llama.go 14 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569
  1. package llm
  2. /*
  3. #cgo CFLAGS: -Ofast -std=c11 -fPIC
  4. #cgo CPPFLAGS: -Ofast -Wall -Wextra -Wno-unused-function -Wno-unused-variable -DNDEBUG -DGGML_USE_K_QUANTS
  5. #cgo CXXFLAGS: -std=c++11 -fPIC
  6. #cgo darwin CPPFLAGS: -DGGML_USE_ACCELERATE
  7. #cgo darwin,arm64 CPPFLAGS: -DGGML_USE_METAL -DGGML_METAL_NDEBUG
  8. #cgo darwin LDFLAGS: -framework Accelerate -framework Foundation -framework Metal -framework MetalKit -framework MetalPerformanceShaders
  9. #include <stdlib.h>
  10. #include "llama.h"
  11. struct llama_sample_options
  12. {
  13. float repeat_penalty;
  14. float frequency_penalty;
  15. float presence_penalty;
  16. float temperature;
  17. int32_t top_k;
  18. float top_p;
  19. float tfs_z;
  20. float typical_p;
  21. int mirostat;
  22. float mirostat_tau;
  23. float mirostat_eta;
  24. bool penalize_newline;
  25. };
  26. llama_token llama_sample(
  27. struct llama_context *ctx,
  28. struct llama_token_data *candidates,
  29. size_t n_candidates,
  30. const llama_token *last_tokens,
  31. size_t n_last_tokens,
  32. struct llama_sample_options *opts)
  33. {
  34. llama_token_data_array candidates_p = {
  35. candidates,
  36. n_candidates,
  37. false,
  38. };
  39. struct llama_token_data newline = candidates_p.data[llama_token_nl()];
  40. llama_sample_repetition_penalty(
  41. ctx, &candidates_p,
  42. last_tokens, n_last_tokens,
  43. opts->repeat_penalty);
  44. llama_sample_frequency_and_presence_penalties(
  45. ctx, &candidates_p,
  46. last_tokens, n_last_tokens,
  47. opts->frequency_penalty, opts->presence_penalty);
  48. if (!opts->penalize_newline) {
  49. candidates_p.data[llama_token_nl()] = newline;
  50. }
  51. if (opts->temperature <= 0) {
  52. return llama_sample_token_greedy(ctx, &candidates_p);
  53. }
  54. if (opts->mirostat == 1) {
  55. int mirostat_m = 100;
  56. float mirostat_mu = 2.0f * opts->mirostat_tau;
  57. llama_sample_temperature(ctx, &candidates_p, opts->temperature);
  58. return llama_sample_token_mirostat(
  59. ctx, &candidates_p,
  60. opts->mirostat_tau, opts->mirostat_eta,
  61. mirostat_m, &mirostat_mu);
  62. } else if (opts->mirostat == 2) {
  63. float mirostat_mu = 2.0f * opts->mirostat_tau;
  64. llama_sample_temperature(ctx, &candidates_p, opts->temperature);
  65. return llama_sample_token_mirostat_v2(
  66. ctx, &candidates_p,
  67. opts->mirostat_tau, opts->mirostat_eta,
  68. &mirostat_mu);
  69. } else {
  70. llama_sample_top_k(ctx, &candidates_p, opts->top_k, 1);
  71. llama_sample_tail_free(ctx, &candidates_p, opts->tfs_z, 1);
  72. llama_sample_typical(ctx, &candidates_p, opts->typical_p, 1);
  73. llama_sample_top_p(ctx, &candidates_p, opts->top_p, 1);
  74. llama_sample_temperature(ctx, &candidates_p, opts->temperature);
  75. return llama_sample_token(ctx, &candidates_p);
  76. }
  77. }
  78. */
  79. import "C"
  80. import (
  81. "bytes"
  82. "embed"
  83. "errors"
  84. "fmt"
  85. "io"
  86. "log"
  87. "os"
  88. "strings"
  89. "sync"
  90. "unicode/utf8"
  91. "unsafe"
  92. "github.com/jmorganca/ollama/api"
  93. )
  94. //go:embed ggml-metal.metal
  95. var fs embed.FS
  96. const ModelFamilyLlama ModelFamily = "llama"
  97. type llamaModel struct {
  98. hyperparameters llamaHyperparameters
  99. }
  100. func (llm *llamaModel) ModelFamily() ModelFamily {
  101. return ModelFamilyLlama
  102. }
  103. func (llm *llamaModel) ModelType() ModelType {
  104. return ModelType30B
  105. }
  106. func (llm *llamaModel) FileType() FileType {
  107. return llm.hyperparameters.FileType
  108. }
  109. type llamaHyperparameters struct {
  110. // NumVocab is the size of the model's vocabulary.
  111. NumVocab uint32
  112. // NumEmbd is the size of the model's embedding layer.
  113. NumEmbd uint32
  114. NumMult uint32
  115. NumHead uint32
  116. // NumLayer is the number of layers in the model.
  117. NumLayer uint32
  118. NumRot uint32
  119. // FileType describes the quantization level of the model, e.g. Q4_0, Q5_K, etc.
  120. FileType llamaFileType
  121. }
  122. type llamaFileType uint32
  123. const (
  124. llamaFileTypeF32 llamaFileType = iota
  125. llamaFileTypeF16
  126. llamaFileTypeQ4_0
  127. llamaFileTypeQ4_1
  128. llamaFileTypeQ4_1_F16
  129. llamaFileTypeQ8_0 llamaFileType = iota + 2
  130. llamaFileTypeQ5_0
  131. llamaFileTypeQ5_1
  132. llamaFileTypeQ2_K
  133. llamaFileTypeQ3_K_S
  134. llamaFileTypeQ3_K_M
  135. llamaFileTypeQ3_K_L
  136. llamaFileTypeQ4_K_S
  137. llamaFileTypeQ4_K_M
  138. llamaFileTypeQ5_K_S
  139. llamaFileTypeQ5_K_M
  140. llamaFileTypeQ6_K
  141. )
  142. func (ft llamaFileType) String() string {
  143. switch ft {
  144. case llamaFileTypeF32:
  145. return "F32"
  146. case llamaFileTypeF16:
  147. return "F16"
  148. case llamaFileTypeQ4_0:
  149. return "Q4_0"
  150. case llamaFileTypeQ4_1:
  151. return "Q4_1"
  152. case llamaFileTypeQ4_1_F16:
  153. return "Q4_1_F16"
  154. case llamaFileTypeQ8_0:
  155. return "Q8_0"
  156. case llamaFileTypeQ5_0:
  157. return "Q5_0"
  158. case llamaFileTypeQ5_1:
  159. return "Q5_1"
  160. case llamaFileTypeQ2_K:
  161. return "Q2_K"
  162. case llamaFileTypeQ3_K_S:
  163. return "Q3_K_S"
  164. case llamaFileTypeQ3_K_M:
  165. return "Q3_K_M"
  166. case llamaFileTypeQ3_K_L:
  167. return "Q3_K_L"
  168. case llamaFileTypeQ4_K_S:
  169. return "Q4_K_S"
  170. case llamaFileTypeQ4_K_M:
  171. return "Q4_K_M"
  172. case llamaFileTypeQ5_K_S:
  173. return "Q5_K_S"
  174. case llamaFileTypeQ5_K_M:
  175. return "Q5_K_M"
  176. case llamaFileTypeQ6_K:
  177. return "Q6_K"
  178. default:
  179. return "Unknown"
  180. }
  181. }
  182. type llama struct {
  183. params *C.struct_llama_context_params
  184. model *C.struct_llama_model
  185. ctx *C.struct_llama_context
  186. last []C.llama_token
  187. embd []C.llama_token
  188. cursor int
  189. mu sync.Mutex
  190. gc bool
  191. api.Options
  192. }
  193. func newLlama(model string, adapters []string, opts api.Options) (*llama, error) {
  194. if _, err := os.Stat(model); err != nil {
  195. return nil, err
  196. }
  197. llm := llama{Options: opts}
  198. C.llama_backend_init(C.bool(llm.UseNUMA))
  199. params := C.llama_context_default_params()
  200. params.seed = C.uint(llm.Seed)
  201. params.n_ctx = C.int(llm.NumCtx)
  202. params.n_batch = C.int(llm.NumBatch)
  203. params.n_gqa = C.int(llm.NumGQA)
  204. params.n_gpu_layers = C.int(llm.NumGPU)
  205. params.main_gpu = C.int(llm.MainGPU)
  206. params.low_vram = C.bool(llm.LowVRAM)
  207. params.f16_kv = C.bool(llm.F16KV)
  208. params.logits_all = C.bool(llm.LogitsAll)
  209. params.vocab_only = C.bool(llm.VocabOnly)
  210. params.use_mmap = C.bool(llm.UseMMap)
  211. params.use_mlock = C.bool(llm.UseMLock)
  212. params.embedding = C.bool(llm.EmbeddingOnly)
  213. params.rope_freq_base = C.float(llm.RopeFrequencyBase)
  214. params.rope_freq_scale = C.float(llm.RopeFrequencyScale)
  215. if len(adapters) > 0 && llm.UseMMap {
  216. log.Printf("must disable mmap to use lora adapters")
  217. params.use_mmap = C.bool(false)
  218. }
  219. llm.params = &params
  220. cModel := C.CString(model)
  221. defer C.free(unsafe.Pointer(cModel))
  222. llm.model = C.llama_load_model_from_file(cModel, params)
  223. if llm.model == nil {
  224. return nil, errors.New("failed to load model")
  225. }
  226. llm.ctx = C.llama_new_context_with_model(llm.model, params)
  227. if llm.ctx == nil {
  228. return nil, errors.New("failed to create context")
  229. }
  230. for _, adapter := range adapters {
  231. cAdapter := C.CString(adapter)
  232. defer C.free(unsafe.Pointer(cAdapter))
  233. if retval := C.llama_model_apply_lora_from_file(llm.model, cAdapter, nil, C.int(llm.NumThread)); retval != 0 {
  234. return nil, fmt.Errorf("failed to load adapter %s", adapter)
  235. }
  236. }
  237. // warm up the model
  238. bos := []C.llama_token{C.llama_token_bos()}
  239. C.llama_eval(llm.ctx, unsafe.SliceData(bos), C.int(len(bos)), 0, C.int(opts.NumThread))
  240. C.llama_reset_timings(llm.ctx)
  241. return &llm, nil
  242. }
  243. func (llm *llama) Close() {
  244. llm.gc = true
  245. llm.mu.Lock()
  246. defer llm.mu.Unlock()
  247. defer C.llama_free_model(llm.model)
  248. defer C.llama_free(llm.ctx)
  249. C.llama_print_timings(llm.ctx)
  250. }
  251. func (llm *llama) SetOptions(opts api.Options) {
  252. llm.Options = opts
  253. }
  254. var errNeedMoreData = errors.New("need more data")
  255. func (llm *llama) Predict(ctx []int, prompt string, fn func(api.GenerateResponse)) error {
  256. C.llama_reset_timings(llm.ctx)
  257. llm.marshalPrompt(ctx, prompt)
  258. C.llama_set_rng_seed(llm.ctx, C.uint(llm.Seed))
  259. var b bytes.Buffer
  260. for {
  261. token, err := llm.next()
  262. if llm.gc {
  263. return nil
  264. } else if errors.Is(err, io.EOF) {
  265. break
  266. } else if err != nil {
  267. return err
  268. }
  269. b.WriteString(llm.Decode(int(token)))
  270. if err := llm.checkStopConditions(b); err != nil {
  271. if errors.Is(err, io.EOF) {
  272. break
  273. } else if errors.Is(err, errNeedMoreData) {
  274. continue
  275. }
  276. return err
  277. }
  278. if utf8.Valid(b.Bytes()) || b.Len() >= utf8.UTFMax {
  279. fn(api.GenerateResponse{Response: b.String()})
  280. b.Reset()
  281. }
  282. }
  283. embd := make([]int, len(llm.embd))
  284. for i := range llm.embd {
  285. embd[i] = int(llm.embd[i])
  286. }
  287. timings := C.llama_get_timings(llm.ctx)
  288. fn(api.GenerateResponse{
  289. Done: true,
  290. Context: embd,
  291. SampleCount: int(timings.n_sample),
  292. SampleDuration: parseDurationMs(float64(timings.t_sample_ms)),
  293. PromptEvalCount: int(timings.n_p_eval),
  294. PromptEvalDuration: parseDurationMs(float64(timings.t_p_eval_ms)),
  295. EvalCount: int(timings.n_eval),
  296. EvalDuration: parseDurationMs(float64(timings.t_eval_ms)),
  297. })
  298. return nil
  299. }
  300. func (llm *llama) checkStopConditions(b bytes.Buffer) error {
  301. for _, stopCondition := range llm.Stop {
  302. if stopCondition == strings.TrimSpace(b.String()) {
  303. return io.EOF
  304. } else if strings.HasPrefix(stopCondition, strings.TrimSpace(b.String())) {
  305. return errNeedMoreData
  306. }
  307. }
  308. return nil
  309. }
  310. func (llm *llama) marshalPrompt(ctx []int, prompt string) []C.llama_token {
  311. tokens := append(ctx, llm.Encode(prompt)...)
  312. if llm.NumKeep < 0 {
  313. llm.NumKeep = len(tokens)
  314. }
  315. cTokens := make([]C.llama_token, len(tokens))
  316. for i := range tokens {
  317. cTokens[i] = C.llama_token(tokens[i])
  318. }
  319. // min(llm.NumCtx - 4, llm.NumKeep)
  320. if llm.NumCtx-4 < llm.NumKeep {
  321. llm.NumKeep = llm.NumCtx - 4
  322. }
  323. if len(tokens) >= llm.NumCtx {
  324. // truncate input
  325. numLeft := (llm.NumCtx - llm.NumKeep) / 2
  326. truncated := cTokens[:llm.NumKeep]
  327. erasedBlocks := (len(cTokens) - llm.NumKeep - numLeft - 1) / numLeft
  328. truncated = append(truncated, cTokens[llm.NumKeep+erasedBlocks*numLeft:]...)
  329. copy(llm.last, cTokens[len(cTokens)-llm.NumCtx:])
  330. cTokens = truncated
  331. log.Printf("input truncated: num_ctx=%d num_keep=%d num_left=%d num_tokens=%d", llm.NumCtx, llm.NumKeep, numLeft, len(truncated))
  332. } else {
  333. llm.last = make([]C.llama_token, llm.NumCtx-len(cTokens))
  334. llm.last = append(llm.last, cTokens...)
  335. }
  336. var i int
  337. for i = 0; i < len(llm.embd) && i < len(cTokens) && llm.embd[i] == cTokens[i]; i++ {
  338. // noop
  339. }
  340. llm.embd = cTokens
  341. if i == len(cTokens) {
  342. // evaluate at least one token to generate logits
  343. i--
  344. }
  345. llm.cursor = i
  346. log.Printf("prompt: num_past=%d cached=%v eval=%v", i, len(llm.embd[:i]), len(llm.embd[i:]))
  347. return cTokens
  348. }
  349. func (llm *llama) Encode(prompt string) []int {
  350. cPrompt := C.CString(prompt)
  351. defer C.free(unsafe.Pointer(cPrompt))
  352. cTokens := make([]C.llama_token, len(prompt)+1)
  353. if n := C.llama_tokenize(llm.ctx, cPrompt, unsafe.SliceData(cTokens), C.int(len(cTokens)), true); n > 0 {
  354. tokens := make([]int, n)
  355. for i := range cTokens[:n] {
  356. tokens[i] = int(cTokens[i])
  357. }
  358. return tokens
  359. }
  360. return nil
  361. }
  362. func (llm *llama) Decode(tokens ...int) string {
  363. var sb strings.Builder
  364. for _, token := range tokens {
  365. sb.WriteString(C.GoString(C.llama_token_to_str(llm.ctx, C.llama_token(token))))
  366. }
  367. return sb.String()
  368. }
  369. func (llm *llama) next() (C.llama_token, error) {
  370. llm.mu.Lock()
  371. defer llm.mu.Unlock()
  372. if len(llm.embd) >= llm.NumCtx {
  373. numLeft := (llm.NumCtx - llm.NumKeep) / 2
  374. truncated := llm.embd[:llm.NumKeep]
  375. truncated = append(truncated, llm.embd[len(llm.embd)-numLeft:]...)
  376. llm.embd = truncated
  377. llm.cursor = llm.NumKeep
  378. log.Printf("input truncated: num_ctx=%d num_keep=%d num_left=%d num_tokens=%d cursor=%d", llm.NumCtx, llm.NumKeep, numLeft, len(truncated), llm.cursor)
  379. }
  380. for {
  381. if llm.gc {
  382. return 0, io.EOF
  383. }
  384. if llm.cursor >= len(llm.embd) {
  385. break
  386. }
  387. numEval := len(llm.embd) - llm.cursor
  388. if numEval > llm.NumBatch {
  389. numEval = llm.NumBatch
  390. }
  391. if retval := C.llama_eval(llm.ctx, unsafe.SliceData(llm.embd[llm.cursor:]), C.int(numEval), C.int(llm.cursor), C.int(llm.NumThread)); retval != 0 {
  392. return 0, fmt.Errorf("llama_eval: %d", retval)
  393. }
  394. llm.cursor += numEval
  395. }
  396. var sampleOpts C.struct_llama_sample_options
  397. sampleOpts.repeat_penalty = C.float(llm.RepeatPenalty)
  398. sampleOpts.frequency_penalty = C.float(llm.FrequencyPenalty)
  399. sampleOpts.presence_penalty = C.float(llm.PresencePenalty)
  400. sampleOpts.temperature = C.float(llm.Temperature)
  401. sampleOpts.top_k = C.int(llm.TopK)
  402. sampleOpts.top_p = C.float(llm.TopP)
  403. sampleOpts.tfs_z = C.float(llm.TFSZ)
  404. sampleOpts.typical_p = C.float(llm.TypicalP)
  405. sampleOpts.mirostat = C.int(llm.Mirostat)
  406. sampleOpts.mirostat_tau = C.float(llm.MirostatTau)
  407. sampleOpts.mirostat_eta = C.float(llm.MirostatEta)
  408. sampleOpts.penalize_newline = C.bool(llm.PenalizeNewline)
  409. numVocab := C.llama_n_vocab(llm.ctx)
  410. logits := unsafe.Slice(C.llama_get_logits(llm.ctx), numVocab)
  411. // TODO: logit bias
  412. candidates := make([]C.llama_token_data, numVocab)
  413. for i := range logits {
  414. candidates[i] = C.llama_token_data{
  415. id: C.int(i),
  416. logit: logits[i],
  417. p: 0,
  418. }
  419. }
  420. repeatLastN := llm.RepeatLastN
  421. if len(llm.last) < repeatLastN {
  422. repeatLastN = len(llm.last)
  423. }
  424. if llm.NumCtx < repeatLastN {
  425. repeatLastN = llm.NumCtx
  426. }
  427. lastN := llm.last[len(llm.last)-repeatLastN:]
  428. token := C.llama_sample(
  429. llm.ctx,
  430. unsafe.SliceData(candidates), C.size_t(len(candidates)),
  431. unsafe.SliceData(lastN), C.size_t(len(lastN)),
  432. &sampleOpts,
  433. )
  434. llm.last = append(llm.last, token)
  435. llm.embd = append(llm.embd, token)
  436. if token == C.llama_token_eos() {
  437. return 0, io.EOF
  438. }
  439. return token, nil
  440. }
  441. func (llm *llama) Embedding(input string) ([]float64, error) {
  442. if !llm.EmbeddingOnly {
  443. return nil, errors.New("llama: embedding not enabled")
  444. }
  445. tokens := llm.Encode(input)
  446. if tokens == nil {
  447. return nil, errors.New("llama: tokenize embedding")
  448. }
  449. cTokens := make([]C.llama_token, len(tokens))
  450. for i := range tokens {
  451. cTokens[i] = C.llama_token(tokens[i])
  452. }
  453. retval := C.llama_eval(llm.ctx, unsafe.SliceData(cTokens), C.int(len(tokens)), 0, C.int(llm.NumThread))
  454. if retval != 0 {
  455. return nil, errors.New("llama: eval")
  456. }
  457. C.llama_print_timings(llm.ctx)
  458. n := C.llama_n_embd(llm.ctx)
  459. if n <= 0 {
  460. return nil, errors.New("llama: no embeddings generated")
  461. }
  462. cEmbeddings := unsafe.Slice(C.llama_get_embeddings(llm.ctx), n)
  463. embeddings := make([]float64, len(cEmbeddings))
  464. for i, v := range cEmbeddings {
  465. embeddings[i] = float64(v)
  466. }
  467. return embeddings, nil
  468. }