k_quants.c 168 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365236623672368236923702371237223732374237523762377237823792380238123822383238423852386238723882389239023912392239323942395239623972398239924002401240224032404240524062407240824092410241124122413241424152416241724182419242024212422242324242425242624272428242924302431243224332434243524362437243824392440244124422443244424452446244724482449245024512452245324542455245624572458245924602461246224632464246524662467246824692470247124722473247424752476247724782479248024812482248324842485248624872488248924902491249224932494249524962497249824992500250125022503250425052506250725082509251025112512251325142515251625172518251925202521252225232524252525262527252825292530253125322533253425352536253725382539254025412542254325442545254625472548254925502551255225532554255525562557255825592560256125622563256425652566256725682569257025712572257325742575257625772578257925802581258225832584258525862587258825892590259125922593259425952596259725982599260026012602260326042605260626072608260926102611261226132614261526162617261826192620262126222623262426252626262726282629263026312632263326342635263626372638263926402641264226432644264526462647264826492650265126522653265426552656265726582659266026612662266326642665266626672668266926702671267226732674267526762677267826792680268126822683268426852686268726882689269026912692269326942695269626972698269927002701270227032704270527062707270827092710271127122713271427152716271727182719272027212722272327242725272627272728272927302731273227332734273527362737273827392740274127422743274427452746274727482749275027512752275327542755275627572758275927602761276227632764276527662767276827692770277127722773277427752776277727782779278027812782278327842785278627872788278927902791279227932794279527962797279827992800280128022803280428052806280728082809281028112812281328142815281628172818281928202821282228232824282528262827282828292830283128322833283428352836283728382839284028412842284328442845284628472848284928502851285228532854285528562857285828592860286128622863286428652866286728682869287028712872287328742875287628772878287928802881288228832884288528862887288828892890289128922893289428952896289728982899290029012902290329042905290629072908290929102911291229132914291529162917291829192920292129222923292429252926292729282929293029312932293329342935293629372938293929402941294229432944294529462947294829492950295129522953295429552956295729582959296029612962296329642965296629672968296929702971297229732974297529762977297829792980298129822983298429852986298729882989299029912992299329942995299629972998299930003001300230033004300530063007300830093010301130123013301430153016301730183019302030213022302330243025302630273028302930303031303230333034303530363037303830393040304130423043304430453046304730483049305030513052305330543055305630573058305930603061306230633064306530663067306830693070307130723073307430753076307730783079308030813082308330843085308630873088308930903091309230933094309530963097309830993100310131023103310431053106310731083109311031113112311331143115311631173118311931203121312231233124312531263127312831293130313131323133313431353136313731383139314031413142314331443145314631473148314931503151315231533154315531563157315831593160316131623163316431653166316731683169317031713172317331743175317631773178317931803181318231833184318531863187318831893190319131923193319431953196319731983199320032013202320332043205320632073208320932103211321232133214321532163217321832193220322132223223322432253226322732283229323032313232323332343235323632373238323932403241324232433244324532463247324832493250325132523253325432553256325732583259326032613262326332643265326632673268326932703271327232733274327532763277327832793280328132823283328432853286328732883289329032913292329332943295329632973298329933003301330233033304330533063307330833093310331133123313331433153316331733183319332033213322332333243325332633273328332933303331333233333334333533363337333833393340334133423343334433453346334733483349335033513352335333543355335633573358335933603361336233633364336533663367336833693370337133723373337433753376337733783379338033813382338333843385338633873388338933903391339233933394339533963397339833993400340134023403340434053406340734083409341034113412341334143415341634173418341934203421342234233424342534263427342834293430343134323433343434353436343734383439344034413442344334443445344634473448344934503451345234533454345534563457345834593460346134623463346434653466346734683469347034713472347334743475347634773478347934803481348234833484348534863487348834893490349134923493349434953496349734983499350035013502350335043505350635073508350935103511351235133514351535163517351835193520352135223523352435253526352735283529353035313532353335343535353635373538353935403541354235433544354535463547354835493550355135523553355435553556355735583559356035613562356335643565356635673568356935703571357235733574357535763577357835793580358135823583358435853586358735883589359035913592359335943595359635973598359936003601360236033604360536063607360836093610361136123613361436153616361736183619362036213622362336243625362636273628362936303631363236333634363536363637363836393640364136423643364436453646364736483649365036513652365336543655365636573658365936603661366236633664366536663667366836693670367136723673367436753676367736783679368036813682368336843685368636873688368936903691369236933694369536963697369836993700370137023703370437053706370737083709371037113712371337143715371637173718371937203721372237233724372537263727372837293730373137323733373437353736373737383739374037413742374337443745374637473748374937503751375237533754375537563757375837593760376137623763376437653766376737683769377037713772377337743775377637773778377937803781378237833784378537863787378837893790379137923793379437953796379737983799380038013802380338043805380638073808380938103811381238133814381538163817381838193820382138223823382438253826382738283829383038313832383338343835383638373838383938403841384238433844384538463847384838493850385138523853385438553856385738583859386038613862386338643865386638673868386938703871387238733874387538763877387838793880388138823883388438853886388738883889389038913892389338943895389638973898389939003901390239033904390539063907390839093910391139123913391439153916391739183919392039213922392339243925392639273928392939303931393239333934393539363937393839393940394139423943394439453946394739483949395039513952395339543955395639573958395939603961396239633964396539663967396839693970397139723973397439753976397739783979398039813982398339843985398639873988398939903991399239933994399539963997399839994000400140024003400440054006400740084009401040114012401340144015401640174018401940204021402240234024402540264027402840294030403140324033403440354036403740384039404040414042404340444045404640474048404940504051405240534054405540564057405840594060406140624063406440654066406740684069407040714072407340744075407640774078407940804081408240834084408540864087408840894090409140924093409440954096409740984099410041014102410341044105410641074108410941104111411241134114411541164117411841194120412141224123412441254126412741284129413041314132413341344135413641374138413941404141414241434144414541464147414841494150415141524153415441554156415741584159416041614162416341644165416641674168416941704171417241734174417541764177417841794180418141824183418441854186418741884189419041914192419341944195419641974198419942004201420242034204420542064207420842094210421142124213421442154216421742184219422042214222422342244225422642274228422942304231423242334234423542364237423842394240424142424243424442454246424742484249425042514252
  1. /**
  2. * llama.cpp - git 3ebb00935f3f0522b75df49c2769ab1774b91380
  3. *
  4. * MIT License
  5. *
  6. * Copyright (c) 2023 Georgi Gerganov
  7. *
  8. * Permission is hereby granted, free of charge, to any person obtaining a copy
  9. * of this software and associated documentation files (the "Software"), to deal
  10. * in the Software without restriction, including without limitation the rights
  11. * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
  12. * copies of the Software, and to permit persons to whom the Software is
  13. * furnished to do so, subject to the following conditions:
  14. *
  15. * The above copyright notice and this permission notice shall be included in all
  16. * copies or substantial portions of the Software.
  17. *
  18. * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
  19. * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
  20. * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
  21. * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
  22. * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
  23. * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
  24. * SOFTWARE.
  25. */
  26. #include "k_quants.h"
  27. #include "ggml.h"
  28. #include <math.h>
  29. #include <string.h>
  30. #include <assert.h>
  31. #ifdef __ARM_NEON
  32. // if YCM cannot find <arm_neon.h>, make a symbolic link to it, for example:
  33. //
  34. // $ ln -sfn /Library/Developer/CommandLineTools/usr/lib/clang/13.1.6/include/arm_neon.h ./src/
  35. //
  36. #include <arm_neon.h>
  37. #else
  38. #ifdef __wasm_simd128__
  39. #include <wasm_simd128.h>
  40. #else
  41. #ifdef __POWER9_VECTOR__
  42. #include <altivec.h>
  43. #undef bool
  44. #define bool _Bool
  45. #else
  46. #if defined(_MSC_VER) || defined(__MINGW32__)
  47. #include <intrin.h>
  48. #else
  49. #if !defined(__riscv)
  50. #include <immintrin.h>
  51. #endif
  52. #endif
  53. #endif
  54. #endif
  55. #endif
  56. #undef MIN
  57. #undef MAX
  58. #define MIN(a, b) ((a) < (b) ? (a) : (b))
  59. #define MAX(a, b) ((a) > (b) ? (a) : (b))
  60. #define MM256_SET_M128I(a, b) _mm256_insertf128_si256(_mm256_castsi128_si256(b), (a), 1)
  61. //
  62. // 2-6 bit quantization in super-blocks
  63. //
  64. //
  65. // ===================== Helper functions
  66. //
  67. static inline int nearest_int(float fval) {
  68. assert(fval <= 4194303.f);
  69. float val = fval + 12582912.f;
  70. int i; memcpy(&i, &val, sizeof(int));
  71. return (i & 0x007fffff) - 0x00400000;
  72. }
  73. static float make_qx_quants(int n, int nmax, const float * restrict x, int8_t * restrict L, int rmse_type) {
  74. float max = 0;
  75. float amax = 0;
  76. for (int i = 0; i < n; ++i) {
  77. float ax = fabsf(x[i]);
  78. if (ax > amax) { amax = ax; max = x[i]; }
  79. }
  80. if (!amax) { // all zero
  81. for (int i = 0; i < n; ++i) {
  82. L[i] = 0;
  83. }
  84. return 0.f;
  85. }
  86. float iscale = -nmax / max;
  87. if (rmse_type == 0) {
  88. for (int i = 0; i < n; ++i) {
  89. int l = nearest_int(iscale * x[i]);
  90. L[i] = nmax + MAX(-nmax, MIN(nmax-1, l));
  91. }
  92. return 1/iscale;
  93. }
  94. int weight_type = rmse_type%2;
  95. float sumlx = 0;
  96. float suml2 = 0;
  97. for (int i = 0; i < n; ++i) {
  98. int l = nearest_int(iscale * x[i]);
  99. l = MAX(-nmax, MIN(nmax-1, l));
  100. L[i] = l + nmax;
  101. float w = weight_type == 1 ? x[i] * x[i] : 1;
  102. sumlx += w*x[i]*l;
  103. suml2 += w*l*l;
  104. }
  105. float scale = sumlx/suml2;
  106. float best = scale * sumlx;
  107. for (int itry = 0; itry < 3; ++itry) {
  108. iscale = 1/scale;
  109. float slx = 0;
  110. float sl2 = 0;
  111. bool changed = false;
  112. for (int i = 0; i < n; ++i) {
  113. int l = nearest_int(iscale * x[i]);
  114. l = MAX(-nmax, MIN(nmax-1, l));
  115. if (l + nmax != L[i]) { changed = true; }
  116. float w = weight_type == 1 ? x[i] * x[i] : 1.f;
  117. slx += w*x[i]*l;
  118. sl2 += w*l*l;
  119. }
  120. if (!changed || sl2 == 0 || slx*slx <= best*sl2) { break; }
  121. for (int i = 0; i < n; ++i) {
  122. int l = nearest_int(iscale * x[i]);
  123. L[i] = nmax + MAX(-nmax, MIN(nmax-1, l));
  124. }
  125. sumlx = slx; suml2 = sl2;
  126. scale = sumlx/suml2;
  127. best = scale * sumlx;
  128. }
  129. for (int itry = 0; itry < 5; ++itry) {
  130. int n_changed = 0;
  131. for (int i = 0; i < n; ++i) {
  132. float w = weight_type == 1 ? x[i]*x[i] : 1;
  133. int l = L[i] - nmax;
  134. float slx = sumlx - w*x[i]*l;
  135. if (slx > 0) {
  136. float sl2 = suml2 - w*l*l;
  137. int new_l = nearest_int(x[i] * sl2 / slx);
  138. new_l = MAX(-nmax, MIN(nmax-1, new_l));
  139. if (new_l != l) {
  140. slx += w*x[i]*new_l;
  141. sl2 += w*new_l*new_l;
  142. if (sl2 > 0 && slx*slx*suml2 > sumlx*sumlx*sl2) {
  143. L[i] = nmax + new_l; sumlx = slx; suml2 = sl2;
  144. scale = sumlx / suml2; best = scale * sumlx;
  145. ++n_changed;
  146. }
  147. }
  148. }
  149. }
  150. if (!n_changed) { break; }
  151. }
  152. if (rmse_type < 3) {
  153. return scale;
  154. }
  155. for (int is = -4; is <= 4; ++is) {
  156. if (is == 0) {
  157. continue;
  158. }
  159. iscale = -(nmax + 0.1f*is) / max;
  160. sumlx = suml2 = 0;
  161. for (int i = 0; i < n; ++i) {
  162. int l = nearest_int(iscale * x[i]);
  163. l = MAX(-nmax, MIN(nmax-1, l));
  164. float w = weight_type == 1 ? x[i] * x[i] : 1;
  165. sumlx += w*x[i]*l;
  166. suml2 += w*l*l;
  167. }
  168. if (suml2 > 0 && sumlx*sumlx > best*suml2) {
  169. for (int i = 0; i < n; ++i) {
  170. int l = nearest_int(iscale * x[i]);
  171. L[i] = nmax + MAX(-nmax, MIN(nmax-1, l));
  172. }
  173. scale = sumlx/suml2; best = scale*sumlx;
  174. }
  175. }
  176. return scale;
  177. }
  178. static float make_q3_quants(int n, int nmax, const float * restrict x, int8_t * restrict L, bool do_rmse) {
  179. float max = 0;
  180. float amax = 0;
  181. for (int i = 0; i < n; ++i) {
  182. float ax = fabsf(x[i]);
  183. if (ax > amax) { amax = ax; max = x[i]; }
  184. }
  185. if (!amax) { // all zero
  186. for (int i = 0; i < n; ++i) { L[i] = 0; }
  187. return 0.f;
  188. }
  189. float iscale = -nmax / max;
  190. if (do_rmse) {
  191. float sumlx = 0;
  192. float suml2 = 0;
  193. for (int i = 0; i < n; ++i) {
  194. int l = nearest_int(iscale * x[i]);
  195. l = MAX(-nmax, MIN(nmax-1, l));
  196. L[i] = l;
  197. float w = x[i]*x[i];
  198. sumlx += w*x[i]*l;
  199. suml2 += w*l*l;
  200. }
  201. for (int itry = 0; itry < 5; ++itry) {
  202. int n_changed = 0;
  203. for (int i = 0; i < n; ++i) {
  204. float w = x[i]*x[i];
  205. float slx = sumlx - w*x[i]*L[i];
  206. if (slx > 0) {
  207. float sl2 = suml2 - w*L[i]*L[i];
  208. int new_l = nearest_int(x[i] * sl2 / slx);
  209. new_l = MAX(-nmax, MIN(nmax-1, new_l));
  210. if (new_l != L[i]) {
  211. slx += w*x[i]*new_l;
  212. sl2 += w*new_l*new_l;
  213. if (sl2 > 0 && slx*slx*suml2 > sumlx*sumlx*sl2) {
  214. L[i] = new_l; sumlx = slx; suml2 = sl2;
  215. ++n_changed;
  216. }
  217. }
  218. }
  219. }
  220. if (!n_changed) {
  221. break;
  222. }
  223. }
  224. for (int i = 0; i < n; ++i) {
  225. L[i] += nmax;
  226. }
  227. return sumlx / suml2;
  228. }
  229. for (int i = 0; i < n; ++i) {
  230. int l = nearest_int(iscale * x[i]);
  231. l = MAX(-nmax, MIN(nmax-1, l));
  232. L[i] = l + nmax;
  233. }
  234. return 1/iscale;
  235. }
  236. static float make_qkx1_quants(int n, int nmax, const float * restrict x, uint8_t * restrict L, float * restrict the_min, int ntry) {
  237. float min = x[0];
  238. float max = x[0];
  239. for (int i = 1; i < n; ++i) {
  240. if (x[i] < min) min = x[i];
  241. if (x[i] > max) max = x[i];
  242. }
  243. if (max == min) {
  244. for (int i = 0; i < n; ++i) L[i] = 0;
  245. *the_min = 0;
  246. return 0.f;
  247. }
  248. if (min > 0) min = 0;
  249. float iscale = nmax/(max - min);
  250. float scale = 1/iscale;
  251. for (int itry = 0; itry < ntry; ++itry) {
  252. float sumlx = 0; int suml2 = 0;
  253. bool did_change = false;
  254. for (int i = 0; i < n; ++i) {
  255. int l = nearest_int(iscale*(x[i] - min));
  256. l = MAX(0, MIN(nmax, l));
  257. if (l != L[i]) {
  258. L[i] = l;
  259. did_change = true;
  260. }
  261. sumlx += (x[i] - min)*l;
  262. suml2 += l*l;
  263. }
  264. scale = sumlx/suml2;
  265. float sum = 0;
  266. for (int i = 0; i < n; ++i) {
  267. sum += x[i] - scale*L[i];
  268. }
  269. min = sum/n;
  270. if (min > 0) min = 0;
  271. iscale = 1/scale;
  272. if (!did_change) break;
  273. }
  274. *the_min = -min;
  275. return scale;
  276. }
  277. #if QK_K == 256
  278. static inline void get_scale_min_k4(int j, const uint8_t * restrict q, uint8_t * restrict d, uint8_t * restrict m) {
  279. if (j < 4) {
  280. *d = q[j] & 63; *m = q[j + 4] & 63;
  281. } else {
  282. *d = (q[j+4] & 0xF) | ((q[j-4] >> 6) << 4);
  283. *m = (q[j+4] >> 4) | ((q[j-0] >> 6) << 4);
  284. }
  285. }
  286. #endif
  287. //========================- 2-bit (de)-quantization
  288. void quantize_row_q2_K_reference(const float * restrict x, block_q2_K * restrict y, int k) {
  289. assert(k % QK_K == 0);
  290. const int nb = k / QK_K;
  291. uint8_t L[QK_K];
  292. float mins[QK_K/16];
  293. float scales[QK_K/16];
  294. const float q4scale = 15.f;
  295. for (int i = 0; i < nb; i++) {
  296. float max_scale = 0; // as we are deducting the min, scales are always positive
  297. float max_min = 0;
  298. for (int j = 0; j < QK_K/16; ++j) {
  299. scales[j] = make_qkx1_quants(16, 3, x + 16*j, L + 16*j, &mins[j], 5);
  300. float scale = scales[j];
  301. if (scale > max_scale) {
  302. max_scale = scale;
  303. }
  304. float min = mins[j];
  305. if (min > max_min) {
  306. max_min = min;
  307. }
  308. }
  309. if (max_scale > 0) {
  310. float iscale = q4scale/max_scale;
  311. for (int j = 0; j < QK_K/16; ++j) {
  312. int l = nearest_int(iscale*scales[j]);
  313. y[i].scales[j] = l;
  314. }
  315. y[i].d = ggml_fp32_to_fp16(max_scale/q4scale);
  316. } else {
  317. for (int j = 0; j < QK_K/16; ++j) y[i].scales[j] = 0;
  318. y[i].d = ggml_fp32_to_fp16(0.f);
  319. }
  320. if (max_min > 0) {
  321. float iscale = q4scale/max_min;
  322. for (int j = 0; j < QK_K/16; ++j) {
  323. int l = nearest_int(iscale*mins[j]);
  324. y[i].scales[j] |= (l << 4);
  325. }
  326. y[i].dmin = ggml_fp32_to_fp16(max_min/q4scale);
  327. } else {
  328. y[i].dmin = ggml_fp32_to_fp16(0.f);
  329. }
  330. for (int j = 0; j < QK_K/16; ++j) {
  331. const float d = ggml_fp16_to_fp32(y[i].d) * (y[i].scales[j] & 0xF);
  332. if (!d) continue;
  333. const float dm = ggml_fp16_to_fp32(y[i].dmin) * (y[i].scales[j] >> 4);
  334. for (int ii = 0; ii < 16; ++ii) {
  335. int l = nearest_int((x[16*j + ii] + dm)/d);
  336. l = MAX(0, MIN(3, l));
  337. L[16*j + ii] = l;
  338. }
  339. }
  340. #if QK_K == 256
  341. for (int j = 0; j < QK_K; j += 128) {
  342. for (int l = 0; l < 32; ++l) {
  343. y[i].qs[j/4 + l] = L[j + l] | (L[j + l + 32] << 2) | (L[j + l + 64] << 4) | (L[j + l + 96] << 6);
  344. }
  345. }
  346. #else
  347. for (int l = 0; l < 16; ++l) {
  348. y[i].qs[l] = L[l] | (L[l + 16] << 2) | (L[l + 32] << 4) | (L[l + 48] << 6);
  349. }
  350. #endif
  351. x += QK_K;
  352. }
  353. }
  354. void dequantize_row_q2_K(const block_q2_K * restrict x, float * restrict y, int k) {
  355. assert(k % QK_K == 0);
  356. const int nb = k / QK_K;
  357. for (int i = 0; i < nb; i++) {
  358. const float d = ggml_fp16_to_fp32(x[i].d);
  359. const float min = ggml_fp16_to_fp32(x[i].dmin);
  360. const uint8_t * q = x[i].qs;
  361. #if QK_K == 256
  362. int is = 0;
  363. float dl, ml;
  364. for (int n = 0; n < QK_K; n += 128) {
  365. int shift = 0;
  366. for (int j = 0; j < 4; ++j) {
  367. uint8_t sc = x[i].scales[is++];
  368. dl = d * (sc & 0xF); ml = min * (sc >> 4);
  369. for (int l = 0; l < 16; ++l) *y++ = dl * ((int8_t)((q[l] >> shift) & 3)) - ml;
  370. sc = x[i].scales[is++];
  371. dl = d * (sc & 0xF); ml = min * (sc >> 4);
  372. for (int l = 0; l < 16; ++l) *y++ = dl * ((int8_t)((q[l+16] >> shift) & 3)) - ml;
  373. shift += 2;
  374. }
  375. q += 32;
  376. }
  377. #else
  378. float dl1 = d * (x[i].scales[0] & 0xF), ml1 = min * (x[i].scales[0] >> 4);
  379. float dl2 = d * (x[i].scales[1] & 0xF), ml2 = min * (x[i].scales[1] >> 4);
  380. float dl3 = d * (x[i].scales[2] & 0xF), ml3 = min * (x[i].scales[2] >> 4);
  381. float dl4 = d * (x[i].scales[3] & 0xF), ml4 = min * (x[i].scales[3] >> 4);
  382. for (int l = 0; l < 16; ++l) {
  383. y[l+ 0] = dl1 * ((int8_t)((q[l] >> 0) & 3)) - ml1;
  384. y[l+16] = dl2 * ((int8_t)((q[l] >> 2) & 3)) - ml2;
  385. y[l+32] = dl3 * ((int8_t)((q[l] >> 4) & 3)) - ml3;
  386. y[l+48] = dl4 * ((int8_t)((q[l] >> 6) & 3)) - ml4;
  387. }
  388. y += QK_K;
  389. #endif
  390. }
  391. }
  392. void quantize_row_q2_K(const float * restrict x, void * restrict vy, int k) {
  393. quantize_row_q2_K_reference(x, vy, k);
  394. }
  395. size_t ggml_quantize_q2_K(const float * restrict src, void * restrict dst, int n, int k, int64_t * restrict hist) {
  396. const int nb = k / QK_K;
  397. // TODO - collect histograms - although, at a second thought, I don't really care about them
  398. (void)hist;
  399. for (int j = 0; j < nb; j += k) {
  400. block_q2_K * restrict y = (block_q2_K *)dst + j/QK_K;
  401. quantize_row_q2_K_reference(src + j, y, k);
  402. }
  403. return (n/QK_K*sizeof(block_q2_K));
  404. }
  405. //========================= 3-bit (de)-quantization
  406. void quantize_row_q3_K_reference(const float * restrict x, block_q3_K * restrict y, int k) {
  407. assert(k % QK_K == 0);
  408. const int nb = k / QK_K;
  409. int8_t L[QK_K];
  410. float scales[QK_K / 16];
  411. for (int i = 0; i < nb; i++) {
  412. float max_scale = 0;
  413. float amax = 0;
  414. for (int j = 0; j < QK_K/16; ++j) {
  415. scales[j] = make_q3_quants(16, 4, x + 16*j, L + 16*j, true);
  416. float scale = fabsf(scales[j]);
  417. if (scale > amax) {
  418. amax = scale; max_scale = scales[j];
  419. }
  420. }
  421. #if QK_K == 256
  422. memset(y[i].scales, 0, 12);
  423. if (max_scale) {
  424. float iscale = -32.f/max_scale;
  425. for (int j = 0; j < QK_K/16; ++j) {
  426. int8_t l = nearest_int(iscale*scales[j]);
  427. l = MAX(-32, MIN(31, l)) + 32;
  428. if (j < 8) {
  429. y[i].scales[j] = l & 0xF;
  430. } else {
  431. y[i].scales[j-8] |= ((l & 0xF) << 4);
  432. }
  433. l >>= 4;
  434. y[i].scales[j%4 + 8] |= (l << (2*(j/4)));
  435. }
  436. y[i].d = ggml_fp32_to_fp16(1/iscale);
  437. } else {
  438. y[i].d = ggml_fp32_to_fp16(0.f);
  439. }
  440. int8_t sc;
  441. for (int j = 0; j < QK_K/16; ++j) {
  442. sc = j < 8 ? y[i].scales[j] & 0xF : y[i].scales[j-8] >> 4;
  443. sc = (sc | (((y[i].scales[8 + j%4] >> (2*(j/4))) & 3) << 4)) - 32;
  444. float d = ggml_fp16_to_fp32(y[i].d) * sc;
  445. if (!d) {
  446. continue;
  447. }
  448. for (int ii = 0; ii < 16; ++ii) {
  449. int l = nearest_int(x[16*j + ii]/d);
  450. l = MAX(-4, MIN(3, l));
  451. L[16*j + ii] = l + 4;
  452. }
  453. }
  454. #else
  455. if (max_scale) {
  456. float iscale = -8.f/max_scale;
  457. for (int j = 0; j < QK_K/16; j+=2) {
  458. int l1 = nearest_int(iscale*scales[j]);
  459. l1 = 8 + MAX(-8, MIN(7, l1));
  460. int l2 = nearest_int(iscale*scales[j+1]);
  461. l2 = 8 + MAX(-8, MIN(7, l2));
  462. y[i].scales[j/2] = l1 | (l2 << 4);
  463. }
  464. y[i].d = ggml_fp32_to_fp16(1/iscale);
  465. } else {
  466. for (int j = 0; j < QK_K/16; j+=2) {
  467. y[i].scales[j/2] = 0;
  468. }
  469. y[i].d = ggml_fp32_to_fp16(0.f);
  470. }
  471. for (int j = 0; j < QK_K/16; ++j) {
  472. int s = j%2 == 0 ? y[i].scales[j/2] & 0xF : y[i].scales[j/2] >> 4;
  473. float d = ggml_fp16_to_fp32(y[i].d) * (s - 8);
  474. if (!d) {
  475. continue;
  476. }
  477. for (int ii = 0; ii < 16; ++ii) {
  478. int l = nearest_int(x[16*j + ii]/d);
  479. l = MAX(-4, MIN(3, l));
  480. L[16*j + ii] = l + 4;
  481. }
  482. }
  483. #endif
  484. memset(y[i].hmask, 0, QK_K/8);
  485. // We put the high-bit for the 1st 8 quants into bit 0, the next 8 into bit 1, etc.
  486. int m = 0;
  487. uint8_t hm = 1;
  488. for (int j = 0; j < QK_K; ++j) {
  489. if (L[j] > 3) {
  490. y[i].hmask[m] |= hm;
  491. L[j] -= 4;
  492. }
  493. if (++m == QK_K/8) {
  494. m = 0; hm <<= 1;
  495. }
  496. }
  497. #if QK_K == 256
  498. for (int j = 0; j < QK_K; j += 128) {
  499. for (int l = 0; l < 32; ++l) {
  500. y[i].qs[j/4 + l] = L[j + l] | (L[j + l + 32] << 2) | (L[j + l + 64] << 4) | (L[j + l + 96] << 6);
  501. }
  502. }
  503. #else
  504. for (int l = 0; l < 16; ++l) {
  505. y[i].qs[l] = L[l] | (L[l + 16] << 2) | (L[l + 32] << 4) | (L[l + 48] << 6);
  506. }
  507. #endif
  508. x += QK_K;
  509. }
  510. }
  511. #if QK_K == 256
  512. void dequantize_row_q3_K(const block_q3_K * restrict x, float * restrict y, int k) {
  513. assert(k % QK_K == 0);
  514. const int nb = k / QK_K;
  515. const uint32_t kmask1 = 0x03030303;
  516. const uint32_t kmask2 = 0x0f0f0f0f;
  517. uint32_t aux[4];
  518. const int8_t * scales = (const int8_t*)aux;
  519. for (int i = 0; i < nb; i++) {
  520. const float d_all = ggml_fp16_to_fp32(x[i].d);
  521. const uint8_t * restrict q = x[i].qs;
  522. const uint8_t * restrict hm = x[i].hmask;
  523. uint8_t m = 1;
  524. memcpy(aux, x[i].scales, 12);
  525. uint32_t tmp = aux[2];
  526. aux[2] = ((aux[0] >> 4) & kmask2) | (((tmp >> 4) & kmask1) << 4);
  527. aux[3] = ((aux[1] >> 4) & kmask2) | (((tmp >> 6) & kmask1) << 4);
  528. aux[0] = (aux[0] & kmask2) | (((tmp >> 0) & kmask1) << 4);
  529. aux[1] = (aux[1] & kmask2) | (((tmp >> 2) & kmask1) << 4);
  530. int is = 0;
  531. float dl;
  532. for (int n = 0; n < QK_K; n += 128) {
  533. int shift = 0;
  534. for (int j = 0; j < 4; ++j) {
  535. dl = d_all * (scales[is++] - 32);
  536. for (int l = 0; l < 16; ++l) {
  537. *y++ = dl * ((int8_t)((q[l+ 0] >> shift) & 3) - ((hm[l+ 0] & m) ? 0 : 4));
  538. }
  539. dl = d_all * (scales[is++] - 32);
  540. for (int l = 0; l < 16; ++l) {
  541. *y++ = dl * ((int8_t)((q[l+16] >> shift) & 3) - ((hm[l+16] & m) ? 0 : 4));
  542. }
  543. shift += 2;
  544. m <<= 1;
  545. }
  546. q += 32;
  547. }
  548. }
  549. }
  550. #else
  551. void dequantize_row_q3_K(const block_q3_K * restrict x, float * restrict y, int k) {
  552. assert(k % QK_K == 0);
  553. assert(QK_K == 64);
  554. const int nb = k / QK_K;
  555. for (int i = 0; i < nb; i++) {
  556. const float d_all = ggml_fp16_to_fp32(x[i].d);
  557. const uint8_t * restrict q = x[i].qs;
  558. const uint8_t * restrict hm = x[i].hmask;
  559. const float d1 = d_all * ((x[i].scales[0] & 0xF) - 8);
  560. const float d2 = d_all * ((x[i].scales[0] >> 4) - 8);
  561. const float d3 = d_all * ((x[i].scales[1] & 0xF) - 8);
  562. const float d4 = d_all * ((x[i].scales[1] >> 4) - 8);
  563. for (int l=0; l<8; ++l) {
  564. uint8_t h = hm[l];
  565. y[l+ 0] = d1 * ((int8_t)((q[l+0] >> 0) & 3) - ((h & 0x01) ? 0 : 4));
  566. y[l+ 8] = d1 * ((int8_t)((q[l+8] >> 0) & 3) - ((h & 0x02) ? 0 : 4));
  567. y[l+16] = d2 * ((int8_t)((q[l+0] >> 2) & 3) - ((h & 0x04) ? 0 : 4));
  568. y[l+24] = d2 * ((int8_t)((q[l+8] >> 2) & 3) - ((h & 0x08) ? 0 : 4));
  569. y[l+32] = d3 * ((int8_t)((q[l+0] >> 4) & 3) - ((h & 0x10) ? 0 : 4));
  570. y[l+40] = d3 * ((int8_t)((q[l+8] >> 4) & 3) - ((h & 0x20) ? 0 : 4));
  571. y[l+48] = d4 * ((int8_t)((q[l+0] >> 6) & 3) - ((h & 0x40) ? 0 : 4));
  572. y[l+56] = d4 * ((int8_t)((q[l+8] >> 6) & 3) - ((h & 0x80) ? 0 : 4));
  573. }
  574. y += QK_K;
  575. }
  576. }
  577. #endif
  578. void quantize_row_q3_K(const float * restrict x, void * restrict vy, int k) {
  579. quantize_row_q3_K_reference(x, vy, k);
  580. }
  581. size_t ggml_quantize_q3_K(const float * restrict src, void * restrict dst, int n, int k, int64_t * restrict hist) {
  582. const int nb = k / QK_K;
  583. // TODO - collect histograms - although, at a second thought, I don't really care about them
  584. (void)hist;
  585. for (int j = 0; j < nb; j += k) {
  586. block_q3_K * restrict y = (block_q3_K *)dst + j/QK_K;
  587. quantize_row_q3_K_reference(src + j, y, k);
  588. }
  589. return (n/QK_K*sizeof(block_q3_K));
  590. }
  591. // ====================== 4-bit (de)-quantization
  592. void quantize_row_q4_K_reference(const float * restrict x, block_q4_K * restrict y, int k) {
  593. assert(k % QK_K == 0);
  594. const int nb = k / QK_K;
  595. uint8_t L[QK_K];
  596. float mins[QK_K/32];
  597. float scales[QK_K/32];
  598. for (int i = 0; i < nb; i++) {
  599. float max_scale = 0; // as we are deducting the min, scales are always positive
  600. float max_min = 0;
  601. for (int j = 0; j < QK_K/32; ++j) {
  602. scales[j] = make_qkx1_quants(32, 15, x + 32*j, L + 32*j, &mins[j], 5);
  603. float scale = scales[j];
  604. if (scale > max_scale) {
  605. max_scale = scale;
  606. }
  607. float min = mins[j];
  608. if (min > max_min) {
  609. max_min = min;
  610. }
  611. }
  612. #if QK_K == 256
  613. float inv_scale = max_scale > 0 ? 63.f/max_scale : 0.f;
  614. float inv_min = max_min > 0 ? 63.f/max_min : 0.f;
  615. for (int j = 0; j < QK_K/32; ++j) {
  616. uint8_t ls = nearest_int(inv_scale*scales[j]);
  617. uint8_t lm = nearest_int(inv_min*mins[j]);
  618. ls = MIN(63, ls);
  619. lm = MIN(63, lm);
  620. if (j < 4) {
  621. y[i].scales[j] = ls;
  622. y[i].scales[j+4] = lm;
  623. } else {
  624. y[i].scales[j+4] = (ls & 0xF) | ((lm & 0xF) << 4);
  625. y[i].scales[j-4] |= ((ls >> 4) << 6);
  626. y[i].scales[j-0] |= ((lm >> 4) << 6);
  627. }
  628. }
  629. y[i].d = ggml_fp32_to_fp16(max_scale/63.f);
  630. y[i].dmin = ggml_fp32_to_fp16(max_min/63.f);
  631. uint8_t sc, m;
  632. for (int j = 0; j < QK_K/32; ++j) {
  633. get_scale_min_k4(j, y[i].scales, &sc, &m);
  634. const float d = ggml_fp16_to_fp32(y[i].d) * sc;
  635. if (!d) continue;
  636. const float dm = ggml_fp16_to_fp32(y[i].dmin) * m;
  637. for (int ii = 0; ii < 32; ++ii) {
  638. int l = nearest_int((x[32*j + ii] + dm)/d);
  639. l = MAX(0, MIN(15, l));
  640. L[32*j + ii] = l;
  641. }
  642. }
  643. #else
  644. const float s_factor = 15.f;
  645. float inv_scale = max_scale > 0 ? s_factor/max_scale : 0.f;
  646. float inv_min = max_min > 0 ? s_factor/max_min : 0.f;
  647. int d1 = nearest_int(inv_scale*scales[0]);
  648. int m1 = nearest_int(inv_min*mins[0]);
  649. int d2 = nearest_int(inv_scale*scales[1]);
  650. int m2 = nearest_int(inv_min*mins[1]);
  651. y[i].scales[0] = d1 | (m1 << 4);
  652. y[i].scales[1] = d2 | (m2 << 4);
  653. y[i].d[0] = ggml_fp32_to_fp16(max_scale/s_factor);
  654. y[i].d[1] = ggml_fp32_to_fp16(max_min/s_factor);
  655. float sumlx = 0;
  656. int suml2 = 0;
  657. for (int j = 0; j < QK_K/32; ++j) {
  658. const uint8_t sd = y[i].scales[j] & 0xF;
  659. const uint8_t sm = y[i].scales[j] >> 4;
  660. const float d = ggml_fp16_to_fp32(y[i].d[0]) * sd;
  661. if (!d) continue;
  662. const float m = ggml_fp16_to_fp32(y[i].d[1]) * sm;
  663. for (int ii = 0; ii < 32; ++ii) {
  664. int l = nearest_int((x[32*j + ii] + m)/d);
  665. l = MAX(0, MIN(15, l));
  666. L[32*j + ii] = l;
  667. sumlx += (x[32*j + ii] + m)*l*sd;
  668. suml2 += l*l*sd*sd;
  669. }
  670. }
  671. if (suml2) {
  672. y[i].d[0] = ggml_fp32_to_fp16(sumlx/suml2);
  673. }
  674. #endif
  675. uint8_t * q = y[i].qs;
  676. for (int j = 0; j < QK_K; j += 64) {
  677. for (int l = 0; l < 32; ++l) q[l] = L[j + l] | (L[j + l + 32] << 4);
  678. q += 32;
  679. }
  680. x += QK_K;
  681. }
  682. }
  683. void dequantize_row_q4_K(const block_q4_K * restrict x, float * restrict y, int k) {
  684. assert(k % QK_K == 0);
  685. const int nb = k / QK_K;
  686. for (int i = 0; i < nb; i++) {
  687. const uint8_t * q = x[i].qs;
  688. #if QK_K == 256
  689. const float d = ggml_fp16_to_fp32(x[i].d);
  690. const float min = ggml_fp16_to_fp32(x[i].dmin);
  691. int is = 0;
  692. uint8_t sc, m;
  693. for (int j = 0; j < QK_K; j += 64) {
  694. get_scale_min_k4(is + 0, x[i].scales, &sc, &m);
  695. const float d1 = d * sc; const float m1 = min * m;
  696. get_scale_min_k4(is + 1, x[i].scales, &sc, &m);
  697. const float d2 = d * sc; const float m2 = min * m;
  698. for (int l = 0; l < 32; ++l) *y++ = d1 * (q[l] & 0xF) - m1;
  699. for (int l = 0; l < 32; ++l) *y++ = d2 * (q[l] >> 4) - m2;
  700. q += 32; is += 2;
  701. }
  702. #else
  703. const float dall = ggml_fp16_to_fp32(x[i].d[0]);
  704. const float mall = ggml_fp16_to_fp32(x[i].d[1]);
  705. const float d1 = dall * (x[i].scales[0] & 0xF), m1 = mall * (x[i].scales[0] >> 4);
  706. const float d2 = dall * (x[i].scales[1] & 0xF), m2 = mall * (x[i].scales[1] >> 4);
  707. for (int l = 0; l < 32; ++l) {
  708. y[l+ 0] = d1 * (q[l] & 0xF) - m1;
  709. y[l+32] = d2 * (q[l] >> 4) - m2;
  710. }
  711. y += QK_K;
  712. #endif
  713. }
  714. }
  715. void quantize_row_q4_K(const float * restrict x, void * restrict vy, int k) {
  716. assert(k % QK_K == 0);
  717. block_q4_K * restrict y = vy;
  718. quantize_row_q4_K_reference(x, y, k);
  719. }
  720. size_t ggml_quantize_q4_K(const float * restrict src, void * restrict dst, int n, int k, int64_t * restrict hist) {
  721. assert(k % QK_K == 0);
  722. const int nb = k / QK_K;
  723. (void)hist; // TODO: collect histograms
  724. for (int j = 0; j < nb; j += k) {
  725. block_q4_K * restrict y = (block_q4_K *)dst + j/QK_K;
  726. quantize_row_q4_K_reference(src + j, y, k);
  727. }
  728. return (n/QK_K*sizeof(block_q4_K));
  729. }
  730. // ====================== 5-bit (de)-quantization
  731. void quantize_row_q5_K_reference(const float * restrict x, block_q5_K * restrict y, int k) {
  732. assert(k % QK_K == 0);
  733. const int nb = k / QK_K;
  734. #if QK_K == 256
  735. uint8_t L[QK_K];
  736. float mins[QK_K/32];
  737. float scales[QK_K/32];
  738. #else
  739. int8_t L[QK_K];
  740. float scales[QK_K/16];
  741. #endif
  742. for (int i = 0; i < nb; i++) {
  743. #if QK_K == 256
  744. float max_scale = 0; // as we are deducting the min, scales are always positive
  745. float max_min = 0;
  746. for (int j = 0; j < QK_K/32; ++j) {
  747. scales[j] = make_qkx1_quants(32, 31, x + 32*j, L + 32*j, &mins[j], 5);
  748. float scale = scales[j];
  749. if (scale > max_scale) {
  750. max_scale = scale;
  751. }
  752. float min = mins[j];
  753. if (min > max_min) {
  754. max_min = min;
  755. }
  756. }
  757. float inv_scale = max_scale > 0 ? 63.f/max_scale : 0.f;
  758. float inv_min = max_min > 0 ? 63.f/max_min : 0.f;
  759. for (int j = 0; j < QK_K/32; ++j) {
  760. uint8_t ls = nearest_int(inv_scale*scales[j]);
  761. uint8_t lm = nearest_int(inv_min*mins[j]);
  762. ls = MIN(63, ls);
  763. lm = MIN(63, lm);
  764. if (j < 4) {
  765. y[i].scales[j] = ls;
  766. y[i].scales[j+4] = lm;
  767. } else {
  768. y[i].scales[j+4] = (ls & 0xF) | ((lm & 0xF) << 4);
  769. y[i].scales[j-4] |= ((ls >> 4) << 6);
  770. y[i].scales[j-0] |= ((lm >> 4) << 6);
  771. }
  772. }
  773. y[i].d = ggml_fp32_to_fp16(max_scale/63.f);
  774. y[i].dmin = ggml_fp32_to_fp16(max_min/63.f);
  775. uint8_t sc, m;
  776. for (int j = 0; j < QK_K/32; ++j) {
  777. get_scale_min_k4(j, y[i].scales, &sc, &m);
  778. const float d = ggml_fp16_to_fp32(y[i].d) * sc;
  779. if (!d) continue;
  780. const float dm = ggml_fp16_to_fp32(y[i].dmin) * m;
  781. for (int ii = 0; ii < 32; ++ii) {
  782. int l = nearest_int((x[32*j + ii] + dm)/d);
  783. l = MAX(0, MIN(31, l));
  784. L[32*j + ii] = l;
  785. }
  786. }
  787. uint8_t * restrict qh = y[i].qh;
  788. uint8_t * restrict ql = y[i].qs;
  789. memset(qh, 0, QK_K/8);
  790. uint8_t m1 = 1, m2 = 2;
  791. for (int n = 0; n < QK_K; n += 64) {
  792. for (int j = 0; j < 32; ++j) {
  793. int l1 = L[n + j];
  794. if (l1 > 15) {
  795. l1 -= 16; qh[j] |= m1;
  796. }
  797. int l2 = L[n + j + 32];
  798. if (l2 > 15) {
  799. l2 -= 16; qh[j] |= m2;
  800. }
  801. ql[j] = l1 | (l2 << 4);
  802. }
  803. m1 <<= 2; m2 <<= 2;
  804. ql += 32;
  805. }
  806. #else
  807. float max_scale = 0, amax = 0;
  808. for (int j = 0; j < QK_K/16; ++j) {
  809. scales[j] = make_qx_quants(16, 16, x + 16*j, L + 16*j, 1);
  810. float abs_scale = fabsf(scales[j]);
  811. if (abs_scale > amax) {
  812. amax = abs_scale;
  813. max_scale = scales[j];
  814. }
  815. }
  816. float iscale = -128.f/max_scale;
  817. for (int j = 0; j < QK_K/16; ++j) {
  818. int l = nearest_int(iscale*scales[j]);
  819. y[i].scales[j] = MAX(-128, MIN(127, l));
  820. }
  821. y[i].d = ggml_fp32_to_fp16(1/iscale);
  822. for (int j = 0; j < QK_K/16; ++j) {
  823. const float d = ggml_fp16_to_fp32(y[i].d) * y[i].scales[j];
  824. if (!d) continue;
  825. for (int ii = 0; ii < 16; ++ii) {
  826. int l = nearest_int(x[16*j + ii]/d);
  827. l = MAX(-16, MIN(15, l));
  828. L[16*j + ii] = l + 16;
  829. }
  830. }
  831. uint8_t * restrict qh = y[i].qh;
  832. uint8_t * restrict ql = y[i].qs;
  833. memset(qh, 0, QK_K/8);
  834. for (int j = 0; j < 32; ++j) {
  835. int jm = j%8;
  836. int is = j/8;
  837. int l1 = L[j];
  838. if (l1 > 15) {
  839. l1 -= 16; qh[jm] |= (1 << is);
  840. }
  841. int l2 = L[j + 32];
  842. if (l2 > 15) {
  843. l2 -= 16; qh[jm] |= (1 << (4 + is));
  844. }
  845. ql[j] = l1 | (l2 << 4);
  846. }
  847. #endif
  848. x += QK_K;
  849. }
  850. }
  851. void dequantize_row_q5_K(const block_q5_K * restrict x, float * restrict y, int k) {
  852. assert(k % QK_K == 0);
  853. const int nb = k / QK_K;
  854. for (int i = 0; i < nb; i++) {
  855. const uint8_t * ql = x[i].qs;
  856. const uint8_t * qh = x[i].qh;
  857. #if QK_K == 256
  858. const float d = ggml_fp16_to_fp32(x[i].d);
  859. const float min = ggml_fp16_to_fp32(x[i].dmin);
  860. int is = 0;
  861. uint8_t sc, m;
  862. uint8_t u1 = 1, u2 = 2;
  863. for (int j = 0; j < QK_K; j += 64) {
  864. get_scale_min_k4(is + 0, x[i].scales, &sc, &m);
  865. const float d1 = d * sc; const float m1 = min * m;
  866. get_scale_min_k4(is + 1, x[i].scales, &sc, &m);
  867. const float d2 = d * sc; const float m2 = min * m;
  868. for (int l = 0; l < 32; ++l) *y++ = d1 * ((ql[l] & 0xF) + (qh[l] & u1 ? 16 : 0)) - m1;
  869. for (int l = 0; l < 32; ++l) *y++ = d2 * ((ql[l] >> 4) + (qh[l] & u2 ? 16 : 0)) - m2;
  870. ql += 32; is += 2;
  871. u1 <<= 2; u2 <<= 2;
  872. }
  873. #else
  874. float d = ggml_fp16_to_fp32(x[i].d);
  875. const int8_t * restrict s = x[i].scales;
  876. for (int l = 0; l < 8; ++l) {
  877. y[l+ 0] = d * s[0] * ((ql[l+ 0] & 0xF) - (qh[l] & 0x01 ? 0 : 16));
  878. y[l+ 8] = d * s[0] * ((ql[l+ 8] & 0xF) - (qh[l] & 0x02 ? 0 : 16));
  879. y[l+16] = d * s[1] * ((ql[l+16] & 0xF) - (qh[l] & 0x04 ? 0 : 16));
  880. y[l+24] = d * s[1] * ((ql[l+24] & 0xF) - (qh[l] & 0x08 ? 0 : 16));
  881. y[l+32] = d * s[2] * ((ql[l+ 0] >> 4) - (qh[l] & 0x10 ? 0 : 16));
  882. y[l+40] = d * s[2] * ((ql[l+ 8] >> 4) - (qh[l] & 0x20 ? 0 : 16));
  883. y[l+48] = d * s[3] * ((ql[l+16] >> 4) - (qh[l] & 0x40 ? 0 : 16));
  884. y[l+56] = d * s[3] * ((ql[l+24] >> 4) - (qh[l] & 0x80 ? 0 : 16));
  885. }
  886. y += QK_K;
  887. #endif
  888. }
  889. }
  890. void quantize_row_q5_K(const float * restrict x, void * restrict vy, int k) {
  891. assert(k % QK_K == 0);
  892. block_q5_K * restrict y = vy;
  893. quantize_row_q5_K_reference(x, y, k);
  894. }
  895. size_t ggml_quantize_q5_K(const float * restrict src, void * restrict dst, int n, int k, int64_t * restrict hist) {
  896. assert(k % QK_K == 0);
  897. const int nb = k / QK_K;
  898. (void)hist;
  899. for (int j = 0; j < nb; j += k) {
  900. block_q5_K * restrict y = (block_q5_K *)dst + j/QK_K;
  901. quantize_row_q5_K_reference(src + j, y, k);
  902. }
  903. return (n/QK_K*sizeof(block_q5_K));
  904. }
  905. // ====================== 6-bit (de)-quantization
  906. void quantize_row_q6_K_reference(const float * restrict x, block_q6_K * restrict y, int k) {
  907. assert(k % QK_K == 0);
  908. const int nb = k / QK_K;
  909. int8_t L[QK_K];
  910. float scales[QK_K/16];
  911. for (int i = 0; i < nb; i++) {
  912. float max_scale = 0;
  913. float max_abs_scale = 0;
  914. for (int ib = 0; ib < QK_K/16; ++ib) {
  915. const float scale = make_qx_quants(16, 32, x + 16*ib, L + 16*ib, 1);
  916. scales[ib] = scale;
  917. const float abs_scale = fabsf(scale);
  918. if (abs_scale > max_abs_scale) {
  919. max_abs_scale = abs_scale;
  920. max_scale = scale;
  921. }
  922. }
  923. float iscale = -128.f/max_scale;
  924. y[i].d = ggml_fp32_to_fp16(1/iscale);
  925. for (int ib = 0; ib < QK_K/16; ++ib) {
  926. y[i].scales[ib] = MIN(127, nearest_int(iscale*scales[ib]));
  927. }
  928. for (int j = 0; j < QK_K/16; ++j) {
  929. float d = ggml_fp16_to_fp32(y[i].d) * y[i].scales[j];
  930. if (!d) {
  931. continue;
  932. }
  933. for (int ii = 0; ii < 16; ++ii) {
  934. int l = nearest_int(x[16*j + ii]/d);
  935. l = MAX(-32, MIN(31, l));
  936. L[16*j + ii] = l + 32;
  937. }
  938. }
  939. uint8_t * restrict ql = y[i].ql;
  940. uint8_t * restrict qh = y[i].qh;
  941. #if QK_K == 256
  942. for (int j = 0; j < QK_K; j += 128) {
  943. for (int l = 0; l < 32; ++l) {
  944. const uint8_t q1 = L[j + l + 0] & 0xF;
  945. const uint8_t q2 = L[j + l + 32] & 0xF;
  946. const uint8_t q3 = L[j + l + 64] & 0xF;
  947. const uint8_t q4 = L[j + l + 96] & 0xF;
  948. ql[l+ 0] = q1 | (q3 << 4);
  949. ql[l+32] = q2 | (q4 << 4);
  950. qh[l] = (L[j + l] >> 4) | ((L[j + l + 32] >> 4) << 2) | ((L[j + l + 64] >> 4) << 4) | ((L[j + l + 96] >> 4) << 6);
  951. }
  952. ql += 64;
  953. qh += 32;
  954. }
  955. #else
  956. for (int l = 0; l < 32; ++l) {
  957. const uint8_t q1 = L[l + 0] & 0xF;
  958. const uint8_t q2 = L[l + 32] & 0xF;
  959. ql[l] = q1 | (q2 << 4);
  960. }
  961. for (int l = 0; l < 16; ++l) {
  962. qh[l] = (L[l] >> 4) | ((L[l + 16] >> 4) << 2) | ((L[l + 32] >> 4) << 4) | ((L[l + 48] >> 4) << 6);
  963. }
  964. #endif
  965. x += QK_K;
  966. }
  967. }
  968. void dequantize_row_q6_K(const block_q6_K * restrict x, float * restrict y, int k) {
  969. assert(k % QK_K == 0);
  970. const int nb = k / QK_K;
  971. for (int i = 0; i < nb; i++) {
  972. const float d = ggml_fp16_to_fp32(x[i].d);
  973. const uint8_t * restrict ql = x[i].ql;
  974. const uint8_t * restrict qh = x[i].qh;
  975. const int8_t * restrict sc = x[i].scales;
  976. #if QK_K == 256
  977. for (int n = 0; n < QK_K; n += 128) {
  978. for (int l = 0; l < 32; ++l) {
  979. int is = l/16;
  980. const int8_t q1 = (int8_t)((ql[l + 0] & 0xF) | (((qh[l] >> 0) & 3) << 4)) - 32;
  981. const int8_t q2 = (int8_t)((ql[l + 32] & 0xF) | (((qh[l] >> 2) & 3) << 4)) - 32;
  982. const int8_t q3 = (int8_t)((ql[l + 0] >> 4) | (((qh[l] >> 4) & 3) << 4)) - 32;
  983. const int8_t q4 = (int8_t)((ql[l + 32] >> 4) | (((qh[l] >> 6) & 3) << 4)) - 32;
  984. y[l + 0] = d * sc[is + 0] * q1;
  985. y[l + 32] = d * sc[is + 2] * q2;
  986. y[l + 64] = d * sc[is + 4] * q3;
  987. y[l + 96] = d * sc[is + 6] * q4;
  988. }
  989. y += 128;
  990. ql += 64;
  991. qh += 32;
  992. sc += 8;
  993. }
  994. #else
  995. for (int l = 0; l < 16; ++l) {
  996. const int8_t q1 = (int8_t)((ql[l+ 0] & 0xF) | (((qh[l] >> 0) & 3) << 4)) - 32;
  997. const int8_t q2 = (int8_t)((ql[l+16] & 0xF) | (((qh[l] >> 2) & 3) << 4)) - 32;
  998. const int8_t q3 = (int8_t)((ql[l+ 0] >> 4) | (((qh[l] >> 4) & 3) << 4)) - 32;
  999. const int8_t q4 = (int8_t)((ql[l+16] >> 4) | (((qh[l] >> 6) & 3) << 4)) - 32;
  1000. y[l+ 0] = d * sc[0] * q1;
  1001. y[l+16] = d * sc[1] * q2;
  1002. y[l+32] = d * sc[2] * q3;
  1003. y[l+48] = d * sc[3] * q4;
  1004. }
  1005. y += 64;
  1006. #endif
  1007. }
  1008. }
  1009. void quantize_row_q6_K(const float * restrict x, void * restrict vy, int k) {
  1010. assert(k % QK_K == 0);
  1011. block_q6_K * restrict y = vy;
  1012. quantize_row_q6_K_reference(x, y, k);
  1013. }
  1014. size_t ggml_quantize_q6_K(const float * src, void * dst, int n, int k, int64_t * hist) {
  1015. assert(k % QK_K == 0);
  1016. const int nb = k / QK_K;
  1017. (void)hist; // TODO
  1018. for (int j = 0; j < nb; j += k) {
  1019. block_q6_K * restrict y = (block_q6_K *)dst + j/QK_K;
  1020. quantize_row_q6_K_reference(src + j, y, k);
  1021. }
  1022. return (n/QK_K*sizeof(block_q6_K));
  1023. }
  1024. //===================================== Q8_K ==============================================
  1025. void quantize_row_q8_K_reference(const float * restrict x, block_q8_K * restrict y, int k) {
  1026. assert(k % QK_K == 0);
  1027. const int nb = k / QK_K;
  1028. for (int i = 0; i < nb; i++) {
  1029. float max = 0;
  1030. float amax = 0;
  1031. for (int j = 0; j < QK_K; ++j) {
  1032. float ax = fabsf(x[j]);
  1033. if (ax > amax) {
  1034. amax = ax; max = x[j];
  1035. }
  1036. }
  1037. if (!amax) {
  1038. y[i].d = 0;
  1039. memset(y[i].qs, 0, QK_K);
  1040. x += QK_K;
  1041. continue;
  1042. }
  1043. const float iscale = -128.f/max;
  1044. for (int j = 0; j < QK_K; ++j) {
  1045. int v = nearest_int(iscale*x[j]);
  1046. y[i].qs[j] = MIN(127, v);
  1047. }
  1048. for (int j = 0; j < QK_K/16; ++j) {
  1049. int sum = 0;
  1050. for (int ii = 0; ii < 16; ++ii) {
  1051. sum += y[i].qs[j*16 + ii];
  1052. }
  1053. y[i].bsums[j] = sum;
  1054. }
  1055. y[i].d = 1/iscale;
  1056. x += QK_K;
  1057. }
  1058. }
  1059. void dequantize_row_q8_K(const block_q8_K * restrict x, float * restrict y, int k) {
  1060. assert(k % QK_K == 0);
  1061. const int nb = k / QK_K;
  1062. for (int i = 0; i < nb; i++) {
  1063. for (int j = 0; j < QK_K; ++j) {
  1064. *y++ = x[i].d * x[i].qs[j];
  1065. }
  1066. }
  1067. }
  1068. void quantize_row_q8_K(const float * restrict x, void * restrict y, int k) {
  1069. quantize_row_q8_K_reference(x, y, k);
  1070. }
  1071. //===================================== Dot ptoducts =================================
  1072. //
  1073. // Helper functions
  1074. //
  1075. #if __AVX__ || __AVX2__ || __AVX512F__
  1076. // horizontally add 8 floats
  1077. static inline float hsum_float_8(const __m256 x) {
  1078. __m128 res = _mm256_extractf128_ps(x, 1);
  1079. res = _mm_add_ps(res, _mm256_castps256_ps128(x));
  1080. res = _mm_add_ps(res, _mm_movehl_ps(res, res));
  1081. res = _mm_add_ss(res, _mm_movehdup_ps(res));
  1082. return _mm_cvtss_f32(res);
  1083. }
  1084. // shuffles to pick the required scales in dot products
  1085. static inline __m256i get_scale_shuffle_q3k(int i) {
  1086. static const uint8_t k_shuffle[128] = {
  1087. 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3,
  1088. 4, 5, 4, 5, 4, 5, 4, 5, 4, 5, 4, 5, 4, 5, 4, 5, 6, 7, 6, 7, 6, 7, 6, 7, 6, 7, 6, 7, 6, 7, 6, 7,
  1089. 8, 9, 8, 9, 8, 9, 8, 9, 8, 9, 8, 9, 8, 9, 8, 9, 10,11,10,11,10,11,10,11,10,11,10,11,10,11,10,11,
  1090. 12,13,12,13,12,13,12,13,12,13,12,13,12,13,12,13, 14,15,14,15,14,15,14,15,14,15,14,15,14,15,14,15,
  1091. };
  1092. return _mm256_loadu_si256((const __m256i*)k_shuffle + i);
  1093. }
  1094. static inline __m256i get_scale_shuffle_k4(int i) {
  1095. static const uint8_t k_shuffle[256] = {
  1096. 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1,
  1097. 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3,
  1098. 4, 5, 4, 5, 4, 5, 4, 5, 4, 5, 4, 5, 4, 5, 4, 5, 4, 5, 4, 5, 4, 5, 4, 5, 4, 5, 4, 5, 4, 5, 4, 5,
  1099. 6, 7, 6, 7, 6, 7, 6, 7, 6, 7, 6, 7, 6, 7, 6, 7, 6, 7, 6, 7, 6, 7, 6, 7, 6, 7, 6, 7, 6, 7, 6, 7,
  1100. 8, 9, 8, 9, 8, 9, 8, 9, 8, 9, 8, 9, 8, 9, 8, 9, 8, 9, 8, 9, 8, 9, 8, 9, 8, 9, 8, 9, 8, 9, 8, 9,
  1101. 10,11,10,11,10,11,10,11,10,11,10,11,10,11,10,11,10,11,10,11,10,11,10,11,10,11,10,11,10,11,10,11,
  1102. 12,13,12,13,12,13,12,13,12,13,12,13,12,13,12,13,12,13,12,13,12,13,12,13,12,13,12,13,12,13,12,13,
  1103. 14,15,14,15,14,15,14,15,14,15,14,15,14,15,14,15,14,15,14,15,14,15,14,15,14,15,14,15,14,15,14,15
  1104. };
  1105. return _mm256_loadu_si256((const __m256i*)k_shuffle + i);
  1106. }
  1107. static inline __m128i get_scale_shuffle(int i) {
  1108. static const uint8_t k_shuffle[128] = {
  1109. 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1,
  1110. 2, 2, 2, 2, 2, 2, 2, 2, 3, 3, 3, 3, 3, 3, 3, 3,
  1111. 4, 4, 4, 4, 4, 4, 4, 4, 5, 5, 5, 5, 5, 5, 5, 5,
  1112. 6, 6, 6, 6, 6, 6, 6, 6, 7, 7, 7, 7, 7, 7, 7, 7,
  1113. 8, 8, 8, 8, 8, 8, 8, 8, 9, 9, 9, 9, 9, 9, 9, 9,
  1114. 10,10,10,10,10,10,10,10, 11,11,11,11,11,11,11,11,
  1115. 12,12,12,12,12,12,12,12, 13,13,13,13,13,13,13,13,
  1116. 14,14,14,14,14,14,14,14, 15,15,15,15,15,15,15,15
  1117. };
  1118. return _mm_loadu_si128((const __m128i*)k_shuffle + i);
  1119. }
  1120. #endif
  1121. #if QK_K == 256
  1122. void ggml_vec_dot_q2_K_q8_K(const int n, float * restrict s, const void * restrict vx, const void * restrict vy) {
  1123. const block_q2_K * restrict x = vx;
  1124. const block_q8_K * restrict y = vy;
  1125. const int nb = n / QK_K;
  1126. #ifdef __ARM_NEON
  1127. const uint8x16_t m3 = vdupq_n_u8(0x3);
  1128. const uint8x16_t m4 = vdupq_n_u8(0xF);
  1129. const int32x4_t vzero = vdupq_n_s32(0);
  1130. int8x16x2_t q2bytes;
  1131. uint8_t aux[16];
  1132. float sum = 0;
  1133. for (int i = 0; i < nb; ++i) {
  1134. const float d = y[i].d * ggml_fp16_to_fp32(x[i].d);
  1135. const float dmin = -y[i].d * ggml_fp16_to_fp32(x[i].dmin);
  1136. const uint8_t * restrict q2 = x[i].qs;
  1137. const int8_t * restrict q8 = y[i].qs;
  1138. const uint8_t * restrict sc = x[i].scales;
  1139. const uint8x16_t mins_and_scales = vld1q_u8(sc);
  1140. const uint8x16_t scales = vandq_u8(mins_and_scales, m4);
  1141. vst1q_u8(aux, scales);
  1142. const uint8x16_t mins = vshrq_n_u8(mins_and_scales, 4);
  1143. const int16x8x2_t q8sums = vld1q_s16_x2(y[i].bsums);
  1144. const int16x8x2_t mins16 = {vreinterpretq_s16_u16(vmovl_u8(vget_low_u8(mins))), vreinterpretq_s16_u16(vmovl_u8(vget_high_u8(mins)))};
  1145. const int32x4_t s0 = vaddq_s32(vmull_s16(vget_low_s16 (mins16.val[0]), vget_low_s16 (q8sums.val[0])),
  1146. vmull_s16(vget_high_s16(mins16.val[0]), vget_high_s16(q8sums.val[0])));
  1147. const int32x4_t s1 = vaddq_s32(vmull_s16(vget_low_s16 (mins16.val[1]), vget_low_s16 (q8sums.val[1])),
  1148. vmull_s16(vget_high_s16(mins16.val[1]), vget_high_s16(q8sums.val[1])));
  1149. sum += dmin * vaddvq_s32(vaddq_s32(s0, s1));
  1150. int isum = 0;
  1151. int is = 0;
  1152. // We use this macro instead of a function call because for some reason
  1153. // the code runs 2-3% slower, even if the function is declared inline
  1154. #if defined(__ARM_FEATURE_DOTPROD)
  1155. #define MULTIPLY_ACCUM_WITH_SCALE(index)\
  1156. isum += vaddvq_s32(vdotq_s32(vzero, q2bytes.val[0], q8bytes.val[0])) * aux[is+(index)];\
  1157. isum += vaddvq_s32(vdotq_s32(vzero, q2bytes.val[1], q8bytes.val[1])) * aux[is+1+(index)];
  1158. #else
  1159. #define MULTIPLY_ACCUM_WITH_SCALE(index)\
  1160. {\
  1161. const int16x8_t p1 = vaddq_s16(vmull_s8(vget_low_s8 (q2bytes.val[0]), vget_low_s8 (q8bytes.val[0])),\
  1162. vmull_s8(vget_high_s8(q2bytes.val[0]), vget_high_s8(q8bytes.val[0])));\
  1163. const int16x8_t p2 = vaddq_s16(vmull_s8(vget_low_s8 (q2bytes.val[1]), vget_low_s8 (q8bytes.val[1])),\
  1164. vmull_s8(vget_high_s8(q2bytes.val[1]), vget_high_s8(q8bytes.val[1])));\
  1165. isum += vaddvq_s16(p1) * aux[is+(index)] + vaddvq_s16(p2) * aux[is+1+(index)];\
  1166. }
  1167. #endif
  1168. #define SHIFT_MULTIPLY_ACCUM_WITH_SCALE(shift, index)\
  1169. q8bytes = vld1q_s8_x2(q8); q8 += 32;\
  1170. q2bytes.val[0] = vreinterpretq_s8_u8(vandq_u8(vshrq_n_u8(q2bits.val[0], (shift)), m3));\
  1171. q2bytes.val[1] = vreinterpretq_s8_u8(vandq_u8(vshrq_n_u8(q2bits.val[1], (shift)), m3));\
  1172. MULTIPLY_ACCUM_WITH_SCALE((index));
  1173. for (int j = 0; j < QK_K/128; ++j) {
  1174. const uint8x16x2_t q2bits = vld1q_u8_x2(q2); q2 += 32;
  1175. int8x16x2_t q8bytes = vld1q_s8_x2(q8); q8 += 32;
  1176. q2bytes.val[0] = vreinterpretq_s8_u8(vandq_u8(q2bits.val[0], m3));
  1177. q2bytes.val[1] = vreinterpretq_s8_u8(vandq_u8(q2bits.val[1], m3));
  1178. MULTIPLY_ACCUM_WITH_SCALE(0);
  1179. SHIFT_MULTIPLY_ACCUM_WITH_SCALE(2, 2);
  1180. SHIFT_MULTIPLY_ACCUM_WITH_SCALE(4, 4);
  1181. SHIFT_MULTIPLY_ACCUM_WITH_SCALE(6, 6);
  1182. is += 8;
  1183. }
  1184. sum += d * isum;
  1185. }
  1186. *s = sum;
  1187. #elif defined __AVX2__
  1188. const __m256i m3 = _mm256_set1_epi8(3);
  1189. const __m128i m4 = _mm_set1_epi8(0xF);
  1190. __m256 acc = _mm256_setzero_ps();
  1191. for (int i = 0; i < nb; ++i) {
  1192. const float d = y[i].d * ggml_fp16_to_fp32(x[i].d);
  1193. const float dmin = -y[i].d * ggml_fp16_to_fp32(x[i].dmin);
  1194. const uint8_t * restrict q2 = x[i].qs;
  1195. const int8_t * restrict q8 = y[i].qs;
  1196. const __m128i mins_and_scales = _mm_loadu_si128((const __m128i*)x[i].scales);
  1197. const __m128i scales8 = _mm_and_si128(mins_and_scales, m4);
  1198. const __m128i mins8 = _mm_and_si128(_mm_srli_epi16(mins_and_scales, 4), m4);
  1199. const __m256i mins = _mm256_cvtepi8_epi16(mins8);
  1200. const __m256i prod = _mm256_madd_epi16(mins, _mm256_loadu_si256((const __m256i*)y[i].bsums));
  1201. acc = _mm256_fmadd_ps(_mm256_broadcast_ss(&dmin), _mm256_cvtepi32_ps(prod), acc);
  1202. const __m256i all_scales = _mm256_cvtepi8_epi16(scales8);
  1203. const __m128i l_scales = _mm256_extracti128_si256(all_scales, 0);
  1204. const __m128i h_scales = _mm256_extracti128_si256(all_scales, 1);
  1205. const __m256i scales[2] = {MM256_SET_M128I(l_scales, l_scales), MM256_SET_M128I(h_scales, h_scales)};
  1206. __m256i sumi = _mm256_setzero_si256();
  1207. for (int j = 0; j < QK_K/128; ++j) {
  1208. const __m256i q2bits = _mm256_loadu_si256((const __m256i*)q2); q2 += 32;
  1209. const __m256i q8_0 = _mm256_loadu_si256((const __m256i*)q8); q8 += 32;
  1210. const __m256i q8_1 = _mm256_loadu_si256((const __m256i*)q8); q8 += 32;
  1211. const __m256i q8_2 = _mm256_loadu_si256((const __m256i*)q8); q8 += 32;
  1212. const __m256i q8_3 = _mm256_loadu_si256((const __m256i*)q8); q8 += 32;
  1213. const __m256i q2_0 = _mm256_and_si256(q2bits, m3);
  1214. const __m256i q2_1 = _mm256_and_si256(_mm256_srli_epi16(q2bits, 2), m3);
  1215. const __m256i q2_2 = _mm256_and_si256(_mm256_srli_epi16(q2bits, 4), m3);
  1216. const __m256i q2_3 = _mm256_and_si256(_mm256_srli_epi16(q2bits, 6), m3);
  1217. __m256i p0 = _mm256_maddubs_epi16(q2_0, q8_0);
  1218. __m256i p1 = _mm256_maddubs_epi16(q2_1, q8_1);
  1219. __m256i p2 = _mm256_maddubs_epi16(q2_2, q8_2);
  1220. __m256i p3 = _mm256_maddubs_epi16(q2_3, q8_3);
  1221. p0 = _mm256_madd_epi16(_mm256_shuffle_epi8(scales[j], get_scale_shuffle_q3k(0)), p0);
  1222. p1 = _mm256_madd_epi16(_mm256_shuffle_epi8(scales[j], get_scale_shuffle_q3k(1)), p1);
  1223. p2 = _mm256_madd_epi16(_mm256_shuffle_epi8(scales[j], get_scale_shuffle_q3k(2)), p2);
  1224. p3 = _mm256_madd_epi16(_mm256_shuffle_epi8(scales[j], get_scale_shuffle_q3k(3)), p3);
  1225. p0 = _mm256_add_epi32(p0, p1);
  1226. p2 = _mm256_add_epi32(p2, p3);
  1227. sumi = _mm256_add_epi32(sumi, _mm256_add_epi32(p0, p2));
  1228. }
  1229. acc = _mm256_fmadd_ps(_mm256_broadcast_ss(&d), _mm256_cvtepi32_ps(sumi), acc);
  1230. }
  1231. *s = hsum_float_8(acc);
  1232. #elif defined __AVX__
  1233. const __m128i m3 = _mm_set1_epi8(0x3);
  1234. const __m128i m4 = _mm_set1_epi8(0xF);
  1235. const __m128i m2 = _mm_set1_epi8(0x2);
  1236. __m256 acc = _mm256_setzero_ps();
  1237. for (int i = 0; i < nb; ++i) {
  1238. const float dall = y[i].d * ggml_fp16_to_fp32(x[i].d);
  1239. const float dmin = -y[i].d * ggml_fp16_to_fp32(x[i].dmin);
  1240. const uint8_t * restrict q2 = x[i].qs;
  1241. const int8_t * restrict q8 = y[i].qs;
  1242. // load mins and scales from block_q2_K.scales[QK_K/16]
  1243. const __m128i mins_and_scales = _mm_loadu_si128((const __m128i*)x[i].scales);
  1244. const __m128i scales16 = _mm_and_si128(mins_and_scales, m4);
  1245. const __m128i mins16 = _mm_and_si128(_mm_srli_epi16(mins_and_scales, 4), m4);
  1246. const __m128i mins_0 = _mm_cvtepi8_epi16(mins16);
  1247. const __m128i mins_1 = _mm_cvtepi8_epi16(_mm_unpackhi_epi64(mins16, mins16));
  1248. // summs = y[i].bsums * (x[i].scales >> 4) in 16bits*8*2 to 32bits*4*2
  1249. const __m128i summs_0 = _mm_madd_epi16(mins_0, _mm_loadu_si128((const __m128i*)&y[i].bsums[0]));
  1250. const __m128i summs_1 = _mm_madd_epi16(mins_1, _mm_loadu_si128((const __m128i*)&y[i].bsums[8]));
  1251. // sumf += -dmin * summs in 32bits*8
  1252. acc = _mm256_add_ps(_mm256_mul_ps(_mm256_broadcast_ss(&dmin), _mm256_cvtepi32_ps(MM256_SET_M128I(summs_1, summs_0))), acc);
  1253. const __m128i scales_0 = _mm_cvtepi8_epi16(scales16);
  1254. const __m128i scales_1 = _mm_cvtepi8_epi16(_mm_unpackhi_epi64(scales16, scales16));
  1255. const __m128i scales[2] = { scales_0, scales_1 };
  1256. __m128i sumi_0 = _mm_setzero_si128();
  1257. __m128i sumi_1 = _mm_setzero_si128();
  1258. for (int j = 0; j < QK_K/128; ++j) {
  1259. // load Q8 quants int8*16*8 from block_q8_K.qs[QK_K]
  1260. const __m128i q8_0 = _mm_loadu_si128((const __m128i*)q8); q8 += 16;
  1261. const __m128i q8_1 = _mm_loadu_si128((const __m128i*)q8); q8 += 16;
  1262. const __m128i q8_2 = _mm_loadu_si128((const __m128i*)q8); q8 += 16;
  1263. const __m128i q8_3 = _mm_loadu_si128((const __m128i*)q8); q8 += 16;
  1264. const __m128i q8_4 = _mm_loadu_si128((const __m128i*)q8); q8 += 16;
  1265. const __m128i q8_5 = _mm_loadu_si128((const __m128i*)q8); q8 += 16;
  1266. const __m128i q8_6 = _mm_loadu_si128((const __m128i*)q8); q8 += 16;
  1267. const __m128i q8_7 = _mm_loadu_si128((const __m128i*)q8); q8 += 16;
  1268. // load 2bits*16*8 from block_q2_K.qs[QK_K/4]
  1269. __m128i q2bits = _mm_loadu_si128((const __m128i*)q2); q2 += 16;
  1270. const __m128i q2_0 = _mm_and_si128(q2bits, m3);
  1271. const __m128i q2_2 = _mm_and_si128(_mm_srli_epi16(q2bits, 2), m3);
  1272. const __m128i q2_4 = _mm_and_si128(_mm_srli_epi16(q2bits, 4), m3);
  1273. const __m128i q2_6 = _mm_and_si128(_mm_srli_epi16(q2bits, 6), m3);
  1274. q2bits = _mm_loadu_si128((const __m128i*)q2); q2 += 16;
  1275. const __m128i q2_1 = _mm_and_si128(q2bits, m3);
  1276. const __m128i q2_3 = _mm_and_si128(_mm_srli_epi16(q2bits, 2), m3);
  1277. const __m128i q2_5 = _mm_and_si128(_mm_srli_epi16(q2bits, 4), m3);
  1278. const __m128i q2_7 = _mm_and_si128(_mm_srli_epi16(q2bits, 6), m3);
  1279. // isuml = q8[l] * ((q2[l] >> shift) & 3) in 8bits*16*8 to 16bits*8*8
  1280. __m128i p0 = _mm_maddubs_epi16(q2_0, q8_0);
  1281. __m128i p1 = _mm_maddubs_epi16(q2_1, q8_1);
  1282. __m128i p2 = _mm_maddubs_epi16(q2_2, q8_2);
  1283. __m128i p3 = _mm_maddubs_epi16(q2_3, q8_3);
  1284. __m128i p4 = _mm_maddubs_epi16(q2_4, q8_4);
  1285. __m128i p5 = _mm_maddubs_epi16(q2_5, q8_5);
  1286. __m128i p6 = _mm_maddubs_epi16(q2_6, q8_6);
  1287. __m128i p7 = _mm_maddubs_epi16(q2_7, q8_7);
  1288. // isum += (x[i].scales[is++] & 0xF) * isuml in 16bits*8*8 to 32bits*4*8
  1289. __m128i shuffle = _mm_set1_epi16(0x0100);
  1290. p0 = _mm_madd_epi16(_mm_shuffle_epi8(scales[j], shuffle), p0);
  1291. shuffle = _mm_add_epi16(shuffle, m2);
  1292. p1 = _mm_madd_epi16(_mm_shuffle_epi8(scales[j], shuffle), p1);
  1293. shuffle = _mm_add_epi16(shuffle, m2);
  1294. p2 = _mm_madd_epi16(_mm_shuffle_epi8(scales[j], shuffle), p2);
  1295. shuffle = _mm_add_epi16(shuffle, m2);
  1296. p3 = _mm_madd_epi16(_mm_shuffle_epi8(scales[j], shuffle), p3);
  1297. shuffle = _mm_add_epi16(shuffle, m2);
  1298. p4 = _mm_madd_epi16(_mm_shuffle_epi8(scales[j], shuffle), p4);
  1299. shuffle = _mm_add_epi16(shuffle, m2);
  1300. p5 = _mm_madd_epi16(_mm_shuffle_epi8(scales[j], shuffle), p5);
  1301. shuffle = _mm_add_epi16(shuffle, m2);
  1302. p6 = _mm_madd_epi16(_mm_shuffle_epi8(scales[j], shuffle), p6);
  1303. shuffle = _mm_add_epi16(shuffle, m2);
  1304. p7 = _mm_madd_epi16(_mm_shuffle_epi8(scales[j], shuffle), p7);
  1305. p0 = _mm_add_epi32(p0, p1);
  1306. p2 = _mm_add_epi32(p2, p3);
  1307. p4 = _mm_add_epi32(p4, p5);
  1308. p6 = _mm_add_epi32(p6, p7);
  1309. // isum in 32bits*4*2
  1310. sumi_0 = _mm_add_epi32(sumi_0, _mm_add_epi32(p0, p2));
  1311. sumi_1 = _mm_add_epi32(sumi_1, _mm_add_epi32(p4, p6));
  1312. }
  1313. // sumf += dall * isum - dmin * summs in 32bits
  1314. __m256i sumi = MM256_SET_M128I(sumi_1, sumi_0);
  1315. acc = _mm256_add_ps(_mm256_mul_ps(_mm256_broadcast_ss(&dall), _mm256_cvtepi32_ps(sumi)), acc);
  1316. }
  1317. *s = hsum_float_8(acc);
  1318. #else
  1319. float sumf = 0;
  1320. for (int i = 0; i < nb; ++i) {
  1321. const uint8_t * q2 = x[i].qs;
  1322. const int8_t * q8 = y[i].qs;
  1323. const uint8_t * sc = x[i].scales;
  1324. int summs = 0;
  1325. for (int j = 0; j < 16; ++j) {
  1326. summs += y[i].bsums[j] * (sc[j] >> 4);
  1327. }
  1328. const float dall = y[i].d * ggml_fp16_to_fp32(x[i].d);
  1329. const float dmin = y[i].d * ggml_fp16_to_fp32(x[i].dmin);
  1330. int isum = 0;
  1331. int is = 0;
  1332. int d;
  1333. for (int k = 0; k < QK_K/128; ++k) {
  1334. int shift = 0;
  1335. for (int j = 0; j < 4; ++j) {
  1336. d = sc[is++] & 0xF;
  1337. int isuml = 0;
  1338. for (int l = 0; l < 16; ++l) isuml += q8[l] * ((q2[l] >> shift) & 3);
  1339. isum += d * isuml;
  1340. d = sc[is++] & 0xF;
  1341. isuml = 0;
  1342. for (int l = 16; l < 32; ++l) isuml += q8[l] * ((q2[l] >> shift) & 3);
  1343. isum += d * isuml;
  1344. shift += 2;
  1345. q8 += 32;
  1346. }
  1347. q2 += 32;
  1348. }
  1349. sumf += dall * isum - dmin * summs;
  1350. }
  1351. *s = sumf;
  1352. #endif
  1353. }
  1354. #else
  1355. void ggml_vec_dot_q2_K_q8_K(const int n, float * restrict s, const void * restrict vx, const void * restrict vy) {
  1356. const block_q2_K * restrict x = vx;
  1357. const block_q8_K * restrict y = vy;
  1358. const int nb = n / QK_K;
  1359. #ifdef __ARM_NEON
  1360. const uint8x16_t m3 = vdupq_n_u8(0x3);
  1361. const int32x4_t vzero = vdupq_n_s32(0);
  1362. int8x16x4_t q2bytes;
  1363. uint32_t aux32[2];
  1364. const uint8_t * scales = (const uint8_t *)aux32;
  1365. float sum = 0;
  1366. for (int i = 0; i < nb; ++i) {
  1367. const float d = y[i].d * (float)x[i].d;
  1368. const float dmin = -y[i].d * (float)x[i].dmin;
  1369. const uint8_t * restrict q2 = x[i].qs;
  1370. const int8_t * restrict q8 = y[i].qs;
  1371. const uint32_t * restrict sc = (const uint32_t *)x[i].scales;
  1372. aux32[0] = sc[0] & 0x0f0f0f0f;
  1373. aux32[1] = (sc[0] >> 4) & 0x0f0f0f0f;
  1374. sum += dmin * (scales[4] * y[i].bsums[0] + scales[5] * y[i].bsums[1] + scales[6] * y[i].bsums[2] + scales[7] * y[i].bsums[3]);
  1375. int isum1 = 0, isum2 = 0;
  1376. const uint8x16_t q2bits = vld1q_u8(q2);
  1377. const int8x16x4_t q8bytes = vld1q_s8_x4(q8);
  1378. q2bytes.val[0] = vreinterpretq_s8_u8(vandq_u8(q2bits, m3));
  1379. q2bytes.val[1] = vreinterpretq_s8_u8(vandq_u8(vshrq_n_u8(q2bits, 2), m3));
  1380. q2bytes.val[2] = vreinterpretq_s8_u8(vandq_u8(vshrq_n_u8(q2bits, 4), m3));
  1381. q2bytes.val[3] = vreinterpretq_s8_u8(vandq_u8(vshrq_n_u8(q2bits, 6), m3));
  1382. #if defined(__ARM_FEATURE_DOTPROD)
  1383. isum1 += vaddvq_s32(vdotq_s32(vzero, q2bytes.val[0], q8bytes.val[0])) * scales[0];
  1384. isum2 += vaddvq_s32(vdotq_s32(vzero, q2bytes.val[1], q8bytes.val[1])) * scales[1];
  1385. isum1 += vaddvq_s32(vdotq_s32(vzero, q2bytes.val[2], q8bytes.val[2])) * scales[2];
  1386. isum2 += vaddvq_s32(vdotq_s32(vzero, q2bytes.val[3], q8bytes.val[3])) * scales[3];
  1387. #else
  1388. const int16x8_t p1 = vaddq_s16(vmull_s8(vget_low_s8 (q2bytes.val[0]), vget_low_s8 (q8bytes.val[0])),
  1389. vmull_s8(vget_high_s8(q2bytes.val[0]), vget_high_s8(q8bytes.val[0])));
  1390. const int16x8_t p2 = vaddq_s16(vmull_s8(vget_low_s8 (q2bytes.val[1]), vget_low_s8 (q8bytes.val[1])),
  1391. vmull_s8(vget_high_s8(q2bytes.val[1]), vget_high_s8(q8bytes.val[1])));
  1392. isum1 += vaddvq_s16(p1) * scales[0];
  1393. isum2 += vaddvq_s16(p2) * scales[1];
  1394. const int16x8_t p3 = vaddq_s16(vmull_s8(vget_low_s8 (q2bytes.val[2]), vget_low_s8 (q8bytes.val[2])),
  1395. vmull_s8(vget_high_s8(q2bytes.val[2]), vget_high_s8(q8bytes.val[2])));
  1396. const int16x8_t p4 = vaddq_s16(vmull_s8(vget_low_s8 (q2bytes.val[3]), vget_low_s8 (q8bytes.val[3])),
  1397. vmull_s8(vget_high_s8(q2bytes.val[3]), vget_high_s8(q8bytes.val[3])));
  1398. isum1 += vaddvq_s16(p3) * scales[2];
  1399. isum2 += vaddvq_s16(p4) * scales[3];
  1400. #endif
  1401. sum += d * (isum1 + isum2);
  1402. }
  1403. *s = sum;
  1404. #elif defined __AVX2__
  1405. const __m256i m3 = _mm256_set1_epi8(3);
  1406. __m256 acc = _mm256_setzero_ps();
  1407. uint32_t ud, um;
  1408. const uint8_t * restrict db = (const uint8_t *)&ud;
  1409. const uint8_t * restrict mb = (const uint8_t *)&um;
  1410. float summs = 0;
  1411. // TODO: optimize this
  1412. for (int i = 0; i < nb; ++i) {
  1413. const float d = y[i].d * ggml_fp16_to_fp32(x[i].d);
  1414. const float dmin = -y[i].d * ggml_fp16_to_fp32(x[i].dmin);
  1415. const uint8_t * restrict q2 = x[i].qs;
  1416. const int8_t * restrict q8 = y[i].qs;
  1417. const uint32_t * restrict sc = (const uint32_t *)x[i].scales;
  1418. ud = (sc[0] >> 0) & 0x0f0f0f0f;
  1419. um = (sc[0] >> 4) & 0x0f0f0f0f;
  1420. int32_t smin = mb[0] * y[i].bsums[0] + mb[1] * y[i].bsums[1] + mb[2] * y[i].bsums[2] + mb[3] * y[i].bsums[3];
  1421. summs += dmin * smin;
  1422. const __m128i q2bits = _mm_loadu_si128((const __m128i*)q2);
  1423. const __m256i q2_0 = _mm256_and_si256(MM256_SET_M128I(_mm_srli_epi16(q2bits, 2), q2bits), m3);
  1424. const __m256i q2_1 = _mm256_and_si256(MM256_SET_M128I(_mm_srli_epi16(q2bits, 6), _mm_srli_epi16(q2bits, 4)), m3);
  1425. const __m256i q8_0 = _mm256_loadu_si256((const __m256i*)(q8+ 0));
  1426. const __m256i q8_1 = _mm256_loadu_si256((const __m256i*)(q8+32));
  1427. const __m256i p0 = _mm256_maddubs_epi16(q2_0, q8_0);
  1428. const __m256i p1 = _mm256_maddubs_epi16(q2_1, q8_1);
  1429. const __m256i p_0 = _mm256_cvtepi16_epi32(_mm256_extracti128_si256(p0, 0));
  1430. const __m256i p_1 = _mm256_cvtepi16_epi32(_mm256_extracti128_si256(p0, 1));
  1431. const __m256i p_2 = _mm256_cvtepi16_epi32(_mm256_extracti128_si256(p1, 0));
  1432. const __m256i p_3 = _mm256_cvtepi16_epi32(_mm256_extracti128_si256(p1, 1));
  1433. acc = _mm256_fmadd_ps(_mm256_set1_ps(d * db[0]), _mm256_cvtepi32_ps(p_0), acc);
  1434. acc = _mm256_fmadd_ps(_mm256_set1_ps(d * db[1]), _mm256_cvtepi32_ps(p_1), acc);
  1435. acc = _mm256_fmadd_ps(_mm256_set1_ps(d * db[2]), _mm256_cvtepi32_ps(p_2), acc);
  1436. acc = _mm256_fmadd_ps(_mm256_set1_ps(d * db[3]), _mm256_cvtepi32_ps(p_3), acc);
  1437. }
  1438. *s = hsum_float_8(acc) + summs;
  1439. #elif defined __AVX__
  1440. const __m128i m3 = _mm_set1_epi8(3);
  1441. __m256 acc = _mm256_setzero_ps();
  1442. uint32_t ud, um;
  1443. const uint8_t * restrict db = (const uint8_t *)&ud;
  1444. const uint8_t * restrict mb = (const uint8_t *)&um;
  1445. float summs = 0;
  1446. // TODO: optimize this
  1447. for (int i = 0; i < nb; ++i) {
  1448. const float d = y[i].d * ggml_fp16_to_fp32(x[i].d);
  1449. const float dmin = -y[i].d * ggml_fp16_to_fp32(x[i].dmin);
  1450. const uint8_t * restrict q2 = x[i].qs;
  1451. const int8_t * restrict q8 = y[i].qs;
  1452. const uint32_t * restrict sc = (const uint32_t *)x[i].scales;
  1453. ud = (sc[0] >> 0) & 0x0f0f0f0f;
  1454. um = (sc[0] >> 4) & 0x0f0f0f0f;
  1455. int32_t smin = mb[0] * y[i].bsums[0] + mb[1] * y[i].bsums[1] + mb[2] * y[i].bsums[2] + mb[3] * y[i].bsums[3];
  1456. summs += dmin * smin;
  1457. const __m128i q2bits = _mm_loadu_si128((const __m128i*)q2);
  1458. const __m128i q2_0 = _mm_and_si128(q2bits, m3);
  1459. const __m128i q2_1 = _mm_and_si128(_mm_srli_epi16(q2bits, 2), m3);
  1460. const __m128i q2_2 = _mm_and_si128(_mm_srli_epi16(q2bits, 4), m3);
  1461. const __m128i q2_3 = _mm_and_si128(_mm_srli_epi16(q2bits, 6), m3);
  1462. const __m256i q8_0 = _mm256_loadu_si256((const __m256i*)(q8+ 0));
  1463. const __m256i q8_1 = _mm256_loadu_si256((const __m256i*)(q8+32));
  1464. const __m128i p0 = _mm_maddubs_epi16(q2_0, _mm256_extractf128_si256(q8_0, 0));
  1465. const __m128i p1 = _mm_maddubs_epi16(q2_1, _mm256_extractf128_si256(q8_0, 1));
  1466. const __m128i p2 = _mm_maddubs_epi16(q2_2, _mm256_extractf128_si256(q8_1, 0));
  1467. const __m128i p3 = _mm_maddubs_epi16(q2_3, _mm256_extractf128_si256(q8_1, 1));
  1468. const __m256i p_0 = MM256_SET_M128I(_mm_cvtepi16_epi32(_mm_unpackhi_epi64(p0, p0)), _mm_cvtepi16_epi32(p0));
  1469. const __m256i p_1 = MM256_SET_M128I(_mm_cvtepi16_epi32(_mm_unpackhi_epi64(p1, p1)), _mm_cvtepi16_epi32(p1));
  1470. const __m256i p_2 = MM256_SET_M128I(_mm_cvtepi16_epi32(_mm_unpackhi_epi64(p2, p2)), _mm_cvtepi16_epi32(p2));
  1471. const __m256i p_3 = MM256_SET_M128I(_mm_cvtepi16_epi32(_mm_unpackhi_epi64(p3, p3)), _mm_cvtepi16_epi32(p3));
  1472. acc = _mm256_add_ps(_mm256_mul_ps(_mm256_set1_ps(d * db[0]), _mm256_cvtepi32_ps(p_0)), acc);
  1473. acc = _mm256_add_ps(_mm256_mul_ps(_mm256_set1_ps(d * db[1]), _mm256_cvtepi32_ps(p_1)), acc);
  1474. acc = _mm256_add_ps(_mm256_mul_ps(_mm256_set1_ps(d * db[2]), _mm256_cvtepi32_ps(p_2)), acc);
  1475. acc = _mm256_add_ps(_mm256_mul_ps(_mm256_set1_ps(d * db[3]), _mm256_cvtepi32_ps(p_3)), acc);
  1476. }
  1477. *s = hsum_float_8(acc) + summs;
  1478. #else
  1479. float sumf = 0;
  1480. int isum[4];
  1481. for (int i = 0; i < nb; ++i) {
  1482. const uint8_t * q2 = x[i].qs;
  1483. const int8_t * q8 = y[i].qs;
  1484. const uint8_t * sc = x[i].scales;
  1485. int summs = 0;
  1486. for (int j = 0; j < QK_K/16; ++j) {
  1487. summs += y[i].bsums[j] * (sc[j] >> 4);
  1488. }
  1489. const float dall = y[i].d * ggml_fp16_to_fp32(x[i].d);
  1490. const float dmin = y[i].d * ggml_fp16_to_fp32(x[i].dmin);
  1491. isum[0] = isum[1] = isum[2] = isum[3] = 0;
  1492. for (int l = 0; l < 16; ++l) {
  1493. isum[0] += q8[l+ 0] * ((q2[l] >> 0) & 3);
  1494. isum[1] += q8[l+16] * ((q2[l] >> 2) & 3);
  1495. isum[2] += q8[l+32] * ((q2[l] >> 4) & 3);
  1496. isum[3] += q8[l+48] * ((q2[l] >> 6) & 3);
  1497. }
  1498. for (int l = 0; l < 4; ++l) {
  1499. isum[l] *= (sc[l] & 0xF);
  1500. }
  1501. sumf += dall * (isum[0] + isum[1] + isum[2] + isum[3]) - dmin * summs;
  1502. }
  1503. *s = sumf;
  1504. #endif
  1505. }
  1506. #endif
  1507. #if QK_K == 256
  1508. void ggml_vec_dot_q3_K_q8_K(const int n, float * restrict s, const void * restrict vx, const void * restrict vy) {
  1509. assert(n % QK_K == 0);
  1510. const uint32_t kmask1 = 0x03030303;
  1511. const uint32_t kmask2 = 0x0f0f0f0f;
  1512. const block_q3_K * restrict x = vx;
  1513. const block_q8_K * restrict y = vy;
  1514. const int nb = n / QK_K;
  1515. #ifdef __ARM_NEON
  1516. uint32_t aux[3];
  1517. uint32_t utmp[4];
  1518. const uint8x16_t m3b = vdupq_n_u8(0x3);
  1519. #ifdef __ARM_FEATURE_DOTPROD
  1520. const int32x4_t vzero = vdupq_n_s32(0);
  1521. #endif
  1522. const uint8x16_t m0 = vdupq_n_u8(1);
  1523. const uint8x16_t m1 = vshlq_n_u8(m0, 1);
  1524. const uint8x16_t m2 = vshlq_n_u8(m0, 2);
  1525. const uint8x16_t m3 = vshlq_n_u8(m0, 3);
  1526. const int8_t m32 = 32;
  1527. int8x16x4_t q3bytes;
  1528. float sum = 0;
  1529. for (int i = 0; i < nb; ++i) {
  1530. const float d = y[i].d * ggml_fp16_to_fp32(x[i].d);
  1531. const uint8_t * restrict q3 = x[i].qs;
  1532. const uint8_t * restrict qh = x[i].hmask;
  1533. const int8_t * restrict q8 = y[i].qs;
  1534. uint8x16x2_t qhbits = vld1q_u8_x2(qh);
  1535. uint8x16x4_t q3h;
  1536. int32_t isum = 0;
  1537. // Set up scales
  1538. memcpy(aux, x[i].scales, 12);
  1539. utmp[3] = ((aux[1] >> 4) & kmask2) | (((aux[2] >> 6) & kmask1) << 4);
  1540. utmp[2] = ((aux[0] >> 4) & kmask2) | (((aux[2] >> 4) & kmask1) << 4);
  1541. utmp[1] = (aux[1] & kmask2) | (((aux[2] >> 2) & kmask1) << 4);
  1542. utmp[0] = (aux[0] & kmask2) | (((aux[2] >> 0) & kmask1) << 4);
  1543. int8_t * scale = (int8_t *)utmp;
  1544. for (int j = 0; j < 16; ++j) scale[j] -= m32;
  1545. for (int j = 0; j < QK_K/128; ++j) {
  1546. const uint8x16x2_t q3bits = vld1q_u8_x2(q3); q3 += 32;
  1547. const int8x16x4_t q8bytes_1 = vld1q_s8_x4(q8); q8 += 64;
  1548. const int8x16x4_t q8bytes_2 = vld1q_s8_x4(q8); q8 += 64;
  1549. q3h.val[0] = vshlq_n_u8(vbicq_u8(m0, qhbits.val[0]), 2);
  1550. q3h.val[1] = vshlq_n_u8(vbicq_u8(m0, qhbits.val[1]), 2);
  1551. q3h.val[2] = vshlq_n_u8(vbicq_u8(m1, qhbits.val[0]), 1);
  1552. q3h.val[3] = vshlq_n_u8(vbicq_u8(m1, qhbits.val[1]), 1);
  1553. q3bytes.val[0] = vsubq_s8(vreinterpretq_s8_u8(vandq_u8(q3bits.val[0], m3b)), vreinterpretq_s8_u8(q3h.val[0]));
  1554. q3bytes.val[1] = vsubq_s8(vreinterpretq_s8_u8(vandq_u8(q3bits.val[1], m3b)), vreinterpretq_s8_u8(q3h.val[1]));
  1555. q3bytes.val[2] = vsubq_s8(vreinterpretq_s8_u8(vandq_u8(vshrq_n_u8(q3bits.val[0], 2), m3b)), vreinterpretq_s8_u8(q3h.val[2]));
  1556. q3bytes.val[3] = vsubq_s8(vreinterpretq_s8_u8(vandq_u8(vshrq_n_u8(q3bits.val[1], 2), m3b)), vreinterpretq_s8_u8(q3h.val[3]));
  1557. #if defined(__ARM_FEATURE_DOTPROD)
  1558. isum += vaddvq_s32(vdotq_s32(vzero, q3bytes.val[0], q8bytes_1.val[0])) * scale[0];
  1559. isum += vaddvq_s32(vdotq_s32(vzero, q3bytes.val[1], q8bytes_1.val[1])) * scale[1];
  1560. isum += vaddvq_s32(vdotq_s32(vzero, q3bytes.val[2], q8bytes_1.val[2])) * scale[2];
  1561. isum += vaddvq_s32(vdotq_s32(vzero, q3bytes.val[3], q8bytes_1.val[3])) * scale[3];
  1562. #else
  1563. int16x8_t p0 = vaddq_s16(vmull_s8(vget_low_s8 (q3bytes.val[0]), vget_low_s8 (q8bytes_1.val[0])),
  1564. vmull_s8(vget_high_s8(q3bytes.val[0]), vget_high_s8(q8bytes_1.val[0])));
  1565. int16x8_t p1 = vaddq_s16(vmull_s8(vget_low_s8 (q3bytes.val[1]), vget_low_s8 (q8bytes_1.val[1])),
  1566. vmull_s8(vget_high_s8(q3bytes.val[1]), vget_high_s8(q8bytes_1.val[1])));
  1567. int16x8_t p2 = vaddq_s16(vmull_s8(vget_low_s8 (q3bytes.val[2]), vget_low_s8 (q8bytes_1.val[2])),
  1568. vmull_s8(vget_high_s8(q3bytes.val[2]), vget_high_s8(q8bytes_1.val[2])));
  1569. int16x8_t p3 = vaddq_s16(vmull_s8(vget_low_s8 (q3bytes.val[3]), vget_low_s8 (q8bytes_1.val[3])),
  1570. vmull_s8(vget_high_s8(q3bytes.val[3]), vget_high_s8(q8bytes_1.val[3])));
  1571. isum += vaddvq_s16(p0) * scale[0] + vaddvq_s16(p1) * scale[1] + vaddvq_s16(p2) * scale[2] + vaddvq_s16(p3) * scale[3];
  1572. #endif
  1573. scale += 4;
  1574. q3h.val[0] = vbicq_u8(m2, qhbits.val[0]);
  1575. q3h.val[1] = vbicq_u8(m2, qhbits.val[1]);
  1576. q3h.val[2] = vshrq_n_u8(vbicq_u8(m3, qhbits.val[0]), 1);
  1577. q3h.val[3] = vshrq_n_u8(vbicq_u8(m3, qhbits.val[1]), 1);
  1578. q3bytes.val[0] = vsubq_s8(vreinterpretq_s8_u8(vandq_u8(vshrq_n_u8(q3bits.val[0], 4), m3b)), vreinterpretq_s8_u8(q3h.val[0]));
  1579. q3bytes.val[1] = vsubq_s8(vreinterpretq_s8_u8(vandq_u8(vshrq_n_u8(q3bits.val[1], 4), m3b)), vreinterpretq_s8_u8(q3h.val[1]));
  1580. q3bytes.val[2] = vsubq_s8(vreinterpretq_s8_u8(vandq_u8(vshrq_n_u8(q3bits.val[0], 6), m3b)), vreinterpretq_s8_u8(q3h.val[2]));
  1581. q3bytes.val[3] = vsubq_s8(vreinterpretq_s8_u8(vandq_u8(vshrq_n_u8(q3bits.val[1], 6), m3b)), vreinterpretq_s8_u8(q3h.val[3]));
  1582. #if defined(__ARM_FEATURE_DOTPROD)
  1583. isum += vaddvq_s32(vdotq_s32(vzero, q3bytes.val[0], q8bytes_2.val[0])) * scale[0];
  1584. isum += vaddvq_s32(vdotq_s32(vzero, q3bytes.val[1], q8bytes_2.val[1])) * scale[1];
  1585. isum += vaddvq_s32(vdotq_s32(vzero, q3bytes.val[2], q8bytes_2.val[2])) * scale[2];
  1586. isum += vaddvq_s32(vdotq_s32(vzero, q3bytes.val[3], q8bytes_2.val[3])) * scale[3];
  1587. #else
  1588. p0 = vaddq_s16(vmull_s8(vget_low_s8 (q3bytes.val[0]), vget_low_s8 (q8bytes_2.val[0])),
  1589. vmull_s8(vget_high_s8(q3bytes.val[0]), vget_high_s8(q8bytes_2.val[0])));
  1590. p1 = vaddq_s16(vmull_s8(vget_low_s8 (q3bytes.val[1]), vget_low_s8 (q8bytes_2.val[1])),
  1591. vmull_s8(vget_high_s8(q3bytes.val[1]), vget_high_s8(q8bytes_2.val[1])));
  1592. p2 = vaddq_s16(vmull_s8(vget_low_s8 (q3bytes.val[2]), vget_low_s8 (q8bytes_2.val[2])),
  1593. vmull_s8(vget_high_s8(q3bytes.val[2]), vget_high_s8(q8bytes_2.val[2])));
  1594. p3 = vaddq_s16(vmull_s8(vget_low_s8 (q3bytes.val[3]), vget_low_s8 (q8bytes_2.val[3])),
  1595. vmull_s8(vget_high_s8(q3bytes.val[3]), vget_high_s8(q8bytes_2.val[3])));
  1596. isum += vaddvq_s16(p0) * scale[0] + vaddvq_s16(p1) * scale[1] + vaddvq_s16(p2) * scale[2] + vaddvq_s16(p3) * scale[3];
  1597. #endif
  1598. scale += 4;
  1599. if (j == 0) {
  1600. qhbits.val[0] = vshrq_n_u8(qhbits.val[0], 4);
  1601. qhbits.val[1] = vshrq_n_u8(qhbits.val[1], 4);
  1602. }
  1603. }
  1604. sum += d * isum;
  1605. }
  1606. *s = sum;
  1607. #elif defined __AVX2__
  1608. const __m256i m3 = _mm256_set1_epi8(3);
  1609. const __m256i mone = _mm256_set1_epi8(1);
  1610. const __m128i m32 = _mm_set1_epi8(32);
  1611. __m256 acc = _mm256_setzero_ps();
  1612. uint32_t aux[3];
  1613. for (int i = 0; i < nb; ++i) {
  1614. const float d = y[i].d * ggml_fp16_to_fp32(x[i].d);
  1615. const uint8_t * restrict q3 = x[i].qs;
  1616. const int8_t * restrict q8 = y[i].qs;
  1617. // Set up scales
  1618. memcpy(aux, x[i].scales, 12);
  1619. __m128i scales128 = _mm_set_epi32(
  1620. ((aux[1] >> 4) & kmask2) | (((aux[2] >> 6) & kmask1) << 4),
  1621. ((aux[0] >> 4) & kmask2) | (((aux[2] >> 4) & kmask1) << 4),
  1622. (aux[1] & kmask2) | (((aux[2] >> 2) & kmask1) << 4),
  1623. (aux[0] & kmask2) | (((aux[2] >> 0) & kmask1) << 4));
  1624. scales128 = _mm_sub_epi8(scales128, m32);
  1625. const __m256i all_scales = _mm256_cvtepi8_epi16(scales128);
  1626. const __m128i l_scales = _mm256_extracti128_si256(all_scales, 0);
  1627. const __m128i h_scales = _mm256_extracti128_si256(all_scales, 1);
  1628. const __m256i scales[2] = {MM256_SET_M128I(l_scales, l_scales), MM256_SET_M128I(h_scales, h_scales)};
  1629. // high bit
  1630. const __m256i hbits = _mm256_loadu_si256((const __m256i*)x[i].hmask);
  1631. // integer accumulator
  1632. __m256i sumi = _mm256_setzero_si256();
  1633. int bit = 0;
  1634. int is = 0;
  1635. for (int j = 0; j < QK_K/128; ++j) {
  1636. // load low 2 bits
  1637. const __m256i q3bits = _mm256_loadu_si256((const __m256i*)q3); q3 += 32;
  1638. // prepare low and high bits
  1639. const __m256i q3l_0 = _mm256_and_si256(q3bits, m3);
  1640. const __m256i q3h_0 = _mm256_slli_epi16(_mm256_srli_epi16(_mm256_andnot_si256(hbits, _mm256_slli_epi16(mone, bit)), bit), 2);
  1641. ++bit;
  1642. const __m256i q3l_1 = _mm256_and_si256(_mm256_srli_epi16(q3bits, 2), m3);
  1643. const __m256i q3h_1 = _mm256_slli_epi16(_mm256_srli_epi16(_mm256_andnot_si256(hbits, _mm256_slli_epi16(mone, bit)), bit), 2);
  1644. ++bit;
  1645. const __m256i q3l_2 = _mm256_and_si256(_mm256_srli_epi16(q3bits, 4), m3);
  1646. const __m256i q3h_2 = _mm256_slli_epi16(_mm256_srli_epi16(_mm256_andnot_si256(hbits, _mm256_slli_epi16(mone, bit)), bit), 2);
  1647. ++bit;
  1648. const __m256i q3l_3 = _mm256_and_si256(_mm256_srli_epi16(q3bits, 6), m3);
  1649. const __m256i q3h_3 = _mm256_slli_epi16(_mm256_srli_epi16(_mm256_andnot_si256(hbits, _mm256_slli_epi16(mone, bit)), bit), 2);
  1650. ++bit;
  1651. // load Q8 quants
  1652. const __m256i q8_0 = _mm256_loadu_si256((const __m256i*)q8); q8 += 32;
  1653. const __m256i q8_1 = _mm256_loadu_si256((const __m256i*)q8); q8 += 32;
  1654. const __m256i q8_2 = _mm256_loadu_si256((const __m256i*)q8); q8 += 32;
  1655. const __m256i q8_3 = _mm256_loadu_si256((const __m256i*)q8); q8 += 32;
  1656. // Dot product: we multiply the 2 low bits and 1 high bit part separately, so we can use _mm256_maddubs_epi16,
  1657. // and then subtract. The high bit part has the 2 already subtracted (and so, it is zero if the high bit was not set,
  1658. // and 2 if the high bit was set)
  1659. __m256i q8s_0 = _mm256_maddubs_epi16(q3h_0, q8_0);
  1660. __m256i q8s_1 = _mm256_maddubs_epi16(q3h_1, q8_1);
  1661. __m256i q8s_2 = _mm256_maddubs_epi16(q3h_2, q8_2);
  1662. __m256i q8s_3 = _mm256_maddubs_epi16(q3h_3, q8_3);
  1663. __m256i p16_0 = _mm256_maddubs_epi16(q3l_0, q8_0);
  1664. __m256i p16_1 = _mm256_maddubs_epi16(q3l_1, q8_1);
  1665. __m256i p16_2 = _mm256_maddubs_epi16(q3l_2, q8_2);
  1666. __m256i p16_3 = _mm256_maddubs_epi16(q3l_3, q8_3);
  1667. p16_0 = _mm256_sub_epi16(p16_0, q8s_0);
  1668. p16_1 = _mm256_sub_epi16(p16_1, q8s_1);
  1669. p16_2 = _mm256_sub_epi16(p16_2, q8s_2);
  1670. p16_3 = _mm256_sub_epi16(p16_3, q8s_3);
  1671. // multiply with scales
  1672. p16_0 = _mm256_madd_epi16(_mm256_shuffle_epi8(scales[j], get_scale_shuffle_q3k(is + 0)), p16_0);
  1673. p16_1 = _mm256_madd_epi16(_mm256_shuffle_epi8(scales[j], get_scale_shuffle_q3k(is + 1)), p16_1);
  1674. p16_2 = _mm256_madd_epi16(_mm256_shuffle_epi8(scales[j], get_scale_shuffle_q3k(is + 2)), p16_2);
  1675. p16_3 = _mm256_madd_epi16(_mm256_shuffle_epi8(scales[j], get_scale_shuffle_q3k(is + 3)), p16_3);
  1676. // accumulate
  1677. p16_0 = _mm256_add_epi32(p16_0, p16_1);
  1678. p16_2 = _mm256_add_epi32(p16_2, p16_3);
  1679. sumi = _mm256_add_epi32(sumi, _mm256_add_epi32(p16_0, p16_2));
  1680. }
  1681. // multiply with block scale and accumulate
  1682. acc = _mm256_fmadd_ps(_mm256_broadcast_ss(&d), _mm256_cvtepi32_ps(sumi), acc);
  1683. }
  1684. *s = hsum_float_8(acc);
  1685. #elif defined __AVX__
  1686. const __m128i m3 = _mm_set1_epi8(3);
  1687. const __m128i mone = _mm_set1_epi8(1);
  1688. const __m128i m32 = _mm_set1_epi8(32);
  1689. const __m128i m2 = _mm_set1_epi8(2);
  1690. __m256 acc = _mm256_setzero_ps();
  1691. uint32_t *aux;
  1692. for (int i = 0; i < nb; ++i) {
  1693. const float d = y[i].d * ggml_fp16_to_fp32(x[i].d);
  1694. const uint8_t * restrict q3 = x[i].qs;
  1695. const int8_t * restrict q8 = y[i].qs;
  1696. // Set up scales
  1697. aux = (uint32_t *)x[i].scales;
  1698. __m128i scales128 = _mm_set_epi32(
  1699. ((aux[1] >> 4) & kmask2) | (((aux[2] >> 6) & kmask1) << 4),
  1700. ((aux[0] >> 4) & kmask2) | (((aux[2] >> 4) & kmask1) << 4),
  1701. (aux[1] & kmask2) | (((aux[2] >> 2) & kmask1) << 4),
  1702. (aux[0] & kmask2) | (((aux[2] >> 0) & kmask1) << 4));
  1703. scales128 = _mm_sub_epi8(scales128, m32);
  1704. const __m128i scales_0 = _mm_cvtepi8_epi16(scales128);
  1705. const __m128i scales_1 = _mm_cvtepi8_epi16(_mm_unpackhi_epi64(scales128, scales128));
  1706. const __m128i scales[2] = { scales_0, scales_1 };
  1707. // high bit *128*2 from block_q3_K.hmask[QK_K/8]
  1708. const __m128i hbits_0 = _mm_loadu_si128((const __m128i*)&x[i].hmask[0]);
  1709. const __m128i hbits_1 = _mm_loadu_si128((const __m128i*)&x[i].hmask[16]);
  1710. // integer accumulator
  1711. __m128i sumi_0 = _mm_setzero_si128();
  1712. __m128i sumi_1 = _mm_setzero_si128();
  1713. for (int j = 0; j < QK_K/128; ++j) {
  1714. // load low 2 bits *64*2 from block_q3_K.qs[QK_K/4]
  1715. const __m128i q3bits_0 = _mm_loadu_si128((const __m128i*)q3); q3 += 16;
  1716. const __m128i q3bits_1 = _mm_loadu_si128((const __m128i*)q3); q3 += 16;
  1717. // prepare low and high bits
  1718. const int bit = j << 2;
  1719. const __m128i q3l_0 = _mm_and_si128(q3bits_0, m3);
  1720. const __m128i q3l_1 = _mm_and_si128(q3bits_1, m3);
  1721. const __m128i q3h_0 = _mm_slli_epi16(_mm_srli_epi16(_mm_andnot_si128(hbits_0, _mm_slli_epi16(mone, bit)), bit), 2);
  1722. const __m128i q3h_1 = _mm_slli_epi16(_mm_srli_epi16(_mm_andnot_si128(hbits_1, _mm_slli_epi16(mone, bit)), bit), 2);
  1723. const __m128i q3l_2 = _mm_and_si128(_mm_srli_epi16(q3bits_0, 2), m3);
  1724. const __m128i q3l_3 = _mm_and_si128(_mm_srli_epi16(q3bits_1, 2), m3);
  1725. const __m128i q3h_2 = _mm_slli_epi16(_mm_srli_epi16(_mm_andnot_si128(hbits_0, _mm_slli_epi16(mone, bit+1)), bit+1), 2);
  1726. const __m128i q3h_3 = _mm_slli_epi16(_mm_srli_epi16(_mm_andnot_si128(hbits_1, _mm_slli_epi16(mone, bit+1)), bit+1), 2);
  1727. const __m128i q3l_4 = _mm_and_si128(_mm_srli_epi16(q3bits_0, 4), m3);
  1728. const __m128i q3l_5 = _mm_and_si128(_mm_srli_epi16(q3bits_1, 4), m3);
  1729. const __m128i q3h_4 = _mm_slli_epi16(_mm_srli_epi16(_mm_andnot_si128(hbits_0, _mm_slli_epi16(mone, bit+2)), bit+2), 2);
  1730. const __m128i q3h_5 = _mm_slli_epi16(_mm_srli_epi16(_mm_andnot_si128(hbits_1, _mm_slli_epi16(mone, bit+2)), bit+2), 2);
  1731. const __m128i q3l_6 = _mm_and_si128(_mm_srli_epi16(q3bits_0, 6), m3);
  1732. const __m128i q3l_7 = _mm_and_si128(_mm_srli_epi16(q3bits_1, 6), m3);
  1733. const __m128i q3h_6 = _mm_slli_epi16(_mm_srli_epi16(_mm_andnot_si128(hbits_0, _mm_slli_epi16(mone, bit+3)), bit+3), 2);
  1734. const __m128i q3h_7 = _mm_slli_epi16(_mm_srli_epi16(_mm_andnot_si128(hbits_1, _mm_slli_epi16(mone, bit+3)), bit+3), 2);
  1735. // load Q8 quants from block_q8_K.qs[QK_K]
  1736. const __m128i q8_0 = _mm_loadu_si128((const __m128i*)q8); q8 += 16;
  1737. const __m128i q8_1 = _mm_loadu_si128((const __m128i*)q8); q8 += 16;
  1738. const __m128i q8_2 = _mm_loadu_si128((const __m128i*)q8); q8 += 16;
  1739. const __m128i q8_3 = _mm_loadu_si128((const __m128i*)q8); q8 += 16;
  1740. const __m128i q8_4 = _mm_loadu_si128((const __m128i*)q8); q8 += 16;
  1741. const __m128i q8_5 = _mm_loadu_si128((const __m128i*)q8); q8 += 16;
  1742. const __m128i q8_6 = _mm_loadu_si128((const __m128i*)q8); q8 += 16;
  1743. const __m128i q8_7 = _mm_loadu_si128((const __m128i*)q8); q8 += 16;
  1744. // Dot product: we multiply the 2 low bits and 1 high bit part separately, so we can use _mm256_maddubs_epi16,
  1745. // and then subtract. The high bit part has the 2 already subtracted (and so, it is zero if the high bit was not set,
  1746. // and 2 if the high bit was set)
  1747. __m128i q8s_0 = _mm_maddubs_epi16(q3h_0, q8_0);
  1748. __m128i q8s_1 = _mm_maddubs_epi16(q3h_1, q8_1);
  1749. __m128i q8s_2 = _mm_maddubs_epi16(q3h_2, q8_2);
  1750. __m128i q8s_3 = _mm_maddubs_epi16(q3h_3, q8_3);
  1751. __m128i q8s_4 = _mm_maddubs_epi16(q3h_4, q8_4);
  1752. __m128i q8s_5 = _mm_maddubs_epi16(q3h_5, q8_5);
  1753. __m128i q8s_6 = _mm_maddubs_epi16(q3h_6, q8_6);
  1754. __m128i q8s_7 = _mm_maddubs_epi16(q3h_7, q8_7);
  1755. __m128i p16_0 = _mm_maddubs_epi16(q3l_0, q8_0);
  1756. __m128i p16_1 = _mm_maddubs_epi16(q3l_1, q8_1);
  1757. __m128i p16_2 = _mm_maddubs_epi16(q3l_2, q8_2);
  1758. __m128i p16_3 = _mm_maddubs_epi16(q3l_3, q8_3);
  1759. __m128i p16_4 = _mm_maddubs_epi16(q3l_4, q8_4);
  1760. __m128i p16_5 = _mm_maddubs_epi16(q3l_5, q8_5);
  1761. __m128i p16_6 = _mm_maddubs_epi16(q3l_6, q8_6);
  1762. __m128i p16_7 = _mm_maddubs_epi16(q3l_7, q8_7);
  1763. p16_0 = _mm_sub_epi16(p16_0, q8s_0);
  1764. p16_1 = _mm_sub_epi16(p16_1, q8s_1);
  1765. p16_2 = _mm_sub_epi16(p16_2, q8s_2);
  1766. p16_3 = _mm_sub_epi16(p16_3, q8s_3);
  1767. p16_4 = _mm_sub_epi16(p16_4, q8s_4);
  1768. p16_5 = _mm_sub_epi16(p16_5, q8s_5);
  1769. p16_6 = _mm_sub_epi16(p16_6, q8s_6);
  1770. p16_7 = _mm_sub_epi16(p16_7, q8s_7);
  1771. // multiply with scales
  1772. __m128i shuffle = _mm_set1_epi16(0x0100);
  1773. p16_0 = _mm_madd_epi16(_mm_shuffle_epi8(scales[j], shuffle), p16_0);
  1774. shuffle = _mm_add_epi16(shuffle, m2);
  1775. p16_1 = _mm_madd_epi16(_mm_shuffle_epi8(scales[j], shuffle), p16_1);
  1776. shuffle = _mm_add_epi16(shuffle, m2);
  1777. p16_2 = _mm_madd_epi16(_mm_shuffle_epi8(scales[j], shuffle), p16_2);
  1778. shuffle = _mm_add_epi16(shuffle, m2);
  1779. p16_3 = _mm_madd_epi16(_mm_shuffle_epi8(scales[j], shuffle), p16_3);
  1780. shuffle = _mm_add_epi16(shuffle, m2);
  1781. p16_4 = _mm_madd_epi16(_mm_shuffle_epi8(scales[j], shuffle), p16_4);
  1782. shuffle = _mm_add_epi16(shuffle, m2);
  1783. p16_5 = _mm_madd_epi16(_mm_shuffle_epi8(scales[j], shuffle), p16_5);
  1784. shuffle = _mm_add_epi16(shuffle, m2);
  1785. p16_6 = _mm_madd_epi16(_mm_shuffle_epi8(scales[j], shuffle), p16_6);
  1786. shuffle = _mm_add_epi16(shuffle, m2);
  1787. p16_7 = _mm_madd_epi16(_mm_shuffle_epi8(scales[j], shuffle), p16_7);
  1788. // accumulate
  1789. p16_0 = _mm_add_epi32(p16_0, p16_1);
  1790. p16_2 = _mm_add_epi32(p16_2, p16_3);
  1791. p16_4 = _mm_add_epi32(p16_4, p16_5);
  1792. p16_6 = _mm_add_epi32(p16_6, p16_7);
  1793. sumi_0 = _mm_add_epi32(sumi_0, _mm_add_epi32(p16_0, p16_2));
  1794. sumi_1 = _mm_add_epi32(sumi_1, _mm_add_epi32(p16_4, p16_6));
  1795. }
  1796. // multiply with block scale and accumulate
  1797. __m256i sumi = MM256_SET_M128I(sumi_1, sumi_0);
  1798. acc = _mm256_add_ps(_mm256_mul_ps(_mm256_broadcast_ss(&d), _mm256_cvtepi32_ps(sumi)), acc);
  1799. }
  1800. *s = hsum_float_8(acc);
  1801. #else
  1802. // scalar version
  1803. // This function is written like this so the compiler can manage to vectorize most of it
  1804. // Using -Ofast, GCC and clang manage to produce code that is within a factor of 2 or so from the
  1805. // manually vectorized version above. Every other version I tried would run at least 4 times slower.
  1806. // The ideal situation would be if we could just write the code once, and the compiler would
  1807. // automatically produce the best possible set of machine instructions, instead of us having to manually
  1808. // write vectorized versions for AVX, ARM_NEON, etc.
  1809. int8_t aux8[QK_K];
  1810. int16_t aux16[8];
  1811. float sums [8];
  1812. int32_t aux32[8];
  1813. memset(sums, 0, 8*sizeof(float));
  1814. uint32_t auxs[4];
  1815. const int8_t * scales = (const int8_t*)auxs;
  1816. float sumf = 0;
  1817. for (int i = 0; i < nb; ++i) {
  1818. const uint8_t * restrict q3 = x[i].qs;
  1819. const uint8_t * restrict hm = x[i].hmask;
  1820. const int8_t * restrict q8 = y[i].qs;
  1821. memset(aux32, 0, 8*sizeof(int32_t));
  1822. int8_t * restrict a = aux8;
  1823. uint8_t m = 1;
  1824. for (int j = 0; j < QK_K; j += 128) {
  1825. for (int l = 0; l < 32; ++l) a[l] = q3[l] & 3;
  1826. for (int l = 0; l < 32; ++l) a[l] -= (hm[l] & m ? 0 : 4);
  1827. a += 32; m <<= 1;
  1828. for (int l = 0; l < 32; ++l) a[l] = (q3[l] >> 2) & 3;
  1829. for (int l = 0; l < 32; ++l) a[l] -= (hm[l] & m ? 0 : 4);
  1830. a += 32; m <<= 1;
  1831. for (int l = 0; l < 32; ++l) a[l] = (q3[l] >> 4) & 3;
  1832. for (int l = 0; l < 32; ++l) a[l] -= (hm[l] & m ? 0 : 4);
  1833. a += 32; m <<= 1;
  1834. for (int l = 0; l < 32; ++l) a[l] = (q3[l] >> 6) & 3;
  1835. for (int l = 0; l < 32; ++l) a[l] -= (hm[l] & m ? 0 : 4);
  1836. a += 32; m <<= 1;
  1837. q3 += 32;
  1838. }
  1839. a = aux8;
  1840. memcpy(auxs, x[i].scales, 12);
  1841. uint32_t tmp = auxs[2];
  1842. auxs[2] = ((auxs[0] >> 4) & kmask2) | (((tmp >> 4) & kmask1) << 4);
  1843. auxs[3] = ((auxs[1] >> 4) & kmask2) | (((tmp >> 6) & kmask1) << 4);
  1844. auxs[0] = (auxs[0] & kmask2) | (((tmp >> 0) & kmask1) << 4);
  1845. auxs[1] = (auxs[1] & kmask2) | (((tmp >> 2) & kmask1) << 4);
  1846. for (int j = 0; j < QK_K/16; ++j) {
  1847. for (int l = 0; l < 8; ++l) aux16[l] = q8[l] * a[l];
  1848. for (int l = 0; l < 8; ++l) aux32[l] += (scales[j] - 32) * aux16[l];
  1849. q8 += 8; a += 8;
  1850. for (int l = 0; l < 8; ++l) aux16[l] = q8[l] * a[l];
  1851. for (int l = 0; l < 8; ++l) aux32[l] += (scales[j] - 32) * aux16[l];
  1852. q8 += 8; a += 8;
  1853. }
  1854. const float d = ggml_fp16_to_fp32(x[i].d) * y[i].d;
  1855. for (int l = 0; l < 8; ++l) sums[l] += d * aux32[l];
  1856. }
  1857. for (int l = 0; l < 8; ++l) sumf += sums[l];
  1858. *s = sumf;
  1859. #endif
  1860. }
  1861. #else
  1862. void ggml_vec_dot_q3_K_q8_K(const int n, float * restrict s, const void * restrict vx, const void * restrict vy) {
  1863. assert(n % QK_K == 0);
  1864. const block_q3_K * restrict x = vx;
  1865. const block_q8_K * restrict y = vy;
  1866. const int nb = n / QK_K;
  1867. #ifdef __ARM_NEON
  1868. #ifdef __ARM_FEATURE_DOTPROD
  1869. const int32x4_t vzero = vdupq_n_s32(0);
  1870. #endif
  1871. const uint8x16_t m3b = vdupq_n_u8(0x3);
  1872. const uint8x16_t mh = vdupq_n_u8(4);
  1873. int8x16x4_t q3bytes;
  1874. uint16_t aux16[2];
  1875. int8_t * scales = (int8_t *)aux16;
  1876. float sum = 0;
  1877. for (int i = 0; i < nb; ++i) {
  1878. uint8x16x4_t q3h;
  1879. const uint8x8_t hbits = vld1_u8(x[i].hmask);
  1880. const uint8x16_t q3bits = vld1q_u8(x[i].qs);
  1881. const int8x16x4_t q8bytes = vld1q_s8_x4(y[i].qs);
  1882. const uint16_t a = *(const uint16_t *)x[i].scales;
  1883. aux16[0] = a & 0x0f0f;
  1884. aux16[1] = (a >> 4) & 0x0f0f;
  1885. for (int j = 0; j < 4; ++j) scales[j] -= 8;
  1886. int32_t isum = -4*(scales[0] * y[i].bsums[0] + scales[2] * y[i].bsums[1] + scales[1] * y[i].bsums[2] + scales[3] * y[i].bsums[3]);
  1887. const float d = y[i].d * (float)x[i].d;
  1888. const uint8x16_t htmp = vcombine_u8(hbits, vshr_n_u8(hbits, 1));
  1889. q3h.val[0] = vandq_u8(mh, vshlq_n_u8(htmp, 2));
  1890. q3h.val[1] = vandq_u8(mh, htmp);
  1891. q3h.val[2] = vandq_u8(mh, vshrq_n_u8(htmp, 2));
  1892. q3h.val[3] = vandq_u8(mh, vshrq_n_u8(htmp, 4));
  1893. q3bytes.val[0] = vreinterpretq_s8_u8(vorrq_u8(vandq_u8(q3bits, m3b), q3h.val[0]));
  1894. q3bytes.val[1] = vreinterpretq_s8_u8(vorrq_u8(vandq_u8(vshrq_n_u8(q3bits, 2), m3b), q3h.val[1]));
  1895. q3bytes.val[2] = vreinterpretq_s8_u8(vorrq_u8(vandq_u8(vshrq_n_u8(q3bits, 4), m3b), q3h.val[2]));
  1896. q3bytes.val[3] = vreinterpretq_s8_u8(vorrq_u8(vshrq_n_u8(q3bits, 6), q3h.val[3]));
  1897. #if defined(__ARM_FEATURE_DOTPROD)
  1898. isum += vaddvq_s32(vdotq_s32(vzero, q3bytes.val[0], q8bytes.val[0])) * scales[0];
  1899. isum += vaddvq_s32(vdotq_s32(vzero, q3bytes.val[1], q8bytes.val[1])) * scales[2];
  1900. isum += vaddvq_s32(vdotq_s32(vzero, q3bytes.val[2], q8bytes.val[2])) * scales[1];
  1901. isum += vaddvq_s32(vdotq_s32(vzero, q3bytes.val[3], q8bytes.val[3])) * scales[3];
  1902. #else
  1903. const int16x8_t p0 = vaddq_s16(vmull_s8(vget_low_s8 (q3bytes.val[0]), vget_low_s8 (q8bytes.val[0])),
  1904. vmull_s8(vget_high_s8(q3bytes.val[0]), vget_high_s8(q8bytes.val[0])));
  1905. const int16x8_t p1 = vaddq_s16(vmull_s8(vget_low_s8 (q3bytes.val[1]), vget_low_s8 (q8bytes.val[1])),
  1906. vmull_s8(vget_high_s8(q3bytes.val[1]), vget_high_s8(q8bytes.val[1])));
  1907. const int16x8_t p2 = vaddq_s16(vmull_s8(vget_low_s8 (q3bytes.val[2]), vget_low_s8 (q8bytes.val[2])),
  1908. vmull_s8(vget_high_s8(q3bytes.val[2]), vget_high_s8(q8bytes.val[2])));
  1909. const int16x8_t p3 = vaddq_s16(vmull_s8(vget_low_s8 (q3bytes.val[3]), vget_low_s8 (q8bytes.val[3])),
  1910. vmull_s8(vget_high_s8(q3bytes.val[3]), vget_high_s8(q8bytes.val[3])));
  1911. isum += vaddvq_s16(p0) * scales[0] + vaddvq_s16(p1) * scales[2] + vaddvq_s16(p2) * scales[1] + vaddvq_s16(p3) * scales[3];
  1912. #endif
  1913. sum += d * isum;
  1914. }
  1915. *s = sum;
  1916. #elif defined __AVX2__
  1917. const __m256i m3 = _mm256_set1_epi8(3);
  1918. const __m256i m1 = _mm256_set1_epi8(1);
  1919. __m256 acc = _mm256_setzero_ps();
  1920. uint64_t aux64;
  1921. uint16_t aux16[2];
  1922. const int8_t * aux8 = (const int8_t *)aux16;
  1923. for (int i = 0; i < nb; ++i) {
  1924. const float d = y[i].d * ggml_fp16_to_fp32(x[i].d);
  1925. const uint8_t * restrict q3 = x[i].qs;
  1926. const int8_t * restrict q8 = y[i].qs;
  1927. const uint16_t a = *(const uint16_t *)x[i].scales;
  1928. aux16[0] = a & 0x0f0f;
  1929. aux16[1] = (a >> 4) & 0x0f0f;
  1930. const __m256i scale_0 = MM256_SET_M128I(_mm_set1_epi16(aux8[2] - 8), _mm_set1_epi16(aux8[0] - 8));
  1931. const __m256i scale_1 = MM256_SET_M128I(_mm_set1_epi16(aux8[3] - 8), _mm_set1_epi16(aux8[1] - 8));
  1932. memcpy(&aux64, x[i].hmask, 8);
  1933. const __m128i haux = _mm_set_epi64x(aux64 >> 1, aux64 >> 0);
  1934. __m256i q3h_0 = MM256_SET_M128I(_mm_srli_epi16(haux, 2), haux);
  1935. __m256i q3h_1 = _mm256_srli_epi16(q3h_0, 4);
  1936. q3h_0 = _mm256_slli_epi16(_mm256_andnot_si256(q3h_0, m1), 2);
  1937. q3h_1 = _mm256_slli_epi16(_mm256_andnot_si256(q3h_1, m1), 2);
  1938. // load low 2 bits
  1939. const __m128i q3bits = _mm_loadu_si128((const __m128i*)q3);
  1940. // prepare low and high bits
  1941. const __m256i q3aux = MM256_SET_M128I(_mm_srli_epi16(q3bits, 2), q3bits);
  1942. const __m256i q3l_0 = _mm256_and_si256(q3aux, m3);
  1943. const __m256i q3l_1 = _mm256_and_si256(_mm256_srli_epi16(q3aux, 4), m3);
  1944. // load Q8 quants
  1945. const __m256i q8_0 = _mm256_loadu_si256((const __m256i*)(q8+ 0));
  1946. const __m256i q8_1 = _mm256_loadu_si256((const __m256i*)(q8+32));
  1947. // Dot product: we multiply the 2 low bits and 1 high bit part separately, so we can use _mm256_maddubs_epi16,
  1948. // and then subtract. The high bit part has the 2 already subtracted (and so, it is zero if the high bit was not set,
  1949. // and 2 if the high bit was set)
  1950. const __m256i q8s_0 = _mm256_maddubs_epi16(q3h_0, q8_0);
  1951. const __m256i q8s_1 = _mm256_maddubs_epi16(q3h_1, q8_1);
  1952. __m256i p16_0 = _mm256_maddubs_epi16(q3l_0, q8_0);
  1953. __m256i p16_1 = _mm256_maddubs_epi16(q3l_1, q8_1);
  1954. p16_0 = _mm256_sub_epi16(p16_0, q8s_0);
  1955. p16_1 = _mm256_sub_epi16(p16_1, q8s_1);
  1956. // multiply with scales
  1957. p16_0 = _mm256_madd_epi16(scale_0, p16_0);
  1958. p16_1 = _mm256_madd_epi16(scale_1, p16_1);
  1959. p16_0 = _mm256_add_epi32(p16_0, p16_1);
  1960. // multiply with block scale and accumulate
  1961. acc = _mm256_fmadd_ps(_mm256_broadcast_ss(&d), _mm256_cvtepi32_ps(p16_0), acc);
  1962. }
  1963. *s = hsum_float_8(acc);
  1964. #elif defined __AVX__
  1965. const __m128i m3 = _mm_set1_epi8(3);
  1966. const __m128i m1 = _mm_set1_epi8(1);
  1967. __m256 acc = _mm256_setzero_ps();
  1968. uint64_t aux64;
  1969. uint16_t aux16[2];
  1970. const int8_t * aux8 = (const int8_t *)aux16;
  1971. for (int i = 0; i < nb; ++i) {
  1972. const float d = y[i].d * ggml_fp16_to_fp32(x[i].d);
  1973. const uint8_t * restrict q3 = x[i].qs;
  1974. const int8_t * restrict q8 = y[i].qs;
  1975. const uint16_t a = *(const uint16_t *)x[i].scales;
  1976. aux16[0] = a & 0x0f0f;
  1977. aux16[1] = (a >> 4) & 0x0f0f;
  1978. const __m128i scale_0 = _mm_set1_epi16(aux8[0] - 8);
  1979. const __m128i scale_1 = _mm_set1_epi16(aux8[2] - 8);
  1980. const __m128i scale_2 = _mm_set1_epi16(aux8[1] - 8);
  1981. const __m128i scale_3 = _mm_set1_epi16(aux8[3] - 8);
  1982. memcpy(&aux64, x[i].hmask, 8);
  1983. __m128i q3h_0 = _mm_set_epi64x(aux64 >> 1, aux64 >> 0);
  1984. __m128i q3h_1 = _mm_srli_epi16(q3h_0, 2);
  1985. __m128i q3h_2 = _mm_srli_epi16(q3h_0, 4);
  1986. __m128i q3h_3 = _mm_srli_epi16(q3h_0, 6);
  1987. q3h_0 = _mm_slli_epi16(_mm_andnot_si128(q3h_0, m1), 2);
  1988. q3h_1 = _mm_slli_epi16(_mm_andnot_si128(q3h_1, m1), 2);
  1989. q3h_2 = _mm_slli_epi16(_mm_andnot_si128(q3h_2, m1), 2);
  1990. q3h_3 = _mm_slli_epi16(_mm_andnot_si128(q3h_3, m1), 2);
  1991. // load low 2 bits
  1992. const __m128i q3bits = _mm_loadu_si128((const __m128i*)q3);
  1993. // prepare low and high bits
  1994. const __m128i q3l_0 = _mm_and_si128(q3bits, m3);
  1995. const __m128i q3l_1 = _mm_and_si128(_mm_srli_epi16(q3bits, 2), m3);
  1996. const __m128i q3l_2 = _mm_and_si128(_mm_srli_epi16(q3bits, 4), m3);
  1997. const __m128i q3l_3 = _mm_and_si128(_mm_srli_epi16(q3bits, 6), m3);
  1998. // load Q8 quants
  1999. const __m256i q8_0 = _mm256_loadu_si256((const __m256i*)(q8+ 0));
  2000. const __m256i q8_1 = _mm256_loadu_si256((const __m256i*)(q8+32));
  2001. // Dot product: we multiply the 2 low bits and 1 high bit part separately, so we can use _mm_maddubs_epi16,
  2002. // and then subtract. The high bit part has the 2 already subtracted (and so, it is zero if the high bit was not set,
  2003. // and 2 if the high bit was set)
  2004. const __m128i q8s_0 = _mm_maddubs_epi16(q3h_0, _mm256_extractf128_si256(q8_0, 0));
  2005. const __m128i q8s_1 = _mm_maddubs_epi16(q3h_1, _mm256_extractf128_si256(q8_0, 1));
  2006. const __m128i q8s_2 = _mm_maddubs_epi16(q3h_2, _mm256_extractf128_si256(q8_1, 0));
  2007. const __m128i q8s_3 = _mm_maddubs_epi16(q3h_3, _mm256_extractf128_si256(q8_1, 1));
  2008. __m128i p16_0 = _mm_maddubs_epi16(q3l_0, _mm256_extractf128_si256(q8_0, 0));
  2009. __m128i p16_1 = _mm_maddubs_epi16(q3l_1, _mm256_extractf128_si256(q8_0, 1));
  2010. __m128i p16_2 = _mm_maddubs_epi16(q3l_2, _mm256_extractf128_si256(q8_1, 0));
  2011. __m128i p16_3 = _mm_maddubs_epi16(q3l_3, _mm256_extractf128_si256(q8_1, 1));
  2012. p16_0 = _mm_sub_epi16(p16_0, q8s_0);
  2013. p16_1 = _mm_sub_epi16(p16_1, q8s_1);
  2014. p16_2 = _mm_sub_epi16(p16_2, q8s_2);
  2015. p16_3 = _mm_sub_epi16(p16_3, q8s_3);
  2016. // multiply with scales
  2017. p16_0 = _mm_madd_epi16(scale_0, p16_0);
  2018. p16_1 = _mm_madd_epi16(scale_1, p16_1);
  2019. p16_2 = _mm_madd_epi16(scale_2, p16_2);
  2020. p16_3 = _mm_madd_epi16(scale_3, p16_3);
  2021. p16_0 = _mm_add_epi32(p16_0, p16_2);
  2022. p16_1 = _mm_add_epi32(p16_1, p16_3);
  2023. __m256i p16 = MM256_SET_M128I(p16_1, p16_0);
  2024. // multiply with block scale and accumulate
  2025. acc = _mm256_add_ps(_mm256_mul_ps(_mm256_broadcast_ss(&d), _mm256_cvtepi32_ps(p16)), acc);
  2026. }
  2027. *s = hsum_float_8(acc);
  2028. #else
  2029. int8_t aux8[QK_K];
  2030. int16_t aux16[8];
  2031. float sums [8];
  2032. int32_t aux32[8];
  2033. int32_t scales[4];
  2034. memset(sums, 0, 8*sizeof(float));
  2035. float sumf = 0;
  2036. for (int i = 0; i < nb; ++i) {
  2037. const uint8_t * restrict q3 = x[i].qs;
  2038. const uint8_t * restrict hm = x[i].hmask;
  2039. const int8_t * restrict q8 = y[i].qs;
  2040. int8_t * restrict a = aux8;
  2041. for (int l = 0; l < 8; ++l) {
  2042. a[l+ 0] = (int8_t)((q3[l+0] >> 0) & 3) - (hm[l] & 0x01 ? 0 : 4);
  2043. a[l+ 8] = (int8_t)((q3[l+8] >> 0) & 3) - (hm[l] & 0x02 ? 0 : 4);
  2044. a[l+16] = (int8_t)((q3[l+0] >> 2) & 3) - (hm[l] & 0x04 ? 0 : 4);
  2045. a[l+24] = (int8_t)((q3[l+8] >> 2) & 3) - (hm[l] & 0x08 ? 0 : 4);
  2046. a[l+32] = (int8_t)((q3[l+0] >> 4) & 3) - (hm[l] & 0x10 ? 0 : 4);
  2047. a[l+40] = (int8_t)((q3[l+8] >> 4) & 3) - (hm[l] & 0x20 ? 0 : 4);
  2048. a[l+48] = (int8_t)((q3[l+0] >> 6) & 3) - (hm[l] & 0x40 ? 0 : 4);
  2049. a[l+56] = (int8_t)((q3[l+8] >> 6) & 3) - (hm[l] & 0x80 ? 0 : 4);
  2050. }
  2051. scales[0] = (x[i].scales[0] & 0xF) - 8;
  2052. scales[1] = (x[i].scales[0] >> 4) - 8;
  2053. scales[2] = (x[i].scales[1] & 0xF) - 8;
  2054. scales[3] = (x[i].scales[1] >> 4) - 8;
  2055. memset(aux32, 0, 8*sizeof(int32_t));
  2056. for (int j = 0; j < QK_K/16; ++j) {
  2057. for (int l = 0; l < 8; ++l) aux16[l] = q8[l] * a[l];
  2058. q8 += 8; a += 8;
  2059. for (int l = 0; l < 8; ++l) aux16[l] += q8[l] * a[l];
  2060. q8 += 8; a += 8;
  2061. for (int l = 0; l < 8; ++l) aux32[l] += scales[j] * aux16[l];
  2062. }
  2063. const float d = ggml_fp16_to_fp32(x[i].d) * y[i].d;
  2064. for (int l = 0; l < 8; ++l) sums[l] += d * aux32[l];
  2065. }
  2066. for (int l = 0; l < 8; ++l) sumf += sums[l];
  2067. *s = sumf;
  2068. #endif
  2069. }
  2070. #endif
  2071. #if QK_K == 256
  2072. void ggml_vec_dot_q4_K_q8_K(const int n, float * restrict s, const void * restrict vx, const void * restrict vy) {
  2073. assert(n % QK_K == 0);
  2074. const block_q4_K * restrict x = vx;
  2075. const block_q8_K * restrict y = vy;
  2076. const int nb = n / QK_K;
  2077. static const uint32_t kmask1 = 0x3f3f3f3f;
  2078. static const uint32_t kmask2 = 0x0f0f0f0f;
  2079. static const uint32_t kmask3 = 0x03030303;
  2080. uint32_t utmp[4];
  2081. #ifdef __ARM_NEON
  2082. const uint8x16_t m4b = vdupq_n_u8(0xf);
  2083. #ifdef __ARM_FEATURE_DOTPROD
  2084. const int32x4_t mzero = vdupq_n_s32(0);
  2085. #endif
  2086. int8x16x2_t q4bytes;
  2087. int8x16x2_t q8bytes;
  2088. float sumf = 0;
  2089. for (int i = 0; i < nb; ++i) {
  2090. const float d = y[i].d * ggml_fp16_to_fp32(x[i].d);
  2091. const float dmin = y[i].d * ggml_fp16_to_fp32(x[i].dmin);
  2092. const int16x8_t q8sums = vpaddq_s16(vld1q_s16(y[i].bsums), vld1q_s16(y[i].bsums + 8));
  2093. memcpy(utmp, x[i].scales, 12);
  2094. const uint32x2_t mins8 = {utmp[1] & kmask1, ((utmp[2] >> 4) & kmask2) | (((utmp[1] >> 6) & kmask3) << 4)};
  2095. utmp[1] = (utmp[2] & kmask2) | (((utmp[0] >> 6) & kmask3) << 4);
  2096. utmp[0] &= kmask1;
  2097. const int16x8_t mins = vreinterpretq_s16_u16(vmovl_u8(vreinterpret_u8_u32(mins8)));
  2098. const int32x4_t prod = vaddq_s32(vmull_s16(vget_low_s16 (q8sums), vget_low_s16 (mins)),
  2099. vmull_s16(vget_high_s16(q8sums), vget_high_s16(mins)));
  2100. sumf -= dmin * vaddvq_s32(prod);
  2101. const uint8_t * scales = (const uint8_t *)utmp;
  2102. const uint8_t * restrict q4 = x[i].qs;
  2103. const int8_t * restrict q8 = y[i].qs;
  2104. //int32x4_t isum = mzero;
  2105. int32_t sumi1 = 0;
  2106. int32_t sumi2 = 0;
  2107. for (int j = 0; j < QK_K/64; ++j) {
  2108. const uint8x16x2_t q4bits = vld1q_u8_x2(q4); q4 += 32;
  2109. #ifdef __ARM_FEATURE_DOTPROD
  2110. q8bytes = vld1q_s8_x2(q8); q8 += 32;
  2111. q4bytes.val[0] = vreinterpretq_s8_u8(vandq_u8 (q4bits.val[0], m4b));
  2112. q4bytes.val[1] = vreinterpretq_s8_u8(vandq_u8 (q4bits.val[1], m4b));
  2113. const int32x4_t p1 = vdotq_s32(vdotq_s32(mzero, q4bytes.val[0], q8bytes.val[0]), q4bytes.val[1], q8bytes.val[1]);
  2114. sumi1 += vaddvq_s32(p1) * scales[2*j+0];
  2115. q8bytes = vld1q_s8_x2(q8); q8 += 32;
  2116. q4bytes.val[0] = vreinterpretq_s8_u8(vshrq_n_u8(q4bits.val[0], 4));
  2117. q4bytes.val[1] = vreinterpretq_s8_u8(vshrq_n_u8(q4bits.val[1], 4));
  2118. const int32x4_t p2 = vdotq_s32(vdotq_s32(mzero, q4bytes.val[0], q8bytes.val[0]), q4bytes.val[1], q8bytes.val[1]);
  2119. sumi2 += vaddvq_s32(p2) * scales[2*j+1];
  2120. #else
  2121. q8bytes = vld1q_s8_x2(q8); q8 += 32;
  2122. q4bytes.val[0] = vreinterpretq_s8_u8(vandq_u8 (q4bits.val[0], m4b));
  2123. q4bytes.val[1] = vreinterpretq_s8_u8(vandq_u8 (q4bits.val[1], m4b));
  2124. const int16x8_t p0 = vaddq_s16(vmull_s8(vget_low_s8 (q4bytes.val[0]), vget_low_s8 (q8bytes.val[0])),
  2125. vmull_s8(vget_high_s8(q4bytes.val[0]), vget_high_s8(q8bytes.val[0])));
  2126. const int16x8_t p1 = vaddq_s16(vmull_s8(vget_low_s8 (q4bytes.val[1]), vget_low_s8 (q8bytes.val[1])),
  2127. vmull_s8(vget_high_s8(q4bytes.val[1]), vget_high_s8(q8bytes.val[1])));
  2128. sumi1 += vaddvq_s16(vaddq_s16(p0, p1)) * scales[2*j+0];
  2129. q8bytes = vld1q_s8_x2(q8); q8 += 32;
  2130. q4bytes.val[0] = vreinterpretq_s8_u8(vshrq_n_u8(q4bits.val[0], 4));
  2131. q4bytes.val[1] = vreinterpretq_s8_u8(vshrq_n_u8(q4bits.val[1], 4));
  2132. const int16x8_t p2 = vaddq_s16(vmull_s8(vget_low_s8 (q4bytes.val[0]), vget_low_s8 (q8bytes.val[0])),
  2133. vmull_s8(vget_high_s8(q4bytes.val[0]), vget_high_s8(q8bytes.val[0])));
  2134. const int16x8_t p3 = vaddq_s16(vmull_s8(vget_low_s8 (q4bytes.val[1]), vget_low_s8 (q8bytes.val[1])),
  2135. vmull_s8(vget_high_s8(q4bytes.val[1]), vget_high_s8(q8bytes.val[1])));
  2136. sumi2 += vaddvq_s16(vaddq_s16(p2, p3)) * scales[2*j+1];
  2137. #endif
  2138. }
  2139. sumf += d * (sumi1 + sumi2);
  2140. }
  2141. *s = sumf;
  2142. #elif defined __AVX2__
  2143. const __m256i m4 = _mm256_set1_epi8(0xF);
  2144. __m256 acc = _mm256_setzero_ps();
  2145. __m128 acc_m = _mm_setzero_ps();
  2146. for (int i = 0; i < nb; ++i) {
  2147. const float d = y[i].d * ggml_fp16_to_fp32(x[i].d);
  2148. const float dmin = -y[i].d * ggml_fp16_to_fp32(x[i].dmin);
  2149. memcpy(utmp, x[i].scales, 12);
  2150. utmp[3] = ((utmp[2] >> 4) & kmask2) | (((utmp[1] >> 6) & kmask3) << 4);
  2151. const uint32_t uaux = utmp[1] & kmask1;
  2152. utmp[1] = (utmp[2] & kmask2) | (((utmp[0] >> 6) & kmask3) << 4);
  2153. utmp[2] = uaux;
  2154. utmp[0] &= kmask1;
  2155. const uint8_t * restrict q4 = x[i].qs;
  2156. const int8_t * restrict q8 = y[i].qs;
  2157. const __m256i mins_and_scales = _mm256_cvtepu8_epi16(_mm_set_epi32(utmp[3], utmp[2], utmp[1], utmp[0]));
  2158. const __m256i q8sums = _mm256_loadu_si256((const __m256i*)y[i].bsums);
  2159. const __m128i q8s = _mm_hadd_epi16(_mm256_extracti128_si256(q8sums, 0), _mm256_extracti128_si256(q8sums, 1));
  2160. const __m128i prod = _mm_madd_epi16(_mm256_extracti128_si256(mins_and_scales, 1), q8s);
  2161. acc_m = _mm_fmadd_ps(_mm_set1_ps(dmin), _mm_cvtepi32_ps(prod), acc_m);
  2162. const __m128i sc128 = _mm256_extracti128_si256(mins_and_scales, 0);
  2163. const __m256i scales = MM256_SET_M128I(sc128, sc128);
  2164. __m256i sumi = _mm256_setzero_si256();
  2165. for (int j = 0; j < QK_K/64; ++j) {
  2166. const __m256i scale_l = _mm256_shuffle_epi8(scales, get_scale_shuffle_k4(2*j+0));
  2167. const __m256i scale_h = _mm256_shuffle_epi8(scales, get_scale_shuffle_k4(2*j+1));
  2168. const __m256i q4bits = _mm256_loadu_si256((const __m256i*)q4); q4 += 32;
  2169. const __m256i q4l = _mm256_and_si256(q4bits, m4);
  2170. const __m256i q4h = _mm256_and_si256(_mm256_srli_epi16(q4bits, 4), m4);
  2171. const __m256i q8l = _mm256_loadu_si256((const __m256i*)q8); q8 += 32;
  2172. __m256i p16l = _mm256_maddubs_epi16(q4l, q8l);
  2173. p16l = _mm256_madd_epi16(scale_l, p16l);
  2174. sumi = _mm256_add_epi32(sumi, p16l);
  2175. const __m256i q8h = _mm256_loadu_si256((const __m256i*)q8); q8 += 32;
  2176. __m256i p16h = _mm256_maddubs_epi16(q4h, q8h);
  2177. p16h = _mm256_madd_epi16(scale_h, p16h);
  2178. sumi = _mm256_add_epi32(sumi, p16h);
  2179. }
  2180. __m256 vd = _mm256_set1_ps(d);
  2181. acc = _mm256_fmadd_ps(vd, _mm256_cvtepi32_ps(sumi), acc);
  2182. }
  2183. acc_m = _mm_add_ps(acc_m, _mm_movehl_ps(acc_m, acc_m));
  2184. acc_m = _mm_add_ss(acc_m, _mm_movehdup_ps(acc_m));
  2185. *s = hsum_float_8(acc) + _mm_cvtss_f32(acc_m);
  2186. #elif defined __AVX__
  2187. const __m128i m4 = _mm_set1_epi8(0xF);
  2188. const __m128i m2 = _mm_set1_epi8(0x2);
  2189. __m256 acc = _mm256_setzero_ps();
  2190. __m128 acc_m = _mm_setzero_ps();
  2191. for (int i = 0; i < nb; ++i) {
  2192. const float d = y[i].d * ggml_fp16_to_fp32(x[i].d);
  2193. const float dmin = -y[i].d * ggml_fp16_to_fp32(x[i].dmin);
  2194. const uint8_t * restrict q4 = x[i].qs;
  2195. const int8_t * restrict q8 = y[i].qs;
  2196. memcpy(utmp, x[i].scales, 12);
  2197. utmp[3] = ((utmp[2] >> 4) & kmask2) | (((utmp[1] >> 6) & kmask3) << 4);
  2198. const uint32_t uaux = utmp[1] & kmask1;
  2199. utmp[1] = (utmp[2] & kmask2) | (((utmp[0] >> 6) & kmask3) << 4);
  2200. utmp[2] = uaux;
  2201. utmp[0] &= kmask1;
  2202. const __m128i utmps = _mm_set_epi32(utmp[3], utmp[2], utmp[1], utmp[0]);
  2203. const __m128i scales = _mm_cvtepu8_epi16(utmps);
  2204. const __m128i mins = _mm_cvtepu8_epi16(_mm_unpackhi_epi64(utmps, utmps));
  2205. const __m128i q8sums_0 = _mm_loadu_si128((const __m128i*)&y[i].bsums[0]);
  2206. const __m128i q8sums_1 = _mm_loadu_si128((const __m128i*)&y[i].bsums[8]);
  2207. const __m128i q8s = _mm_hadd_epi16(q8sums_0, q8sums_1);
  2208. const __m128i prod = _mm_madd_epi16(mins, q8s);
  2209. acc_m = _mm_add_ps(_mm_mul_ps(_mm_set1_ps(dmin), _mm_cvtepi32_ps(prod)), acc_m);
  2210. __m128i sumi_0 = _mm_setzero_si128();
  2211. __m128i sumi_1 = _mm_setzero_si128();
  2212. __m128i shuffle = _mm_set1_epi16(0x0100);
  2213. for (int j = 0; j < QK_K/64; ++j) {
  2214. const __m128i scale_l = _mm_shuffle_epi8(scales, shuffle);
  2215. shuffle = _mm_add_epi16(shuffle, m2);
  2216. const __m128i scale_h = _mm_shuffle_epi8(scales, shuffle);
  2217. shuffle = _mm_add_epi16(shuffle, m2);
  2218. __m128i q4bits = _mm_loadu_si128((const __m128i*)q4); q4 += 16;
  2219. const __m128i q4l_0 = _mm_and_si128(q4bits, m4);
  2220. const __m128i q4h_0 = _mm_and_si128(_mm_srli_epi16(q4bits, 4), m4);
  2221. q4bits = _mm_loadu_si128((const __m128i*)q4); q4 += 16;
  2222. const __m128i q4l_1 = _mm_and_si128(q4bits, m4);
  2223. const __m128i q4h_1 = _mm_and_si128(_mm_srli_epi16(q4bits, 4), m4);
  2224. const __m128i q8l_0 = _mm_loadu_si128((const __m128i*)q8); q8 += 16;
  2225. __m128i p16l = _mm_maddubs_epi16(q4l_0, q8l_0);
  2226. p16l = _mm_madd_epi16(scale_l, p16l);
  2227. sumi_0 = _mm_add_epi32(sumi_0, p16l);
  2228. const __m128i q8l_1 = _mm_loadu_si128((const __m128i*)q8); q8 += 16;
  2229. p16l = _mm_maddubs_epi16(q4l_1, q8l_1);
  2230. p16l = _mm_madd_epi16(scale_l, p16l);
  2231. sumi_1 = _mm_add_epi32(sumi_1, p16l);
  2232. const __m128i q8h_0 = _mm_loadu_si128((const __m128i*)q8); q8 += 16;
  2233. __m128i p16h = _mm_maddubs_epi16(q4h_0, q8h_0);
  2234. p16h = _mm_madd_epi16(scale_h, p16h);
  2235. sumi_0 = _mm_add_epi32(sumi_0, p16h);
  2236. const __m128i q8h_1 = _mm_loadu_si128((const __m128i*)q8); q8 += 16;
  2237. p16h = _mm_maddubs_epi16(q4h_1, q8h_1);
  2238. p16h = _mm_madd_epi16(scale_h, p16h);
  2239. sumi_1 = _mm_add_epi32(sumi_1, p16h);
  2240. }
  2241. __m256 vd = _mm256_set1_ps(d);
  2242. __m256i sumi = MM256_SET_M128I(sumi_1, sumi_0);
  2243. acc = _mm256_add_ps(_mm256_mul_ps(vd, _mm256_cvtepi32_ps(sumi)), acc);
  2244. }
  2245. acc_m = _mm_add_ps(acc_m, _mm_movehl_ps(acc_m, acc_m));
  2246. acc_m = _mm_add_ss(acc_m, _mm_movehdup_ps(acc_m));
  2247. *s = hsum_float_8(acc) + _mm_cvtss_f32(acc_m);
  2248. #else
  2249. const uint8_t * scales = (const uint8_t*)&utmp[0];
  2250. const uint8_t * mins = (const uint8_t*)&utmp[2];
  2251. int8_t aux8[QK_K];
  2252. int16_t aux16[8];
  2253. float sums [8];
  2254. int32_t aux32[8];
  2255. memset(sums, 0, 8*sizeof(float));
  2256. float sumf = 0;
  2257. for (int i = 0; i < nb; ++i) {
  2258. const uint8_t * restrict q4 = x[i].qs;
  2259. const int8_t * restrict q8 = y[i].qs;
  2260. memset(aux32, 0, 8*sizeof(int32_t));
  2261. int8_t * restrict a = aux8;
  2262. for (int j = 0; j < QK_K/64; ++j) {
  2263. for (int l = 0; l < 32; ++l) a[l] = (int8_t)(q4[l] & 0xF);
  2264. a += 32;
  2265. for (int l = 0; l < 32; ++l) a[l] = (int8_t)(q4[l] >> 4);
  2266. a += 32; q4 += 32;
  2267. }
  2268. memcpy(utmp, x[i].scales, 12);
  2269. utmp[3] = ((utmp[2] >> 4) & kmask2) | (((utmp[1] >> 6) & kmask3) << 4);
  2270. const uint32_t uaux = utmp[1] & kmask1;
  2271. utmp[1] = (utmp[2] & kmask2) | (((utmp[0] >> 6) & kmask3) << 4);
  2272. utmp[2] = uaux;
  2273. utmp[0] &= kmask1;
  2274. int sumi = 0;
  2275. for (int j = 0; j < QK_K/16; ++j) sumi += y[i].bsums[j] * mins[j/2];
  2276. a = aux8;
  2277. int is = 0;
  2278. for (int j = 0; j < QK_K/32; ++j) {
  2279. int32_t scale = scales[is++];
  2280. for (int l = 0; l < 8; ++l) aux16[l] = q8[l] * a[l];
  2281. for (int l = 0; l < 8; ++l) aux32[l] += scale * aux16[l];
  2282. q8 += 8; a += 8;
  2283. for (int l = 0; l < 8; ++l) aux16[l] = q8[l] * a[l];
  2284. for (int l = 0; l < 8; ++l) aux32[l] += scale * aux16[l];
  2285. q8 += 8; a += 8;
  2286. for (int l = 0; l < 8; ++l) aux16[l] = q8[l] * a[l];
  2287. for (int l = 0; l < 8; ++l) aux32[l] += scale * aux16[l];
  2288. q8 += 8; a += 8;
  2289. for (int l = 0; l < 8; ++l) aux16[l] = q8[l] * a[l];
  2290. for (int l = 0; l < 8; ++l) aux32[l] += scale * aux16[l];
  2291. q8 += 8; a += 8;
  2292. }
  2293. const float d = ggml_fp16_to_fp32(x[i].d) * y[i].d;
  2294. for (int l = 0; l < 8; ++l) sums[l] += d * aux32[l];
  2295. const float dmin = ggml_fp16_to_fp32(x[i].dmin) * y[i].d;
  2296. sumf -= dmin * sumi;
  2297. }
  2298. for (int l = 0; l < 8; ++l) sumf += sums[l];
  2299. *s = sumf;
  2300. #endif
  2301. }
  2302. #else
  2303. void ggml_vec_dot_q4_K_q8_K(const int n, float * restrict s, const void * restrict vx, const void * restrict vy) {
  2304. assert(n % QK_K == 0);
  2305. const block_q4_K * restrict x = vx;
  2306. const block_q8_K * restrict y = vy;
  2307. const int nb = n / QK_K;
  2308. #ifdef __ARM_NEON
  2309. const uint8x16_t m4b = vdupq_n_u8(0xf);
  2310. #ifdef __ARM_FEATURE_DOTPROD
  2311. const int32x4_t mzero = vdupq_n_s32(0);
  2312. #endif
  2313. float sumf = 0;
  2314. int8x16x2_t q4bytes;
  2315. int8x16x4_t q8bytes;
  2316. float sum_mins = 0.f;
  2317. uint16_t aux16[2];
  2318. const uint8_t * restrict scales = (const uint8_t *)aux16;
  2319. for (int i = 0; i < nb; ++i) {
  2320. const uint8_t * restrict q4 = x[i].qs;
  2321. const int8_t * restrict q8 = y[i].qs;
  2322. const uint16_t * restrict a = (const uint16_t *)x[i].scales;
  2323. aux16[0] = a[0] & 0x0f0f;
  2324. aux16[1] = (a[0] >> 4) & 0x0f0f;
  2325. const int32_t summi = scales[2] * (y[i].bsums[0] + y[i].bsums[1]) + scales[3] * (y[i].bsums[2] + y[i].bsums[3]);
  2326. sum_mins += y[i].d * (float)x[i].d[1] * summi;
  2327. const float d = y[i].d * (float)x[i].d[0];
  2328. const uint8x16x2_t q4bits = vld1q_u8_x2(q4);
  2329. #ifdef __ARM_FEATURE_DOTPROD
  2330. q8bytes = vld1q_s8_x4(q8);
  2331. q4bytes.val[0] = vreinterpretq_s8_u8(vandq_u8 (q4bits.val[0], m4b));
  2332. q4bytes.val[1] = vreinterpretq_s8_u8(vandq_u8 (q4bits.val[1], m4b));
  2333. const int32x4_t p1 = vdotq_s32(vdotq_s32(mzero, q4bytes.val[0], q8bytes.val[0]), q4bytes.val[1], q8bytes.val[1]);
  2334. const int32_t sumi1 = vaddvq_s32(p1) * scales[0];
  2335. q4bytes.val[0] = vreinterpretq_s8_u8(vshrq_n_u8(q4bits.val[0], 4));
  2336. q4bytes.val[1] = vreinterpretq_s8_u8(vshrq_n_u8(q4bits.val[1], 4));
  2337. const int32x4_t p2 = vdotq_s32(vdotq_s32(mzero, q4bytes.val[0], q8bytes.val[2]), q4bytes.val[1], q8bytes.val[3]);
  2338. const int32_t sumi2 = vaddvq_s32(p2) * scales[1];
  2339. #else
  2340. q8bytes = vld1q_s8_x4(q8);
  2341. q4bytes.val[0] = vreinterpretq_s8_u8(vandq_u8 (q4bits.val[0], m4b));
  2342. q4bytes.val[1] = vreinterpretq_s8_u8(vandq_u8 (q4bits.val[1], m4b));
  2343. const int16x8_t p0 = vaddq_s16(vmull_s8(vget_low_s8 (q4bytes.val[0]), vget_low_s8 (q8bytes.val[0])),
  2344. vmull_s8(vget_high_s8(q4bytes.val[0]), vget_high_s8(q8bytes.val[0])));
  2345. const int16x8_t p1 = vaddq_s16(vmull_s8(vget_low_s8 (q4bytes.val[1]), vget_low_s8 (q8bytes.val[1])),
  2346. vmull_s8(vget_high_s8(q4bytes.val[1]), vget_high_s8(q8bytes.val[1])));
  2347. int32_t sumi1 = vaddvq_s16(vaddq_s16(p0, p1)) * scales[0];
  2348. q4bytes.val[0] = vreinterpretq_s8_u8(vshrq_n_u8(q4bits.val[0], 4));
  2349. q4bytes.val[1] = vreinterpretq_s8_u8(vshrq_n_u8(q4bits.val[1], 4));
  2350. const int16x8_t p2 = vaddq_s16(vmull_s8(vget_low_s8 (q4bytes.val[0]), vget_low_s8 (q8bytes.val[2])),
  2351. vmull_s8(vget_high_s8(q4bytes.val[0]), vget_high_s8(q8bytes.val[2])));
  2352. const int16x8_t p3 = vaddq_s16(vmull_s8(vget_low_s8 (q4bytes.val[1]), vget_low_s8 (q8bytes.val[3])),
  2353. vmull_s8(vget_high_s8(q4bytes.val[1]), vget_high_s8(q8bytes.val[3])));
  2354. int32_t sumi2 = vaddvq_s16(vaddq_s16(p2, p3)) * scales[1];
  2355. #endif
  2356. sumf += d * (sumi1 + sumi2);
  2357. }
  2358. *s = sumf - sum_mins;
  2359. #elif defined __AVX2__
  2360. const __m256i m4 = _mm256_set1_epi8(0xF);
  2361. __m256 acc = _mm256_setzero_ps();
  2362. float summs = 0;
  2363. uint16_t aux16[2];
  2364. const uint8_t * scales = (const uint8_t *)aux16;
  2365. for (int i = 0; i < nb; ++i) {
  2366. const float d = ggml_fp16_to_fp32(x[i].d[0]) * y[i].d;
  2367. const float m = ggml_fp16_to_fp32(x[i].d[1]) * y[i].d;
  2368. const __m256 vd = _mm256_set1_ps(d);
  2369. const uint16_t * a = (const uint16_t *)x[i].scales;
  2370. aux16[0] = a[0] & 0x0f0f;
  2371. aux16[1] = (a[0] >> 4) & 0x0f0f;
  2372. summs += m * (scales[2] * (y[i].bsums[0] + y[i].bsums[1]) + scales[3] * (y[i].bsums[2] + y[i].bsums[3]));
  2373. const uint8_t * restrict q4 = x[i].qs;
  2374. const int8_t * restrict q8 = y[i].qs;
  2375. const __m256i q4bits = _mm256_loadu_si256((const __m256i*)q4);
  2376. const __m256i q4l = _mm256_and_si256(q4bits, m4);
  2377. const __m256i q4h = _mm256_and_si256(_mm256_srli_epi16(q4bits, 4), m4);
  2378. const __m256i q8l = _mm256_loadu_si256((const __m256i*)(q8+ 0));
  2379. const __m256i q8h = _mm256_loadu_si256((const __m256i*)(q8+32));
  2380. const __m256i p16l = _mm256_maddubs_epi16(q4l, q8l);
  2381. const __m256i p16h = _mm256_maddubs_epi16(q4h, q8h);
  2382. const __m256i p32l = _mm256_madd_epi16(_mm256_set1_epi16(scales[0]), p16l);
  2383. acc = _mm256_fmadd_ps(vd, _mm256_cvtepi32_ps(p32l), acc);
  2384. const __m256i p32h = _mm256_madd_epi16(_mm256_set1_epi16(scales[1]), p16h);
  2385. acc = _mm256_fmadd_ps(vd, _mm256_cvtepi32_ps(p32h), acc);
  2386. }
  2387. *s = hsum_float_8(acc) - summs;
  2388. #elif defined __AVX__
  2389. const __m128i m4 = _mm_set1_epi8(0xF);
  2390. __m256 acc = _mm256_setzero_ps();
  2391. float summs = 0;
  2392. uint16_t aux16[2];
  2393. const uint8_t * scales = (const uint8_t *)aux16;
  2394. for (int i = 0; i < nb; ++i) {
  2395. const float d = ggml_fp16_to_fp32(x[i].d[0]) * y[i].d;
  2396. const float m = ggml_fp16_to_fp32(x[i].d[1]) * y[i].d;
  2397. const __m256 vd = _mm256_set1_ps(d);
  2398. const uint16_t * a = (const uint16_t *)x[i].scales;
  2399. aux16[0] = a[0] & 0x0f0f;
  2400. aux16[1] = (a[0] >> 4) & 0x0f0f;
  2401. summs += m * (scales[2] * (y[i].bsums[0] + y[i].bsums[1]) + scales[3] * (y[i].bsums[2] + y[i].bsums[3]));
  2402. const uint8_t * restrict q4 = x[i].qs;
  2403. const int8_t * restrict q8 = y[i].qs;
  2404. const __m256i q4bits = _mm256_loadu_si256((const __m256i*)q4);
  2405. const __m128i q4bits_0 = _mm256_extractf128_si256(q4bits, 0);
  2406. const __m128i q4bits_1 = _mm256_extractf128_si256(q4bits, 1);
  2407. const __m128i q4_0 = _mm_and_si128(q4bits_0, m4);
  2408. const __m128i q4_1 = _mm_and_si128(q4bits_1, m4);
  2409. const __m128i q4_2 = _mm_and_si128(_mm_srli_epi16(q4bits_0, 4), m4);
  2410. const __m128i q4_3 = _mm_and_si128(_mm_srli_epi16(q4bits_1, 4), m4);
  2411. const __m256i q8_0 = _mm256_loadu_si256((const __m256i*)(q8+ 0));
  2412. const __m256i q8_1 = _mm256_loadu_si256((const __m256i*)(q8+32));
  2413. const __m128i p16_0 = _mm_maddubs_epi16(q4_0, _mm256_extractf128_si256(q8_0, 0));
  2414. const __m128i p16_1 = _mm_maddubs_epi16(q4_1, _mm256_extractf128_si256(q8_0, 1));
  2415. const __m128i p16_2 = _mm_maddubs_epi16(q4_2, _mm256_extractf128_si256(q8_1, 0));
  2416. const __m128i p16_3 = _mm_maddubs_epi16(q4_3, _mm256_extractf128_si256(q8_1, 1));
  2417. const __m128i p32_0 = _mm_madd_epi16(_mm_set1_epi16(scales[0]), p16_0);
  2418. const __m128i p32_1 = _mm_madd_epi16(_mm_set1_epi16(scales[0]), p16_1);
  2419. acc = _mm256_add_ps(_mm256_mul_ps(vd, _mm256_cvtepi32_ps(MM256_SET_M128I(p32_1, p32_0))), acc);
  2420. const __m128i p32_2 = _mm_madd_epi16(_mm_set1_epi16(scales[1]), p16_2);
  2421. const __m128i p32_3 = _mm_madd_epi16(_mm_set1_epi16(scales[1]), p16_3);
  2422. acc = _mm256_add_ps(_mm256_mul_ps(vd, _mm256_cvtepi32_ps(MM256_SET_M128I(p32_3, p32_2))), acc);
  2423. }
  2424. *s = hsum_float_8(acc) - summs;
  2425. #else
  2426. uint8_t aux8[QK_K];
  2427. int16_t aux16[16];
  2428. float sums [8];
  2429. memset(sums, 0, 8*sizeof(float));
  2430. uint16_t s16[2];
  2431. const uint8_t * restrict scales = (const uint8_t *)s16;
  2432. float sumf = 0;
  2433. for (int i = 0; i < nb; ++i) {
  2434. const uint8_t * restrict q4 = x[i].qs;
  2435. const int8_t * restrict q8 = y[i].qs;
  2436. uint8_t * restrict a = aux8;
  2437. for (int l = 0; l < 32; ++l) a[l+ 0] = q4[l] & 0xF;
  2438. for (int l = 0; l < 32; ++l) a[l+32] = q4[l] >> 4;
  2439. const uint16_t * restrict b = (const uint16_t *)x[i].scales;
  2440. s16[0] = b[0] & 0x0f0f;
  2441. s16[1] = (b[0] >> 4) & 0x0f0f;
  2442. sumf -= y[i].d * ggml_fp16_to_fp32(x[i].d[1]) * (scales[2] * (y[i].bsums[0] + y[i].bsums[1]) + scales[3] * (y[i].bsums[2] + y[i].bsums[3]));
  2443. const float d = y[i].d * ggml_fp16_to_fp32(x[i].d[0]);
  2444. for (int j = 0; j < QK_K/32; ++j) {
  2445. for (int l = 0; l < 16; ++l) aux16[l] = q8[l] * a[l];
  2446. q8 += 16; a += 16;
  2447. for (int l = 0; l < 16; ++l) aux16[l] += q8[l] * a[l];
  2448. q8 += 16; a += 16;
  2449. const float dl = d * scales[j];
  2450. for (int l = 0; l < 8; ++l) sums[l] += dl * (aux16[l] + aux16[l+8]);
  2451. }
  2452. }
  2453. for (int l = 0; l < 8; ++l) sumf += sums[l];
  2454. *s = sumf;
  2455. #endif
  2456. }
  2457. #endif
  2458. #if QK_K == 256
  2459. void ggml_vec_dot_q5_K_q8_K(const int n, float * restrict s, const void * restrict vx, const void * restrict vy) {
  2460. assert(n % QK_K == 0);
  2461. const block_q5_K * restrict x = vx;
  2462. const block_q8_K * restrict y = vy;
  2463. const int nb = n / QK_K;
  2464. static const uint32_t kmask1 = 0x3f3f3f3f;
  2465. static const uint32_t kmask2 = 0x0f0f0f0f;
  2466. static const uint32_t kmask3 = 0x03030303;
  2467. uint32_t utmp[4];
  2468. #ifdef __ARM_NEON
  2469. const uint8x16_t m4b = vdupq_n_u8(0xf);
  2470. const int32x4_t mzero = vdupq_n_s32(0);
  2471. const uint8x16_t mone = vdupq_n_u8(1);
  2472. const uint8x16_t mtwo = vdupq_n_u8(2);
  2473. int8x16x4_t q5bytes;
  2474. float sumf = 0;
  2475. for (int i = 0; i < nb; ++i) {
  2476. const float d = y[i].d * ggml_fp16_to_fp32(x[i].d);
  2477. const float dmin = y[i].d * ggml_fp16_to_fp32(x[i].dmin);
  2478. const int16x8_t q8sums = vpaddq_s16(vld1q_s16(y[i].bsums), vld1q_s16(y[i].bsums + 8));
  2479. memcpy(utmp, x[i].scales, 12);
  2480. utmp[3] = ((utmp[2] >> 4) & kmask2) | (((utmp[1] >> 6) & kmask3) << 4);
  2481. const uint32_t uaux = utmp[1] & kmask1;
  2482. utmp[1] = (utmp[2] & kmask2) | (((utmp[0] >> 6) & kmask3) << 4);
  2483. utmp[2] = uaux;
  2484. utmp[0] &= kmask1;
  2485. const uint8x8_t mins8 = vld1_u8((const uint8_t*)utmp + 8);
  2486. const int16x8_t mins = vreinterpretq_s16_u16(vmovl_u8(mins8));
  2487. const int32x4_t prod = vaddq_s32(vmull_s16(vget_low_s16 (q8sums), vget_low_s16 (mins)),
  2488. vmull_s16(vget_high_s16(q8sums), vget_high_s16(mins)));
  2489. int32_t sumi_mins = vaddvq_s32(prod);
  2490. const uint8_t * scales = (const uint8_t *)utmp;
  2491. const uint8_t * restrict q5 = x[i].qs;
  2492. const uint8_t * restrict qh = x[i].qh;
  2493. const int8_t * restrict q8 = y[i].qs;
  2494. uint8x16x2_t qhbits = vld1q_u8_x2(qh);
  2495. uint8x16x4_t q5h;
  2496. int32_t sumi = 0;
  2497. for (int j = 0; j < QK_K/64; ++j) {
  2498. const uint8x16x2_t q5bits = vld1q_u8_x2(q5); q5 += 32;
  2499. const int8x16x4_t q8bytes = vld1q_s8_x4(q8); q8 += 64;
  2500. q5h.val[0] = vshlq_n_u8(vandq_u8(mone, qhbits.val[0]), 4);
  2501. q5h.val[1] = vshlq_n_u8(vandq_u8(mone, qhbits.val[1]), 4);
  2502. q5h.val[2] = vshlq_n_u8(vandq_u8(mtwo, qhbits.val[0]), 3);
  2503. q5h.val[3] = vshlq_n_u8(vandq_u8(mtwo, qhbits.val[1]), 3);
  2504. qhbits.val[0] = vshrq_n_u8(qhbits.val[0], 2);
  2505. qhbits.val[1] = vshrq_n_u8(qhbits.val[1], 2);
  2506. q5bytes.val[0] = vreinterpretq_s8_u8(vorrq_u8(vandq_u8(q5bits.val[0], m4b), q5h.val[0]));
  2507. q5bytes.val[1] = vreinterpretq_s8_u8(vorrq_u8(vandq_u8(q5bits.val[1], m4b), q5h.val[1]));
  2508. q5bytes.val[2] = vreinterpretq_s8_u8(vorrq_u8(vshrq_n_u8(q5bits.val[0], 4), q5h.val[2]));
  2509. q5bytes.val[3] = vreinterpretq_s8_u8(vorrq_u8(vshrq_n_u8(q5bits.val[1], 4), q5h.val[3]));
  2510. #if defined(__ARM_FEATURE_DOTPROD)
  2511. sumi += vaddvq_s32(vdotq_s32(vdotq_s32(mzero, q5bytes.val[0], q8bytes.val[0]), q5bytes.val[1], q8bytes.val[1])) * *scales++;
  2512. sumi += vaddvq_s32(vdotq_s32(vdotq_s32(mzero, q5bytes.val[2], q8bytes.val[2]), q5bytes.val[3], q8bytes.val[3])) * *scales++;
  2513. #else
  2514. const int16x8_t p0 = vaddq_s16(vmull_s8(vget_low_s8 (q5bytes.val[0]), vget_low_s8 (q8bytes.val[0])),
  2515. vmull_s8(vget_high_s8(q5bytes.val[0]), vget_high_s8(q8bytes.val[0])));
  2516. const int16x8_t p1 = vaddq_s16(vmull_s8(vget_low_s8 (q5bytes.val[1]), vget_low_s8 (q8bytes.val[1])),
  2517. vmull_s8(vget_high_s8(q5bytes.val[1]), vget_high_s8(q8bytes.val[1])));
  2518. sumi += vaddvq_s16(vaddq_s16(p0, p1)) * *scales++;
  2519. const int16x8_t p2 = vaddq_s16(vmull_s8(vget_low_s8 (q5bytes.val[2]), vget_low_s8 (q8bytes.val[2])),
  2520. vmull_s8(vget_high_s8(q5bytes.val[2]), vget_high_s8(q8bytes.val[2])));
  2521. const int16x8_t p3 = vaddq_s16(vmull_s8(vget_low_s8 (q5bytes.val[3]), vget_low_s8 (q8bytes.val[3])),
  2522. vmull_s8(vget_high_s8(q5bytes.val[3]), vget_high_s8(q8bytes.val[3])));
  2523. sumi += vaddvq_s16(vaddq_s16(p2, p3)) * *scales++;
  2524. #endif
  2525. }
  2526. sumf += d * sumi - dmin * sumi_mins;
  2527. }
  2528. *s = sumf;
  2529. #elif defined __AVX2__
  2530. const __m256i m4 = _mm256_set1_epi8(0xF);
  2531. const __m128i mzero = _mm_setzero_si128();
  2532. const __m256i mone = _mm256_set1_epi8(1);
  2533. __m256 acc = _mm256_setzero_ps();
  2534. float summs = 0.f;
  2535. for (int i = 0; i < nb; ++i) {
  2536. const uint8_t * restrict q5 = x[i].qs;
  2537. const int8_t * restrict q8 = y[i].qs;
  2538. #if QK_K == 256
  2539. const float d = y[i].d * ggml_fp16_to_fp32(x[i].d);
  2540. const float dmin = -y[i].d * ggml_fp16_to_fp32(x[i].dmin);
  2541. memcpy(utmp, x[i].scales, 12);
  2542. utmp[3] = ((utmp[2] >> 4) & kmask2) | (((utmp[1] >> 6) & kmask3) << 4);
  2543. const uint32_t uaux = utmp[1] & kmask1;
  2544. utmp[1] = (utmp[2] & kmask2) | (((utmp[0] >> 6) & kmask3) << 4);
  2545. utmp[2] = uaux;
  2546. utmp[0] &= kmask1;
  2547. #else
  2548. // TODO
  2549. const float d = 0, dmin = 0;
  2550. #endif
  2551. const __m256i mins_and_scales = _mm256_cvtepu8_epi16(_mm_set_epi32(utmp[3], utmp[2], utmp[1], utmp[0]));
  2552. const __m256i q8sums = _mm256_loadu_si256((const __m256i*)y[i].bsums);
  2553. const __m128i q8s = _mm_hadd_epi16(_mm256_extracti128_si256(q8sums, 0), _mm256_extracti128_si256(q8sums, 1));
  2554. const __m128i prod = _mm_madd_epi16(_mm256_extracti128_si256(mins_and_scales, 1), q8s);
  2555. const __m128i hsum = _mm_hadd_epi32(_mm_hadd_epi32(prod, mzero), mzero);
  2556. summs += dmin * _mm_extract_epi32(hsum, 0);
  2557. const __m128i sc128 = _mm256_extracti128_si256(mins_and_scales, 0);
  2558. const __m256i scales = MM256_SET_M128I(sc128, sc128);
  2559. const __m256i hbits = _mm256_loadu_si256((const __m256i*)x[i].qh);
  2560. __m256i hmask = mone;
  2561. __m256i sumi = _mm256_setzero_si256();
  2562. int bit = 0;
  2563. for (int j = 0; j < QK_K/64; ++j) {
  2564. const __m256i scale_0 = _mm256_shuffle_epi8(scales, get_scale_shuffle_k4(2*j+0));
  2565. const __m256i scale_1 = _mm256_shuffle_epi8(scales, get_scale_shuffle_k4(2*j+1));
  2566. const __m256i q5bits = _mm256_loadu_si256((const __m256i*)q5); q5 += 32;
  2567. const __m256i q5l_0 = _mm256_and_si256(q5bits, m4);
  2568. const __m256i q5h_0 = _mm256_slli_epi16(_mm256_srli_epi16(_mm256_and_si256(hbits, hmask), bit++), 4);
  2569. const __m256i q5_0 = _mm256_add_epi8(q5l_0, q5h_0);
  2570. hmask = _mm256_slli_epi16(hmask, 1);
  2571. const __m256i q5l_1 = _mm256_and_si256(_mm256_srli_epi16(q5bits, 4), m4);
  2572. const __m256i q5h_1 = _mm256_slli_epi16(_mm256_srli_epi16(_mm256_and_si256(hbits, hmask), bit++), 4);
  2573. const __m256i q5_1 = _mm256_add_epi8(q5l_1, q5h_1);
  2574. hmask = _mm256_slli_epi16(hmask, 1);
  2575. const __m256i q8_0 = _mm256_loadu_si256((const __m256i*)q8); q8 += 32;
  2576. const __m256i q8_1 = _mm256_loadu_si256((const __m256i*)q8); q8 += 32;
  2577. __m256i p16_0 = _mm256_maddubs_epi16(q5_0, q8_0);
  2578. __m256i p16_1 = _mm256_maddubs_epi16(q5_1, q8_1);
  2579. p16_0 = _mm256_madd_epi16(scale_0, p16_0);
  2580. p16_1 = _mm256_madd_epi16(scale_1, p16_1);
  2581. sumi = _mm256_add_epi32(sumi, _mm256_add_epi32(p16_0, p16_1));
  2582. }
  2583. __m256 vd = _mm256_set1_ps(d);
  2584. acc = _mm256_fmadd_ps(vd, _mm256_cvtepi32_ps(sumi), acc);
  2585. }
  2586. *s = hsum_float_8(acc) + summs;
  2587. #elif defined __AVX__
  2588. const __m128i m4 = _mm_set1_epi8(0xF);
  2589. const __m128i mzero = _mm_setzero_si128();
  2590. const __m128i mone = _mm_set1_epi8(1);
  2591. const __m128i m2 = _mm_set1_epi8(2);
  2592. __m256 acc = _mm256_setzero_ps();
  2593. float summs = 0.f;
  2594. for (int i = 0; i < nb; ++i) {
  2595. const float d = y[i].d * ggml_fp16_to_fp32(x[i].d);
  2596. const float dmin = -y[i].d * ggml_fp16_to_fp32(x[i].dmin);
  2597. const uint8_t * restrict q5 = x[i].qs;
  2598. const int8_t * restrict q8 = y[i].qs;
  2599. memcpy(utmp, x[i].scales, 12);
  2600. utmp[3] = ((utmp[2] >> 4) & kmask2) | (((utmp[1] >> 6) & kmask3) << 4);
  2601. const uint32_t uaux = utmp[1] & kmask1;
  2602. utmp[1] = (utmp[2] & kmask2) | (((utmp[0] >> 6) & kmask3) << 4);
  2603. utmp[2] = uaux;
  2604. utmp[0] &= kmask1;
  2605. const __m128i utmps = _mm_set_epi32(utmp[3], utmp[2], utmp[1], utmp[0]);
  2606. const __m128i scales = _mm_cvtepu8_epi16(utmps);
  2607. const __m128i mins = _mm_cvtepu8_epi16(_mm_unpackhi_epi64(utmps, utmps));
  2608. const __m128i q8sums_0 = _mm_loadu_si128((const __m128i*)&y[i].bsums[0]);
  2609. const __m128i q8sums_1 = _mm_loadu_si128((const __m128i*)&y[i].bsums[8]);
  2610. const __m128i q8s = _mm_hadd_epi16(q8sums_0, q8sums_1);
  2611. const __m128i prod = _mm_madd_epi16(mins, q8s);
  2612. const __m128i hsum = _mm_hadd_epi32(_mm_hadd_epi32(prod, mzero), mzero);
  2613. summs += dmin * _mm_extract_epi32(hsum, 0);
  2614. const __m128i hbits_0 = _mm_loadu_si128((const __m128i*)&x[i].qh[0]);
  2615. const __m128i hbits_1 = _mm_loadu_si128((const __m128i*)&x[i].qh[16]);
  2616. __m128i hmask = mone;
  2617. __m128i sumi_0 = _mm_setzero_si128();
  2618. __m128i sumi_1 = _mm_setzero_si128();
  2619. int bit = 0;
  2620. __m128i shuffle = _mm_set1_epi16(0x0100);
  2621. for (int j = 0; j < QK_K/64; ++j) {
  2622. const __m128i scale_0 = _mm_shuffle_epi8(scales, shuffle);
  2623. shuffle = _mm_add_epi16(shuffle, m2);
  2624. const __m128i scale_1 = _mm_shuffle_epi8(scales, shuffle);
  2625. shuffle = _mm_add_epi16(shuffle, m2);
  2626. const __m128i q5bits_0 = _mm_loadu_si128((const __m128i*)q5); q5 += 16;
  2627. const __m128i q5bits_1 = _mm_loadu_si128((const __m128i*)q5); q5 += 16;
  2628. __m128i q5l_0 = _mm_and_si128(q5bits_0, m4);
  2629. __m128i q5l_1 = _mm_and_si128(q5bits_1, m4);
  2630. __m128i q5h_0 = _mm_slli_epi16(_mm_srli_epi16(_mm_and_si128(hbits_0, hmask), bit), 4);
  2631. __m128i q5h_1 = _mm_slli_epi16(_mm_srli_epi16(_mm_and_si128(hbits_1, hmask), bit++), 4);
  2632. __m128i q5_0 = _mm_add_epi8(q5l_0, q5h_0);
  2633. __m128i q5_1 = _mm_add_epi8(q5l_1, q5h_1);
  2634. hmask = _mm_slli_epi16(hmask, 1);
  2635. __m128i q8_0 = _mm_loadu_si128((const __m128i*)q8); q8 += 16;
  2636. __m128i q8_1 = _mm_loadu_si128((const __m128i*)q8); q8 += 16;
  2637. __m128i p16_0 = _mm_maddubs_epi16(q5_0, q8_0);
  2638. __m128i p16_1 = _mm_maddubs_epi16(q5_1, q8_1);
  2639. p16_0 = _mm_madd_epi16(scale_0, p16_0);
  2640. p16_1 = _mm_madd_epi16(scale_0, p16_1);
  2641. q5l_0 = _mm_and_si128(_mm_srli_epi16(q5bits_0, 4), m4);
  2642. q5l_1 = _mm_and_si128(_mm_srli_epi16(q5bits_1, 4), m4);
  2643. q5h_0 = _mm_slli_epi16(_mm_srli_epi16(_mm_and_si128(hbits_0, hmask), bit), 4);
  2644. q5h_1 = _mm_slli_epi16(_mm_srli_epi16(_mm_and_si128(hbits_1, hmask), bit++), 4);
  2645. q5_0 = _mm_add_epi8(q5l_0, q5h_0);
  2646. q5_1 = _mm_add_epi8(q5l_1, q5h_1);
  2647. hmask = _mm_slli_epi16(hmask, 1);
  2648. q8_0 = _mm_loadu_si128((const __m128i*)q8); q8 += 16;
  2649. q8_1 = _mm_loadu_si128((const __m128i*)q8); q8 += 16;
  2650. __m128i p16_2 = _mm_maddubs_epi16(q5_0, q8_0);
  2651. __m128i p16_3 = _mm_maddubs_epi16(q5_1, q8_1);
  2652. p16_2 = _mm_madd_epi16(scale_1, p16_2);
  2653. p16_3 = _mm_madd_epi16(scale_1, p16_3);
  2654. sumi_0 = _mm_add_epi32(sumi_0, _mm_add_epi32(p16_0, p16_2));
  2655. sumi_1 = _mm_add_epi32(sumi_1, _mm_add_epi32(p16_1, p16_3));
  2656. }
  2657. __m256 vd = _mm256_set1_ps(d);
  2658. __m256i sumi = MM256_SET_M128I(sumi_1, sumi_0);
  2659. acc = _mm256_add_ps(_mm256_mul_ps(vd, _mm256_cvtepi32_ps(sumi)), acc);
  2660. }
  2661. *s = hsum_float_8(acc) + summs;
  2662. #else
  2663. const uint8_t * scales = (const uint8_t*)&utmp[0];
  2664. const uint8_t * mins = (const uint8_t*)&utmp[2];
  2665. int8_t aux8[QK_K];
  2666. int16_t aux16[8];
  2667. float sums [8];
  2668. int32_t aux32[8];
  2669. memset(sums, 0, 8*sizeof(float));
  2670. float sumf = 0;
  2671. for (int i = 0; i < nb; ++i) {
  2672. const uint8_t * restrict q4 = x[i].qs;
  2673. const uint8_t * restrict hm = x[i].qh;
  2674. const int8_t * restrict q8 = y[i].qs;
  2675. memset(aux32, 0, 8*sizeof(int32_t));
  2676. int8_t * restrict a = aux8;
  2677. uint8_t m = 1;
  2678. for (int j = 0; j < QK_K/64; ++j) {
  2679. for (int l = 0; l < 32; ++l) a[l] = (int8_t)(q4[l] & 0xF);
  2680. for (int l = 0; l < 32; ++l) a[l] += (hm[l] & m ? 16 : 0);
  2681. a += 32; m <<= 1;
  2682. for (int l = 0; l < 32; ++l) a[l] = (int8_t)(q4[l] >> 4);
  2683. for (int l = 0; l < 32; ++l) a[l] += (hm[l] & m ? 16 : 0);
  2684. a += 32; m <<= 1;
  2685. q4 += 32;
  2686. }
  2687. memcpy(utmp, x[i].scales, 12);
  2688. utmp[3] = ((utmp[2] >> 4) & kmask2) | (((utmp[1] >> 6) & kmask3) << 4);
  2689. const uint32_t uaux = utmp[1] & kmask1;
  2690. utmp[1] = (utmp[2] & kmask2) | (((utmp[0] >> 6) & kmask3) << 4);
  2691. utmp[2] = uaux;
  2692. utmp[0] &= kmask1;
  2693. int sumi = 0;
  2694. for (int j = 0; j < QK_K/16; ++j) sumi += y[i].bsums[j] * mins[j/2];
  2695. a = aux8;
  2696. int is = 0;
  2697. for (int j = 0; j < QK_K/32; ++j) {
  2698. int32_t scale = scales[is++];
  2699. for (int l = 0; l < 8; ++l) aux16[l] = q8[l] * a[l];
  2700. for (int l = 0; l < 8; ++l) aux32[l] += scale * aux16[l];
  2701. q8 += 8; a += 8;
  2702. for (int l = 0; l < 8; ++l) aux16[l] = q8[l] * a[l];
  2703. for (int l = 0; l < 8; ++l) aux32[l] += scale * aux16[l];
  2704. q8 += 8; a += 8;
  2705. for (int l = 0; l < 8; ++l) aux16[l] = q8[l] * a[l];
  2706. for (int l = 0; l < 8; ++l) aux32[l] += scale * aux16[l];
  2707. q8 += 8; a += 8;
  2708. for (int l = 0; l < 8; ++l) aux16[l] = q8[l] * a[l];
  2709. for (int l = 0; l < 8; ++l) aux32[l] += scale * aux16[l];
  2710. q8 += 8; a += 8;
  2711. }
  2712. const float d = ggml_fp16_to_fp32(x[i].d) * y[i].d;
  2713. for (int l = 0; l < 8; ++l) sums[l] += d * aux32[l];
  2714. const float dmin = ggml_fp16_to_fp32(x[i].dmin) * y[i].d;
  2715. sumf -= dmin * sumi;
  2716. }
  2717. for (int l = 0; l < 8; ++l) sumf += sums[l];
  2718. *s = sumf;
  2719. #endif
  2720. }
  2721. #else
  2722. void ggml_vec_dot_q5_K_q8_K(const int n, float * restrict s, const void * restrict vx, const void * restrict vy) {
  2723. assert(n % QK_K == 0);
  2724. const block_q5_K * restrict x = vx;
  2725. const block_q8_K * restrict y = vy;
  2726. const int nb = n / QK_K;
  2727. #ifdef __ARM_NEON
  2728. const uint8x16_t m4b = vdupq_n_u8(0xf);
  2729. const int32x4_t mzero = vdupq_n_s32(0);
  2730. const uint8x16_t mh = vdupq_n_u8(16);
  2731. int8x16x4_t q5bytes;
  2732. uint8x16x4_t q5h;
  2733. float sumf = 0;
  2734. for (int i = 0; i < nb; ++i) {
  2735. const float d = y[i].d * (float)x[i].d;
  2736. const int8_t * sc = x[i].scales;
  2737. const uint8_t * restrict q5 = x[i].qs;
  2738. const uint8_t * restrict qh = x[i].qh;
  2739. const int8_t * restrict q8 = y[i].qs;
  2740. const uint8x8_t qhbits = vld1_u8(qh);
  2741. const uint8x16x2_t q5bits = vld1q_u8_x2(q5);
  2742. const int8x16x4_t q8bytes = vld1q_s8_x4(q8);
  2743. const uint8x16_t htmp = vcombine_u8(qhbits, vshr_n_u8(qhbits, 1));
  2744. q5h.val[0] = vbicq_u8(mh, vshlq_n_u8(htmp, 4));
  2745. q5h.val[1] = vbicq_u8(mh, vshlq_n_u8(htmp, 2));
  2746. q5h.val[2] = vbicq_u8(mh, htmp);
  2747. q5h.val[3] = vbicq_u8(mh, vshrq_n_u8(htmp, 2));
  2748. q5bytes.val[0] = vsubq_s8(vreinterpretq_s8_u8(vandq_u8(q5bits.val[0], m4b)), vreinterpretq_s8_u8(q5h.val[0]));
  2749. q5bytes.val[1] = vsubq_s8(vreinterpretq_s8_u8(vandq_u8(q5bits.val[1], m4b)), vreinterpretq_s8_u8(q5h.val[1]));
  2750. q5bytes.val[2] = vsubq_s8(vreinterpretq_s8_u8(vshrq_n_u8(q5bits.val[0], 4)), vreinterpretq_s8_u8(q5h.val[2]));
  2751. q5bytes.val[3] = vsubq_s8(vreinterpretq_s8_u8(vshrq_n_u8(q5bits.val[1], 4)), vreinterpretq_s8_u8(q5h.val[3]));
  2752. #if defined(__ARM_FEATURE_DOTPROD)
  2753. int32_t sumi1 = sc[0] * vaddvq_s32(vdotq_s32(mzero, q5bytes.val[0], q8bytes.val[0]));
  2754. int32_t sumi2 = sc[1] * vaddvq_s32(vdotq_s32(mzero, q5bytes.val[1], q8bytes.val[1]));
  2755. int32_t sumi3 = sc[2] * vaddvq_s32(vdotq_s32(mzero, q5bytes.val[2], q8bytes.val[2]));
  2756. int32_t sumi4 = sc[3] * vaddvq_s32(vdotq_s32(mzero, q5bytes.val[3], q8bytes.val[3]));
  2757. sumf += d * (sumi1 + sumi2 + sumi3 + sumi4);
  2758. #else
  2759. const int16x8_t p0 = vaddq_s16(vmull_s8(vget_low_s8 (q5bytes.val[0]), vget_low_s8 (q8bytes.val[0])),
  2760. vmull_s8(vget_high_s8(q5bytes.val[0]), vget_high_s8(q8bytes.val[0])));
  2761. const int16x8_t p1 = vaddq_s16(vmull_s8(vget_low_s8 (q5bytes.val[1]), vget_low_s8 (q8bytes.val[1])),
  2762. vmull_s8(vget_high_s8(q5bytes.val[1]), vget_high_s8(q8bytes.val[1])));
  2763. int32_t sumi = sc[0] * vaddvq_s16(p0) + sc[1] * vaddvq_s16(p1);
  2764. const int16x8_t p2 = vaddq_s16(vmull_s8(vget_low_s8 (q5bytes.val[2]), vget_low_s8 (q8bytes.val[2])),
  2765. vmull_s8(vget_high_s8(q5bytes.val[2]), vget_high_s8(q8bytes.val[2])));
  2766. const int16x8_t p3 = vaddq_s16(vmull_s8(vget_low_s8 (q5bytes.val[3]), vget_low_s8 (q8bytes.val[3])),
  2767. vmull_s8(vget_high_s8(q5bytes.val[3]), vget_high_s8(q8bytes.val[3])));
  2768. sumi += sc[2] * vaddvq_s16(p2) + sc[3] * vaddvq_s16(p3);
  2769. sumf += d*sumi;
  2770. #endif
  2771. }
  2772. *s = sumf;
  2773. #elif defined __AVX2__
  2774. const __m256i m4 = _mm256_set1_epi8(0xF);
  2775. const __m256i mone = _mm256_set1_epi8(1);
  2776. __m256 acc = _mm256_setzero_ps();
  2777. for (int i = 0; i < nb; ++i) {
  2778. const uint8_t * restrict q5 = x[i].qs;
  2779. const int8_t * restrict q8 = y[i].qs;
  2780. const float d = y[i].d * ggml_fp16_to_fp32(x[i].d);
  2781. const __m256i q5bits = _mm256_loadu_si256((const __m256i*)q5);
  2782. const __m256i scale_l = MM256_SET_M128I(_mm_set1_epi16(x[i].scales[1]), _mm_set1_epi16(x[i].scales[0]));
  2783. const __m256i scale_h = MM256_SET_M128I(_mm_set1_epi16(x[i].scales[3]), _mm_set1_epi16(x[i].scales[2]));
  2784. int64_t aux64;
  2785. memcpy(&aux64, x[i].qh, 8);
  2786. const __m128i haux128 = _mm_set_epi64x(aux64 >> 1, aux64);
  2787. const __m256i haux256 = MM256_SET_M128I(_mm_srli_epi16(haux128, 2), haux128);
  2788. const __m256i q5h_0 = _mm256_slli_epi16(_mm256_andnot_si256(haux256, mone), 4);
  2789. const __m256i q5h_1 = _mm256_slli_epi16(_mm256_andnot_si256(_mm256_srli_epi16(haux256, 4), mone), 4);
  2790. const __m256i q5l_0 = _mm256_and_si256(q5bits, m4);
  2791. const __m256i q5l_1 = _mm256_and_si256(_mm256_srli_epi16(q5bits, 4), m4);
  2792. const __m256i q8_0 = _mm256_loadu_si256((const __m256i*)(q8+ 0));
  2793. const __m256i q8_1 = _mm256_loadu_si256((const __m256i*)(q8+32));
  2794. const __m256i p16_0 = _mm256_madd_epi16(scale_l, _mm256_maddubs_epi16(q5l_0, q8_0));
  2795. const __m256i p16_1 = _mm256_madd_epi16(scale_h, _mm256_maddubs_epi16(q5l_1, q8_1));
  2796. const __m256i s16_0 = _mm256_madd_epi16(scale_l, _mm256_maddubs_epi16(q5h_0, q8_0));
  2797. const __m256i s16_1 = _mm256_madd_epi16(scale_h, _mm256_maddubs_epi16(q5h_1, q8_1));
  2798. const __m256i dot = _mm256_sub_epi32(_mm256_add_epi32(p16_0, p16_1), _mm256_add_epi32(s16_0, s16_1));
  2799. acc = _mm256_fmadd_ps(_mm256_set1_ps(d), _mm256_cvtepi32_ps(dot), acc);
  2800. }
  2801. *s = hsum_float_8(acc);
  2802. #elif defined __AVX__
  2803. const __m128i m4 = _mm_set1_epi8(0xF);
  2804. const __m128i mone = _mm_set1_epi8(1);
  2805. __m256 acc = _mm256_setzero_ps();
  2806. for (int i = 0; i < nb; ++i) {
  2807. const uint8_t * restrict q5 = x[i].qs;
  2808. const int8_t * restrict q8 = y[i].qs;
  2809. const float d = y[i].d * ggml_fp16_to_fp32(x[i].d);
  2810. const __m256i q5bits = _mm256_loadu_si256((const __m256i*)q5);
  2811. const __m128i scale_0 = _mm_set1_epi16(x[i].scales[0]);
  2812. const __m128i scale_1 = _mm_set1_epi16(x[i].scales[1]);
  2813. const __m128i scale_2 = _mm_set1_epi16(x[i].scales[2]);
  2814. const __m128i scale_3 = _mm_set1_epi16(x[i].scales[3]);
  2815. int64_t aux64;
  2816. memcpy(&aux64, x[i].qh, 8);
  2817. const __m128i haux128_0 = _mm_set_epi64x(aux64 >> 1, aux64);
  2818. const __m128i haux128_1 = _mm_srli_epi16(haux128_0, 2);
  2819. const __m128i q5h_0 = _mm_slli_epi16(_mm_andnot_si128(haux128_0, mone), 4);
  2820. const __m128i q5h_1 = _mm_slli_epi16(_mm_andnot_si128(haux128_1, mone), 4);
  2821. const __m128i q5h_2 = _mm_slli_epi16(_mm_andnot_si128(_mm_srli_epi16(haux128_0, 4), mone), 4);
  2822. const __m128i q5h_3 = _mm_slli_epi16(_mm_andnot_si128(_mm_srli_epi16(haux128_1, 4), mone), 4);
  2823. const __m128i q5l_0 = _mm_and_si128(_mm256_extractf128_si256(q5bits, 0), m4);
  2824. const __m128i q5l_1 = _mm_and_si128(_mm256_extractf128_si256(q5bits, 1), m4);
  2825. const __m128i q5l_2 = _mm_and_si128(_mm_srli_epi16(_mm256_extractf128_si256(q5bits, 0), 4), m4);
  2826. const __m128i q5l_3 = _mm_and_si128(_mm_srli_epi16(_mm256_extractf128_si256(q5bits, 1), 4), m4);
  2827. const __m256i q8_0 = _mm256_loadu_si256((const __m256i*)(q8+ 0));
  2828. const __m256i q8_1 = _mm256_loadu_si256((const __m256i*)(q8+32));
  2829. const __m128i p16_0 = _mm_madd_epi16(scale_0, _mm_maddubs_epi16(q5l_0, _mm256_extractf128_si256(q8_0, 0)));
  2830. const __m128i p16_1 = _mm_madd_epi16(scale_1, _mm_maddubs_epi16(q5l_1, _mm256_extractf128_si256(q8_0, 1)));
  2831. const __m128i p16_2 = _mm_madd_epi16(scale_2, _mm_maddubs_epi16(q5l_2, _mm256_extractf128_si256(q8_1, 0)));
  2832. const __m128i p16_3 = _mm_madd_epi16(scale_3, _mm_maddubs_epi16(q5l_3, _mm256_extractf128_si256(q8_1, 1)));
  2833. const __m128i s16_0 = _mm_madd_epi16(scale_0, _mm_maddubs_epi16(q5h_0, _mm256_extractf128_si256(q8_0, 0)));
  2834. const __m128i s16_1 = _mm_madd_epi16(scale_1, _mm_maddubs_epi16(q5h_1, _mm256_extractf128_si256(q8_0, 1)));
  2835. const __m128i s16_2 = _mm_madd_epi16(scale_2, _mm_maddubs_epi16(q5h_2, _mm256_extractf128_si256(q8_1, 0)));
  2836. const __m128i s16_3 = _mm_madd_epi16(scale_3, _mm_maddubs_epi16(q5h_3, _mm256_extractf128_si256(q8_1, 1)));
  2837. const __m128i dot_0 = _mm_sub_epi32(_mm_add_epi32(p16_0, p16_2), _mm_add_epi32(s16_0, s16_2));
  2838. const __m128i dot_1 = _mm_sub_epi32(_mm_add_epi32(p16_1, p16_3), _mm_add_epi32(s16_1, s16_3));
  2839. acc = _mm256_add_ps(_mm256_mul_ps(_mm256_set1_ps(d), _mm256_cvtepi32_ps(MM256_SET_M128I(dot_1, dot_0))), acc);
  2840. }
  2841. *s = hsum_float_8(acc);
  2842. #else
  2843. int8_t aux8[QK_K];
  2844. int16_t aux16[16];
  2845. float sums [8];
  2846. memset(sums, 0, 8*sizeof(float));
  2847. float sumf = 0;
  2848. for (int i = 0; i < nb; ++i) {
  2849. const uint8_t * restrict q4 = x[i].qs;
  2850. const uint8_t * restrict hm = x[i].qh;
  2851. const int8_t * restrict q8 = y[i].qs;
  2852. int8_t * restrict a = aux8;
  2853. for (int l = 0; l < 32; ++l) {
  2854. a[l+ 0] = q4[l] & 0xF;
  2855. a[l+32] = q4[l] >> 4;
  2856. }
  2857. for (int is = 0; is < 8; ++is) {
  2858. uint8_t m = 1 << is;
  2859. for (int l = 0; l < 8; ++l) a[8*is + l] -= (hm[l] & m ? 0 : 16);
  2860. }
  2861. const float d = y[i].d * ggml_fp16_to_fp32(x[i].d);
  2862. const int8_t * restrict sc = x[i].scales;
  2863. for (int j = 0; j < QK_K/16; ++j) {
  2864. const float dl = d * sc[j];
  2865. for (int l = 0; l < 16; ++l) aux16[l] = q8[l] * a[l];
  2866. for (int l = 0; l < 8; ++l) sums[l] += dl * (aux16[l] + aux16[8+l]);
  2867. q8 += 16; a += 16;
  2868. }
  2869. }
  2870. for (int l = 0; l < 8; ++l) sumf += sums[l];
  2871. *s = sumf;
  2872. #endif
  2873. }
  2874. #endif
  2875. #if QK_K == 256
  2876. void ggml_vec_dot_q6_K_q8_K(const int n, float * restrict s, const void * restrict vx, const void * restrict vy) {
  2877. assert(n % QK_K == 0);
  2878. const block_q6_K * restrict x = vx;
  2879. const block_q8_K * restrict y = vy;
  2880. const int nb = n / QK_K;
  2881. #ifdef __ARM_NEON
  2882. float sum = 0;
  2883. const uint8x16_t m4b = vdupq_n_u8(0xF);
  2884. const int32x4_t vzero = vdupq_n_s32(0);
  2885. //const int8x16_t m32s = vdupq_n_s8(32);
  2886. const uint8x16_t mone = vdupq_n_u8(3);
  2887. int8x16x4_t q6bytes;
  2888. uint8x16x4_t q6h;
  2889. for (int i = 0; i < nb; ++i) {
  2890. const float d_all = ggml_fp16_to_fp32(x[i].d);
  2891. const uint8_t * restrict q6 = x[i].ql;
  2892. const uint8_t * restrict qh = x[i].qh;
  2893. const int8_t * restrict q8 = y[i].qs;
  2894. const int8_t * restrict scale = x[i].scales;
  2895. const int16x8x2_t q8sums = vld1q_s16_x2(y[i].bsums);
  2896. const int8x16_t scales = vld1q_s8(scale);
  2897. const int16x8x2_t q6scales = {vmovl_s8(vget_low_s8(scales)), vmovl_s8(vget_high_s8(scales))};
  2898. const int32x4_t prod = vaddq_s32(vaddq_s32(vmull_s16(vget_low_s16 (q8sums.val[0]), vget_low_s16 (q6scales.val[0])),
  2899. vmull_s16(vget_high_s16(q8sums.val[0]), vget_high_s16(q6scales.val[0]))),
  2900. vaddq_s32(vmull_s16(vget_low_s16 (q8sums.val[1]), vget_low_s16 (q6scales.val[1])),
  2901. vmull_s16(vget_high_s16(q8sums.val[1]), vget_high_s16(q6scales.val[1]))));
  2902. int32_t isum_mins = vaddvq_s32(prod);
  2903. int32_t isum = 0;
  2904. for (int j = 0; j < QK_K/128; ++j) {
  2905. uint8x16x2_t qhbits = vld1q_u8_x2(qh); qh += 32;
  2906. uint8x16x4_t q6bits = vld1q_u8_x4(q6); q6 += 64;
  2907. int8x16x4_t q8bytes = vld1q_s8_x4(q8); q8 += 64;
  2908. q6h.val[0] = vshlq_n_u8(vandq_u8(mone, qhbits.val[0]), 4);
  2909. q6h.val[1] = vshlq_n_u8(vandq_u8(mone, qhbits.val[1]), 4);
  2910. uint8x16_t shifted = vshrq_n_u8(qhbits.val[0], 2);
  2911. q6h.val[2] = vshlq_n_u8(vandq_u8(mone, shifted), 4);
  2912. shifted = vshrq_n_u8(qhbits.val[1], 2);
  2913. q6h.val[3] = vshlq_n_u8(vandq_u8(mone, shifted), 4);
  2914. //q6bytes.val[0] = vsubq_s8(vreinterpretq_s8_u8(vorrq_u8(vandq_u8(q6bits.val[0], m4b), q6h.val[0])), m32s);
  2915. //q6bytes.val[1] = vsubq_s8(vreinterpretq_s8_u8(vorrq_u8(vandq_u8(q6bits.val[1], m4b), q6h.val[1])), m32s);
  2916. //q6bytes.val[2] = vsubq_s8(vreinterpretq_s8_u8(vorrq_u8(vandq_u8(q6bits.val[2], m4b), q6h.val[2])), m32s);
  2917. //q6bytes.val[3] = vsubq_s8(vreinterpretq_s8_u8(vorrq_u8(vandq_u8(q6bits.val[3], m4b), q6h.val[3])), m32s);
  2918. q6bytes.val[0] = vreinterpretq_s8_u8(vorrq_u8(vandq_u8(q6bits.val[0], m4b), q6h.val[0]));
  2919. q6bytes.val[1] = vreinterpretq_s8_u8(vorrq_u8(vandq_u8(q6bits.val[1], m4b), q6h.val[1]));
  2920. q6bytes.val[2] = vreinterpretq_s8_u8(vorrq_u8(vandq_u8(q6bits.val[2], m4b), q6h.val[2]));
  2921. q6bytes.val[3] = vreinterpretq_s8_u8(vorrq_u8(vandq_u8(q6bits.val[3], m4b), q6h.val[3]));
  2922. #if defined(__ARM_FEATURE_DOTPROD)
  2923. isum += vaddvq_s32(vdotq_s32(vzero, q6bytes.val[0], q8bytes.val[0])) * scale[0] +
  2924. vaddvq_s32(vdotq_s32(vzero, q6bytes.val[1], q8bytes.val[1])) * scale[1] +
  2925. vaddvq_s32(vdotq_s32(vzero, q6bytes.val[2], q8bytes.val[2])) * scale[2] +
  2926. vaddvq_s32(vdotq_s32(vzero, q6bytes.val[3], q8bytes.val[3])) * scale[3];
  2927. scale += 4;
  2928. #else
  2929. int16x8_t p0 = vaddq_s16(vmull_s8(vget_low_s8 (q6bytes.val[0]), vget_low_s8 (q8bytes.val[0])),
  2930. vmull_s8(vget_high_s8(q6bytes.val[0]), vget_high_s8(q8bytes.val[0])));
  2931. int16x8_t p1 = vaddq_s16(vmull_s8(vget_low_s8 (q6bytes.val[1]), vget_low_s8 (q8bytes.val[1])),
  2932. vmull_s8(vget_high_s8(q6bytes.val[1]), vget_high_s8(q8bytes.val[1])));
  2933. isum += vaddvq_s16(p0) * scale[0] + vaddvq_s16(p1) * scale[1];
  2934. scale += 2;
  2935. int16x8_t p2 = vaddq_s16(vmull_s8(vget_low_s8 (q6bytes.val[2]), vget_low_s8 (q8bytes.val[2])),
  2936. vmull_s8(vget_high_s8(q6bytes.val[2]), vget_high_s8(q8bytes.val[2])));
  2937. int16x8_t p3 = vaddq_s16(vmull_s8(vget_low_s8 (q6bytes.val[3]), vget_low_s8 (q8bytes.val[3])),
  2938. vmull_s8(vget_high_s8(q6bytes.val[3]), vget_high_s8(q8bytes.val[3])));
  2939. isum += vaddvq_s16(p2) * scale[0] + vaddvq_s16(p3) * scale[1];
  2940. scale += 2;
  2941. #endif
  2942. q8bytes = vld1q_s8_x4(q8); q8 += 64;
  2943. shifted = vshrq_n_u8(qhbits.val[0], 4);
  2944. q6h.val[0] = vshlq_n_u8(vandq_u8(mone, shifted), 4);
  2945. shifted = vshrq_n_u8(qhbits.val[1], 4);
  2946. q6h.val[1] = vshlq_n_u8(vandq_u8(mone, shifted), 4);
  2947. shifted = vshrq_n_u8(qhbits.val[0], 6);
  2948. q6h.val[2] = vshlq_n_u8(vandq_u8(mone, shifted), 4);
  2949. shifted = vshrq_n_u8(qhbits.val[1], 6);
  2950. q6h.val[3] = vshlq_n_u8(vandq_u8(mone, shifted), 4);
  2951. //q6bytes.val[0] = vsubq_s8(vreinterpretq_s8_u8(vorrq_u8(vshrq_n_u8(q6bits.val[0], 4), q6h.val[0])), m32s);
  2952. //q6bytes.val[1] = vsubq_s8(vreinterpretq_s8_u8(vorrq_u8(vshrq_n_u8(q6bits.val[1], 4), q6h.val[1])), m32s);
  2953. //q6bytes.val[2] = vsubq_s8(vreinterpretq_s8_u8(vorrq_u8(vshrq_n_u8(q6bits.val[2], 4), q6h.val[2])), m32s);
  2954. //q6bytes.val[3] = vsubq_s8(vreinterpretq_s8_u8(vorrq_u8(vshrq_n_u8(q6bits.val[3], 4), q6h.val[3])), m32s);
  2955. q6bytes.val[0] = vreinterpretq_s8_u8(vorrq_u8(vshrq_n_u8(q6bits.val[0], 4), q6h.val[0]));
  2956. q6bytes.val[1] = vreinterpretq_s8_u8(vorrq_u8(vshrq_n_u8(q6bits.val[1], 4), q6h.val[1]));
  2957. q6bytes.val[2] = vreinterpretq_s8_u8(vorrq_u8(vshrq_n_u8(q6bits.val[2], 4), q6h.val[2]));
  2958. q6bytes.val[3] = vreinterpretq_s8_u8(vorrq_u8(vshrq_n_u8(q6bits.val[3], 4), q6h.val[3]));
  2959. #if defined(__ARM_FEATURE_DOTPROD)
  2960. isum += vaddvq_s32(vdotq_s32(vzero, q6bytes.val[0], q8bytes.val[0])) * scale[0] +
  2961. vaddvq_s32(vdotq_s32(vzero, q6bytes.val[1], q8bytes.val[1])) * scale[1] +
  2962. vaddvq_s32(vdotq_s32(vzero, q6bytes.val[2], q8bytes.val[2])) * scale[2] +
  2963. vaddvq_s32(vdotq_s32(vzero, q6bytes.val[3], q8bytes.val[3])) * scale[3];
  2964. scale += 4;
  2965. //for (int l = 0; l < 4; ++l) {
  2966. // const int32x4_t p = vdotq_s32(vzero, q6bytes.val[l], q8bytes.val[l]);
  2967. // isum += vaddvq_s32(p) * *scale++;
  2968. //}
  2969. #else
  2970. p0 = vaddq_s16(vmull_s8(vget_low_s8 (q6bytes.val[0]), vget_low_s8 (q8bytes.val[0])),
  2971. vmull_s8(vget_high_s8(q6bytes.val[0]), vget_high_s8(q8bytes.val[0])));
  2972. p1 = vaddq_s16(vmull_s8(vget_low_s8 (q6bytes.val[1]), vget_low_s8 (q8bytes.val[1])),
  2973. vmull_s8(vget_high_s8(q6bytes.val[1]), vget_high_s8(q8bytes.val[1])));
  2974. isum += vaddvq_s16(p0) * scale[0] + vaddvq_s16(p1) * scale[1];
  2975. scale += 2;
  2976. p2 = vaddq_s16(vmull_s8(vget_low_s8 (q6bytes.val[2]), vget_low_s8 (q8bytes.val[2])),
  2977. vmull_s8(vget_high_s8(q6bytes.val[2]), vget_high_s8(q8bytes.val[2])));
  2978. p3 = vaddq_s16(vmull_s8(vget_low_s8 (q6bytes.val[3]), vget_low_s8 (q8bytes.val[3])),
  2979. vmull_s8(vget_high_s8(q6bytes.val[3]), vget_high_s8(q8bytes.val[3])));
  2980. isum += vaddvq_s16(p2) * scale[0] + vaddvq_s16(p3) * scale[1];
  2981. scale += 2;
  2982. #endif
  2983. }
  2984. //sum += isum * d_all * y[i].d;
  2985. sum += d_all * y[i].d * (isum - 32 * isum_mins);
  2986. }
  2987. *s = sum;
  2988. #elif defined __AVX2__
  2989. const __m256i m4 = _mm256_set1_epi8(0xF);
  2990. const __m256i m2 = _mm256_set1_epi8(3);
  2991. const __m256i m32s = _mm256_set1_epi8(32);
  2992. __m256 acc = _mm256_setzero_ps();
  2993. for (int i = 0; i < nb; ++i) {
  2994. const float d = y[i].d * ggml_fp16_to_fp32(x[i].d);
  2995. const uint8_t * restrict q4 = x[i].ql;
  2996. const uint8_t * restrict qh = x[i].qh;
  2997. const int8_t * restrict q8 = y[i].qs;
  2998. const __m128i scales = _mm_loadu_si128((const __m128i*)x[i].scales);
  2999. __m256i sumi = _mm256_setzero_si256();
  3000. int is = 0;
  3001. for (int j = 0; j < QK_K/128; ++j) {
  3002. const __m128i scale_0 = _mm_shuffle_epi8(scales, get_scale_shuffle(is + 0));
  3003. const __m128i scale_1 = _mm_shuffle_epi8(scales, get_scale_shuffle(is + 1));
  3004. const __m128i scale_2 = _mm_shuffle_epi8(scales, get_scale_shuffle(is + 2));
  3005. const __m128i scale_3 = _mm_shuffle_epi8(scales, get_scale_shuffle(is + 3));
  3006. is += 4;
  3007. const __m256i q4bits1 = _mm256_loadu_si256((const __m256i*)q4); q4 += 32;
  3008. const __m256i q4bits2 = _mm256_loadu_si256((const __m256i*)q4); q4 += 32;
  3009. const __m256i q4bitsH = _mm256_loadu_si256((const __m256i*)qh); qh += 32;
  3010. const __m256i q4h_0 = _mm256_slli_epi16(_mm256_and_si256(q4bitsH, m2), 4);
  3011. const __m256i q4h_1 = _mm256_slli_epi16(_mm256_and_si256(_mm256_srli_epi16(q4bitsH, 2), m2), 4);
  3012. const __m256i q4h_2 = _mm256_slli_epi16(_mm256_and_si256(_mm256_srli_epi16(q4bitsH, 4), m2), 4);
  3013. const __m256i q4h_3 = _mm256_slli_epi16(_mm256_and_si256(_mm256_srli_epi16(q4bitsH, 6), m2), 4);
  3014. const __m256i q4_0 = _mm256_or_si256(_mm256_and_si256(q4bits1, m4), q4h_0);
  3015. const __m256i q4_1 = _mm256_or_si256(_mm256_and_si256(q4bits2, m4), q4h_1);
  3016. const __m256i q4_2 = _mm256_or_si256(_mm256_and_si256(_mm256_srli_epi16(q4bits1, 4), m4), q4h_2);
  3017. const __m256i q4_3 = _mm256_or_si256(_mm256_and_si256(_mm256_srli_epi16(q4bits2, 4), m4), q4h_3);
  3018. const __m256i q8_0 = _mm256_loadu_si256((const __m256i*)q8); q8 += 32;
  3019. const __m256i q8_1 = _mm256_loadu_si256((const __m256i*)q8); q8 += 32;
  3020. const __m256i q8_2 = _mm256_loadu_si256((const __m256i*)q8); q8 += 32;
  3021. const __m256i q8_3 = _mm256_loadu_si256((const __m256i*)q8); q8 += 32;
  3022. __m256i q8s_0 = _mm256_maddubs_epi16(m32s, q8_0);
  3023. __m256i q8s_1 = _mm256_maddubs_epi16(m32s, q8_1);
  3024. __m256i q8s_2 = _mm256_maddubs_epi16(m32s, q8_2);
  3025. __m256i q8s_3 = _mm256_maddubs_epi16(m32s, q8_3);
  3026. __m256i p16_0 = _mm256_maddubs_epi16(q4_0, q8_0);
  3027. __m256i p16_1 = _mm256_maddubs_epi16(q4_1, q8_1);
  3028. __m256i p16_2 = _mm256_maddubs_epi16(q4_2, q8_2);
  3029. __m256i p16_3 = _mm256_maddubs_epi16(q4_3, q8_3);
  3030. p16_0 = _mm256_sub_epi16(p16_0, q8s_0);
  3031. p16_1 = _mm256_sub_epi16(p16_1, q8s_1);
  3032. p16_2 = _mm256_sub_epi16(p16_2, q8s_2);
  3033. p16_3 = _mm256_sub_epi16(p16_3, q8s_3);
  3034. p16_0 = _mm256_madd_epi16(_mm256_cvtepi8_epi16(scale_0), p16_0);
  3035. p16_1 = _mm256_madd_epi16(_mm256_cvtepi8_epi16(scale_1), p16_1);
  3036. p16_2 = _mm256_madd_epi16(_mm256_cvtepi8_epi16(scale_2), p16_2);
  3037. p16_3 = _mm256_madd_epi16(_mm256_cvtepi8_epi16(scale_3), p16_3);
  3038. sumi = _mm256_add_epi32(sumi, _mm256_add_epi32(p16_0, p16_1));
  3039. sumi = _mm256_add_epi32(sumi, _mm256_add_epi32(p16_2, p16_3));
  3040. }
  3041. acc = _mm256_fmadd_ps(_mm256_broadcast_ss(&d), _mm256_cvtepi32_ps(sumi), acc);
  3042. }
  3043. *s = hsum_float_8(acc);
  3044. #elif defined __AVX__
  3045. const __m128i m4 = _mm_set1_epi8(0xF);
  3046. const __m128i m3 = _mm_set1_epi8(3);
  3047. const __m128i m32s = _mm_set1_epi8(32);
  3048. const __m128i m2 = _mm_set1_epi8(2);
  3049. __m256 acc = _mm256_setzero_ps();
  3050. for (int i = 0; i < nb; ++i) {
  3051. const float d = y[i].d * ggml_fp16_to_fp32(x[i].d);
  3052. const uint8_t * restrict q4 = x[i].ql;
  3053. const uint8_t * restrict qh = x[i].qh;
  3054. const int8_t * restrict q8 = y[i].qs;
  3055. const __m128i scales = _mm_loadu_si128((const __m128i*)x[i].scales);
  3056. __m128i sumi_0 = _mm_setzero_si128();
  3057. __m128i sumi_1 = _mm_setzero_si128();
  3058. __m128i shuffle = _mm_set_epi64x(0x0101010101010101, 0x0000000000000000);
  3059. for (int j = 0; j < QK_K/128; ++j) {
  3060. const __m128i q4bitsH_0 = _mm_loadu_si128((const __m128i*)qh); qh += 16;
  3061. const __m128i q4bitsH_1 = _mm_loadu_si128((const __m128i*)qh); qh += 16;
  3062. const __m128i q4h_0 = _mm_slli_epi16(_mm_and_si128(q4bitsH_0, m3), 4);
  3063. const __m128i q4h_1 = _mm_slli_epi16(_mm_and_si128(q4bitsH_1, m3), 4);
  3064. const __m128i q4h_2 = _mm_slli_epi16(_mm_and_si128(_mm_srli_epi16(q4bitsH_0, 2), m3), 4);
  3065. const __m128i q4h_3 = _mm_slli_epi16(_mm_and_si128(_mm_srli_epi16(q4bitsH_1, 2), m3), 4);
  3066. const __m128i q4h_4 = _mm_slli_epi16(_mm_and_si128(_mm_srli_epi16(q4bitsH_0, 4), m3), 4);
  3067. const __m128i q4h_5 = _mm_slli_epi16(_mm_and_si128(_mm_srli_epi16(q4bitsH_1, 4), m3), 4);
  3068. const __m128i q4h_6 = _mm_slli_epi16(_mm_and_si128(_mm_srli_epi16(q4bitsH_0, 6), m3), 4);
  3069. const __m128i q4h_7 = _mm_slli_epi16(_mm_and_si128(_mm_srli_epi16(q4bitsH_1, 6), m3), 4);
  3070. const __m128i q4bits1_0 = _mm_loadu_si128((const __m128i*)q4); q4 += 16;
  3071. const __m128i q4bits1_1 = _mm_loadu_si128((const __m128i*)q4); q4 += 16;
  3072. const __m128i q4bits2_0 = _mm_loadu_si128((const __m128i*)q4); q4 += 16;
  3073. const __m128i q4bits2_1 = _mm_loadu_si128((const __m128i*)q4); q4 += 16;
  3074. const __m128i q4_0 = _mm_or_si128(_mm_and_si128(q4bits1_0, m4), q4h_0);
  3075. const __m128i q4_1 = _mm_or_si128(_mm_and_si128(q4bits1_1, m4), q4h_1);
  3076. const __m128i q4_2 = _mm_or_si128(_mm_and_si128(q4bits2_0, m4), q4h_2);
  3077. const __m128i q4_3 = _mm_or_si128(_mm_and_si128(q4bits2_1, m4), q4h_3);
  3078. const __m128i q4_4 = _mm_or_si128(_mm_and_si128(_mm_srli_epi16(q4bits1_0, 4), m4), q4h_4);
  3079. const __m128i q4_5 = _mm_or_si128(_mm_and_si128(_mm_srli_epi16(q4bits1_1, 4), m4), q4h_5);
  3080. const __m128i q4_6 = _mm_or_si128(_mm_and_si128(_mm_srli_epi16(q4bits2_0, 4), m4), q4h_6);
  3081. const __m128i q4_7 = _mm_or_si128(_mm_and_si128(_mm_srli_epi16(q4bits2_1, 4), m4), q4h_7);
  3082. const __m128i q8_0 = _mm_loadu_si128((const __m128i*)q8); q8 += 16;
  3083. const __m128i q8_1 = _mm_loadu_si128((const __m128i*)q8); q8 += 16;
  3084. const __m128i q8_2 = _mm_loadu_si128((const __m128i*)q8); q8 += 16;
  3085. const __m128i q8_3 = _mm_loadu_si128((const __m128i*)q8); q8 += 16;
  3086. const __m128i q8_4 = _mm_loadu_si128((const __m128i*)q8); q8 += 16;
  3087. const __m128i q8_5 = _mm_loadu_si128((const __m128i*)q8); q8 += 16;
  3088. const __m128i q8_6 = _mm_loadu_si128((const __m128i*)q8); q8 += 16;
  3089. const __m128i q8_7 = _mm_loadu_si128((const __m128i*)q8); q8 += 16;
  3090. __m128i q8s_0 = _mm_maddubs_epi16(m32s, q8_0);
  3091. __m128i q8s_1 = _mm_maddubs_epi16(m32s, q8_1);
  3092. __m128i q8s_2 = _mm_maddubs_epi16(m32s, q8_2);
  3093. __m128i q8s_3 = _mm_maddubs_epi16(m32s, q8_3);
  3094. __m128i q8s_4 = _mm_maddubs_epi16(m32s, q8_4);
  3095. __m128i q8s_5 = _mm_maddubs_epi16(m32s, q8_5);
  3096. __m128i q8s_6 = _mm_maddubs_epi16(m32s, q8_6);
  3097. __m128i q8s_7 = _mm_maddubs_epi16(m32s, q8_7);
  3098. __m128i p16_0 = _mm_maddubs_epi16(q4_0, q8_0);
  3099. __m128i p16_1 = _mm_maddubs_epi16(q4_1, q8_1);
  3100. __m128i p16_2 = _mm_maddubs_epi16(q4_2, q8_2);
  3101. __m128i p16_3 = _mm_maddubs_epi16(q4_3, q8_3);
  3102. __m128i p16_4 = _mm_maddubs_epi16(q4_4, q8_4);
  3103. __m128i p16_5 = _mm_maddubs_epi16(q4_5, q8_5);
  3104. __m128i p16_6 = _mm_maddubs_epi16(q4_6, q8_6);
  3105. __m128i p16_7 = _mm_maddubs_epi16(q4_7, q8_7);
  3106. p16_0 = _mm_sub_epi16(p16_0, q8s_0);
  3107. p16_1 = _mm_sub_epi16(p16_1, q8s_1);
  3108. p16_2 = _mm_sub_epi16(p16_2, q8s_2);
  3109. p16_3 = _mm_sub_epi16(p16_3, q8s_3);
  3110. p16_4 = _mm_sub_epi16(p16_4, q8s_4);
  3111. p16_5 = _mm_sub_epi16(p16_5, q8s_5);
  3112. p16_6 = _mm_sub_epi16(p16_6, q8s_6);
  3113. p16_7 = _mm_sub_epi16(p16_7, q8s_7);
  3114. const __m128i scale_0 = _mm_shuffle_epi8(scales, shuffle);
  3115. shuffle = _mm_add_epi8(shuffle, m2);
  3116. const __m128i scale_1 = _mm_shuffle_epi8(scales, shuffle);
  3117. shuffle = _mm_add_epi8(shuffle, m2);
  3118. const __m128i scale_2 = _mm_shuffle_epi8(scales, shuffle);
  3119. shuffle = _mm_add_epi8(shuffle, m2);
  3120. const __m128i scale_3 = _mm_shuffle_epi8(scales, shuffle);
  3121. shuffle = _mm_add_epi8(shuffle, m2);
  3122. p16_0 = _mm_madd_epi16(_mm_cvtepi8_epi16(scale_0), p16_0);
  3123. p16_1 = _mm_madd_epi16(_mm_cvtepi8_epi16(_mm_unpackhi_epi64(scale_0, scale_0)), p16_1);
  3124. p16_2 = _mm_madd_epi16(_mm_cvtepi8_epi16(scale_1), p16_2);
  3125. p16_3 = _mm_madd_epi16(_mm_cvtepi8_epi16(_mm_unpackhi_epi64(scale_1, scale_1)), p16_3);
  3126. p16_4 = _mm_madd_epi16(_mm_cvtepi8_epi16(scale_2), p16_4);
  3127. p16_5 = _mm_madd_epi16(_mm_cvtepi8_epi16(_mm_unpackhi_epi64(scale_2, scale_2)), p16_5);
  3128. p16_6 = _mm_madd_epi16(_mm_cvtepi8_epi16(scale_3), p16_6);
  3129. p16_7 = _mm_madd_epi16(_mm_cvtepi8_epi16(_mm_unpackhi_epi64(scale_3, scale_3)), p16_7);
  3130. sumi_0 = _mm_add_epi32(sumi_0, _mm_add_epi32(p16_0, p16_2));
  3131. sumi_1 = _mm_add_epi32(sumi_1, _mm_add_epi32(p16_1, p16_3));
  3132. sumi_0 = _mm_add_epi32(sumi_0, _mm_add_epi32(p16_4, p16_6));
  3133. sumi_1 = _mm_add_epi32(sumi_1, _mm_add_epi32(p16_5, p16_7));
  3134. }
  3135. __m256i sumi = MM256_SET_M128I(sumi_1, sumi_0);
  3136. acc = _mm256_add_ps(_mm256_mul_ps(_mm256_broadcast_ss(&d), _mm256_cvtepi32_ps(sumi)), acc);
  3137. }
  3138. *s = hsum_float_8(acc);
  3139. #else
  3140. int8_t aux8[QK_K];
  3141. int16_t aux16[8];
  3142. float sums [8];
  3143. int32_t aux32[8];
  3144. memset(sums, 0, 8*sizeof(float));
  3145. float sumf = 0;
  3146. for (int i = 0; i < nb; ++i) {
  3147. const uint8_t * restrict q4 = x[i].ql;
  3148. const uint8_t * restrict qh = x[i].qh;
  3149. const int8_t * restrict q8 = y[i].qs;
  3150. memset(aux32, 0, 8*sizeof(int32_t));
  3151. int8_t * restrict a = aux8;
  3152. for (int j = 0; j < QK_K; j += 128) {
  3153. for (int l = 0; l < 32; ++l) {
  3154. a[l + 0] = (int8_t)((q4[l + 0] & 0xF) | (((qh[l] >> 0) & 3) << 4)) - 32;
  3155. a[l + 32] = (int8_t)((q4[l + 32] & 0xF) | (((qh[l] >> 2) & 3) << 4)) - 32;
  3156. a[l + 64] = (int8_t)((q4[l + 0] >> 4) | (((qh[l] >> 4) & 3) << 4)) - 32;
  3157. a[l + 96] = (int8_t)((q4[l + 32] >> 4) | (((qh[l] >> 6) & 3) << 4)) - 32;
  3158. }
  3159. a += 128;
  3160. q4 += 64;
  3161. qh += 32;
  3162. }
  3163. a = aux8;
  3164. int is = 0;
  3165. for (int j = 0; j < QK_K/16; ++j) {
  3166. int scale = x[i].scales[is++];
  3167. for (int l = 0; l < 8; ++l) aux16[l] = q8[l] * a[l];
  3168. for (int l = 0; l < 8; ++l) aux32[l] += scale * aux16[l];
  3169. q8 += 8; a += 8;
  3170. for (int l = 0; l < 8; ++l) aux16[l] = q8[l] * a[l];
  3171. for (int l = 0; l < 8; ++l) aux32[l] += scale * aux16[l];
  3172. q8 += 8; a += 8;
  3173. }
  3174. const float d = ggml_fp16_to_fp32(x[i].d) * y[i].d;
  3175. for (int l = 0; l < 8; ++l) sums[l] += d * aux32[l];
  3176. }
  3177. for (int l = 0; l < 8; ++l) sumf += sums[l];
  3178. *s = sumf;
  3179. #endif
  3180. }
  3181. #else
  3182. void ggml_vec_dot_q6_K_q8_K(const int n, float * restrict s, const void * restrict vx, const void * restrict vy) {
  3183. assert(n % QK_K == 0);
  3184. const block_q6_K * restrict x = vx;
  3185. const block_q8_K * restrict y = vy;
  3186. const int nb = n / QK_K;
  3187. #ifdef __ARM_NEON
  3188. float sum = 0;
  3189. const uint8x16_t m4b = vdupq_n_u8(0xF);
  3190. const int32x4_t vzero = vdupq_n_s32(0);
  3191. const int8x16_t m32s = vdupq_n_s8(32);
  3192. const uint8x16_t mone = vdupq_n_u8(3);
  3193. int8x16x4_t q6bytes;
  3194. uint8x16x4_t q6h;
  3195. for (int i = 0; i < nb; ++i) {
  3196. const float d_all = (float)x[i].d;
  3197. const uint8_t * restrict q6 = x[i].ql;
  3198. const uint8_t * restrict qh = x[i].qh;
  3199. const int8_t * restrict q8 = y[i].qs;
  3200. const int8_t * restrict scale = x[i].scales;
  3201. int32_t isum = 0;
  3202. uint8x16_t qhbits = vld1q_u8(qh);
  3203. uint8x16x2_t q6bits = vld1q_u8_x2(q6);
  3204. int8x16x4_t q8bytes = vld1q_s8_x4(q8);
  3205. q6h.val[0] = vshlq_n_u8(vandq_u8(mone, qhbits), 4);
  3206. uint8x16_t shifted = vshrq_n_u8(qhbits, 2);
  3207. q6h.val[1] = vshlq_n_u8(vandq_u8(mone, shifted), 4);
  3208. shifted = vshrq_n_u8(qhbits, 4);
  3209. q6h.val[2] = vshlq_n_u8(vandq_u8(mone, shifted), 4);
  3210. shifted = vshrq_n_u8(qhbits, 6);
  3211. q6h.val[3] = vshlq_n_u8(vandq_u8(mone, shifted), 4);
  3212. q6bytes.val[0] = vsubq_s8(vreinterpretq_s8_u8(vorrq_u8(vandq_u8(q6bits.val[0], m4b), q6h.val[0])), m32s);
  3213. q6bytes.val[1] = vsubq_s8(vreinterpretq_s8_u8(vorrq_u8(vandq_u8(q6bits.val[1], m4b), q6h.val[1])), m32s);
  3214. q6bytes.val[2] = vsubq_s8(vreinterpretq_s8_u8(vorrq_u8(vshrq_n_u8(q6bits.val[0], 4), q6h.val[2])), m32s);
  3215. q6bytes.val[3] = vsubq_s8(vreinterpretq_s8_u8(vorrq_u8(vshrq_n_u8(q6bits.val[1], 4), q6h.val[3])), m32s);
  3216. #if defined(__ARM_FEATURE_DOTPROD)
  3217. isum += vaddvq_s32(vdotq_s32(vzero, q6bytes.val[0], q8bytes.val[0])) * scale[0] +
  3218. vaddvq_s32(vdotq_s32(vzero, q6bytes.val[1], q8bytes.val[1])) * scale[1] +
  3219. vaddvq_s32(vdotq_s32(vzero, q6bytes.val[2], q8bytes.val[2])) * scale[2] +
  3220. vaddvq_s32(vdotq_s32(vzero, q6bytes.val[3], q8bytes.val[3])) * scale[3];
  3221. #else
  3222. int16x8_t p0 = vaddq_s16(vmull_s8(vget_low_s8 (q6bytes.val[0]), vget_low_s8 (q8bytes.val[0])),
  3223. vmull_s8(vget_high_s8(q6bytes.val[0]), vget_high_s8(q8bytes.val[0])));
  3224. int16x8_t p1 = vaddq_s16(vmull_s8(vget_low_s8 (q6bytes.val[1]), vget_low_s8 (q8bytes.val[1])),
  3225. vmull_s8(vget_high_s8(q6bytes.val[1]), vget_high_s8(q8bytes.val[1])));
  3226. isum += vaddvq_s16(p0) * scale[0] + vaddvq_s16(p1) * scale[1];
  3227. int16x8_t p2 = vaddq_s16(vmull_s8(vget_low_s8 (q6bytes.val[2]), vget_low_s8 (q8bytes.val[2])),
  3228. vmull_s8(vget_high_s8(q6bytes.val[2]), vget_high_s8(q8bytes.val[2])));
  3229. int16x8_t p3 = vaddq_s16(vmull_s8(vget_low_s8 (q6bytes.val[3]), vget_low_s8 (q8bytes.val[3])),
  3230. vmull_s8(vget_high_s8(q6bytes.val[3]), vget_high_s8(q8bytes.val[3])));
  3231. isum += vaddvq_s16(p2) * scale[2] + vaddvq_s16(p3) * scale[3];
  3232. #endif
  3233. sum += isum * d_all * y[i].d;
  3234. }
  3235. *s = sum;
  3236. #elif defined __AVX2__
  3237. const __m256i m4 = _mm256_set1_epi8(0xF);
  3238. const __m256i m2 = _mm256_set1_epi8(3);
  3239. const __m256i m32s = _mm256_set1_epi8(32);
  3240. __m256 acc = _mm256_setzero_ps();
  3241. for (int i = 0; i < nb; ++i) {
  3242. const float d = y[i].d * ggml_fp16_to_fp32(x[i].d);
  3243. const uint8_t * restrict q4 = x[i].ql;
  3244. const uint8_t * restrict qh = x[i].qh;
  3245. const int8_t * restrict q8 = y[i].qs;
  3246. const __m64 scales_1 = _mm_set1_pi8(x[i].scales[0]);
  3247. const __m64 scales_2 = _mm_set1_pi8(x[i].scales[1]);
  3248. const __m64 scales_3 = _mm_set1_pi8(x[i].scales[2]);
  3249. const __m64 scales_4 = _mm_set1_pi8(x[i].scales[3]);
  3250. __m256i sumi = _mm256_setzero_si256();
  3251. const __m128i scale_0 = _mm_set_epi64(scales_2, scales_1);
  3252. const __m128i scale_1 = _mm_set_epi64(scales_4, scales_3);
  3253. const __m256i q4bits1 = _mm256_loadu_si256((const __m256i*)q4);
  3254. const __m128i q4bitsH = _mm_loadu_si128((const __m128i*)qh);
  3255. const __m256i q4h_0 = _mm256_slli_epi16(_mm256_and_si256(MM256_SET_M128I(_mm_srli_epi16(q4bitsH, 2), q4bitsH), m2), 4);
  3256. const __m256i q4h_1 = _mm256_slli_epi16(_mm256_and_si256(MM256_SET_M128I(_mm_srli_epi16(q4bitsH, 6), _mm_srli_epi16(q4bitsH, 4)), m2), 4);
  3257. const __m256i q4_0 = _mm256_or_si256(_mm256_and_si256(q4bits1, m4), q4h_0);
  3258. const __m256i q4_1 = _mm256_or_si256(_mm256_and_si256(_mm256_srli_epi16(q4bits1, 4), m4), q4h_1);
  3259. const __m256i q8_0 = _mm256_loadu_si256((const __m256i*)(q8+ 0));
  3260. const __m256i q8_1 = _mm256_loadu_si256((const __m256i*)(q8+32));
  3261. __m256i q8s_0 = _mm256_maddubs_epi16(m32s, q8_0);
  3262. __m256i q8s_1 = _mm256_maddubs_epi16(m32s, q8_1);
  3263. __m256i p16_0 = _mm256_maddubs_epi16(q4_0, q8_0);
  3264. __m256i p16_1 = _mm256_maddubs_epi16(q4_1, q8_1);
  3265. p16_0 = _mm256_sub_epi16(p16_0, q8s_0);
  3266. p16_1 = _mm256_sub_epi16(p16_1, q8s_1);
  3267. p16_0 = _mm256_madd_epi16(_mm256_cvtepi8_epi16(scale_0), p16_0);
  3268. p16_1 = _mm256_madd_epi16(_mm256_cvtepi8_epi16(scale_1), p16_1);
  3269. sumi = _mm256_add_epi32(sumi, _mm256_add_epi32(p16_0, p16_1));
  3270. acc = _mm256_fmadd_ps(_mm256_broadcast_ss(&d), _mm256_cvtepi32_ps(sumi), acc);
  3271. }
  3272. *s = hsum_float_8(acc);
  3273. #elif defined __AVX__
  3274. const __m128i m4 = _mm_set1_epi8(0xF);
  3275. const __m128i m2 = _mm_set1_epi8(3);
  3276. const __m128i m32s = _mm_set1_epi8(32);
  3277. __m256 acc = _mm256_setzero_ps();
  3278. for (int i = 0; i < nb; ++i) {
  3279. const float d = y[i].d * ggml_fp16_to_fp32(x[i].d);
  3280. const uint8_t * restrict q4 = x[i].ql;
  3281. const uint8_t * restrict qh = x[i].qh;
  3282. const int8_t * restrict q8 = y[i].qs;
  3283. const __m64 scales_1 = _mm_set1_pi8(x[i].scales[0]);
  3284. const __m64 scales_2 = _mm_set1_pi8(x[i].scales[1]);
  3285. const __m64 scales_3 = _mm_set1_pi8(x[i].scales[2]);
  3286. const __m64 scales_4 = _mm_set1_pi8(x[i].scales[3]);
  3287. __m128i sumi_0 = _mm_setzero_si128();
  3288. __m128i sumi_1 = _mm_setzero_si128();
  3289. const __m128i scale_0 = _mm_set_epi64(scales_2, scales_1);
  3290. const __m128i scale_1 = _mm_set_epi64(scales_4, scales_3);
  3291. const __m256i q4bits1 = _mm256_loadu_si256((const __m256i*)q4);
  3292. const __m128i q4bitsH = _mm_loadu_si128((const __m128i*)qh);
  3293. const __m128i q4h_0 = _mm_slli_epi16(_mm_and_si128(q4bitsH, m2), 4);
  3294. const __m128i q4h_1 = _mm_slli_epi16(_mm_and_si128(_mm_srli_epi16(q4bitsH, 2), m2), 4);
  3295. const __m128i q4h_2 = _mm_slli_epi16(_mm_and_si128(_mm_srli_epi16(q4bitsH, 4), m2), 4);
  3296. const __m128i q4h_3 = _mm_slli_epi16(_mm_and_si128(_mm_srli_epi16(q4bitsH, 6), m2), 4);
  3297. const __m128i q4_0 = _mm_or_si128(_mm_and_si128(_mm256_extractf128_si256(q4bits1, 0), m4), q4h_0);
  3298. const __m128i q4_1 = _mm_or_si128(_mm_and_si128(_mm256_extractf128_si256(q4bits1, 1), m4), q4h_1);
  3299. const __m128i q4_2 = _mm_or_si128(_mm_and_si128(_mm_srli_epi16(_mm256_extractf128_si256(q4bits1, 0), 4), m4), q4h_2);
  3300. const __m128i q4_3 = _mm_or_si128(_mm_and_si128(_mm_srli_epi16(_mm256_extractf128_si256(q4bits1, 1), 4), m4), q4h_3);
  3301. const __m256i q8_0 = _mm256_loadu_si256((const __m256i*)(q8+ 0));
  3302. const __m256i q8_1 = _mm256_loadu_si256((const __m256i*)(q8+32));
  3303. __m128i q8s_0 = _mm_maddubs_epi16(m32s, _mm256_extractf128_si256(q8_0, 0));
  3304. __m128i q8s_1 = _mm_maddubs_epi16(m32s, _mm256_extractf128_si256(q8_0, 1));
  3305. __m128i q8s_2 = _mm_maddubs_epi16(m32s, _mm256_extractf128_si256(q8_1, 0));
  3306. __m128i q8s_3 = _mm_maddubs_epi16(m32s, _mm256_extractf128_si256(q8_1, 1));
  3307. __m128i p16_0 = _mm_maddubs_epi16(q4_0, _mm256_extractf128_si256(q8_0, 0));
  3308. __m128i p16_1 = _mm_maddubs_epi16(q4_1, _mm256_extractf128_si256(q8_0, 1));
  3309. __m128i p16_2 = _mm_maddubs_epi16(q4_2, _mm256_extractf128_si256(q8_1, 0));
  3310. __m128i p16_3 = _mm_maddubs_epi16(q4_3, _mm256_extractf128_si256(q8_1, 1));
  3311. p16_0 = _mm_sub_epi16(p16_0, q8s_0);
  3312. p16_1 = _mm_sub_epi16(p16_1, q8s_1);
  3313. p16_2 = _mm_sub_epi16(p16_2, q8s_2);
  3314. p16_3 = _mm_sub_epi16(p16_3, q8s_3);
  3315. p16_0 = _mm_madd_epi16(_mm_cvtepi8_epi16(scale_0), p16_0);
  3316. p16_1 = _mm_madd_epi16(_mm_cvtepi8_epi16(_mm_unpackhi_epi64(scale_0, scale_0)), p16_1);
  3317. p16_2 = _mm_madd_epi16(_mm_cvtepi8_epi16(scale_1), p16_2);
  3318. p16_3 = _mm_madd_epi16(_mm_cvtepi8_epi16(_mm_unpackhi_epi64(scale_1, scale_1)), p16_3);
  3319. sumi_0 = _mm_add_epi32(sumi_0, _mm_add_epi32(p16_0, p16_2));
  3320. sumi_1 = _mm_add_epi32(sumi_1, _mm_add_epi32(p16_1, p16_3));
  3321. acc = _mm256_add_ps(_mm256_mul_ps(_mm256_broadcast_ss(&d), _mm256_cvtepi32_ps(MM256_SET_M128I(sumi_1, sumi_0))), acc);
  3322. }
  3323. *s = hsum_float_8(acc);
  3324. #else
  3325. int8_t aux8[QK_K];
  3326. int16_t aux16[8];
  3327. float sums [8];
  3328. int32_t aux32[8];
  3329. memset(sums, 0, 8*sizeof(float));
  3330. float sumf = 0;
  3331. for (int i = 0; i < nb; ++i) {
  3332. const uint8_t * restrict q4 = x[i].ql;
  3333. const uint8_t * restrict qh = x[i].qh;
  3334. const int8_t * restrict q8 = y[i].qs;
  3335. memset(aux32, 0, 8*sizeof(int32_t));
  3336. int8_t * restrict a = aux8;
  3337. for (int l = 0; l < 16; ++l) {
  3338. a[l+ 0] = (int8_t)((q4[l+ 0] & 0xF) | (((qh[l] >> 0) & 3) << 4)) - 32;
  3339. a[l+16] = (int8_t)((q4[l+16] & 0xF) | (((qh[l] >> 2) & 3) << 4)) - 32;
  3340. a[l+32] = (int8_t)((q4[l+ 0] >> 4) | (((qh[l] >> 4) & 3) << 4)) - 32;
  3341. a[l+48] = (int8_t)((q4[l+16] >> 4) | (((qh[l] >> 6) & 3) << 4)) - 32;
  3342. }
  3343. int is = 0;
  3344. for (int j = 0; j < QK_K/16; ++j) {
  3345. int scale = x[i].scales[is++];
  3346. for (int l = 0; l < 8; ++l) aux16[l] = q8[l] * a[l];
  3347. for (int l = 0; l < 8; ++l) aux32[l] += scale * aux16[l];
  3348. q8 += 8; a += 8;
  3349. for (int l = 0; l < 8; ++l) aux16[l] = q8[l] * a[l];
  3350. for (int l = 0; l < 8; ++l) aux32[l] += scale * aux16[l];
  3351. q8 += 8; a += 8;
  3352. }
  3353. const float d = ggml_fp16_to_fp32(x[i].d) * y[i].d;
  3354. for (int l = 0; l < 8; ++l) sums[l] += d * aux32[l];
  3355. }
  3356. for (int l = 0; l < 8; ++l) sumf += sums[l];
  3357. *s = sumf;
  3358. #endif
  3359. }
  3360. #endif