  "model": "llama2",
  "prompt":"Why is the sky blue?"
}'

Chat with a model

curl http://localhost:11434/api/chat -d '{
  "model": "mistral",
  "messages": [
    { "role": "user", "content": "why is the sky blue?" }
  ]
}'

See the API documentation for all endpoints.

Integrations

Community Integrations

Web & Desktop

Terminal

Database

Package managers

Libraries

Mobile

Extensions & Plugins